WorldWideScience

Sample records for science program students

  1. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  2. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  3. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  4. Direction discovery: A science enrichment program for high school students.

    Science.gov (United States)

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  5. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  6. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  7. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  8. DPS Planetary Science Graduate Programs Database for Students and Advisors

    Science.gov (United States)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.

    2017-10-01

    Planetary science is a topic that covers an extremely diverse set of disciplines; planetary scientists are typically housed in a departments spanning a wide range of disciplines. As such it is difficult for undergraduate students to find programs that will give them a degree and research experience in our field as Department of Planetary Science is a rare sighting, indeed. Not only can this overwhelm even the most determined student, it can even be difficult for many undergraduate advisers.Because of this, the DPS Education committee decided several years ago that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. We present here a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  9. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  10. The Deep River Science Academy: a unique and innovative program for engaging students in science

    International Nuclear Information System (INIS)

    Turner, C.W.; Didsbury, R.; Ingram, M.

    2014-01-01

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  11. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  12. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  13. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  14. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  15. Basic training in mathematics a fitness program for science students

    CERN Document Server

    Shankar, R

    1995-01-01

    Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences

  16. Student science enrichment training program: Progress report, June 1, 1988--May 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1989-04-21

    This is a status report on a Student Science Enrichment Training Program held at the campus of Claflin College, Orangeburg, SC. The topics of the report include the objectives of the project, participation experienced, financial incentives and support for the program, curriculum description, and estimated success of the program in stimulating an occupational interest in science and research fields by the students.

  17. Students' Attitudes toward Science as Predictors of Gains on Student Content Knowledge: Benefits of an After-School Program

    Science.gov (United States)

    Newell, Alana D.; Zientek, Linda R.; Tharp, Barbara Z.; Vogt, Gregory L.; Moreno, Nancy P.

    2015-01-01

    High-quality after-school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science-related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content…

  18. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  19. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  20. A Program to Prepare Graduate Students for Careers in Climate Adaptation Science

    Science.gov (United States)

    Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.

    2017-12-01

    We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.

  1. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    Science.gov (United States)

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  2. Using Arduino to Teach Programming to First-Year Computer Science Students

    Science.gov (United States)

    Tan, Wee Lum; Venema, Sven; Gonzalez, Ruben

    2017-01-01

    Transitioning to university is recognised as a challenging endeavour for commencing students. For commencing Computer Science students specifically, evidence suggests a link between poor performance in introductory technical courses, such as programming, and high attrition rates. Building resilience in students, particularly at the start of their…

  3. Motivating Young Native American Students to Pursue STEM Learning Through a Culturally Relevant Science Program

    Science.gov (United States)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-12-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.

  4. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  5. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  6. The Effect of an Experiential Learning Program on Middle School Students' Motivation toward Mathematics and Science

    Science.gov (United States)

    Weinberg, Andrea E.; Basile, Carole G.; Albright, Leonard

    2011-01-01

    A mixed methods design was used to evaluate the effects of four experiential learning programs on the interest and motivation of middle school students toward mathematics and science. The Expectancy-Value model provided a theoretical framework for the exploration of 336 middle school student participants. Initially, participants were generally…

  7. Student science enrichment training program. Progress report, June 1, 1991--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1992-04-21

    Historically Black Colleges and Universities wing of the United States Department of Energy (DOE) provided funds to Claflin College, Orangeburg, S.C. To conduct a student Science Enrichment Training Program for a period of six weeks during 1991 summer. Thirty participants were selected from a pool of applicants, generated by the High School Seniors and Juniors and the Freshmen class of 1990-1991 at Claflin College. The program primarily focused on high ability students, with potential for Science, Mathematics and Engineering Careers. The major objectives of the program were W to increase the pool of well qualified college entering minority students who will elect to go in Physical Sciences and Engineering and (II) to increase the enrollment in Chemistry and Preprofessional-Pre-Med, Pre-Dent, etc.-majors at Claflin College by including the Claflin students to participate in summer academic program. The summer academic program consisted of Chemistry and Computer Science training. The program placed emphasis upon laboratory experience and research. Visits to Scientific and Industrial laboratories were arranged. Guest speakers which were drawn from academia, industry and several federal agencies, addressed the participants on the future role of Science in the industrial growth of United States of America. The guest speakers also acted as role models for the participants. Several videos and films, emphasizing the role of Science in human life, were also screened.

  8. Attracting Students Into Science: Insights From a Summer Research Internship Program for Community College Students in Colorado

    Science.gov (United States)

    Anderson, S. P.; Smith, L. K.; Gold, A. U.; Batchelor, R. L.; Monday, B.

    2014-12-01

    Research Experience for Undergraduates (REU) programs commonly serve students already committed to careers in science. To spark student interest in the sciences early in their college career, the CIRES diversity initiative teamed with the Boulder Creek Critical Zone Observatory to build an REU for Colorado community college students. A group of 7 students was selected from consideration of diversity, prior training, and personal statements. Each student was paired with a research science mentor. Field excursions and team-building exercises filled the first week of the 8-week program. Students received weekly training in science communication, responsible conduct of research, use of spreadsheet and graphing software, and statistical analysis. Each student presented their research in a poster session, an oral presentation, and a written report. Several aspects of this pilot program worked well. The students formed a very supportive cohort, despite the fact that they were not in residence. Cohesion grew out of the immersion in field trips, and was reinforced with weekly check-ins. The trainings were essential for seeing projects through to written and oral presentations. Teaming students for fieldwork was an effective strategy to build support, and reduce mentor fatigue. Each student produced useful data. In the future, we would include a workshop on personal finances to address a clear need. Transportation support will be provided. A residential program might attract some but could preclude participation of students with families or other life-issues. Personal tutoring tailored to research projects would address low math skills. All 7 students completed the program; several elected to submit to the undergraduate virtual poster session at Fall AGU. Students all reported enormous personal and academic growth. Some are discussing transfer and graduate school opportunities with their mentors. The enthusiasm and appreciation of the students was unparalleled.

  9. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…

  10. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    Science.gov (United States)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  11. Creating Communication Training Programs for Graduate Students in Science and Engineering

    Science.gov (United States)

    Rice, M.; Lewenstein, B.; Weiss, M.

    2012-12-01

    Scientists and engineers in all disciplines are required to communicate with colleagues, the media, policy-makers, and/or the general public. However, most STEM graduate programs do not equip students with the skills needed to communicate effectively to these diverse audiences. In this presentation, we describe a science communication course developed by and for graduate students at Cornell University. This training, which has been implemented as a semester-long seminar and a weekend-long workshop, covers popular science writing, science policy, print and web media, radio and television. Here we present a comparison of learning outcomes for the semester and weekend formats, a summary of lessons learned, and tools for developing similar science communication programs for graduate students at other institutions.

  12. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    Science.gov (United States)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to

  13. Foundations in Science and Mathematics Program for Middle School and High School Students

    Science.gov (United States)

    Desai, Karna Mahadev; Yang, Jing; Hemann, Jason

    2016-01-01

    The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ .

  14. Evaluation of a statewide science inservice and outreach program: Teacher and student outcomes

    Science.gov (United States)

    Lott, Kimberly Hardiman

    Alabama Science in Motion (ASIM) is a statewide in-service and outreach program designed to provide in-service training for teachers in technology and content knowledge. ASIM is also designed to increase student interest in science and future science careers. The goals of ASIM include: to complement, enhance and facilitate implementation of the Alabama Course of Study: Science, to increase student interest in science and scientific careers, and to provide high school science teachers with curriculum development and staff development opportunities that will enhance their subject-content expertise, technology background, and instructional skills. This study was conducted to evaluate the goals and other measurable outcomes of the chemistry component of ASIM. Data were collected from 19 chemistry teachers and 182 students that participated in ASIM and 6 chemistry teachers and 42 students that do not participate in ASIM using both surveys and student records. Pre-treatment Chi-Square tests revealed that the teachers did not differ in years of chemistry teaching experience, major in college, and number of classes other than chemistry taught. Pre-treatment Chi-Square tests revealed that the students did not differ in age, ethnicity, school classification, or school type. The teacher survey used measured attitudes towards inquiry-based teaching, frequency of technology used by teacher self-report and perceived teaching ability of chemistry topics from the Alabama Course of Study-Science. The student surveys used were the Test of Science Related Attitudes (TOSRA) and a modified version of the Test of Integrated Process Skills (TIPS). The students' science scores from the Stanford Achievement Test (SAT-9) were also obtained from student records. Analysis of teacher data using a MANOVA design revealed that participation in ASIM had a significantly positive effect on teacher attitude towards inquiry-based teaching and the frequency of technology used; however, there was no

  15. DoD Science and Engineering Apprenticeship Program for High School Students, 1996-󈨥 Activities

    Science.gov (United States)

    1997-05-01

    Science Fair, A Honor Roll Baseball, Cross Country, Athletics, Weightlifting , Computers Robert Sidney Cox, III Other Male Leon High School...Sports Medicine Honor Roll Weightlifting , Swimming Marcus Mills Black Male Godby High School Florida State University Undecided FSU Incentive...paid for by the program. Seven of the students took a Psy- chology course, one a Nutritional Science class and two a Mathematics course. Eight of these

  16. DoD Science and Engineering Apprenticeship Program for High School Students, 1995-󈨤 Activities

    Science.gov (United States)

    1996-06-01

    University of Florida Sports Medicine Honor Roll Weightlifting , Swimming NAME: RACE: SEX: HIGH SCHOOL: ANTICIPATED COLLEGE: ANTICIPATED MAJOR...program. Three of the students took a Psychology course, one took a Nutritional Science class, one a Math course and two of them took a Meteorology...Awards and Scholarships: Honor Roll 13. Activities/Hobbies: Weightlifting , Swimming (Suggested Form) INFORMATION FOR EACH APPRENTICE

  17. Outcomes from the GLEON fellowship program. Training graduate students in data driven network science.

    Science.gov (United States)

    Dugan, H.; Hanson, P. C.; Weathers, K. C.

    2016-12-01

    In the water sciences there is a massive need for graduate students who possess the analytical and technical skills to deal with large datasets and function in the new paradigm of open, collaborative -science. The Global Lake Ecological Observatory Network (GLEON) graduate fellowship program (GFP) was developed as an interdisciplinary training program to supplement the intensive disciplinary training of traditional graduate education. The primary goal of the GFP was to train a diverse cohort of graduate students in network science, open-web technologies, collaboration, and data analytics, and importantly to provide the opportunity to use these skills to conduct collaborative research resulting in publishable scientific products. The GFP is run as a series of three week-long workshops over two years that brings together a cohort of twelve students. In addition, fellows are expected to attend and contribute to at least one international GLEON all-hands' meeting. Here, we provide examples of training modules in the GFP (model building, data QA/QC, information management, bayesian modeling, open coding/version control, national data programs), as well as scientific outputs (manuscripts, software products, and new global datasets) produced by the fellows, as well as the process by which this team science was catalyzed. Data driven education that lets students apply learned skills to real research projects reinforces concepts, provides motivation, and can benefit their publication record. This program design is extendable to other institutions and networks.

  18. A Program in Social Sciences for Engineering Students.

    Science.gov (United States)

    Kumar, K. S. P.

    A set of programs in liberal education designed to enhance the social dimensions of engineering education is described. This program requires a minimum of 36 quarter credits in the broad categories of English Composition (8-10 credits), Man and Society (12-15 credits), Artistic Expression (8-10 credits), and the balance from any of the above…

  19. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    Science.gov (United States)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling

  20. A multimedia educational program that increases science achievement among inner-city non-Asian minority middle-school students.

    Science.gov (United States)

    Murray, Nancy G; Opuni, Kwame A; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M; Hobbs, Mary

    2009-06-01

    To test the effectiveness of a middle school, multimedia health sciences educational program called HEADS UP in non-Asian-minority (Hispanic and African American), inner-city students. The program designers hope to increase the number of these students entering the health sciences pipeline. The program includes video role-model stories featuring minority scientists and students, hands-on activities, and teacher resources. Collaborators from The University of Texas Health Science Center at Houston, Spring Branch Independent School District, and the Health Museum developed the modules. From 2004 to 2007, the authors used a quasi-experimental, two-group pretest/posttest design to assess program effects on students' performance and interest in science, their science self-efficacy, their fear of science, and their science-related careers self-efficacy. An independent third party matched the intervention school to a comparison school by test scores, school demographics, and student demographics and then matched pairs of sixth-grade students (N = 428) by fifth-grade science scores, gender, ethnicity, and participation in the free or reduced lunch program. The authors collected data on these students for three years. At eighth grade (2007), the intervention school students scored significantly higher (F = 12.38, P science and reported higher interest in science (F = 11.08, P school pairs. Students in neither group reported an increase in their confidence to choose a science-related career, but students in one high-implementing teacher's class reported decreased fear of science. HEADS UP shows potential for improving inner-city, non-Asian-minority middle school students' performance and interest in science.

  1. Growing minds: The effect of school gardening programs on the science achievement of elementary students

    Science.gov (United States)

    Klemmer, Cynthia Davis

    Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that

  2. Perception of academic stress among Health Science Preparatory Program students in two Saudi universities.

    Science.gov (United States)

    Alsulami, Saleh; Al Omar, Zaid; Binnwejim, Mohammed S; Alhamdan, Fahad; Aldrees, Amr; Al-Bawardi, Abdulkarim; Alsohim, Meshary; Alhabeeb, Mohammed

    2018-01-01

    The Health Science Preparatory Program (HSPP) is a special program that aims to enhance the educational preparedness of students for participation in a health sciences career. Students spend their first university year in a combined extensive teaching program before they can be assigned to a particular health science specialty. It is thought that students enrolled in a highly competitive environment such as HSPP with a long list of potential stressors, including developmental, academic overload, language barriers and competition, are more disposed to stress and stress-related complications. This study aims to measure the level of academic stress and to determine its risk factors in students enrolled in HSPP-adapted local universities in Saudi Arabia. The study was conducted at two Saudi universities, King Saud University (KSU) and Imam Mohammad ibn Saud Islamic University (IMSU) with competition-based and non-competition-based HSPP learning models, respectively. Both universities adopt the HSPP system. The scale for assessing academic stress (SAAS) was used to assess students' perceived stress. A total of 290 students successfully completed the questionnaire (N=290), with a mean age of 18.66 years. Mean SAAS scores for KSU and IMSU students were 8.37 (SD = 4.641) and 7.97 (SD = 5.104), P =0.480, respectively. Only "satisfaction" and "associated social and health problems" have shown statistically significant correlation with university ( P =0.000 and P =0.049, respectively). This study has found mean SAAS score for two local universities with competition-based versus non-competition-based HSPP learning models. Academic stress correlation with age, gender and universities was discussed, and valuable future work guidance was recommended.

  3. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    Science.gov (United States)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  4. Partners in Science: A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-12-01

    Partners in Science is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series of lectures, tours, and demonstrations given by scientists within our research and development division (R&D). Phase 2 involves the selection of a small group of participants to intern for the summer in a research laboratory, working side by side with a scientist within R&D. In this manuscript, the specific aims, goals, and development of the Partners in Science program are described, as well as the syllabus/agenda, the logistics surrounding the operation of the program, and our shared personal experiences with students and teachers who have participated. Some of the pitfalls/problems associated with the program will be presented, and finally, the future direction of the program including areas of improvement and expansion are described.

  5. An international basic science and clinical research summer program for medical students.

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  6. Student Reported Growth: Success Story of a Master of Science in Education Learning Community Program

    Directory of Open Access Journals (Sweden)

    Sharon Kabes, EdD

    2010-08-01

    Full Text Available Quantitative and qualitative data collected from students who have completed a Master of Science in Education Learning Community Program support the effectiveness of the learning community model in facilitating professional growth and transformation. Instructors model constructivist theory. Peer review, collaboration, and reflective analysis of theory and practice are essential components of the model. The program facilitates growth as educators build their understanding about teaching and learning, transfer their ideas and processes into the classroom, and take an active leadership role in promoting change in classrooms, school, and larger community.

  7. Distance Education in Dental Hygiene Bachelor of Science Degree Completion Programs: As Perceived by Students and Faculty

    Science.gov (United States)

    Tsokris, Maureen

    2010-01-01

    This study investigated student and faculty perceptions of their experiences with online learning in dental hygiene Bachelor of Science degree completion programs on the dimensions of: quality of learning, connectedness to the learning environment, technology factors and student satisfaction. The experiences of dental hygiene students who took…

  8. Persistence of deaf students in science, technology, engineering, and mathematics undergraduate programs

    Science.gov (United States)

    Marchut, Amber E.

    Diversifying the student population and workforce under science, technology, engineering, and mathematics (STEM) is a necessity if innovations and creativity are to expand. There has not been a lot of literature regarding Deaf students in STEM especially regarding understanding how they persist in STEM undergraduate programs to successfully become STEM Bachelor of Science degree recipients. This study addresses the literature gap by investigating six students' experiences as they navigate their STEM undergraduate programs. The investigation uses narrative inquiry methodology and grounded theory method through the lens of Critical Race Theory and Critical Deaf Theory. Using videotaped interviews and observations, their experiences are highlighted using narratives portraying them as individuals surviving in a society that tends to perceive being deaf as a deficit that needs to be treated or cured. The data analysis also resulted in a conceptual model providing a description of how they persist. The crucial aspect of the conceptual model is the participants learned how to manage being deaf in a hearing-dominated society so they can reach their aspirations. The essential blocks for the persistence and managing their identities as deaf undergraduate STEMs include working harder, relying on familial support, and affirming themselves. Through the narratives and conceptual model of the six Deaf STEM undergraduates, the goal is to contribute to literature to promote a better understanding of the persistence of Deaf students, members of a marginalized group, as they pursue their dreams.

  9. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  10. Pilot study of a budget-tailored culinary nutrition education program for undergraduate food science students

    Science.gov (United States)

    Kerrison, Dorothy Adair

    The primary objective of this pilot study is to provide evidence that a budget-tailored culinary nutrition program is both appropriate and applicable to undergraduate food science students both in everyday life as well as their future health careers. Two validated programs were combined into one program in order to evaluate their combined effects: Cooking With a Chef and Cooking Matters at the Store. The secondary objective of this pilot study is to evaluate the components and reliability of a questionnaire created specifically for this pilot study. A review of past literature was written, which included culinary nutrition as a source of primary prevention, the importance of incorporating cost with culinary nutrition, and the importance of incorporating cost with culinary nutrition. Based on the literature review, it was determined that a budget-tailored culinary nutrition program was appropriate and applicable to undergraduate food science students interested in pursuing health-related careers. The pilot study design was a semi-crossover study: all four groups received the program, however, two groups were first treated as the control groups. All fifty-four participants received 5 sessions of culinary nutrition information from Cooking With a Chef, collaboratively delivered by a nutrition educator and a chef, and one session of information about shopping healthy on a budget from Cooking Matters at the Store in the form of a grocery store tour led by the nutrition educator. Three questionnaires were administered to the participants that evaluated culinary nutrition and price knowledge, cooking attitudes, and opinions of the programs' relevance to participants' everyday lives and careers. Two of the questionnaires, including a questionnaire developed specifically for the pilot study, were delivered as a pre- and post-test while the third questionnaire was delivered as a post-test. Eight random participants also partook in a focus group session led by the nutrition

  11. Perception of academic stress among Health Science Preparatory Program students in two Saudi universities

    Directory of Open Access Journals (Sweden)

    Alsulami S

    2018-03-01

    Full Text Available Saleh Alsulami, Zaid Al Omar, Mohammed S Binnwejim, Fahad Alhamdan, Amr Aldrees, Abdulkarim Al-bawardi, Meshary Alsohim, Mohammed Alhabeeb Departments of Family Medicine and Medical Education, College of Medicine, Imam Mohammad ibn Saud Islamic University, Riyadh, Saudi Arabia Abstract: The Health Science Preparatory Program (HSPP is a special program that aims to enhance the educational preparedness of students for participation in a health sciences career. Students spend their first university year in a combined extensive teaching program before they can be assigned to a particular health science specialty. It is thought that students enrolled in a highly competitive environment such as HSPP with a long list of potential stressors, including developmental, academic overload, language barriers and competition, are more disposed to stress and stress-related complications. This study aims to measure the level of academic stress and to determine its risk factors in students enrolled in HSPP-adapted local universities in Saudi Arabia. The study was conducted at two Saudi universities, King Saud University (KSU and Imam Mohammad ibn Saud Islamic University (IMSU with competition-based and non-competition-based HSPP learning models, respectively. Both universities adopt the HSPP system. The scale for assessing academic stress (SAAS was used to assess students’ perceived stress. A total of 290 students successfully completed the questionnaire (N=290, with a mean age of 18.66 years. Mean SAAS scores for KSU and IMSU students were 8.37 (SD = 4.641 and 7.97 (SD = 5.104, P=0.480, respectively. Only “satisfaction” and “associated social and health problems” have shown statistically significant correlation with university (P=0.000 and P=0.049, respectively. This study has found mean SAAS score for two local universities with competition-based versus non-competition-based HSPP learning models. Academic stress correlation with age, gender and

  12. The Impact of a Short-Term Pharmacology Enrichment Program on Knowledge and Science Attitudes in Precollege Students

    Directory of Open Access Journals (Sweden)

    Molly N Downing

    2016-06-01

    Full Text Available As our nation and the global economy place an increased demand for science, technology, engineering, and mathematics (STEM jobs, science educators must implement innovative approaches to pique precollege student’s interests in these careers. Pharmacology remains a relevant and engaging platform to teach biology and chemistry concepts, and this strategy applied over several months in the formal classroom increases science literacy in high school students. In order to improve the affordability and accessibility of this educational approach, we developed and assessed the impact of a short-term pharmacology day camp, ‘Pills, Potions, and Poisons’ (PPP, on high school students’ science knowledge and attitudes toward science careers. The PPP program was offered annually from 2009 through 2012, and participants spent 6 days learning about pharmacology and careers in the biomedical sciences. All PPP student participants (n=134 completed surveys assessing their basic science knowledge and science attitudes before and after the program. Students achieved significant gains in their science knowledge by the end (Day 6 of the PPP program (from 41% mean test score to 65%; p<0.001. In addition, the majority of participants agreed or strongly agreed that the PPP program positively impacted their attitudes toward science (p<0.001. This study provides evidence that a short-term pharmacology-centered science enrichment program can achieve significant gains in participant’s science knowledge as well as motivation and confidence towards science careers. Moreover, we report benefits experienced by the undergraduate, graduate, and professional pharmacy student teaching assistants (TAs, n=10 who reported improved communication skills and an increased interest in future educational work.   Type: Original Research

  13. Program specific admission testing and dropout for sports science students: a prospective cohort study

    DEFF Research Database (Denmark)

    O'Neill, Lotte; Christensen, Mette Krogh; Vonsild, Maria Cecilie

    2014-01-01

    if admission strategy was also independently associated with dropout for sports science students in a university setting. The study design was a prospective cohort study with a 2 year follow-up. The population was 449 sports science students admitted to a university in the years 2002-2007. The analysis...

  14. Engaging Students in Climate Change Science and Communication through a Multi-disciplinary Study Abroad Program

    Science.gov (United States)

    North, L. A.; Polk, J.; Strenecky, B.

    2014-12-01

    The implications of the climate change phenomenon are far-reaching, and will impact every person on Earth. These problems will be complex, and will require leaders well-versed in interdisciplinary learning and international understanding. To employ a multi-disciplinary approach to studying the impact climate change is having in the world in which we live, a team of 57 Western Kentucky University (WKU) faculty, staff, and students participated in a study abroad program to seven ports in the North Sea and North Atlantic, including three ports in Iceland, onboard the Semester at Sea ship, MV Explorer. This program combined interdisciplinary learning, service learning, and international understanding toward the goal of preparing the leaders of tomorrow with the skills to address climate change challenges. Together, the group learned how climate change affects the world from varied academic perspectives, and how more often than not these perspectives are closely interrelated. Courses taught during the experience related to climate change science and communication, economics, future trends, and K-12 education. Each student also participated in a The $100 Solution™ service-learning course. While in port, each class engaged in a discipline-specific activities related to the climate change topic, while at sea students participated in class lectures, engaged in shipboard lectures by international experts in their respective fields, and participated in conversations with lifelong learners onboard the ship. A culminating point of the study abroad experience was a presentation by the WKU students to over 100 persons from the University of Akureyri in Akureyri, Iceland, representatives of neighboring Icelandic communities, environmental agencies, and tourism bureaus about what they had learned about climate change during their travels. By forging this relationship, students were able to share their knowledge, which in turn gave them a deeper understanding of the issues they

  15. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y

    2007-05-15

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs.

  16. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    International Nuclear Information System (INIS)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y.

    2007-05-01

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs

  17. Increasing student engagement in science through field-based research: University of Idaho's WoW STEMcore Program

    Science.gov (United States)

    Squires, A. L.; Boylan, R. D.; Rittenburg, R.; Boll, J.; Allan, P.

    2013-12-01

    A recent statewide survey assessing STEM perceptions in Idaho showed that high school student interest in science and preparation for college are declining. To address this decline we are piloting an interdisciplinary, community and field-based water science education approach for 10th - 12th grade science courses during the 2013-14 school year called WoW STEMcore. The program is led by graduate students in the University of Idaho (UI) Waters of the West (WoW) program. Our methods are based on proven best practices from eight years of NSF GK-12 experience at UI and over a decade of GK-12 experience at more than 300 programs in the U.S. WoW STEMcore works to strengthen partnerships between WoW graduate students, high school teachers, and regional organizations that work on natural resource management or place-based science education with the intent of sustaining and merging efforts to increase scientific literacy among high school students and to better prepare them for higher education. In addition, graduate students gain outreach, education and communication experience and teachers are exposed to new and relevant research content and methods. WoW STEMcore is fostering these partnerships through water themed projects at three northern Idaho high schools. The pilot program will culminate in Spring 2014 with a regional Water Summit in which all participating students and partners will converge at a two-day youth scientific conference and competition where they can showcase their research and the skills they gained over the course of the year. We hypothesize that through a graduate student-led, field-based program that gets students out of the classroom and thinking about water resource issues in their communities, we will 1) fuel high school students' interest in science through hands on and inquiry-based pedagogy and 2) improve preparation for higher education by providing graduate student mentors to discuss the pathway from high school to college to a career. In

  18. An investigation of factors related to self-efficacy for Java programming among computer science education students

    Directory of Open Access Journals (Sweden)

    Desmond Wesley Govender

    2015-11-01

    Full Text Available Students usually perceived computer programming courses as one of the most difficult courses since learning to program is perceived as a difficult task. Quite often students’ negative perceptions on computer programming results in poor results and high drop-out rates. The purpose of this study is to examine the impact of factors that affect computer science education students’ Java programming self-efficacy and the relationship between Java programming self-efficacy and students’ age and gender. A questionnaire was used to gather data. A scale with thirty-two items assessing Java programming self-efficacy was adapted from Askar and Davenport’s (2009 computer programming self-efficacy scale. A total of twenty students from a Computer Science Education Discipline participated in this study. Collected data were analysed using SPSS version 22.0. Descriptive statistics, reliability test, mean, standard deviation, and rotated component matrix were utilized to analyze the resulting data. Results indicated that there is not much difference between males (45% and females (55% Java programming self-efficacy. Furthermore, the results also indicated that programming skills and Java constructs have higher influence on the self-efficacy for Java programming among computer science education students followed by non-complexity, time consciousness, ability to recode for better understanding and self-motivation.

  19. Program specific admission testing and dropout for sports science students: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Lotte Dyhrberg O'Neill

    2014-09-01

    Full Text Available Recent research in medical education suggests that program specific admission testing could have a protective effect against early dropout. Little is known about the effect of program specific admission testing on dropout in other areas of higher education. The aim of this paper was to examine if admission strategy was also independently associated with dropout for sports science students in a university setting. The study design was a prospective cohort study with a 2 year follow-up. The population was 449 sports science students admitted to a university in the years 2002-2007. The analysis used was multivariate logistic regression and the predictors examined were: admission group (grade-based or admission tested as well as educational and socio-demographic variables. The outcome was dropout within 2 years of study start. Admission testing offered superior protection against dropout compared to grade-based admission. This result may fit with elements of previous dropout theory, student-environment fit theory and perhaps also with self-efficacy theory. Nyere forskning inden for medicinsk uddannelse indikerer at uddannelsesspecifikke optagelsesprøver kan have en beskyttende effekt i forhold til tidligt studiefrafald, men for andre universitetsuddannelser end Medicin synes denne sammenhæng endnu ikke at være blevet grundigt belyst. Formålet med dette studie var derfor at undersøge, om optagelsesprøver også beskyttede mod tidligt frafald blandt idrætsstuderende på universitetet. Studiedesignet var et prospektivt kohortestudie med to års opfølgning. Populationen var 449 idrætsstuderende, som blev optaget på Syddansk Universitet i årene 2002-2007. Data blev analyseret med multivariat logistisk regression, og følgende typer af prædiktorer for frafald blev undersøgt: Optagelseskvote (kvote 1 eller kvote 2 udprøvede, andre uddannelsesrelaterede variable samt udvalgte socio-demografiske variable. Effektmålet var studiestatus (frafaldet

  20. Program specific admission testing and dropout for sports science students: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Lotte Dyhrberg O'Neill

    2014-09-01

    Full Text Available Recent research in medical education suggests that program specific admission testing could have a protective effect against early dropout. Little is known about the effect of program specific admission testing on dropout in other areas of higher education. The aim of this paper was to examine if admission strategy was also independently associated with dropout for sports science students in a university setting. The study design was a prospective cohort study with a 2 year follow-up. The population was 449 sports science students admitted to a university in the years 2002-2007. The analysis used was multivariate logistic regression and the predictors examined were: admission group (grade-based or admission tested as well as educational and socio-demographic variables. The outcome was dropout within 2 years of study start. Admission testing offered superior protection against dropout compared to grade-based admission. This result may fit with elements of previous dropout theory, student-environment fit theory and perhaps also with self-efficacy theory. Nyere forskning inden for medicinsk uddannelse indikerer at uddannelsesspecifikke optagelsesprøver kan have en beskyttende effekt i forhold til tidligt studiefrafald, men for andre universitetsuddannelser end Medicin synes denne sammenhæng endnu ikke at være blevet grundigt belyst. Formålet med dette studie var derfor at undersøge, om optagelsesprøver også beskyttede mod tidligt frafald blandt idrætsstuderende på universitetet. Studiedesignet var et prospektivt kohortestudie med to års opfølgning. Populationen var 449 idrætsstuderende, som blev optaget på Syddansk Universitet i årene 2002-2007. Data blev analyseret med multivariat logistisk regression, og følgende typer af prædiktorer for frafald blev undersøgt: Optagelseskvote (kvote 1 eller kvote 2 udprøvede, andre uddannelsesrelaterede variable samt udvalgte socio-demografiske variable. Effektmålet var studiestatus (frafaldet

  1. Chemistry Science Investigation: Dognapping Workshop, an Outreach Program Designed to Introduce Students to Science through a Hands-On Mystery

    Science.gov (United States)

    Boyle, Timothy J.; Sears, Jeremiah M.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Nguyen, Thao H.

    2017-01-01

    The Chemistry Science Investigation: Dognapping Workshop was designed to (i) target and inspire fourth grade students to view themselves as "Junior Scientists" before their career decisions are solidified; (ii) enable hands-on experience in fundamental scientific concepts; (iii) increase public interaction with science, technology,…

  2. Exploring science and mathematics teaching experiences in Thailand using reflective journals of an internship program between Vietnamese and Thai students

    Science.gov (United States)

    Pruekpramool, Chaninan; Kanyaprasith, Kamonwan; Phonphok, Nason; Diem, Huynh Thi Thuy

    2018-01-01

    An internship program between Vietnamese student teachers from Cantho University and Thai graduate students from Srinakharinwirot University has occurred in June 2016. There were six Vietnamese student teachers and four Thai graduate students participated in this program with the help of science teachers from two schools in Sa Kaeo and Chachoengsao Provinces of Thailand. To explore Vietnamese and Thai students' life experiences and their perceptions in science and Mathematics teaching, reflective journals were used to record their progress as team teaching in primary and lower secondary classrooms in the form of the online format via social media in English language. The data were collected from 54 reflective journals from their eight days experiences at the schools. The data were analyzed qualitatively using Van Manen's level of reflectivity which composed of three levels; 1) Technical Rationality (TR), 2) Practical Action (PA) and 3) Critical Reflection (CR). The results explicitly revealed that the three levels of reflectivity have appeared in the reflective journals. Besides, Vietnamese and Thai students have learned more from each other and can exchange their educational experiences and culture. Certainly, this was the first time for them to teach science and mathematics in English to Thai students. Moreover, they have shared their impressions toward schools, teachers and also students in the schools in their reflective journal as well.

  3. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3–6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. PMID:26086660

  4. Exploring Students Intentions to Study Computer Science and Identifying the Differences among ICT and Programming Based Courses

    Science.gov (United States)

    Giannakos, Michail N.

    2014-01-01

    Computer Science (CS) courses comprise both Programming and Information and Communication Technology (ICT) issues; however these two areas have substantial differences, inter alia the attitudes and beliefs of the students regarding the intended learning content. In this research, factors from the Social Cognitive Theory and Unified Theory of…

  5. Implications for School Leaders of the Impact of Math, Science, and Technology Magnet Programs on Middle School Student Achievement

    Science.gov (United States)

    Hinojosa, Lupita

    2012-01-01

    Although many national studies have been conducted on the effectiveness of magnet programs, there is limited research involving math, science, and technology magnet schools and their influence on student academic performance, especially at the middle school level. The purpose of this study was to determine whether a statistical difference existed…

  6. Improving academic performance of sport and exercise science undergraduate students in gross anatomy using a near-peer teaching program.

    Science.gov (United States)

    Viana, Ricardo Borges; Campos, Mário Hebling; Santos, Douglas de Assis Teles; Xavier, Isabela Cristina Maioni; Vancini, Rodrigo Luiz; Andrade, Marília Santos; de Lira, Claudio Andre Barbosa

    2018-04-16

    Peer and near-peer teaching programs are common in medical undergraduate courses. However, there are no studies that have investigated the effectiveness of a near-peer teaching program on the academic performance of undergraduate students pursuing sport and exercise science coursework. This study was conducted to analyze the effectiveness of such a program for students who participated in a course on the functional anatomy of the locomotor apparatus. A total of 39 student participants were divided into two groups: students in one group voluntarily attended at least one session of a near-peer teaching program, and students in the other group attended no sessions. The final grade (range 0-100%) was recorded and used as an indicator of academic performance. The final grade of students who attended the near-peer teaching program (69.5 ± 16.0%) was 38.7% higher (P = 0.002, d = 1.06) than those who did not (50.1 ± 20.4%). When the academic performance of the same students was evaluated in another course (exercise physiology) that did not offer a near-peer teaching program, there were no significant differences between the groups (students who attended or did not attend the near-peer teaching program). A significant positive association was found between near-peer teaching program frequency and the number of students approved and not approved in the course (P = 0.041). A significant difference (P = 0.001) was found in the attendance at regular classes between the group who participated in the near-peer teaching program (median: 62 hours; IQR [interquartile ranges]: 4.0 hours) and those who did not (median: 58 hours; IQR: 4.0 hours). Gender was not a moderating factor on academic performance or near-peer teaching program attendance. These results highlight the effectiveness of a near-peer teaching program on the academic performance of students from a sport and exercise science degree program while enrolled in an anatomy course. Anat Sci Educ.

  7. The Analysis of Learning Styles and Their Relationship to Academic Achievement in Medical Students of Basic Sciences Program

    Directory of Open Access Journals (Sweden)

    Reza Ghaffari

    2013-10-01

    Full Text Available Introduction: Learning style is an individual’s preferred method of encountering information in specific situations in order to acquire knowledge, skills and attitudes through study or experience. Students and Planers’ awareness of learning styles facilitate the teaching process, increases satisfaction and makes the future choices easier. This study aimed to examine different learning styles and their relation to academic achievement in medical students of basic sciences program at Tabriz University of Medical Sciences. Methods: In this descriptive – analytical study, the sample consisted of all medical students of basic sciences program at Tabriz University of Medical Sciences in 2011-2012. The data was collected through a questionnaire which included respondents’ demographic information and overall grade point average (GPA as well as Kolb standard questions on learning styles. Results: 4.3%, 47.8%, 44.9% and 2.9% of students preferred diverger, assimilator, converger and accommodator learning styles, respectively. Mean overall GPA of students who preferred diverger learning styles was 14.990.39±. Students who prefer assimilator, converger and accommodator learning styles had mean overall GPAs of 14.940.56±, 15.080.58± and 14.830.29± respectively. The findings showed no significant relationship between students’ learning academic achievement and their learning styles (p = 0.689. Conclusion: There was no significant relationship between Students’ academic achievement and their learning styles. Furthermore, the majorit of the students preferred accommodator and converger learning styles. Consequently, adopting interactive teaching methods, using tutorials, running simulation programs, launching laboratory activities and encouraging students to think and analyze problems and issues can be greatly effective in prolonging their learning lifecycle.

  8. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  9. The Impact of an Interdisciplinary Space Program on Computer Science Student Learning

    Science.gov (United States)

    Straub, Jeremy; Marsh, Ronald; Whalen, David

    2015-01-01

    Project-based learning and interdisciplinary projects present an opportunity for students to learn both technical skills and other skills which are relevant to their workplace success. This paper presents an assessment of the educational impact of the OpenOrbiter program, a student-run, interdisciplinary CubeSat (a type of small satellite with…

  10. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students.

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Program for International Student Assessment (PISA) 2006 and Scientific Literacy: A Perspective for Science Education Leaders

    Science.gov (United States)

    Bybee, Rodger W.

    2009-01-01

    This article describes the idea of scientific literacy as defined in PISA, discusses relevant results of PISA, and clarifies meaningful relationships between PISA data and scientific competencies of U.S. students. Finally, the author includes insights and recommendations for contemporary leadership in science education. (Contains 8 tables and 1…

  12. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    Science.gov (United States)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p virtual reality platforms and digital animations. Future research is encouraged to investigate possible correlations between socio-demographic attributes and academic success of students enrolled in online science programs in reference to lab completion.

  13. Student desertion study of the program of Natural Sciences and Environmental Education in the period 2011–2015

    Directory of Open Access Journals (Sweden)

    Elvira Patricia Flórez Nisperuza

    2016-12-01

    Full Text Available One of the main problems facing the Colombian Higher Education System concerns high levels of dropout in the undergraduate program, the degree program in Natural Sciences and Environmental Education, Faculty of Education and Human Sciences of the University of Cordoba, Is foreign to this reality. In relation to this problem, the purpose of this research was to characterize and describe the factors that influence the dropout of the program in the period 2011 - 2015. The research was of mixed nature, interviews and surveys were applied to the sample. It is concluded that the factors that influence this phenomenon are the economic factor, lack of vocational guidance, lack of motivation, city change and paternity, to a lesser extent. Finally, this study ends with the proposal of strategies that help to mitigate the problem of desertion, based on the voices of teachers, students, managers and administrators of the program.

  14. Ground Truth Studies - A hands-on environmental science program for students, grades K-12

    Science.gov (United States)

    Katzenberger, John; Chappell, Charles R.

    1992-01-01

    The paper discusses the background and the objectives of the Ground Truth Studies (GTSs), an activity-based teaching program which integrates local environmental studies with global change topics, utilizing remotely sensed earth imagery. Special attention is given to the five key concepts around which the GTS programs are organized, the pilot program, the initial pilot study evaluation, and the GTS Handbook. The GTS Handbook contains a primer on global change and remote sensing, aerial and satellite images, student activities, glossary, and an appendix of reference material. Also described is a K-12 teacher training model. International participation in the program is to be initiated during the 1992-1993 school year.

  15. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  16. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    Science.gov (United States)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal

  17. A Model Retention Program for Science and Engineering Students: Contributions of the Institutional Research Office.

    Science.gov (United States)

    Andrade, Sally J.; Stigall, Sam; Kappus, Sheryl S.; Ruddock, Maryann; Oburn, Martha

    This paper asserts that the continuing decline in admissions to science and engineering graduate programs may lead to a shortage of skilled professionals that undermines the U.S. economy and to a shortage in higher education faculty. The Louis Stokes Alliance for Minority Participation (LSAMP) provides academic activities and retention services to…

  18. The effectiveness of a popular science promotion program on nanotechnology for elementary school students in I-Lan City

    Science.gov (United States)

    Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I.; Chen, Hui-Huang

    2015-01-01

    Background:Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in nanotechnology among schoolchildren. Purpose:The objective of this study was to evaluate the effectiveness of the Nanotechnology-based Popular Science Education Promotion and Teaching (NPSEPT) program through camp activity that was implemented in elementary schools in I-Lan City, Taiwan. Program description:To create a competitive advantage, a human resources development program was implemented as one of the nanotechnology incubation projects in Taiwan and focused on developing an appropriately-skilled professional workforce as well as promoting popular science education. Sample:The volunteer research participants were 323 sixth grade students in four elementary schools in I-Lan City, Taiwan, who were evaluated at the beginning and the end of the nanotechnology-based popular science promotion camp activity. Design and methods:A research tool called the 'NPSEPT test' was designed specifically for this study and was approved by experts who evaluated its content and face validity. The questionnaire was divided into three aspects: 'Nanophenomena in the natural world'; 'Nanomaterials and their scaling effects'; and 'Definition, characteristics, and applications of nanotechnology.' The effectiveness of learning among the students was analyzed using descriptive statistics, a paired sample t-test, analysis of variance (ANOVA) and a post hoc comparison. Results:The results of the three-part 'NPSEPT test' revealed that NPSEPT significantly advanced nanotechnology learning performance and outcomes among students in the four participating elementary schools. Of the 15 questions included in the NPSEPT test, positive change for more than 30

  19. The supplemental instruction program: Student perceptions of the learning environment and impact on student academic achievement in college science at California State University, San Marcos

    Science.gov (United States)

    Hizer, Suzanne Elizabeth

    Higher education in science has been criticized and calls to increase student learning and persistence to degree has been recognized as a national problem by the Department of Education, the National Science Foundation, the National Research Council, and the National Academy of Sciences. One mode of academic assistance that may directly address this issue is the implementation of Supplemental Instruction (SI) in science courses. SI is a specific model of academic assistance designed to help students in historically difficult science classes master course content, thus increasing their academic achievement and retention. This study assessed the SI program at California State University, San Marcos, in supported science courses. Specifically, academic achievement based on final course grades were compared between SI participating and nonparticipating students, multiple affective factors were measured at the beginning and end of the semester, and students' perceptions of the classroom and SI session learning environments recorded. Overall, students who attended five or more SI sessions achieved higher final course grades. Students who chose to participate in SI had higher initial levels of responsibility and anxiety. Additionally, SI participants experienced a reduction in anxiety over the semester whereas nonparticipants experienced an increase in anxiety from beginning to the end of the semester. The learning environment of SI embodies higher levels of constructivist principles of active learning such as cooperation, cohesiveness, innovation, and personalization---with one exception for the physics course, which is a based on problem-based learning. Structural equation modeling of variables indicates that high self-efficacy at the end of the semester is directly related to high final course grades; this is mediated by cohesion in the classroom and the cooperation evidenced in SI sessions. These findings are elaborated by student descriptions of what happened in SI

  20. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    Science.gov (United States)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  1. Student Contributions to Citizen Science Programs As a Foundation for Independent and Classroom-Based Undergraduate Research in the Earth Sciences

    Science.gov (United States)

    Guertin, L. A.

    2014-12-01

    Environmental monitoring projects on the grounds of a campus can serve as data collection sites for undergraduate research. Penn State Brandywine has utilized students in independent study projects to establish two citizen science programs and to begin collecting data, with the data sets serving as a foundation for authentic inquiry-based exercises in introductory-level Earth science courses. The first citizen science program is The Smithsonian Institution's Global Tree Banding Project, which contributes to research about tree biomass by tracking how trees respond to climate. We are going beyond the requirements of the Smithsonian project. Instead of only taking two measurements each in the spring and fall, undergraduate researchers are taking measurements every two weeks throughout the year. We started taking measurements of ten trees on campus in 2012 will continue until each tree outgrows its tree band. The data is available for download in Google Spreadsheets for students to examine changes in tree diameter within one or between growing seasons, supplemented with temperature and precipitation data (see http://sites.psu.edu/treebanding/). A second citizen science program we have begun on campus is the NASA-funded Digital Earth Watch (DEW) Picture Post Project, allowing students to monitor the environment and share observations through digital photography. We established four Picture Post sites on campus, with students taking weekly photos to establish an environmental baseline of the campus landscape and to document future environmental changes pre- and post-construction. We started taking digital photos on campus in 2014 will continue well past the completion of construction to continue to look for changes. The image database is less than a year old, but the images provide enough information for some early analyses, such as the variations in "greenness" over the seasons. We have created a website that shares the purpose of our participation in the Picture Post

  2. An anthropological approach to teaching health sciences students cultural competency in a field school program.

    Science.gov (United States)

    Hutchins, Frank T; Brown, Lori DiPrete; Poulsen, Keith P

    2014-02-01

    International immersion experiences do not, in themselves, provide students with the opportunity to develop cultural competence. However, using an anthropological lens to educate students allows them to learn how to negotiate cultural differences by removing their own cultural filters and seeing events through the eyes of those who are culturally different. Faculty at the University of Wisconsin-Madison's Global Health Institute believed that an embedded experience, in which students engaged with local communities, would encourage them to adopt this Cultural Competency 2.0 position. With this goal in mind, they started the Field School for the Study of Language, Culture, and Community Health in Ecuador in 2003 to teach cultural competency to medical, veterinary, pharmacy, and nursing students. The program was rooted in medical anthropology and embraced the One Health initiative, which is a collaborative effort of multiple disciplines working locally, nationally, and globally to obtain optimal health for people, animals, and the environment. In this article, the authors identify effective practices and challenges for using a biocultural approach to educating students. In a semester-long preparatory class, students study the Spanish language, region-specific topics, and community engagement principles. While in Ecuador for five weeks, students apply their knowledge during community visits that involve homestays and service learning projects, for which they partner with local communities to meet their health needs. This combination of language and anthropological course work and community-based service learning has led to positive outcomes for the local communities as well as professional development for students and faculty.

  3. [Preparation and effect of a behavioral science-based education program for sleep improvement among medical students].

    Science.gov (United States)

    Ueda, Masumi; Adachi, Yoshiko; Hayama, Junko; Yamagami, Toshiko

    2008-01-01

    The present study aimed to investigate a simple education program that is effective for sleep improvement among medical students who will be medical doctors in the future. The education program applied in the present study was developed for sleep improvement based on behavioral science and changes in knowledge and sleeping habits were observed. Subjects were 6th-year medical students of 2002 and 2003. Students of 2002 attended a program including a 90-minute lecture and a 2-week practice learning session, and students of 2003 attended only the lecture. In the lecture, behavior therapy for chronic insomnia was explained using a booklet. In the practice learning session, students set a target behavior for improvement and conducted self-monitoring of their sleep and the targeted behavior. Changes in knowledge about sleep, attitude toward the therapy, sleep, and sleep-related habits were observed and compared between the 2 groups of subjects immediately and 2-weeks after the lecture. It was found that after both programs subjects had more knowledge about sleep than before. In the program including practice learning session, subjects' attitude for managing patients changed from before the lecture to after the lecture, and after the practice learning session. It was found that more than half of the students thought that they could provide sleep guidance based on the behavior therapy. Regarding the subjects' sleep, significant improvements were observed for "having nightmares upon falling asleep," "sleepiness during daytime," "sense of getting a sound sleep," and "mood upon waking up." Regarding sleep-related habits, significant improvements were observed for "taking a nap," "dozing off," and "eating breakfast." On the other hand, only the lecture subjects improved irregularity of bedtime and sleeping time. Although an increase in knowledge and improvement of sleep were observed among students who attended only the lecture, a further increase in knowledge and improvement

  4. The Single Sex Debate for Girls in Science: a Comparison Between Two Informal Science Programs on Middle School Students' STEM Identity Formation

    Science.gov (United States)

    Hughes, Roxanne M.; Nzekwe, Brandon; Molyneaux, Kristen J.

    2013-10-01

    Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many science, technology, engineering, and mathematics (STEM) related fields. Research points to adolescence as the age where this sense of marginalization begins to develop. As a result, policy responses have utilized various frameworks such as: increased access for women, changing pedagogy to address women's learning styles, changing the language and culture of science to prevent marginalization of stigmatized groups, and finally exploring the role that individual identity plays in the marginalization of women. This study adds to the policy debate as it applies to single sex education by comparing middle school participants' STEM identity formation during two informal science learning environments (an all girls' STEM camp and a co-educational STEM camp). Additionally, this study focuses on the influence of camp activities within two informal science education programs: particularly the provision of role models and authentic STEM research activities, as means to improve STEM identity and make these fields relevant to the lives of middle school students. The results indicate that both camps improved girls' STEM identities. These findings suggest that the single sex environment is not as important to STEM identity as the pedagogy used within the program.

  5. The Effect of Problem-Solving Instruction on the Programming Self-efficacy and Achievement of Introductory Computer Science Students

    Science.gov (United States)

    Maddrey, Elizabeth

    Research in academia and industry continues to identify a decline in enrollment in computer science. One major component of this decline in enrollment is a shortage of female students. The primary reasons for the gender gap presented in the research include lack of computer experience prior to their first year in college, misconceptions about the field, negative cultural stereotypes, lack of female mentors and role models, subtle discriminations in the classroom, and lack of self-confidence (Pollock, McCoy, Carberry, Hundigopal, & You, 2004). Male students are also leaving the field due to misconceptions about the field, negative cultural stereotypes, and a lack of self-confidence. Analysis of first year attrition revealed that one of the major challenges faced by students of both genders is a lack of problem-solving skills (Beaubouef, Lucas & Howatt, 2001; Olsen, 2005; Paxton & Mumey, 2001). The purpose of this study was to investigate whether specific, non-mathematical problem-solving instruction as part of introductory programming courses significantly increased computer programming self-efficacy and achievement of students. The results of this study showed that students in the experimental group had significantly higher achievement than students in the control group. While this shows statistical significance, due to the effect size and disordinal nature of the data between groups, care has to be taken in its interpretation. The study did not show significantly higher programming self-efficacy among the experimental students. There was not enough data collected to statistically analyze the effect of the treatment on self-efficacy and achievement by gender. However, differences in means were observed between the gender groups, with females in the experimental group demonstrating a higher than average degree of self-efficacy when compared with males in the experimental group and both genders in the control group. These results suggest that the treatment from this

  6. Utilizing Public Access Data and Open Source Statistical Programs to Teach Climate Science to Interdisciplinary Undergraduate Students

    Science.gov (United States)

    Collins, L.

    2014-12-01

    Students in the Environmental Studies major at the University of Southern California fulfill their curriculum requirements by taking a broad range of courses in the social and natural sciences. Climate change is often taught in 1-2 lectures in these courses with limited examination of this complex topic. Several upper division elective courses focus on the science, policy, and social impacts of climate change. In an upper division course focused on the scientific tools used to determine paleoclimate and predict future climate, I have developed a project where students download, manipulate, and analyze data from the National Climatic Data Center. Students are required to download 100 or more years of daily temperature records and use the statistical program R to analyze that data, calculating daily, monthly, and yearly temperature averages along with changes in the number of extreme hot or cold days (≥90˚F and ≤30˚F, respectively). In parallel, they examine population growth, city expansion, and changes in transportation looking for correlations between the social data and trends observed in the temperature data. Students examine trends over time to determine correlations to urban heat island effect. This project exposes students to "real" data, giving them the tools necessary to critically analyze scientific studies without being experts in the field. Utilizing the existing, public, online databases provides almost unlimited, free data. Open source statistical programs provide a cost-free platform for examining the data although some in-class time is required to help students navigate initial data importation and analysis. Results presented will highlight data compiled over three years of course projects.

  7. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    Science.gov (United States)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  8. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this program to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.

  9. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  10. Impact of "Grassroots on Work" (GROW) Extension Program to the Bachelor of Arts in Political Science Students' Sense of Civic Responsibility

    Science.gov (United States)

    Paga, Mark Leo Huit

    2015-01-01

    Purpose: The purpose of this study was to determine the medium term effect of service-learning program or "Grassroots on Work" extension program to civic responsibility of AB Political Science students. Methodology: This study employed an impact evaluation research design and both qualitative and quantitative. The data on goals and…

  11. The Impact of a "Framework"-Aligned Science Professional Development Program on Literacy and Mathematics Achievement of K-3 Students

    Science.gov (United States)

    Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert

    2017-01-01

    This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around…

  12. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual‐Degree Program

    Science.gov (United States)

    Pillinger, Michael; Plottel, Claudia S.; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S.; Cronstein, Bruce N.; Gold‐von Simson, Gabrielle

    2015-01-01

    Abstract To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU‐NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU‐HHC CTSI) developed the Master's of Science in Clinical Investigation dual‐degree (MD/MSCI) program. This 5‐year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010–2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time‐limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual‐degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow‐up is warranted to evaluate the academic trajectory of these students. PMID:26365704

  13. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual-Degree Program.

    Science.gov (United States)

    Gillman, Jennifer; Pillinger, Michael; Plottel, Claudia S; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S; Cronstein, Bruce N; Gold-von Simson, Gabrielle

    2015-12-01

    To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU-NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU-HHC CTSI) developed the Master's of Science in Clinical Investigation dual-degree (MD/MSCI) program. This 5-year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010-2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time-limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual-degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow-up is warranted to evaluate the academic trajectory of these students. © 2015 Wiley Periodicals, Inc.

  14. Interdisciplinary Approaches at Institutions of Higher Education: Teaching Information Systems Concepts to Students of Non-Computer Science Programs

    Directory of Open Access Journals (Sweden)

    Roland Schwald

    2011-07-01

    Full Text Available The aim of this paper is to present a curriculum development concept for teaching information systems content to students enrolled in non-computer science programs by presenting examples from the Business Administration programs at Albstadt-Sigmaringen University, a state university located in Southern Germany. The main focus of this paper therefore is to describe this curriculum development concept. Since this concept involves two disciplines, i.e. business administration and computer science, the author argues that it is necessary to define the roles of one discipline for the other and gives an example on how this could be done. The paper acknowledges that the starting point for the development of a curriculum such as one for a business administration program will be the requirements of the potential employers of the graduates. The paper continues to recommend the assignment of categorized skills and qualifications, such as knowledge, social, methodological, and decision making skills to the different parts of the curricula in question for the development of such a curriculum concept. After the mapping of skills and courses the paper describes how specific information systems can be used in courses, especially those with a specific focus on methodological skills. Two examples from Albstadt-Sigma-ringen University are being given. At the end of the paper the author explains the implications and limitations of such a concept, especially for programs that build on each other, as is the case for some Bachelor and Master programs. The paper concludes that though some elements of this concept are transferable, it is still necessary that every institution of higher education has to take into consideration its own situation to develop curricula concepts. It provides recommendations what issues every institution should solve for itself.

  15. Motivating Young Native American Students to Pursue STEM Learning through a Culturally Relevant Science Program

    Science.gov (United States)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-01-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics…

  16. Minority students benefit from mentoring programs.

    Science.gov (United States)

    Cullen, D L; Rodak, B; Fitzgerald, N; Baker, S

    1993-01-01

    Mentoring has been proposed as one strategy to attract minority students to the radiologic sciences profession. This case study describes a minority mentoring program conducted for pre-radiologic science students at a Midwestern university during the 1991-92 academic year. Ten minority radiologic science students enrolled in the mentoring program. The study showed that mentoring may be a viable option to serve the special needs of minorities for recruitment and retention.

  17. The Journey of a Science Teacher: Preparing Female Students in the Training Future Scientists after School Program

    Science.gov (United States)

    Robinson-Hill, Rona M.

    2013-01-01

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed…

  18. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  19. Science Alive!: Connecting with Elementary Students through Science Exploration

    Directory of Open Access Journals (Sweden)

    Aarti Raja

    2016-05-01

    Full Text Available A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  20. Science Alive!: Connecting with Elementary Students through Science Exploration.

    Science.gov (United States)

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  1. Distance education in dental hygiene bachelor of science degree completion programs: As perceived by students and faculty

    Science.gov (United States)

    Tsokris, Maureen

    This study investigated student and faculty perceptions of their experiences with online learning in dental hygiene Bachelor of Science degree completion programs on the dimensions of: quality of learning, connectedness to the learning environment, technology factors and student satisfaction. The experiences of dental hygiene students who took their core BS dental hygiene (BSDH) courses completely online were compared and contrasted with the perceptions of dental hygiene students who had taken a portion of the BSDH courses online and a portion in a traditional face-to-face classroom setting. Furthermore, this study compared and contrasted the perceptions of faculty on these same four dimensions based on the position held by the faculty member and the course format they are teaching in: online or a combination of online and a traditional face-to-face classroom setting. This study revealed several important differences and similarities between students who had taken their courses online and those who had taken a portion of the BSDH courses online and a portion in a traditional face-to-face classroom setting. The results showed students who had taken their courses online described factors related to the instructor as important to the quality of the learning experience such as: the experience and qualifications of the professor, the examples they provided and the instructors prompt response to questions. Students who had taken courses in both formats described factors related to the amount of effort they put into the course, their classmates' preparedness, the course materials and assignments as important to the quality of the learning experience. Although students who completed courses online reported difficulty participating in group activities, they were more positive regarding the level of interaction they experienced with their classmates online Findings indicated students who had taken their courses in both formats would have liked more opportunities to interact

  2. Academic dreamers to leaders: The emergence of the mathematics and science for minority students ((MS)(2)) program at Philips Academy Andover

    Science.gov (United States)

    Beckham, Jerrell K.

    (MS)2 is a summer program for high achieving minority students interested in math and science careers. It was started in 1977. The Program is located at Phillips Academy in Andover Massachusetts. Phillips Academy is one of the nation's oldest college preparatory schools. The school was founded in 1778. Current U.S. President George Bush attended Phillips Academy and his father before him. The students in (MS)2 attend Phillips Academy in the summertime, along with regular Summer Session students. The (MS)2 Program represents about a fifth of the students at Phillips Academy Summer Session. At present the program is made up of African Americans, Latinos, and Native American students who attend a number of different public schools throughout the nation. This dissertation explores the experiences of students in this program spanning nearly a quarter of a central. My research seeks to understand and shred additional light on how certain outreach programs might help along the pipeline in regard to improving minority representation in mathematics and science fields. Also, this narrative hopes to not only paints a more complex pictures of the experiences of minorities in schools, but seeks to serve the larger public interest by challenging some of the popular renditions and myths of the failure of Blacks, Latino/as, and Native Americans in schooling (Ogbu 2003), as oppose to certain aspects of schooling and society continuing to failing them.

  3. An International Basic Science and Clinical Research Summer Program for Medical Students

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N.; Anindo, Mohammad Iffat Kabir; AlKukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K.

    2012-01-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to…

  4. Development, Implementation, and Outcomes of an Equitable Computer Science After-School Program: Findings from Middle-School Students

    Science.gov (United States)

    Mouza, Chrystalla; Marzocchi, Alison; Pan, Yi-Cheng; Pollock, Lori

    2016-01-01

    Current policy efforts that seek to improve learning in science, technology, engineering, and mathematics (STEM) emphasize the importance of helping all students acquire concepts and tools from computer science that help them analyze and develop solutions to everyday problems. These goals have been generally described in the literature under the…

  5. Science Careers and Disabled Students.

    Science.gov (United States)

    Jagoda, Sue; Cremer, Bob

    1981-01-01

    Summarizes proceedings and student experiences at the 1980 Science Career Workshop for Physically Disabled Students at the Lawrence Hall of Science (University of California). Includes a description of the key-note speaker's topics, and other workshop activities. (DS)

  6. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  7. Establishing Proficiency Levels for the Delaware Student Testing Program in Science and Social Studies, Grades 4 & 6. Report and Recommendations to the Delaware State Board of Education.

    Science.gov (United States)

    Delaware State Dept. of Education, Dover. Assessment and Accountability Branch.

    This document contains the results of a standard setting conducted in January 2002 on the Delaware Student Testing Program (DSTP) Science and Social Studies tests at grades 4 and 6. Each standard setting process entailed convening four groups, one for each grade level and content area, and each group met for 2 days. At the standard setting judges…

  8. Factual accuracy and the cultural context of science in popular media: Perspectives of media makers, middle school students, and university students on an entertainment television program.

    Science.gov (United States)

    Szu, Evan; Osborne, Jonathan; Patterson, Alexis D

    2017-07-01

    Popular media influences ideas about science constructed by the public. To sway media productions, public policy organizations have increasingly promoted use of science consultants. This study contributes to understanding the connection from science consultants to popular media to public outcomes. A science-based television series was examined for intended messages of the creator and consulting scientist, and received messages among middle school and non-science university students. The results suggest the consulting scientist missed an opportunity to influence the portrayal of the cultural contexts of science and that middle school students may be reading these aspects uncritically-a deficiency educators could potentially address. In contrast, all groups discussed the science content and practices of the show, indicating that scientific facts were salient to both media makers and audiences. This suggests popular media may influence the public knowledge of science, supporting concerns of scientists about the accuracy of fictional television and film.

  9. An Educational Program for Underserved Middle School Students to Encourage Pursuit of Pharmacy and Other Health Science Careers.

    Science.gov (United States)

    Goldsmith, Carroll-Ann; Tran, Thao T; Tran, Linh

    2014-11-15

    To develop and implement an active, hands-on program for underrepresented minority (URM) seventh grade students and to determine if participation in the program increased interest in health care careers and understanding of pharmacy and physician assistant (PA) professions. A hands-on educational program was developed in conjunction with local middle school administrators and staff for URM 7th grade students. The program was designed to be hands-on and focus on pharmacy and PA laboratory skills. A discussion component was included, allowing participants to interact personally with pharmacy and PA students and faculty members. Students' responses to survey questions about interest in health care careers and knowledge about health professions were compared before and after 2 separate offerings of the program. After the program, significant increases were seen in participants' understanding of the pharmacy and PA professions. An increased percentage of participants reported interest in health care careers after the program than before the program. Introducing middle school-aged URM students to the pharmacy and PA professions through a hands-on educational program increased interest in, and knowledge of, these professions.

  10. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  11. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    Science.gov (United States)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  12. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    Science.gov (United States)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in

  13. The American Indian Summer Institute in Earth System Science (AISESS) at UC Irvine: A Two-Week Residential Summer Program for High School Students

    Science.gov (United States)

    Johnson, K. R.; Polequaptewa, N.; Leon, Y.

    2012-12-01

    Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The

  14. An Educational Program for Underserved Middle School Students to Encourage Pursuit of Pharmacy and Other Health Science Careers

    OpenAIRE

    Goldsmith, Carroll-Ann; Tran, Thao T.; Tran, Linh

    2014-01-01

    Objective. To develop and implement an active, hands-on program for underrepresented minority (URM) seventh grade students and to determine if participation in the program increased interest in health care careers and understanding of pharmacy and physician assistant (PA) professions.

  15. RIS4E Science Journalism Program

    Science.gov (United States)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience

  16. NASA Life Sciences Program

    Science.gov (United States)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  17. Formative Reflections of University Recreation Science Students in South Africa as Catalyst for an Adapted Service-Learning Program

    Science.gov (United States)

    Goslin, Anneliese; van der Klashorst, Engela; Kluka, Darlene A.; van Wyk, Johannes G. U.

    2016-01-01

    Community-university partnerships through service-learning have progressively developed as part of institutions of higher education's mission statements. This paper explores the qualitative reflections of 410 undergraduate students enrolled in an academic recreation science course on a first time service-learning experience in South Africa. The…

  18. Environmental health engineering students\\' attitudes toward their education program and career in Shahid Sadoughi University of Medical Sciences in 2015

    Directory of Open Access Journals (Sweden)

    M Mirnasab

    2016-07-01

    Full Text Available Introduction: Increasing numbers of medical sciences graduates is counted to be one of the problems in the society, so that there is concerning about their majors and future careers among them. This study was performed with the aim of determining environmental health students' attitude toward their majors and future careers, which was carried out in Yazd University of Medical Sciences in 2015. Method: This analytical, descriptive study was performed in 2015. The samples were Environmental Health students of Yazd University of Medical Sciences. The sample size was 102. Data were collected using a questionnaire containing 20 questions and analyzed by SPSS software version 21, multiple linear regression test, one-sample t-test and Chi-Square test. Results: The mean and standard deviation of environmental students' attitude toward their majors and future careers were 3.16 and 0.66, respectively. Attitude scores more than 3 were considered positive and less than 3 were negative. The mean scores of attitude was significantly higher than 3 (P=0.012. In this study, there was a significant relationship between students’ attitude and location status (P=0.003. Conclusion: According to the obtained results, the students of environment health had a good perspective towards their future careers and majors of study. A proper distribution of human resources, providing financial support of employment, establishing counselling and supporting centers among students for future career is recommended to improve their attitudes.

  19. The self-concept of chiropractic students as science students

    Science.gov (United States)

    Shields, Robert F.

    2005-01-01

    Abstract Purpose To determine the self-concepts of chiropractic students as science students and if any personal variable affect their self-concepts. Participants Students in their first trimester and eighth trimester at the Los Angeles College of Chiropractic during the 1993 academic year (n=158). Methods Peterson-Yaakobi Q-Sort, National Assessment of Educational Progress, two-tailed T-test, one way analysis of variance and Spearman-rho correlation. Results The majority of students have positive self- concepts as science students and although there was a difference between the 2 trimesters, it was not significant. As a group they generally had less exposure to science compared to undergraduates from a selected science program. Variables of socio-economic status, undergraduate major, and highest completed level of education did not statistically affect their self-concept. Conclusion Chiropractic students had the self-concept that enables them to subscribe to the philosophical foundations of science and better engage in basic sciences and, later, science-based clinical research. Knowledge of this self- concept can be used in the development of a more rigorous basic science curricula and clinical research programs at chiropractic colleges with the ultimate goal of providing a more firm scientifically based foundation for the profession. PMID:19674649

  20. [Development of clinical trial education program for pharmaceutical science students through small group discussion and role-playing using protocol].

    Science.gov (United States)

    Imakyure, Osamu; Shuto, Hideki; Nishikawa, Fumi; Hagiwara, Yoshifuka; Inoue, Sachiko; Koyanagi, Taeko; Hirakawa, Masaaki; Kataoka, Yasufumi

    2010-08-01

    The acquirement of basic knowledge of clinical trials and professional attitude in their practices is a general instructional objective in the Model Core Curriculum for Pharmaceutical Education. Unfortunately, the previous program of clinical trial education was not effective in the acquirement of a professional attitude in their practices. Then, we developed the new clinical trial education program using protocol through small group discussion (SGD) and roll-playing. Our program consists of 7 steps of practical training. In step 1, the students find some problems after presentation of the protocol including case and prescription. In step 2, they analyse the extracted problems and share the information obtained in SGD. In steps 3 and 5, five clinical case scenarios are presented to the students and they discuss which case is suitable for entry to the clinical trial or which case corresponds to the discontinuance criteria in the present designed protocol. In steps 4 and 6, the roll-playing is performed by teachers and students as doctors and clinical research coordinators (CRC) respectively. Further, we conducted a trial practice based on this program for the students. In the student's self-evaluation into five grades, the average score of the skill acquisition level in each step was 3.8-4.7 grade. Our clinical trial education program could be effective in educating the candidates for CRC or clinical pharmacists.

  1. Radiologic science students' perceptions of parental involvement.

    Science.gov (United States)

    DuBose, Cheryl; Barymon, Deanna; Vanderford, Virginia; Hensley, Chad; Shaver, Gary

    2014-01-01

    A new generation of students is in the classroom, and they are not always alone. Helicopter parents, those who hover around the student and attempt to ease life's challenges, are accompanying the students to radiologic science programs across the nation. To determine radiologic science students' perception regarding their parents' level of involvement in their lives. A survey focused on student perceptions of parental involvement inside and outside of the academic setting was completed by 121 radiologic science students at 4 institutional settings. The analysis demonstrates statistically significant relationships between student sex, age, marital status, and perceived level of parental involvement. In addition, as financial support increases, students' perception of the level of parental involvement also increases. Radiologic science students want their parents to be involved in their higher education decisions. Research indicates that students with involved parents are more successful, and faculty should be prepared for increased parental involvement in the future. Radiologic science students perceive their parents to be involved in their academic careers. Ninety-five percent of respondents believe that the financial support of their parent or parents contributes to their academic success. Sixty-five percent of participants are content with their parents' current level of involvement, while 11% wish their parents were more involved in their academic careers.

  2. Determination of rate of customer focus in educational programs at Isfahan University of Medical Sciences(1) based on students' viewpoints.

    Science.gov (United States)

    Shams, Assadollah; Yarmohammadian, Mohammad Hosein; Abbarik, Hadi Hayati

    2012-01-01

    Today, the challenges of quality improvement and customer focus as well as systems development are important and inevitable matters in higher education institutes. There are some highly competitive challenges among educational institutes, including accountability to social needs, increasing costs of education, diversity in educational methods and centers and their consequent increasing competition, and the need for adaptation of new information and knowledge to focus on students as the main customers. Hence, the purpose of this study was to determine the rate of costumer focus based on Isfahan University of Medical Sciences students' viewpoints and to suggest solutions to improve this rate. This was a cross-sectional study carried out in 2011. The statistical population included all the students of seven faculties of Isfahan University of Medical Sciences. According to statistical formulae, the sample size consisted of 384 subjects. Data collection tools included researcher-made questionnaire whose reliability was found to be 87% by Cronbach's alpha coefficient. Finally, using the SPSS statistical software and statistical methods of independent t-test and one-way analysis of variance (ANOVA), Likert scale based data were analyzed. The mean of overall score for customer focus (student-centered) of Isfahan University of Medical Sciences was 46.54. Finally, there was a relation between the mean of overall score for customer focus and gender, educational levels, and students' faculties. Researcher suggest more investigation between Medical University and others. It is a difference between medical sciences universities and others regarding the customer focus area, since students' gender must be considered as an effective factor in giving healthcare services quality. In order to improve the customer focus, it is essential to take facilities, field of study, faculties, and syllabus into consideration.

  3. Programs for Students and Teachers | NREL

    Science.gov (United States)

    competition that tests the brainpower of middle and high school teams on science and math topics. Model Car and Education Programs promote science, technology, engineering, and mathematics (STEM) using Science educators provide hands-on experiences for students in grades 4-12 to learn about renewable energy

  4. The ASI science program

    Science.gov (United States)

    Musso, Carlo

    2002-03-01

    Italy came in the space business in 1963, being the third nation in the world, after the Soviet Union and the United States, to put an artificial satellite into orbit. In 1988 the Italian Space Agency (ASI) was constituted, with the mandate of planning, coordinating and executing civil space activities in Italy. The core of national space activities is science, for which Italy spends about 25% of the ASI budget, both in national and international programs. The community served by the scientific directorate of ASI is a very wide one, ranging from the science of the Universe and the exploration of the Solar System to life sciences, from Earth observation to the development of new technologies. The success of Italian space research appears under many different points of view. The national satellite BeppoSAX, named after Giuseppe Beppo Occhialini, widely contributed to solve the γ-ray burst puzzle, obtaining the relevant acknowledgment of the ``Bruno Rossi Prize''. Italian researchers kept the PI-ship of various payloads on board ESA missions, such as Epic for XMM-Newton, Ibis for Integral, Virtis and Giada for Rosetta, PFS and Marsis for Mars Express. Also in the field of the cosmic microwave background (CMB) two important experiments are foreseen in the next future, with Italian PIs: SPOrt on board the International Space Station, dedicated to the polarization of CMB, and LFI (Low Frequency Instrument) on board the ESA Planck satellite, to study CMB anisotropy. Meanwhile, a great success has been obtained with the balloon experiment Boomerang. Moreover, ASI started a national scientific and technological small mission program. The first three missions are on their way: Agile (a γ-ray observatory), David (an experiment to test very high frequency data transmission), and a third one, devoted to Earth science. .

  5. Moral Perceptions of College Science Students

    Science.gov (United States)

    Nolan, Eric

    This thesis argues that college-level science education is in need of explicit moral focuses centered on society's use of scientific knowledge. Many benefits come with scientific advancements but unfortunately the misuse of scientific knowledge has led to planetary crises that should be a concern for all who inhabit the Earth (e.g., climate change). The teaching of the misuses of science is often left out of college science classrooms and the purpose of this thesis is to see what effect college science students' education has had on their moral perception of these pressing issues. To evaluate how college science students morally perceive these global issues within their educational experiences, two focus group interviews were conducted and analyzed. Students converged on three themes when thinking of society's misuse of science: 1) there is something wrong with the way science is communicated between science and non-science groups; 2) misusing science for private benefit is not right, and 3) it is important for people to comprehend sustainability along different scales of understanding and action. This thesis concludes that although to some extent students were familiar with moral features that stem from society's misuse of science, they did not attribute their learning of those features from any of their required coursework within their programs of study.

  6. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  7. On A Project Work for International Students Paired with Japanese Partners in a Summer Intensive Japanese Program for Science and Technology

    Science.gov (United States)

    Fudano, Hiroko

    A project work in which learners of a foreign language engage in a task with the native speakers is one of the effective ways to bring in ample real communication opportunities to a classroom. This scheme also gives both parties meaningful experiences for intercultural understanding. This paper reports a “Pythagoras” machine production project in which international students were paired up with Japanese students as a part of a Japanese for science and technology course in a summer intensive program. Based on the participants‧ course evaluation data, the paper also discusses the effectiveness of the project for Japanese language learning and for promoting intercultural understanding.

  8. The Relationship Between Cognitive and Non-Cognitive Variables and Academic Performance of Students in the Science Enrichment Preparation (S.E.P.) Program

    Science.gov (United States)

    Borden, Paula D.

    This dissertation study concerned the lack of underrepresented minority students matriculating through the health professions pipeline. The term pipeline is "the educational avenue by which one must travel to successfully enter a profession" (Sullivan Alliance, 2004). There are a significant number of health professional pipeline programs based across the United States and, for the purposes of this study, a focus was placed on the Science Enrichment Preparation (S.E.P.) Program which is based at The University of North Carolina at Chapel Hill. The S.E.P. Program, is an eight-week residential summer experience, designed to support underrepresented minority pre-health students develop the competitive edge for successful admission into health professional school programs. The bedrock of this dissertation study concerned itself with the relationships between cognitive variables and non-cognitive variables and academic performance of students in the S.E.P. Program from 2005-2013. The study was undertaken to provide a clearer understanding for the NC Health Careers Access Program's (NC-HCAP) leadership with regard to variables associated with the students' academic performance in the S.E.P. Program. The data outcomes were informative for NC-HCAP in identifying cognitive and non-cognitive variables associated with student academic performance. Additionally, these findings provided direction as to what infrastructures may be put into place to more effectively support the S.E.P. participants. It is the researcher's hope this study may serve as an educational model and resource to pipeline programs and others with similar educational missions. The consequences and implications of a non-diverse healthcare workforce are high and far reaching. Without parity representation in the healthcare workforce, health disparities between racial and economic groups will likely continue to grow.

  9. Cycle for Science: An informal outreach program connecting K-12 students with renewable energy and physics through miniature 3D-printed, solar-powered bicycles

    Science.gov (United States)

    Woods-Robinson, R.; Case, E.

    2017-12-01

    Engaging communities with renewable energy is key to fighting climate change. Cycle for Science, an innovative STEM outreach organization, has reached more than 3,000 K-12 students across the United States by bringing early-career female scientists into classrooms to teach basic physics and solar energy engineering through hands-on, DIY science activities. We designed a fleet of miniature, 3D-printed, solar-powered bicycles called "Sol Cycles" to use as teaching tools. Traveling by bicycle, Cycle for Science has brought them to rural and urban communities across the U.S. in two major efforts so far: one traversing the country (2015), and one through central California (2017). The program involves (1) introducing the scientists and why they value science, (2) running a skit to demonstrate how electrons and photons interact inside the solar panel, (3) assembling the Sol Cycles, (4) taking students outdoors to test the effects of variables (e.g. light intensity) on the Sol Cycles' movement, (5) and debriefing about the importance of renewable energy. In addition to physics and solar energy, the lessons teach the scientific process, provide tactile engagement with science, and introduce a platform to engage students with climate change impacts. By cycling to classrooms, we provide positive examples of low-impact transportation and a unique avenue for discussing climate action. It was important that this program extend beyond the trips, so the lesson and Sol Cycle design are open source to encourage teachers and students to play, change and improve the design, as well as incorporate new exercises (e.g. could you power the bicycle by wind?). Additionally, it has been permanently added to the XRaise Lending Library at Cornell University, so teachers across the world can implement the lesson. By sharing our project at AGU, we aim to connect with other scientists, educators, and concerned citizens about how to continue to bring renewable energy lessons into classrooms.

  10. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  11. The Single Sex Debate for Girls in Science: A Comparison between Two Informal Science Programs on Middle School Students' STEM Identity Formation

    Science.gov (United States)

    Hughes, Roxanne M.; Nzekwe, Brandon; Molyneaux, Kristen J.

    2013-01-01

    Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many…

  12. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  13. Science programs in Kansas

    Science.gov (United States)

    Kramer, Ariele R.; Kelly, Brian P.

    2017-05-08

    The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 23 locations; streamflow monitoring at more than 218 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.

  14. ISS Robotic Student Programming

    Science.gov (United States)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  15. Nuclear science summer school for high scholl students

    International Nuclear Information System (INIS)

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  16. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  17. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  18. Cognitive and Motivational Factors that Inspire Hispanic Female Students to Pursue STEM-Related Academic Programs that Lead to Careers in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Morel-Baker, Sonaliz

    Hispanics, and women in particular, continue to be underrepresented in the fields of science, technology, engineering, and mathematics (STEM). The purpose of this study was to analyze cognitive and motivational factors that inspired Hispanic female college students to major in STEM programs and aspire to academic success. This mixed methods study was conducted using both quantitative and qualitative data collection and analysis techniques in a sequential phase. Quantitative data were collected through the use of the 80-item Honey and Mumford Learning Styles Questionnaire, which was focused on the students' learning styles and how they impact Hispanic female students upon engaging in a STEM-related curriculum. Qualitative data were collected during interviews focusing on factors that led students to select, participate in, and make a commitment to some aspect of a STEM-related program. The questions that were asked during the interviews were intended to examine whether the existence of role models and STEM initiatives motivate Hispanic female students to major in STEM-related academic programs and aspire to academic success. The participants in this study were undergraduate Hispanic female students majoring in STEM-related academic programs and at a four-year university. The results indicate that the majority of the participants (88%) identified as reflectors, 4% as activists, 4% as theorists, and 4% as pragmatists. The results from the interviews suggested that the existence of role models (family members, educators, or STEM professionals) was a factor that motivated Hispanic females to major in STEM-related subjects and that exposure to STEM initiatives during K-12 education motivated Hispanic females to pursue a career in STEM.

  19. How do we interest students in science?

    Science.gov (United States)

    Murray, L.

    2016-02-01

    In today's world science literacy is now, more than ever, critical to society. However, today's technically savvy student tends to be bored by "cook-book" laboratory exercises and dated lecture style, which typifies the way that most science courses are taught. To enhance student interest in and understanding of the sciences, we developed two unique programs, in which teachers were provided with the tools and hands-on experience that enabled them to implement research- and inquiry-based projects with their students. The approach was based a framework that is student driven and enables active participation and innovation in the study of the environment. The framework involved selection of a theme and an activity that captured the interest of the participants, participant development of research or investigative questions based on the theme, experimentation to address the research questions, formulation of conclusions, and communication of these results. The projects consisted of two parts: a professional development institute for teachers and the classroom implementation of student research projects, both of which incorporated the framework process. The institutes focused on modeling the framework process, with teachers actively developing questions, researching the question, formulating results and conclusions. This method empowered teachers to be confident in the implementation of the process with their students. With support from project staff, teachers followed up by incorporating the method of teaching with their students. Evaluation results from the programs concluded that projects such as these can increase student interest in and understanding of the scientific process.

  20. Characteristics of Social and Administrative Sciences graduate programs and strategies for student recruitment and future faculty development in the United States.

    Science.gov (United States)

    Westrick, Salisa C; Kamal, Khalid M; Moczygemba, Leticia R; Breland, Michelle L; Heaton, Pamela C

    2013-01-01

    The rising demand of faculty in Social and Administrative Sciences (SAS) in pharmacy in the United States heightens the need to increase the number of Doctor of Philosophy (PhD) graduates in SAS who choose to pursue an academic career. To describe the characteristics of SAS graduate programs and graduate students and identify strategies for student recruitment and future faculty development. An Internet survey (phase I) with key informants (graduate program officers/department chairs) and semistructured telephone interviews (phase II) with phase I respondents were used. Items solicited data on recruitment strategies, number of students, stipends, support, and other relevant issues pertaining to graduate program administration. Descriptive statistics were tabulated. Of the 40 SAS graduate programs identified and contacted, 24 completed the Internet survey (response rate [RR]=60.0%) and, of these, 16 completed the telephone interview (RR=66.7%). At the time of the survey, the median number of graduate students with a U.S.-based PharmD degree was 3. An average annual stipend for graduate assistants was $20,825. The average time to PhD degree completion was 4.57 years, and approximately 31% of PhD graduates entered academia. Various strategies for recruitment and future faculty development were identified and documented. Findings allow SAS graduate programs to benchmark against other institutions with respect to their own achievement/strategies to remain competitive in student recruitment and development. Additional research is needed to determine the success of various recruitment strategies and identify potential new ones. Published by Elsevier Inc.

  1. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  2. The effects of the probability activities in thinking science program on the development of the probabilistic thinking of middle school students

    International Nuclear Information System (INIS)

    Shin, Kyung In; Lee, Sang Kwon; Shin, Ae Kyung; Choi, Byung Soon

    2003-01-01

    The purposes of this study were to investigate the correlation between the cognitive level and the probabilistic thinking level and to analyze the effects of the probability activities in Thinking Science (TS) program on the development of probabilistic thinking. The 219 7th grade students were sampled in the middle school and were divided into an experimental group and a control group. The probability activities in TS program were implemented to the experimental group, while only normal curriculum was conducted in the control group. The results of this study showed that most of 7th grade students were in the concrete operational stage and used both subjective and quantitative strategy simultaneously in probability problem solving. It was also found that the higher the cognitive level of the students, the higher the probabilistic thinking level of them. The sample space and the probability of an event in the constructs of probability were first developed as compared to the probability comparisons and the conditional probability. The probability activities encouraged the students to use quantitative strategy in probability problem solving and to recognize probability of an event. Especially, the effectiveness was relatively higher for the students in the mid concrete operation stage than those in any other stage

  3. Work Values of Mortuary Science Students

    Science.gov (United States)

    Shaw, Thomas; Duys, David K.

    2005-01-01

    This article describes a descriptive study in an area significantly lacking validation. The focus of the study was the work values held by mortuary science students from 3 educational programs in the Midwest. The Values Scale (D. Nevill & D. Super, 1989) was used to measure the career-related values of a sample group of 116. According to…

  4. Science Self-Efficacy and Innovative Behavior (IB) in Nigerian College Students Enrolled in Science, Technology, Engineering, and Mathematics (STEM) Programs

    Science.gov (United States)

    Okonkwo, Charles

    This study will explore how science self-efficacy among college students in science, technology, engineering, and mathematics (STEM) fields in Nigeria predicts their innovation. Several reports on African development argue that science, technology and innovation underpin targets for dramatically reducing poverty in its many dimensions---income poverty, hunger, disease, exclusion, lack of infrastructure and shelter---while promoting gender equality, education, health, and environmental sustainability (UN Millennium Project, 2005). If African countries in general, including Nigeria, are to move from the exploitation of natural resources to technological innovation as the foundation for development, stakeholders in these countries must encourage development of individual ability to innovate products, services and work processes in crucial organizations (DeJong & DenHartog, 2010). The common denominator in the scientific and technological development of any country or organization is the individuals that make up these entities. An individual's engagement is the foundation for group motivation, innovation and improvement. These ideas inform the purpose of this study: to investigate how science self-efficacy among college students in various engineering fields in Nigeria predicts self-reported innovative behavior (IB), also referred to as Innovative Work Behavior (IWB). IB involves initiating new and useful ideas, processes, products or procedures, as well as the process of implementing these ideas (Farr & Ford, 1990; Scott & Bruce, 1994). The general findings of this study align with the dictates of social cognitive theory. Specifically, research indicates self-efficacy has the most predictive power for performance when it is measured at a level specific to the expected task (Bandura, 1997; Pajares, 1996). The findings from the hierarchical multiple regressions confirm that individuals' perceived science efficacy plays an important role in their perceived self

  5. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  6. Investigating University Students' Preferences to Science Communication Skills: A Case of Prospective Science Teacher in Indonesia

    Science.gov (United States)

    Suprapto, Nadi; Ku, Chih-Hsiung

    2016-01-01

    The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…

  7. The REDIH experience: an emerging design to develop an effective training program for graduate students in reproductive science

    Directory of Open Access Journals (Sweden)

    MacDonald CJ

    2013-10-01

    Full Text Available Colla J MacDonald,1 Douglas Archibald,2 Jay M Baltz,3 Gerald M Kidder4 1Faculty of Education, 2Department of Family Medicine, University of Ottawa, Ottawa, ON, Canada; 3Ottawa Hospital Research Institute, Ottawa, ON, Canada; 4Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada Background: A training program in Reproduction, Early Development, and the Impact on Health (REDIH was initiated in 2009 by researchers specializing in biomedical, clinical, population health, and ethics research from seven collaborating universities in Quebec and Ontario, and Health Canada. This paper reports the findings from the first three years of the 6-year program. Objectives: The objective of the REDIH program is to provide increased opportunities for excellent training in reproduction and early development for graduate students and fellows, in order to build research, clinical, regulatory, decision-making, and industry capacity in Canada. Methods: A mixed methods approach was used to evaluate the REDIH training program, so as to combine the strengths of both qualitative and quantitative studies. A total of four focus groups (two with mentors and two with trainees were run during the June 2012 REDIH meeting. Surveys were administered directly after each training module. The W(eLearn framework was used as a guide to design and evaluate the program and answer the research questions. Results: The data from the analysis of the focus group interviews, in corroboration with the survey data, suggested trainees enjoyed and benefited from the REDIH experience. Trainees provided several examples of new knowledge and skills they had acquired from REDIH sessions, regarding reproductive and early developmental biology, and health. A few trainees who had been in the program for over a year provided examples of knowledge and skills acquired during the REDIH session that they were using in their place of work. Next steps will include

  8. Teaching Programming to Liberal Arts Students

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh; Bennedsen, Jens; Brandorff, Steffen

    2003-01-01

    In this paper we present a new learning environment to be used in an introductory programming course for studentsthat are non-majors in computer science, more precisely formultimedia students with a liberal arts background. Media-oriented programming adds new requirements to thecraft of programmi...

  9. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  10. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  11. University of Maine’s Follow a Researcher™ Program: Using Graduate Student Field Research as a Framework to Incorporate Next Generation Science Standards (NGSS) Practices in the K-12 Classroom

    OpenAIRE

    Kaluzienski, Lynn; Hamley, Catherine; Rodda, Charles; Kranich, Gregory; Wilson, Laura

    2016-01-01

    Follow a Researcher™ is an innovative University of Maine 4-H program that connects youth with a graduate student who is conducting field research in a remote location. Using technology and social media, K-12 classrooms have an unprecedented opportunity to get to know a student researcher. Youth engage in the research process and witness NGSS Science and Engineering Practices in action.

  12. Preparing Graduate Students as Science Communicators

    Science.gov (United States)

    Knudson, K.; Gutstein, J.

    2012-12-01

    Our presentation introduces our interdisciplinary curriculum that teaches graduate students at our R-1 university to translate their research to general audiences. We also discuss the challenges we have faced and strategies we have employed to broaden graduate education at our campus to include preparation in science communication. Our "Translating Research beyond Academia" curriculum consists of three separate thematically based courses taught over the academic year: Education and Community Outreach, Science Communication and Writing, Communicating with Policy- and Decision-makers. Course goals are to provide professional development training so that graduate students become more capable professionals prepared for careers inside and outside academia while increasing the public understanding of science and technology. Open to graduate students of any discipline, each course meets weekly for two hours; students receive academic credit through a co-sponsoring graduate program. Students learn effective strategies for communicating research and academic knowledge with the media, the general public, youth, stakeholders, and decision- and policy-makers. Courses combine presentations from university and regional experts with hands-on work sessions aimed towards creating effective communications, outreach and policy plans, broader impacts statements, press releases, blogs, and policy briefs. A final presentation and reflections are required. Students may opt for further training through seminars tailored to student need. Initial results of our analyses of student evaluations and work indicate that students appreciate the interdisciplinary, problem-based approach and the low-risk opportunities for learning professional development skills and for exploring non-academic employment. Several students have initiated engaged work in their disciplines, and several have secured employment in campus science communication positions. Two have changed career plans as a direct result of

  13. Nursing students' attitudes toward science in the nursing curricula

    Science.gov (United States)

    Maroo, Jill Deanne

    The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students' attitudes and their performance in a subject (Osborne, Simon, & Collins, 2003). However, little research exists on the overall attitude of nursing students toward science. At the time of my study there existed no large scale quantitative study on my topic. The purpose of my study was to identify potential obstacles nursing students face, specifically, attitude and motivation toward learning science. According to research the nation will soon face a nursing shortage and students cite the science content as a reason for not completing the nursing program. My study explored nursing students' attitudes toward science and reasons these students are motivated to learn science. I ran a nationwide mixed methods approach with 1,402 participants for the quantitative portion and 4 participants for the qualitative portion. I validated a questionnaire in order to explore nursing students' attitudes toward science, discovered five different attitude scales in that questionnaire and determined what demographic factors provided a statistically significant prediction of a student's score. In addition, I discovered no statistical difference in attitude exists between students who have the option of taking nursing specific courses and those who do not have that option. I discovered in the qualitative interviews that students feel science is necessary in nursing but do not feel nurses are scientists. My study gives a baseline of the current attitude of nursing students toward science and why these students feel the need to learn the science.

  14. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  15. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  16. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  17. The building of knowledge, language, and decision-making about climate change science: a cross-national program for secondary students

    Science.gov (United States)

    Arya, Diana; Maul, Andrew

    2016-04-01

    The United Nations' declaration on climate change education in December 2014 has sparked a renewal of policies and programs initiated during the 'Decade of Education for Sustainable Development' (DESD, 2005-2014), aimed at promoting awareness, understanding, and civic action for environmental sustainability within learning communities all around the world. We present findings from a dialogic, multimodal, and literacies-based educational project designed to provide secondary students (N = 141) from four countries with the resources to read about and discuss evidence regarding climate change from seminal studies with peers and a core group of scientists (N = 7). Post-program interviews revealed a significant increase in language use related to evidence-based reasoning. Students also demonstrated an increased propensity to recycle. These findings support the hypothesis that providing opportunities for students to read and discuss seminal scientific sources incites positive changes in beliefs, attitudes, and behaviors related to climate change and climate science, and understandings of the nature of scientific evidence and argumentation.

  18. The LSSTC Data Science Fellowship Program

    Science.gov (United States)

    Miller, Adam; Walkowicz, Lucianne; LSSTC DSFP Leadership Council

    2017-01-01

    The Large Synoptic Survey Telescope Corporation (LSSTC) Data Science Fellowship Program (DSFP) is a unique professional development program for astronomy graduate students. DSFP students complete a series of six, one-week long training sessions over the course of two years. The sessions are cumulative, each building on the last, to allow an in-depth exploration of the topics covered: data science basics, statistics, image processing, machine learning, scalable software, data visualization, time-series analysis, and science communication. The first session was held in Aug 2016 at Northwestern University, with all materials and lectures publicly available via github and YouTube. Each session focuses on a series of technical problems which are written in iPython notebooks. The initial class of fellows includes 16 students selected from across the globe, while an additional 14 fellows will be added to the program in year 2. Future sessions of the DSFP will be hosted by a rotating cast of LSSTC member institutions. The DSFP is designed to supplement graduate education in astronomy by teaching the essential skills necessary for dealing with big data, serving as a resource for all in the LSST era. The LSSTC DSFP is made possible by the generous support of the LSST Corporation, the Data Science Initiative (DSI) at Northwestern, and CIERA.

  19. Assessment of Student Memo Assignments in Management Science

    Science.gov (United States)

    Williams, Julie Ann Stuart; Stanny, Claudia J.; Reid, Randall C.; Hill, Christopher J.; Rosa, Katie Martin

    2015-01-01

    Frequently in Management Science courses, instructors focus primarily on teaching students the mathematics of linear programming models. However, the ability to discuss mathematical expressions in business terms is an important professional skill. The authors present an analysis of student abilities to discuss management science concepts through…

  20. Elementary student teachers' science content representations

    Science.gov (United States)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  1. "Hour of Code": Can It Change Students' Attitudes toward Programming?

    Science.gov (United States)

    Du, Jie; Wimmer, Hayden; Rada, Roy

    2016-01-01

    The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students' attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two…

  2. 2015 Stewardship Science Academic Programs Annual

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Terri [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States); Mischo, Millicent [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States)

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  3. 76 FR 4137 - Comment Request: Innovative Technology Experiences for Students and Teachers (ITEST) Program

    Science.gov (United States)

    2011-01-24

    ... NATIONAL SCIENCE FOUNDATION Comment Request: Innovative Technology Experiences for Students and... Friday. SUPPLEMENTARY INFORMATION: Title of Collection: Innovative Technology Experiences for Students... Technology Experiences for Students and Teachers (ITEST) is a National Science Foundation program that...

  4. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    Science.gov (United States)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  5. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  6. Integrating Facebook into a University Cohort to Enhance Student Sense of Belonging: A Pilot Program in Sport and Exercise Science

    Science.gov (United States)

    McGuckin, Teneale Alyce; Sealey, Rebecca Maree

    2013-01-01

    University initiatives that enhance a students' sense of belonging may increase student retention and the overall student experience. Previous initiatives have largely focussed on face-to-face interactions however with the high usage of social networking, an online initiative may prove beneficial. The aim of this study was to establish a Facebook…

  7. Advanced Science for Kids: Multicultural Assessment and Programming.

    Science.gov (United States)

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  8. Science and Community Engagement: Connecting Science Students with the Community

    Science.gov (United States)

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  9. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  10. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  11. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  12. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  13. Teacher Research Programs = Increased Student Achievement

    Science.gov (United States)

    Dubner, J.

    2011-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university professional development programs for science teachers in the U.S. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University's research faculty. In addition to the laboratory experience, all teachers meet weekly during the summer for a series of pedagogical activities to assist them in transferring the experience to their classrooms. The primary goal of the program is to provide K-12 science teachers with opportunities to work at the cutting edge of science and engineering, and thus to revitalize their teaching and help them to appreciate the use of inquiry-based methods in their classroom instruction. The secondary goals of the program are to give the pre-college teacher the ability to guide their students toward careers in science and engineering, to develop new teaching strategies, and to foster long-term scholarly collaborations. The last is especially important as it leads to a model of the teacher as active in science yet committed to the pre-college classroom. Since its inception, SRP has focused on an objective assessment of the program's impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors' laboratories, and most importantly, on the impact of their participation in the program has on student interest and performance in science. Our research resulted in a paper published in the journal Science. SRP also facilitates a multi-site survey-based evaluation of other teacher research programs around the country. The author will present the findings of both studies.

  14. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  15. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  16. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  17. Student memories: Insights for science reform

    Science.gov (United States)

    Chaillie, Jane Hall

    The purpose of this study was to examine the recollections pre-service teachers majoring in elementary education have of their science experiences during their elementary years and to explore the recollections in the context of science education reform efforts. At the beginning of science methods course work, pre-service elementary teachers reflected on their memories of their own elementary education experiences. Themes from 102 reflective essays collected in two settings and time periods were identified and compared. The themes remained consistent over both settings and time frames studied and fall into three general categories: curriculum and instruction, teacher traits, and student traits. The pre-service teachers expressed difficulty in recalling elementary science experiences and attributed their limited memories to what they perceived as a low priority of science content in the elementary curriculum. Teaching strategies played a prominent role in the memories reported. Hands-on and active learning strategies produced positive memories, while lectures, reading textbooks, and completing worksheets resulted in more negative memories. Furthermore, pre-service teacher essays often failed to connect the learning activities with concept development or understanding. Pre-service teachers were split nearly equally between those who liked and those who disliked elementary science. The attributes of elementary teachers received the least attention in the categories and focused primarily on passion for teaching science. Implications for science reform leaders, teacher education preparation programs, and school administrators and curriculum directors are identified.

  18. Astronomy in Research-Based Science Education (A-RBSE): A Review of a Decade of Professional Development Programs in Support of Teacher and Student Research at the National Optical Astronomy Observatory

    Science.gov (United States)

    Pompea, S. M.; Garmany, C. D.; Walker, C. E.; Croft, S. K.

    2006-12-01

    We will review the evolution of the Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory over the last eleven years. The program has evolved from an NSF-funded program in teacher enhancement to an observatory-supported core education initiative. The present manifestation of our program is an umbrella of programs designed to aid teachers in doing research with astronomical data archives, small telescopes, large research-grade telescopes, and the Spitzer Space Telescope. The professional development program has addressed basic questions on the nature of research, best techniques to bring it into the classroom, the value of authentic research, and the mix of on-line versus in- person professional development. The current program is used to test new models of teacher professional development that for outreach programs for the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program has been funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  19. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  20. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  1. Canisius College Summer Science Camp: Combining Science and Education Experts to Increase Middle School Students' Interest in Science

    Science.gov (United States)

    Sheridan, Phillip M.; Szczepankiewicz, Steven H.; Mekelburg, Christopher R.; Schwabel, Kara M.

    2011-01-01

    The Canisius College Summer Science Camp is a successful and effective annual outreach program that specifically targets middle school students in an effort to increase their interest in science. Five broadly defined science topics are explored in a camp-like atmosphere filled with hands-on activities. A 2010 module focused on chemistry topics of…

  2. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  3. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  4. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    Science.gov (United States)

    Young, Victoria Jewel

    2017-01-01

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…

  5. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  6. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  7. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  8. Connecting Scientists, College Students, Middle School Students & Elementary Students through Intergenerational Afterschool STEM Programming

    Science.gov (United States)

    Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.

    2015-12-01

    The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.

  9. Federal Student Loan Programs

    Science.gov (United States)

    Federal Student Aid, US Department of Education, 2014

    2014-01-01

    For those needing a loan to attend college, think federal aid first. Federal student loans usually offer borrowers lower interest rates and have more flexible repayment terms and options than private student loans. This brief report answers the following questions about federal aid: (1) What is a federal student loan?; (2) What is a private…

  10. Project BioEYES: Accessible Student-Driven Science for K-12 Students and Teachers.

    Science.gov (United States)

    Shuda, Jamie R; Butler, Valerie G; Vary, Robert; Farber, Steven A

    2016-11-01

    BioEYES, a nonprofit outreach program using zebrafish to excite and educate K-12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students' pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students' content knowledge and produced favorable shifts in students' attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations.

  11. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  12. Teaching Graduate Students The Art of Science

    Science.gov (United States)

    Snieder, Roel; Larner, Ken; Boyd, Tom

    2012-08-01

    Graduate students traditionally learn the trade of research by working under the supervision of an advisor, much as in the medieval practice of apprenticeship. In practice, however, this model generally falls short in teaching students the broad professional skills needed to be a well-rounded researcher. While a large majority of graduate students considers professional training to be of great relevance, most graduate programs focus exclusively on disciplinary training as opposed to skills such as written and oral communication, conflict resolution, leadership, performing literature searches, teamwork, ethics, and client-interaction. Over the past decade, we have developed and taught the graduate course "The Art of Science", which addresses such topics; we summarize the topics covered in the course here. In order to coordinate development of professional training, the Center for Professional Education has been founded at the Colorado School of Mines. After giving an overview of the Center's program, we sketch the challenges and opportunities in offering professional education to graduate students. Offering professional education helps create better-prepared graduates. We owe it to our students to provide them with such preparation.

  13. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  14. Students' Psychosocial Perception of Science Laboratory ...

    African Journals Online (AJOL)

    Data was obtained with the Science Laboratory Environment Questionnaire, administered on 338 third year science students. Four factors were found to influence students' perception of their science laboratory environment. Two distinct material environments emerged, which have not been reported in the literature.

  15. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  16. Secondary School Students' Predictors of Science Attitudes

    Science.gov (United States)

    Tosun, Cemal; Genç, Murat

    2016-01-01

    The purpose of this study is to identify the factors that affect the secondary school students' attitudes in science. This study was conducted using survey method. The sample of the study was 503 students from four different secondary schools in Bartin and Düzce. Data were obtained using the Survey of Factors Affecting Students' Science Attitudes…

  17. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  18. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    Science.gov (United States)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  19. Using POGIL to Help Students Learn to Program

    Science.gov (United States)

    Hu, Helen H.; Shepherd, Tricia D.

    2013-01-01

    POGIL has been successfully implemented in a scientific computing course to teach science students how to program in Python. Following POGIL guidelines, the authors have developed guided inquiry activities that lead student teams to discover and understand programming concepts. With each iteration of the scientific computing course, the authors…

  20. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  1. An Interdisciplinary Program in Materials Science at James Madison University.

    Science.gov (United States)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  2. Student diversity programs : sponsored items and events for 2013-2014.

    Science.gov (United States)

    2014-07-01

    Support made scholarships available to minority and women students interested in engineering and science and increased significantly : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...

  3. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  4. Establishing a Student Research and Publishing Program in High School Physics

    Science.gov (United States)

    Eales, Jonathan; Laksana, Sangob

    2016-01-01

    Student learning in science is improved by authentic personal experience of research projects and the publication of findings. Graduate students do this, but it is uncommon to find student research and publishing in high school science programs. We describe here the Student Research and Publishing Program (SRPP) established at International School…

  5. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  6. University Student Conceptions of Learning Science through Writing

    Science.gov (United States)

    Ellis, Robert A.; Taylor, Charlotte E.; Drury, Helen

    2006-01-01

    First-year undergraduate science students experienced a writing program as an important part of their assessment in a biology subject. The writing program was designed to help them develop both their scientific understanding as well as their written scientific expression. Open-ended questionnaires investigating the quality of the experience of…

  7. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  8. The Science Standards and Students of Color

    Science.gov (United States)

    Strachan, Samantha L.

    2017-01-01

    In a 2014 report, the National Center for Education Statistics (NCES) projected that by the year 2022, minority students will outnumber non-Hispanic white students enrolled in public schools. As the diversity of the student population in the United States increases, concerns arise about student performance in science classes, especially among…

  9. Tomorrow's engineers through teacher/student programs at Penn State

    International Nuclear Information System (INIS)

    Davidson, C.

    1992-01-01

    Interest in math and science increases when the problems and topics are current and socially relevant. A course that integrates various sciences requires a solid foundation in mathematics and an understanding that real life consists of an interaction of the basic sciences. One topical area that requires the understanding of math and science and affects our society is radiation. Although nuclear issues are prevalent in the news, very few secondary science educators receive much formal training in radiation and nuclear science. A strong push for educational programs on this topic by the U.S. Atomic Energy Commission and state departments of education began in the late 1960s and early 1970s. Through this effort, Pennsylvania State University (Penn State) developed the Nuclear Concepts Institute for secondary science teachers and has continued its involvement with educational programs in nuclear science for teachers and students. From discussions with teachers and students along with formal and informal surveys, the programs have had a positive impact on teachers' interest in learning more about nuclear science and on students' choices to enter nuclear engineering or a related field. The paper discusses the Nuclear Concepts Program; formation of the American Nuclear Science Teachers Association (ANSTA); ANSTA projects; other Penn State educational programs; and impact of education programs

  10. Pair Programming as a Modern Method of Teaching Computer Science

    OpenAIRE

    Irena Nančovska Šerbec; Branko Kaučič; Jože Rugelj

    2008-01-01

    At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM C...

  11. Improving epistemological beliefs and moral judgment through an STS-based science ethics education program.

    Science.gov (United States)

    Han, Hyemin; Jeong, Changwoo

    2014-03-01

    This study develops a Science-Technology-Society (STS)-based science ethics education program for high school students majoring in or planning to major in science and engineering. Our education program includes the fields of philosophy, history, sociology and ethics of science and technology, and other STS-related theories. We expected our STS-based science ethics education program to promote students' epistemological beliefs and moral judgment development. These psychological constructs are needed to properly solve complicated moral and social dilemmas in the fields of science and engineering. We applied this program to a group of Korean high school science students gifted in science and engineering. To measure the effects of this program, we used an essay-based qualitative measurement. The results indicate that there was significant development in both epistemological beliefs and moral judgment. In closing, we briefly discuss the need to develop epistemological beliefs and moral judgment using an STS-based science ethics education program.

  12. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  13. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  14. Introducing Science to undergraduate students

    Directory of Open Access Journals (Sweden)

    P. Avila Jr

    2006-07-01

    Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.

  15. Students' guide to program design

    CERN Document Server

    Robertson, Lesley Anne

    1992-01-01

    Students' Guide to Program Design is a textbook on program design. This textbook approaches program design by using structures programming techniques and pseudocode to develop a solution algorithm. Divided into 10 chapters, the book begins with a basic explanation of structured programming techniques, top-down development, and modular design. This discussion is followed by detailed concepts of the syntax of pseudocode; methods of defining the problem; the application of basic control structures in the development of the solution algorithm; desk checking techniques; hierarchy charts; and module

  16. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  17. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    Science.gov (United States)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  18. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  19. Pharmacy students' perceptions of natural science and mathematics subjects.

    Science.gov (United States)

    Prescott, Julie; Wilson, Sarah Ellen; Wan, Kai-Wai

    2014-08-15

    To determine the level of importance pharmacy students placed on science and mathematics subjects for pursuing a career in pharmacy. Two hundred fifty-four students completed a survey instrument developed to investigate students' perceptions of the relevance of science and mathematics subjects to a career in pharmacy. Pharmacy students in all 4 years of a master of pharmacy (MPharm) degree program were invited to complete the survey instrument. Students viewed chemistry-based and biology-based subjects as relevant to a pharmacy career, whereas mathematics subjects such as physics, logarithms, statistics, and algebra were not viewed important to a career in pharmacy. Students' experience in pharmacy and year of study influenced their perceptions of subjects relevant to a pharmacy career. Pharmacy educators need to consider how they can help students recognize the importance of scientific knowledge earlier in the pharmacy curriculum.

  20. The Workshop Program on Authentic Assessment for Science Teachers

    Science.gov (United States)

    Rustaman, N. Y.; Rusdiana, D.; Efendi, R.; Liliawati, W.

    2017-02-01

    A study on implementing authentic assessment program through workshop was conducted to investigate the improvement of the competence of science teachers in designing performance assessment in real life situation at school level context. A number of junior high school science teachers and students as participants were involved in this study. Data was collected through questionnaire, observation sheets, and pre-and post-test during 4 day workshop. This workshop had facilitated them direct experience with seventh grade junior high school students during try out. Science teachers worked in group of four and communicated each other by think-pair share in cooperative learning approach. Research findings show that generally the science teachers’ involvement and their competence in authentic assessment improved. Their knowledge about the nature of assessment in relation to the nature of science and its instruction was improved, but still have problem in integrating their design performance assessment to be implemented in their lesson plan. The 7th grade students enjoyed participating in the science activities, and performed well the scientific processes planned by group of science teachers. The response of science teachers towards the workshop was positive. They could design the task and rubrics for science activities, and revised them after the implementation towards the students. By participating in this workshop they have direct experience in designing and trying out their ability within their professional community in real situation towards their real students in junior high school.

  1. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  2. Reaching Nonscience Students through Science Fiction

    Science.gov (United States)

    Smith, Donald A.

    2009-01-01

    In 2006 I had the chance to design a physics course for students not majoring in scientific fields. I chose to shape the course around science fiction, not as a source for quantitative problems but as a means for conveying important physics concepts. I hoped that, by encountering these concepts in narratives, students with little or no science or…

  3. Science Students' Classroom Discourse: Tasha's Umwelt

    Science.gov (United States)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  4. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  5. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    Science.gov (United States)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  6. Tailoring science education graduate programs to the needs of science educators in low-income countries

    Science.gov (United States)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  7. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  8. Implementing an Applied Science Program

    Science.gov (United States)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  9. Internet Use Among Science Undergraduate Students: A ...

    African Journals Online (AJOL)

    The objective of this study was to identify and determine the extent of students\\' access to, and use of the Internet using the Science Undergraduate Students of University of Ibadan and University of Lagos as a case study. The study also aimed at comparing the rate of use among this group of students and determine which ...

  10. University Students' Perceptions of Their Science Classrooms

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  11. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  12. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  13. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  14. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    Science.gov (United States)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  15. Program Costs and Student Completion

    Science.gov (United States)

    Manning, Terri M.; Crosta, Peter M.

    2014-01-01

    Community colleges are under pressure to increase completion rates, prepare students for the workplace, and contain costs. Colleges need to know the financial implications of what are often perceived as routine decisions: course scheduling, program offerings, and the provision of support services. This chapter presents a methodology for estimating…

  16. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  17. Climate Science Program at California State University, Northridge

    Science.gov (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  18. Health status, physical activity, and orthorexia nervosa: A comparison between exercise science students and business students.

    Science.gov (United States)

    Malmborg, Julia; Bremander, Ann; Olsson, M Charlotte; Bergman, Stefan

    2017-02-01

    Orthorexia nervosa is described as an exaggerated fixation on healthy food. It is unclear whether students in health-oriented academic programs, highly focused on physical exercise, are more prone to develop orthorexia nervosa than students in other educational areas. The aim was to compare health status, physical activity, and frequency of orthorexia nervosa between university students enrolled in an exercise science program (n = 118) or a business program (n = 89). The students completed the Short Form-36 Health Survey (SF-36), the International Physical Activity Questionnaire (IPAQ), and ORTO-15, which defines orthorexia nervosa as a sensitive and obsessive behavior towards healthy nutrition. The SF-36 showed that exercise science students scored worse than business students regarding bodily pain (72.8 vs. 82.5; p = 0.001), but better regarding general health (83.1 vs. 77.1; p = 0.006). Of 188 students, 144 (76.6%) had an ORTO-15 score indicating orthorexia nervosa, with a higher proportion in exercise science students than in business students (84.5% vs. 65.4%; p = 0.002). Orthorexia nervosa in combination with a high level of physical activity was most often seen in men in exercise science studies and less often in women in business studies (45.1% vs. 8.3%; p orthorexia nervosa in exercise science students may cause problems in the future, since they are expected to coach others in healthy living. Our findings may be valuable in the development of health-oriented academic programs and within student healthcare services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    2017-01-01

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…

  20. Current Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  1. Student Organizations | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  2. Transfer Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  3. Brandeis Science Posse: Talented Students Bring Diversity to the Field. Carnegie Results

    Science.gov (United States)

    Theroux, Karen

    2013-01-01

    The Science Posse program at Brandeis University aims to increase the recruitment and retention of students from disadvantaged and underrepresented backgrounds in STEM (science, technology, engineering and mathematics) disciplines. A grant from Carnegie Corporation helped support the development of the program, which has brought 50 students from…

  4. Utilizing Science Outreach to Foster Professional Skills Development in University Students

    Science.gov (United States)

    Eng, Edward; Febria, Catherine

    2011-01-01

    Students seek unique experiences to obtain and enhance professional development skills and to prepare for future careers. Through the Let's Talk Science Partnership Program (LTSPP), a voluntary science outreach program at University of Toronto Scarborough, students are given the opportunity to continually improve on skills which include: the…

  5. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  6. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  7. Who am I? ~ Undergraduate Computer Science Student

    OpenAIRE

    Ferris, Jane

    2012-01-01

    As part of a school review process a survey of the students was designed to gain insight into who the students of the school were. The survey was a voluntary anonymous online survey. Students were able to skip questions and select more than one option in some questions. This was to reduce frustration with participation in the survey and ensure that the survey was completed. This conference details the average undergraduate Computer Science student of a large third level institute.

  8. The Citizen Science Program "H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change" teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. This is a continuation of the Program presented last year at the Poster Session.

    Science.gov (United States)

    Weiss, N. K.; Wood, J. H.

    2017-12-01

    TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.

  9. Finding science in students' talk

    Science.gov (United States)

    Yeo, Jennifer

    2009-12-01

    What does it mean to understand science? This commentary extends Brown and Kloser's argument on the role of native language for science learning by exploring the meaning of understanding in school science and discusses the extent that science educators could tolerate adulterated forms of scientific knowledge. Taking the perspective of social semiotics, this commentary looks at the extent that school science can be represented with other discourse practices. It also offers an example to illustrate how everyday language can present potential hindrance to school science learning.

  10. Using Space Science to Excite Hispanic Students in STEM

    Science.gov (United States)

    Reiff, P. H.; Galindo, C.; Garcia, J.; Morris, P. A.; Allen, J. S.

    2013-05-01

    Over the past ten years, NASA and its cosponsors have held an annual "NASA Space Science Day" at the University of Texas at Brownsville. The event is held over two days, with the Friday evening program featuring a space scientist or astronaut, this year Joe Acaba, giving a public lecture (plus a free planetarium show). The Saturday event starts with a keynote speech from the same speaker. Then the students circulate among six or seven hands-on workshops, plus a scheduled trip to the "Demo room" where NASA missions show their materials, and a planetarium show in the Discovery Dome. The students, 4th through 8th graders, are drawn from schools all across south Texas, and have included students coming as far as Zapata, with a four-hour bus ride each way. Over the ten years of the program, more than 5000 students have been reached. Most of the hands-on activities are led by undergraduate student mentors. The university students (42 in 2013) received science and engineering content and mentor training on the activities at Johnson Space Center before the January event. In addition, an additional 40 local high school students helped with activities and with escorting each group of students from one activity station to the next. The program has been so successful that students have "graduated" from participant, to volunteer, and now to University student mentor. Most of the mentors go on to complete a degree in a STEM discipline, and many have gone on to graduate school. Thus the mentors not only help with the program, they are beneficiaries as well. The program is being expanded to reach other underserved communities around the US, with its first "expansion" event held in Utah in 2011.; Puerto Rican Astronaut Joe Acaba and the Discovery Dome were two of the highlights for the students.

  11. Science Students and the Social Sciences: Strange Bedfellows?

    Science.gov (United States)

    Yeong, Foong May

    2014-01-01

    With various internet resources available to students, the main aim of a good university education today should not merely be to provide students with content knowledge, but rather to equip them with essential skills necessary to develop into lifelong learners. Among science educators, repeated calls have been made to promote a more holistic…

  12. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  13. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. JOHNSON

    2011-11-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  14. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. Johnson

    2011-10-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  15. Teacher Research Experience Programs = Increase in Student Achievement

    Science.gov (United States)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  16. The women in science and engineering scholars program

    Science.gov (United States)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  17. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  18. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    Science.gov (United States)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  19. Strategies to Recruit and Retain Students in Physical Science and Mathematics on a Diverse College Campus

    Science.gov (United States)

    Chang, Jen-Mei; Kwon, Chuhee; Stevens, Lora; Buonora, Paul

    2016-01-01

    This article presents implementation details and findings of a National Science Foundation Scholarship in Science, Technology, Engineering, and Mathematics Program (S-STEM) consisting of many high-impact practices to recruit and retain students in the physical sciences and mathematics programs, particularly first-generation and underrepresented…

  20. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    Science.gov (United States)

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  1. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  2. Learning to Program with Personal Robots: Influences on Student Motivation

    Science.gov (United States)

    McGill, Monica M.

    2012-01-01

    One of the goals of using robots in introductory programming courses is to increase motivation among learners. There have been several types of robots that have been used extensively in the classroom to teach a variety of computer science concepts. A more recently introduced robot designed to teach programming to novice students is the Institute…

  3. Helping Students Test Programs That Have Graphical User Interfaces

    Directory of Open Access Journals (Sweden)

    Matthew Thornton

    2008-08-01

    Full Text Available Within computer science education, many educators are incorporating software testing activities into regular programming assignments. Tools like JUnit and its relatives make software testing tasks much easier, bringing them into the realm of even introductory students. At the same time, many introductory programming courses are now including graphical interfaces as part of student assignments to improve student interest and engagement. Unfortunately, writing software tests for programs that have significant graphical user interfaces is beyond the skills of typical students (and many educators. This paper presents initial work at combining educationally oriented and open-source tools to create an infrastructure for writing tests for Java programs that have graphical user interfaces. Critically, these tools are intended to be appropriate for introductory (CS1/CS2 student use, and to dovetail with current teaching approaches that incorporate software testing in programming assignments. We also include in our findings our proposed approach to evaluating our techniques.

  4. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    Science.gov (United States)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  5. Reading, Writing & Rings: Science Literacy for K-4 Students

    Science.gov (United States)

    McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.

    2007-12-01

    Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.

  6. Teaching Graduate Students How To Do Informal Science Education

    Science.gov (United States)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  7. More on enrolling female students in science and engineering.

    Science.gov (United States)

    Townley, Cynthia

    2010-06-01

    This paper investigates reasons for practices and policies that are designed to promote higher levels of enrollment by women in scientific disciplines. It challenges the assumptions and problematic arguments of a recent article questioning their legitimacy. Considering the motivations for and merits of such programs suggests a practical response to the question of whether there should be programs to attract female science and engineering students.

  8. Ciencias 2 (Science 2). [Student's Workbook].

    Science.gov (United States)

    Raposo, Lucilia

    Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…

  9. Preparing clinical laboratory science students with teaching skills.

    Science.gov (United States)

    Isabel, Jeanne M

    2010-01-01

    Training clinical laboratory science (CLS) students in techniques of preparation and delivery of an instructional unit is an important component of all CLS education programs and required by the national accrediting agency. Participants of this study included students admitted to the CLS program at Northern Illinois University and enrolled in the teaching course offered once a year between the years of 1997 and 2009. Courses on the topic of "teaching" may be regarded by CLS students as unnecessary. However, entry level practitioners are being recruited to serve as clinical instructors soon after entering the workforce. Evaluation of the data collected indicates that students are better prepared to complete tasks related to instruction of a topic after having an opportunity to study and practice skills of teaching. Mentoring CLS students toward the career role of clinical instructor or professor is important to maintaining the workforce.

  10. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    Science.gov (United States)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and

  11. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  12. Practical science communication strategies for graduate students.

    Science.gov (United States)

    Kuehne, Lauren M; Twardochleb, Laura A; Fritschie, Keith J; Mims, Meryl C; Lawrence, David J; Gibson, Polly P; Stewart-Koster, Ben; Olden, Julian D

    2014-10-01

    Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will

  13. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    Science.gov (United States)

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  14. Grassroots Engagement and the University of Washington: Evaluating Science Communication Training Created by Graduate Students for Graduate Students

    Science.gov (United States)

    Rohde, J. A.; Clarkson, M.; Houghton, J.; Chen, W.

    2016-12-01

    Science graduate students increasingly seek science communication training, yet many do not have easy access to training programs. Students often rely on a "do it yourself" approach to gaining communication skills, and student created science communication programs are increasingly found at universities and institutions across the U.S. In 2010, graduate students at the University of Washington led a grassroots effort to improve their own communication and outreach by creating "The Engage Program." With a focus on storytelling and public speaking, this graduate level course not only trains students in science communication but also gives them real world experience practicing that training at a public speaker series at Town Hall Seattle. The Engage Program was fortunate in that it was able to find institutional champions at University of Washington and secure funding to sustain the program over the long-term. However, many grassroots communication programs find it difficult to gain institutional support if there is a perceived lack of alignment with university priorities or lack of return on investment. In order to justify and incentivize institutional support for instruction in science communication, student leaders within the program initiated, designed and carried out an evaluation of their own program focused on assessing the impact of student communication, evaluating the effectiveness of the program in teaching communication skills, and quantifying the benefits of communication training to both the students and their institution. Project leaders created the opportunity for this evaluation by initiating a crowdfunding campaign, which has helped to further engage public support of science communication and incentivized student participation in the program, and may also inspire future program leaders to pursue similar program optimizations.

  15. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science

    Science.gov (United States)

    Holloway, A. E.

    2016-02-01

    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  16. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  17. Master’s Students in an Information Studies Program Enter the Program with Excitement and Leave with Concerns about Professional Preparation for their Chosen Fields. A Review of: Cherry, J. M., Duff, W. M., Singh, N., & Freund, L. (2011. Student perceptions of the information professions and their master's program in information studies. Library & Information Science Research, 33(2, 120-131. doi:10.1016/j.lisr.2010.09.004

    Directory of Open Access Journals (Sweden)

    Christina E. Carter

    2011-01-01

    Full Text Available Objective – To assess master’s students’ perceptions of their information studies program with regard to the program’s academic quality and professional preparation as it moved to become an iSchool.Design – Longitudinal survey, employing both quantitative analysis of demographics and closed responses, and thematic analysis of open-ended responses.Setting – University of Toronto, Canada, Faculty of Information, Master of Information Studies (MISt ALA-accredited program.Subjects – Students enrolled in the MISt program from fall 2003 to spring 2007.Methods – Between 2003 and 2007, a self-administered confidential questionnaire was distributed eight times: a short version of the questionnaire to incoming students in the fall term over the four years, and a longer version to the entire MISt student body in the spring term of the four years. Thus, individual students participated in the survey multiple times. Survey questions fell into four categories: program assessment, perceptions on the information professions, career and personal achievements, and demographics. The first questionnaire was mailed in paper form; after that, Web-based questionnaires were used. Quantitative data collected was analyzed using SPSS, version 17, and open-ended responses were examined for recurring themes.Main Results – Across the four years of the survey, researchers obtained about 1,000 completed questionnaires. The response rate was always higher in the fall term than in the spring term, ranging from a high of 67% in fall 2003, to a low of 47% in spring 2007 which seemed to indicate “fatigue” with the study (p. 124. Respondents primarily were interested in the information professions and the majority planned to work in one of them (archives, library systems, or library and information science after graduating. No statistically significant differences relating to the year the survey was completed were found for student perceptions of career

  18. Student leadership in small group science inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  19. Perspectives on the Science Advisor Program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.; Heath, R.B.; Podlesny, A.; Channon, P.A.

    1992-01-01

    This paper discusses a Science Advisor Program which has been established at Sandia National Laboratories (SNL) for the long term augmentation of math and science instruction in New Mexico schools. Volunteer SNL engineers and scientists team with the faculty of participating schools to enhance the teachers' abilities to capture and hold the student's scientific imagination and develop their scientific skills. This is done primarily through providing laboratory resources, training the teachers how to use those resources, and advising how to obtain them in the future. In its first year, over 140 advisors teamed with 132 schools, for average weekly contact with 500 teachers and 10,000 students. Surveys indicate a general rise in frequency and quality of hands-on science instruction, as well as teacher and student attitudes. An expanded evaluation is planned for subsequent years

  20. How to change students' images of science and technology

    Science.gov (United States)

    Scherz, Zahava; Oren, Miri

    2006-11-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, Investigation into Science and Technology (IST), designed to introduce students to science and technology in the real life. Students' images were delineated via questionnaires, drawing tasks, and interviews before and after their participation in the IST program. The sample consisted of 100 students from six classes (eighth or ninth grade) of three schools. We found that before the IST intervention students' images about the scientific or technological environments were superficial, unreal, and even incorrect. Their impressions of the characteristics of scientists and technologists were superficial, misleading, and sometimes reflected ignorance. The findings demonstrate that the IST program stimulated a positive effect on students' images. Their preconceptions were altered in several dimensions: in the cognitive dimension, from superficial and vague to precise and correct images; in the perceptive dimension, from stereotypic to rational and open-minded images; and in the affective dimension, from negative to positive attitudes.

  1. Marketing Your College Music Program to Students.

    Science.gov (United States)

    Kelly, Steven N.

    1988-01-01

    Suggests the use of time-proven marketing methods to attract high school students to college music programs and keep them interested in the music program. Explores facets of the college and the program that draw students, including reputation, location, costs, and program content. (LS)

  2. The impact of the healthy schools program on reading, mathematics, and science achievement of 5th grade students: A causal-comparative inquiry

    Science.gov (United States)

    Barrera, Christina Lynn

    The obesity rate for children has become a national epidemic in America, resulting in the need to incorporate physical fitness and nutrition into the curriculum in an effort to improve health and academic achievement. The Healthy Schools Program (HSP) is an initiative that assists schools in establishing and sustaining healthy environments, which can be instrumental in making students perform better in school. Therefore, the purpose of the study was to examine the impact of the HSP on academic achievement. (Abstract shortened by ProQuest.).

  3. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  4. A review of forensic science higher education programs in the United States: bachelor's and master's degrees.

    Science.gov (United States)

    Tregar, Kristen L; Proni, Gloria

    2010-11-01

    As the number of forensic science programs offered at higher education institutions rises, and more students express an interest in them, it is important to gain information regarding the offerings in terms of courses, equipment available to students, degree requirements, and other important aspects of the programs. A survey was conducted examining the existing bachelor's and master's forensic science programs in the U.S. Of the responding institutions, relatively few were, at the time of the survey, accredited by the forensic science Education Programs Accreditation Commission (FEPAC). In general, the standards of the responding programs vary considerably primarily in terms of their size and subjects coverage. While it is clear that the standards for the forensic science programs investigated are not homogeneous, the majority of the programs provide a strong science curriculum, faculties with advanced degrees, and interesting forensic-oriented courses. © 2010 American Academy of Forensic Sciences.

  5. Student perceptions of the clinical laboratory science profession.

    Science.gov (United States)

    McClure, Karen

    2009-01-01

    The purpose of this paper is to describe the attitudes and perceptions among college biology and CLS/CLT students. These students were on selected college campuses at Texas universities in Houston, Dallas and the Austin/San Antonio areas for the Spring 2007 semester. Specifically, students were questioned on factors that influence their choice of field of study, career expectations, legislative measures which might be used to attract individuals to the career, and factors that will be required to keep them in the field of practice. This study was part of a larger qualitative study which included exploratory discovery and inductive logic regarding the attitudes of four focus groups in Texas. Focus groups took place on college campuses or in hotel conference rooms. (1) junior/senior-level college biology students and (2) junior/senior-level students currently enrolled in CLS/CLT programs. Focus group discussions using a standard set of questions; group sessions lasted about 45 minutes. This study was a qualitative study which included exploratory discovery and inductive logic regarding the attitudes of two groups in Texas. College biology and CLS/CLT students find the clinical laboratory science profession to be interesting and exciting as a career prospect, however, many do not see themselves remaining in the profession and perceive it does not have good prospects for career advancement. The majority of students must work to support themselves through their college education and would welcome additional grants, scholarships and loan forgiveness programs as incentives to study the clinical laboratory sciences. Students believe that additional recruitment on high school and college campuses is needed to increase the visibility of the field as career choice. The majority of students who are entering the clinical laboratory science profession do not see the profession as their final career choice, but rather a stepping stone to another career field in healthcare or a

  6. Engineering Students as Science Teachers: A Case Study on Students' Motivation

    Directory of Open Access Journals (Sweden)

    Aharon Gero

    2014-06-01

    Full Text Available The program "Educational Clinic" was recently developed and implemented at the Technion – Israel Institute of Technology. This one year program is designed to train engineering students as teaching assistants in high schools in order to help high school pupils with mathematics and science. The study described in this paper tracked changes in students' motivation to participate in the program throughout the year. Data was collected by questionnaires and interviews. The findings reveal that alongside a fixed high level of extrinsic motivational factors, which reflect student satisfaction of improving their teaching skills, a considerable increase was found in the level of intrinsic motivational factors, which express the students' interest in the program.

  7. Attitudes and achievement of Bruneian science students

    Science.gov (United States)

    Dhindsa, Harkirat S.; Chung, Gilbert

    2003-08-01

    The aim of this study was to evaluate attitudes towards and achievement in science of Form 3 students studying in single-sex and coeducational schools in Brunei. The results demonstrated significant differences in attitudes towards and achievement in science of male and female students in single-sex schools and students in coeducational schools. These differences were at moderate level. In single-sex schools, the girls achieved moderately better in science than the boys despite their attitudes were only marginally better than the boys. However, there were no gender differences in attitudes towards and achievement in science of students in coeducational schools. The attitudes towards and achievement in science of girls in single-sex schools were moderately better than those of girls in coeducational schools. Whereas the attitudes towards and achievement in science of boys in single-sex schools were only marginally better than the boys in coeducational schools. However, further research to investigate (a) if these differences are repeated at other levels as well as in other subjects, and (b) the extent to which school type contributed towards these differences is recommended.

  8. Science team participation in the ARM program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1993-01-01

    This progress report discusses the Science Team participation in the Atmospheric Radiation Measurement (ARM) Program for the period of October 31, 1992 to November 1, 1993. This report summarized the research accomplishments of six papers

  9. Science achievement of students in the Republic of Yemen and implications for improvement of science instruction

    Science.gov (United States)

    Ismail, Nageeb Kassem

    The purpose of this study was to establish a research base from which strategies could be developed for improving science education in Yemen. The study measured the achievement in general science of Yemeni students attending primary, preparatory, and secondary schools, and their counterparts attending three- or five-year education programs in primary teacher training institutions. A sample of 1,984 students from six major cities in Yemen was given the Second International Science Study test in May 1988. Achievement scores of these selected groups were compared. The mean achievement in general science was 11.93 for science track students, 9.21 for three-year teacher training institution students, and 8.49 for five-year teacher training institution students. These mean scores were based on a total of 35 items. This low level of achievement was further verified by making comparisons of the achievement of selected groups from Yemeni high schools in six cities with each other. The following factors were measured in this study: location, grade level, gender and type of science program studied. Selected groups from Yemeni high schools were also compared to their peers in other nations. The researcher compared students of the science track and teacher training institutions to their counterparts in 13 nations and students of the literature track to their counterparts in eight nations. Fifth and ninth grade students' scores were compared with the scores of their counterparts in 15 and 17 nations respectively. In every comparison, every Yemeni group ranked at the bottom of the achievement list. (Jacobson W., & Doran, R. 1988) The outcomes of this research indicate the profound need for improving science programs in all grade levels in Yemen. The research recommendations for improvement in science education in Yemen fall into four areas: a change in attitudes toward education, a change in teacher education, a change in classroom conditions, and a change in educational

  10. Life Sciences Program Tasks and Bibliography

    Science.gov (United States)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  11. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  12. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  13. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  14. Developing Leaders: Implementation of a Peer Advising Program for a Public Health Sciences Undergraduate Program

    Directory of Open Access Journals (Sweden)

    Megan eGriffin

    2015-01-01

    Full Text Available Peer advising is an integral part of our undergraduate advising system in the Public Health Sciences major at the University of Massachusetts Amherst. The program was developed in 2009 to address the advising needs of a rapidly growing major that went from 25 to over 530 majors between 2007 and 2014. Each year, 9-12 top performing upper-level students are chosen through an intensive application process. A major goal of the program is to provide curriculum and career guidance to students in the major and empower students in their academic and professional pursuits. The year-long program involves several components, including: staffing the drop-in advising center, attending training seminars, developing and presenting workshops for students, meeting prospective students and families, evaluating ways to improve the program, and collaborating on self-directed projects. The peer advisors also provide program staff insight into the needs and perspectives of students in the major. In turn, peer advisors gain valuable leadership and communication skills, and learn strategies for improving student success. The Peer Advising Program builds community and fosters personal and professional development for the peer advisors. In this paper, we will discuss the undergraduate peer advising model, the benefits and challenges of the program, and lessons learned. Several methods were used to understand the perceived benefits and challenges of the program and experiences of students who utilized the Peer Advising Center. The data for this evaluation were drawn from three sources: 1 archival records from the Peer Advising Center; 2 feedback from peer advisors who completed the year-long internship; and 3 a survey of students who utilized the Peer Advising Center. Results of this preliminary evaluation indicate that peer advisors gain valuable skills that they can carry into their professional world. The program is also a way to engage students in building community

  15. Evaluation of a health sciences internship for Latino and Native American library students.

    Science.gov (United States)

    Keselman, Alla; Quasem, Sanjana; Kelly, Janice E; Dutcher, Gale A

    2016-10-01

    This paper presents a qualitative evaluation of a graduate-level internship for Latino and Native American library science students or students who are interested in serving those populations. The authors analyzed semi-structured interviews with thirteen internship program graduates or participants. The analysis suggests that the program increased participants' interest in health sciences librarianship and led to improved career opportunities, both in health sciences libraries and other libraries with health information programming. It also highlights specific factors that are likely to contribute to the strength of career pipeline programs aiming to bring Latino and Native American students and students who are interested in serving those communities into health librarianship. Exposing graduate-level interns to a broad range of health sciences librarianship tasks, including outreach to Latino and Native American communities and formal mentorship, is likely to maximize interns' interests in both health sciences librarianship and service to these communities.

  16. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  17. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  18. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    Science.gov (United States)

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  19. Elements of Design-Based Science Activities That Affect Students' Motivation

    Science.gov (United States)

    Jones, Brett D.; Chittum, Jessica R.; Akalin, Sehmuz; Schram, Asta B.; Fink, Jonathan; Schnittka, Christine; Evans, Michael A.; Brandt, Carol

    2015-01-01

    The primary purpose of this study was to examine the ways in which a 12-week after-school science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires,…

  20. Volcano!: An Event-Based Science Module. Student Edition. Geology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  1. The Maryland nuclear science baccalaureate degree program: The university perspective

    International Nuclear Information System (INIS)

    Janke, T.A.

    1989-01-01

    Nuclear utilities' efforts in response to industry-wide pressures to provide operations staff with degree opportunities have encountered formidable barriers. This paper describes, from the university's perspective, the development and operation of the University of Maryland University College (UMUC) special baccalaureate program in nuclear science. This program has successfully overcome these problems to provide degree education on-site, on-line, and on time. Program delivery began in 1984 with one utility and a single site. It is currently delivered at eight sites under contract to six utilities with a total active student count of over 500. The first graduates are expected in 1989. The program is an accredited university program and enjoys licensure approval from the six states within which it operates. In addition to meeting US Nuclear Regulatory Commission proposed guidelines for degreed operators, the program increasingly appears as part of utility management development programs for all plant personnel and a factor in employee retention. The owner utilities, the University of Maryland, and the growing user's group are committed to the academic integrity, technical capability, and responsiveness of the program. The full support of this partnership speaks well for the long-term service of the Bachelor of Science in Nuclear Science program to the nuclear power industry

  2. Asian students excel in science testing

    Science.gov (United States)

    Showstack, Randy

    Asian countries claimed four of the five top spots in science achievement for eighth grade students, according to a December 5 report on the Third International Mathematics and Science Study - Repeat (TIMSS-R). The top five are: Chinese Taipei, Singapore, Hungary, Japan, and the Republic of Korea.In mathematics, Asian countries scored a clean sweep. The top five are: Singapore, the Republic of Korea, Chinese Taipei, Hong Kong SAR,and Japan.

  3. UNH Project SMART 2017: Space Science for High School Students

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  4. Science Teaching Methods Preferred by Grade 9 Students in Finland

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Uitto, Anna; Byman, Reijo; Meisalo, Veijo

    2010-01-01

    Students find science relevant to society, but they do not find school science interesting. This survey study analyzes Finnish grade 9 students' actual experiences with science teaching methods and their preferences for how they would like to study science. The survey data were collected from 3,626 grade 9 students (1,772 girls and 1,832 boys)…

  5. Connecting Students and Policymakers through Science and Service-Learning

    Science.gov (United States)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present

  6. AFOSR International Science Program Office

    Science.gov (United States)

    2013-03-04

    S&T community. What: Biotechnology I f ti S i 7 Power & Energy *Limited direct engagement China n orma on c ences Physical Sciences Singapore...desert, geothermal activity, and Antarctica) provide unique variety for bio studies. Abundant mineral resources. Why: 8th Largest GPD and growing

  7. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  8. Individual Difference Predictors of Creativity in Art and Science Students

    Science.gov (United States)

    Furnham, Adrian; Batey, Mark; Booth, Tom W.; Patel, Vikita; Lozinskaya, Dariya

    2011-01-01

    Two studies are reported that used multiple measures of creativity to investigate creativity differences and correlates in arts and science students. The first study examined Divergent Thinking fluency, Self-Rated Creativity and Creative Achievement in matched groups of Art and Science students. Arts students scored higher than Science students on…

  9. Ethical Development through Student Activities Programming.

    Science.gov (United States)

    Brock, Carol S.

    1991-01-01

    Student activities programing, viewed as essential to the college experience, is defended by outlining some of the values and growth opportunities it provides for students. Several specific programing strategies useful as catalysts in values development are described, including values clarification exercises, multicultural programing, and…

  10. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  11. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within the school curriculum and in OST programs. Nationwide, many OST programs are offered for students but few have engaged in an in-depth assessment. This study included an assessment of two different types of OST programs and direct observations by the researcher. This study involved two advisors (one male, one female), 111 students, and their parents during 2016. Student participants completed two standardized surveys, one to determine their Science Self-Efficacy and another to assess their engagement in science during their OST programs. Parents described their parental involvement and their child's interest in the OST program(s). The OST program advisors participated in lengthy interviews. Additionally, the advisors rated their perceived interest level of the enrolled students and recorded attendance data. Bandura's Social Cognitive Theory (1997a) provided the theoretical framework. This theory describes the multidirectional influence of behavioral factors, personal factors, and environmental factors have on a student's Self-Efficacy. Compiled data from the teachers, students, and parents were used to determine the relationship of selected variables on Science Self-Efficacy of students. A correlational analysis revealed that students who participated in these OST programs possessed a high Mindset for the Enjoyment of science and that teacher ratings were also positively correlated to Mindset and Enjoyment of Science. Descriptive analyses showed that (a) girls who chose to participate in these OST programs possessed higher school grades in their in-school coursework than boys, (b) that parents of girls participated in more

  12. The effects of a science intervention program on the attitudes and achievement of high school girls in science

    Science.gov (United States)

    Steakley, Carrie Capers

    This study investigated the effects of a high school science intervention program that included hands-on activities, science-related career information and exposure, and real-world experiences on girls' attitudes and achievement in science. Eighty-four girls, 44 ninth-graders and 40 tenth-graders, and 105 parents participated in the study. Survey data was collected to assess the girls' attitudes toward science in seven distinct areas: social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Additional questionnaires were used to determine the extent of the girls' participation in sports and the attitudes of their parents toward science. The girls' cumulative science semester grade point averages since the seventh grade were used to assess academic science achievement. This study found no evidence that participation in the program improved the girls' attitudes or achievement in science. Parent attitudes and years of participation in sports were not accurate predictors of science achievement. Additionally, no significant relationship was detected between the girls' and their parents' perceptions of science. However, the study did suggest that extended participation in sports may positively affect science achievement for girls. This study holds implications for educational stakeholders who seek to implement intervention methods and programs that may improve student attitudes and achievement in science and attract more youth to future science-related careers.

  13. Beyond the first "click:" Women graduate students in computer science

    Science.gov (United States)

    Sader, Jennifer L.

    This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of

  14. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  15. Lifestyle of health sciences students at Majmaah University, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Fahad Alfhaid

    2017-02-01

    Full Text Available Background We all want to live a long, happy and healthy life with an abundance of energy and vitality to perform well both mentally and physically. A healthy lifestyle is a valuable resource for reducing the incidence and impact of health problems, enabling you better to cope with life stressors, as well as improving your quality of life. Aims The study was aimed to assess the lifestyle (eating habits and physical activity of health sciences students studying at Majmaah University. Methods This cross-sectional institutional based study was conducted from 25th November 2014-3rd May 2015. A total of 450 students (370 males and 80 females aged between 18–28 years were randomly chosen. Self-reported questionnaire was used for data collection from the College of Medicine, College of Applied Medical Sciences and College of Dentistry. Results Majority of the students, 62.4 per cent, were physically inactive. Students from the College of Medicine, 40.4 per cent, were the most physically active. The most common reason that restrained the students from being active was time limitation. In addition to that, many of the participants, 29.6 per cent, have never had breakfast at home. Also, most of the participants, 42.7 per cent, were not satisfied with their eating habits. Almost one quarter of students were consuming soft drinks more than four times a day. Conclusion There is a high prevalence of sedentary lifestyle, physical inactivity and unhealthy dietary habits among health sciences students studying at Majmaah University. There is an urgent need for arranging health education programs for promoting healthy and active living among health sciences students of Majmaah University in Saudi Arabia.

  16. Functional Automata - Formal Languages for Computer Science Students

    Directory of Open Access Journals (Sweden)

    Marco T. Morazán

    2014-12-01

    Full Text Available An introductory formal languages course exposes advanced undergraduate and early graduate students to automata theory, grammars, constructive proofs, computability, and decidability. Programming students find these topics to be challenging or, in many cases, overwhelming and on the fringe of Computer Science. The existence of this perception is not completely absurd since students are asked to design and prove correct machines and grammars without being able to experiment nor get immediate feedback, which is essential in a learning context. This article puts forth the thesis that the theory of computation ought to be taught using tools for actually building computations. It describes the implementation and the classroom use of a library, FSM, designed to provide students with the opportunity to experiment and test their designs using state machines, grammars, and regular expressions. Students are able to perform random testing before proceeding with a formal proof of correctness. That is, students can test their designs much like they do in a programming course. In addition, the library easily allows students to implement the algorithms they develop as part of the constructive proofs they write. Providing students with this ability ought to be a new trend in the formal languages classroom.

  17. Internship training in computer science: Exploring student satisfaction levels.

    Science.gov (United States)

    Jaradat, Ghaith M

    2017-08-01

    The requirement of employability in the job market prompted universities to conduct internship training as part of their study plans. There is a need to train students on important academic and professional skills related to the workplace with an IT component. This article describes a statistical study that measures satisfaction levels among students in the faculty of Information Technology and Computer Science in Jordan. The objective of this study is to explore factors that influence student satisfaction with regards to enrolling in an internship training program. The study was conducted to gather student perceptions, opinions, preferences and satisfaction levels related to the program. Data were collected via a mixed method survey (surveys and interviews) from student-respondents. The survey collects demographic and background information from students, including their perception of faculty performance in the training poised to prepare them for the job market. Findings from this study show that students expect internship training to improve their professional and personal skills as well as to increase their workplace-related satisfaction. It is concluded that improving the internship training is crucial among the students as it is expected to enrich their experiences, knowledge and skills in the personal and professional life. It is also expected to increase their level of confidence when it comes to exploring their future job opportunities in the Jordanian market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Science for the People: High School Students Investigate Community Air Quality

    Science.gov (United States)

    Marks-Block, Tony

    2011-01-01

    Over a year, a small group of high school students risked their afternoons and summer to participate in a science program that was "much different from science class." This was one of several after-school programs in Oakland and Richmond that the author was leading as an instructor with the East Bay Academy for Young Scientists (EBAYS). Students…

  19. Ciencias 1. (Science 1). [Student's Workbook].

    Science.gov (United States)

    Raposo, Lucilia

    Ciencias 1 is the first in a series of science books designed for elementary Portuguese-speaking students. The book contains five sections divided into 43 lessons. The five sections are (1) Matter, (2) The Human Body, (3) Weather, (4) Solids, Liquids, and Gases, and (5) Living Things. Pictorial presentations and picture exercises are included for…

  20. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  1. Student Leadership in Small Group Science Inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-01-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of…

  2. Infuriating Tensions: Science and the Medical Student.

    Science.gov (United States)

    Bishop, J. Michael

    1984-01-01

    Contemporary medical students, it is suggested, view science in particular and the intellect in general as difficult allies at best. What emerges are physicians without inquiring minds, physicians who bring to the bedside not curiosity and a desire to understand but a set of reflexes. (MLW)

  3. Science Education for Students with Special Needs

    Science.gov (United States)

    Villanueva, Mary Grace; Taylor, Jonte; Therrien, William; Hand, Brian

    2012-01-01

    Students with special needs tend to show significantly lower achievement in science than their peers. Reasons for this include severe difficulties with academic skills (i.e. reading, math and writing), behaviour problems and limited prior understanding of core concepts background knowledge. Despite this bleak picture, much is known on how to…

  4. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  5. Meteorology and Climate Inspire Secondary Science Students

    Science.gov (United States)

    Charlton-Perez, Andrew; Dacre, Helen; Maskell, Kathy; Reynolds, Ross; South, Rachel; Wood, Curtis

    2010-01-01

    As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was "How do we predict weather and climate?" Making use of the students' familiarity with weather and climate, several concepts of relevance to secondary…

  6. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  7. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  8. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  9. Students of Tehran Universities of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Ghezelbash Sima

    2015-07-01

    Full Text Available Introduction: Social anxiety is an important factor in peoples’ mental health. Good mental health while studying in university makes students able to deal effectively with numerous stressors that they experience. The purpose of this study was to determine and compare the social anxiety of nursing students in grades one to four of medical universities in Tehran. Methods: In this analytic cross-sectional study, 400 students from universities of medical sciences in Tehran were recruited by stratified sampling with proportional allocation. Data were collected during the first semester in 2010. Students completed a two-part questionnaire including the Liebowitz social anxiety questionnaire and a demographic information form. Data were analyzed using descriptive statistics methods and an analytical test by SPSS statistical software. Results: There was no statistically significant difference in the total scores of social anxiety of first- to fourth-year students. The mean score of the avoidance of social interaction dimension in fourth-year students was significantly lower than in first year students (p<0.05. Conclusion: In regard to the relationship between social anxiety and interpersonal communication as an associated part of nursing care, decrease of social anxiety of students could play an important role in their mental health. According to the results of this study, it seems that the placement of students in the nursing education system does not produce any changes in their social anxiety.

  10. Debunking the Librarian "Gene": Designing Online Information Literacy Instruction for Incoming Library Science Students

    Science.gov (United States)

    Lamb, Annette

    2017-01-01

    Information workers are not born information fluent. Like other students, incoming library science students enter graduate programs with a broad range of information and technology skills. The aim of this study was to determine if systematically designed online tutorials would be effective in preparing university students with information literacy…

  11. Students Inspiring Students: An Online Tool for Science Fair Participants

    Science.gov (United States)

    Seeman, Jeffrey I.; Lawrence, Tom

    2011-01-01

    One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…

  12. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  13. The Catalyst Scholarship Program at Hunter College. A Partnership among Earth Science, Physics, Computer Science and Mathematics

    Science.gov (United States)

    Salmun, Haydee; Buonaiuto, Frank

    2016-01-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…

  14. Young Engineers and Sciences (YES) - Mentoring High School Students

    Science.gov (United States)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  15. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  16. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  17. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    Science.gov (United States)

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  18. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    Science.gov (United States)

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  19. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  20. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    Science.gov (United States)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  1. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  2. Students' explanations in complex learning of disciplinary programming

    Science.gov (United States)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with

  3. Mapping classroom experiences through the eyes of enlace students: The development of science literate identities

    Science.gov (United States)

    Oemig, Paulo Andreas

    The culture of a science classroom favors a particular speech community, thus membership requires students becoming bilingual and bicultural at the same time. The complexity of learning science rests in that it not only possesses a unique lexicon and discourse, but it ultimately entails a way of knowing. My dissertation examined the academic engagement and perceptions of a group (N=30) of high school students regarding their science literate practices. These students were participating in an Engaging Latino Communities for Education (ENLACE) program whose purpose is to increase Latino high school graduation rates and assist them with college entrance requirements. At the time of the study, 19 students were enrolled in different science classes to fulfill the science requirements for graduation. The primary research question: What kind of science classroom learning environment supports science literate identities for Latino/a students? was addressed through a convergent parallel mixed research design (Creswell & Plano Clark, 2011). Over the course of an academic semester I interviewed all 30 students arranged in focus groups and observed in their science classes. ENLACE students expressed interest in science when it was taught through hands-on activities or experiments. Students also stressed the importance of having teachers who made an effort to get to know them as persons and not just as students. Students felt more engaged in science when they perceived their teachers respected them for their experiences and knowledge. Findings strongly suggest students will be more interested in science when they have opportunities to learn through contextualized practices. Science literate identities can be promoted when inquiry serves as a vehicle for students to engage in the language of the discipline in all its modalities. Inquiry-based activities, when carefully planned and implemented, can provide meaningful spaces for students to construct knowledge, evaluate claims

  4. Teaching Experiences for Graduate Student Researchers: A Study of the Design and Implementation of Science Courses for Secondary Students

    Science.gov (United States)

    Collins, Anne Wrigley

    Modern science education reform recommends that teachers provide K-12 science students a more complete picture of the scientific enterprise, one that lies beyond content knowledge and centers more on the processes and culture of scientists. In the case of Research Experience for Teachers (RET) programs, the "teacher" becomes "researcher" and it is expected that he/she will draw from the short-term science research experience in his/her classroom, offering students more opportunities to practice science as scientists do. In contrast, this study takes place in a program that allows graduate students, engaged in research full-time, to design and implement a short-duration course for high school students on Saturdays; the "researcher" becomes "teacher" in an informal science program. In this study, I investigated eleven graduate students who taught in the Saturday Science (SS) program. Analyses revealed participants' sophisticated views of the nature of science. Furthermore, participants' ideas about science clearly resonated with the tenets of NOS recommended for K-12 education (McComas et al., 1998). This study also highlighted key factors graduate students considered when designing lessons. Instructors took great care to move away from models of traditional, "lecture"-based, university science teaching. Nonetheless, instruction lacked opportunities for students to engage in scientific inquiry. In instances when instructors included discussions of NOS in SS courses, opportunities for high school students to learn NOS were not explicit enough to align with current science reform recommendations (e.g., AAAS, 2009). Graduate students did, however, offer high school students access to their own science or engineering research communities. These findings have significant implications for K-12 classroom reform. Universities continue to be a valuable resource for K-12 given access to scientists, materials or equipment, and funding. Nonetheless, and as was the case with

  5. Programs of the Office of the Science Advisor (OSA)

    Science.gov (United States)

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  6. Museum nuclear science programs during the past 30 years

    International Nuclear Information System (INIS)

    Marsee, M.D.

    1990-01-01

    The American Museum of Atomic Energy was opened as a program of the Atomic Energy Commission. The name was changed in 1977 to the American Museum of Science and Energy to reflect an expanded roll of the Department of Energy. From 1954 until 1980 the museum was the base for a Traveling Exhibit Program that visited schools, state fairs, shopping centers and malls, libraries, summer camps, and science museums throughout the United States. Today the museum transfers information on the research and development of all the energy sources, the environmental impact of these sources and possible solutions to these impacts. The museum also manages an Outreach Program to area schools and coordinates several special events for student visits to the museum

  7. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  8. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  9. Code quality issues in student programs

    NARCIS (Netherlands)

    Keuning, H.W.; Heeren, B.J.; Jeuring, J.T.

    2017-01-01

    Because low quality code can cause serious problems in software systems, students learning to program should pay attention to code quality early. Although many studies have investigated mistakes that students make during programming, we do not know much about the quality of their code. This study

  10. Alternatives for Revitalizing Student Services Programs.

    Science.gov (United States)

    Deegan, William L.

    1984-01-01

    Reviews alternatives for revitalizing the programs and management of community college student services. As program development models, considers Miami-Dade Community College's computer-based instructional management system; entrepreneurial fee-based services; and divestment of situational or special-interest services to student groups. In…

  11. Examining student-generated questions in an elementary science classroom

    Science.gov (United States)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  12. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  13. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  14. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  15. Science Identity's Influence on Community College Students' Engagement, Persistence, and Performance in Biology

    Science.gov (United States)

    Riccitelli, Melinda

    In the United States (U.S.), student engagement, persistence, and academic performance levels in college science, technology, engineering, and mathematics (STEM) programs have been unsatisfactory over the last decade. Low student engagement, persistence, and academic performance in STEM disciplines have been identified as major obstacles to U.S. economic goals and U.S. science education objectives. The central and salient science identity a college student claims can influence his engagement, persistence, and academic achievement in college science. While science identity studies have been conducted on four-year college populations there is a gap in the literature concerning community college students' science identity and science performance. The purpose of this quantitative correlational study was to examine the relationship between community college students claimed science identities and engagement, persistence, and academic performance. A census sample of 264 community college students enrolled in biology during the summer of 2015 was used to study this relationship. Science identity and engagement levels were calculated using the Science Identity Centrality Scale and the Biology Motivation Questionnaire II, respectively. Persistence and final grade data were collected from institutional and instructor records. Engagement significantly correlated to, r =.534, p = .01, and varied by science identity, p < .001. Percent final grade also varied by science identity (p < .005), but this relationship was weaker (r = .208, p = .01). Results for science identity and engagement and final grade were consistent with the identity literature. Persistence did not vary by science identity in this student sample (chi2 =2.815, p = .421). This result was inconsistent with the literature on science identity and persistence. Quantitative results from this study present a mixed picture of science identity status at the community college level. It is suggested, based on the findings

  16. Evaluating RITES, a Statewide Math and Science Partnership Program

    Science.gov (United States)

    Murray, D. P.; Caulkins, J. L.; Burns, A. L.; de Oliveira, G.; Dooley, H.; Brand, S.; Veeger, A.

    2013-12-01

    The Rhode Island Technology-Enhanced Science project (RITES) is a NSF-MSP Program that seeks to improve science education by providing professional development to science teachers at the 5th through 12th grade levels. At it's heart, RITES is a complex, multifaceted project that is challenging to evaluate because of the nature of its goal: the development of a large, statewide partnership between higher education and K12 public school districts during a time when science education strategies and leadership are in flux. As a result, these difficulties often require flexibility and creativity regarding evaluation, study design and data collection. In addition, the research agenda of the project often overlaps with the evaluator's agenda, making collaboration and communication a crucial component of the project's success. In it's 5th year, RITES and it's evaluators have developed a large number of instruments, both qualitative and quantitative, to provide direction and feedback on the effectiveness of the project's activities. RITES personnel work closely with evaluators and researchers to obtain a measure of how RITES' 'theory-of-action' affects both student outcomes and teacher practice. Here we discuss measures of teacher and student content gains, student inquiry gains, and teacher implementation surveys. Using content questions based on AAAS and MOSART databases, teachers in the short courses and students in classrooms showed significant normalized learning gains with averages generally above 0.3. Students of RITES-trained teachers also outperformed their non-RITES peers on the inquiry-section of the NECAP test, and The results show, after controlling for race and economic status, a small but statistically significant increase in test scores for RITES students. Technology use in the classroom significantly increased for teachers who were 'expected implementers' where 'expected implementers' are those teachers who implemented RITES as the project was designed. This

  17. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  18. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    1984-09-01

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  19. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  20. Research Based Science Education: An Exemplary Program for Broader Impacts

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2016-12-01

    Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.

  1. High school students as science researchers: Opportunities and challenges

    Science.gov (United States)

    Smith, W. R.; Grannas, A. M.

    2007-12-01

    Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.

  2. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs

  3. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    Science.gov (United States)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  4. The Environmental Science and Health Effects Program

    International Nuclear Information System (INIS)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-01-01

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources

  5. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  6. The Environmental Science and Health Effects Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  7. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    Science student teacher's perceptions of good teaching. ... of 50 senior students enrolled in the Bachelor of Education (Further Education and Training ... and teaching strategies employed are perceived to influence what students perceived as ...

  8. Professional preferences of students in physical education and sport sciences

    Directory of Open Access Journals (Sweden)

    Jerónimo García Fernández

    2013-01-01

    Full Text Available The actual context has enhanced job opportunities in the field of sport in order to respond to the current market demand. Thus, Physical Education and Sport Science graduates who begin to do differents jobs to the traditional ones but relate to their study field. The aim of this study was to guess which are the job preferences of the students of Physical Education and Sport Science of Seville University by gender and age doing the second cycle of their college degree and determine if there are significant differences. A descriptive analysis was carried out, using a questionnaire based on several researches, it was related to professional opportunities in sport sciences. The sample was of 118 students which represented 40.7% of the overall registered students. Results shown that sport management is the most preferable professional opportunity for women and men of the total sample, following in second place by teaching in secondary school for people older than 25 years of both sexes and teaching in primary school for the younger than 25 years. These findings announce changes in occupational trends in sports, to be taken into account in the framework of the European higher education (Degree of Science in Sport and Physical Activity, own US Masters and Official, lifelong learning programs....

  9. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    Science.gov (United States)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology

  10. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  11. Dimensions of flow during an experiential wilderness science program

    Science.gov (United States)

    Wang, Robert

    Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and

  12. MLS student active learning within a "cloud" technology program.

    Science.gov (United States)

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  13. Polymer Science. Program CIP: 15.0607

    Science.gov (United States)

    Research and Curriculum Unit, 2010

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  14. Increase in Science Research Commitment in a Didactic and Laboratory-Based Program Targeted to Gifted Minority High-School Students

    Science.gov (United States)

    Fraleigh-Lohrfink, Kimberly J.; Schneider, M. Victoria; Whittington, Dawayne; Feinberg, Andrew P.

    2013-01-01

    Underrepresentation of ethnic minorities in science, technology, engineering, and mathematics (STEM) fields has been a growing concern. Efforts to ameliorate this have often been directed at college-level enrichment. However, mentoring in the sciences at a high-school age level may have a greater impact on career choices. The Center Scholars…

  15. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  16. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  17. Increasing Mathematics and Science Achievement for Culturally Diverse Students through Teaching Training

    Science.gov (United States)

    Mahon, Lee

    1997-01-01

    The purpose of this proposal was to field test and evaluate a Teacher Training program that would prepare teachers to increase the motivation and achievement of culturally diverse students in the areas of science and mathematics. Designed as a three year program, this report covers the first two years of the training program at the Ronald McNair School in the Ravenswood School district, using the resources of the NASA Ames Research Center and the California Framework for Mathematics and Science.

  18. Science and technology disclosure in the state of Queretaro: Science and Technology for Children program

    Science.gov (United States)

    Contreras Flores, Rubén; Villeda Muñoz, Gabriel

    2007-03-01

    Science and technology disclosure is an integral part of our scientific work as researches; it is an induction process for children, young people and teachers of primary and secondary schools in the state of Queretaro. Education must be offered in a clear and objective way, it allows to the students apply the acquired knowledge to understand the world and improve his quality of life. Nowadays, the Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada of the Instituto Politecnico Nacional Unidad Queretaro (CICATA-IPN Queretaro) together with the Consejo de Ciencia y Tecnologia del Estado de Queretaro (CONCYTEQ) have implemented the "Science and Technology for Children" program (Ciencia y Tecnologia para Ninos - CTN), it allows to the educative sector obtain information through the CONCYTEQ web page. The fist stage of the program was the development of two subjects: the brochure titled "Petroleum, Nonrenewable Natural Resource that Moves the World" and the manual "Experiments of Physics". At the moment we are working with the second stage of the program, it is about the energy generation using renewable sources such as: geothermal, aeolian, solar and biomass. The CTN program allows to students and teachers to create conscience about the importance of the development of the science of technology in our country.

  19. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  20. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  1. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  2. Students' Awareness of Science Teachers' Leadership, Attitudes toward Science, and Positive Thinking

    Science.gov (United States)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-01-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students'…

  3. The Impact of Science Fiction Films on Student Interest in Science

    Science.gov (United States)

    Laprise, Shari; Winrich, Chuck

    2010-01-01

    Science fiction films were used in required and elective nonmajor science courses as a pedagogical tool to motivate student interest in science and to reinforce critical thinking about scientific concepts. Students watched various films and critiqued them for scientific accuracy in written assignments. Students' perception of this activity was…

  4. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  5. Assessment for Effective Intervention: Enrichment Science Academic Program

    Science.gov (United States)

    Sasson, Irit; Cohen, Donita

    2013-10-01

    Israel suffers from a growing problem of socio-economic gaps between those who live in the center of the country and residents of outlying areas. As a result, there is a low level of accessibility to higher education among the peripheral population. The goal of the Sidney Warren Science Education Center for Youth at Tel-Hai College is to strengthen the potential of middle and high school students and encourage them to pursue higher education, with an emphasis on majoring in science and technology. This study investigated the implementation and evaluation of the enrichment science academic program, as an example of informal learning environment, with an emphasis on physics studies. About 500 students conducted feedback survey after participating in science activities in four domains: biology, chemistry, physics, and computer science. Results indicated high level of satisfaction among the students. No differences were found with respect to gender excluding in physics with a positive attitudes advantage among boys. In order to get a deeper understanding of this finding, about 70 additional students conducted special questionnaires, both 1 week before the physics enrichment day and at the end of that day. Questionnaires were intended to assess both their attitudes toward physics and their knowledge and conceptions of the physical concept "pressure." We found that the activity moderately improved boys' attitudes toward physics, but that girls displayed decreased interest in and lower self-efficacy toward physics. Research results were used to the improvement of the instructional design of the physics activity demonstrating internal evaluation process for effective intervention.

  6. Encouraging more women into computer science: Initiating a single-sex intervention program in Sweden

    Science.gov (United States)

    Brandell, Gerd; Carlsson, Svante; Ekblom, Håkan; Nord, Ann-Charlotte

    1997-11-01

    The process of starting a new program in computer science and engineering, heavily based on applied mathematics and only open to women, is described in this paper. The program was introduced into an educational system without any tradition in single-sex education. Important observations made during the process included the considerable interest in mathematics and curiosity about computer science found among female students at the secondary school level, and the acceptance of the single-sex program by the staff, administration, and management of the university as well as among male and female students. The process described highlights the importance of preparing the environment for a totally new type of educational program.

  7. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  8. Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes

    Science.gov (United States)

    Kapici, Hasan Özgür; Akçay, Hakan

    2016-01-01

    It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…

  9. Popular Science Writing Bringing New Perspectives into Science Students' Theses

    Science.gov (United States)

    Pelger, Susanne

    2018-01-01

    This study analyses which perspectives occur in science students' texts at different points in time during the process of writing a popular science article. The intention is, thus, to explore how popular science writing can help students discover and discuss different perspectives on science matter. For this purpose, texts written by 12 bachelor…

  10. 1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.

    Science.gov (United States)

    Jones, Amanda L; Stapleton, Mary K

    2017-05-01

    In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.

  11. Student Assistance Program Outcomes for Students at Risk for Suicide

    Science.gov (United States)

    Biddle, Virginia Sue; Kern, John, III; Brent, David A.; Thurkettle, Mary Ann; Puskar, Kathryn R.; Sekula, L. Kathleen

    2014-01-01

    Pennsylvania's response to adolescent suicide is its Student Assistance Program (SAP). SAP has been funded for 27 years although no statewide outcome studies using case-level data have been conducted. This study used logistic regression to examine drug-/alcohol-related behaviors and suspensions of suicidal students who participated in SAP. Of the…

  12. Studying Students' Science Literacy: Non-Scientific Beliefs and Science Literacy Measures

    Science.gov (United States)

    Impey, C.; Buxner, S.

    2015-11-01

    We have been conducting a study of university students' science literacy for the past 24 years. Based on the work of the National Science Board's ongoing national survey of the US public, we have administered the same survey to undergraduate science students at the University of Arizona almost every year since 1989. Results have shown relatively little change in students' overall science literacy, descriptions of science, and knowledge of basic science topics for almost a quarter of a century despite an increase in education interventions, the rise of the internet, and increased access to knowledge. Several trends do exist in students' science literacy and descriptions of science. Students who exhibit beliefs in non-scientific phenomenon (e.g., lucky numbers, creationism) consistently have lower science literacy scores and less correct descriptions of scientific phenomenon. Although not surprising, our results support ongoing efforts to help students generate evidence based thinking.

  13. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  14. Teaching Medical Students about Substance Abuse in a Weekend Intervention Program.

    Science.gov (United States)

    Siegal, Harvey; Rudisill, John R.

    1983-01-01

    A weekend program places medical students under supervision in close, intense contact with drug and alcohol abusers and strongly reinforces basic sciences and clinical instruction. Student reaction has been very positive. The program requires no new resources and is cost-effective. (Author/MSE)

  15. A Marketing Plan for Recruiting Students into Pharmacy School-based Graduate Programs. A Report.

    Science.gov (United States)

    Holdford, David A.; Stratton, Timothy P.

    2000-01-01

    Outlines a marketing plan for recruiting students into pharmacy school-based graduate programs, particularly into social and administrative sciences. Addresses challenges and opportunities when recruiting, the need to clearly define the "product" that graduate programs are trying to sell to potential students, types of students…

  16. Program Characteristics Influencing Allopathic Students' Residency Selection.

    Science.gov (United States)

    Stillman, Michael D; Miller, Karen Hughes; Ziegler, Craig H; Upadhyay, Ashish; Mitchell, Charlene K

    2016-04-01

    Medical students must consider many overt variables when entering the National Resident Matching Program. However, changes with the single graduate medical education accreditation system have caused a gap in knowledge about more subtle considerations, including what, if any, influence the presence of osteopathic physician (ie, DO) and international medical graduate (IMG) house officers has on allopathic students' residency program preferences. Program directors and selection committee members may assume students' implicit bias without substantiating evidence. To reexamine which program characteristics affect US-trained allopathic medical students' residency selection, and to determine whether the presence of DO and IMG house officers affects the program choices of allopathic medical students. Fourth-year medical students from 4 allopathic medical schools completed an online survey. The Pearson χ(2) statistic was used to compare demographic and program-specific traits that influence ranking decisions and to determine whether school type (private vs public), valuing a residency program's prestige, or interest in a competitive specialty dictated results. Qualitative data were analyzed using the Pandit variation of the Glaser and Strauss constant comparison. Surveys were completed by 323 of 577 students (56%). Students from private vs public institutions were more likely to value a program's prestige (160 [93%] vs 99 [72%]; P<.001) and research opportunities (114 [66%] vs 57 [42%]; P<.001), and they were less likely to consider their prospects of being accepted (98 [57%] vs 111 [81%]; P<.001). A total of 33 (10%) and 52 (16%) students reported that the presence of DO or IMG trainees, respectively, would influence their final residency selection, and these percentages were largely unchanged among students interested in programs' prestige or in entering a competitive specialty. Open-ended comments were generally optimistic about diversification of the physician

  17. Impact of a student leadership development program.

    Science.gov (United States)

    Chesnut, Renae; Tran-Johnson, Jennifer

    2013-12-16

    To assess the effectiveness of the Student Leadership Development Series (SLDS), an academic-year--long, co-curricular approach to developing leadership skills in pharmacy students. Participants met once per month for activities and a college-wide guest speaker session. Students also completed monthly forms regarding what they had learned, participated in poster presentations, and created a personal leadership platform. One hundred twenty-three students participated in the program between 2008 and 2013. On monthly evaluation forms and a summative evaluation, students indicated that the program helped them feel prepared for leadership opportunities and increased their desire to pursue leadership. They valued interacting with pharmacy leaders from the community and learning how they could distinguish themselves as leaders. The SLDS provided pharmacy students with an opportunity to explore personal leadership styles and develop broader understanding of leadership, and increased their desire to pursue leadership positions in the future.

  18. Attracting young women to the physical sciences: The Newton Summer Science Academy and other extra curricular programs

    Science.gov (United States)

    Chandrasekhar, Meera

    2000-03-01

    Early familiarity is regarded as one of the keys to attracting female students to traditionally male professions. I will describe four different extra curricular programs that my collaborators in the local school district and I have developed for students in grades 5-12. These programs are part of a project entitled ``Promoting Young Women in the Physical sciences", which also includes teacher training and programs in which parents participate with the child. Through these sustained and broad based interventions, we provide early experiences that we expect will prove positive to students. In particular, I will describe the Newton Summer Academy, a program for female high school students which integrates Physics, Chemistry, Math, Engineering and Economics. I will also address the successes and difficulties in starting and sustaining these programs.

  19. AAAS Communicating Science Program: Reflections on Evaluation

    Science.gov (United States)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  20. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  1. Materials Sciences Programs. Fiscal Year 1985

    International Nuclear Information System (INIS)

    1985-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  2. Materials Sciences programs. Fiscal year 1982

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into five sections. Section A contains all laboratory projects, Section B has all contract research projects, Section C has information on DOE collaborative research centers, Section D shows distribution of funding, and Section E has various indices

  3. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  4. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  5. Summer Enrichment Programs to Foster Interest in STEM Education for Students with Blindness or Low Vision

    Science.gov (United States)

    Supalo, Cary A.; Hill, April A.; Larrick, Carleigh G.

    2014-01-01

    Hands-on science enrichment experiences can be limited for students with blindness or low vision (BLV). This manuscript describes recent hands-on summer enrichment programs held for BLV students. Also presented are innovative technologies that were developed to provide spoken quantitative feedback for BLV students engaged in hands-on science…

  6. Mentoring For Success: REU Program That Help Every Student Succeed

    Science.gov (United States)

    Bingham, B. L.

    2015-12-01

    NSF REU site programs provide remarkable opportunities for students to experience first-hand the challenges and rewards of science research. Because REU positions are relatively scarce, applicant pools are large, and it is easy to fill available positions with students who already have well-developed research skills and proven abilities to excel academically. Advisors bringing REU participants into their labs may see this as the ideal situation. However, using experience and academic record as the primary selection criteria ignores an enormous pool of talented students who have simply never been in a position to show, or discover themselves, what they can do. Reaching this audience requires a shift in strategy: recruiting in ways that reach students who are unaware of REU opportunities; adjusting our selection criteria to look beyond academics and experience, putting as much emphasis on future potential as we do on past performance; finding, or developing, mentors who share this broader vision of working with students; and providing an institutional culture that ensure every student has the kind of multi-node support network that maximizes his or her success. REU programs should be primary tools to developing a deeper and broader science workforce. Achieving that goal will require innovative approaches to finding, recruiting, and mentoring participants.

  7. Evaluating Student Success and Progress in the Maryland Sea Grant REU Program

    Science.gov (United States)

    Moser, F. C.; Allen, M. R.; Clark, J.

    2012-12-01

    The Maryland Sea Grant's Research Experiences for Undergraduate (REU) 12-week summer program is in its 24th year. This estuarine science-focused program has evolved, based in part on our use of assessment tools to measure the program's effectiveness. Our goal is to understand the REU program's effectiveness in such areas as improving student understanding of scientific research, scientific ethics and marine science careers. Initially, our assessment approach was limited to short surveys that used qualitative answers from students about their experience. However, in the last decade we have developed a more comprehensive approach to measure program effectiveness. Currently, we use paired pre- and post-survey questions to estimate student growth during the program. These matching questions evaluate the student's change in knowledge and perception of science research over the course of the summer program. Additionally, we administer several surveys during the 12 weeks of the program to measure immediate responses of students to program activities and to gauge the students' evolving attitudes to customize each year's program. Our 2011 cohort showed consistent improvement in numerous areas, including understanding the nature of science (pre: 4.35, post: 4.64 on a 5 point scale), what graduate school is like (3.71, 4.42), the job of a researcher (4.07, 4.50), and career options in science (3.86, 4.42). Student confidence also increased in numerous skills required for good scientists. To analyze the long-term impact of our program, we survey our alumni to assess graduate degrees earned and career choices. A large percentage (72%) of our tracked alumni have continued on to graduate school, with subsequent careers spanning the academic (51%), public (24%) and private (25%) sectors. These assessments demonstrate that our program is successful in meeting our key objectives of strengthening the training of undergraduates in the sciences and retaining them in marine science

  8. Digital Geological Mapping for Earth Science Students

    Science.gov (United States)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  9. Professional development for graduate students in the atmospheric sciences

    Science.gov (United States)

    Haacker, R.; Sloan, V.

    2015-12-01

    The field of atmospheric sciences is rapidly changing, and with it, the employment outlook for recent graduate students. Weather and climate applications for society and the private industry are in demand and have increased significantly over the last few years, creating new employment opportunities for atmospheric scientists. It is therefore more important than ever that our graduates are well prepared for the newly emerging careers. The Bureau's Occupational Outlook predicts that opportunities for atmospheric scientists will increase more rapidly in the private industry than in other sectors (Bureau of Labor Statistics, 2014). Employers in the private sector indicate that, while job applicants often bring the required scientific training, there is a gap between the technical and professional skills needed in those positions and those possessed by graduates. Job candidates were found to be most lacking in written and oral communication skills, adaptability, and project management (Chronicle for Higher Education, 2012). The geoscience community needs to come together to better prepare our graduate students. While some of this work can be done within academic institutions, partnerships with mentoring programs and the private industry are essential. In this paper we will present one approach taken by the Significant Opportunities in Atmospheric Research and Science (SOARS) program to improve its students' skills in project management, collaborating, communication, problem solving, and essential leadership skills.

  10. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  11. Medical student service learning program teaches secondary students about career opportunities in health and medical fields.

    Science.gov (United States)

    Karpa, Kelly; Vakharia, Kavita; Caruso, Catherine A; Vechery, Colin; Sipple, Lanette; Wang, Adrian

    2015-12-01

    Engagement of academic medical centers in community outreach provides the public with a better understanding of basic terms and concepts used in biomedical sciences and increases awareness of important health information. Medical students at one academic medical center initiated an educational outreach program, called PULSE, that targets secondary students to foster their interest in healthcare and medicine. High school student participants are engaged in a semester-long course that relies on interactive lectures, problem-based learning sessions, mentoring relationships with medical students, and opportunities for shadowing healthcare providers. To date, the curriculum has been offered for 7 consecutive years. To determine the impact that participation in the curriculum has had on college/career choices and to identify areas for improvement, an electronic questionnaire was sent to former participants. Based on a 32% response rate, 81% of former participants indicated that participation in the course influenced their decision to pursue a medical/science-related career. More than half (67%) of respondents indicated intent to pursue a MD/PhD or other postgraduate degree. Based on responses obtained, additional opportunities to incorporate laboratory-based research and simulation sessions should be explored. In addition, a more formalized mentoring component has been added to the course to enhance communication between medical students and mentees. Health/medicine-related educational outreach programs targeting high school students may serve as a pipeline to introduce or reinforce career opportunities in healthcare and related sciences. Copyright © 2015 The American Physiological Society.

  12. A Comprehensive Wellness Program for International Students.

    Science.gov (United States)

    Fisher, Millard J.; Ozaki, Roger H.

    This document presents a model wellness program for international college students in the United States and strategies to aid them in staying healthy during their stay. It notes that, without parents or other support groups, international students run the risk of developing serious health problems because of inadequate diet and sleep, substandard…

  13. The Effects of a STEM Intervention on Elementary Students' Science Knowledge and Skills

    Science.gov (United States)

    Cotabish, Alicia; Dailey, Debbie; Robinson, Ann; Hughes, Gail

    2013-01-01

    The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of…

  14. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  15. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  16. Next Generation Science Standards: All Standards, All Students

    Science.gov (United States)

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  17. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  18. Latin American Network of students in Atmospheric Sciences and Meteorology

    Science.gov (United States)

    Cuellar-Ramirez, P.

    2017-12-01

    The Latin American Network of Students in Atmospheric Sciences and Meteorology (RedLAtM) is a civil nonprofit organization, organized by students from Mexico and some Latin- American countries. As a growing organization, providing human resources in the field of meteorology at regional level, the RedLAtM seeks to be a Latin American organization who helps the development of education and research in Atmospheric Sciences and Meteorology in order to engage and promote the integration of young people towards a common and imminent future: Facing the still unstudied various weather and climate events occurring in Latin America. The RedLAtM emerges from the analysis and observation/realization of a limited connection between Latin American countries around research in Atmospheric Sciences and Meteorology. The importance of its creation is based in cooperation, linking, research and development in Latin America and Mexico, in other words, to join efforts and stablish a regional scientific integration who leads to technological progress in the area of Atmospheric Sciences and Meteorology. As ultimate goal the RedLAtM pursuit to develop climatic and meteorological services for those countries unable to have their own programs, as well as projects linked with the governments of Latin American countries and private companies for the improvement of prevention strategies, research and decision making. All this conducing to enhance the quality of life of its inhabitants facing problems such as poverty and inequality.

  19. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M

  20. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  1. Comparison of Sports Sciences and Education Faculty Students' Aggression Scores

    Science.gov (United States)

    Atan, Tülin

    2016-01-01

    The aim of this study was to compare the aggression scores of Sports Sciences Faculty and Education Faculty students and also to examine the effects of some demographic variables on aggression. Two hundred Sports Sciences Faculty students (who engage in sporting activities four days a week for two hours) and 200 Education Faculty students (who do…

  2. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  3. Depression in Nursing Students of Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    F Rafati

    2004-02-01

    Full Text Available Background: University students are important parts of all educational systems. They are susceptible to different psychiatric disturbances, which in turn may cause considerable problems with their course programs. Depression is among the most important indices for investigation on human mental health status. This research was planed to study the prevalence and characteristics of depression and its consequences (suicidality, hopelessness, etc. in nursing students at Shiraz University of Medical Sciences. Methods: All undergraduate nursing students at Fatemeh College of Nursing and Midwifery were tested with Beck Depression Inventory (BDI. Results: This research revealed that 60% of students were depressed, 34% of them had mild depression, 18.4% moderate, 6% relatively severe and 1.6% severe depression. Mean score of BDI was not significantly different between female and male subjects (13.8 ± 9 in females vs. 15.2 ± 10 in males; total 14.1 ± 11 Conclusions: This research shows that there is still a high proportion of University students having depression, which necessitates considerable attention to their problems. Keywords: Nursing Students, Beck Depression Inventory, Depression.

  4. The art and science of selecting graduate students in the biomedical sciences: Performance in doctoral study of the foundational sciences.

    Science.gov (United States)

    Park, Hee-Young; Berkowitz, Oren; Symes, Karen; Dasgupta, Shoumita

    2018-01-01

    The goal of this study was to investigate associations between admissions criteria and performance in Ph.D. programs at Boston University School of Medicine. The initial phase of this project examined student performance in the classroom component of a newly established curriculum named "Foundations in Biomedical Sciences (FiBS)". Quantitative measures including undergraduate grade point average (GPA), graduate record examination (GRE; a standardized, computer-based test) scores for the verbal (assessment of test takers' ability to analyze, evaluate, and synthesize information and concepts provided in writing) and quantitative (assessment of test takers' problem-solving ability) components of the examination, previous research experience, and competitiveness of previous research institution were used in the study. These criteria were compared with competencies in the program defined as students who pass the curriculum as well as students categorized as High Performers. These data indicated that there is a significant positive correlation between FiBS performance and undergraduate GPA, GRE scores, and competitiveness of undergraduate institution. No significant correlations were found between FiBS performance and research background. By taking a data-driven approach to examine admissions and performance, we hope to refine our admissions criteria to facilitate an unbiased approach to recruitment of students in the life sciences and to share our strategy to support similar goals at other institutions.

  5. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  6. Students Learn Programming Faster through Robotic Simulation

    Science.gov (United States)

    Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin

    2013-01-01

    Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…

  7. A program to enhance k-12 science education in ten rural New York school districts.

    Science.gov (United States)

    Goodell, E; Visco, R; Pollock, P

    1999-04-01

    The Rural Partnership for Science Education, designed by educators and scientists in 1991 with funding from the National Institutes of Health, works in two rural New York State counties with students and their teachers from kindergarten through grade 12 to improve pre-college science education. The Partnership is an alliance among ten rural New York school districts and several New York State institutions (e.g., a regional academic medical center; the New York Academy of Sciences; and others), and has activities that involve around 4,800 students and 240 teachers each year. The authors describe the program's activities (e.g., summer workshops for teachers; science exploration camps for elementary and middle-school students; enrichment activities for high school students). A certified science education specialist directs classroom demonstrations throughout the academic year to support teachers' efforts to integrate hands-on activities into the science curriculum. A variety of evaluations over the years provides strong evidence of the program's effectiveness in promoting students' and teachers' interest in science. The long-term goal of the Partnership is to inspire more rural students to work hard, learn science, and enter the medical professions.

  8. A Library Research Course for Graduate and Professional Students in Communication Sciences and Disorders

    Science.gov (United States)

    Tag, Sylvia G.

    2007-01-01

    This article describes the formation and content of a required library and information research course for graduate and professional students enrolled in the Communication Sciences and Disorders Master of Arts degree program at Western Washington University. The course was created as a result of library assessment, student feedback, and faculty…

  9. Mathematics and Natural Science Students' Motivational Profiles and Their First-Year Academic Achievement

    Science.gov (United States)

    Fokkens-Bruinsma, Marjon; Vermue, Carlien Elske; Deinum, Jan Folkert

    2018-01-01

    Our study focused on describing first-year university students' motivational profiles and examining differences in academic achievement based on these profiles. Data on academic motivation of 755 students in the field of mathematics and natural sciences were collected before the start of their bachelor's degree program; data on GPA were collected…

  10. Midwest Science Festival: Exploring Students' and Parents' Participation in and Attitudes Toward Science.

    Science.gov (United States)

    Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M

    2016-08-01

    Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.

  11. Ventures in science status report, Summer 1992. [Program description and Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrick, Wayne C.

    1992-01-01

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  12. The effectiveness of Family Science and Technology Workshops on parental involvement, student achievement, and student curiosity

    Science.gov (United States)

    Kosten, Lora Bechard

    The literature suggests that parental involvement in schools results in positive changes in students and that schools need to provide opportunities for parents to share in the learning process. Workshops are an effective method of engaging parents in the education of their children. This dissertation studies the effects of voluntary Family Science and Technology Workshops on elementary children's science interest and achievement, as well as on parents' collaboration in their child's education. The study involved 35 second and third-grade students and their parents who volunteered to participate. The parental volunteers were randomly assigned to either the control group (children attending the workshops without a parent) or the treatment group (children attending the workshops with a parent). The study was conducted in the Fall of 1995 over a four-week period. The Analysis of Variance (ANOVA) and Kruskal-Wallis tests were used to determine the effects of the workshops on children's science achievement and science curiosity, as well as on parents' involvement with their child's education. The study revealed that there was no significant statistical difference at the.05 level between the treatment/control groups in children's science achievement or science curiosity, or in parent's involvement with their children's education. However, the study did focus parental attention on effective education and points the way to more extensive research in this critical learning area. This dual study, that is, the effects of teaching basic technology to young students with the support of their parents, reflects the focus of the Salve Regina University Ph.D. program in which technology is examined in its effects on humans. In essence, this program investigates what it means to be human in an age of advanced technology.

  13. Implementation of Online Peer Assessment in a Design for Learning and Portfolio (D4L+P) Program to Help Students Complete Science Projects

    Science.gov (United States)

    Wuttisela, Karntarat; Wuttiprom, Sura; Phonchaiya, Sonthi; Saengsuwan, Sayant

    2016-01-01

    Peer assessment was one of the most effective strategies to improve students' understanding, metacognitive skills, and social interaction. An online tool, "Designing for Learning and Portfolio (D4L+P)", was developed solely to support the T5 (tasks, tools, tutorials, topicresources, and teamwork) method of teaching and learning. This…

  14. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  15. Teaching Environmental Soil Science to Students older than 55

    Science.gov (United States)

    Cerdà, Artemi; Civera, Cristina; Giménez-Morera, Antonio; Burguet, María

    2014-05-01

    The life expectancy growth is a general trend for the world population, which translates into an increase of people older than 55 years in Western societies. This entails to the rise of health problems as well as large investments in healthcare. In general, we are spectators Y tambe voldria saber si ens pots fer una asse of how a large group of citizens have a new life after retirement. The XXI century societies are facing the problem of the need of a healthy population, even after retirement. There is a need in developing new strategies to allow those citizens to improve their knowledge of the environmental changes. The research in Soil Science and related disciplines is the strategy we are using on the Geograns program to inform the students (older than 55) about the changes the Earth and the Soil System are suffering. And this should be done in a healthy and active teaching environment. The NAUGRAN program is being developed by the University of Valencia for more than 10 years and shows the advances on education for senior students. Within this program, Geograns is bringing the environmentalist ideas to the students. This is a difficult task as those students were born in a society were nature was created to be exploited and not to be conserved (e.g. Green Revolution, agricultural transformations of the 60's in Spain). This is the reason why the University of Valencia developed at the end of the 90's a program to teach students older than 55. This paper shows the advances on new strategies developed during 2013 with a group of these senior students. The main strategy was to take the students to visit the nature and to explain the functioning of the Earth and Soil System. Those visits were organized with the collaboration of scientist, environmentalist, farmers and technicians; and the guiding thread was trekking. This mix showed our students different views and sides of the same phenomena (e.g. tillage operations, soil erosion problems, water quantity and

  16. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  17. The Maryland nuclear science baccalaureate degree program: The utility perspective

    International Nuclear Information System (INIS)

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization

  18. Research Review: Laboratory Student Magazine Programs.

    Science.gov (United States)

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  19. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  20. Impact of Science Tutoring on African Americans' Science Scores on the High School Students' Graduation Examination

    Science.gov (United States)

    Davis, Edward

    This study investigated the relationship between an after-school tutorial program for African American high school students at a Title I school and scores on the science portion of the High School Graduation Examination (HSGE). Passing the examination was required for graduation. The target high school is 99% African American and the passing rate of the target high school was 42%---lower than the state average of 76%. The purpose of the study was to identify (a) the relationship between a science tutorial program and scores on the science portion of the HSGE, (b) the predictors of tutoring need by analyzing the relationship between biology grades and scores on the science portion of the HSGE, and (c) the findings between biology grades and scores on the science portion of the HSGE by analyzing the relationship between tutorial attendance and HSGE scores. The study was based on Piaget's cognitive constructivism, which implied the potential benefits of tutorials on high-stakes testing. This study used a 1-group pretest-posttest, quantitative methodology. Results showed a significant relationship between tutoring and scores on the biology portion of the HSGE. Results found no significant relationship between the tutorial attendance and the scores on the biology portion of the HSGE or between the biology grades and scores on the biology portion of the HSGE before tutoring. It has implications for positive social change by providing educational stakeholders with empirically-based guidance in determining the potential benefit of tutorial intervention strategies on high school graduation examination scores.

  1. Montgomery Blair Science, Mathematics and Computer Science Magnet Program: A Successful Model for Meeting the Needs of Highly Able STEM Learners

    Science.gov (United States)

    Stein, David; Ostrander, Peter; Lee, G. Maie

    2016-01-01

    The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…

  2. Rutgers Young Horse Teaching and Research Program: undergraduate student outcomes.

    Science.gov (United States)

    Ralston, Sarah L

    2012-12-01

    Equine teaching and research programs are popular but expensive components of most land grant universities. External funding for equine research, however, is limited and restricts undergraduate research opportunities that enhance student learning. In 1999, a novel undergraduate teaching and research program was initiated at Rutgers University, New Brunswick, NJ. A unique aspect of this program was the use of young horses generally considered "at risk" and in need of rescue but of relatively low value. The media interest in such horses was utilized to advantage to obtain funding for the program. The use of horses from pregnant mare urine (PMU) ranches and Bureau of Land Management (BLM) mustangs held the risks of attracting negative publicity, potential of injury while training previously unhandled young horses, and uncertainty regarding re-sale value; however, none of these concerns were realized. For 12 years the Young Horse Teaching and Research Program received extensive positive press and provided invaluable learning opportunities for students. Over 500 students, at least 80 of which were minorities, participated in not only horse management and training but also research, event planning, public outreach, fund-raising, and website development. Public and industry support provided program sustainability with only basic University infrastructural support despite severe economic downturns. Student research projects generated 25 research abstracts presented at national and international meetings and 14 honors theses. Over 100 students went on to veterinary school or other higher education programs, and more than 100 others pursued equine- or science-related careers. Laudatory popular press articles were published in a wide variety of breed/discipline journals and in local and regional newspapers each year. Taking the risk of using "at risk" horses yielded positive outcomes for all, especially the undergraduate students.

  3. The Perceptions of Elementary School Teachers Regarding Their Efforts to Help Students Utilize Student-to-Student Discourse in Science

    Science.gov (United States)

    Craddock, Jennifer Lovejoy

    The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse for making meaning of science ideas and b) moving students' conceptual development towards a more scientific understanding of the natural world. Based on those foundations, the three research questions that guided this study examined the value elementary teachers place on student-to-student discourse, the various approaches teachers employ to promote the use of student-to-student discourse for learning science, and the factors and conditions that promote and inhibit the use of student-to-student discourse as an effective pedagogical strategy in elementary science. Data were gathered from 23 elementary teachers in a single district using an on-line survey and follow-up interviews with 8 teachers. All data were analyzed and evolving themes led to the following findings: (1) elementary teachers value student-to-student discourse in science, (2) teachers desire to increase time using student-to-student discourse, (3) teachers use a limited number of student-to-student discourse strategies to increase student learning in science, (4) teachers use student-to-student discourse as formative assessment to determine student learning in science, (5) professional development focusing on approaches to student-to-student discourse develops teachers' capacity for effective implementation, (6) teachers perceive school administrators' knowledge of and support for student-to-student discourse as beneficial, (7) time and scheduling constraints limit the use of student-to-student discourse in science. Implications of this study included the necessity of school districts to focus on student-to-student discourse in science, provide teacher and

  4. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    Science.gov (United States)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  5. Student retention in athletic training education programs.

    Science.gov (United States)

    Dodge, Thomas M; Mitchell, Murray F; Mensch, James M

    2009-01-01

    The success of any academic program, including athletic training, depends upon attracting and keeping quality students. The nature of persistent students versus students who prematurely leave the athletic training major is not known. Understanding the profiles of athletic training students who persist or leave is important. To (1) explore the relationships among the following variables: anticipatory factors, academic integration, clinical integration, social integration, and motivation; (2) determine which of the aforementioned variables discriminate between senior athletic training students and major changers; and (3) identify which variable is the strongest predictor of persistence in athletic training education programs. Descriptive study using a qualitative and quantitative mixed-methods approach. Thirteen athletic training education programs located in District 3 of the National Athletic Trainers' Association. Ninety-four senior-level athletic training students and 31 college students who changed majors from athletic training to another degree option. Data were collected with the Athletic Training Education Program Student Retention Questionnaire (ATEPSRQ). Data from the ATEPSRQ were analyzed via Pearson correlations, multivariate analysis of variance, univariate analysis of variance, and a stepwise discriminant analysis. Open-ended questions were transcribed and analyzed using open, axial, and selective coding procedures. Member checks and peer debriefing techniques ensured trustworthiness of the study. Pearson correlations identified moderate relationships among motivation and clinical integration (r = 0.515, P accounting for 37.2% of the variance between groups. The theoretic model accurately classified 95.7% of the seniors and 53.8% of the major changers. A common theme emerging from the qualitative data was the presence of a strong peer-support group that surrounded many of the senior-level students. Understanding student retention in athletic training is

  6. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  7. An Examination of the Processes of Student Science Identity Negotiation within an Informal Learning Community

    Science.gov (United States)

    Mark, Sheron L.

    Scientific proficiency is important, not only for a solid, interdisciplinary educational foundation, but also for entry into and mobility within today's increasingly technological and globalized workplace, as well as for informed, democratic participation in society (National Academies Press, 2007b). Within the United States, low-income, ethnic minority students are disproportionately underperforming and underrepresented in science, as well as mathematics, engineering and other technology fields (Business-Higher Education Forum, 2011; National Assessment of Educational Progress, 2009). This is due, in part, to a lack of educational structures and strategies that can support low-income, ethnic minority students to become competent in science in equitable and empowering ways. In order to investigate such structures and strategies that may be beneficial for these students, a longitudinal, qualitative study was conducted. The 15 month study was an investigation of science identity negotiation informed by the theoretical perspectives of Brown's (2004) discursive science identities and Tan and Barton's (2008) identities-in-practice amongst ten high school students in an informal science program and employed an amalgam of research designs, including ethnography (Geertz, 1973), case study (Stake, 2000) and grounded theory (Glaser & Strauss, 1967). Findings indicated that the students made use of two strategies, discursive identity development and language use in science, in order to negotiate student science identities in satisfying ways within the limits of the TESJ practice. Additionally, 3 factors were identified as being supportive of successful student science identity negotiation in the informal practice, as well. These were (i) peer dynamics, (ii) significant social interactions, and (iii) student ownership in science. The students were also uncovered to be particularly open-minded to the field of STEM. Finally, with respect to STEM career development, specific

  8. Learning Science and English: How School Reform Advances Scientific Learning for Limited English Proficient Middle School Students

    OpenAIRE

    Minicucci, Catherine

    1996-01-01

    This article presents findings from the School Reform and Student Diversity Study, a 4-year project to locate and analyze schools offering exemplary science and mathematics programs to middle school students with limited proficiency in English. In contrast to the vast majority of schools, the four schools described in this article give these students access to stimulating science and mathematics curricula by instructing them either in the students' primary language or in English using shelter...

  9. An exploration of equitable science teaching practices for students with learning disabilities

    Science.gov (United States)

    Morales, Marlene

    Teaching Science to Students with Learning Disabilities Inventory, the case study teachers demonstrated characteristics of successful teachers of diverse learners developed by Lynch (2000). Overall, the qualitative findings revealed that the case study teachers were unsure how to provide equitable science teaching practices to all students, particularly to students with learning disabilities. They provided students with a variety of learning experiences that entailed high expectations for all; however, these experiences were similar for all students. Had the teachers fully implemented equitable science teaching practices, students would have had multiple options for taking in the information and making sense of it in each lesson. Teaching that includes using a variety of validated practices that take into account students' individualized learning needs can promote aspects of equitable science teaching practices. Finally, this study provides implications for teacher education programs and professional development programs. As teachers implement science education reform efforts related to equitable science teaching practices, both teacher education programs and professional development programs should include opportunities for teachers to reflect on their beliefs about how students with learning disabilities learn and provide them with a variety of validated teaching practices that will assist them in teaching students with learning disabilities in the general education classroom while implementing science reform efforts.

  10. Towards a Serious Game to Help Students Learn Computer Programming

    Directory of Open Access Journals (Sweden)

    Mathieu Muratet

    2009-01-01

    Full Text Available Video games are part of our culture like TV, movies, and books. We believe that this kind of software can be used to increase students' interest in computer science. Video games with other goals than entertainment, serious games, are present, today, in several fields such as education, government, health, defence, industry, civil security, and science. This paper presents a study around a serious game dedicated to strengthening programming skills. Real-Time Strategy, which is a popular game genre, seems to be the most suitable kind of game to support such a serious game. From programming teaching features to video game characteristics, we define a teaching organisation to experiment if a serious game can be adapted to learn programming.

  11. Measuring Student Transformation in Entrepreneurship Education Programs

    Directory of Open Access Journals (Sweden)

    Steven A. Gedeon

    2017-01-01

    Full Text Available This article describes how to measure student transformation primarily within a university entrepreneurship degree program. Student transformation is defined as changes in knowledge (“Head”, skills (“Hand”, and attitudinal (“Heart” learning outcomes. Following the institutional impact model, student transformation is the primary goal of education and all other program goals and aspects of quality desired by stakeholders are either input factors (professors, courses, facilities, support, etc. or output performance (number of startups, average starting salary, % employment, etc.. This goal-setting framework allows competing stakeholder quality expectations to be incorporated into a continuous process improvement (CPI model when establishing program goals. How to measure these goals to implement TQM methods is shown. Measuring student transformation as the central focus of a program promotes harmony among competing stakeholders and also provides a metric on which other program decisions (e.g., class size, assignments, and pedagogical technique may be based. Different stakeholders hold surprisingly different views on defining program quality. The proposed framework provides a useful way to bring these competing views into a CPI cycle to implement TQM requirements of accreditation. The specific entrepreneurial learning outcome goals described in the tables in this article may also be used directly by educators in nonaccredited programs and single courses/workshops or for other audiences.

  12. Hookah pipe smoking among health sciences students | van der ...

    African Journals Online (AJOL)

    , especially among South African youth. The extent of this practice among health sciences students, and their knowledge regarding the health risks, are unknown. This is important, as these students will become future health professionals ...

  13. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  14. Clemson University Science Master's Program in Sustainable and Resilient Infrastructure: A program evaluation

    Science.gov (United States)

    O'Sell, Elizabeth Eberhart

    The Clemson University Science Master's Program (SMP) in Sustainable and Resilient Infrastructure is a program which aims to link engineering, materials, construction, environment, architecture, business, and public policy to produce graduates with unique holistic perspective and expertise to immediately contribute to the workforce in the area of sustainable and resilient infrastructure. A program evaluation of the SMP has been performed to study the effectiveness of the SMP and identify areas where the goals and vision of the SMP are achieved and areas where improvements can be made. This was completed by analysis of trends within survey responses, review of Master's thesis reports, and review of courses taken. It was found that the SMP has facilitated new interdisciplinary research collaborations of faculty in different concentration areas within the Glenn Department of Civil Engineering, as well as collaboration with faculty in other departments. It is recommended that a course which provides instruction in all eight competency areas be required for all SMP students to provide a comprehensive overview and ensure all students are exposed to concepts of all competency areas. While all stakeholders are satisfied with the program and believe it has been successful thus far, efforts do need to be made as the program moves forward to address and improve some items that have been mentioned as needing improvement. The concerns about concentration courses, internship planning, and advising should be addressed. This evaluation provides benefits to prospective students, current SMP participants, and outside program supporters. The goal of this evaluation is to provide support that the SMP is an effective and worthwhile program for participating students, while attempting to identify any necessary program improvements and provide recommendations for achieving these improvements. This goal has been accomplished.

  15. SoTL as a Subfield for Political Science Graduate Programs

    Science.gov (United States)

    Trepanier, Lee

    2017-01-01

    This article offers a theoretical proposal of how political science graduate programs can emphasize teaching in the discipline by creating the subfield of the scholarship of teaching and learning (SoTL). Currently, these programs neither prepare their students for academic positions where teaching is valued nor participate in a disciplinary trend…

  16. Science Teacher Leadership: Learning from a Three-Year Leadership Program

    Science.gov (United States)

    Luft, Julie A.; Dubois, Shannon L.; Kaufmann, Janey; Plank, Larry

    2016-01-01

    Teachers are professional learners and leaders. They seek to understand how their students learn, and they participate in programs that provide new instructional skills, curricular materials, and ways to become involved in their community. This study follows a science teacher leadership program over a three-year period of time. There were…

  17. Impact of Practice-Based Instruction on Graduate Programs in the Pharmaceutical Sciences--Another Response.

    Science.gov (United States)

    Gerald, Michael C.

    1979-01-01

    The impact of practice-based programs on graduate education in pharmaceutical science is discussed. It is suggested that graduate programs remain flexible in order to accommodate the role of the pharmacist-scientist and to help in attracting qualified students. (SF)

  18. Response to science education reforms: The case of three science education doctoral programs in the United States

    Science.gov (United States)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question

  19. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    Science.gov (United States)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved

  20. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  1. Negotiating Discourses: Sixth-Grade Students' Use of Multiple Science Discourses during a Science Fair Presentation

    Science.gov (United States)

    Gomez, Kimberley

    2007-01-01

    This study offers important insights into the coexistence of multiple discourses and the link between these discourses and science understanding. It offers concrete examples of students' movement between multiple discourses in sixth-grade science fair presentations, and shows how those multiple discourses in science practices illuminate students'…

  2. Using History of Science to Teach Nature of Science to Elementary Students

    Science.gov (United States)

    Fouad, Khadija E.; Masters, Heidi; Akerson, Valarie L.

    2015-01-01

    Science lessons using inquiry only or history of science with inquiry were used for explicit reflective nature of science (NOS) instruction for second-, third-, and fourth-grade students randomly assigned to receive one of the treatments. Students in both groups improved in their understanding of creative NOS, tentative NOS, empirical NOS, and…

  3. Training teachers to promote Talent Development in Science Students In Science Education

    NARCIS (Netherlands)

    van der Valk, Ton

    2014-01-01

    In recent years, the interest of governments and schools in challenging gifted and talented (G+T) science students has grown (Taber, 2007). In the Netherlands, the government promotes developing science programmes for talented secondary science students. This causes a need for training teachers, but

  4. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    Science.gov (United States)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  5. Teaching Outside the Box: Challenging Gifted Students with Polar Sciences Without Benefit of a Science Classroom

    Science.gov (United States)

    Dooley, J.

    2013-12-01

    In the high-stakes-testing world of one-size-fits-most educational practices, it is often the needs of the most able students that are unmet, yet these high ability learners can benefit greatly from exploration in the area of polar science. With school schedules and budgets already stretched to the breaking point and Common Core (CCSS) subjects are the focus, very few resources remain for topics considered by some as unimportant. Polar and climate science are prime examples. Here, a council member of Polar Educators International and Gifted Education Teacher, shares resources and ideas to engage this unique group of students and others. She draws from experiences and knowledge gained through ANDRILL's Arise Educator program, IPY Oslo and Montreal PolarEDUCATOR workshops, and Consortium for Ocean Leadership's Deep Earth Academy. Topics include School-wide Enrichment through use of ANDRILL's Flexhibit material and participation in Antarctica Day, afterschool Deep Freeze clubs that presented in public outreach venues for polar science events at the Maryland Science Center in Baltimore and NYC's Museum of Natural History, group project work using IODP core data from Antarctica, interaction with polar scientists via Skype, and other projects.

  6. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  7. An Investigation of Students' Personality Traits and Attitudes toward Science

    Science.gov (United States)

    Hong, Zuway-R.; Lin, Huann-shyang

    2011-05-01

    The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan's students' personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty-two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students' scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students' attitudes toward science. Implications of these findings for classroom instruction are discussed.

  8. The Science Advancement through Group Engagement Program: Leveling the Playing Field and Increasing Retention in Science

    Science.gov (United States)

    Hall, Donna M.; Curtin-Soydan, Amanda J.; Canelas, Dorian A.

    2014-01-01

    How can colleges and universities keep an open gateway to the science disciplines for the least experienced first-year science students while also maintaining high standards that challenge the students with the strongest possible high school backgrounds? The Science Advancement through Group Engagement (SAGE) project targets cohorts of less…

  9. Building Transferable Knowledge and Skills through an Interdisciplinary Polar Science Graduate Program

    Science.gov (United States)

    Culler, L. E.; Virginia, R. A.; Albert, M. R.; Ayres, M.

    2015-12-01

    Modern graduate education must extend beyond disciplinary content to prepare students for diverse careers in science. At Dartmouth, a graduate program in Polar Environmental Change uses interdisciplinary study of the polar regions as a core from which students develop skills and knowledge for tackling complex environmental issues that require cooperation across scientific disciplines and with educators, policy makers, and stakeholders. Two major NSF-funded initiatives have supported professional development for graduate students in this program, including an IGERT (Integrative Graduate Education and Research Traineeship) and leadership of JSEP's (Joint Science Education Project) Arctic Science Education Week in Greenland. We teach courses that emphasize the links between science and the human dimensions of environmental change; host training sessions in science communication; invite guest speakers who work in policy, academia, journalism, government research, etc.; lead an international field-based training that includes policy-focused meetings and a large outreach component; provide multiple opportunities for outreach and collaboration with local schools; and build outreach and education into graduate research programs where students instruct and mentor high school students. Students from diverse scientific disciplines (Ecology, Earth Science, and Engineering) participate in all of the above, which significantly strengthens their interdisciplinary view of polar science and ability to communicate across disciplines. In addition, graduate students have developed awareness, confidence, and the skills to pursue and obtain diverse careers. This is reflected in the fact that recent graduates have acquired permanent and post-doctoral positions in academic and government research, full-time teaching, and also in post-docs focused on outreach and science policy. Dartmouth's interdisciplinary approach to graduate education is producing tomorrow's leaders in science.

  10. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  11. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  12. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  13. An Investigation of a Culturally Responsive Approach to Science Education in a Summer Program for Marginalized Youth

    Science.gov (United States)

    Garvin, Brittany A.

    There have been numerous calls and efforts made to provide states, school districts, and communities needed financial support to increase and enhance access to and opportunities in Science, Technology, Engineering, and Math (STEM) related disciplines for marginalized populations (Tyson, Lee, & Hanson, 2007; Caldwell & Siwatu, 2003). As the challenge to better educate students of color and poor students intensifies, the need to provide equitable science learning experiences for all students aimed at scientific literacy and STEM also becomes critical. Thus the need to provide summer science enrichment programs where students engage in scientific experimentation, investigation, and critical thinking are vital to helping students who have been traditionally marginalized achieve success in school science and enter the science career pipeline. This mixed methods study examined the impact of a culturally responsive approach on student attitudes, interests in science education and STEM careers, and basic science content knowledge before and after participation in an upward bound summer program. Quantitative results indicated using a culturally responsive approach to teach science in an informal learning space significantly increases student achievement. Students receiving culturally responsive science instruction exhibited statistically significant increases in their posttest science scores compared to pretest science scores, M = 0.376, 95% CI [0.266, 0.487], t (10) = 7.610, p < 0.001. Likewise, students receiving culturally responsive science instruction had a significantly higher interest in science (M = 1.740, SD = 0.548) and STEM careers, M = 0.597, 95% CI [0.276, 0.919], p = 0.001. The qualitative data obtained in this study sought to gain a more in-depth understanding of the impact of a culturally responsive approach on students' attitudes, interests in science and STEM careers. Findings suggest providing students the opportunity to do and learn science utilizing a

  14. The design and evaluation of a master of science program in anatomical sciences at Queen's University Canada.

    Science.gov (United States)

    Kolomitro, Klodiana; MacKenzie, Leslie W; Wiercigroch, David; Godden, Lorraine

    2018-05-15

    The purpose of this study was to describe the design and evolution of a unique and successful Master of Science program in anatomical sciences at one Canadian post-secondary institution and to evaluate its long-term impact on student learning. This program prepares students to teach anatomy and design curricula in the anatomical sciences and is structured around three pillars of competency-content (disciplinary knowledge and transferable skills), pedagogy, and inquiry. Graduates of the program from the last ten years were surveyed, to better understand the knowledge, skills, and habits of mind they have adopted and implemented since completion. Interest was taken in identifying aspects of the program that students found particularly beneficial and areas that needed to be further developed. Based on the findings, this program has been a highly valuable experience for the graduates especially in helping them develop transferable skills, and grow as individuals. The hope is that other institutions that have similar programs in place or are considering developing them would benefit from this description of the program design and the sharing of the lessons learned. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  15. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  16. Wow, My Science Teacher Does Real Research! Engaging and Motivating Students Using Experiences from the Field

    Science.gov (United States)

    Scott, C.

    2013-12-01

    Students respond to personal connections. When K-12 science teachers are able to participate as field assistants on research projects, their students can benefit greatly from the stories, pictures, and video transmitted or brought back from the field. Teachers can translate and tailor their learning while in the field to the level of their students. Students are ';hooked' into science content by seeing their own teacher out there actually ';doing' science. The teacher is able to provide a direct content connection for the student, an avenue for understanding why ';learning this' is relevant and important. This presentation provides a case for why science teachers and researchers should collaborate as much as possible. The NSF funded PolarTREC program (Teachers and Researchers Exploring and Collaborating) is an excellent example of how to make this collaboration work. The presentation will also provide a look into how teachers can make an effective connection for their students between field science and classroom learning. Alaskan secondary science teacher Carol Scott spent a month at the Kevo Research Station in northern Finland in May/June 2013 as a PolarTREC teacher, and is translating this experience for students. She has also worked on an NSF Research Experience for Teachers grant in Prince William Sound, AK, and has successfully used this work to engage students in the classroom.

  17. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  18. Effectiveness of a formal post-baccalaureate pre-medicine program for underrepresented minority students.

    Science.gov (United States)

    Giordani, B; Edwards, A S; Segal, S S; Gillum, L H; Lindsay, A; Johnson, N

    2001-08-01

    To address the effectiveness of a formal postbaccalaureate (PB) experience for underrepresented minority (URM) students before medical school. The program provided an intense year-long experience of course work, research, and personal development. There were 516 participants from one medical school: 15 URM medical students had completed the formal PB program, 58 students had done independent PB work before matriculation, and 443 students were traditional matriculants. Cognitive and academic indicators [college science and non-science grade-point averages (GPAs); biology, physics, and verbal MCAT scores; and percentage scores from first-year medical school courses] were compared for the three groups. Both groups of students with PB experience demonstrated competency in the first year of medical school consistent with traditional students even though the students who had completed the formal PB program had lower MCAT scores and lower college GPAs than did the traditional students. Traditional predictors of academic performance during the first year of medical school did not significantly contribute to actual academic performances of students from the formal PB program. The results support the use of a formal PB program to provide academic readiness and support for URM students prior to medical school. Such a program may also improve retention. Noncognitive variables, however, may be important to understanding the success of such students in medical school.

  19. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    Science.gov (United States)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  20. Professionalism in Physician Assistant, Physical Therapist, Occupational Therapist, Clinical Psychology, and Biomedical Sciences Students.

    Science.gov (United States)

    Noronha, Sandhya; Anderson, Deborah; Lee, Michelle M; Krumdick, Nathaniel D; Irwin, Kent E; Burton-Hess, Judith; Ciancio, Mae; Wallingford, Minetta; Workman, Gloria M

    2016-01-01

    Interprofessional collaboration for healthcare requires a better understanding of the commonalities and differences in student perceptions of professionalism. 217 students in five programs (PA 71, PT 46, OT 29, CP 12, and BMS 59) completed a 22-item survey (response rate 79.5%). A Likert scale grading from 1 (hardly ever) to 5 (always) was used to assess professional attitudes and behaviors. A mixed-model MANOVA, supplemented with post-hoc analyses, showed significant group by time interactions for 5 items. Sensitivity to differences and diversity of other people increased for BMS students, but decreased for PT students. Timeliness increased for BMS students, but did not change for PA students. Seeking out new learning experiences increased for BMS students, but did not change for PA or PT students. Taking a group leadership role increased for BMS students, decreased for PT students, while PA and OT students showed no change. Volunteering time to serve others decreased for OT and PA students, while BMS and BM students showed no change. It is plausible that these findings emerge from differences in program curricula and specific training objectives. The findings provide initial insight to educators on ways that attitudes and behaviors pertaining to professionalism sometimes vary among students in different health science programs.

  1. E-learning program for medical students in dermatology

    Science.gov (United States)

    Silva, Cristiana Silveira; Souza, Murilo Barreto; Filho, Roberto Silveira Silva; de Medeiros, Luciana Molina; Criado, Paulo Ricardo

    2011-01-01

    INTRODUCTION: Dermatological disorders are common in medical practice. In medical school, however, the time devoted to teaching dermatology is usually very limited. Therefore, online educational systems have increasingly been used in medical education settings to enhance exposure to dermatology. OBJECTIVE: The present study was designed to develop an e-learning program for medical students in dermatology and evaluate the impact of this program on learning. METHODS: This prospective study included second year medical students at the University of Technology and Science, Salvador, Brazil. All students attended discussion seminars and practical activities, and half of the students had adjunct online seminars (blended learning). Tests were given to all students before and after the courses, and test scores were evaluated. RESULTS: Students who participated in online discussions associated with face-to-face activities (blended learning) had significantly higher posttest scores (9.0±0.8) than those who only participated in classes (7.75±1.8, p dermatology. PMID:21655756

  2. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  3. The profile of problem-solving ability of students of distance education in science learning

    Science.gov (United States)

    Widiasih; Permanasari, A.; Riandi; Damayanti, T.

    2018-05-01

    This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.

  4. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program. SUMMARY: The Secretary intends to use the grant slate developed in FY 2009 for the Minority Science and...

  5. A proposal of neutron science research program

    International Nuclear Information System (INIS)

    Suzuki, Y.; Yasuda, H.; Tone, T.; Mizumoto, M.

    1996-01-01

    A conception of Neutron Science Research Program (NSRP) has been proposed in Japan Atomic Energy Research Institute (JAERI) since 1994 as a future big project. The NSRP aims at exploring new basic science and nuclear energy science by a high-intensity proton accelerator. It is a complex composed of a proton linac and seven research facilities with each different target system. The proton linac is required to supply the high-intensity proton beam with energy up to 1.5 GeV and current 10 mA on average. The scientific research facilities proposed, are as follows: Thermal/Cold Neutron Facility for the neutron scattering experiments, Neutron Irradiation Facility for materials science, Neutron Physics Facility for nuclear data measurement, OMEGA/Nuclear Energy Facility for nuclear waste transmutation and fuel breeding, Spallation RI Beam Facility for nuclear physics, Meson/Muon Facility for meson and muon physics and their applications and Medium Energy Beam Facility for accelerator technology development, medical use, etc. Research and development have been carried out for the components of the injector system of the proton linac; an ion source, an RFQ linac and a part of DTL linac. The conceptual design work and research and development activities for NSRP have been started in the fiscal year, 1996. Construction term will be divided into two phases; the completion of the first phase is expected in 2003, when the proton linac will produce 1.5 GeV, 1 mA beam by reflecting the successful technology developments. (author)

  6. Factors influencing students' physical science enrolment decision at ...

    African Journals Online (AJOL)

    The study used a modified 'multiple worlds' model to investigate how the various worlds of the students influenced their science subject choice. ... Students also reported building enough self-confidence to enrol in physical science by the encouragement they received through informal contact with physics lecturers.

  7. The Need for Visually Impaired Students Participation in Science ...

    African Journals Online (AJOL)

    This paper examines the counselling implication of the need for the visually impaired students' participation in science education. Descriptive research design was adopted for the study while a validated structured questionnaire tagged visually impaired students perception of science education (VISPSE) was administered ...

  8. Female distance education students overtaking males in science ...

    African Journals Online (AJOL)

    This study was initiated to compare the performance of male and female distance education students of the University of Education, Winneba in Integrated Science. This was done by randomly selecting the cumulated grades of male and female students of 2002, 2003 and 2004-year groups in Integrated Science for analysis ...

  9. Study Skills of Arts and Science College Students

    Science.gov (United States)

    Sekar, J. Master Arul; Rajendran, K. K.

    2015-01-01

    The main objective of this study is to find out the level of study skills of arts and science college students. Study Skills Check List developed and standardized by Virginia University, Australia (2006) is used to collect the relevant data. The sample consists of 216 Government arts and science college students of Tiruchirappalli district, Tamil…

  10. Students Designing Video Games about Immunology: Insights for Science Learning

    Science.gov (United States)

    Khalili, Neda; Sheridan, Kimberly; Williams, Asia; Clark, Kevin; Stegman, Melanie

    2011-01-01

    Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a…

  11. Student Science Teachers' Ideas of the Digestive System

    Science.gov (United States)

    Cardak, Osman

    2015-01-01

    The aim of this research is to reveal the levels of understanding of student science teachers regarding the digestive system. In this research, 116 student science teachers were tested by applying the drawing method. Upon the analysis of the drawings they made, it was found that some of them had misconceptions such as "the organs of the…

  12. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  13. African American perspectives: A qualitative study of an informal science enrichment program

    Science.gov (United States)

    Simpson, Jamila Rashida

    The purposes of this study were to determine what program characteristics African American parents consider when they enroll their children into an informal science education enrichment program, the parents' evaluation of a program called Jordan Academy in which they enrolled their children, and the alignment of the parents' perspectives with Black Cultural Ethos (BCE). BCE refers to nine dimensions posited by Wade Boykin, a psychologist, as comprising African American culture. Participants were parents of students that attended Jordan Academy, an informal science enrichment program designed for third through sixth grade students from underserved populations. Qualitative methodologies were utilized to perform a thorough assessment of parents' perspectives. Data sources included classroom observations, student surveys, academy curriculum, photos and video-taped class sessions. Data included teachers and parents' responses to semi-structured, audio recorded interviews and students' written responses to open-ended items on the program's evaluation instrument. The data were analyzed for themes and the findings compared to Black Cultural Ethos. Findings revealed that the participants believed that informal science education offered their children opportunities not realized in the formal school setting - a means of impacting their children holistically. The parents expressed the academic, cultural, and personal development of their children in their characterizations of the ideal informal science education experience and in their evaluations of Jordan Academy. Overall, the parents' views emphasized the BCE values of harmony, affect, verve, movement, orality and communalism. The study has important implications for practices within and research on informal science education.

  14. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  15. Evaluating the Effectiveness of the 2003-2004 NASA SCIence Files(trademark) Program

    Science.gov (United States)

    Caton, Randall H.; Ricles, Shannon S.; Pinelli, Thomas E.; Legg, Amy C.; Lambert, Matthew A.

    2005-01-01

    The NASA SCI Files is an Emmy award-winning series of instructional programs for grades 3-5. Produced by the NASA Center for Distance Learning, programs in the series are research-, inquiry-, standards-, teacher- and technology-based. Each NASA SCI Files program (1) integrates mathematics, science, and technology; (2) uses Problem-Based Learning (PBL) to enhance and enrich the teaching and learning of science; (3) emphasizes science as inquiry and the scientific method; (4) motivates students to become critical thinkers and active problem solvers; and (5) uses NASA research, facilities, and personnel to raise student awareness of careers and to exhibit the "real-world" application of mathematics, science, and technology. In April 2004, 1,500 randomly selected registered users of the NASA SCI Files were invited to complete a survey containing a series of questions. A total of 263 surveys were received. This report contains the quantitative and qualitative results of that survey.

  16. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    Science.gov (United States)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  17. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH projec