WorldWideScience

Sample records for science programme cosmic

  1. Topos of the cosmic space in science fiction

    Directory of Open Access Journals (Sweden)

    Poutilo Oleg Olegovich

    2015-09-01

    Full Text Available The article examines the forms of cosmic space in science fiction, its characteristics and main trends of evolution. Cosmic space is seen as a dichotomy of “our” and “their”, though their interaction is complicated and full interiorization is impossible. The specificity of the described cosmic space is the absence of the traditional system of coordinates associated with the sides of the world. Authors have to resort to the use of “map-route”, describing the journey sequentially, from the point of view of a moving person. In this regard, in recent years there has been a tendency to reduce the role of images of cosmic space in science fiction novels. Their appearance in the works becomes a kind of stamp, a concession to the classical traditions of the genre. Once popular genres of strict science fiction or space opera inferior position to the other, recreating a far more convincing picture of the probable future of humanity - cyberpunk dystopia and post-apocalyptic fiction.

  2. Cosmic Times: Astronomy History and Science for the Classroom

    Science.gov (United States)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  3. Cosmic Times: Engaging Students in Science through History and Journalism

    Science.gov (United States)

    Lochner, J. C.; Mattson, B. J.

    2009-12-01

    Cosmic Times tells the story of how our understanding of the nature of the universe has changed over the past 100 years. Designed to fulfill the need for quality science literature in the classroom, Cosmic Times takes the form of six posters, each mimicking the front page of a newspaper at a key point in this history, with articles describing the discoveries. These milestones include the confirmation of Einstein’s theory of gravity, Hubble’s evidence for an expanding universe, the detection of the microwave background, and finally the discovery of dark energy. Telling this story also involves tracing astronomer’s efforts to determine the size of the universe, understand the nature of supernovae, and comprehend the expansion of the universe. Through the scope of this history, students experience the process of science and how new technology and data change our ideas. The posters are accompanied by 28 lessons, designed for grades 7-12 by scientists and teachers and field-tested by third-party teachers in rural communities. The lessons teach the science concepts behind the discoveries, the process of science, and skills for science literacy. To facilitate these lessons and meet student’s individual science literacy needs, the articles are also available in two newsletter versions: one with the same articles as on the posters, the second at a slightly lower reading level. In addition, lessons include cross-curricular activities which explore the times and social circumstances of the discoveries. In a capstone lesson, students write and design the 2019 edition of Cosmic Times, not only predicting what we will know in the future, but also applying expository writing skills. In addition, an on-line Teacher Guide provides background material for all the articles. All these materials are available on the Cosmic Times website, http://cosmictimes.gsfc.nasa.gov/. In this presentation, we shall describe how Cosmic Times uses a journalistic storytelling approach to

  4. 11. European cosmic ray symposium

    International Nuclear Information System (INIS)

    1989-03-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Seven invited talks were indexed seprately for the INIS database. (R.P.)

  5. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    IAS Admin

    2013-11-30

    Nov 30, 2013 ... Science Academies' Summer Research Fellowship Programme for. Students and Teachers – 2014. Sponspored by. Indian Academy of Sciences, Bangalore. Indian National Science Academy, New Delhi. The National Academy of Sciences, India, Allahabad. The three national science academies offer ...

  6. Science Academies' Summer Research Fellowship Programme

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018. Information and Announcements Volume 22 Issue 11 November 2017 pp 1100-1100 ...

  7. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  8. 100th anniversary of the discovery of cosmic rays (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 24 October 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled ''100th anniversary of the discovery of cosmic rays'', was held on 24 October 2012 in the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session announced on the RAS Physical Sciences Division website www.gpad.ac.ru included the following reports: (1) Panasyuk M I (Skobeltsyn Institute of Nuclear Physics of the Lomonosov State University, Moscow) T he contribution of Russian scientists to the centennial history of the development of the physics of cosmic rays ; (2) Ryazhskaya O G (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) O n experiments in underground physics ; (3) Krymskii G F, Berezhko E G (Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences, Yakutsk) T he origin of cosmic rays ; (4) Stozhkov Yu I (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) C osmic rays in the heliosphere ; (5) Troitsky S V (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) ''Cosmic particles of energies >10 19 eV: a short review of results''. Papers based on reports 2 and 5 are presented below. . On experiments in Underground Physics, O G Ryazhskaya Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 296–304 . Cosmic particles with energies above 10 19 eV: a brief summary of results, S V Troitsky Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 304–310 (conferences and symposia)

  9. Introducing new diagnostics into STI control programmes: the importance of programme science.

    Science.gov (United States)

    Peeling, Rosanna W; Mabey, David; Ballard, Ronald C

    2013-03-01

    Many innovative diagnostic technologies will become commercially available over the next 5-10 years. These tests can potentially transform the diagnosis of sexually transmitted infections but their introduction into control programmes can be hampered by health system constraints, and political, cultural, socioeconomic and behavioural factors. We used the introduction of syphilis rapid tests to illustrate the importance of programme science to address the gap between accruing evidence of acceptable test performance and the complexity of programme design, implementation and evaluation of test deployment to address public health needs and improve patient-important outcomes.

  10. `Discover, Understand, Implement, and Transfer': Effectiveness of an intervention programme to motivate students for science

    Science.gov (United States)

    Schütte, Kerstin; Köller, Olaf

    2015-09-01

    Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2 years in the intervention programme, which was implemented as an elective in the school curriculum. Our longitudinal study design for evaluating the effectiveness of the intervention programme included all students at the grade levels involved in the programme with students who did not participate serving as a control group. Mixed-model analyses of variance showed none of the intended effects of the intervention programme on science motivation; latent growth models corroborated these results. When the programme began, students who enrolled in the science elective (n = 92) were already substantially more motivated than their classmates (n = 228). Offering such an intervention programme as an elective did not further increase the participating students' science motivation. It seems worthwhile to carry out intervention programmes with talented students who show (comparatively) little interest in science at the outset rather than with highly motivated students who self-select into the programme.

  11. The EuroDIVERSITY Programme: Challenges of Biodiversity Science in Europe

    Science.gov (United States)

    Jonckheere, I.

    2009-04-01

    In close cooperation with its Member Organisations, the European Science Foundation (ESF) has launched since late 2003 a series of European Collaborative Research (EUROCORES) Programmes. Their aim is to enable researchers in different European countries to develop cooperation and scientific synergy in areas where European scale and scope are required in a global context. The EUROCORES instrument represents the first large scale attempt of national research (funding) agencies to act together against fragmentation, asynchronicity and duplication of research (funding) within Europe. Although covering all scientific fields, there are presently 13 EUROCORES Programmes dealing with cutting edge science in the fields of Earth, Climate and Environmental Sciences. The aim of the EuroDIVERSITY Programme is to support the emergence of an integrated biodiversity science based on an understanding of fundamental ecological and social processes that drive biodiversity changes and their impacts on ecosystem functioning and society. Ecological systems across the globe are being threatened or transformed at unprecedented rates from local to global scales due to the ever-increasing human domination of natural ecosystems. In particular, massive biodiversity changes are currently taking place, and this trend is expected to continue over the coming decades, driven by the increasing extension and globalisation of human affairs. The EuroDIVERSITY Programme meets the research need triggered by the increasing human footprint worldwide with a focus on generalisations across particular systems and on the generation and validation of theory relevant to experimental and empirical data. The EURODIVERSITY Programme tries to bridge the gaps between the natural and social sciences, between research work on terrestrial, freshwater and marine ecosystems, and between research work on plants, animals and micro-organisms. The Programme was launched in April 2006 and includes 10 international

  12. Development through science: The IAEA research contract programme

    International Nuclear Information System (INIS)

    Benson Wiltschegg, T.; Gillen, V.

    1991-01-01

    The IAEA strives to stimulate the growth of science in developing countries by assuring that the IAEA and the scientific communities of developed and developing countries share their knowledge and experience. If the assistance provided is well organized and in keeping with the needs of developing countries it can make the crucial difference in sustainable development. This booklet provides a survey of the historical development of the IAEA's Research Contract Programme and outlines the aims and achievements of selected Co-ordinated Research Programmes. A complete listing of Co-ordinated Research Programmes is provided

  13. Romanian - Swiss cooperative research programme "Environmental Science and Technology in Romania" (ESTROM)

    OpenAIRE

    PANIN, Nicolae; GIGER, Walter

    2008-01-01

    The Romanian Ministry for Education, Research and Youth (MECT), the Swiss Agency for Development and Cooperation (SDC) and the Swiss National Science Foundation had launched in 2004 the Romanian-Swiss research programme known as “Environmental Science and Technology in Romania” (ESTROM). ESTROM was established as a pilot programme of scientific co-operation between Swiss Research and Education Units with similar ones from Romania in the framework of SCOPES – a Swiss national programme for sup...

  14. Coordinating the undergraduate medical (MBBS basic sciences programme in a Nepalese medical school

    Directory of Open Access Journals (Sweden)

    Shankar PR

    2011-06-01

    Full Text Available KIST Medical College follows the curriculum of the Institute ofMedicine, Tribhuvan University. The programme aims toproduce socially responsible and competent physicians whoare willing and able to meet the existing and emergingchallenges of the national and international healthcaresystem. The first cohort of undergraduate medical students(MBBS students was admitted in November 2008 and threecohorts including the one admitted in 2008 have beenadmitted at the time of writing. The basic science subjects aretaught in an integrated, organ-system-based manner withcommunity medicine during the first two years. I wasappointed as the MBBS Phase I programme coordinator inSeptember 2008 and in this article I share my experiences ofrunning the basic sciences programme and also offersuggestions for running an efficient academic programme. Themanuscript will be of special interest to readers runningundergraduate medical programmes. The reader canunderstand our experiences in running the programme inadverse circumstances, learning to achieve greater integrationamong basic science, community medicine and clinicaldepartments, obtain information about a communitydiagnosis programme and know about running specialmodules on the medical humanities and pharmaceuticalpromotion.

  15. A Longitudinal Investigation of the Preservice Science Teachers' Beliefs about Science Teaching during a Science Teacher Training Programme

    Science.gov (United States)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants…

  16. 11. European cosmic ray symposium held at Balatonfuered, Hungary, August 21-27, 1988

    International Nuclear Information System (INIS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database. (R.P.)

  17. Early-Years Teachers' Professional Upgrading in Science: a Long-Term Programme

    Science.gov (United States)

    Kallery, Maria

    2017-04-01

    In this paper, we present a professional development/upgrading programme in science for early-years teachers and investigate its impact on the teachers' competencies in relation to their knowledge and teaching of science. The basic idea of the programme was to motivate the teachers by making them members of an action research group aimed at developing and implementing curriculum activities to which they would contribute and thus meaningfully engaging them in their own learning. The programme used a `collaborative partnership' model for the development of the activities. In this model, the collaborative notion is defined as an act of `shared creation': partners share a goal and members bring their expertise to the partnership. Within this context, the partners were a researcher in science education with a background in physics, who also served as a facilitator, and six in-service early-years teachers with a background in early-years pedagogy and developmental sciences, who had many years of experience (classroom experts). These teachers participated in the programme as co-designers, but were involved to a significantly lesser degree than the researcher. The programme procedures comprised group work and individual teachers' class work. Data sources included teachers' essays, field-notes, lesson recordings and group-work records. Data were qualitatively analysed. The main results indicate improvement of teachers' `transformed' knowledge of the subject matter, development/improvement of knowledge of instructional strategies, including factors related to quality of implementation of the activities, knowledge of the pupils and improvement of the teachers' efficacy.

  18. A Reflection upon the "Getting Practical" Programme: Rethinking How We Teach Practical Science

    Science.gov (United States)

    Brennan, Nikki

    2010-01-01

    In this article, the author provides an overview of the "Getting Practical" training programme of professional development for all those involved with teaching practical science at primary, secondary, and post-16 levels. The programme is being led by the ASE, working with its co-ordinating partners: the Centre for Science Education,…

  19. A journey with Fred Hoyle. The search for cosmic life

    Science.gov (United States)

    Wickramasinghe, Chandra; Wickramasinghe, Kamala

    2005-01-01

    This is the story of the author's unique scientific journey with one of the most remarkable men of 20th century science. The journey begins in Sri Lanka, the author's native country, with his childhood acquaintance with Fred Hoyle's writings. The action then moves to Cambridge, where the famous Hoyle-Wickramasinghe collaborations begin. A research programme which was started in 1962 on the carbonaceous nature of interstellar dust leads, over the next two decades, to developments that are continued in both Cambridge and Cardiff. These developments prompt Hoyle and the author to postulate the organic theory of cosmic dust (which is now generally accepted), and then to challenge one of the most cherished paradigms of contemporary science - the theory that life originated on Earth in a warm primordial soup.

  20. The Incorporation of the USA "Science Made Sensible" Programme in South African Primary Schools: A Cross-Cultural Approach to Science Education

    Science.gov (United States)

    de Villiers, Rian; Plantan, Tiffany; Gaines, Michael

    2016-01-01

    The Science Made Sensible (SMS) programme began as a partnership between the University of Miami (UM), Florida, USA, and some public schools in Miami. In this programme, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of…

  1. Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park

    Science.gov (United States)

    Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen

    2015-01-01

    In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning…

  2. Lecture programme The reality of science today

    CERN Multimedia

    2007-01-01

    What are the new challenges and realities facing scientific research? What is its place in society today? To answer these questions, the History and Philosophy of Sciences Unit of Geneva University, in collaboration with ASPERA, the European network for astroparticle physics research, has organised a programme of lectures entitled La réalité de la science d’aujourd’hui, enjeux et défis de la diversité. This series of lectures will provide researchers and members of the public with a snapshot of the state of science today from the perspective of laboratories and institutes, and on subjects such as funding policy and technological and legal impact. The first lecture will be given by science historian Dominique Pestre (EHESS & Centre Koyré, Paris), renowned for his contributions to the analysis of science past and present, and notably one of the authors of the work "History of CERN". He will discuss the modern methods of producing scientific knowledge which have been develop...

  3. Developing a Services Science Graduation Programme at the University of Twente

    NARCIS (Netherlands)

    Sorathia, V.S.; Ferreira Pires, Luis; Pires, L.F.; van Sinderen, Marten J.; Wijnhoven, Alphonsus B.J.M.

    2010-01-01

    The recent growth in the services sector implies that more people must be trained in this area. This inspired us to develop a Services Science Graduation Programme at the University of Twente, the Netherlands. We propose a study programme of five years, consisting of a Master phase of two years and

  4. Science Teacher Training Programme in Rural Schools: An ODL Lesson from Zimbabwe

    OpenAIRE

    Misheck Mhishi; Crispen Erinos Bhukuvhani; Abel Farikai Sana

    2012-01-01

    This case study looked at 76 randomly selected preservice science teachers from Mbire and Guruve districts who were learning at the Mushumbi Centre in Zimbabwe and assessed their motivations for enrolling under the Bindura University of Science Education (BUSE)’s Virtual and Open Distance Learning (VODL) programme. It also looked at the challenges they faced, their views on how instruction under the programme can be improved, and their deployment preferences after graduation. The districts ar...

  5. Apports et limites des programmes de recherche aux sciences de gestion

    OpenAIRE

    Jeanjean, Thomas; Tixier, Julie

    2001-01-01

    Dans cet article, nous étudions la méthodologie des programmes de recherche de Lakatos (1978) et ses apports aux sciences sociales et en particulier à la recherche en gestion. Notre objectif est triple. Il s'agit d’abord de préciser la nature des programmes de recherche, de les critiquer et de les situer par rapport aux thèses défendues par Popper, Feyerabend et Kuhn. Par ailleurs, nous étudions la transférabilité de la méthodologie de Lakatos aux sciences sociales. Enfin, nous analysons l’in...

  6. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  7. Scope of the Spanish Marine Sciences National Programme from 1995 to 2003

    Directory of Open Access Journals (Sweden)

    Beatriz Morales-Nin

    2004-06-01

    Full Text Available Marine Research in Spain was funded mainly by the National Plans of the Ministry of Science and Technology. These have four-year duration and comprise priority research areas addressed by Research and Development Programmes. Marine Sciences has been identified as a Programme since 1995, and forms part of two National Plans. The Programme made annual invitations to tender with the following objectives: global change, ecosystems, sustainable fisheries, coastal zone, pollution and new technologies. Each objective had several sub-objectives. In the first period (1995-1999 Aquaculture was one of the objectives, and it had its own Programme in the second. The 1995-1999 Programme approved 189 projects (47% of the proposals submitted with a budget of 9.14 M€ and a participation of 550 persons/year. In the 2000-2003 Programme 175 projects were approved (51% of the proposals submitted corresponding to €12.42 M and 780 persons/year. The universities were the principal actors (58% of the projects, followed by the Science Council (25% of the projects. Catalonia is the region with the greatest participation both in projects and in funding, followed by Galicia and Andalusia. Considering that in the first period there were five invitations to tender and Aquaculture was the main objective (63 projects and €2.26 M, the increase in participation and funding is considerable. This trend is also confirmed by the increase in success rate (approval of proposals rose from 47% in the first invitation to tender to 51% in the second and the increase in the mean budget per project (from €48.300 to €70.900 respectively.

  8. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  9. The cosmic statements in the Holy Quran as introduction to the public understanding of space science in the Islamic countries

    Science.gov (United States)

    Mosalam Shaltout, M. A.

    The Holy Quran contains more than 800 cosmic statements speak about: sun, moon, planets, stars, Sirius, zodiac, day, night, twilights, position of stars, navigation, blue sky, night sky, dawn, noon, sunrise and sunset, eclipses, lunar months, release to the sky, landing to the earth, and so on. Due to the new discoveries in the 19th and 20th centuries in astronomy and space sciences, some of the Arabian-Islamic scientists and astronomers wished to find the significance of the cosmic statements in the Holy Quran on the light of these new discoveries. This current started at the end of the 19th century, and was growing through the 20th century. Hundreds of the articles published in the Daily news, and in the Weekly, Monthly, Quarterly, Annually Journals. Also, tens of the books published for different authors, from different Arabian and Islamic countries about the significance of the cosmic statements in the Holy Quran on the light of modern astronomy and Space sciences. Also, Radio and TV play an important role in this field, specially after the releasing of the Human kind to the space in the second half of the 20th century. This activity led to construct the International Commission on Scientific Signs in the Holy Quran and the Sunnah, which follow to the Muslim World League in Makkah Al-Mukarramah in Saudi Arabia. Where, there is a Quarterly Journal for this purpose, and periodic International conference for the same purpose, the seventh conference was held in February 2004. This paper speak about the activity of the different Arabian-Islamic Scientists and Astronomers in the field of interpretations of the cosmic statements in the Holy Quran on the light of modern astronomy and space science, and their role of increasing the public understanding of space science in the Arabian and Islamic countries.

  10. Earth Sciences' Capacity Building In Developing Countries through International Programmes

    Science.gov (United States)

    Eder, W.

    2007-12-01

    Within the framework of "traditional" programmes, like the joint UNESCO-IUGS "International Geoscience Programme" (IGCP), the "International Continental Scientific Drilling Program" (ICDP), the "Integrated Ocean Drilling Program" (IODP) or the "International Lithosphere Programme" (ILP) numerous opportunities are provided to strengthen postgraduate geo-scientific education of representatives from developing countries. Recently established new initiatives, such as the "International Year of Planet Earth" (IYPE) or UNESCO's Global Network of Geoparks complement these in addition as important components to UNESCO's 'Education for All' programme, notably the youth, as well as to the United Nations Decade of Education for Sustainable Development (2005 - 2014). The "International Year of Planet Earth" is a joint initiative of the International Union of Geological Sciences (IUGS) and UNESCO. The central aims and ambitions of the Year, proclaimed for 2008 by the UN General Assembly, are to demonstrate the great potential of the Earth sciences in building a safer, healthier and wealthier society, and to encourage more widespread and effective application of this potential by targeting politicians and other decision-makers, educational systems, and the general public. Promotion of international collaboration, as well as capacity building and training of students of developing countries in all fields of Earth Sciences seem to be the most appropriate way to meet also the challenges of the IYPE. Another opportunity to improve the international recognition of Earth Scinces, also in developing countries, is the use of Geoparks as a promotional tool for education and popularization of Earth Sciences. Geoparks, notably those included in the European and/or Global Geoparks Networks, provide an international platform of cooperation and exchange between experts and practitioners in geological heritage matters, and are as such excellent instruments in highlighting Earth sciences. The

  11. Art and Science Education Collaboration in a Secondary Teacher Preparation Programme

    Science.gov (United States)

    Medina-Jerez, William; Dambekalns, Lydia; Middleton, Kyndra V.

    2012-01-01

    Background and purpose: The purpose of this study was to record and measure the level of involvement and appreciation that prospective teachers in art and science education programmes demonstrated during a four-session integrated activity. Art and science education prospective teachers from a Rocky Mountain region university in the US worked in…

  12. Study of cosmic rays reveals secrets of solar-terrestrial science

    Science.gov (United States)

    Jokipii, J. R.

    For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.

  13. Cosmic shear measurements with Dark Energy Survey Science Verification data

    International Nuclear Information System (INIS)

    Becker, M. R.

    2016-01-01

    Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper

  14. Cosmic Dawn with WFIRST

    Science.gov (United States)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization

  15. Summer Research Fellowship Programme 2018

    Indian Academy of Sciences (India)

    Date of birth: 2 September 1957. Specialization: Cosmic Magnetic Fields, Structure Formation, Cosmology Address: Distinguished Professor & Dean, Visitor Academic Programmes, Inter-University Centre for Astronomy & Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007, Maharashtra Contact: Office: (020) 2560 4101

  16. Cosmic ray physics goes to school

    CERN Multimedia

    2002-01-01

    With the help of a CERN physicist, German Schools bring the Largest Cosmic Ray Detector in Europe one step closer to reality   Eric Berthier and Robert Porret (CERN, ST/HM), Frej Torp and Christian Antfolk from the Polytechnics Arcada in Finland, and Karsten Eggert, physicist at CERN who initiated this project, during the installation of cosmic ray detectors in the Pays de Gex, at point 4. Niina Patrikainen and Frej Torp, Finnish students from Rovaniemi and Arcada Polytechnics, installing cosmic ray counters at the Fachhochschule in Duesseldorf. The science of cosmic ray detection is growing, literally. Cosmic rays, energetic particles from space, strike our planet all the time. They collide with the air molecules in our upper atmosphere and initiate large showers of elementary particles (mainly electrons, photons, hadrons and muons) which rain down upon the earth. The shower size and the particle density in the showers reflect the initial energy of the cosmic ray particle, a detail which makes d...

  17. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  18. Cosmic Rays: studies and measurements before 1912

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Alessandro [INFN and Università di Udine, Via delle Scienze 206, I-33100 Udine (Italy); LIP/IST Lisboa (Portugal)

    2013-06-15

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  19. Cosmic Rays: studies and measurements before 1912

    Science.gov (United States)

    De Angelis, Alessandro

    2013-06-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  20. Cosmic Rays: studies and measurements before 1912

    International Nuclear Information System (INIS)

    De Angelis, Alessandro

    2013-01-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science

  1. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  2. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  3. Academic Training: The cosmic microwave background - Lecture series

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 14, 15, 16, 17 and 18 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 The cosmic microwave background M. Zaldarriaga / Harvard University, USA ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  4. Cosmic vibes: CERN raves at summer festivals

    CERN Multimedia

    Connie Potter

    2016-01-01

    This summer, CERN appeared at various festivals in the UK.   The inaugural Physics Pavilion at the 2016 WOMAD festival received over 3600 visitors. (Image: CERN) This summer, CERN’s outreach efforts took a step in a completely new direction as the group participated at various festivals. Following an invitation from the European Science Open Forum 2016 held in Manchester, UK, to be part of the Bluedot Festival, we produced an hour-long musical presentation with a physics theme. This featured the “Cosmic Piano”, created by Arturo Fernandez Tellez and Guillermo Tejeda Muñoz of ALICE, and a piece created from the sonification of LHC data by Domenico Vicinanza and Genevieve Williams, of Anglia Ruskin University. On a much bigger scale, we (the outreach team) collaborated with the WOMAD Festival, to host its first World of Physics in the middle of the English countryside. The result was a three-day programme of talks including “What’s the Ma...

  5. FPGA development board for applications in cosmic rays physics

    International Nuclear Information System (INIS)

    Angelov, Ivo; Damov, Krasimir; Dimitrova, Svetla

    2013-01-01

    The modern experiments in cosmic rays and particle physics are usually performed with large number of detectors and signal processing have to be done by complex electronics. The analog signals from the detectors are converted to digital (by discriminators or fast ADC) and connected to different type of logic implemented in FPGA (Field Programmable Gate Arrays). A FPGA development board based on Xilinx XC3S50AN was designed, assembled and tested. The board will be used for developing a modern registering controller (to replace the existing now) for the muon telescope in the University and can be used for other experiments in cosmic rays physics when fast digital pulses have to be processed. Keywords: FPGA, Spartan3A, muon telescope, cosmic rays variations

  6. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  7. Science Teacher Training Programme in Rural Schools: An ODL Lesson from Zimbabwe

    Directory of Open Access Journals (Sweden)

    Misheck Mhishi

    2012-01-01

    Full Text Available This case study looked at 76 randomly selected preservice science teachers from Mbire and Guruve districts who were learning at the Mushumbi Centre in Zimbabwe and assessed their motivations for enrolling under the Bindura University of Science Education (BUSE’s Virtual and Open Distance Learning (VODL programme. It also looked at the challenges they faced, their views on how instruction under the programme can be improved, and their deployment preferences after graduation. The districts are located in the remote Zambezi Valley, which is characterized by poor infrastructure, pests and diseases, frequent attacks by wild animals on people, domestic animals, and crops, harsh climatic conditions, and seasonal floods, which make it very difficult to attract and retain qualified teachers. Through targeted recruitment, BUSE’s VODL programme sought to train relief teachers already serving in the area in the hope that personal history and family connections would entice them to continue teaching in these areas after attaining their teacher certification. Data was collected using a questionnaire with closed and open-ended questions. Results obtained indicate that despite a lack of funding, a shortage of reading materials, and the nonavailability of e-learning facilities, the students were motivated to join the programme for personal and professional motives and that the students, the majority of whom had taught for two or more years in the districts, would prefer deployments in the area after graduation. The study therefore recommends that deliberate efforts be directed toward the targeted recruitment of school leavers and relief teachers from disadvantaged rural areas who possess the requisite minimum entry qualifications to train as science teachers in order to improve teacher retention in remote areas. Further research into the intrinsic problems in BUSE’s VODL programme and a close scrutiny of its course development techniques are also

  8. A new cosmic ray observatory at Mawson, Antarctica

    International Nuclear Information System (INIS)

    Jacklyn, R.M.; Vrana, A.; Cooke, D.J.

    1975-01-01

    A new cosmic ray observatory complex at Mawson is described and some preliminary results are discussed. The programme seeks to separate out anisotropic and local contributions to the daily variation at moderately high energies by the use of response characteristics of detectors that have been more precisely determined than formerly. (orig./WBU) [de

  9. The Spanish national programme of balloons and sounding rockets

    International Nuclear Information System (INIS)

    Casas, J.; Pueyo, L.

    1978-01-01

    The main points of the Spanish scientific programme are briefly described: CONIE/NASA cooperative project on meteorological sounding rocket launchings; ozonospheric programme; CONIE/NASA/CNES cooperative ionospheric sounding rocket project; D-layer research; rocket infrared dayglow measurements; ultraviolet astronomy research; cosmic ray research. The schedule of sounding rocket launchings at El Arenosillo station during 1977 is given

  10. Cosmic Times: Engaging Students in Astronomy through History and Journalism

    Science.gov (United States)

    Lochner, James C.; Mattson, B. J.

    2010-03-01

    Cosmic Times tells the story of how our understanding of the nature of the universe has changed over the past 100 years. Designed to fulfill the need for quality science literature in the classroom, Cosmic Times takes the form of six posters, each mimicking the front page of a newspaper at a key point in this history, with articles describing the discoveries. These milestones include the confirmation of Einstein's theory of gravity, Hubble's evidence for an expanding universe, the detection of the microwave background, and finally the discovery of dark energy. Telling this story also involves tracing astronomer's efforts to determine the size of the universe, understand the nature of supernovae, and comprehend the expansion of the universe. Through the scope of this history, students experience the process of science and how new technology and data change our ideas. The posters are accompanied by 28 lessons for grades 7-12, designed by scientists and teachers and field-tested by third-party teachers in rural communities. The lessons teach the science concepts behind the discoveries, the process of science, and skills for science literacy. To facilitate these lessons and meet student's individual science literacy needs, the articles are also available in two newsletter versions: one with the same articles as on the posters, the second at a slightly lower reading level. In addition, lessons include cross-curricular activities which explore the times and social circumstances of the discoveries. All these materials, including an on-line Teacher Guide, are available on the Cosmic Times website, http://cosmictimes.gsfc.nasa.gov/. In this presentation, we shall describe how Cosmic Times uses journalistic storytelling to create a rich experience based on science literacy to teach fundamental science concepts. We will show how framing the story as historic news articles illustrates the process of science and opens up opportunities for multidisciplinary lessons.

  11. Evaluating a Professional Development Programme for Implementation of a Multidisciplinary Science Subject

    NARCIS (Netherlands)

    Visser, Talitha Christine; Coenders, Ferdinand G.M.; Terlouw, C.; Pieters, Julius Marie

    2013-01-01

    This study aims to evaluate a professional development programme that prepares and assists teachers with the implementation of a multidisciplinary science module, basing the evaluation on participants’ reactions, the first level of Guskey’s five-level model for evaluation (2002). Positive

  12. Cosmic Christ in a Quantum Universe.

    Science.gov (United States)

    Kohli, Mary Ann

    This study examines the figure of the second American Adam--the cosmic Christ archetype--in terms of a possible shift in the focus of Western consciousness. As science moves closer to religion and as Newtonian dualism gives way to a more holistic theory (in which observer, observed, and process of observation are all intricately interlinked), the cosmic Christ emerges as a symbol in contemporary American fiction of a potentially unified awareness which could reconnect post-Christian man to God, to the world, and to the self. Such a rebirth of unity would be contingent upon the death of a consciousness reliant upon the rational, linear, masculine, left-brained thinking associated with the old Newtonian paradigm. The resurrected consciousness would consolidate Eastern and Western religion by acknowledging the God within man through the Western symbology of the Christ prototype. It would also balance the intuitional with the rational, the cyclical with the linear, the feminine with the masculine, and the right brain with the left. In other words, the repressed elements of the collective Western psyche would be allowed to come to awareness and be integrated into the mind at large. This integrating process is implicit in the cosmic Christ imagery. The novels which are considered are all concerned with the role of consciousness in the postmodern world and the part that science and religion play in determining the nature of that role. In such varied works as Thomas Pynchon's Gravity's Rainbow, John Updike's Roger's Version, Saul Bellow's Herzog, Joan Didion's A Book of Common Prayer, and William Vollmann's The Ice-Shirt, a cosmic Christ figure invariably appears. The success of this figure, however, is ambiguous and uncertain. At best, the transition of consciousness that is achieved is individual rather than communal. Nevertheless, as chaos theory has demonstrated, small changes can bring about major effects. Consequently, both the science of today and the rapid growth

  13. Increasing Access to Science Oriented Education Programmes in Tertiary Institutions in Ghana through Distance Education

    Science.gov (United States)

    Osei, C. K.; Mensah, J. A.

    2014-01-01

    There is emphasis in the educational policy of Ghana for the promotion of Distance Education programmes to widen access to education at all levels and facilitate human resource development. This study examined the level of access and challenges faced by learners in science oriented programmes offered by distance in the Kwame Nkrumah University of…

  14. Studying Computer Science in a Multidisciplinary Degree Programme: Freshman Students' Orientation, Knowledge, and Background

    Science.gov (United States)

    Kautz, Karlheinz; Kofoed, Uffe

    2004-01-01

    Teachers at universities are facing an increasing disparity in students' prior IT knowledge and, at the same time, experience a growing disengagement of the students with regard to involvement in study activities. As computer science teachers in a joint programme in computer science and business administration, we made a number of similar…

  15. University Programme Preferences of High School Science Students in Singapore and Reasons that Matter in their Preferences: A Rasch analysis

    Science.gov (United States)

    Oon, Pey-Tee; Subramaniam, R.

    2015-01-01

    This study explored an under-researched area in science education-the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of subjects, participated in this study. A survey method was adopted and the Rasch model was used to analyse the data. Overall, Business Studies was ranked as the predominant choice; nonetheless, scientific programmes such as Science, Engineering, and Mathematics are generally still well liked by the students. When gender differences were examined, we found that students largely followed gender-typical programme preferences, in which males tend to incline towards Engineering while females tend to incline towards Arts and Social Sciences. Students prefer a university programme based on their individual interest and ability, with career aspiration and remuneration coming next. Interestingly, females place greater emphasis on career aspiration than males. Some implications of the study are discussed.

  16. The Early-Career Development of Science Teachers from Initial Training Onwards: The Advantages of a Multifaceted Five-Year Programme

    Science.gov (United States)

    Clarke, Julian; Howarth, Sue; King, Chris; Perry, John; Tas, Maarten; Twidle, John; Warhurst, Adrian; Garrett, Caro

    2014-01-01

    If a programme were to be devised for the early-career development of science teachers, what might such a programme look like? This was the focus of a meeting of science educators interested in developing such a structure, from the start of initial teacher training onwards. The contributions, modified and written up here, include a suggested…

  17. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  18. Underground laboratories: Cosmic silence, loud science

    Energy Technology Data Exchange (ETDEWEB)

    Coccia, Eugenio, E-mail: coccia@lngs.infn.i [Department of Physics, University of Rome ' Tor Vergata' and INFN Gran Sasso National Laboratory (Italy)

    2010-01-01

    Underground laboratories provide the low radioactive background environment necessary to host key experiments in the field of particle and astroparticle physics, nuclear astrophysics and other disciplines that can profit of their characteristics and of their infrastructures. The cosmic silence condition existing in these laboratories allows the search for extremely rare phenomena and the exploration of the highest energy scales that cannot be reached with accelerators. I briefly describe all the facilities that are presently in operation around the world.

  19. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  20. Development of a cosmic rack for characterization of RPCs

    International Nuclear Information System (INIS)

    Sehgal, S.T.; Pant, L.M.

    2011-01-01

    A newly designed cosmic rack has been commissioned this year in the RPC Lab., in NPD-BARC. The rack consists of nine shelves each providing a clear area of 160 cm x 225 cm. Each of the shelf is separated by a distance of 30 cm, providing sufficient distance for fast electronics to respond and also providing an easy access for loading and removing the RPCs. The total height of the cosmic rack is 2.8 metres. A typical fully integrated RPCs covers an approximate area of 2 m 2 and weighs about 60-70 kg. The rack has been basically designed, keeping in mind the varied requirements as regards to the RPCs based current and futuristic programmes which are listed as follows: 1. Testing of large area trapezoidal bakelite gas-gaps and RPCs for the CMS experiment, keeping in mind the production rate of five RPCs per month. 2. The proposed muon tomography programme with 1m x 1m glass RPCs and 3. Characterization of glass RPCs (1m x 2m) for the INO experiment in near future

  1. Atmospheric ionization and cosmic rays: studies and measurements before 1912

    Science.gov (United States)

    de Angelis, Alessandro

    2014-01-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterized by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  2. Capacity building in nuclear science and technology through the IAEA fellowship and scientific visit programme for Malaysia

    International Nuclear Information System (INIS)

    Saliza Jam; Ainul Hayati Daud

    2005-01-01

    Malaysia participates actively in the IAEA Technical Co-operation Programme (TCP) since it becomes a member to IAEA in 1969. The primary objective of the programme is to assist member states in achieving self-reliance in nuclear science and technology by strengthening human resource and the institutions. Human resource development has always been considered to be the most important sector cross-cutting all national programme areas. One of the technical assistance offers under the IAEA Technical Co-operation Programme (TCP) is the fellowship and scientific visits programme. This report analyses the development of capacity building in Malaysia through the IAEA fellowship and scientific visit programme during the period of 2003-2005. It also describes the success and challenges encountered during the implementation of the programme. (Author)

  3. Can Low-Cost Support Programmes with Coaching Accelerate Doctoral Completion in Health Science Faculty Academics?

    Science.gov (United States)

    Geber, Hilary; Bentley, Alison

    2012-01-01

    Career development for full-time Health Sciences academics through to doctoral studies is a monumental task. Many academics have difficulty completing their studies in the minimum time as well as publishing after obtaining their degree. As this problem is particularly acute in the Health Sciences, the PhD Acceleration Programme in Health Sciences…

  4. Collaborative Framework for Designing a Sustainability Science Programme: Lessons Learned at the National Autonomous University of Mexico

    Science.gov (United States)

    Charli-Joseph, Lakshmi; Escalante, Ana E.; Eakin, Hallie; Solares, Ma. José; Mazari-Hiriart, Marisa; Nation, Marcia; Gómez-Priego, Paola; Pérez-Tejada, César A. Domínguez; Bojórquez-Tapia, Luis A.

    2016-01-01

    Purpose: The authors describe the challenges and opportunities associated with developing an interdisciplinary sustainability programme in an emerging economy and illustrate how these are addressed through the approach taken for the development of the first postgraduate programme (MSc and PhD) in sustainability science at the National Autonomous…

  5. "Discover, Understand, Implement, and Transfer": Effectiveness of an Intervention Programme to Motivate Students for Science

    Science.gov (United States)

    Schütte, Kerstin; Köller, Olaf

    2015-01-01

    Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2…

  6. Cosmology with cosmic shear observations: a review.

    Science.gov (United States)

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  7. The Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  8. Developing international alumni activities in Mikkeli University of Applied Sciences : Case Business Management degree programme

    OpenAIRE

    Honkaniemi, Meri

    2014-01-01

    My thesis focuses on international alumni activities in Mikkeli University of Applied Sciences. My aim was to find development ideas and recommendations for the international side of the alumni activities. I intended to offer realistic suggestions enough in order to make them work in practice too. I put also my effort on finding recommendations for Business Management programme, because I wanted to make sure that international alumni activities get attention in degree programme level too. ...

  9. Assessment and Teaching of Science Skills: Whole of Programme Perceptions of Graduating Students

    Science.gov (United States)

    Hodgson, Yvonne; Varsavsky, Cristina; Matthews, Kelly E.

    2014-01-01

    This study reports on science student perceptions of their skills (scientific knowledge, oral communication, scientific writing, quantitative skills, teamwork and ethical thinking) as they approach graduation. The focus is on which teaching activities and assessment tasks over the whole programme of study students thought utilised each of the six…

  10. Cosmic Visions Dark Energy: Small Projects Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle; Frieman, Josh; Heitmann, Katrin; Jain, Bhuvnesh; Kahn, Steve; Mandelbaum, Rachel; Perlmutter, Saul; Slosar, Anže

    2018-02-20

    Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3) lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.

  11. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2003-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. - Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly basing on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. Neutron transport simulations were performed in collaboration with JINR in Dubna. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on over the year 2001. We have detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registrations of muon counting rate in the on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to the solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, JINR in Dubna (Russia), Uppsala University (Sweden) and DESY (Germany). We have prepared a

  12. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2002-01-01

    Full text:The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: * Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. * Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles * Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. * Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. * Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on during 2001. We detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registration of the muon counting rate in on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, Uppsala University (Sweden) and DESY (Germany). We have prepared a project of large air shower array for studies of cosmic rays up to 10 20 eV. Detectors would be placed on the roofs of high

  13. Our cosmic future : humanity's fate in the universe

    Science.gov (United States)

    Prantzos, Nikos

    2000-04-01

    What is humankind's ultimate fate and destiny in the Universe? Can human life and intelligence go on forever? This captivating and unparalleled book explores the future of the human race in the Universe, for centuries, millennia, and eons to come. Nikos Prantzos, distinguished astrophysicist and popular science writer, focuses not on what will be done, but on what could be done in light of our current knowledge and the speculations of eminent scientists. While he employs many concepts from physics, Prantzos also provides historical accounts of such ideas as terraforming, asteroid mining, interstellar travel, astroengineering, and eschatology, discussing their philosophical and social implications. Moreover, he uses the work of well known science and science-fiction writers--including Verne, Wells, Clarke, Tsiolkovsky, and Dyson--to illustrate many possibilities and concepts. Our Cosmic Future offers compelling answers to such intriguing questions as: Should we return to the Moon and eventually colonize Mars and other planets in our solar system? Why haven't we encountered an extraterrestrial civilization up to this time in our history? How can we avoid various cosmic threats, such as asteroid collisions and supernova explosions? Could we escape the remote, yet certain, death of the Sun? What will eventually happen to stars, our Galaxy, distant galaxies, and the Universe itself? With its artful blend of historical, scientific accounts and themes from classic works of science fiction, Our Cosmic Future is a spellbinding work that will enchant all readers interested in space travel and colonization, cosmology, and humankind's future prospects in the Cosmos.

  14. CERN and the Festival of Science

    CERN Multimedia

    2005-01-01

    La Fête de la science (Festival of Science) in France has become an unmissable event, where researchers and the general public meet each other amid microscopes and computers. The 2005 event runs during the week 10 to 16 October and CERN, as every year, is part of it. In the programme of events at the Laboratory: The exhibition 'One hundred years after Einstein' opens on 11 October. Based on an exhibition from the Cité des Sciences et de l'Industrie in Paris, it shows Einstein's discoveries, their impact and applications a hundred years later. For the week of the Festival of Science, the opening hours are extended to 9am-5pm every day. Also in the Globe, a workshop entitled 'Poussière d'étoiles' (Stardust) will enable young and old alike to see a working cloud chamber and to detect some of the countless cosmic particles that pass through our atmosphere. In this workshop, budding physicists can learn the ABC of detecting and identifying particles. (Wednesday 12 October 2-5pm, Saturday 15 October 9a...

  15. Australian Aboriginal Geomythology: Eyewitness Accounts of Cosmic Impacts?

    Science.gov (United States)

    Hamacher, Duane W.; Norris, Ray P.

    2009-12-01

    Descriptions of cosmic impacts and meteorite falls are found throughout Australian Aboriginal oral traditions. In some cases, these texts describe the impact event in detail, sometimes citing the location, suggesting that the events were witnessed. We explore whether cosmic impacts and meteorite falls may have been witnessed by Aboriginal Australians and incorporated into their oral traditions. We discuss the complications and bias in recording and analysing oral texts but suggest that these texts may be used both to locate new impact structures or meteorites and model observed impact events. We find that, while detailed Aboriginal descriptions of cosmic impacts are abundant in the literature, there is currently no physical evidence connecting these accounts to impact events currently known to Western science.

  16. The Lifecycle of a South African Non-governmental Organisation: Primary Science Programme, 1983-1999.

    Science.gov (United States)

    Harvey, Stephen; Peacock, Alan

    2001-01-01

    Traces the lifecycle of the Primary Science Programme (PSP), 1983-99, a representative South African nongovernmental organization. Shows how the social and economic environment shaped PSP development and demise. Highlights tensions between quality versus quantity, subject versus holistic focus, and participatory versus authoritarian management…

  17. Xenia: A Probe of Cosmic Chemical Evolution

    Science.gov (United States)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  18. Xenia: A Probe of Cosmic Chemical Evolution

    Science.gov (United States)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  19. `Risky fun' or `Authentic science'? How teachers' beliefs influence their practice during a professional development programme on outdoor learning

    Science.gov (United States)

    Glackin, Melissa

    2016-02-01

    Teaching outdoors has been established as an important pedagogical strategy; however, science classes rarely take place outside. Previous research has identified characteristics of teachers who have integrated out-of-classroom opportunities into their teaching repertoire; yet little is understood as to why teachers make these different pedagogical decisions. This paper explores the relationship between secondary science teachers' beliefs and their pedagogical practice during a two-year professional development programme associated with the 'Thinking Beyond the Classroom' project. Using data from lesson observations, interviews, session questionnaires and field notes, six teacher case studies were developed from participants completing the programme. Data analysis reveals that teachers who successfully taught outside generally held social constructivist beliefs about learning and valued 'authentic' science opportunities. Conversely, teachers who were less successful in teaching outside generally held traditional learning beliefs and simply valued the outdoors for the novelty and potential for fun. All the case study teachers were concerned about managing student learning outside, and for the majority, their concerns influenced their subsequent pedagogical practice. The findings are discussed in detail, as are the implications for pre-service and in-service professional development programmes related to outdoor science learning.

  20. Evaluation of the implementation of sport science programme in Malaysian secondary schools

    Directory of Open Access Journals (Sweden)

    Wee Eng Hoe

    2016-01-01

    Full Text Available This study evaluated a new sport science curriculum in Malaysian secondary schools. Four implementation dimensions (‘teaching ability’, ‘administration of sport science programme’, ‘teaching duty allocation’ and ‘non-human factors’ were examined. 135 schools and 94 teachers were surveyed. 81% teachers were male and 85% were under 40. About half of the respondents were trained in sport science and had 1-2 years teaching experience. Over 90% of teachers perceived they have knowledge to teach and can manage students. However, 80% felt they need more exposure and training. Male teachers were better than female teachers in managing students and conducting activities/experiments. Experienced teachers were better in conducting activities and experiments. Teachers majoring in sport science were more knowledgeable while PE majors found teaching sport science challenging. Most teachers perceived that teaching facilities, financial allocation and reference resources were inadequate. Majority of the administrators consulted teachers before assigning teaching load but failed to observe teaching. This research provides invaluable feedbacks on the implementation of the programme.

  1. The NASA cosmic ray program for the 1990's and beyond Interim report of the NASA Cosmic Ray Program Working Group

    International Nuclear Information System (INIS)

    Ahlen, S.P.; Binns, W.R.; Cherry, M.L.; Gaisser, T.K.; Jones, W.V.; Ling, J.C.; Mewaldt, R.A.; Muller, D.; Ormes, J.O.; Ramaty, R.; Stone, E.C.; Waddington, C.J.; Webber, W.R.; Miedenbeck, M.E.

    1990-01-01

    The interim report of the 1989 NASA Cosmic Ray Program Working Group is presented. The report summarizes the cosmic ray program for the 1990's, including the recently approved ACE, Astromag, HNC, POEMS, and SAMPEX missions, as well as other key elements of the program. New science themes and candidate missions are identified for the first part of the 21st Century, including objectives that might be addressed as part of the Human Exploration Initiative. Among the suggested new thrusts for the 21st century are: an Interstellar Probe into the nearby interstellar medium; a Lunar-Based Calorimeter to measure the cosmic ray composition near ∼10 16 eV; high precision element and isotope spectroscopy of ultraheavy (Z≥30) elements; and new, more sensitive, studies of impulsive solar flare events

  2. An experimental study of a museum-based, science PD programme's impact on teachers and their students

    Science.gov (United States)

    Aaron Price, C.; Chiu, A.

    2018-06-01

    We present results of an experimental study of an urban, museum-based science teacher PD programme. A total of 125 teachers and 1676 of their students in grades 4-8 were tested at the beginning and end of the school year in which the PD programme took place. Teachers and students were assessed on subject content knowledge and attitudes towards science, along with teacher classroom behaviour. Subject content questions were mostly taken from standardised state tests and literature, with an 'Explain:' prompt added to some items. Teachers in the treatment group showed a 7% gain in subject content knowledge over the control group. Students of teachers in the treatment group showed a 4% gain in subject content knowledge over the control group on multiple-choice items and an 11% gain on the constructed response items. There was no overall change in science attitudes of teachers or students over the control groups but we did find differences in teachers' reported self-efficacy and teaching anxiety levels, plus PD teachers reported doing more student-centered science teaching activities than the control group. All teachers came into the PD with high initial excitement, perhaps reflecting its context within an informal learning environment.

  3. The INTEGRAL Core Observing Programme

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Lund, Niels

    1999-01-01

    The Core Programme of the INTEGRAL mission is defined as the portion of the scientific programme covering the guaranteed time observations for the INTEGRAL Science Working Team. This paper describes the current status of the Core Programme preparations and summarizes the key elements...... of the observing programme....

  4. The Cosmic Sources of Religious Feeling (a possible hypothesis

    Directory of Open Access Journals (Sweden)

    Victor F. Petrenko

    2017-09-01

    Full Text Available The article is devoted to the relationship between science and religion, as an important component of human culture and human mentality. The science is considered to have become closely connected with consciousness and is described in the language of rigid formalisms. Religious language is metaphorical and belongs to a “soft” language that is closely related to the images and archetypes of the collective unconscious. In terms of worldview, science and religion are complementary. The values of forms of “religious diversity” of human culture are noted. It is noted that due to ESR phenomenon (or quantum teleportation, it is possible to transfer (it does not concern the information, the possibility of which is limited due to the huge cosmic distances quantum states in synchrony. It is hypothesized that the source of religious feeling is the cosmic collective unconscious of extraterrestrial civilizations that are ahead of the Earth regarding the origin and affect the Earth’s evolution implicitly

  5. Seminar on the use of research reactors in fundamental and applied sciences. Programme and abstracts

    International Nuclear Information System (INIS)

    1984-01-01

    The document includes the programme and the abstracts of papers presented at the ''Seminar on the use of research reactors in fundamental and applied sciences'' organized by the Tajoura Nuclear Research Centre in cooperation with the IAEA at Tajoura, Tripoli (Libya) between 16-20 September 1984. The abstracts are grouped in seven sessions: reactor physics (five abstracts), research reactor programmes (three abstracts), solid state physics (two abstracts), nuclear physics (two abstracts), radiochemistry (eleven abstracts), activation analysis (five abstracts), diverse topics (six abstracts). Separate indexing was provided for each abstract

  6. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Prof, M. Alania (Siedlce), and Prof. K. Kudela (Kosice, Slovakia). International collaborations are very important: the Department was a KASCADE member (EAS experiment dedicated to solving the problem of mass composition of Cosmic Rays at energies around 10 15 eV in Forschungszentrum Karlsruhe, Germany) and now is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS. We collaborate in EAS data interpretation, detection technic and basic Cosmic Ray problems with College de France, Institute for Nuclear Research of the Russian Academy of Sciences, JINR Dubna and the Cosmophysical Institute in Yakutsk (Russia). In the area of high energy particle physics our Department is a member of CELSIUS/WASA Collaboration (Uppsala, Sweden), and participates in ZEUS experiment at DESY (Hamburg, Germany). Students of high schools in Lodz are visiting our Department and can perform small experiments with secondary Cosmic Ray particle detection. This activity is related to ''The Roland Maze Project'', the idea of large EAS arrays with detectors placed on the roofs of high schools in Lodz. (author)

  7. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  8. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    International Nuclear Information System (INIS)

    Sternovsky, Zoltan; Auer, Siegfried; Drake, Keith; Gruen, Eberhard; Horanyi, Mihaly; Le, Huy; Xie Jianfeng; Srama, Ralf

    2011-01-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  9. Cosmic Education: Formation of a Planetary and Cosmic Personality

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2012-04-01

    Full Text Available The major stages of development of cosmic pedagogy have been researched. Based on the achievements of the modern neurosciences as well as of psychology, cosmology, and philosophy, the authors provide their reasoning for the cosmic education and its outlooks for the educational systems of the world. Through the studies of how important human mind is for the Earth and the cosmos and by researching the evolution of human mind within the structure of the Universe, the authors create a more advanced scientific and philosophic basis for the cosmic education where the subject is a comprehensive process of formation and directed progress of both an individual mind and a conglomerate of minds called the "psychospace". The cosmic education researches the permanent progress of the intelligent matter of the Earth. The purpose of the cosmic education has been determined as formation of a planetary and cosmic personality. According to the authors, a planetary and cosmic personality is a harmony of mind, soul, and body, and such harmony is directed to use the internal creative potential of mind to the benefit of the intelligent matter of the entire Earth and the cosmos. The properties of such a planetary and cosmic personality are being improved continuously; they are a sample (the ideal of the cosmic pedagogy and the image of a human being of the future. Through the usage of the entire potential and art of upbringing and educating, the cosmic pedagogy is called to embody the major properties of the image of a human being of the future in the new generations of minds and to form a planetary and cosmic personality capable of self-actualization to the benefit of the permanent progress of the intelligent matter.

  10. Science with Future Cosmic Microwave Background Observations

    Energy Technology Data Exchange (ETDEWEB)

    Bernardis, P. de; Calvo, M.; Giordano, C.; Masi, S.; Nati, F.; Piacentini, F.; Schillaci, A. [Dipartimento di Fisica, Universita di Roma La Sapienza, P.le A. Moro 2, 00185 Roma (Italy)

    2009-10-15

    After the successful measurements of many ground based, balloon-borne and satellite experiments, which started the era of 'Precision Cosmology', Cosmic Microwave Background (CMB) observations are now focusing on two targets: the precision measurement of B-modes in the polarization field, and the measurement of the Sunyaev-Zeldovich effect in distant clusters of galaxies. Polarization measurements represent the best way to probe the very early universe, and the energy scale of inflation. Fine-scale anisotropy measurements, possibly with spectral capabilities, can provide important information on dark matter and dark energy. Here we describe original approaches to these measurements.

  11. Science with Future Cosmic Microwave Background Observations

    International Nuclear Information System (INIS)

    Bernardis, P. de; Calvo, M.; Giordano, C.; Masi, S.; Nati, F.; Piacentini, F.; Schillaci, A.

    2009-01-01

    After the successful measurements of many ground based, balloon-borne and satellite experiments, which started the era of 'Precision Cosmology', Cosmic Microwave Background (CMB) observations are now focusing on two targets: the precision measurement of B-modes in the polarization field, and the measurement of the Sunyaev-Zeldovich effect in distant clusters of galaxies. Polarization measurements represent the best way to probe the very early universe, and the energy scale of inflation. Fine-scale anisotropy measurements, possibly with spectral capabilities, can provide important information on dark matter and dark energy. Here we describe original approaches to these measurements.

  12. Carl Sagan's Cosmic Connection

    Science.gov (United States)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  13. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    connected off-line using internet infrastructure and precise time registration. Students of high schools in Lodz are involved in construction of the array. We participate in work of EuroCosmics, the European network of school-based Cosmic Ray experiments. In the underground (15 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. The international collaborations are very important: the Department is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with University Paris-VII, Institute for Nuclear Research of the Russian Academy of Sciences and JINR, Dubna. In the area of high energy particle physics Department participates in ZEUS experiment at DESY (Hamburg, Germany), and in WASA(at)COSY Collaboration in Juelich, Germany. (author)

  14. Cosmic rays and total ozone at higher middle latitudes

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter; Kudela, K.

    2003-01-01

    Roč. 31, č. 9 (2003), s. 2139-2144 ISSN 0273-1177 R&D Projects: GA AV ČR KSK3012103 Keywords : cosmic rays * ozone Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.483, year: 2003

  15. Atmospheric ionization and cosmic rays: studies and measurements before 1912

    OpenAIRE

    De Angelis, Alessandro

    2012-01-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts migh...

  16. Academic Training: The cosmic microwave background - Lecture series

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 14, 15, 16, 17 and 18 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 The cosmic microwave background M. Zaldarriaga / Harvard University, USA The Cosmic Microwave Background has become an indispensable tool for cosmology. The measurement of its frequency spectrum firmly established the Hot Big Bang model of the Universe. Measurements of anisotropies in its temperature and its degree of polarization provide the earliest snapshot we have of the universe, giving us information about its state at the epoch of hydrogen recombination approximately 300,000 after the Big Bang. The anisotropies can be used to constrain many of the parameters in the cosmological model, such as the mean density of baryons and dark matter as well as the curvature of the Universe. In this lectures I will review the physics of the temperature and polarization anisotropies. I will discuss the mechanisms that lead to the anisotropies and how cosmological parameters can be inferr...

  17. Cosmic ray electrons and protons, and their antiparticles

    International Nuclear Information System (INIS)

    Boezio, Mirko

    2014-01-01

    Cosmic rays are a sample of solar, galactic, and extragalactic matter. Their origin, acceleration mechanisms, and subsequent propagation toward Earth have intrigued scientists since their discovery. These issues can be studied via analysis of the energy spectra and composition of cosmic rays. Protons are the most abundant component of the cosmic radiation, and many experiments have been dedicated to the accurate measurement of their spectra. Complementary information is provided by electrons, which comprise about 1% of the cosmic radiation. Because of their low mass, electrons experience severe energy losses through synchrotron emission in the galactic magnetic field and inverse Compton scattering of radiation fields. Electrons therefore provide information on the local galactic environment that is not accessible from the study of the cosmic ray nuclei. Antiparticles, namely antiprotons and positrons, are produced in the interaction between cosmic ray nuclei and the interstellar matter. They are therefore intimately linked to the propagation mechanisms of the parent nuclei. Novel sources of primary cosmic ray antiparticles of either astrophysical (e.g., positrons from pulsars) or exotic origin (e.g., annihilation of dark matter particles) may exist. The nature of dark matter is one of the most prominent open questions in science today. An observation of positrons from pulsars would open a new observation window on these sources. Several experiments equipped with state-of-the art detector systems have recently presented results on the energy spectra of electrons, protons, and their antiparticles with a significant improvement in statistics and better control of systematics The status of the field will be reviewed, with a focus on these recent scientific results. (author)

  18. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    four 1 m 2 detectors and GPS. The network is connected on-line using internet infrastructure and precise time registration. This allows us to correlate detection of the same EAS in a few schools. High schools students are involved. In the underground (15 meters) laboratory we register muon (5 GeV energy thresholds) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. International collaborations are very important: the Department was a KASCADE member and now is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with College de France, Institute for Nuclear Research of the Russian Academy of Sciences, JINR Dubna and Cosmophysical Institute in Yakutsk (Russia). In the area of high energy particle physics the Department is a member of the CELSIUS/WASA Collaboration (Uppsala, Sweden), and participates in the ZEUS experiment at DESY (Hamburg, Germany). (author)

  19. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2009-01-01

    2 detectors and GPS. The network is connected off-line using internet infrastructure and precise time registration. Students of the high schools in Lodz are involved in the construction of the array. International collaborations are very important: the Department is a member of the KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We also became a member of the JEM-EUSO satellite experiment collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with University Paris-VII, Institute for Nuclear Research of the Russian Academy of Sciences and JINR Dubna. In the area of high-energy particle physics the Department participates in the ZEUS experiment at DESY (Hamburg, Germany), and in the WASA(at)COSY Collaboration in Juelich, Germany. (author)

  20. Harlow Shapley's Biological Universe: Cosmic Evolution and its Uses

    Science.gov (United States)

    Palmeri, J.

    2002-12-01

    Harlow Shapley was an astronomer with a lifelong interest in biological questions. An early fascination with ants acquired at Mount Wilson became a continuing avocation. During his years in California, Shapley made frequent trips to La Jolla biological station and interacted with prominent biologists. At Harvard in the 1920s Shapley initiated a series of interdisciplinary seminars, one of which was on "The Origin of Life." At this time he also displayed an interest in the question of life in the universe. In response to an inquiry from Charles Abbot of the Smithsonian, Shapley identified "life in the universe" as one of the most important scientific questions of the day. Shapley's continuing interest in these questions found expression in his many popularizations - articles, books, lectures, and other media. (A decade before Sagan's memorable appearances on the Johnny Carson show, Shapley was engaging in his own dialogue with the American public on life in the universe, through Tonight Show host Jack Paar). Evolution was the idea that underlay Shapley's discussions of these biological themes and the vehicle through which he popularized science as well as his own vision of the wider significance of science for humanity. As an astronomer with a profound interest in biological subjects, Shapley was uniquely positioned to popularize cosmic evolution, and to use this theme to promote his belief that science could serve as a kind of "stellar theology." Shapley's case illustrates how cosmic evolution, like biological evolution, has served as more than a scientific account of nature; it has become an idea invested with moral and cultural significance. Shapley's promotion of cosmic evolution throughout the 1950s and 1960s can be understood against the backdrop of developments in the sciences as well as the historical and personal factors that shaped his career as a spokesman for science. This research was supported by grants from the American Institute of Physics and the

  1. Heliospheric modulation of cosmic rays: model and observation

    Directory of Open Access Journals (Sweden)

    Gerasimova S.K.

    2017-03-01

    Full Text Available This paper presents the basic model of cosmic ray modulation in the heliosphere, developed in Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Sciences. The model has only one free modulation parameter: the ratio of the regular magnetic field to the turbulent one. It may also be applied to the description of cosmic ray intensity variations in a wide energy range from 100 MeV to 100 GeV. Possible mechanisms of generation of the turbulent field are considered. The primary assumption about the electrical neutrality of the heliosphere appears to be wrong, and the zero potential needed to match the model with observations in the solar equatorial plane can be achieved if the frontal point of the heliosphere, which is flowed around by interstellar gas, lies near the plane. We have revealed that the abnormal rise of cosmic ray intensity at the end of solar cycle 23 is related to the residual modulation produced by the subsonic solar wind behind the front of a standing shock wave. The model is used to describe features of cosmic ray intensity variations in several solar activity cycles.

  2. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    placed on the roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1m 2 detectors and GPS. The network is connected off-line using internet infrastructure and precise time registration. This allows us to correlate detection of the same EAS in a few schools. Students of high schools in Lodz are involved in construction of the array. We participate in creation of EuroCosmics, the European network of school-based Cosmic Ray experiments. In the underground (15 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. The international collaborations are very important: the Department is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with College de France, Institute for Nuclear Research of the Russian Academy of Sciences, JINR Dubna and Cosmophysical Institute in Yakutsk (Russia). In the area of high energy particle physics Department participates in ZEUS experiment at DESY (Hamburg, Germany), and in WASA(at)COSY Collaboration in Juelich, Germany. (author)

  3. Garden of cosmic speculation

    CERN Document Server

    Jencks, Charles

    2005-01-01

    This book tells the story of one of the most important gardens in Europe, created by the architectural critic and designer Charles Jencks and his late wife, the landscape architect and author Maggie Keswick. The Garden of Cosmic Speculation is a landscape that celebrates the new sciences of complexity and chaos theory and consists of a series of metaphors exploring the origins, the destiny and the substance of the Universe. The book is illustrated with year-round photography, bringing the garden's many dimensions vividly to life.

  4. Cosmic Visions Dark Energy. Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  5. Cosmic Visions Dark Energy: Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heitmann, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hirata, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Honscheid, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roodman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seljak, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trodden, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  6. Coding Pi Science Day | 7-8 October

    CERN Multimedia

    2016-01-01

    Are you a science or technology teacher, or a student between 12 and 18 years old with a strong interest in science?   The CERN Micro Club and CERN IdeaSquare (in partnership with Google Education and EU Code Week) is organising an exceptional educational event around three scientific kits based upon the Raspberry Pi mini-computer: The Poppy Ergo Jr Robotic Arm, invented by the Flowers project team at Inria Bordeaux Sud-Ouest Research Center, ENSTA Paris Tech (French Institut national de recherche en informatique et en automatique).   The Muon Hunter Cosmic Ray Detector kit, designed as a partnership between Mihaly Vadai and members of the CERN Micro Club.   The Programmable Wifi car GianoPi, invented in partnership with the campus La Chataigneraie, for the École internationale de Genève.   >>> On Friday 7 October (from 18 h to 20 h): A free conference open to all (limited to an audience of 100 participants), during which you ...

  7. Teaching design engineering in an interdisciplinary programme

    NARCIS (Netherlands)

    Wits, Wessel Willems; Homminga, Jasper Johan; Endedijk, Maaike Dorine; Visscher, Klaasjan; Krab-Hüsken, Leonie; van den Berg, Frank; Wilhelm, P.

    2014-01-01

    ATLAS, the Academy of Technology and Liberal Arts & Sciences, is an interdisciplinary three-year Bachelor of Science honours programme for talented students that opened its doors in September 2013. This international programme uses the concept of project-led education to teach students to integrate

  8. CERN explores link between cosmic rays and clouds

    CERN Multimedia

    2006-01-01

    "Scientists at CERN, the European Organisation for Nuclear Research, have started a new experiment to investigate the possible influence of galactic cosmic rays on the Earths clouds and climate. This is the first time that a high energy physics accelerator has been used for atmospheric and climate science." (1 page)

  9. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    2 detectors and GPS. The network is connected off-line using internet infrastructure and precise time registration. This allows us to correlate detection of the same EAS in a few schools. Students of high schools in Lodz are involved in construction of the array. In an underground (15 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases related to Solar activity) in muon counting rates. International collaborations are important: the Department is a member of KASCADE-Grande Collaboration - the large classical experiment for very high energy EAS, extended to EAS radio emission detection as part of LOPES Collaboration. We collaborate in EAS data interpretation, detection techniques and basic Cosmic Ray studies with College de France, Institute for Nuclear Research of the Russian Academy of Sciences, JINR Dubna, and the Cosmophysical Institute in Yakutsk (Russia). In the area of high energy particle physics the Department participates in the ZEUS experiment at DESY (Hamburg, Germany), was a member of the CELSIUS/WASA Collaboration (Uppsala, Sweden), now moved to Juelich, Germany as WASA at COSY Collaboration. (author)

  10. A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students

    Science.gov (United States)

    Divan, Aysha; Mason, Sam

    2016-01-01

    In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…

  11. Reducing Unintentional Plagiarism amongst International Students in the Biological Sciences: An Embedded Academic Writing Development Programme

    Science.gov (United States)

    Divan, Aysha; Bowman, Marion; Seabourne, Anna

    2015-01-01

    There is general agreement in the literature that international students are more likely to plagiarise compared to their native speaker peers and, in many instances, plagiarism is unintentional. In this article we describe the effectiveness of an academic writing development programme embedded into a Biological Sciences Taught Masters course…

  12. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    Science.gov (United States)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the International Advisory Committee, I should like to

  13. A statistical evaluation of the effects of a structured postdoctoral programme

    DEFF Research Database (Denmark)

    Bessudnov, Alexey; Guardiancich, Igor; Marimon, Ramon

    2015-01-01

    Postdoctoral programmes have recently become an important step leading from doctoral education to permanent academic careers in the social sciences. This paper investigates the effects of a large and structured postdoctoral programme in the social sciences on a number of academic and non-academic......Postdoctoral programmes have recently become an important step leading from doctoral education to permanent academic careers in the social sciences. This paper investigates the effects of a large and structured postdoctoral programme in the social sciences on a number of academic and non...

  14. Changing Practice: An Evaluation of the Impact of a Nature of Science Inquiry-Based Professional Development Programme on Primary Teachers

    Science.gov (United States)

    Murphy, Clíona; Smith, Greg; Varley, Janet; Razi, Özge

    2015-01-01

    This study investigates how a two-year continuing professional development (CPD) programme, with an emphasis on teaching about science through inquiry, impacted the experiences of, approaches to and attitudes towards teaching science of 17 primary teachers in Dublin. Data sources included interview, questionnaire and reflective journal strategies.…

  15. Missing dust signature in the cosmic microwave background

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2017-01-01

    Roč. 470, č. 1 (2017), L44-L48 ISSN 0035-8711 Institutional support: RVO:67985530 Keywords : dust, extinction * galaxies: high redshift * galaxies: ISM * intergalactic medium * cosmic background radiation * early Universe Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  16. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  17. Training in atomic science and techniques. Some results of the IAEA fellowship programme

    International Nuclear Information System (INIS)

    1963-01-01

    The International Atomic Energy Agency has regarded the creation of adequate facilities for training in nuclear science and technology as an essential step towards the development of the peaceful uses of atomic energy throughout the world. It has also been clear that this is one of the fields in which the Agency an give most fruitful assistance to its Member States: by awarding fellowships for training at advanced centres of study and research, by instituting visiting professorships to train scientific and technical personnel in their home countries, by organizing international and regional training courses or training centres. The Agency has made use of all these methods and more than 60 countries have benefited from its training programme. A part of the programme is financed out of voluntary contributions by Member States to the Agency's General Fund and some of it financed out of funds made available to the Agency under the UN Expanded Programme of Technical Assistance (EPTA). In addition, use is made of training facilities provided free by several Member States. In an attempt to assess some of the concrete results of the training programme, the Agency recently sent a special questionnaire to 151 former Agency fellows who had completed their training at least two years earlier. By the end of last year, replies had been received from 121 former fellows from 31 countries. They provide an encouraging picture, as can be seen from the numerical analysis

  18. Training in atomic science and techniques. Some results of the IAEA fellowship programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-04-15

    The International Atomic Energy Agency has regarded the creation of adequate facilities for training in nuclear science and technology as an essential step towards the development of the peaceful uses of atomic energy throughout the world. It has also been clear that this is one of the fields in which the Agency an give most fruitful assistance to its Member States: by awarding fellowships for training at advanced centres of study and research, by instituting visiting professorships to train scientific and technical personnel in their home countries, by organizing international and regional training courses or training centres. The Agency has made use of all these methods and more than 60 countries have benefited from its training programme. A part of the programme is financed out of voluntary contributions by Member States to the Agency's General Fund and some of it financed out of funds made available to the Agency under the UN Expanded Programme of Technical Assistance (EPTA). In addition, use is made of training facilities provided free by several Member States. In an attempt to assess some of the concrete results of the training programme, the Agency recently sent a special questionnaire to 151 former Agency fellows who had completed their training at least two years earlier. By the end of last year, replies had been received from 121 former fellows from 31 countries. They provide an encouraging picture, as can be seen from the numerical analysis

  19. First Images from VLT Science Verification Programme

    Science.gov (United States)

    1998-09-01

    Two Weeks of Intensive Observations Successfully Concluded After a period of technical commissioning tests, the first 8.2-m telescope of the ESO VLT (UT1) has successfully performed an extensive series of "real science" observations , yielding nearly 100 hours of precious data. They concern all possible types of astronomical objects, from distant galaxies and quasars to pulsars, star clusters and solar system objects. This intensive Science Verification (SV) Programme took place as planned from August 17 to September 1, 1998, and was conducted by the ESO SV Team at the VLT Observatory on Paranal (Chile) and at the ESO Headquarters in Garching (Germany). The new giant telescope lived fully up to the high expectations and worked with spectacular efficiency and performance through the entire period. All data will be released by September 30 via the VLT archive and the web (with some access restrictions - see below). The Science Verification period Just before the beginning of the SV period, the 8.2-m primary mirror in its cell was temporarily removed in order to install the "M3 tower" with the tertiary mirror [1]. The reassembly began on August 15 and included re-installation at the Cassegrain focus of the VLT Test Camera that was also used for the "First Light" images in May 1998. After careful optical alignment and various system tests, the UT1 was handed over to the SV Team on August 17 at midnight local time. The first SV observations began immediately thereafter and the SV Team was active 24 hours a day throughout the two-week period. Video-conferences between Garching and Paranal took place every day at about noon Garching time (6 o'clock in the morning on Paranal). Then, while the Paranal observers were sleeping, data from the previous night were inspected and reduced in Garching, with feedback on what was best to do during the following night being emailed to Paranal several hours in advance of the beginning of the observations. The campaign ended in the

  20. A needs analysis for a non-abusive intervention programme in the School of Health Care Sciences at the University of Pretoria

    Directory of Open Access Journals (Sweden)

    LO Fouché

    2006-09-01

    Full Text Available Due to feedback from students, student abuse during fieldwork, was brought to the attention of the researchers. The study aimed to determine whether a need for a nonabusive intervention programme (NIP existed amongst the School of Health Care Science students at the University of Pretoria. All students enrolled at the School of Health Care Sciences completed a questionnaire. An overwhelming response indicated that the majority of students (95.85% have a need for a non-abusive intervention programme (NIP. A significant need was identified especially among Nursing-, Physiotherapy- and Radiography students, 2nd and 4,h year students, and within a psychiatric fieldwork setting. Two surprise findings were firstly, that students who have no history of abuse have a greater need for an intervention programme than students with a history of abuse. Secondly superiors in the field are responsible for the majority of abusive incidences reported by students. The implementation of a non-abusive intervention programme (NIP to help students handle abusive incidences effectively and humanely is strongly recommended.

  1. Behavioural science at the Auckland Medical School: introduction and evaluation of a revised programme.

    Science.gov (United States)

    Raeburn, J M; Dubignon, J M; Grant, V J; Richmond, D E

    1989-12-13

    This paper provides an overview of developments in the Auckland Medical School behavioural science programme. From 1984 to 1987, an entirely new five year course was phased in, its design based on a survey of 165 clinical teachers. This course has eight topic streams oriented towards producing a behaviourally knowledgeable and skilled clinician. Evaluation of the course shows good acceptance by students. Recent and planned modifications to the course are described.

  2. Outcomes for engineering students delivering a STEM education and outreach programme

    Science.gov (United States)

    Fitzallen, Noleine; Brown, Natalie Ruth

    2017-11-01

    University science outreach programmes are used to encourage more school students to select science, technology, engineering, and mathematics (STEM) subjects in further education and pursue science-related careers. The benefits of science outreach programmes are often espoused from the perspective of programme participants. Little attention, however, is given to what university students delivering the programmes gain from the experience. This paper seeks to illustrate the benefits of engineering students delivering STEM outreach programmes in schools. It reports on a qualitative case study of the experiences of two STEM Education and Outreach team members from a regional university in Australia. Content analysis of interview data highlighted not only the participants' motivations and perceived benefits of being involved in the STEM programme but also revealed the skills and attributes honed throughout the experience. Involvement in the STEM outreach programme resulted in the development of social and personal responsibility generic graduate attribute skills, evidenced through their motivations to be involved, the demonstration of understanding of teaching and learning, and application of science communication skills. This study demonstrates that designing and delivering STEM outreach programmes assists in the development of skills that will be beneficial when pursuing careers in engineering in the future.

  3. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  4. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    feature of this RD and D-Programme is that we also present our programme for social science research, which was requested by several reviewing bodies in connection with the review of RD and D-Programme 2001. Finally, the programmes for alternative methods, decommissioning and other long-lived waste are also described in this RD and D-Programme. In the review statement regarding RD and D-Programme 2001 which SKI submitted to the Government in March 2002, the Inspectorate called for a report that would explain more clearly SKB's plans for the remainder of the nuclear fuel programme. As a reason for this request, SKI said that the competent authorities will need to know which regulatory reviews are anticipated over the next ten years and the extent to which these reviews depend on each other. Such a report is appended to this RD and D-Programme. It is our hope that the above structure and perspective provide a clear picture of how far the technology development work has come and what factors are most important for safety in the deep repository.

  5. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    International Nuclear Information System (INIS)

    2004-09-01

    feature of this RD and D-Programme is that we also present our programme for social science research, which was requested by several reviewing bodies in connection with the review of RD and D-Programme 2001. Finally, the programmes for alternative methods, decommissioning and other long-lived waste are also described in this RD and D-Programme. In the review statement regarding RD and D-Programme 2001 which SKI submitted to the Government in March 2002, the Inspectorate called for a report that would explain more clearly SKB's plans for the remainder of the nuclear fuel programme. As a reason for this request, SKI said that the competent authorities will need to know which regulatory reviews are anticipated over the next ten years and the extent to which these reviews depend on each other. Such a report is appended to this RD and D-Programme. It is our hope that the above structure and perspective provide a clear picture of how far the technology development work has come and what factors are most important for safety in the deep repository

  6. Cosmic rays

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  7. Snowmass Computing Frontier: Computing for the Cosmic Frontier, Astrophysics, and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, A. [Univ. of Washington, Seattle, WA (United States); Habib, S. [Argonne National Lab. (ANL), Lemont, IL (United States); Szalay, A. [Johns Hopkins Univ., Baltimore, MD (United States); Borrill, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuller, G. [Univ. of California, San Diego, CA (United States); Gnedin, N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, K. [Argonne National Lab. (ANL), Lemont, IL (United States); Jacobs, D. [Arizona State Univ., Tempe, AZ (United States); Lamb, D. [Univ. of Chicago, IL (United States); Mezzacappa, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Messer, B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Myers, S. [National Radio Astronomy Observatory, Socorro, NM (United States); Nord, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nugent, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Shea, B. [Michigan State Univ., East Lansing, MI (United States); Ricker, P. [Univ. of Illinois, Urbana-Champaign, IL (United States); Schneider, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-12

    This document presents (off-line) computing requrements and challenges for Cosmic Frontier science, covering the areas of data management, analysis, and simulations. We invite contributions to extend the range of covered topics and to enhance the current descriptions.

  8. Performance Study of the CMS Barrel Resistive Plate Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    In October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.

  9. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    new feature of this RD and D-Programme is that we also present our programme for social science research, which was requested by several reviewing bodies in connection with the review of RD and D-Programme 2001. Finally, the programmes for alternative methods, decommissioning and other long-lived waste are also described in this RD and D-Programme. In the review statement regarding RD and D-Programme 2001 which SKI submitted to the Government in March 2002, the Inspectorate called for a report that would explain more clearly SKB's plans for the remainder of the nuclear fuel programme. As a reason for this request, SKI said that the competent authorities will need to know which regulatory reviews are anticipated over the next ten years and the extent to which these reviews depend on each other. Such a report is appended to this RD and D-Programme. It is our hope that the above structure and perspective provide a clear picture of how far the technology development work has come and what factors are most important for safety in the deep repository.

  10. The cosmic cocktail three parts dark matter

    CERN Document Server

    Freese, Katherine

    2014-01-01

    The ordinary atoms that make up the known universe-from our bodies and the air we breathe to the planets and stars-constitute only 5 percent of all matter and energy in the cosmos. The rest is known as dark matter and dark energy, because their precise identities are unknown. The Cosmic Cocktail is the inside story of the epic quest to solve one of the most compelling enigmas of modern science - what is the universe made of? - told by one of today's foremost pioneers in the study of dark matter. Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the

  11. Error Analysis of Ia Supernova and Query on Cosmic Dark Energy

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Error Analysis of Ia Supernova and Query on Cosmic Dark Energy. Qiuhe Peng Yiming Hu Kun ... https://www.ias.ac.in/article/fulltext/joaa/035/03/0253-0256 ... Articles are also visible in Web of Science immediately. All these ...

  12. Our Cosmic Insignificance

    Science.gov (United States)

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  13. A cosmic ray muon recorded by the ATLAS barrel tile calorimeter at 18:30, on 21 June 2005.

    CERN Multimedia

    2005-01-01

    The ATLAS barrel tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk.

  14. Bilan du programme autrichien de recherche sur les paysages

    Directory of Open Access Journals (Sweden)

    Karolina Begusch-Pfefferkorn

    2009-03-01

    Full Text Available Austrian Landscape Research, a programme of the Austrian Ministry of Science, has created scientific foundations for the sustainable development of Austrian landscapes and regions (plus bordering regions. Landscapes and regions were to be explored from different angles; implementing the research findings was to be part of the research work. The programme was designed to make room for science open to society, for unconventional ideas, methods, and courses of action. Programmatic targets and research principles supported this intent. The results of the programme met with national and international approval. The ALR knowledge balance is an attempt at presenting and assessing the achievements of this comprehensive contract research programme.Le programme du Ministère autrichien des Sciences, intitulé « Recherche sur le paysage autrichien », visait à construire les fondements scientifiques d’un développement durable des paysages et des régions de l’Autriche et des territoires limitrophes. Les paysages et les régions ont été étudiés selon différentes approches disciplinaires et la mise en pratique des résultats de cette étude était partie prenante du programme de recherche. La vocation de ce programme était de faire la place à une science ouverte sur la société, à des idées, méthodes et pratiques non conventionnelles. Les objectifs du programme et les principes de recherche vont dans le sens de ces exigences. Les résultats du programme ont été reconnus sur le plan national et international. Le bilan des connaissances du programme de recherche sur le paysage autrichien (KLF a pour but de présenter et d’évaluer les performances de ce vaste programme de recherche.

  15. Education in the New Era: The Dissemination of Education for Sustainable Development in the Political Science Programmes at Notre Dame University--Louaize

    Science.gov (United States)

    Labaki, Georges

    2012-01-01

    Sustainable development is continuous process of change requiring painful choices resting on political will. This paper examines the developments needed to engage with sustainable development in the field of political science through the following: the reform in political science programmes to cope with the need for sustainable development in…

  16. Exchange and fellowship programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-04-15

    By February 1959, the IAEA had received and considered nearly 300 nominations from 31 countries for nuclear science fellowships. More than 200 of the candidates - from 29 countries - had been selected for placement in centres of training in 21 countries. The programme covers three types of training: 1. General techniques training: to develop skills in the use of some fundamental techniques in the field of nuclear energy; 2. Specialist training: to prepare specialists in the theoretical and experimental aspects of the science and technology of nuclear energy; 3. Research training: to provide advanced training, including active participation in research work; this is for persons potentially qualified to develop and carry out research programmes in the basic sciences and engineering. The duration of training varies from some weeks to five or six years. The long-duration training is given at universities or educational establishments of university level, and is of special interest to Member States lacking personnel with the requisite university education. Under its 1959 exchange and fellowship programme, the Agency will be in a position to award over 400 fellowships. Some of these will be paid out of the Agency's operating fund, while 130 fellowships have been offered directly to IAEA by Member States for training at their universities or institutes. There are two new features in the Agency's 1959 programme. One provides for fellowships for scientific research work, the other is the exchange of specialists

  17. The beginnings of life as a cosmic phenomenon

    Science.gov (United States)

    Wickramasinghe, N. C.

    2015-09-01

    The emerging consensus that comets carry the biochemical seeds of life coincides with the first step that was reached as early as 1977 in the historical development of the Hoyle-Wickramasinghe theory of cosmic life. To mark the centenary of the birth of Sir Fred Hoyle on 24 June 2015 this brief article retraces early developments that essentially heralded the new science of astrobiology.

  18. A cosmic microwave background feature consistent with a cosmic texture.

    Science.gov (United States)

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  19. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  20. Light scattering by cosmic particles

    NARCIS (Netherlands)

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  1. Variations in Primary Teachers’ Responses and Development during Three Major Science In- Service Programmes

    Directory of Open Access Journals (Sweden)

    Anthony Pell

    2011-01-01

    Full Text Available This paper reports on how different types of teachers responded to in-service aimed at developing investigative-based science education (IBSE in primary schools, and the extent to which they applied their new skills in the classroom. Common items from evaluation questionnaires allowed data to be combined from three major in-service programmes. Using complete data sets from 120 teachers, cluster analysis enabled three teacher types to be identified: a small group of ‘science unsures’, with low attitude scores and little confidence, who showed no response to the innovation; ‘holistic improvers’, who showed the largest improvement in science teaching confidence; and ‘high level, positive progressives’, who were very positive to science teaching throughout and showed gains in confidence in teaching physics and chemistry, as well as in demonstrating the relevance of science to their pupils. Taking account of these teacher types alongside interviews and observations, nine developmental stages in how teachers apply their new expertise in the classroom and the whole school are suggested. Major factorsinfluencing application in the classroom are the teachers’ initial science knowledge and pedagogical expertise, and motivating feedback to teachers when pupils responded positively to the innovation. Assessing teachers’ initial level of subject knowledge and science pedagogical expertise to inform the approach and amount of in-service provision is important. Subsequent mentoring as well as support from the school principal when teachers first try IBSE with pupils promotes successful implementation in the classroom.

  2. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  3. Developing a Science and Technology Centre for Supporting the Launching of a Nuclear Power Programme

    International Nuclear Information System (INIS)

    Badawy, I.

    2013-01-01

    The present investigation aims at developing a science and technology centre for supporting the launching of a nuclear power [NP] programme in a developing country with a relatively high economic growth rate. The development approach is based on enhancing the roles and functions of the proposed centre with respect to the main pillars that would have effect on the safe, secure and peaceful uses of the nuclear energy -particularly- in the field of electricity generation and sea-water desalination. The study underlines the importance of incorporating advanced research and development work, concepts and services provided by the proposed centre to the NP programme, to the regulatory systems of the concerned State and to the national nuclear industry in the fields of nuclear safety, radiation safety, nuclear safeguards, nuclear security and other related scientific and technical fields including human resources and nuclear knowledge management.

  4. The need for theory evaluation in global citizenship programmes: The case of the GCSA programme.

    Science.gov (United States)

    Goodier, Sarah; Field, Carren; Goodman, Suki

    2018-02-01

    Many education programmes lack a documented programme theory. This is a problem for programme planners and evaluators as the ability to measure programme success is grounded in the plausibility of the programme's underlying causal logic. Where the programme theory has not been documented, conducting a theory evaluation offers a foundational evaluation step as it gives an indication of whether the theory behind a programme is sound. This paper presents a case of a theory evaluation of a Global Citizenship programme at a top-ranking university in South Africa, subsequently called the GCSA Programme. This evaluation highlights the need for documented programme theory in global citizenship-type programmes for future programme development. An articulated programme theory produced for the GCSA Programme, analysed against the available social science literature, indicated it is comparable to other such programmes in terms of its overarching framework. What the research found is that most other global citizenship programmes do not have an articulated programme theory. These programmes also do not explicitly link their specific activities to their intended outcomes, making demonstrating impact impossible. In conclusion, we argue that taking a theory-based approach can strengthen and enable outcome evaluations in global citizenship programmes. Copyright © 2017. Published by Elsevier Ltd.

  5. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    Science.gov (United States)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  6. Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS

    Science.gov (United States)

    Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; hide

    2011-01-01

    The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).

  7. Students' Assessment Of Farm Practical Programme In Selected ...

    African Journals Online (AJOL)

    Students' Assessment Of Farm Practical Programme In Selected Universities Of Southwestern, Nigeria. ... Journal of Agriculture, Forestry and the Social Sciences ... Students reported that lack of planning, improper implementation of activities lined up for the programme, lack of fund to properly finance the programme and ...

  8. Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory

    International Nuclear Information System (INIS)

    Birmingham, T.J.; Jones, F.C.

    1975-02-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)

  9. A COSMIC VARIANCE COOKBOOK

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A.

    2011-01-01

    Deep pencil beam surveys ( 2 ) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , Δz, and stellar mass m * . We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with Δz = 0.5, the relative cosmic variance of galaxies with m * >10 11 M sun is ∼38%, while it is ∼27% for GEMS and ∼12% for COSMOS. For galaxies of m * ∼ 10 10 M sun , the relative cosmic variance is ∼19% for GOODS, ∼13% for GEMS, and ∼6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic

  10. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  11. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  12. The International year of light 2015 and the “Cosmic light” message: awareness & dissemination in the UK

    Science.gov (United States)

    Marchetti, Lucia

    2015-08-01

    By proclaiming the IYL2015, the United Nations recognizes the importance of light and light based technology in the lives of the citizens of the world and for the development of global society on many levels. Light and application of light science and technology are vital for existing and future advances in many scientific areas (from medicine to information & communication technology) and culture. Light is a key element in Astronomy: as astronomers, it is what we study and makes our science possible, but it is also what threatens our observations when it is set-off from the ground (light pollution). This year represents a magnificent and unique opportunity for the global Astronomical community to disseminate these messages and raise the awareness of the importance and preservation of dark skies for heritage and the natural environment. Global and National initiatives are taking place during the year of 2015 (and beyond) and in my talk I will give an overview of what, as IYL National Committee and Gold Sponsor of the year, we are carrying out in the UK. I will explain how we developed our National Programme and I will discuss how we can build-up a long-lasting “cosmic light” communication strategy exploiting the lesson learnt while carrying out our IYL UK year plan.

  13. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    Science.gov (United States)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  14. Philosophical skepticism not relativism is the problem with the Strong Programme in Science Studies and with Educational Constructivism

    Science.gov (United States)

    Papayannakos, Dimitris P.

    2008-06-01

    The structure of David’s Bloor argument for the Strong Programme (SP) in Science Studies is criticized from the philosophical perspective of anti-skeptical, scientific realism. The paper transforms the common criticism of SP—that the symmetry principle of SP implies an untenable form of cognitive relativism—into the clear philosophical issue of naturalism versus Platonism. It is also argued that the concrete patterns of SP’s interest-explanations and its sociological definition of knowledge involve philosophical skepticism. It is claimed, then, that the most problematic elements of SP reside primarily in philosophical skepticism. It is also claimed that this sort of criticism can be directed against other more radical, versions of constructivism in science and science education studies.

  15. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    Science.gov (United States)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  16. Cosmic strings

    International Nuclear Information System (INIS)

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  17. Postgraduate programme in tissue banking

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    1999-01-01

    In 1992 in the Project Formulation Meeting of IAEA, the masters degree programme was proposed by Dr. Youngyudh Vajaradul, Thailand to upgrade the personnel of tissue bank and the person who had been working and involving in tissue banking. After The Bangkok Biomaterial Center proposed the degree programme and presented to Mahidol University, this programme was accepted by Ministry of University Affairs in 1998 and the masters degree programme under the name of 'Masters of Science in Biomaterial for Implantation' will be started in April 1999. IAEA will support the fellowship candidates from the region to study in masters degree programme. The programme includes 6 months of course work in Bangkok that is 12 credits and 24 is for the dissertation work which would be done in any country. The time of validity is 5 years

  18. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  19. List of publications resulting from the Neutron Beam Scattering Programme supported by the Science and Engineering Research Council for 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The paper lists the references of publications resulting from the Neutron Beam Scattering Programme supported by the Science and Engineering Research Council, covering the year 1984, but also including publications from 1983 not given in the previous issue of this listing. (author)

  20. The cosmic code quantum physics as the language of nature

    CERN Document Server

    Pagels, Heinz R

    2012-01-01

    ""The Cosmic Code can be read by anyone. I heartily recommend it!"" - The New York Times Book Review""A reliable guide for the nonmathematical reader across the highest ridges of physical theory. Pagels is unfailingly lighthearted and confident."" - Scientific American""A sound, clear, vital work that deserves the attention of anyone who takes an interest in the relationship between material reality and the human mind."" - Science 82This is one of the most important books on quantum mechanics ever written for general readers. Heinz Pagels, an eminent physicist and science writer, discusses and

  1. The Reflection of Quantum Aesthetics in Algis Mickūnas Cosmic Philosophy

    Directory of Open Access Journals (Sweden)

    Auridas Gajauskas

    2011-04-01

    Full Text Available Quantum Aesthetics phenomenon was formed in Spain, at the end of the twentieth centure. The paper analyzes this movement in the context of Algis Mickūnas phenomenological cosmic philosophy. Movement initiator is a Spanish novelist Gregorio Morales. The study is divided into two parts: the first part presents aesthetic principles of the quantum, relationship between new aesthetics and theories of quantum mechanics, physics and other sciences. The paper also examines the similarities of quantum aesthetics and New Age movements. The second part presents cosmic - phenomenological reflection of quantum theory of beauty. Mickūnas philosophical position combines theory of "eternal recurrence", "the bodily nature of consciousness", "the cosmic dance", theory of "dynamic fields" and quantum approach to aesthetics and the Universe. Summa Summarum he writes that "the conception of quantum aesthetics is involved in the composition of the rhythmic, cyclical and mood dimensioned and tensed world". 

  2. AECL research programmes in materials science

    International Nuclear Information System (INIS)

    Cox, B.; Eastwood, T.A.; Mitchell, I.V.; Dutton, R.

    1980-10-01

    The high capacity factors achieved by CANDU nuclear power reactors can be attributed in part to the careful attention which has been paid in the concept and design phases to the selection of materials. Improved tolerance of these materials to the hostile conditions of a reactor core depends upon our understanding of such phenomena as radiation damage, corrosion and cracking. This report is an introduction to some of the fundamental and underlying research programmes that have evolved at the AECL laboratories in response to this need. The interactions of energetic atomic particles with solids on a microscopic scale are considered, first under the general heading of radiation effects, followed by sections on energy loss processes, ion channeling, and crystal lattice defects. The latter section leads into the important programmes on deformation processes (creep and growth) in zirconium. The final section discusses the extensive work on the oxidation and environmental cracking of zirconium alloys. (auth)

  3. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    Science.gov (United States)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  4. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  5. Annama H chondrite-Mineralogy, physical properties, cosmic ray exposure, and parent body history

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Haloda, J.; Halodová, P.; Meiner, M. M. M.; Maden, C.; Busemann, H.; Laubenstein, M.; Caffee, M. W.; Welten, K.C.; Hopp, J.; Trieloff, M.; Mahajan, R. R.; Naik, S.; Trigo-Rodríguez, J.M.; Moyano-Cambero, C. E.; Oshtrakh, M. I.; Maksimova, A. A.; Chukin, A. V.; Semionkin, V. A.; Karabanalov, M. S.; Felner, I.; Petrova, E. V.; Brusnitsyna, E. V.; Grokhovsky, V. I.; Yakovlev, G. A.; Gritsevich, M.; Lyytinen, E.; Moilanen, J.; Kruglikov, N. A.; Ishchenko, A. V.

    2017-01-01

    Roč. 52, č. 8 (2017), s. 1525-1541 ISSN 1086-9379 Institutional support: RVO:67985831 Keywords : Annama * chondrite * cosmic-ray exposure * radionuclide Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.391, year: 2016

  6. Cosmic ray: Studying the origin

    International Nuclear Information System (INIS)

    Szabelski, J.

    1997-01-01

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10 15 eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O 19 eV (for these are the highest energies observed in nature). (author)

  7. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    International Nuclear Information System (INIS)

    Caldwell, R.R.; Gates, E.

    1993-05-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario

  8. D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.

    Science.gov (United States)

    Rocher, Jonathan; Sakellariadou, Mairi

    2005-01-14

    Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.

  9. Cosmic ray modulation

    International Nuclear Information System (INIS)

    Ueno, Hirosachi

    1974-01-01

    It is important to know the physical state of solar plasma region by the observation of intensity variation of cosmic ray which passed through the solar plasma region, because earth magnetosphere is formed by the interaction between geomagnetic field and solar plasma flow. The observation of cosmic ray intensity is useful to know the average condition of the space of 0.1--3 A.U., and gives the structure of the magnetic field in solar wind affecting the earth magnetosphere. The observation of neutron component in cosmic ray has been carried out at Norikura, Tokyo, Fukushima and Morioka. The lower limit of the energy of incident cosmic ray which can be observed at each station is different, and the fine structure of the variation can be known by comparison. The intensity of meson component in cosmic ray has been measured in underground, and the state of solar plasma region 2--3 A.U. from the earth can be known. The underground measurement has been made at Takeyama and Matsumoto, and a new station at Sakashita is proposed. The measurement at Sakashita will be made by proportional counters at the depth of 100m (water equivalent). Arrangement of detectors is shown. (Kato, T.)

  10. Cosmic Humanity: Utopia, Realities, Prospects

    OpenAIRE

    Sergey Krichevsky

    2017-01-01

    The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity i...

  11. Cosmic-ray-veto detector system

    International Nuclear Information System (INIS)

    Miller, D.W.; Menlove, H.O.

    1992-12-01

    To reduce the cosmic-ray-induced neutron background, we are testing a cosmic-ray veto option with a neutron detector system that uses plastic scintillator slabs mounted on the outside of a 3 He-tube detector. The scintillator slabs eliminate unwanted cosmic-ray events, enabling the detector to assay low-level plutonium samples, for which a low-background coincident signature is critical. This report describes the design and testing of the prototype cosmic-ray-veto detector system

  12. SOME CONSIDERATIONS CONCERNING THE ROLE OF COSMIC ENVIRONMENT IN SOIL GENESIS AND EVOLUTION

    Directory of Open Access Journals (Sweden)

    I. Munteanu

    2011-12-01

    Full Text Available The present day concept of soil is strongly connected to the terrestrial environment. Among the cosmic factors of soil genesis the energy (as light and heat provided by the Sun is by far the most important. The other outer space possible agents e.g. meteorites, comets, cosmic radiation and cosmic dust, are usually neglected or scarcely mentioned. The advancing of cosmic exploration spurred soil scientists to extend their interest upon the extraterrestrial regoliths of Earth-like planets (Mars, Venus and Moon. The concept of “Universal soil” in whose genesis the biotic factor and water are not mandatory, has been recently advanced. The first papers about “lunar soils” are already quoted in soil science literature; some also speak about “Martian soil” or “Venusian soil”. Although these seem to be mere regoliths quite different from the “terrestrial soil” (by absence of life and water one believes that they may give information about impact upon lithological material of severe environment of these planets. This paper tries to outline the cosmic destiny of the soil, to enlarge its meaning and to reveal the hidden connections that the soil has with some planetary and cosmic parameters. In cosmic vision the “soil” – either “lunar”, “martian”, or “terrestrial” – can be viewed as the interface of energy and matter exchange between the land masses of these celestial body and their cosmic environment. The role of the solar activity, extragalactic events, distance from the Sun, obliquity (tilt of Earth’s rotation axis and Earth’s orbit circularity are analyzed in connection with Quaternary glaciations and their influences upon the development of terrestrial soils. The influence of Moon is emphasized as being very important in shaping the zonal geography of the terrestrial soils.

  13. Researching the Effectiveness of a Science Professional Learning Programme Using a Proposed Curriculum Framework for Schools: A Case Study

    Science.gov (United States)

    Paige, Kathryn; Zeegers, Yvonne; Lloyd, David; Roetman, Philip

    2016-01-01

    This paper reports on an action research-based professional learning programme (PLP) in which early career teachers volunteered to identify and then research an aspect of their science teaching practice. The PLP was facilitated by academics from the School of Education and the Barbara Hardy Institute at the University of South Australia. The…

  14. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    Science.gov (United States)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  15. The National Institute for Health Research Leadership Programme

    Science.gov (United States)

    Jones, Molly Morgan; Wamae, Watu; Fry, Caroline Viola; Kennie, Tom; Chataway, Joanna

    2012-01-01

    Abstract RAND Europe evaluated the National Institute for Health Research (NIHR) Leadership Programme in an effort to help the English Department of Health consider the extent to which the programme has helped to foster NIHR's aims, extract lessons for the future, and develop plans for the next phase of the leadership programme. Successful delivery of high-quality health research requires not only an effective research base, but also a system of leadership supporting it. However, research leaders are not often given the opportunity, nor do they have the time, to attend formal leadership or management training programmes. This is unfortunate because research has shown that leadership training can have a hugely beneficial effect on an organisation. Therefore, the evaluation has a particular interest in understanding the role of the programme as a science policy intervention and will use its expertise in science policy analysis to consider this element alongside other, more traditional, measures of evaluation. PMID:28083231

  16. Exploring cosmic origins with CORE: Inflation

    Science.gov (United States)

    Finelli, F.; Bucher, M.; Achúcarro, A.; Ballardini, M.; Bartolo, N.; Baumann, D.; Clesse, S.; Errard, J.; Handley, W.; Hindmarsh, M.; Kiiveri, K.; Kunz, M.; Lasenby, A.; Liguori, M.; Paoletti, D.; Ringeval, C.; Väliviita, J.; van Tent, B.; Vennin, V.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Basak, S.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Borril, J.; Bouchet, F. R.; Boulanger, F.; Brinckmann, T.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Chluba, J.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; Delabrouille, J.; Desjacques, V.; De Zotti, G.; Diego, J. M.; Di Valentino, E.; Feeney, S.; Fergusson, J. R.; Fernandez-Cobos, R.; Ferraro, S.; Forastieri, F.; Galli, S.; García-Bellido, J.; de Gasperis, G.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Hu, B.; Kisner, T.; Kitching, T.; Kovetz, E. D.; Kurki-Suonio, H.; Lamagna, L.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Lindholm, V.; Lizarraga, J.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martínez-González, E.; Martins, C. J. A. P.; Masi, S.; McCarthy, D.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Oppizzi, F.; Paiella, A.; Pajer, E.; Patanchon, G.; Patil, S. P.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Roest, D.; Roman, M.; Rubiño-Martin, J. A.; Salvati, L.; Starobinsky, A. A.; Tartari, A.; Tasinato, G.; Tomasi, M.; Torrado, J.; Trappe, N.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; van de Weygaert, R.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μKṡ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10‑3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10‑3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.

  17. Test particle trajectories near cosmic strings

    Indian Academy of Sciences (India)

    We present a detailed analysis of the motion of test particle in the gravitational field of cosmic strings in different situations using the Hamilton–Jacobi (H–J) formalism. We have discussed the trajectories near static cosmic string, cosmic string in Brans–Dicke theory and cosmic string in dilaton gravity.

  18. Cosmic ray: Studying the origin

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, J. [Cosmic Ray Laboratory, Soltan Institute for Nuclear Studies, Lodz (Poland)

    1997-12-31

    Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10{sup 15} eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 1O{sup 19} eV (for these are the highest energies observed in nature). (author) 101 refs, 19 figs, 7 tabs

  19. E-learning based distance education programme on Remote Sensing and Geoinformation Science - An initiative of IIRS

    Science.gov (United States)

    Karnatak, H.; Raju, P. L. N.; Krishna Murthy, Y. V. N.; Srivastav, S. K.; Gupta, P. K.

    2014-11-01

    IIRS has initiated its interactive distance education based capacity building under IIRS outreach programme in year 2007 where more than 15000+ students were trained in the field of geospatial technology using Satellite based interactive terminals and internet based learning using A-View software. During last decade the utilization of Internet technology by different user groups in the society is emerged as a technological revaluation which has directly affect the life of human being. The Internet is used extensively in India for various purposes right from entrainment to critical decision making in government machinery. The role of internet technology is very important for capacity building in any discipline which can satisfy the needs of maximum users in minimum time. Further to enhance the outreach of geospatial science and technology, IIRS has initiated e-learning based certificate courses of different durations. The contents for e-learning based capacity building programme are developed for various target user groups including mid-career professionals, researchers, academia, fresh graduates, and user department professionals from different States and Central Government ministries. The official website of IIRS e-learning is hosted at elearning.iirs.gov.in" target="_blank">http://elearning.iirs.gov.in. The contents of IIRS e-learning programme are flexible for anytime, anywhere learning keeping in mind the demands of geographically dispersed audience and their requirements. The program is comprehensive with variety of online delivery modes with interactive, easy to learn and having a proper blend of concepts and practical to elicit students' full potential. The course content of this programme includes Image Statistics, Basics of Remote Sensing, Photogrammetry and Cartography, Digital Image Processing, Geographical Information System, Global Positioning System, Customization of Geospatial tools and Applications of Geospatial Technologies. The syllabus of the

  20. TV programme presentations: Bang Goes the Theory by BBC (2010) and Beyond the Atom with John Ellis by Redes and Science Networks (2010)

    CERN Document Server

    Carolyn Lee

    2011-01-01

    BBC’s Bang Goes the Theory explores various aspects of science. In this episode, presenter Dallas Campbell travels to CERN to meet physicist Tara Shears and learn more about antimatter. Other topics include breath-holding techniques such as free diving, and what exactly is horsepower and how is it measured? In addition, Redes and Science Networks have produced "Beyond the Atom with John Ellis", a TV programme presented by Eduard Punset and featuring CERN theorist John Ellis. The aim of this programme is to understand more about what matter is and what the physicists working on the LHC experiments hope to discover, including the Higgs boson, dark matter and supersymmetry. This programme is in English and Spanish with English subtitles. Bang Goes the Theory will be presented on Friday 11 March from 13:00 to 13:30 Language: English Beyond the Atom with John Ellis will be presented on Friday 11 March from 13:30 to 14:00 Language: English and Spanish with English subtitles Both will be...

  1. Deepening Cosmic Education

    Science.gov (United States)

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  2. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  3. Signs of cosmic rays in gravitational wave detectors

    International Nuclear Information System (INIS)

    Tavares, Denis Borgarelli

    2010-01-01

    One of the phenomena predicted by Einstein in the derivation of general relativity is the existence of small perturbations of the metric that he named gravitational waves. As they travel through space oscillates the space-time according to its polarization. This is the only major prediction of general relativity not yet proven completely. The small signal generated by the passage of a gravitational wave compared to the noise in the system of detection makes their direct detection one challenge of modern science. In this paper we study the noise generated by cosmic rays in the gravitational antenna Mario Schenberg, located in the city of Sao Paulo. Single muons and hadrons flux measurements held in the northern hemisphere were used to calculate the expected flux of these particles in the city of Sao Paulo. The calculation of the energy deposited in the detector of gravitational waves from cosmic rays was performed by Monte Carlo simulations using Geant4. The transport of muons and protons, with several energy and some different angles of incidence, across the building and the resonant sphere was simulated. We developed a thermo-acoustic model, called multi-point, suitable for calculating the energy deposited in the normal modes from the energy deposited on the sphere by elementary particles. With these results we calculate the expected rate of cosmic ray signals in the main detection mode of gravitational waves, nl = 12, of the Mario Schenberg detector, for temperatures T noise between 10 -5 and 10 -7 K. The results showed for the designed for 4.2 K sensitivity of the Mario Schenberg detector that the rate of signals due to cosmic rays is very small, being around 5 events per day. However, when it will reach the quantum limit will be needed a more detailed analysis of the antenna signal output, since the expected number of cosmic ray noise increases considerably, reaching about 250 signals per day. (author)

  4. Areas and programmes of technical assistance

    International Nuclear Information System (INIS)

    1998-01-01

    The cooperation between the Atomic Energy Commission of Costa Rica, and the International Atomic Energy Agency, has permitted to carry out programmes and projects which agree with the national objectives of development. In the areas of environmental hydrology; physical sciences and chemistry; industry and geological sciences; health and animal production; biological sciences, agriculture and alimentation; scientific and technical information. (author) [es

  5. Robust constraint on cosmic textures from the cosmic microwave background.

    Science.gov (United States)

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  6. 2002 Conference Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    2002-01-01

    The 25th Annual (Silver Jubilee) Conference 2002 Conference Programme and Book of Abstracts gives a brief on the Nigerian Institute of Physics, the Sheda Science and Technology Complex. It carries the Conference programme and carries the abstracts of all the papers presented. The abstracts cover a wide range of subjects including topics in atmospheric physics, education, policy and planning, geophysics, instrumentation, mathematical sciences, theoretical physics, nuclear and health physics, solid state, electronic and health physics. We are grateful to the Nigerian Institute of Physics for this volume

  7. VI School on Cosmic Rays and Astrophysics

    International Nuclear Information System (INIS)

    2017-01-01

    VI School on Cosmic Rays and Astrophysics 17-25 November 2015, Chiapas, Mexico The VI School on Cosmic Rays and Astrophysics was held at the MCTP, at the Autonomous University of Chiapas (UNACH), Tuxtla Gutiérrez, Chiapas, Mexico thanks to the Science for Development ICTP-UNACH-UNESCO Regional Seminar, 17-25 November 2015 (http://mctp.mx/e-VI-School-on-Cosmic-Rays-and-Astrophysics.html). The School series started in La Paz, Bolivia in 2004 and it has been, since then, hosted by several Latin American countires: 1.- La Paz, Bolivia (August, 2004), 2.- Puebla, Mexico (September, 2006), 3.- Arequipa, Peru (September, 2008), 4.- Santo André, Brazil (September, 2010), 5.- La Paz, Bolivia (August, 2012). It aims to promote Cosmic Ray (CR) Physics and Astrophysics in the Latin American community and to provide a general overview of theoretical and experimental issues on these topics. It is directed to undergraduates, postgraduates and active researchers in the field. The lectures introduce fundamental Cosmic Ray Physics and Astrophysics with a review of standards of the field. It is expected the school continues happening during the next years following a tradition. In this edition, the list of seminars included topics such as experimental techniques of CR detection, development of CR showers and hadronic interactions, composition and energy spectrum of primary CR, Gamma-Ray Bursts (GRBs), neutrino Astrophysics, spacecraft detectors, simulations, solar modulation, and the current state of development and results of several astroparticle physics experiments such as The Pierre Auger Observatory in Argentina, HAWC in Mexico, KASCADE and KASCADE Grande, HESS, IceCube, JEM-EUSO, Fermi-LAT, and others. This time the school has been complemented with the ICTP-UNACH-UNESCO Seminar of theory on Particle and Astroparticle Physics. The organization was done by MCTP, the Mesoamerican Centre for Theoretical Physics. The school had 46 participants, 30 students from Honduras, Brazil

  8. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  9. A needs analysis for a non-abusive intervention programme in the School of Health Care Sciences at the University of Pretoria

    OpenAIRE

    LO Fouché; R du Toit

    2006-01-01

    Due to feedback from students, student abuse during fieldwork, was brought to the attention of the researchers. The study aimed to determine whether a need for a nonabusive intervention programme (NIP) existed amongst the School of Health Care Science students at the University of Pretoria. All students enrolled at the School of Health Care Sciences completed a questionnaire. An overwhelming response indicated that the majority of students (95.85%) have a need for a non-abusive intervention p...

  10. Cosmic microwave background science at commercial airline altitudes

    Science.gov (United States)

    Feeney, Stephen M.; Gudmundsson, Jon E.; Peiris, Hiranya V.; Verde, Licia; Errard, Josquin

    2017-07-01

    Obtaining high-sensitivity measurements of degree-scale cosmic microwave background (CMB) polarization is the most direct path to detecting primordial gravitational waves. Robustly recovering any primordial signal from the dominant foreground emission will require high-fidelity observations at multiple frequencies, with excellent control of systematics. We explore the potential for a new platform for CMB observations, the Airlander 10 hybrid air vehicle, to perform this task. We show that the Airlander 10 platform, operating at commercial airline altitudes, is well suited to mapping frequencies above 220 GHz, which are critical for cleaning CMB maps of dust emission. Optimizing the distribution of detectors across frequencies, we forecast the ability of Airlander 10 to clean foregrounds of varying complexity as a function of altitude, demonstrating its complementarity with both existing (Planck) and ongoing (C-BASS) foreground observations. This novel platform could play a key role in defining our ultimate view of the polarized microwave sky.

  11. Zimbabwe's Better Environmental Science Teaching Programme: A ...

    African Journals Online (AJOL)

    ) programme within the context of education for sustainable development (ESD). The first part of the paper briefly reviews developments in environmental education in southern Africa within the broader scope and goals of ESD and draws some ...

  12. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  13. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  14. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  15. The European Framework Programme under way

    CERN Multimedia

    2007-01-01

    The new European Framework Programme - FP7 - has recently started and will offer various possibilities for CERN to participate in EU co-funded projects for research and technological development. In December 2006, the Council of the European Union (EU) formally adopted the 7th European Framework Programme for research, technological development and demonstration activities (FP7). FP7 started on 1 January 2007 and will cover the period 2007 to 2013. With a total budget of 50.5 B-Euros, FP7 is the largest Framework Programme in the history of the EU. FP7 consists of four major sub-programmes, referred to as 'Specific Programmes'. 'Cooperation' is focused on collaborative research and is divided into 10 research themes. 'Ideas' is a new EU programme for funding of frontier research in all fields of science. 'Capacities' aims at strengthening the research capacities in Europe. Finally, 'People' succeeds the previous Marie Curie Programmes and targets the development of Europe's human potential. On 22 December...

  16. The European Framework Programme under way

    CERN Multimedia

    2007-01-01

    The new European Framework Programme - FP7 - has recently started and will offer various possibilities for CERN to participate in EU co-funded projects for research and technological development. In December 2006, the Council of the European Union (EU) formally adopted the 7th European Framework Programme for research, technological development and demonstration activities (FP7). FP7 started on 1st January 2007 and will cover the period 2007 to 2013. With a total budget of 50.5 billion euros, FP7 is the largest Framework Programme in the history of the EU. FP7 consists of four major sub-programmes, referred to as 'Specific Programmes'. 'Cooperation' is focused on collaborative research and is divided into 10 research themes. 'Ideas' is a new EU programme for funding frontier research in all fields of science. 'Capacities' aims at strengthening the research capacities in Europe. Finally, 'People' succeeds the previous Marie Curie Programmes and targets the development of Europe's human potential. On 22 Decem...

  17. Seismology in Schools an integrated approach to funding developing and implementing a coordinated programme for teachers and high school students

    Science.gov (United States)

    Blake, T. A.; Jones, A. G.; Campbell, G.

    2010-12-01

    Statistics in Ireland show that physics at Advanced Level in Secondary Schools is declining in popularity and is the most likely subject to be cut first from the curriculum in a curriculum readjustment by school authorities. In an attempt to attract students to study Earth science and seismology the School of Cosmic Physics, DIAS embarked on an outreach programme in 2007 to promote Earth science, particularly seismology, in schools at both Primary and Secondary Levels. Since its inception, DIAS's Seismology in Schools programme has been very well received, with seismometers installed in over fifty schools across the State. Although this number may appear small, given that the population of Ireland is 4M this number of 1 per 80,000 compares favourably with the U.K. (70 in a population of 70M, 1 per 1M) and the U.S.A. (200 in a population of 300M, 1 per 1.5M) with an penetration of 15-20 times greater. The phenomenal success of our Seismology in Schools programme has been helped significantly by the support we have received from the British Geological Survey (BGS) and IRIS (Incorporated Research Institutions for Seismology) in terms of hardware, software and advice. Similarly, the programme would be a pale reflection of what it is today if the Directors of the Educational Centres (ATECI, Association of Teacher's/Education Centres in Ireland) across Ireland had not become enthused and funded the purchase of 34 additional seismometers, and the Geological Survey of Ireland purchased a further six. Also, funding support from Discover Science and Engineering (DSE) was absolutely critical for us to roll out this hugely enlarged programme of 50 seismometers from the originally envisioned four. As this programme is an initiation into seismology for students, it is important to stress that the seismometer is not used in the schools as a professional recording instrument but helps students visualize what seismology and the recording of earthquakes comprises. Essential to the

  18. Teaching Science through the Science Technology and Society ...

    African Journals Online (AJOL)

    ... the teaching methods course of all teacher training Programmes and that the science syllabus be reviewed regularly so that it responds to current needs. Relevant authorities need inject more resources towards in-service programmes and come up with legislation on in-service programmes e.g. promotion or salary hikes ...

  19. Monitoring and evaluating astronomy outreach programmes: Challenges and solutions

    Directory of Open Access Journals (Sweden)

    Sarah Chapman

    2015-05-01

    Full Text Available A number of tools exist to guide the monitoring and evaluation of science, technology, engineering and mathematics (STEM education and outreach programmes. Fewer tools exist for evaluating astronomy outreach programmes. In this paper we try to overcome this limitation by presenting a monitoring and evaluation framework developed for the International Astronomical Union's Office of Astronomy for Development (OAD. The mandate of the OAD is to stimulate sustainable development at an international level and to expand astronomy education and outreach globally. The broad assumptions of this programme are that astronomy has the potential to contribute to human development by means of the transferable nature of its science discoveries, as well as its potential to activate feelings of wonderment, inspiration and awareness of the universe. As a result, the programme potentially embodies a far broader mix of outcomes than conventionally considered in STEM evaluation approaches. Towards this aim, we operationalise our monitoring and evaluation approach by first outlining programme theories for three key OAD programmes: a programme for universities and research, another one for schools, and one for public outreach. We then identify outcomes, indicators and measures for each one of these programmes. We conclude with suggestions for evaluating the global impact of astronomy for development.

  20. Closing CMS to hunt cosmic rays

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Every second the Earth is bombarded by billions of cosmic rays and occasionally one of these cosmic particles will collide with the Earth's atmosphere generating a shower of particles known as an 'air shower'. This is similiar to the collisions and subsequent particle showers observed in accelerators such as the LHC. Here the CMS detector is closed so that systems can be tested using muon cosmic rays in the 'Cosmic Challenge'.

  1. Interplanetary cosmic-ray scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Toptygin, I N; Vasiliev, V N [Kalininskij Sel' skokhozyajstvennyj Inst. (USSR)

    1977-05-01

    The equation for the two-particles cosmic-ray distribution function is derived by means of the Boltzmann kinetic equation averaging. This equation is valid for arbitrary ratio of regular and random parts of the magnetic field. For small energy particles the guiding-center approximation is used. On the basis of the derived equation the dependence between power spectra of cosmic-ray intensity and random magnetic field is obtained. If power spectra are degree functions for high energy particles (approximately 10 GeV nucleon/sup -1/), then the spectral exponent ..gamma.. of magnetic field lies between rho and rho-2, where rho is the spectral exponent of cosmic-ray power spectra. The experimental data concerning moderate energy particles are in accordance with ..gamma..=rho, which demonstrates that the magnetic fluctuations are isotropic or cosmic-ray space gradient is small near the Earth orbit.

  2. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  3. The Global Sensor Web: A Platform for Citizen Science (Invited)

    Science.gov (United States)

    Simons, A. L.

    2013-12-01

    The Global Sensor Web (GSW) is an effort to provide an infrastructure for the collection, sharing and visualizing sensor data from around the world. Over the past three years the GSW has been developed and tested as a standardized platform for citizen science. The most developed of the citizen science projects built onto the GSW has been Distributed Electronic Cosmic-ray Observatory (DECO), which is an Android application designed to harness a global network of mobile devices, to detect the origin and behavior of the cosmic radiation. Other projects which can be readily built on top of GSW as a platform are also discussed. A cosmic-ray track candidate captured on a cell phone camera.

  4. Cosmic Humanity: Utopia, Realities, Prospects

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2017-07-01

    Full Text Available The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity is (essence and 4 stages of evolution: 1. Humanity living on Earth, sensing, knowing, understanding its cosmic origin, relationship with the cosmos and cosmic destiny. 2. Humanity living on Earth, leading aerospace activity for the purposes of exploration and use of aerospace space (Heaven, Space for survival and development. 3. Humanity living on Earth and outside the Earth — in the solar system, preserving the Earth and mastering the Cosmos for survival and development. 4. Humanity, settled and living in the Cosmos. Now humanity is in the process of transition from the second to the third stage. In the process of this evolution, a complex transformation of man and society takes place. The problem-semantic field of cosmic humanity is described and its general model is presented. The meta-goal-setting is the justification of cosmic humanity with the application of the anthropic principle and its “active” super (post anthropic supplement: “Cosmic humanity has an evolutionary purpose to actively manage evolution: change man, humanity and the universe.” The evolution of the “cosmic dream”, goals and technologies of space activities is formalized in the form of a conceptual model. Challenges and negative trends are considered in connection with the crisis of space activity, criticism and attempts to limit the flights of people into space. The prototype of cosmic humanity, its basis and acting model is the cosmonauts’ community. The main

  5. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  6. Fitting cosmic microwave background data with cosmic strings and inflation.

    Science.gov (United States)

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  7. Origins fourteen billion years of cosmic evolution

    CERN Document Server

    Tyson, Neil deGrasse

    2004-01-01

    Origins explores cosmic science's stunning new insights into the formation and evolution of our universe--of the cosmos, of galaxies and galaxy clusters, of stars within galaxies, of planets that orbit those stars, and of different forms of life that take us back to the first three seconds and forward through three billion years of life on Earth to today's search for life on other planets. Drawing on the current cross-pollination of geology, biology and astrophysics, Origins explains the thrilling daily breakthroughs in our knowledge of the universe from dark energy to life on Mars to the mysteries of space and time. Distilling complex science in clear and lively prose, co-authors Neil deGrasse Tyson and Donald Goldsmith conduct a galvanising tour of the cosmos revealing what the universe has been up to while turning part of itself into us.

  8. Cosmic odyssey

    International Nuclear Information System (INIS)

    Heidmann, J.

    1989-01-01

    The immensity of the cosmos, the richness of the universe, the limits of space and time: these are the themes of Cosmic Odyssey, which takes the reader on imaginary journeys through the past, present and future of our universe. After a first look at the starry night sky, the enigmas posed since ancient times by the universe are reviewed. There then follows a broadbrush view of the universe as we understand it today. Following this, a trio of chapters take us to ultimate questions about its nature. The author explores in turn the relativistic universe, the quantum universe and the inflationary universe. Finally the journey returns to questions that touch on our own presence in the universe. Cosmology, the science of understanding the nature of the universe as a whole, has gone through an extraordinary revolution in its approach. This book explains in detail the link between particle physics and cosmology, the very early universe, the significance of Grand Unified Theory and superstrings, the magical qualities of the inflationary universe, and the seemingly bleak scenarios for the farthest future. (author)

  9. Greek Teachers Programme 2015

    CERN Multimedia

    Hoch, Michael

    2015-01-01

    The 3rd edition of this year's Greek Teachers Programme was co-organized by CERN Education Group and the Hellenic Physical Society and took place from 8 to 12 November 2015. The programme targets physics high-school teachers from all over Greece. It aims to help teachers inspire the next generation of scientists and engineers by motivating their students to understand and appreciate how science works at the world's largest physics laboratory, whereby increasing their interest in pursuing studies in STEM fields in secondary and post-secondary education. 33 teachers took part in this programme which comprised lectures by Greek members of the CERN scientific community, with visits to experimental facilities, hands-on activities and dedicated sessions on effective and creative ways through which participants may bring physics, particle physics and CERN closer to their school classroom. In 2015, more than 100 teachers took part in the three editions of the Greek Teachers Programme.

  10. PROTECTION FROM COSMIC RADIATION IN LONG-TERM MANNED SPACEFLIGHTS

    Directory of Open Access Journals (Sweden)

    Marco Durante

    2012-06-01

    Full Text Available Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of health risks. Even if uncertainties in risk assessment will be reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Unfortunately, passive (bulk shielding is currently unable to provide adequate protection, because cosmic rays have very high energy and nuclear fragmentation in the absorbers produce light fragments. Material science could provide new materials with better shielding properties for space radiation. Active (magnetic shielding could be an interesting alternative, pending technical improvements.

  11. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  12. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  13. ADS National Programmes: China

    International Nuclear Information System (INIS)

    2015-01-01

    In China the conceptual study of an ADS concept which lasted for about five years ended in 1999. As one project of the National Basic Research Programme of China (973 Programme) in energy domain, which is sponsored by the China Ministry of Science and Technology (MOST), a five year programme of fundamental research of ADS physics and related technology was launched in 2000 and passed national review at the end of 2005. From 2007, another five year 973 Programme Key Technology Research of Accelerator Driven Subcritical System for Nuclear waste Transmutation started. The research activities were focused on HPPA physics and technology, reactor physics of external source driven subcritical assembly, nuclear data base and material study. For HPPA, a high current injector consisting of an ECR ion source, LEBT and an RFQ accelerating structure of 3.5 MeV has been built and were being improved. In reactor physics study, a series of neutron multiplication experimental study has been carrying out. The VENUS I facility has been constructed as the basic experimental platform for neutronics study in ADS blanket. VENUS I a zero power subcritical neutron multiplying assembly driven by external neutron produced by a pulsed neutron generator or 252Cf neutron source. The theoretical, experimental and simulation studies on nuclear data, material properties and nuclear fuel circulation related to ADS are carried out in order to provide the database for ADS system analysis. China Institute of Atomic Energy (CIAE), Institute of High Energy Physics (IHEP) and other Chinese institutes carried out the MOST project together. Besides CIAE, China Academy of Science (CAS) pays more and more attention to Advanced Nuclear Fuel Cycles (ANFC). A large programme of ANFC, including ADS and Th based nuclear fuel cycle, has been launched by CAS

  14. Impact of Cosmic-Ray Transport on Galactic Winds

    Science.gov (United States)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  15. ngVLA Key Science Goal 3: Charting the Assembly, Structure, and Evolution of Galaxies Over Cosmic Time

    Science.gov (United States)

    Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.

  16. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  17. The cosmic web mysterious architecture of the Universe

    CERN Document Server

    Gott, J Richard

    2016-01-01

    J. Richard Gott was among the first cosmologists to propose that the structure of our universe is like a sponge made up of clusters of galaxies intricately connected by filaments of galaxies—a magnificent structure now called the "cosmic web" and mapped extensively by teams of astronomers. Here is his gripping insider’s account of how a generation of undaunted theorists and observers solved the mystery of the architecture of our cosmos. The Cosmic Web begins with modern pioneers of extragalactic astronomy, such as Edwin Hubble and Fritz Zwicky. It goes on to describe how, during the Cold War, the American school of cosmology favored a model of the universe where galaxies resided in isolated clusters, whereas the Soviet school favored a honeycomb pattern of galaxies punctuated by giant, isolated voids. Gott tells the stories of how his own path to a solution began with a high-school science project when he was eighteen, and how he and astronomer Mario Jurič measured the Sloan Great Wall of Galaxies, a fi...

  18. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiro, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Donato, C.; Bg, S. J. de Jong; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Epele, L.; Escobar, C. O.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fracchiolla, C. E.; Fulgione, W.; Garcia, B.; Gaimez, D. Garcia; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Albarracin, F. Gomez; Berisso, M. Gomez; Herrero, R. Gomez; Goncalves, P.; do Amaral, M. Goncalves; Gonzalez, D.; Gonzalezc, J. G.; Gonzalez, M.; Gora, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Huege, T.; Hussain, M.; Larlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koanga, V. -H.; Krieger, A.; Kroemer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; LeBrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Lopez, R.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Aguera, A. Lopez; Bahilo, J. Lozano; Garcia, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Mancenido, M. E.; Mandatat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martinez, J.; Bravo, O. Martinez; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Roverok, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovanek, P.; Schuessler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; De Grande, N. Smetniansky; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdes; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The

  19. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization.

    Science.gov (United States)

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.

  20. Cosmic rays and the interstellar medium

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    It is inevitable that there is a close connection between cosmic rays and the ISM insofar as the propagation of cosmic rays is conditioned by the magnetic field in the ISM and the cosmic rays interact with the gas (and photon fluxes) in this medium. This paper deals with both topics. Propagation effects manifest themselves as an anisotropy in arrival directions and a review is given of anisotropy measurements and their interpretation. The status of studies of cosmic ray interactions is examined whit particular reference to the information about the ISM itself which comes from observations of the flux of secondary γ-rays produced by cosmic ray interactions with gas, the situation regarding molecular as in the Inner Galaxy being of particular concern

  1. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  2. Young "Science Ambassadors" Raise the Profile of Science

    Science.gov (United States)

    Ridley, Katie

    2014-01-01

    Katie Ridley, science coordinator at St. Gregory's Catholic Primary School, Liverpool, UK, states that the inspiration for "science ambassadors" came after embarking on the Primary Science Quality Mark programme at their school. Ridley realized that science was just not recognised as such by the children, they talked about scientific…

  3. The LOFAR Magnetism Key Science Project

    NARCIS (Netherlands)

    Anderson, James; Beck, Rainer; Bell, Michael; de Bruyn, Ger; Chyzy, Krzysztof; Eislöffel, Jochen; Enßlin, Torsten; Fletcher, Andrew; Haverkorn, Marijke; Heald, George; Horneffer, Andreas; Noutsos, Aris; Reich, Wolfgang; Scaife, Anna; the LOFAR collaboration, [No Value

    2012-01-01

    Measuring radio waves at low frequencies offers a new window to study cosmic magnetism, and LOFAR is the ideal radio telescope to open this window widely. The LOFAR Magnetism Key Science Project (MKSP) draws together expertise from multiple fields of magnetism science and intends to use LOFAR to

  4. Cosmic strings and galaxy formation

    Science.gov (United States)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  5. A recommended procedure for estimating the cosmic-ray spectral parameter of a simple power law

    CERN Document Server

    Howell, L W

    2002-01-01

    A simple power law model with single spectral index alpha sub 1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10 sup 1 sup 3 eV. Two procedures for estimating alpha sub 1 --the method of moments and maximum likelihood (ML)--are developed and their statistical performance are compared. The ML procedure is shown to be the superior approach and is then generalized for application to real cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution and inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives.

  6. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  7. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    Science.gov (United States)

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  8. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    Science.gov (United States)

    Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-01-01

    For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    National Initiative on Undergraduate Science (NIUS) Chemistry Programme Fellow, Homi Bhabha Centre for Science Education, Mankhurd, Mumbai, Maharashtra 400 088, India; Department of Chemistry, V. K. Krishna Menon College of Commerce & S. S. Dighe College of Science, Bhandup (E), Mumbai, Maharashtra 400 ...

  10. Dutch intervention programmes for children of mentally ill parents

    NARCIS (Netherlands)

    Amelsvoort, T.A.M.J. van; Santvoort, F. van; Doesum, K.T.M. van

    2016-01-01

    Purpose: This presentation will present the outcomes of a practice-based and science-based Dutch initiative to develop a comprehensive national prevention programme focused on children of parents with a mental disorder. An outline of the multicomponent programme is presented which includes a wide

  11. Progress and Achievements At the Mid Term Stage of the Dragon 2 Programme

    Science.gov (United States)

    Desnos, Yves-Louis; Li, Zhengyuan; Zmuda, Andy; Gao, Zhihai

    2010-10-01

    The cooperation between ESA and National Remote Sensing Center of China (NRSCC) / Ministry Of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications started 15 years ago. In 2004, a new phase in cooperation began with the start of the Dragon Programme which focused on science and application using ESA satellite data. The programme was completed in 2008. Following on, the cooperation took on greater momentum with the start of a four-year EO science and exploitation programme called 'Dragon 2'. This programme brings together joint Sino-European teams to investigate land, ocean and atmospheric applications in P.R. China using data from ESA, Third Party Mission and Chinese Earth Observation satellites. The teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and after 2 years, two courses on land and one course on atmospheric applications have been successfully held in 2008, 2009 and 2010 in China. Here-in provided is an overview of the results, reporting and training activities at the mid term stage of the programme. The Sino-European teams continue to deliver world-class scientific results across a wide range of disciplines. The programme provides a platform for the joint exploitation of ESA, TPM and Chinese EO data from optical, infrared, thermal and microwave sensors for science and application development.

  12. Dosimetry of environmental radiations (cosmic ray)

    International Nuclear Information System (INIS)

    Yamasaki, Keizo

    1978-01-01

    Cosmic ray is dominant as environmental radiation, though the experimental determination made on cosmic ray doses is few in Japan. The free air ionization intensity at sea level due to cosmic ray has been estimated in the Bay of Wakasa, Japan, at middle geomagnetic latitude (25 deg. N), in October 1977. The ionization chambers used were two air and one argon types. Where the responses to cosmic and terrestrial gamma rays were equal, the ionization intensity due to cosmic ray was obtained by subtracting the ionization intensity due to terrestrial gamma ray from the total ionization intensity. As the terrestrial gamma ray, (1) U-238 series, Th-232 series, and K-40 in seawater, (2) K-40 in the material of a wooden ship, and (3) Rn-222 and its daughter products in the atmosphere were considered. The result of free air ionization due to cosmic ray with the argon chamber was slightly smaller than those with the other two air chambers; however, both were in good agreement within standard errors. (JPN.)

  13. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    Full text: The 31 st International Cosmic Ray Conference (31.ICRC) was held in Lodz on 7-15 July 2009. The Conference was organized by the University of Lodz (Department of High Energy Astrophysics and Department of Astrophysics) and IPJ (Department of Cosmic Ray Physics). ICRCs are held every two years and are the largest forums to present and discuss the current status of Cosmic Ray studies. The Conference we co-organized gathered about 750 scientists (including about 50 from Poland). This was a remarkable event. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the field of high energy Cosmic Rays. Cosmic Rays are energetic panicles from outside the Solar System. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles. - experimental search for sources of Cosmic Rays, - studies of the astrophysical conditions at the acceleration sites, - properties of particle interactions at very high energies. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce panicle physics detectors and elementary particle detection techniques to young people, in Lodz and Poznan we organize workshops on particle physics for high school students. This is part of the European activity: EPPOG Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of panicles in the atmosphere, called Extensive Air Showers (EAS). Registering EASs and their properties is the main means of studying experimentally high energy Cosmic Rays: · The satellite experiment JEM-EUSO will observe EASs from the International Space Station. The main target is to find Cosmic Ray Sources for the highest energy Cosmic Rays. JEM-EUSO will collect a large number of events since it will observe a large area of the atmosphere. We are participating in the preparation of this mission. · The KASCADE-Grande addresses

  14. CERN openlab Summer Student Programme

    CERN Multimedia

    2012-01-01

    CERN openlab is currently taking applications for its summer student programme. The closing date for applications is 30 March 2012.   The openlab Summer Student Programme is open for applications from bachelor, master and PhD students in computer science and physics. Successful applicants will spend 8 weeks at CERN, during the period June to September 2012, to work with some of the latest hardware and software technologies. The programme is more than just a summer at CERN: it can lead to follow-on projects at the home institute and may even inspire the students to become entrepreneurs in cutting-edge computing technologies. A series of lectures will be given by experts in various domains of CERN related high-throughput computing. Study tours to external companies and universities as well as to CERN facilities are also part of the programme. Please visit www.cern.ch/openlab-students for more information.

  15. CERN openlab summer student programme

    CERN Multimedia

    2013-01-01

    CERN openlab is currently taking applications for its summer student programme. The closing date for applications is 31 March 2013.   The openlab summer student programme is open for applications from bachelor, master and PhD students in computer science and physics. Successful applicants will spend 9 weeks at CERN, during the period from June to September 2013, working with some of the latest hardware and software technologies. The programme is more than just a summer at CERN: it can lead to follow-on projects at the home institute and may even inspire students to become entrepreneurs in cutting-edge computing technologies. A series of lectures will be given by experts in various domains of CERN-related high-throughput computing. Study tours of external companies and universities as well as of CERN facilities are also part of the programme. Please visit the CERN openlab website for more information.

  16. Risk evaluation of cosmic-ray exposure in long-term manned space mission

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Majima, Hideyuki; Ando, Koichi; Yasuda, Hiroshi; Suzuki, Masao

    1999-03-01

    Long-term manned space missions are planned to be implemented within the first two decades of the 21st century. The International Space Station (ISS) will be ready to run, and a plan to visit Mars is also under way. Humans will live in space for long periods of time and we are planning to do experiments in space to examine various aspects of space science. The main risk in long-term manned space missions is large exposure to space radiation. Human safety must be ensured in space where exposure to cosmic rays is almost 1 mSv a day. As such missions will inevitably result in significant exposure for astronauts, there is increasing need to protect them adequately based on both physical and biological knowledge. A good method to evaluate realistic risk associated with space missions will be in urgent demand. At the National Institute of Radiological Sciences (NIRS), Chiba, Japan, a research institutes of the Science Technology Agency of Japan, high energy cosmic radiation can be simulated only with heavy ion irradiation accelerated by the particle accelerator, Heavy Ion Medical Accelerator (HIMAC). Research to evaluate risk of space radiation, including physical measurement techniques, protective effects, biological effects and risk adjustment, aging, neuronal cell damage and cancer risk are undergoing. We organized a workshop of the latest topics and experimental results of physics and biology related to space radiation supported by Japan Science and Technology Corporation (JST). This workshop was held as a satellite meeting associated with the 32nd Committee on Space Research (COSPAR) Scientific Assembly (Nagoya, July 12-19th, 1998). This volume is an extended proceedings of the workshop. The proceedings contain six main subjects covering the latest information on Risk Evaluation of Cosmic-Ray Exposure in Long-Term Manned Space Mission'. 1. Risk Estimation of Heavy Ion Exposure in Space. 2. Low Dose-Rate Effects and Microbeam-Related Heavy Ions. 3. Chromosome and

  17. Fast "swarm of detectors" and their application in cosmic rays

    Science.gov (United States)

    Shoziyoev, G. P.; Shoziyoev, Sh. P.

    2017-06-01

    New opportunities in science appeared with the latest technology of the 21st century. This paper points to creating a new architecture for detection systems of different characteristics in astrophysics and geophysics using the latest technologies related to multicopter cluster systems, alternative energy sources, cluster technologies, cloud computing and big data. The idea of a quick-deployable scaleable dynamic system of a controlled drone with a small set of different detectors for detecting various components of extensive air showers in cosmic rays and in geophysics is very attractive. Development of this type of new system also allows to give a multiplier effect for the development of various sciences and research methods to observe natural phenomena.

  18. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  19. Promoting interdisciplinary education - the Vienna Doctoral Programme on Water Resource Systems

    Science.gov (United States)

    Blöschl, G.; Carr, G.; Bucher, C.; Farnleitner, A. H.; Rechberger, H.; Wagner, W.; Zessner, M.

    2012-02-01

    The Vienna Doctoral Programme on Water Resource Systems (DK-WRS) is a programme that aims to educate students in interdisciplinary water science through cutting edge research at an international level. It is funded by the Austrian Science Fund and designed to run over a period of 12 yr during which 80 doctoral students are anticipated to graduate. This paper reports on our experiences of setting up and implementing the Programme. We identify three challenges: integrating the disciplines, maintaining depth in an interdisciplinary programme, and teaching subjects remote to each student's core expertise. To address these challenges we adopt a number of approaches. We use three levels of instruments to foster integration across the disciplines: joint groups (e.g. a joint study programme), joint science questions (e.g. developed in annual symposia), and joint study sites. To maintain depth we apply a system of quality control including regular feedback sessions, theses by journal publications and international study exchange. For simultaneously teaching students from civil and environmental engineering, biology, geology, chemistry, mathematics we use visually explicit teaching, learning by doing, extra mentoring and by cross relating associated subjects. Our initial assessment of the Programme shows some very positive outcomes. Joint science questions formed between students from various disciplines indicate integration is being achieved. The number of successful publications in top journals suggests that depth is maintained. Positive feedback from the students on the variety and clarity of the courses indicates the teaching strategy is working well. Our experiences have shown that implementing and running an interdisciplinary doctoral programme has its challenges and is demanding in terms of time and human resources but seeing interactions progress and watching people grow and develop their way of thinking in an interdisciplinary environment is a valuable reward.

  20. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  1. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    International Nuclear Information System (INIS)

    Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Schultz, D.; Tosi, D.; BenZvi, S.; Jensen, K.; Peacock, J.; Ruggles, T.; Santander, M.; Simons, A.L.

    2016-01-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available

  2. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    2008-09-30

    Sep 30, 2008 ... Country needs flexible and multi-choice higher education system in Sciences .... methodologies, (6) limited options for movement between science and ..... and capabilities of their academic and other support staff on the one ...... Universities should have uninterrupted water and electric supply, .... decisions.

  3. Other Women in Science Groups | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... The Department of Science & Technology has set up a National Task Force on Women ... The International Union of Pure and Applied Physics (IUPAP) has set up a ... the area of Science in Society under its Research and Innovation programmes.

  4. Cosmic Ray Physics with ACORDE at LHC

    CERN Document Server

    Pagliarone, C.

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2x10^10 - 2x10^12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10^15 - 10^17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  5. Cosmic ray physics with ACORDE at LHC

    International Nuclear Information System (INIS)

    Pagliarone, C; Fernandez-Tellez, A

    2008-01-01

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2·10 10 to 2· 10 12 eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10 15 to 10 17 eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program

  6. Offshoots from beryllium development programme

    International Nuclear Information System (INIS)

    Sharma, B.P.; Sinha, P.K.

    1995-01-01

    The paper briefly presents extraction and processing of beryllium metal as practiced in the beryllium facilities at Turbhe, New Bombay. These facilities have been set up to meet the indigenous requirements of the metal in space and nuclear science programmes. As offshoot of this beryllium development programme has been the development of a number of pyro and powder metallurgical equipment. Indigenous development of these pieces of equipment has been a professionally rewarding experience. Efforts are now on to promote these equipment for industrial use. (author). 6 refs., 6 figs., 2 tabs

  7. Anomalous cosmic ray carbon and oxygen tracks in CN-Kodak.

    Science.gov (United States)

    Kondratyeva, M A; Tretyakova, C A; Tretyakova, S P; Zhuravlev, D A

    2001-06-01

    For observation of low energy cosmic ray particles we used CN-Kodak nuclear track detectors on Cosmos satellites. In solar quiet periods during solar minima conditions the detectors registered anomalous cosmic rays (ACRs). The ACRs are characterized by flux enhancements of several elements and it is known that the carbon enhancement is small compared with that of oxygen. In all of our quiet-time exposures the relation between carbon and oxygen was extremely small (C/O ~ 0.03). But in two quiet-time periods of 14.03.96-11.06.96 and of 15.12.97-14.04.98 we have identified many tracks as carbon in a L-R diagram. As a result the observed C/O ratio appears to be more than 0.5, whereas other experiments show no evidence of enhanced flux of carbon during these periods. The reason for the unexpected response of CN-Kodak is discussed. c2001 Elsevier Science Ltd. All rights reserved.

  8. Towards a large scale high energy cosmic neutrino undersea detector

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, R.; Berthier, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; Arpesella, C. [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France). Centre de Physique Theorique] [and others

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.) 50 refs.

  9. Towards a large scale high energy cosmic neutrino undersea detector

    International Nuclear Information System (INIS)

    Azoulay, R.; Berthier, R.; Arpesella, C.

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.)

  10. Muon reconstruction performance using cosmic rays in CMS

    CERN Document Server

    Calderon, Alicia

    2009-01-01

    After the incident with the Large Hadron Collider (LHC) in September 2008, the Compact Muon Solenoid (CMS) collaboration invested a considerable effort in further refining the understanding of the detector using cosmic muon data. About 300 million cosmic events were recorded with the CMS detector fully operational and the central solenoid switched on at the nominal value of 3.8 Tesla. The resulting data set provides ample statistics to study in great detail the detector performance and allows to analyze properties of cosmic rays. We present recent results on detector performance from the cosmic muon analysis activities and compare cosmic data to dedicated cosmic Monte Carlo samples. These results demonstrate the readiness of the CMS detector to do physics analysis with muons, and the study of cosmic muon properties provides interesting links to astrophysics.

  11. COSMIC-RAY TRANSPORT AND ANISOTROPIES

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Auf dem Huegel 69, D-53121 Bonn (Germany); Becker Tjus, Julia; Mandelartz, Matthias [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Theoretische Physik I, D-44780 Bochum (Germany); Seo, Eun-Suk [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2013-05-10

    We show that the large-scale cosmic-ray anisotropy at {approx}10 TeV can be explained by a modified Compton-Getting effect in the magnetized flow field of old supernova remnants. Cosmic rays arrive isotropically to the flow field and are then carried along with the flow to produce a large-scale anisotropy in the arrival direction. This approach suggests an optimum energy scale for detecting the anisotropy. Two key assumptions are that propagation is based on turbulence following a Kolmogorov law and that cosmic-ray interactions are dominated by transport via cosmic-ray-excited magnetic irregularities through the stellar wind of an exploding star and its shock shell. A prediction is that the amplitude is smaller at lower energies due to incomplete sampling of the velocity field and also smaller at larger energies due to smearing.

  12. Multi-spectra Cosmic Ray Flux Measurement

    Science.gov (United States)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  13. How student teachers’ understanding of the greenhouse effect develops during a teacher education programme

    Directory of Open Access Journals (Sweden)

    Margareta Ekborg

    2012-10-01

    Full Text Available This paper reports on a longitudinal study on how student teachers’ understanding of the greenhouse effect developed through a teacher education programme in mathematics and science for pupils aged 7-13. All student teachers, who were accepted to the programme one year, were followed trough 2.5 years of the programme. The student teachers took science courses in which they were taught about the greenhouse effect.Data was collected by questionnaires three times. The results show that a majority of the student teachers developed an adequate understanding of the greenhouse effect during the teaching programme. Several of the students developed further in the second science course. However a rather big group of students with poor understanding did not develop any further in the second science course and no one demonstrated full understanding. Different ways of collecting data and categorising responses affected how the students’ understanding was interpreted.

  14. Safari Science: Assessing the reliability of citizen science data for wildlife surveys

    Science.gov (United States)

    Steger, Cara; Butt, Bilal; Hooten, Mevin B.

    2017-01-01

    Protected areas are the cornerstone of global conservation, yet financial support for basic monitoring infrastructure is lacking in 60% of them. Citizen science holds potential to address these shortcomings in wildlife monitoring, particularly for resource-limited conservation initiatives in developing countries – if we can account for the reliability of data produced by volunteer citizen scientists (VCS).This study tests the reliability of VCS data vs. data produced by trained ecologists, presenting a hierarchical framework for integrating diverse datasets to assess extra variability from VCS data.Our results show that while VCS data are likely to be overdispersed for our system, the overdispersion varies widely by species. We contend that citizen science methods, within the context of East African drylands, may be more appropriate for species with large body sizes, which are relatively rare, or those that form small herds. VCS perceptions of the charisma of a species may also influence their enthusiasm for recording it.Tailored programme design (such as incentives for VCS) may mitigate the biases in citizen science data and improve overall participation. However, the cost of designing and implementing high-quality citizen science programmes may be prohibitive for the small protected areas that would most benefit from these approaches.Synthesis and applications. As citizen science methods continue to gain momentum, it is critical that managers remain cautious in their implementation of these programmes while working to ensure methods match data purpose. Context-specific tests of citizen science data quality can improve programme implementation, and separate data models should be used when volunteer citizen scientists' variability differs from trained ecologists' data. Partnerships across protected areas and between protected areas and other conservation institutions could help to cover the costs of citizen science programme design and implementation.

  15. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  16. Cosmic rays, clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Svensmark, Henrik [Danish Space Research Institute, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2007-07-01

    Changes in the intensity of galactic cosmic rays seems alter the Earth's cloudiness. A recent experiment has shown how electrons liberated by cosmic rays assist in making aerosols, the building blocks of cloud condensation nuclei, while anomalous climatic trends in Antarctica confirm the role of clouds in helping to drive climate change. Variations in the cosmic-ray influx due to solar magnetic activity account well for climatic fluctuations on decadal, centennial and millennial timescales. Over longer intervals, the changing galactic environment of the Solar System has had dramatic consequences, including Snowball Earth episodes.

  17. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  18. CERN launches high-school internship programme

    Science.gov (United States)

    Johnston, Hamish

    2017-07-01

    The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.

  19. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  20. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  1. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  2. Empirical model for the Earth's cosmic ray shadow at 400 KM: prohibited cosmic ray access

    International Nuclear Information System (INIS)

    Humble, J.E.; Smart, D.F.; Shea, M.A.

    1985-01-01

    The possibility of constructing a unit sphere of access that describes the cosmic radiation allowed to an Earth-orbiting spacecraft is discussed. It is found that it is possible to model the occluded portion of the cosmic ray sphere of access as a circular projection with a diameter bounded by the satellite-Earth horizon. Maintaining tangency at the eastern edge of the spacecraft-Earth horizon, this optically occluded area is projected downward by an angle beta which is a function of the magnetic field inclination and cosmic ray arrival direction. This projected plane, corresponding to the forbidden area of cosmic ray access, is bounded by the spacecraft-Earth horizon in easterly directions, and is rotated around the vertical axis by an angle alpha from the eastern direction, where the angle alpha is a function of the offset dipole latitude of the spacecraft

  3. Cosmic ray physics with ACORDE at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C [Universita degli Studi di Cassino and INFN Pisa, Largo B. Pontecorvo, 3 - Pisa (Italy); Fernandez-Tellez, A [Benemerita Universidad Autonoma de Puebla (BUAP), Puebla (Mexico)], E-mail: pagliarone@fnal.gov

    2008-05-15

    The use of large underground high-energy physics experiments, for comic ray studies, have been used, in the past, at CERN, in order to measure, precisely, the inclusive cosmic ray flux in the energy range from 2{center_dot}10{sup 10} to 2{center_dot} 10{sup 12} eV. ACORDE, ALICE Cosmic Rays DEtector, will act as Level 0 cosmic ray trigger and, together with other ALICE apparatus, will provide precise information on cosmic rays with primary energies around 10{sup 15} to 10{sup 17} eV. This paper reviews the main detector features, the present status, commissioning and integration with other apparatus. Finally, we discuss the ACORDE-ALICE cosmic ray physics program.

  4. Cosmic ray investigations

    International Nuclear Information System (INIS)

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  5. Cosmic Sum Rules

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Masina, Isabella; Sannino, Francesco

    2011-01-01

    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.......We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models....

  6. Heterotic cosmic strings

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-01-01

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion

  7. Large angle cosmic microwave background fluctuations from cosmic strings with a cosmological constant

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E.P.S.

    2004-01-01

    In this paper, we present results for large-angle cosmic microwave background anisotropies generated from high resolution simulations of cosmic string networks in a range of flat Friedmann-Robertson-Walker universes with a cosmological constant. Using an ensemble of all-sky maps, we compare with the Cosmic Background Explorer data to infer a normalization (or upper bound) on the string linear energy density μ. For a flat matter-dominated model (Ω M =1) we find Gμ/c 2 ≅0.7x10 -6 , which is lower than previous constraints probably because of the more accurate inclusion of string small-scale structure. For a cosmological constant within an observationally acceptable range, we find a relatively weak dependence with Gμ/c 2 less than 10% higher

  8. Indian Academy of Sciences, Bangalore Indian National Science ...

    Indian Academy of Sciences (India)

    2009-09-30

    .in),. (www.insaindia.org) or (www.nasi.org.in); however a copy of the application together with enclosures must be sent by post to The Coordinator, Science Education Programme, Indian. Academy of Sciences, C.V. Raman ...

  9. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  10. Cosmic radiation exposure to airline flight passenger

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  11. 76 FR 59172 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-09-23

    ... Space Telescope, Science Definition Team. --Physics of the Cosmos/Cosmic Origins/Exoplanet Program... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-083)] NASA Advisory Council; Science... Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  12. Cosmic ray production curves below reworking zones

    International Nuclear Information System (INIS)

    Blanford, G.E.

    1980-01-01

    A method is presented for calculating cosmic ray production profiles below reworking zones. The method uses an input reworking depth determined from data such as signatures in the depth profile of ferromagnetic resonance intensity and input cosmic ray production profiles for an undisturbed surface. Reworking histories are simulated using Monte Carlo techniques, and depth profiles are used to determine cosmic ray exposure age limits with a specified probability. It is shown that the track density profiles predict cosmic ray exposure ages in lunar cores that are consistent with values determined by other methods. Results applied to neutron fluence and spallation rare gases eliminate the use of reworking depth as an adjustable parameter and give cosmic ray exposure ages that are compatible with each other

  13. Proceedings of the 21. European Cosmic Ray Symposium

    International Nuclear Information System (INIS)

    Kiraly, P.; Kudela, K.; Wolfendale, A. W.

    2008-09-01

    Scientific symposium deals with problems of cosmic ray. The Symposium included the following sessions: (1): Relationship of cosmic rays to the environment; (2) Energetic particles and the magnetosphere of the Earth; (3) Energetic particles in the heliosphere; (4) Solar-terrestrial effects on different time scales; (5) Cosmic rays below the knee; (6) Cosmic rays above the knee (7) High energy interactions; (8) GeV and TeV gamma ray astronomy; (9) European projects related to cosmic rays; Future perspectives. Proceedings contains 122 papers dealing with the scope of INIS.

  14. Promoting interdisciplinary education − the Vienna Doctoral Programme on Water Resource Systems

    Directory of Open Access Journals (Sweden)

    W. Wagner

    2012-02-01

    Full Text Available The Vienna Doctoral Programme on Water Resource Systems (DK-WRS is a programme that aims to educate students in interdisciplinary water science through cutting edge research at an international level. It is funded by the Austrian Science Fund and designed to run over a period of 12 yr during which 80 doctoral students are anticipated to graduate. This paper reports on our experiences of setting up and implementing the Programme. We identify three challenges: integrating the disciplines, maintaining depth in an interdisciplinary programme, and teaching subjects remote to each student's core expertise. To address these challenges we adopt a number of approaches. We use three levels of instruments to foster integration across the disciplines: joint groups (e.g. a joint study programme, joint science questions (e.g. developed in annual symposia, and joint study sites. To maintain depth we apply a system of quality control including regular feedback sessions, theses by journal publications and international study exchange. For simultaneously teaching students from civil and environmental engineering, biology, geology, chemistry, mathematics we use visually explicit teaching, learning by doing, extra mentoring and by cross relating associated subjects. Our initial assessment of the Programme shows some very positive outcomes. Joint science questions formed between students from various disciplines indicate integration is being achieved. The number of successful publications in top journals suggests that depth is maintained. Positive feedback from the students on the variety and clarity of the courses indicates the teaching strategy is working well. Our experiences have shown that implementing and running an interdisciplinary doctoral programme has its challenges and is demanding in terms of time and human resources but seeing interactions progress and watching people grow and develop their way of thinking in an interdisciplinary environment is a

  15. A Shifting Shield Provides Protection Against Cosmic Rays

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux

  16. The IAEA isotope and radiation programme

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1988-01-01

    The IAEA isotope and radiation programme is characterized by the very large number of topics dealt with and the broad range of activities where nuclear methods and techniques are utilized. The main activities of the programme can be grouped into: food and agriculture, human health and life science, industry and physical science, and laboratory services. Radioisotope and radiation based techniques are applied to such areas as plant breeding, insect and pest control, soil fertility studies, animal health and production, studies on the fate of pesticide residues and radionuclides in the food chain, and food preservation. General objectives of the second group of activities are to assist hospitals and research institutes in developing member states in the introduction and development of radionuclide tracers in medical diagnosis and research, to promote use of radiation therapy for cancer treatment, etc. The major objective of the third group is to foster research and application of nuclear methodologies for industrial applications in developing countries. The Agency's Laboratories at Seibersdorf and in Vienna and the Monaco Laboratory play a relevant role in providing laboratory services as a back-up for various programmes, and in the training of scientists from developing countries. (Nogami, K.)

  17. Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN

    CERN Multimedia

    Hoch, Michael

    2011-01-01

    Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN The signatories: Dr Rolf Landua Education Group Leader Professor Stanislav Dovgyi President of the Minor Academy of Science of Ukraine On the photos: Mick Storr, Marina Savino, Rolf Landua, Stanislav Dovgyi, Tetiana Hryn'Ova

  18. Fast “swarm of detectors” and their application in cosmic rays

    Directory of Open Access Journals (Sweden)

    Shoziyoev G.P.

    2017-01-01

    Full Text Available New opportunities in science appeared with the latest technology of the 21st century. This paper points to creating a new architecture for detection systems of different characteristics in astrophysics and geophysics using the latest technologies related to multicopter cluster systems, alternative energy sources, cluster technologies, cloud computing and big data. The idea of a quick-deployable scaleable dynamic system of a controlled drone with a small set of different detectors for detecting various components of extensive air showers in cosmic rays and in geophysics is very attractive. Development of this type of new system also allows to give a multiplier effect for the development of various sciences and research methods to observe natural phenomena.

  19. Testing the weak gravity-cosmic censorship connection

    Science.gov (United States)

    Crisford, Toby; Horowitz, Gary T.; Santos, Jorge E.

    2018-03-01

    A surprising connection between the weak gravity conjecture and cosmic censorship has recently been proposed. In particular, it was argued that a promising class of counterexamples to cosmic censorship in four-dimensional Einstein-Maxwell-Λ theory would be removed if charged particles (with sufficient charge) were present. We test this idea and find that indeed if the weak gravity conjecture is true, one cannot violate cosmic censorship this way. Remarkably, the minimum value of charge required to preserve cosmic censorship appears to agree precisely with that proposed by the weak gravity conjecture.

  20. Cosmic rays at ultra high energies (Neutrinos.)

    International Nuclear Information System (INIS)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  1. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  2. Human Resources Development for Jordan’s Nuclear Energy Programme

    International Nuclear Information System (INIS)

    Malkawi, Salaheddin; Amawi, Dala’

    2014-01-01

    Jordan's HRD strategy: • Utilize Jordan’s academic infrastructure: – 25 Universities (10 public & 15 private); – 35 Community Colleges (15 public & 20 private). • Build on existing programmes and establish new ones to support Nuclear Energy Programme. • Nuclear Education in Jordan: – B. Sc. Nuclear Engineering at Jordan University of Science & Technology (JUST); – M. Sc. Nuclear Physics at University of Jordan, Yarmouk University and Al-Balqa Applied University. • Scholarships for M. Sc. and Ph. D in Nuclear Engineering and Nuclear Science from Universities outside Jordan: – United States, Russia, France, Japan, China, Korea. Utilization of JSA and JRTR; • Vendor supplied training; • Support through Nuclear Cooperation Agreements; • IAEA Technical Cooperation; • Development of a Jordan-Specific Qualification and Certification Programmes; • Specialized Training in International Codes & Standards: – Transition to JNRC Developed/Adopted Standards, Codes, Regulations

  3. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  4. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  5. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  6. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    Science.gov (United States)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  7. Cosmic-ray anisotropy studies with IceCube

    Science.gov (United States)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  8. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    International Nuclear Information System (INIS)

    2010-09-01

    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  9. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  10. RDandD Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    RDandD Programme 2010 presents SKB's plans for research, development and demonstration during the period 2011-2016. SKB's activities are divided into two main areas: the programme for low- and intermediate-level waste (the LILW Programme) and the Nuclear Fuel Programme. Operation of the existing facilities takes place within the Operational Process. RDandD Programme 2010 consists of five parts: Part I Overall plan of action Part II The LILW Programme Part III The Nuclear Fuel Programme Part IV Research for assessment of long-term safety Part V Social science research RDandD Programme 2007 was mainly focused on development of technology to realize the final repository for spent nuclear fuel. The efforts described were aimed at gaining a greater knowledge of long-term safety and compiling technical supporting documentation for applications under the Nuclear Activities Act for the final repository for spent nuclear fuel and under the Environmental Code for the final repository system. Many important results from these efforts are reported in this programme. The integrated account of the results will be presented in applications submitted in early 2011. The regulatory review of RDandD Programme 2007 and its supplement called for clarifications of plans and programmes for the final repository for short-lived radioactive waste, SFR, and the final repository for long-lived waste, SFL. This RDandD Programme describes these plans more clearly

  11. A Life in Science - Book release programme invite

    Indian Academy of Sciences (India)

    MY OF. CE EDUCA. ВРЕМЕ. STION AND. SCIENCE. OF SCIEN. CES. RESEARC,. AN INSTIT она не. A LIFE IN SCIENCE. Penguin Books India. Indian Academy of Sciences and. Indian Institute of Science Education and Research, Bhopal cordially invite you for the release of book. A LIFE IN SCIENCE by C.N.R. Rao.

  12. Cosmic evolution, life and man

    International Nuclear Information System (INIS)

    Oro, J.

    1995-01-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin's ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only)

  13. Cosmic evolution, life and man

    Energy Technology Data Exchange (ETDEWEB)

    Oro, J [Houston Univ., Houston, TX (United States). Dept. of Biochemical and Biophysical Sciences

    1995-08-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin`s ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only).

  14. High-precision measurements of extensive air showers with the SKA

    NARCIS (Netherlands)

    Huege, T.; Bray, J. D.; Buitink, S.; Dallier, R.; Ekers, R. D.; Falcke, H.; Haungs, A.; James, C. W.; Martin, L.; Revenu, B.; Scholten, O.; Schröder, F. G.; Zilles, A.

    2015-01-01

    As of 2023, the Square Kilometre Array will constitute the world's largest radio telescope, offering unprecedented capabilities for a diverse science programme in radio astronomy. At the same time, the SKA will be ideally suited to detect extensive air showers initiated by cosmic rays in the Earth's

  15. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  16. FUSION technology programme 2003-2006

    International Nuclear Information System (INIS)

    Karttunen, S.; Rantamaeki, K.

    2007-01-01

    This report summarises the results of the FUSION technology programme during the period between 2003-2006. FUSION is a continuation of the previous FFusion and FFusion2 technology programmes that took place from 1993 to 2002. The FUSION technology programme was fully integrated into the European Fusion Programme in the sixth Framework Programme (Euratom), through the bilateral Contract of Association between Euratom and Tekes and the multilateral European Fusion Development Agreement (EFDA). The Association Euratom-Tekes was established in 1995. At the moment, there are 26 Euratom Fusion associations working together as an European Research Area. There are four research areas in the FUSION technology programme: (1) fusion physics and plasma engineering, (2) vessel/in-vessel materials, joints and components, (3) in-vessel remote handling systems, and (4) system studies. The FUSION team consists of research groups from the Technical Research Centre of Finland (VTT), the Helsinki, Tampere and Lappeenranta Universities of Technology and the University of Helsinki. The co-ordinating unit is VTT. A key element of the FUSION programme is the close collaboration between VTT, the universities and the industry, which has resulted in dynamic and sufficiently large research teams to tackle challenging research and development projects. The distribution of work between research institutes and industry has also been clear. Industrial activities related to the FUSION programme are co-ordinated through the 'Big Science' Project by Finpro and Prizztech. The total expenditure of the FUSION technology programme for 2003-2006 amounted to euro 14,9 million in research work at VTT and the universities with an additional euro 3,5 million for projects by the Finnish companies including the industry co-ordination. The funding of the FUSION programme and related industrial projects was mainly provided by Tekes (37%), Euratom (38%) and the participating institutes and industry (24%). The

  17. The Life Science Exchange: a case study of a sectoral and sub-sectoral knowledge exchange programme.

    Science.gov (United States)

    Perkins, Brian Lee; Garlick, Rob; Wren, Jodie; Smart, Jon; Kennedy, Julie; Stephens, Phil; Tudor, Gwyn; Bisson, Jonathan; Ford, David V

    2016-04-27

    Local and national governments have implemented sector-specific policies to support economic development through innovation, entrepreneurship and knowledge exchange. Supported by the Welsh Government through the European Regional Development Fund, The Life Science Exchange® project was created with the aim to increase interaction between stakeholders, to develop more effective knowledge exchange mechanisms, and to stimulate the formation and maintenance of long-term collaborative relationships within the Welsh life sciences ecosystem. The Life Science Exchange allowed participants to interact with other stakeholder communities (clinical, academic, business, governmental), exchange perspectives and discover new opportunities. Six sub-sector focus groups comprising over 200 senior stakeholders from academia, industry, the Welsh Government and National Health Service were established. Over 18 months, each focus group provided input to inform healthcare innovation policy and knowledge mapping exercises of their respective sub-sectors. Collaborative projects identified during the focus groups and stakeholder engagement were further developed through sandpit events and bespoke support. Each sub-sector focus group produced a report outlining the significant strengths and opportunities in their respective areas of focus, made recommendations to overcome any 'system failures', and identified the stakeholder groups which needed to take action. A second outcome was a stakeholder-driven knowledge mapping exercise for each area of focus. Finally, the sandpit events and bespoke support resulted in participants generating more than £1.66 million in grant funding and inward investment. This article outlines four separate outcomes from the Life Science Exchange programme. The Life Science Exchange process has resulted in a multitude of collaborations, projects, inward investment opportunities and special interest group formations, in addition to securing over ten times its own

  18. RDandD Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    International Nuclear Information System (INIS)

    2007-09-01

    nuclear fuel; Part III Technology development within the nuclear fuel programme; Part IV Safety assessment and natural science research; Part V Social science research; and Part VI LILW programme and decommissioning Part I and Part II look ahead to the time when the final repository for spent nuclear fuel is put into operation. On the way, SKB will pass a number of milestones. At each milestone, a given body of technical and scientific background material must be available. The scope of this background material and the technology development that is required are described in detail in Part III. Part IV focuses on the results of the research on long-term changes that must be available for the next safety assessment, SR-Site. Part V describes our social science research programme and Part VI provides an overview of the programme for low- and intermediate-level waste (LILW), including decommissioning. It is our hope that the above structure and approach will provide a clear picture of how far research and technology development have come in different areas and what factors are most important for safety in our facilities

  19. RDandD Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    nuclear fuel; Part III Technology development within the nuclear fuel programme; Part IV Safety assessment and natural science research; Part V Social science research; and Part VI LILW programme and decommissioning Part I and Part II look ahead to the time when the final repository for spent nuclear fuel is put into operation. On the way, SKB will pass a number of milestones. At each milestone, a given body of technical and scientific background material must be available. The scope of this background material and the technology development that is required are described in detail in Part III. Part IV focuses on the results of the research on long-term changes that must be available for the next safety assessment, SR-Site. Part V describes our social science research programme and Part VI provides an overview of the programme for low- and intermediate-level waste (LILW), including decommissioning. It is our hope that the above structure and approach will provide a clear picture of how far research and technology development have come in different areas and what factors are most important for safety in our facilities

  20. RDandD Programme 2007. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    spent nuclear fuel; Part III Technology development within the nuclear fuel programme; Part IV Safety assessment and natural science research; Part V Social science research; and Part VI LILW programme and decommissioning Part I and Part II look ahead to the time when the final repository for spent nuclear fuel is put into operation. On the way, SKB will pass a number of milestones. At each milestone, a given body of technical and scientific background material must be available. The scope of this background material and the technology development that is required are described in detail in Part III. Part IV focuses on the results of the research on long-term changes that must be available for the next safety assessment, SR-Site. Part V describes our social science research programme and Part VI provides an overview of the programme for low- and intermediate-level waste (LILW), including decommissioning. It is our hope that the above structure and approach will provide a clear picture of how far research and technology development have come in different areas and what factors are most important for safety in our facilities

  1. USING COSMIC MICROWAVE BACKGROUND LENSING TO CONSTRAIN THE MULTIPLICATIVE BIAS OF COSMIC SHEAR

    International Nuclear Information System (INIS)

    Vallinotto, Alberto

    2012-01-01

    Weak gravitational lensing is one of the key probes of cosmology. Cosmic shear surveys aimed at measuring the distribution of matter in the universe are currently being carried out (Pan-STARRS) or planned for the coming decade (DES, LSST, EUCLID, WFIRST). Crucial to the success of these surveys is the control of systematics. In this work, a new method to constrain one such family of systematics, known as multiplicative bias, is proposed. This method exploits the cross-correlation between weak-lensing measurements from galaxy surveys and the ones obtained from high-resolution cosmic microwave background experiments. This cross-correlation is shown to have the power to break the degeneracy between the normalization of the matter power spectrum and the multiplicative bias of cosmic shear and to be able to constrain the latter to a few percent.

  2. A two-zone cosmic ray propagation model and its implication of the surviving fraction of radioactive cosmic ray isotopes

    International Nuclear Information System (INIS)

    Simon, M.; Scherzer, R.; Enge, W.

    1977-01-01

    In cosmic ray propagation calculations one can usually assume a homogeneous distribution of interstellar matter. The crucial astrophysical parameters in these models are: The path length distribution, the age of the cosmic ray particles and the interstellar matter density. These values are interrelated. The surviving fraction of radioactive cosmic ray isotopes is often used to determine a mean matter density of that region, where the cosmic ray particles may mainly reside. Using a Monte Carlo Propagation Program we calculated the change in the surviving fraction quantitatively assuming a region around the sources with higher matter density. (author)

  3. Key scientific problems from Cosmic Ray History

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  4. Cosmic censorship and test particles

    International Nuclear Information System (INIS)

    Needham, T.

    1980-01-01

    In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-product of the analysis a natural proof is given of the Christodoulou-Ruffini conditions on the injection of a spinless particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated. By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's interaction with the hole while approaching it

  5. Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Christophe Ringeval

    2010-01-01

    small fraction of the CMB angular power spectrum, cosmic strings could actually be the main source of its non-Gaussianities. In this paper, after having reviewed the basic cosmological properties of a string network, we present the signatures Nambu-Goto cosmic strings would induce in various observables ranging from the one-point function of the temperature anisotropies to the bispectrum and trispectrum. It is shown that string imprints are significantly different than those expected from the primordial type of non-Gaussianity and could therefore be easily distinguished.

  6. Biotechnology 2000: a new German R&D programme

    OpenAIRE

    Ekkehard Warmuth

    1991-01-01

    Biotechnology 2000 is a German programme to continue the development of biotechnology started in 1982. It includes two new scientific fields for industrial innovation — genome research and neurobiology. Together with industry and the science community, the biotechnology programme will create a basis for future generations of biologically derived products and processes, including the development of safety precautions for the contained use of genetically modified organisms (GMOs) and of univers...

  7. Tracing the cosmic web

    Science.gov (United States)

    Libeskind, Noam I.; van de Weygaert, Rien; Cautun, Marius; Falck, Bridget; Tempel, Elmo; Abel, Tom; Alpaslan, Mehmet; Aragón-Calvo, Miguel A.; Forero-Romero, Jaime E.; Gonzalez, Roberto; Gottlöber, Stefan; Hahn, Oliver; Hellwing, Wojciech A.; Hoffman, Yehuda; Jones, Bernard J. T.; Kitaura, Francisco; Knebe, Alexander; Manti, Serena; Neyrinck, Mark; Nuza, Sebastián E.; Padilla, Nelson; Platen, Erwin; Ramachandra, Nesar; Robotham, Aaron; Saar, Enn; Shandarin, Sergei; Steinmetz, Matthias; Stoica, Radu S.; Sousbie, Thierry; Yepes, Gustavo

    2018-01-01

    The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web - depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h-1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.

  8. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    Energy Technology Data Exchange (ETDEWEB)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.

  9. Lessons learnt on implementing an interdisciplinary doctoral programme in water sciences

    Science.gov (United States)

    Carr, Gemma; Loucks, Daniel Pete; Blaschke, Alfred Paul; Bucher, Christian; Farnleitner, Andreas; Fürnkranz-Prskawetz, Alexia; Parajka, Juraj; Pfeifer, Norbert; Rechberger, Helmut; Wagner, Wolfgang; Zessner, Matthias; Blöschl, Günter

    2015-04-01

    Using the Vienna Doctoral Programme on Water Resource Systems as a case study, this work describes how the characteristics of the programme can be evaluated to identify which process features are important for developing interdisciplinary research at the doctoral level. The Programme has been running since 2009, and to date has engaged 35 research students, three post-docs and ten faculty members from ten research fields (aquatic microbiology, hydrology, hydro-climatology, hydro-geology, mathematical economics, photogrammetry, remote sensing, resource management, structural mechanics, and water quality). Collaborative, multi-disciplinary research is encouraged and supported through various mechanisms - shared offices, study programme, research cluster groups that hold regular meetings, joint study sites, annual and six-month symposia that bring all members of the programme together, seminar series, joint supervision, and social events. Interviews were conducted with 12 students and recent graduates to explore individual experiences of doing interdisciplinary research within the Programme, and to identify which mechanisms are perceived to be of the greatest benefit for collaborative work. Analysis revealed four important process features. Firstly, students noted that joint supervision and supervisors who are motivated to collaborate are essential for multi-disciplinary collaborative work. Secondly, interviewees described that they work with the people they sit close to or see most regularly. Physical places for collaboration between different discipline researchers such as shared offices and shared study sites are therefore important. Thirdly, the costs and benefits to doing interdisciplinary work were highlighted. Students make a trade-off when deciding if their time investment to develop their understanding of a new research field will support them in addressing their research question. The personal characteristics of the researcher seem to be particularly

  10. Cosmic ray modulation

    Science.gov (United States)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  11. Cross-section analyses of attitudes towards science and nature from the International Social Survey Programme 1993, 2000, and 2010 surveys.

    Science.gov (United States)

    Reyes, Joseph Anthony L

    2015-04-01

    This paper explores public attitudes towards science and nature in twelve countries using data from the International Social Survey Programme environment modules of 1993, 2000, and 2010. Analysis of attitude items indicates technocentric and pessimistic dimensions broadly related to the Dominant Social Paradigm and New Environmental Paradigm. A bi-axial dimension scale is utilized to classify respondents among four environmental knowledge orientations. Discernible and significant patterns are found among countries and their populations. Relationships with other substantial variables in the surveys are discussed and findings show that the majority of industrialized countries are clustered in the rational ecologist categorization with respondents possessing stronger ecological consciousness and optimism towards the role of modern institutions, science, and technology in solving environmental problems. © The Author(s) 2013.

  12. Geneva University: Particle Acceleration in supernova remnants and its implications for the origin of galactic cosmic rays

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 28 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11h15 - Science III, Auditoire 1S081 Particle Acceleration in supernova remnants and its implications for the origin of galactic cosmic rays Prof. Pasquale BLASI INAF, Arcetri Observatory, Firenze The process of cosmic ray energization in supernova remnant shocks is described by the theory of non linear diffusive shock acceleration (NLDSA). Such theory is able to describe the acceleration itself, the dynamical reaction of accelerated particles on the shock, and the crucial phenomenon of the magnetic field amplification, the very key to generate high energy cosmic rays. I will illustrate the basic aspects of this theoretical framework, as well as its successes and problems. I will then discuss the observations, in X-rays an...

  13. Cosmic logic: a computational model

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps

  14. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  15. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  16. Radon programmes and health marketing

    International Nuclear Information System (INIS)

    Fojtikova, I.; Rovenska, K.

    2011-01-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed. (authors)

  17. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  18. To the problem of superfluous cosmic radiation

    International Nuclear Information System (INIS)

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  19. LHCf sheds new light on cosmic rays

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The energy spectrum of the single photon obtained using data from the LHCf experiment has turned out to be very different from that predicted by the theoretical models used until now to describe the interactions between very high-energy cosmic rays and the earth's atmosphere. The consequences of this discrepancy for cosmic ray studies could be significant.   Artistic impression of cosmic rays entering Earth's atmosphere. (Credit: Asimmetrie/Infn). It took physicists by surprise when analysis of the data collected by the two LHCf calorimeters in 2010 showed that high-energy cosmic rays don't interact with the atmosphere in the manner predicted by theory. The LHCf detectors, set up 140 metres either side of the ATLAS interaction point, are dedicated to the study of the secondary particles emitted at very small angles during proton-proton collisions in the LHC, with energies comparable to cosmic rays entering the earth's atmosphere at 2.5x1016 eV. The aim of the experiment is to r...

  20. Cosmic rays and tests of fundamental principles

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2011-03-01

    It is now widely acknowledged that cosmic rays experiments can test possible new physics directly generated at the Planck scale or at some other fundamental scale. By studying particle properties at energies far beyond the reach of any man-made accelerator, they can yield unique checks of basic principles. A well-known example is provided by possible tests of special relativity at the highest cosmic-ray energies. But other essential ingredients of standard theories can in principle be tested: quantum mechanics, uncertainty principle, energy and momentum conservation, effective space-time dimensions, hamiltonian and lagrangian formalisms, postulates of cosmology, vacuum dynamics and particle propagation, quark and gluon confinement, elementariness of particles…Standard particle physics or string-like patterns may have a composite origin able to manifest itself through specific cosmic-ray signatures. Ultra-high energy cosmic rays, but also cosmic rays at lower energies, are probes of both "conventional" and new Physics. Status, prospects, new ideas, and open questions in the field are discussed.

  1. Cosmic rays and tests of fundamental principles

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2011-01-01

    It is now widely acknowledged that cosmic rays experiments can test possible new physics directly generated at the Planck scale or at some other fundamental scale. By studying particle properties at energies far beyond the reach of any man-made accelerator, they can yield unique checks of basic principles. A well-known example is provided by possible tests of special relativity at the highest cosmic-ray energies. But other essential ingredients of standard theories can in principle be tested: quantum mechanics, uncertainty principle, energy and momentum conservation, effective space-time dimensions, hamiltonian and lagrangian formalisms, postulates of cosmology, vacuum dynamics and particle propagation, quark and gluon confinement, elementariness of particles... Standard particle physics or string-like patterns may have a composite origin able to manifest itself through specific cosmic-ray signatures. Ultra-high energy cosmic rays, but also cosmic rays at lower energies, are probes of both 'conventional' and new Physics. Status, prospects, new ideas, and open questions in the field are discussed.

  2. The novel programmable riometer for in-depth ionospheric and magnetospheric observations (PRIAMOS) using direct sampling DSP techniques

    OpenAIRE

    Dekoulis, G.; Honary, F.

    2005-01-01

    This paper describes the feasibility study and simulation results for the unique multi-frequency, multi-bandwidth, Programmable Riometer for in-depth Ionospheric And Magnetospheric ObservationS (PRIAMOS) based on direct sampling digital signal processing (DSP) techniques. This novel architecture is based on sampling the cosmic noise wavefront at the antenna. It eliminates the usage of any intermediate frequency (IF) mixer stages (-6 dB) and the noise balancing technique (-3 dB), providing a m...

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Science Education Programmes · Women in Science · Committee on Scientific ... Critical Reviews of important fields and Perspective articles in emerging areas will ... work, mandatory for Rapid Communication, and suggest 2 to 3 names of Referees. ... The Jurisdiction for all disputes concerning submitted articles, published ...

  4. Solar Modulation of Atmospheric Cosmic Radiation:. Comparison Between In-Flight and Ground-Level Measurements

    Science.gov (United States)

    Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.

    January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.

  5. Low-energy cosmic rays in the Orion region

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    The recently observed nuclear gamma-ray line emission from the Orion complex implies a high flux of low-energy cosmic rays (LECR) with unusual abundance. This cosmic ray component would dominate the energy density, pressure, and ionising power of cosmic rays, and thus would have a strong impact...

  6. Does a cosmic censor exist

    International Nuclear Information System (INIS)

    Israel, W.

    1984-01-01

    A distinction is drawn between the event horizon conjecture (EHC), the conjecture that an event horizon forms in a gravitational collapse, and cosmic censorship, the idea that every singularity which develops in the course of collapse must be enclosed within a horizon. It is argued that a body of circumstantial evidence seems to favor EHC, but cosmic censorship seems contraindicated

  7. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  8. Diffuse fluxes of cosmic high-energy neutrinos

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic γ-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought

  9. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  10. Atmospheric and biospheric effects of cosmic

    International Nuclear Information System (INIS)

    Cardenas, Rolando

    2007-01-01

    We briefly review and classify the action that different sources of cosmic radiations might have had on Earth climate and biosphere in the geological past and at present times. We present the action of both sparse explosive phenomena, like gamma-ray bursts and supernovae, and permanent ones like cosmic rays and ultraviolet radiation backgrounds. Very energetic cosmic radiation coming from explosions can deplete the ozone lawyer due to initial ionization reactions, while soft backgrounds might trigger low altitude cloud formation through certain microphysical amplification processes. We examine a hypothesis concerning the potential role of cosmic rays on present Global Climatic Change. We also present the potential of UV astronomy to probe some of above scenarios, and speak on the possibilities for the Cuban participation in the international mega-project World Space Observatory, a UV telescope to be launched in the period 2007-2009. (Author)

  11. Cosmic ray riddle solved?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Physicists from Japan and the United States have discovered a possible answer to the puzzle of the origin of high energy cosmic rays that bombard Earth from all directions in space. Using data from the Japanese/US X-ray astronomical satellite ASCA, physicists have found strong evidence for the production of cosmic particles in the shock wave of a supernova remnant, the expanding fireball produced by the explosion of a star. Primary cosmic rays, mostly electrons and protons, travel near the speed of light. Each second, approximately 4 such particles cross one square centimetre of space just outside the Earth's atmosphere. Subsequently, collisions of these primary particles with atoms in the upper atmosphere produce slower secondary particles. Ever since the discovery of cosmic rays early this century, scientists have debated the origin of these particles and how they can be accelerated to such high speeds. Supernova remnants have long been thought to provide the high energy component, but the evidence has been lacking until now. The international team of investigators used the satellite to determine that cosmic rays are generated profusely in the remains of the supernova of 1006 AD - which appeared to medieval viewers to be as bright as the Moon - and that they are accelerated to high velocities by an iterative process first suggested by Enrico Fermi in 1949. Using solid-state X-ray cameras, the ASCA satellite records simultaneous images and spectra of X-rays from celestial sources, allowing astronomers to distinguish different types of X-ray emission. The tell-tale clue to the discovery was the detection of two diametrically opposite regions in the rapidly expanding supernova remnant, the debris from the stellar explosion. The two regions glow intensely from the synchrotron radiation produced when fast-moving electrons are bent by a magnetic field. The remainder of the supernova remnant, in contrast, emits ordinary ''thermal'' X

  12. Summer Research Fellowship Programme – 2015

    Indian Academy of Sciences (India)

    IAS Admin

    2014-11-20

    Nov 20, 2014 ... Jawaharlal Nehru Centre for Advanced Scientific Research invites applications for its Summer. Research Fellowship Programme – 2015, for motivated and talented Indian students in Science and Engineering. Detailed information and application form can be downloaded from http://www.jncasr.ac.in/fe/srfp.

  13. Popularization of science as a marketing tool exemplified by “Paths of Copernicus” – a programme funded by the Ministry of Science and Higher Education

    Directory of Open Access Journals (Sweden)

    Adam Piasecki

    2014-12-01

    Full Text Available This article concerns the project Mine Surfers (2013-2014 carried out by the EMAG Institute of Innovative Technologies within a programme funded by the Ministry of Science and Higher Education. The authors present the positive marketing effects resulting from the project. In the case study, they describe the project against the backdrop of activities undertaken by other project teams. As well as the issues related to the execution of the project as such, focus was also placed on operations aiming for project promotion as well as popularising research and educational activities. Finally, the results of media monitoring with respect to the project are discussed.

  14. Cosmic Ray Interactions in Shielding Materials

    International Nuclear Information System (INIS)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-01-01

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth's surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth's surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  15. Pain during mammography: Implications for breast screening programmes

    International Nuclear Information System (INIS)

    Andrews, F.J.

    2001-01-01

    Pain experienced during mammography can deter women from attending for breast cancer screening. Review of the current literature on pain experienced during mammography reveals three main areas of interest: reports of the frequency of pain, identification of predictors of pain and strategies for responding to pain. Implications of this literature for breast screening programmes include the need for appropriate measurements of pain during mammography that are valid for screening populations, a further understanding of organizational factors involved in screening programmes that may be predictors of pain and for the development of valid strategies for responding to pain within breast screening programmes. Copyright (2001) Blackwell Science Pty Ltd

  16. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  17. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    Kaempfer, B.; Lukacs, B.; Paal, G.

    1989-11-01

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  18. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  19. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  20. Links in the Chain: Bringing Together Literacy and Science

    Science.gov (United States)

    Taylor, Neil; Hansford, Diane; Rizk, Nadya; Taylor, Subhashni

    2017-01-01

    In Australia, the Federal Government and the Australian Academy of Science have developed a programme entitled "Primary Connections" (primaryconnections.org. au), aimed at supporting the teaching of science in the primary sector. The programme makes strong and explicit links between science and literacy through the use of word walls,…

  1. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    2010-01-01

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  2. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  3. NEXUS: tracing the cosmic web connection

    NARCIS (Netherlands)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.

    2013-01-01

    We introduce the NEXUS algorithm for the identification of cosmic web environments: clusters, filaments, walls and voids. This is a multiscale and automatic morphological analysis tool that identifies all the cosmic structures in a scale free way, without preference for a certain size or shape. We

  4. Correlations Between Secondary Cosmic Ray Ratesand Strong Electric Fields at Lomnický štít

    Czech Academy of Sciences Publication Activity Database

    Kudela, Karel; Chum, Jaroslav; Kollárik, M.; Langer, R.; Strhárský, I.; Baše, Jiří

    2017-01-01

    Roč. 122, č. 20 (2017), s. 10700-10710 ISSN 2169-897X R&D Projects: GA ČR(CZ) GC15-07281J; GA MŠk EF15_003/0000481 Grant - others:AV ČR(CZ) BAS-17-04 Program:Bilaterální spolupráce Institutional support: RVO:68378289 ; RVO:61389005 Keywords : cosmic rays * thunderstorms * electric field Subject RIV: DG - Athmosphere Sciences, Meteorology; BL - Plasma and Gas Discharge Physics (UFA-U) OBOR OECD: Meteorology and atmospheric sciences; Fluids and plasma physics (including surface physics) (UFA-U) Impact factor: 3.454, year: 2016

  5. Smooth halos in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Gaite, José, E-mail: jose.gaite@upm.es [Physics Dept., ETSIAE, IDR, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, E-28040 Madrid (Spain)

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  6. Lightning Discharges, Cosmic Rays and Climate

    Science.gov (United States)

    Kumar, Sanjay; Siingh, Devendraa; Singh, R. P.; Singh, A. K.; Kamra, A. K.

    2018-03-01

    The entirety of the Earth's climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.

  7. Cosmic ray propagation with CRPropa 3

    International Nuclear Information System (INIS)

    Batista, R Alves; Evoli, C; Sigl, G; Van Vliet, A; Erdmann, M; Kuempel, D; Mueller, G; Walz, D; Kampert, K-H; Winchen, T

    2015-01-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 10 17 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python. (paper)

  8. Smooth halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, José

    2015-01-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness

  9. Large vessel imaging using cosmic-ray muons

    International Nuclear Information System (INIS)

    Jenneson, P.M.

    2004-01-01

    Cosmic-ray muons are assessed for their practical use in the tomographic imaging of the internal composition of large vessels over 2 m in diameter. The technique is based on the attenuation and scattering of cosmic-ray muons passing through a vessel and has advantages over photon-based methods of tomography that it is extendable to object containing high-density materials over many tens of metres. The main disadvantage is the length of time required to produce images of sufficient resolution and hence cosmic ray muon tomography will be most suited to the imaging of large structures whose internal composition is effectively static for the duration of the imaging period. Simulation and theoretical results are presented here which demonstrate the feasibility of cosmic ray muon tomography

  10. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  11. Training teachers to promote Talent Development in Science Students In Science Education

    NARCIS (Netherlands)

    van der Valk, Ton

    2014-01-01

    In recent years, the interest of governments and schools in challenging gifted and talented (G+T) science students has grown (Taber, 2007). In the Netherlands, the government promotes developing science programmes for talented secondary science students. This causes a need for training teachers, but

  12. Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime

    Science.gov (United States)

    Amaro, Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Amanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2012-01-01

    This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name eLISA ) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The measurements described here will address the basic scientific goals that have been captured in ESA s New Gravitational Wave Observatory Science Requirements Document ; they are presented here so that the wider scientific community can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISA s measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA s Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits. LISA s heritage in the eLISA design will be

  13. Solar flares and the cosmic ray intensity

    International Nuclear Information System (INIS)

    Hatton, C.J.

    1980-01-01

    The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance >= 1. This model leads to a radius for the modulation region of 60-70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20. (orig.)

  14. Cosmic-ray-modified stellar winds. III. A numerical iterative approach

    International Nuclear Information System (INIS)

    Ko, C.M.; Jokipii, J.R.; Webb, G.M.

    1988-01-01

    A numerical iterative method is used to determine the modification of a stellar wind flow with a termination shock by the galactic cosmic rays. A two-fluid model consisting of cosmic rays and thermal stellar wind gas is used in which the cosmic rays are coupled to the background flow via scattering with magnetohydrodynamic waves or irregularities. A polytropic model is used to describe the thermal stellar wind gas, and the cosmic-rays are modeled as a hot, low-density gas with negligible mass flux. The positive galactic cosmic-ray pressure gradient serves to brake the outflowing stellar wind gas, and the cosmic rays modify the location of the critical point of the wind, the location of the shock, the wind fluid velocity profile, and the thermal gas entropy constants on both sides of the shock. The transfer of energy to the cosmic rays results in an outward radial flux of cosmic-ray energy. 21 references

  15. The search for our cosmic ancestry

    CERN Document Server

    Wickramasinghe, Chandra

    2015-01-01

    The idea that life is a cosmic, rather than a purely terrestrial phenomenon, has progressed from scientific heresy to mainstream science within the short timespan of a few decades. The theory of cometary panspermia developed by Fred Hoyle and the present author in the 1970's has been vindicated by a spate of new discoveries in astronomy and biology, and also with startling new evidence of microbial fossils in meteorites and micrometeorites. The recent Kepler Telescope searches for exoplanets have indicated the presence of over 100 billion habitable planets separated by only a few light years, thus making panspermia and the transfer of microbial life between such planets an inevitable fact. The book presents a comprehensive and up-to-date account of the Hoyle-Wickramasinghe theory of cometary panspermia in a manner accessible to a wide general readership.

  16. A disintegrating cosmic string

    International Nuclear Information System (INIS)

    Griffiths, J B; Docherty, P

    2002-01-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave. (letter to the editor)

  17. Feasibility study on a cosmic-ray level gauge

    International Nuclear Information System (INIS)

    Matsuda, H.; Fukaya, M.; Minato, S.

    1989-01-01

    Cosmic-ray intensities were measured at the stairs in a subway station in Nagoya City, inside a tall concrete building and under a cylindrical water tank, to examine the feasibility of a cosmic-ray level gauge. The measured results agreed quite well with the theoretical calculations. These results show that a cosmic-ray level gauge is feasible. (author)

  18. Training and manpower development for nuclear energy programme

    International Nuclear Information System (INIS)

    Ajakaiye, D.E.; Elegba, S.B.

    1990-01-01

    The purpose is to train and develop the adequately qualified manpower in the areas of nuclear science and technology. Various options were introduced by the science departments, based on the existing facilities within the university. Twenty final year students were selected annually to attend a summer school in reactor physics and technology at the Karlsruhe Institute for Nuclear Research in West Germany. Also, there was approval for an annual recruitment quota of twelve graduate assistants for the nuclear project. Fifty qualified students were trained for various courses in nuclear science and technology both in the country and abroad. There had been graduates in nuclear science and technology courses up to the doctorate degree level. Part of efforts in the manpower has been directed towards the acquisition of adequate equipment for the teaching laboratories. The establishment of a training center in nuclear technology at Ahmadu Bello University and at University of Ife can only be considered as the zero phase in the nuclear programme of Nigeria. Funding of the nuclear programme must be guaranteed. It is also suggested that the nuclear project be allocated sufficient foreign exchange to meet all its commitments. (A.S.)

  19. Science With A Vengeance

    Science.gov (United States)

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  20. One century of cosmic rays – A particle physicist's view

    Directory of Open Access Journals (Sweden)

    Sutton Christine

    2015-01-01

    Full Text Available Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  1. Propagation of ultrahigh-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2009-06-15

    We briefly describe the energy loss processes of ultrahigh-energy protons, heavier nuclei and {gamma}-rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic-ray energy spectrum in propagation by the energy loss processes and the charged cosmic-ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh-energy cosmic rays goes into {gamma}-rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.

  2. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  3. Cosmic growth history and expansion history

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2005-01-01

    The cosmic expansion history tests the dynamics of the global evolution of the universe and its energy density contents, while the cosmic growth history tests the evolution of the inhomogeneous part of the energy density. Precision comparison of the two histories can distinguish the nature of the physics responsible for the accelerating cosmic expansion: an additional smooth component--dark energy--or a modification of the gravitational field equations. With the aid of a new fitting formula for linear perturbation growth accurate to 0.05%-0.2%, we separate out the growth dependence on the expansion history and introduce a new growth index parameter γ that quantifies the gravitational modification

  4. Dawn of Science

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 2 ... email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current Science, has changed from 'ias.ernet.in' (or 'academy.ias.ernet.in') to 'ias.ac.in'.

  5. EURATOM research and training programme: towards a new way of developing-teaching science, closer to the end-users

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2015-01-01

    EURATOM is not isolated in the European Energy policy. Nuclear fission is part of the European energy mix, together with renewable energy sources (Article 194 of Lisbon Treaty, 2007).Research, innovation and education are at the heart of the EURATOM Treaty 1 (Rome, 1957), dedicated to peaceful applications of nuclear fission. One of the main objectives of the EURATOM Treaty is to contribute to the sustainability of nuclear energy by developing and sharing appropriate knowledge, skills and proficiencies in nuclear fission and radiation protection. EURATOM programmes 2 consist in end-user driven projects in selected topics, gathering the best research organisations and structured as follows: -) research and innovation projects which contribute to generating advanced knowledge and scientific understanding of interest to industrial applications, -) education and training projects, including continuous professional development, which contribute to developing skills and proficiencies. Fission technologies can be transmitted to the next generations only within the framework of a responsible strategy regarding waste management and/or recycling of fissile and fertile materials. In this context, EURATOM research and training programmes insist, in particular, on the implementation of geological disposal for spent fuel and high-level radioactive waste and/or on Generation-IV developments aiming at efficient resource utilisation and waste minimisation. Safety improvements in Generation-II (e.g. related to long-term operation) and in Generation-III (e.g. related to severe accident management) are also addressed. As regards radiation protection research, the emphasis of EURATOM programmes is on better quantification of risks at low dose and how they vary between individuals (of particular interest in radio-diagnosis and radio-therapy). Special efforts are dedicated to a common nuclear safety and radiation protection culture, based on the highest achievable standards. Also

  6. The Radioactive Waste Management Advisory Committee's advice to ministers on the establishment of scientific consensus on the interpretation and significance of the results of science programmes into radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-04-01

    This document presents conclusions and recommendations on establishment of scientific consensus on the interpretation and significance of the results of science programmes into radioactive waste disposal. The topics discussed include: the nature of science and its limitations; societal views of science and the radioactive waste problem; issues upon which consensus will be needed; evidence of past attempts at greater involvement of the public; the linking of scientific and social consensus; communicating the nature of consensus to the public

  7. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  8. The fully integrated biomedical engineering programme at Eindhoven University of Technology.

    Science.gov (United States)

    Slaaf, D W; van Genderen, M H P

    2009-05-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.

  9. Collisions of cosmic F- and D-strings

    International Nuclear Information System (INIS)

    Jones, N.

    2004-01-01

    Recent theoretical advances and upcoming experimental measurements make the testing of generic predictions of string theory models of cosmology feasible. Brane anti-brane models of inflation within superstring theory are promising as string theory descriptions of the physics of the early universe. While varied in their construction, these models can have the generic and observable consequence that cosmic strings will be abundant in the early universe. This leads to possible detectable effects in the cosmic microwave background, gravitational wave physics and gravitational lensing. Detailed calculations of cosmic string interactions within string theory are presented, in order to distinguish these cosmic strings from those in more conventional theories; these interaction probabilities can be very different from conventional 4-dimension strings, providing the possibility of experimental tests of string theory. (authors)

  10. Aerosols Produced by Cosmic Rays

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker

    an experiment in order to investigate the underlying microphysical processes. The results of this experiment will help to understand whether ionization from cosmic rays, and by implication the related processes in the universe, has a direct influence on Earth’s atmosphere and climate. Since any physical...... mechanism linking cosmic rays to clouds and climate is currently speculative, there have been various suggestions of the role atmospheric ions may play; these involve any one of a number of processes from the nucleation of aerosols up to the collection processes of cloud droplets. We have chosen to start......Satellite observations have shown that the Earth’s cloud cover is strongly correlated with the galactic cosmic ray flux. While this correlation is indicative of a possible physical connection, there is currently no confirmation that a physical mechanism exists. We are therefore setting up...

  11. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  12. Cosmic Rays and Extensive Air Showers

    CERN Document Server

    Stanev, Todor

    2010-01-01

    We begin with a brief introduction of the cosmic ray energy spectrum and its main features. At energies higher than 105 GeV cosmic rays are detected by the showers they initiate in the atmosphere. We continues with a brief description of the energy spectrum and composition derived from air shower data.

  13. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  14. Solid State nuclear track detector - [Part] III : applications in science and technology

    International Nuclear Information System (INIS)

    Lal, Nand

    1992-01-01

    The present article describes the applications of solid state nuclear track detection techniques in different branches of science (e.g. life sciences, nuclear physics, cosmic ray and solar physics, earth sciences, teaching laboratories) and technology with selected examples from voluminous literature available on the subject. (author). 28 refs., 6 figs., 3 tabs

  15. The History of Cosmic Ray Studies after Hess

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus, E-mail: grupen@physik.uni-siegen.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  16. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  17. The evaluation and use of a portable TEPC system for measuring in-flight exposure to cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.C.; Bentley, R.D.; Conroy, T.J.; Hunter, R.; Jones, J.B.L.; Pond, A.; Thomas, D.J

    2002-07-01

    A recent EC directive has called for all member states to introduce legislation covering the assessment and restriction of air crew exposure to cosmic radiation. In the UK the Civil Aviation Authority, in conjunction with the Department of the Environment, Transport and the Regions issued guidelines suggesting the use of a predictive code such as CARI for this purpose. In order to validate the use of calculated route doses, an extensive programme of measurements is being carried out in conjunction with Virgin Atlantic Airways, using a prototype HAWK TEPC developed by Far West Technology. This programme began in January 2000 and by the end of February 2001 had resulted in the accumulation of data from 74 flights. In this paper the instrument design is discussed, together with the calibration program. An overview of the in-flight results is also presented, including comparisons between measurements and calculations, which indicates that CARI under-predicts the route doses by approximately 20%. (author)

  18. The evaluation and use of a portable TEPC system for measuring in-flight exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Taylor, G.C.; Bentley, R.D.; Conroy, T.J.; Hunter, R.; Jones, J.B.L.; Pond, A.; Thomas, D.J.

    2002-01-01

    A recent EC directive has called for all member states to introduce legislation covering the assessment and restriction of air crew exposure to cosmic radiation. In the UK the Civil Aviation Authority, in conjunction with the Department of the Environment, Transport and the Regions issued guidelines suggesting the use of a predictive code such as CARI for this purpose. In order to validate the use of calculated route doses, an extensive programme of measurements is being carried out in conjunction with Virgin Atlantic Airways, using a prototype HAWK TEPC developed by Far West Technology. This programme began in January 2000 and by the end of February 2001 had resulted in the accumulation of data from 74 flights. In this paper the instrument design is discussed, together with the calibration program. An overview of the in-flight results is also presented, including comparisons between measurements and calculations, which indicates that CARI under-predicts the route doses by approximately 20%. (author)

  19. To each participatory sciences. Conditions for a participatory biodiversity

    Directory of Open Access Journals (Sweden)

    Denis SALLES

    2014-07-01

    Full Text Available This paper considers the social and scientific requirements for a citizen science monitoring programme on biodiversity in Arcachon Bay (France. The sociological study reveals tensions between different conceptions of what a citizen science programme should be: a means for storing oriented-data; a new way to co-create scientific knowledge; a political communication tool; a way to develop citizen stewardship; or a place for expressing activist environmental demands. Citizen science programmes also tend to reveal tensions between participatory governance and classical management of environmental issues. Despite a seeming consensus amongst actors on biodiversity conservation, in practice contests over different citizen science conceptions have the potential to re-define environmental issues, to re-specify relationships between science and society and outline new management priorities.

  20. High-energy cosmic-ray acceleration

    OpenAIRE

    Bustamante, M; Carrillo Montoya, G; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi accelera...

  1. Hunting for primordial non-Gaussianity in the cosmic microwave background

    International Nuclear Information System (INIS)

    Komatsu, Eiichiro

    2010-01-01

    Since the first limit on the (local) primordial non-Gaussianity parameter, f NL , was obtained from the Cosmic Background Explorer (COBE) data in 2002, observations of the cosmic microwave background (CMB) have been playing a central role in constraining the amplitudes of various forms of non-Gaussianity in primordial fluctuations. The current 68% limit from the 7-year data of the Wilkinson Microwave Anisotropy Probe (WMAP) is f NL = 32 ± 21, and the Planck satellite is expected to reduce the uncertainty by a factor of 4 in a few years from now. If f NL >> 1 is found by Planck with high statistical significance, all single-field models of inflation would be ruled out. Moreover, if the Planck satellite finds f NL ∼ 30, then it would be able to test a broad class of multi-field models using the 4-point function (trispectrum) test of τ NL ≥ (6f NL /5) 2 . In this paper, we review the methods (optimal estimator), results (WMAP 7-year) and challenges (secondary anisotropy, second-order effect and foreground) of measuring primordial non-Gaussianity from the CMB data, present a science case for the trispectrum and conclude with future prospects.

  2. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    Science.gov (United States)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  3. Implications of Socio-Cultural Research Findings for Science ...

    African Journals Online (AJOL)

    As such, school systems have been asked to provide challenging and stimulating science programmes that lead to scientific literacy for all. However, despite the heavy injection of scarce funds and resources to support various science education reform programmes, evaluation studies show disappointingly, that the level of ...

  4. From high energy gamma sources to cosmic rays, one century after their discovery. Summary of the SciNeGHE2012 workshop

    International Nuclear Information System (INIS)

    Longo, Francesco

    2013-01-01

    The interplay between studies and measurements concerning high energy gamma ray sources and cosmic rays was the main focus of the 2012 edition of the Science with the New Generation of High Energy Gamma-ray Experiments (SciNeGHE) workshop. The workshop started with a special session devoted to the history of the cosmic radiation research in the centenary of its discovery, with a special attention also to the history of very high energy gamma-ray astronomy. The main results and the current status from space-borne and ground-based gamma and cosmic ray experiments were presented, together with the state of the art theoretical scenarios. The future of the field was studied through the presentation of many new experiment concepts, as well as through the analysis of new observational techniques and R and D programs

  5. A formative evaluation of a staff reward and recognition programme

    Directory of Open Access Journals (Sweden)

    Saleemah Salie

    2012-07-01

    Research purpose: The main aim of this evaluation was to test the plausibility of the programme theory underlying a staff reward and recognition programme within a retail setting. Secondary aims were to assess whether or not the programme was implemented as intended and whether or not its outcomes were well defined. Motivation for the study: Different groups of people may have different assumptions about whether a reward and recognition programme works or not. This evaluation was motivated by the different assumptions held by programme stakeholders, programme recipients and social science researchers regarding the programme. Research design, approach and method: This formative evaluation used a descriptive design. Primary qualitative data were collected by means of structured interviews with the Human Resource Development (HRD Facilitator and ten programme participants. Main findings: The results showed that the programme theory was not plausible and that the programme was not implemented as intended. Although the HRD Facilitator and the participants agreed that the programme led to improved customer service, they disagreed about the other programme outcomes. Practical/managerial implications: This evaluation contains practical suggestions for improving the programme theory, the programme implementation process and the redefinition of the outcomes of the programme as standard performance indicators. Contribution/value-add: This evaluation contributed to the limited literature on the effect of reward and recognition programmes. Whilst there is a vast amount of literature pertaining to such programmes, very few formal evaluations exist about them.

  6. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  7. Cosmic Shear With ACS Pure Parallels

    Science.gov (United States)

    Rhodes, Jason

    2002-07-01

    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan textiti {F775W} we will measure for the first time: beginlistosetlength sep0cm setlengthemsep0cm setlengthopsep0cm em the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  8. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  9. Educational Cosmic Ray Arrays

    International Nuclear Information System (INIS)

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  10. The absence of distortion in the cosmic microwave background spectrum and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Sanchez, N.; Signore, M.

    1990-01-01

    From the results of recent measurements we place new constraints on superconducting cosmic strings (SCS) and on their cosmological evolution, independently of numerical simulation results. The absence of distortion in the cosmic microwave background radiation (MBR) spectrum recently reported from the preliminary data of the COBE (Cosmic background explorer) satellite, together with the available MBR angular temperature ΔT/T measurements and the latest fast pulsar timings, allow us to obtain (i) the electromagnetic-to-gravitational radiation ratio released by SCS loops, f -2 , (ii) the chemical potential due to SCS, μ 0SCS -3 , (iii) constraints on the loop evolution parameters which we confront to those given by numerical simulations, and (iv) limits on the string parameter Gμ: those obtained from COBE's data (Gμ -6 ) converge to those given by the latest PSR 1937+21 timing. Both limits on Gμ are reduced by an order of magnitude when taking into account numerical simulation results. (orig.)

  11. An informal teaching of light and lasers through the CSIR-NLC PULSE programme

    CSIR Research Space (South Africa)

    Shikwambana, L

    2012-07-01

    Full Text Available The PULSE programme of the CSIR relates to the public understanding of laser science and engineering and the awareness of laser science and engineering to schools and tertiary institutions....

  12. Long-term and transient time variation of cosmic ray fluxes detected in Argentina by CARPET cosmic ray detector

    Science.gov (United States)

    De Mendonça, R. R. S.; Raulin, J.-P.; Bertoni, F. C. P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2011-07-01

    We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.

  13. The ALTA cosmic ray experiment electronics system

    International Nuclear Information System (INIS)

    Brouwer, W.; Burris, W.J.; Caron, B.; Hewlett, J.; Holm, L.; Hamilton, A.; McDonald, W.J.; Pinfold, J.L.; Price, P.; Schaapman, J.R.; Sibley, L.; Soluk, R.A.; Wampler, L.J.

    2005-01-01

    Understanding the origin and propagation of high-energy cosmic rays is a fundamental area of astroparticle physics with major unanswered questions. The study of cosmic rays with energy more than 10 14 eV, probed only by ground-based experiments, has been restricted by the low particle flux. The Alberta Large-area Time-coincidence Array (ALTA) uses a sparse array of cosmic ray detection stations located in high schools across a large geographical area to search for non-random high-energy cosmic ray phenomena. Custom-built ALTA electronics is based on a modular board design. Its function is to control the detectors at each ALTA site allowing precise measurements of event timing and energy in the local detectors as well as time synchronization of all of the sites in the array using the global positioning system

  14. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NARCIS (Netherlands)

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe

  15. Can cosmic shear shed light on low cosmic microwave background multipoles?

    Science.gov (United States)

    Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha

    2003-11-28

    The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.

  16. Muon Production in Relativistic Cosmic-Ray Interactions

    OpenAIRE

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to $3\\times10^{20}$ eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is $\\sqrt{s_{nn}} = 700$ TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy ($>$ 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon de...

  17. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  18. Ultra high-energy cosmic ray composition

    International Nuclear Information System (INIS)

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  19. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites can be used to infer much about their origins and recent histories. Some meteorites had simple cosmic-ray exposure histories, while others had complex exposure histories with their cosmogenic products made both before and after a collision in space. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Besides spallogenic radionuclides and stable nuclides, measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measurements, plus theoretical modeling of complex histories, will improve our ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  20. Ultrahigh Energy Cosmic Rays: Facts, Myths, and Legends

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-06-27

    This is a written version of a series of lectures aimed at graduate students in astrophysics/particle theory/particle experiment. In the first part, we explain the important progress made in recent years towards understanding the experimental data on cosmic rays with energies > 10^8 GeV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition, and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic ray sources, and emphasize some of the prospects for a new (multi-particle) astronomy. Next, we survey the state of the art regarding the ultrahigh energy cosmic neutrinos which should be produced in association with the observed cosmic rays. In the second part, we summarize the phenomenology of cosmic ray air showers. We explain the hadronic interaction models used to extrapolate results from ...

  1. Cosmic string induced CMB maps

    International Nuclear Information System (INIS)

    Landriau, M.; Shellard, E. P. S.

    2011-01-01

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  2. Cosmic Ray Physics with the IceCube Observatory

    International Nuclear Information System (INIS)

    Kolanoski, H

    2013-01-01

    The IceCube Neutrino Observatory with its 1-km 3 in-ice detector and the 1-km 2 surface detector (IceTop) constitutes a three-dimensional cosmic ray detector well suited for general cosmic ray physics. Various measurements of cosmic ray properties, such as energy spectra, mass composition and anisotropies, have been obtained from analyses of air showers at the surface and/or atmospheric muons in the ice.

  3. Interpreting the cosmic ray composition

    Energy Technology Data Exchange (ETDEWEB)

    O' C Drury, L.; Ellisson, D.C; Meyer, J.-P

    2000-01-31

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model.

  4. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  5. Interpreting the cosmic ray composition

    International Nuclear Information System (INIS)

    O'C Drury, L.; Ellisson, D.C; Meyer, J.-P.

    2000-01-01

    The detailed pattern of elemental abundances in the Galactic Cosmic Rays is well determined at energies of a few GeV per nucleon. After correction for propagation effects the inferred source composition shows significant deviations from the standard pattern of Galactic elemental abundances. These deviations, surprisingly overabundances of the heavy elements relative to Hydrogen, are clearly a significant clue to the origin of the cosmic rays, but one which has proven very difficult to interpret. We have recently shown that the 'standard' model for the origin of the bulk of the Galactic cosmic rays, namely acceleration by the diffusive shock acceleration process at the strong shocks associated with supernova remnants, can quantitatively explain all features of the source composition if the acceleration occurs from a dusty interstellar medium. This success must be regarded as one of the stronger pieces of evidence in favour of the standard model

  6. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  7. Science on air: a journey through early science programmes in US radio

    Directory of Open Access Journals (Sweden)

    Matteo Merzagora

    2009-03-01

    Full Text Available “Science on the air” is an enjoyable and extremely well researched account of the origins of science programming in north American radio. From 1923 to the mid-50s, LaFollette takes us in a journey through the life and programs of many scientists, journalists and storytellers who chosed radio as a medium for science communication. A journey who allow the reader to visit many success, but also many incomprehension and missed opportunities, mainly by scientific institutions, who often failed to understand the potential of radio as a tool for science communication. It is a fully enjoyable journey, that leave the reader with an appetite to know how the US situation relates to other wonderful experiences around the world in the same years, and how those pioneer experiences influenced today's landscape.

  8. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2018-06-07

    Jun 7, 2018 ... Science Education Programmes · Women in Science · Committee on ... Transliteration; informal information; natural language processing (NLP); information retrieval. ... Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India ...

  9. Cosmic gamma bursts

    International Nuclear Information System (INIS)

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  10. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere

    Czech Academy of Sciences Publication Activity Database

    Velinov, P. I. Y.; Asenovski, S.; Kudela, K.; Laštovička, Jan; Mateev, L.; Mishev, A.; Tonev, P.

    2013-01-01

    Roč. 3, 26 March (2013), A14/1-A14/17 ISSN 2115-7251 Grant - others:European COST Action(XE) ES0803 Institutional support: RVO:68378289 Keywords : cosmic rays * solar energetic particles * ionization * ionosphere * atmosphere * solar activity * solar-terrestrial relationships Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/articles/swsc/abs/2013/01/swsc120040/swsc120040.html

  11. Structure formation cosmic rays: Identifying observational constraints

    Directory of Open Access Journals (Sweden)

    Prodanović T.

    2005-01-01

    Full Text Available Shocks that arise from baryonic in-fall and merger events during the structure formation are believed to be a source of cosmic rays. These "structure formation cosmic rays" (SFCRs would essentially be primordial in composition, namely, mostly made of protons and alpha particles. However, very little is known about this population of cosmic rays. One way to test the level of its presence is to look at the products of hadronic reactions between SFCRs and the ISM. A perfect probe of these reactions would be Li. The rare isotope Li is produced only by cosmic rays, dominantly in αα → 6Li fusion reactions with the ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays. Exactly because of this unique property is Li affected most by the presence of an additional cosmic ray population. In turn, this could have profound consequences for the Big-Bang nucleosynthesis: cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metalpoor halo stars. Given the already existing problem of establishing the concordance between Li observed in halo stars and primordial 7Li as predicted by the WMAP, it is crucial to set limits to the level of this "contamination". However, the history of SFCRs is not very well known. Thus we propose a few model-independent ways of testing the SFCR species and their history, as well as the existing lithium problem: 1 we establish the connection between gamma-ray and Li production, which enables us to place constraints on the SFCR-made lithium by using the observed Extragalactic Gamma-Ray Background (EGRB; 2 we propose a new site for testing the primordial and SFCR-made lithium, namely, low-metalicity High-Velocity Clouds (HVCs, which retain the pre-Galactic composition without any significant depletion. Although using one method alone may not give us strong constraints, using them in

  12. Student performance in a newly developed MSc programme

    DEFF Research Database (Denmark)

    Richelsen, Ann Bettina

    2011-01-01

    The Technical University of Denmark (DTU) offers, as a consequence of the Bologna Declaration, international Master of Science in Engineering (MSc) programmes. Thereby, one of the challenges for DTU is to evaluate international applicants with an educational engineering background and traditions...... other than DTUs and allow qualified students to enter the MSc programmes. The focus of the present work is a comparison of how international and Danish students perform within specific modules of the MSc curriculum in Engineering Design and Applied Mechanics at Technical University of Denmark...

  13. A NIRS's product. Japanese internet system for the calculation of aviation route doses 'JISCARD'. The program which informs us of cosmic radiation doses in an aircraft

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    2008-01-01

    The radiation dose during one round aviation from Japan to Western countries is about 0.1 mSv. A web tool called JISCARD (Japanese Internet System for the Calculation of Aviation Route Doses) has been developed by National Institute of Radiological Sciences for giving the information on the irradiation of cosmic ray during the aviation. 'Route dose' (the effective dose by cosmic ray irradiation) of going and coming each can be shown for major international airlines from/to Japan. 'JISCARD Mobile' for mobile phones is also available. Global distribution of daily cosmic ray intensity at cruising altitude (11 km) of aircrafts is shown on the page 'Related Information'. Explanation of the terminology is also compiled. (K.Y.)

  14. 14. European cosmic ray symposium. Symposium program and abstracts

    International Nuclear Information System (INIS)

    1994-08-01

    The abstracts of the 14. European Cosmic Ray Symposium are presented. The papers cover a large variety of topics in cosmic ray physics, both from the theoretical and the experimental point of view. Sun physics, and the effects on the inner heliosphere, the composition, and the properties of the primary and secondary cosmic radiation, galactic acceleration and the results of accelerator physics relevant to cosmic radiation physics, and the description and the results of large detector systems are presented. 63 items are indexed for INIS database. (K.A.)

  15. Cosmic Censorship for Gowdy Spacetimes.

    Science.gov (United States)

    Ringström, Hans

    2010-01-01

    Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.

  16. How to detect the cosmic neutrino background?

    International Nuclear Information System (INIS)

    Ringwald, A.

    2003-01-01

    A measurement of the big bang relic neutrinos would open a new window to the early universe. We review various possibilities to detect this cosmic neutrino background and substantiate the assertion that - apart from the rather indirect evidence to be gained from cosmology and large-scale structure formation - the annihilation of ultrahigh energy cosmic neutrinos with relic anti-neutrinos (or vice versa) on the Z-resonance is a unique process having sensitivity to the relic neutrinos, if a sufficient flux at E ν i res =M Z 2 /(2m ν i )=4.10 22 eV (0.1 eV/m ν i ) exists. The associated absorption dips in the ultrahigh energy cosmic neutrino spectrum may be searched for at forthcoming neutrino and air shower detectors. The associated protons and photons may have been seen already in form of the cosmic ray events above the Greisen-Zatsepin-Kuzmin cutoff. (orig.)

  17. Comparing cosmic web classifiers using information theory

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Florent [Institute of Cosmology and Gravitation (ICG), University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Lavaux, Guilhem; Wandelt, Benjamin [Institut d' Astrophysique de Paris (IAP), UMR 7095, CNRS – UPMC Université Paris 6, Sorbonne Universités, 98bis boulevard Arago, F-75014 Paris (France); Jasche, Jens, E-mail: florent.leclercq@polytechnique.org, E-mail: lavaux@iap.fr, E-mail: j.jasche@tum.de, E-mail: wandelt@iap.fr [Excellence Cluster Universe, Technische Universität München, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-08-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  18. Comparing cosmic web classifiers using information theory

    International Nuclear Information System (INIS)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin; Jasche, Jens

    2016-01-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  19. SERC programme for the next three years 1993/4-1995/6

    International Nuclear Information System (INIS)

    1992-10-01

    The Science and Engineering Research Council's (SERC) main objective is to support excellent novel and timely research in science and engineering. This is done through the provision of research grants to Higher Education Institutes, the support of research studentships, post-doctoral and senior fellowships, the provision of first-class facilities at its four research establishment including the Daresbury Synchrotron Radiation Facility for use by research scientists and engineers and by participation in certain international institutions such as CERN to allow SERC scientists and engineers access to other facilities. SERC has four Boards concerned with Astronomy and Planetary Science, Engineering, Nuclear Physics and Science. This document describes SERC's programme of work for 1993/4, 1994/5 and 1995/6 as seen from the spring of 1992 and looks at funding levels and priorities. Part I considers the core programme in terms of Boards and other funding routes. Part II discusses activities such as inter-disciplinary and inter-council collaborations. (UK)

  20. Cosmic microwave background theory

    Science.gov (United States)

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  1. Stranger that fiction parallel universes beguile science

    CERN Document Server

    2007-01-01

    Is the universe -- correction: 'our' universe -- no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.

  2. Stranger than fiction: parallel universes beguile science

    CERN Document Server

    Hautefeuille, Annie

    2007-01-01

    Is the universe-correction: 'our' universe-no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.

  3. Isotherms clustering in cosmic microwave background

    International Nuclear Information System (INIS)

    Bershadskii, A.

    2006-01-01

    Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2

  4. CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    Science.gov (United States)

    Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; hide

    2011-01-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

  5. Cosmic censorship, black holes, and particle orbits

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    One of the main reasons for believing in the cosmic censorship hypothesis is the disquieting nature of the alternative: the existence of naked singularities, and hence loss of predictability, the possibility of closed timelike lines and so forth. The consequences of assuming the cosmic hypothesis can also be somewhat strange and unexpected. In particular, Hawking's black hole area theorem is applied to the study of particle orbits near a Schwarzschild black hole. If the cosmic censorship hypothesis (and hence the area theorem) is true, then there exist stable near-circular orbits arbitrarily close to the horizon at r = 2M. (author)

  6. Cosmic-ray antimatter - A primary origin hypothesis

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1983-01-01

    The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.

  7. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    Science.gov (United States)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  8. Cosmic strings in a braneworld theory with metastable gravitons

    International Nuclear Information System (INIS)

    Lue, Arthur

    2002-01-01

    If the graviton possesses an arbitrarily small (but nonvanishing) mass, perturbation theory implies that cosmic strings have a nonzero Newtonian potential. Nevertheless in Einstein gravity, where the graviton is strictly massless, the Newtonian potential of a cosmic string vanishes. This discrepancy is an example of the van Dam-Veltman-Zakharov (VDVZ) discontinuity. We present a solution for the metric around a cosmic string in a braneworld theory with a graviton metastable on the brane. This theory possesses those features that yield a VDVZ discontinuity in massive gravity, but nevertheless is generally covariant and classically self-consistent. Although the cosmic string in this theory supports a nontrivial Newtonian potential far from the source, one can recover the Einstein solution in a region near the cosmic string. That latter region grows as the graviton's effective linewidth vanishes (analogous to a vanishing graviton mass), suggesting the lack of a VDVZ discontinuity in this theory. Moreover, the presence of scale dependent structure in the metric may have consequences for the search for cosmic strings through gravitational lensing techniques

  9. Current constraints on the cosmic growth history

    International Nuclear Information System (INIS)

    Bean, Rachel; Tangmatitham, Matipon

    2010-01-01

    We present constraints on the cosmic growth history with recent cosmological data, allowing for deviations from ΛCDM as might arise if cosmic acceleration is due to modifications to general relativity or inhomogeneous dark energy. We combine measures of the cosmic expansion history, from Type 1a supernovae, baryon acoustic oscillations, and the cosmic microwave background (CMB), with constraints on the growth of structure from recent galaxy, CMB, and weak lensing surveys along with integated Sachs Wolfe-galaxy cross correlations. Deviations from ΛCDM are parameterized by phenomenological modifications to the Poisson equation and the relationship between the two Newtonian potentials. We find modifications that are present at the time the CMB is formed are tightly constrained through their impact on the well-measured CMB acoustic peaks. By contrast, constraints on late-time modifications to the growth history, as might arise if modifications are related to the onset of cosmic acceleration, are far weaker, but remain consistent with ΛCDM at the 95% confidence level. For these late-time modifications we find that differences in the evolution on large and small scales could provide an interesting signature by which to search for modified growth histories with future wide angular coverage, large scale structure surveys.

  10. The Cosmic Ray Tracking (CRT) detector system

    International Nuclear Information System (INIS)

    Bernloehr, K.; Gamp, S.; Hermann, G.; Hofmann, W.; Kihm, T.; Knoeppler, J.; Leffers, G.; Matheis, V.; Panter, M.; Trunk, U.; Ulrich, M.; Wolf, T.; Zink, R.; Heintze, J.

    1996-01-01

    The Cosmic Ray Tracking (CRT) project represents a study on the use of tracking detectors of the time projection chamber type to detect secondary cosmic ray particles in extensive air showers. In reconstructing the arrival direction of the primary cosmic ray particles, the CRT detectors take advantage of the angular correlation of secondary particles with the cosmic rays leading to these air showers. In this paper, the detector hardware including the custom-designed electronics system is described in detail. A CRT detector module provides an active area of 2.5 m 2 and allows to measure track directions with a precision of 0.4 circle . It consists of two circular drift chambers of 1.8 m diameter with six sense wires each, and a 10 cm thick iron plate between the two chambers. Each detector has a local electronics box with a readout, trigger, and monitoring system. The detectors can distinguish penetrating muons from other types of charged secondaries. A large detector array could be used to search for γ-ray point sources at energies above several TeV and for studies of the cosmic-ray composition. Ten detectors are in operation at the site of the HEGRA air shower array. (orig.)

  11. COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF TRANSLUCENT CLOUDS: Cyg OB2 8A

    International Nuclear Information System (INIS)

    Snow, Theodore P.; Destree, Joshua D.; Burgh, Eric B.; Ferguson, Ryan M.; Danforth, Charles W.; Cordiner, Martin

    2010-01-01

    Data from the Cosmic Origins Spectrograph (COS) are presented for the first highly reddened target (Cyg OB2 8A) under the COS Science Team's guaranteed time allocation. Column densities of ionic, atomic, and molecular species are reported and implications are discussed. Data from Cyg OB2 8A demonstrate the ability to analyze highly reddened interstellar sight lines with the COS that were unavailable to previous UV instruments. Measured column densities indicate that the Cyg OB2 8A line of sight contains multiple diffuse clouds rather than a dominant translucent cloud.

  12. Search for antimatter in 1012 eV cosmic rays using Artemis method and interpretation of the cosmic rays spectrum

    International Nuclear Information System (INIS)

    Pomarede, D.

    1999-04-01

    This thesis is divided into three parts. The first part is a review of the present knowledge of the antimatter and of the cosmic rays. Theoretical and experimental aspects are presented. It is demonstrated that a measurement of the antimatter abundance in TeV cosmic rays is of fundamental interest, and would establish the symmetric or asymmetric nature of the Universe. The second part is dedicated to the method of antimatter research through the Earth Moon ion spectrometer (ARTEMIS). The account is given of the winter 1996-97 41-nights observation campaign undertaken at the Whipple Observatory in Arizona (USA). A 109 photomultiplier camera is operated on the 40 meter telescope to detect by Cherenkov imaging the cosmic ray initiated showers. We describe the performance of an optical filter used to reduce the noise. The development and the utilization of a simulation program are described. The main work is the analysis of the data: data characterization, understanding of the apparatus, understanding of the noise and its influence, calibration, search for signals by different methods. Subtle systematic effects are uncovered. The simulations establish that the amount of data is insufficient to reveal a shadow effect in the cosmic ray flux. The conclusion of this work is that the experimental setup was not suitable, and we propose important improvements of the method based on a bigger focal plane that would allow to reach a one percent sensitivity on the antimatter content of the cosmic rays. In the third part of the thesis, an interpretation of the total cosmic ray spectrum is proposed and discussed. (author)

  13. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  14. Women and IFAD Programme Illo et al.

    African Journals Online (AJOL)

    Dr. K.J. Umar

    2014-05-07

    May 7, 2014 ... Nigerian Journal of Basic and Applied Science (June, 2015), 23(1): 23-30 ... especially on the assistance provided, and the management of the ... rural poor through sustainable improvement in ... since 1985 financed different programmes and project .... adopt any new innovation provided to them by the.

  15. Interstellar propagation of low energy cosmic rays

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1975-01-01

    Wave particles interactions prevent low energy cosmic rays from propagating at velocities much faster than the Alfven velocity, reducing their range by a factor of order 50. Therefore, supernovae remnants cannot fill the neutral portions of the interstellar medium with 2 MeV cosmic rays [fr

  16. Three revolutions in cosmical science from the telescope to the Sputnik

    International Nuclear Information System (INIS)

    Alfeven, H.

    1989-01-01

    Three hundred years ago, what is usually called the Copernican revolution caused the transition from the geocentric to the heliocentric cosmology. The revolution was in reality caused by the introduction of the telescope. During the following 300 years, increasingly sophisticated telescopes have explored a rapidly increasing region of our cosmic environment. Newtonian theory dominated the mechanics during the 18th and 19th centuries. In the beginning of the 20th century, its limitations in three respects became obvious with such important consequences that they have motivated the authors to speak about a second revolution. This paper discusses how quantum mechanics shows the Newtonian mechanics was not valid for atom-size phenomena; the theory of relativity shows that Newtonian mechanics did not hold for velocities approaching the velocity of light; and during the 19th century, studies of electric currents in gases showed that electromagnetic phenomena often produced forces that were more important than mechanical forces

  17. The Technical Student Programme draws Norwegians

    CERN Multimedia

    2005-01-01

    Erik Hejne, second from left, Chairman of the Technical Students Committee, and Jens Vigen, who is concerned spefically with Norwegian students at CERN, with some of the Norwegian technical students who arrived at CERN in spring 2005, together with their teachers. From mid-April, CERN's PH and IT Departments are hosting ten Norwegian students from Bergen University College, the Sør-Trøndelag University College and the University of Science and Technology in Trondheim to take part in the Laboratory's Technical Student Programme. The Technical Student Programme is open to students of universities and technical higher education establishments in the Member States who, in the course of their studies, are required to complete a period of professional training in industry or in a laboratory. Around 70 Technical Students come to work at CERN each year. Selected by a committee, they spend between six months and one year with the Organization. The programme is funded by CERN. However, once the Laboratory's quota of...

  18. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  19. Standard Cosmic Ray Energetics and Light Element Production

    CERN Document Server

    Fields, B D; Cassé, M; Vangioni-Flam, E; Fields, Brian D.; Olive, Keith A.; Casse, Michel; Vangioni-Flam, Elisabeth

    2001-01-01

    The recent observations of Be and B in metal poor stars has led to a reassessment of the origin of the light elements in the early Galaxy. At low it is metallicity ([O/H] < -1.75), it is necessary to introduce a production mechanism which is independent of the interstellar metallicity (primary). At higher metallicities, existing data might indicate that secondary production is dominant. In this paper, we focus on the secondary process, related to the standard Galactic cosmic rays, and we examine the cosmic ray energy requirements for both present and past epochs. We find the power input to maintain the present-day Galactic cosmic ray flux is about 1.5e41 erg/s = 5e50 erg/century. This implies that, if supernovae are the sites of cosmic ray acceleration, the fraction of explosion energy going to accelerated particles is about 30%, a value which we obtain consistently both from considering the present cosmic ray flux and confinement and from the present 9Be and 6Li abundances. Using the abundances of 9Be (an...

  20. Relative distribution of cosmic rays and magnetic fields

    Science.gov (United States)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  1. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full

  2. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    Science.gov (United States)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  3. Theory of geomagnetic effects of cosmic rays: its past and presence

    Energy Technology Data Exchange (ETDEWEB)

    Gall, R [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Geofisica

    1981-03-01

    The interest expressed by Lemaitre and Vallarta in the nature of universal corpuscular radiation, remnant of the exploded primogenitive atom, culminated in 1932, in the development of their theory of the geomagnetic effects of cosmic rays, a tool since its publication, basic to cosmic radiation research and to the advancement of cosmic ray astronomy. Between 1940 and 1960 challenging experimental data from proliferating cosmic radiation stations and of direct detection techniques provided geomagnetic field models for greater theoretical precision. The discoveries since the advent of the space age of the Earth's cavity and geomagnetic tail, and of the nonrelativistic solar cosmic rays have resulted in a new branch of the theory dealing with magnetosphere effects in the propagation of low energy cosmic radiations. The theory's importance and application to cosmic bodies other than the Earth is discussed.

  4. Crafting Disaster Risk Science: Environmental and geographical science sans frontières

    Directory of Open Access Journals (Sweden)

    Ailsa Holloway

    2009-11-01

    Full Text Available In keeping with the University of Cape Town’s commitment to social responsiveness (http://www.socialresponsiveness.uct.ac.za/, this article traces the process that underpinned the development and introduction of a postgraduate programme in Disaster Risk Science (DRS. It foregrounds the programme’s conceptualisation within the Department of Environmental and Geographical Science (EGS at the University of Cape Town (UCT, with particular emphasis on examining how disciplinary and theoretical coherence was balanced with cross-disciplinary application and social responsiveness. The article begins by describing the contextual conditions external to UCT’s formal teaching and learning environment that provided the necessary impetus for the new programme. It also traces the iterative relationship between context and curriculum that occurred over the period 1998–2008. This engagement was facilitated and mediated by the Disaster Mitigation for Sustainable Livelihoods Programme (DiMP, an interfacing research and advocacy unit, located within UCT’s Department of Environmental and Geographical Science. An explanation of subsequent content and sequencing of the postgraduate curriculum then follow. They illustrate the programme’s articulation with South Africa’s newly promulgated disaster management legislation, as well as its relevance and rigour in relation to the complex risk environment of South Africa’s Western Cape. The article specifically applies a transdisciplinary lens to the new programmme, in which Disaster Risk Science is conceptualized as a Mode 2 knowledge, but one that draws theoretically and methodologically on environmental and geographical science as its foundation or Mode 1 domain. It concludes by examining the DRS programme’s positive contributions both to scholarship and local risk management practices as well as the obstacles that constrained the new programme and continue to challenge its institutional sustainability.

  5. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    Science.gov (United States)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  6. US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fox, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dawson, W. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ammons, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Axelrod, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Drlica-Wagner, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Golovich, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-08

    This white paper summarizes the workshop “U.S. Cosmic Visions: New Ideas in Dark Matter” held at University of Maryland from March 23-25. The flagships of the US Dark Matter search program are the G2 experiments ADMX, LZ, and SuperCDMS, which will cover well-motivated axion and WIMP dark matter over a range of masses. The workshop assumes that a complete exploration of this parameter space remains the highest priority of the dark matter community, and focuses instead on the science case for additional new small-scale projects in dark matter science that complement the G2 program (and other ongoing projects worldwide). It therefore concentrates on exploring distinct, well-motivated parameter space that will not be covered by the existing program; on surveying ideas for such projects (i.e. projects costing ~$10M or less); and on placing these ideas in a global context. The workshop included over 100 presentations of new ideas, proposals and recent science and R&D results from the US and international scientific community.

  7. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    Science.gov (United States)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lange, G.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Pelkey, R.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; John, J. St.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-12-01

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be epsilondata=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency epsilonMC = (97.4±0.1)%. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.

  8. The Impact of Macro-adjustment Programmes on Housing ...

    African Journals Online (AJOL)

    The Impact of Macro-adjustment Programmes on Housing Investment in Kampala City, Uganda: Shelter Implications for the Urban Poor. ... Eastern Africa Social Science Research Review ... The adjustment methodology has side-lined and gravely undermined the housing sector thereby aggravating the shelter problem.

  9. Radar detection of ultra high energy cosmic rays

    Science.gov (United States)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  10. Anomalous isotopic composition of cosmic rays

    International Nuclear Information System (INIS)

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of 22 Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables

  11. Cosmic microwave background bispectrum from recombination.

    Science.gov (United States)

    Huang, Zhiqi; Vernizzi, Filippo

    2013-03-08

    We compute the cosmic microwave background temperature bispectrum generated by nonlinearities at recombination on all scales. We use CosmoLib2nd, a numerical Boltzmann code at second order to compute cosmic microwave background bispectra on the full sky. We consistently include all effects except gravitational lensing, which can be added to our result using standard methods. The bispectrum is peaked on squeezed triangles and agrees with the analytic approximation in the squeezed limit at the few percent level for all the scales where this is applicable. On smaller scales, we recover previous results on perturbed recombination. For cosmic-variance limited data to l(max)=2000, its signal-to-noise ratio is S/N=0.47, corresponding to f(NL)(eff)=-2.79, and will bias a local signal by f(NL)(loc) ~/= 0.82.

  12. The propagation of galactic cosmic rays

    International Nuclear Information System (INIS)

    Hall, A.N.

    1981-01-01

    Large scale (approximately 15 pc) turbulence in the interstellar medium (ISM) causes the firehose and mirror instabilities to occur. These produce small scale (approximately 10 -7 pc) magnetic irregularities, which scatter cosmic rays. We use pulsar scintillation data, and a model of the origin of these scintillations, to construct a slab model of the turbulent ISM. Then we find the amplitudes and wavelengths of the magnetic irregularities that arise, and we calculate the coefficients for the diffusion of cosmic rays along the interstellar magnetic fields. We incorporate this diffusion into our model of the turbulent ISM, and show that it can account naturally for both the lifetime of low energy cosmic rays, and the variation of their mean pathlength with energy. Our model has no galactic halo, and contains no scattering by Alfven waves. (author)

  13. Cosmic-ray modulation: an ab initio approach

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N.E.; Burger, R.A., E-mail: 12580996@nwu.ac.za [Center for Space Research, North-West University, Potchefstroom (South Africa)

    2014-07-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)

  14. Cosmic-ray modulation: an ab initio approach

    International Nuclear Information System (INIS)

    Engelbrecht, N.E.; Burger, R.A.

    2014-01-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)

  15. The basis for cosmic ray feedback: Written on the wind

    Science.gov (United States)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  16. ATLAS and ultra high energy cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Pinfold James

    2017-01-01

    Full Text Available After a brief introduction to extended air shower cosmic ray physics the current and future deployment of forward detectors at ATLAS is discussed along with the various aspects of the current and future ATLAS programs to explore hadronic physics. The emphasis is placed on those results and future plans that have particular relevance for high-energy, and ultra high-energy, cosmic ray physics. The possible use of ATLAS as an “underground” cosmic muon observatory is briefly considered.

  17. Particle accelerators, colliders, and the story of high energy physics charming the cosmic snake

    CERN Document Server

    Jayakumar, Raghavan

    2012-01-01

    The Nordic mythological Cosmic Serpent, Ouroboros, is said to be coiled in the depths of the sea, surrounding the Earth with its tail in its mouth. In physics, this snake is a metaphor for the Universe, where the head, symbolizing the largest entity – the Cosmos – is one with the tail, symbolizing the smallest – the fundamental particle. Particle accelerators, colliders and detectors are built by physicists and engineers to uncover the nature of the Universe while discovering its building blocks. “Charming the Cosmic Snake” takes the readers through the science behind these experimental machines: the physics principles that each stage of the development of particle accelerators helped to reveal, and the particles they helped to discover. The book culminates with a description of the Large Hadron Collider, one of the world’s largest and most complex machines operating in a 27-km circumference tunnel near Geneva. That collider may prove or disprove many of our basic theories about the nature of matt...

  18. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  19. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  20. Applications of field-programmable gate arrays in scientific research

    CERN Document Server

    Sadrozinski, Hartmut F W

    2011-01-01

    Focusing on resource awareness in field-programmable gate array (FPGA) design, Applications of Field-Programmable Gate Arrays in Scientific Research covers the principle of FPGAs and their functionality. It explores a host of applications, ranging from small one-chip laboratory systems to large-scale applications in ""big science."" The book first describes various FPGA resources, including logic elements, RAM, multipliers, microprocessors, and content-addressable memory. It then presents principles and methods for controlling resources, such as process sequencing, location constraints, and in

  1. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  2. Half a century of cosmic x-ray research

    International Nuclear Information System (INIS)

    Makishima, Kazuo; Takahashi, Tadayuki

    2012-01-01

    The year of 2012, which is the centennial of the cosmic-ray discovery, happens to coincide with the 50th anniversary of the discovery of cosmic X-ray sources. First carried by cosmic-ray physicists, the study of cosmic X-rays has made explosive developments over the last half a century, and has established the X-ray wavelength as an indispensable window onto the Universe. Among a variety of X-ray emitting celestial objects, we choose here neutron stars as a representative, and review the 50 years connecting the dawn era of the research and the state-of-the-art ASTRO-H satellite to be launched in 2014. In this article, 'X-rays' mean energetic photons with energies from 0.1 keV up to a few hundreds keV. (author)

  3. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  4. Gravitational-Wave Stochastic Background from Cosmic Strings

    International Nuclear Information System (INIS)

    Siemens, Xavier; Creighton, Jolien; Mandic, Vuk

    2007-01-01

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space

  5. Sealed drift tube cosmic ray veto counters

    International Nuclear Information System (INIS)

    Rios, R.; Tatar, E.; Bacon, J.D.; Bowles, T.J.; Hill, R.; Green, J.A.; Hogan, G.E.; Ito, T.M.; Makela, M.; Morris, C.L.; Mortenson, R.; Pasukanics, F.E.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W.; Saltus, M.; Back, H.O.; Cottrell, C.R.

    2011-01-01

    We describe a simple drift tube counter that has been used as a cosmic ray veto for the UCNA experiment, a first-ever measurement of the neutron beta-asymmetry using ultra-cold neutrons. These detectors provide an inexpensive alternative to more conventional scintillation detectors for large area cosmic ray anticoincidence detectors.

  6. RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

    International Nuclear Information System (INIS)

    Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W.; Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.

    2010-01-01

    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ∼70 to ∼450 MeV nucleon -1 , near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ∼20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.

  7. Particle accelerators, colliders, and the story of high energy physics. Charming the cosmic snake

    International Nuclear Information System (INIS)

    Jayakumar, Raghavan

    2012-01-01

    The Nordic mythological Cosmic Serpent, Ouroboros, is said to be coiled in the depths of the sea, surrounding the Earth with its tail in its mouth. In physics, this snake is a metaphor for the Universe, where the head, symbolizing the largest entity - the Cosmos - is one with the tail, symbolizing the smallest - the fundamental particle. Particle accelerators, colliders and detectors are built by physicists and engineers to uncover the nature of the Universe while discovering its building blocks. ''Charming the Cosmic Snake'' takes the readers through the science behind these experimental machines: the physics principles that each stage of the development of particle accelerators helped to reveal, and the particles they helped to discover. The book culminates with a description of the Large Hadron Collider, one of the world's largest and most complex machines operating in a 27-km circumference tunnel near Geneva. That collider may prove or disprove many of our basic theories about the nature of matter. The book provides the material honestly without misrepresenting the science for the sake of excitement or glossing over difficult notions. The principles behind each type of accelerator is made accessible to the undergraduate student and even to a lay reader with cartoons, illustrations and metaphors. Simultaneously, the book also caters to different levels of reader's background and provides additional materials for the more interested or diligent reader. (orig.)

  8. The role of cosmic rays in the atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Stozhkov, Y I [Lebedev Physical Institute, Russian Academy of Sciences, 119991, Leninsky Prospect, 53, Moscow (Russian Federation)

    2003-05-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10{sup 8} times). But at altitudes of h {approx} 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h {approx} 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning.

  9. The role of cosmic rays in the atmospheric processes

    International Nuclear Information System (INIS)

    Stozhkov, Y I

    2003-01-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10 8 times). But at altitudes of h ∼ 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h ∼ 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning

  10. Cl36 and the age of the cosmic rays

    International Nuclear Information System (INIS)

    Casse, M.; Goret, P.; Regnier, S.

    1975-01-01

    The radioactive isotope 36 Cl (tau=γx3.10 5 y) is used as a time reference for the propagation of cosmic rays. New measurements of the production cross section of 36 Cl in Ti and Fe at 24GeV will be presented. A critical analysis of the cross sections leads to an estimate of the ratio 36 Cl/Cl=0.030+0.007 in the arriving cosmic rays. The comparison between the expected abundance of Cl in the arriving cosmic rays and the observations tend to support the decay of 36 Cl. The inferred cosmic ray confinement time is about 10 6 y [fr

  11. A Bayesian framework for cosmic string searches in CMB maps

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Razvan; Hernández, Oscar F., E-mail: razvan.ciuca@mail.mcgill.ca, E-mail: oscarh@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2017-08-01

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension G μ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this framework with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of G μ=5 ×10{sup −9} and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that G μ≤2.3×10{sup −9}.

  12. RWebData: A High-Level Interface to the Programmable Web

    Directory of Open Access Journals (Sweden)

    Ulrich Matter

    2018-02-01

    Full Text Available The rise of the programmable web offers new opportunities for the empirically driven sciences. The access to, compilation and preparation of data from the programmable web for statistical analysis can, however, involve substantial up-front costs for the practical researcher. The 'R'-package RWebData provides a high-level framework that allows data to be easily collected from the programmable web in a format that can be used directly for statistical analysis in 'R' without bothering about the data’s initial format and nesting structure. It was developed specifically for users who have no experience with web technologies and merely use 'R' as statistics software. This paper provides an overview of the high-level functions, explains the basic architecture of the package, illustrates the implemented data mapping algorithm, and discusses RWebData’s further development and reuse potential.   Funding statement: The author acknowledges financial support from the University of Basel Research Fund as well as support from the Swiss National Science Foundation (grant 168848.

  13. Accreditation of academic programmes in Nigerian universities: the ...

    African Journals Online (AJOL)

    ... emphasis on the library holdings, quantity and quality of materials and their currency. Other areas of the library that deserve the proper attention of the accreditation team are also highlighted. Keywords: academic, accreditation, library, Nigeria, programmes, universities. Lagos Journal of Library and Information Science ...

  14. Maximum entropy analysis of cosmic ray composition

    Czech Academy of Sciences Publication Activity Database

    Nosek, D.; Ebr, Jan; Vícha, Jakub; Trávníček, Petr; Nosková, J.

    2016-01-01

    Roč. 76, Mar (2016), s. 9-18 ISSN 0927-6505 R&D Projects: GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : ultra-high energy cosmic rays * extensive air showers * cosmic ray composition Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.257, year: 2016

  15. Early history of cosmic rays at Chicago

    Science.gov (United States)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  16. Science with a vengeance: How the Military created the US Space Sciences after World War II

    Science.gov (United States)

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  17. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    OFFICE USER

    system available to those passing out of the +2 level in Science stream. II) The first .... University Grants Commission, whole-heartedly supported the ... interdisciplinary curricula and stimulating teaching methods that evoke ... water or electricity supply. .... share with you for inclusiveness, there are several decisions taken by.

  18. Surveying the citizen science landscape: an exploration of the design, delivery and impact of citizen science through the lens of the Open Air Laboratories (OPAL) programme.

    Science.gov (United States)

    Davies, Linda; Fradera, Roger; Riesch, Hauke; Lakeman-Fraser, Poppy

    2016-07-22

    This paper provides a short introduction to the topic of citizen science (CS) identifying the shift from the knowledge deficit model to more inclusive, participatory science. It acknowledges the benefits of new technology and the opportunities it brings for mass participation and data manipulation. It focuses on the increase in interest in CS in recent years and draws on experience gained from the Open Air Laboratories (OPAL) programme launched in England in 2007. The drivers and objectives for OPAL are presented together with background information on the partnership, methods and scales. The approaches used by researchers ranged from direct public participation in mass data collection through field surveys to research with minimal public engagement. The supporting services focused on education, particularly to support participants new to science, a media strategy and data services. Examples from OPAL are used to illustrate the different approaches to the design and delivery of CS that have emerged over recent years and the breadth of opportunities for public participation the current landscape provides. Qualitative and quantitative data from OPAL are used as evidence of the impact of CS. While OPAL was conceived ahead of the more recent formalisation of approaches to the design, delivery and analysis of CS projects and their impact, it nevertheless provides a range of examples against which to assess the various benefits and challenges emerging in this fast developing field.

  19. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  20. Ultrahigh-energy particles from cosmic strings

    International Nuclear Information System (INIS)

    Bhattacharjee, P.

    1991-02-01

    The idea of production of ultrahigh-energy particles in the present universe due to annihilation or collapse of topological defects is discussed. Topological defects, formed in symmetry-breaking phase transitions in the early universe, can survive till today owing to their topological stability. However, under certain circumstances, topological defects may be physically destroyed. When topological defects are destroyed, the energy contained in the defects can be released in the form of massive gauge- and Higgs bosons of the underlying spontaneously broken gauge theory. Subsequent decay of these massive particles can give rise to energetic particles ranging up to an energy on the order of the mass of the original particles released from the defects. This may give us a ''natural'' mechanism of production of extremely energetic cosmic ray particles in the universe today, without the need for any acceleration mechanism. To illustrate this idea, I describe in detail the calculation of the expected ultrahigh-energy proton spectrum due to a specific process which involves collapse or multiple self-intersections of a class of closed cosmic string loops formed in a phase transition at a grand unification energy scale. I discuss the possibility that some of the highest-energy cosmic ray particles are of this origin. By comparing with the observational results on the ultrahigh-energy cosmic rays, we derive an upper limit to the average fraction of the total energy in all ''primary'' cosmic string loops that may be released in the form of particles due to collapse or multiple self-intersections of these loops. No nuclei such as α's or Fe's are in the spectrum. 43 refs., 3 figs

  1. The solid state physics programme at ISOLDE: recent developments and perspectives

    Science.gov (United States)

    Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.

    2017-10-01

    Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.

  2. Could the cosmic acceleration be transient?

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Antonio C.C.; Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2011-07-01

    Full text: The possibility of a transient cosmic acceleration appears in several theoretical scenarios and is theoretically interesting because it solves some difficulties inherent to eternally accelerating universes (like {Lambda}CDM). On the observational side, some authors, using a dynamical Ansatz for the dark energy equation of state, have suggested that the cosmic acceleration have already peaked and that we are currently witnessing its slowing down. Here, a possible slowing down of the cosmic expansion is investigated through a cosmographic approach. By expanding the luminous distance to fourth order and fitting the SNe Ia data from the most recent compilations (Union, Constitution and Union 2), the marginal likelihood distribution for the deceleration parameter today indicates that there is a considerable probability for q{sub 0} > 0. Also in contrast to the prediction of the {Lambda}CDM model, the cosmographic q(z) reconstruction suggests that the cosmic acceleration could already have peaked and be presently slowing down, what would imply that the recent accelerated expansion of the Universe is a transient phenomenon. It is also shown that to describe a transient acceleration the luminous distance needs to be expanded at least to fourth order. The present cosmographic results depend neither on the validity of general relativity nor on the matter-energy contents of the Universe. (author)

  3. Open-book tests to complement assessment-programmes : Analysis of open and closed-book tests

    NARCIS (Netherlands)

    Heijne-Penninga, M.; Kuks, J. B. M.; Schonrock-Adema, J.; Snijders, T. A. B.; Cohen-Schotanus, J.

    Today's health sciences educational programmes have to deal with a growing and changing amount of knowledge. It is becoming increasingly important for students to be able to use and manage knowledge. We suggest incorporating open-book tests in assessment programmes to meet these changes. This view

  4. Ultrahigh-energy cosmic rays: facts, myths and legends

    International Nuclear Information System (INIS)

    Anchordoqui, L.A.

    2011-01-01

    This is a written version of a series of lectures aimed at graduate students in astrophysics and theoretical/experimental particle physics. In the first part, we explain the important progress made in recent years towards understanding the experimental data on cosmic rays with energies > or approx. 10 8 GeV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic-ray sources, and emphasize some of the prospects for a new (multiparticle) astronomy. Next, we survey the state of the art regarding the ultrahigh-energy cosmic neutrinos that should be produced in association with the observed cosmic rays. In the second part, we summarize the phenomenology of cosmic-ray air showers. We explain the hadronic interaction models used to extrapolate results from collider data to ultrahigh energies, and describe the prospects for insights into forward physics at the Large Hadron Collider. We also explain the main electromagnetic processes that govern the longitudinal shower evolution. Armed with these two principal shower ingredients and motivation from the underlying physics, we describe the different methods proposed to distinguish primary species. In the last part, we outline how ultrahigh-energy cosmic-ray interactions can be used to probe new physics beyond the electroweak scale. (author)

  5. Cosmic neutrinos as a probe of TeV-scale physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, M.

    2007-02-15

    Ultra-high energy cosmic neutrinos are versatile probes of astrophysics, astronomy, and particle physics. They represent the messengers of hadronic processes in cosmic accelerators and survive the propagation through the interstellar medium practically unscathed. We investigate the neutrino fluxes associated with optically thin proton sources which provide a diagnostic of the transition between galactic and extragalactic cosmic rays. The center of mass energies in collisions of these cosmic neutrinos with atomic nuclei in the atmosphere or the Earth's interior easily exceed those so far reached in man-made accelerators. We discuss the prospects of observing supersymmetric neutrino interactions with Cherenkov telescopes and speculate about a neutrino component in extremely high energy cosmic rays from exotic interactions in the atmosphere. (orig.)

  6. Determinants of successful implementation of population-based cancer screening programmes

    DEFF Research Database (Denmark)

    Lynge, Elsebeth; Törnberg, Sven; von Karsa, Lawrence

    2012-01-01

    consider when planning, implementing and running population based cancer screening programmes. The list is general and is applicable to breast, cervical and colorectal cancer screening. It is based on evidence presented in the three European Union guidelines on quality assurance in cancer screening...... and diagnosis, supplemented with other literature and expert experience presented at a European Science Advisory Network for Health workshop. The implementation of a cancer screening programme should be divided into the following seven phases: (1) before planning, (2) planning, (3) feasibility testing, (4......) piloting or trial implementation, (5) scaling up from pilot to service, (6) running of full-scale programme, and (7) sustainability. For each phase, a substantial number of specified conditions have to be met. Successful implementation of a cancer screening programme requires societal acceptance and local...

  7. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  8. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Computer Science & Engineering, Information Technology and Electronics Address: INSA Senior Scientist, Faculty Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru 560 012, Karnataka Contact: Residence: (080) 2360 2635

  9. Manipulating lightcone fluctuations in an analogue cosmic string

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2018-02-01

    Full Text Available We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  10. Manipulating lightcone fluctuations in an analogue cosmic string

    Science.gov (United States)

    Hu, Jiawei; Yu, Hongwei

    2018-02-01

    We study the flight time fluctuations in an anisotropic medium inspired by a cosmic string with an effective fluctuating refractive index caused by fluctuating vacuum electric fields, which are analogous to the lightcone fluctuations due to fluctuating spacetime metric when gravity is quantized. The medium can be realized as a metamaterial that mimics a cosmic string in the sense of transformation optics. For a probe light close to the analogue string, the flight time variance is ν times that in a normal homogeneous and isotropic medium, where ν is a parameter characterizing the deficit angle of the spacetime of a cosmic string. The parameter ν, which is always greater than unity for a real cosmic string, is determined by the dielectric properties of the metamaterial for an analogue string. Therefore, the flight time fluctuations of a probe light can be manipulated by changing the electric permittivity and magnetic permeability of the analogue medium. We argue that it seems possible to fabricate a metamaterial that mimics a cosmic string with a large ν in laboratory so that a currently observable flight time variance might be achieved.

  11. Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels

    Science.gov (United States)

    Mason, Paul A.; Biermann, Peter L.

    2016-01-01

    Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.

  12. Scientific results from the cosmic background explorer (COBE)

    International Nuclear Information System (INIS)

    Bennett, C.L.; Boggess, N.W.; Cheng, E.S.; Hauser, M.G.; Kelsall, T.; Mather, J.C.; Moseley, S.H. Jr.; Shafer, R.A.; Silverberg, R.F.; Murdock, T.L.; Smoot, G.F.; Weiss, R.; Wright, E.L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservation upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. 104 refs., 1 tab

  13. Cosmic Ray-Air Shower Measurement from Space

    Science.gov (United States)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  14. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  15. The Need for Direct High-Energy Cosmic-Ray Measurements

    Science.gov (United States)

    Jones, Frank C.; Streitmatter, Robert

    2004-01-01

    Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.

  16. Anisotropy of the cosmic background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The characteristics of the cosmic microwave background radiation (CBR) are reviewed, focusing on intrinsic anisotropies caused by primordial matter fluctuations. The basic elements of the CBR are outlined and the contributions to anisotropy at different angular scales are discussed. Possible fluctuation spectra that can generate the observed large-scale structure of the universe through gravitational instability and nonlinear evolution are examined and compared with observational searches for cosmic microwave anisotropies. 21 refs

  17. The end of the galactic cosmic ray spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2007-03-15

    We discuss the region of transition between galactic and extragalactic cosmic rays. The exact shapes and compositions of these two components contains information about important parameters of powerful astrophysical sources and the conditions in extragalactic space as well as for the cosmological evolution of the sources of high energy cosmic rays. Several types of experimental data, including the exact shape of the ultrahigh energy cosmic rays, their chemical composition and their anisotropy, and the fluxes of cosmogenic neutrinos have to be included in the solution of this problem.

  18. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; et al.

    2017-07-31

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be $\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$, in good agreement with the Monte Carlo reconstruction efficiency $\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $\\approx80\\%$ of the cosmic rays passing through the MicroBooNE detector.

  19. Evaluation of the Undergraduate Physics Programme at Indira Gandhi National Open University: A Case Study

    Directory of Open Access Journals (Sweden)

    Arundhati Mishra

    2009-12-01

    Full Text Available The undergraduate science programme was launched at the Indira Gandhi National Open University (IGNOU in 1991-92 with an enrolment of 1,210 students. The programme was well received, and enrolments increased over the years. However, the success rates have not kept pace with enrolment.In this paper, the authors report the results of an evaluation of the undergraduate Physics programme at IGNOU. The evaluation, the first of its type for this programme, adapted the major tenets of the CIPP model. The findings are based on the responses from a randomly chosen sample of 509 learners across India. The methods employed for the study include records, document, and database analysis, surveys, and case studies.Although the University has enhanced access to higher science education, the attrition rate is high (73%, and the success rate is low. The authors recommend that the University review and reorient its strategies for providing good quality, learner-centred higher education in science subjects. The programme should address the concerns of the learners about the effectiveness of the student support systems, the difficulty level, and the learner-friendliness of study materials with the goal of achieving long-term sustainability while maintaining parity with the conventional system. The need for improving the presentation of the courses and simplifying the mathematical details is emphasised.

  20. Post Graduate Programme in Dietetics & Food Service Management (MSCDFSM) Programme of IGNOU: Access through the Lucknow Regional Centre

    Science.gov (United States)

    Dorothy, J. S.; Kumar, Ashwini

    2014-01-01

    Indira Gandhi National Open University (IGNOU) which was established initially as a Single mode Distance Teaching Institution (DTI) in the year 1985 opened its campus to face-to-face education in the year 2008 and thus now is a Dual mode Distance Teaching Institution (DTI). The Post Graduate Programme (Master of Science) in Dietetics and Food…