WorldWideScience

Sample records for science partnership program

  1. 77 FR 70422 - Agency Information Collection Activities; Comment Request; Mathematics and Science Partnerships...

    Science.gov (United States)

    2012-11-26

    ...; Comment Request; Mathematics and Science Partnerships Program: Annual Performance Report AGENCY: Office of... notice will be considered public records. Title of Collection: Mathematics and Science Partnerships... Mathematics and Science Partnerships (MSP) program is a formula grant program to the States in which states...

  2. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    Science.gov (United States)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  3. A Statewide Partnership for Implementing Inquiry Science

    Science.gov (United States)

    Lytle, Charles

    The North Carolina Infrastructure for Science Education (NC-ISE) is a statewide partnership for implementing standards-based inquiry science using exemplary curriculum materials in the public schools of North Carolina. North Carolina is the 11th most populous state in the USA with 8,000,000 residents, 117 school districts and a geographic area of 48,718 miles. NC-ISE partners include the state education agency, local school systems, three branches of the University of North Carolina, the state mathematics and science education network, businesses, and business groups. The partnership, based upon the Science for All Children model developed by the National Science Resources Centre, was initiated in 1997 for improvement in teaching and learning of science and mathematics. This research-based model has been successfully implemented in several American states during the past decade. Where effectively implemented, the model has led to significant improvements in student interest and student learning. It has also helped reduce the achievement gap between minority and non-minority students and among students from different economic levels. A key program element of the program is an annual Leadership Institute that helps teams of administrators and teachers develop a five-year strategic plan for their local systems. Currently 33 of the117 local school systems have joined the NC-ISE Program and are in various stages of implementation of inquiry science in grades K-8.

  4. Developing partnerships for implementing continental-scale citizen science programs at the local-level

    Science.gov (United States)

    Newman, S. J.; Henderson, S.; Ward, D.

    2012-12-01

    Project BudBurst is a citizen science project focused on monitoring plant phenology that resides at the National Ecological Observatory Network (NEON, Inc). A central question for Project BudBurst and other national outreach programs is: what are the most effective means of engaging and connecting with diverse communities throughout the country? How can continental scale programs like NEON's Project BudBurst engage audiences in such a way as to be relevant at both the local and continental scales? Staff with Project BudBurst pursued partnerships with several continental scale organizations: the National Wildlife Refuge System, the National Park Service, and botanic gardens to address these questions. The distributed nature of wildlife refuges, national parks, and botanic gardens around the country provided the opportunity to connect with participants locally while working with leadership at multiple scales. Project BudBurst staff talked with hundreds of staff and volunteers prior to setting a goal of obtaining and developing resources for several Refuge Partners, a pilot National Park partner, and an existing botanic garden partner during 2011. We were especially interested in learning best practices for future partnerships. The partnership efforts resulted in resource development for 12 Refuge partners, a pilot National Park partner, and 2 botanic garden partners. Early on, the importance of working with national level leaders to develop ownership of the partner program and input about resource needs became apparent. Once a framework for the partnership program was laid out, it became critical to work closely with staff and volunteers on the ground to ensure needs were met. In 2012 we began to develop an online assessment to allow our current and potential partners to provide feedback about whether or not the partnership program was meeting their needs and how the program could be improved. As the year progressed, the timeline for resource development became more

  5. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    Science.gov (United States)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  6. Businesses assisting K--12 science instruction: Four case studies of long-term school partnerships

    Science.gov (United States)

    van Trieste, Lynne M.

    Businesses lack enough qualified applicants to fill the increasing need for scientists and engineers while educators lack many resources for science programs in K-12 schools. This series of case studies searched for successful collaborations between the two in four geographic locations: Boise, Idaho; Dallas, Texas; Los Angeles County, California, and Orange County, California. These science education partnerships were investigated to gain an understanding of long-term partnership structure, functioning and evaluation methods. Forty-nine individual interviews with representatives from the groups of stakeholders these programs impact were also conducted. Stakeholder groups included students, teachers, parents, school administrators, business liaisons, and non-profit representatives. Several recurring themes in these partnerships reinforced the existing literature research findings. Collaboration and communication between partners, teacher professional development, the need for more minority and female representation in physical science careers, and self-efficacy in relation to how people come to view their scientific abilities, are among these themes. Topics such as program replication, the importance of role models, programs using "hands-on" activities, reward systems for program participants, and program outcome measurement also emerged from the cases investigated. Third-party assistance by a non-profit entity is occurring within all of these partnerships. This assistance ranges from a service providing material resources such as equipment, lesson plans and meeting space, to managing the partnership fundraising, program development and evaluations. Discussions based upon the findings that support or threaten sustainment of these four partnerships, what a "perfect" partnership might look like, and areas in need of further investigation conclude this study.

  7. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  8. Effects of a partnership support program for couples undergoing fertility treatment.

    Science.gov (United States)

    Asazawa, Kyoko

    2015-10-01

    The study's purpose was to examine the effects of providing a partnership support program. It was designed to improve Japanese couples' partnership, maintain quality of life, decrease psychological distress, and improve marital relationship satisfaction while they underwent infertility treatment that included the possibility of using assisted reproductive technology. This quasi-experimental study with a two-group pretest-post-test design used purposive sampling and non-random assignment of 318 consenting Japanese patients from previous phases of assisted reproductive technology fertility treatment who were patients from a fertility clinic in Tokyo, Japan. The intervention group of 152 patients (76 couples) participated in the partnership support program. The comparison group of 166 patients (83 couples) received usual care. Recruitment was age matched. The program provided information and used a participatory-interactive approach to enhance understanding and cooperation in couples undergoing fertility treatment. The main outcome measures were: "partnership", FertiQoL, Quality Marriage Index, and "psychological distress". There were 311 participants (intervention group n = 148; comparison group, n = 163). The intervention group showed significant improvement in the couples' partnerships and a significant decrease in women's psychological distress using subgroup analysis. The partnership support program provided effective improvement in partnership for the couples, and reduced psychological distress for the women; however, it had less impact for the men. The program was not effective in improving couples' overall quality of life (QOL); however, it was effective in improving the "mind-body" aspects of the QOL subscale. © 2015 The Author. Japan Journal of Nursing Science © 2015 Japan Academy of Nursing Science.

  9. Canada's Global Partnership Program

    International Nuclear Information System (INIS)

    Ellis, M.

    2007-01-01

    Curbing the proliferation of biological weapons (BW) is an essential element of the Global Partnership Against the Spread of Weapons and Materials of Mass Destruction. At the Kananaskis Summit in June 2002, G8 Leaders committed to prevent terrorists, or those that harbour them, from acquiring or developing biological weapons and related materials, equipment and technology. To this end, Canada's Global Partnership Program is investing heavily in biological non-proliferation activities in countries of the former Soviet Union. A comprehensive strategy has been developed to help improve biological safety (biosafety) and biological security (biosecurity) with provision for addressing dual-use concerns. Raising awareness and creating a self-sustaining culture of biosecurity is a key driver of the program. Through this strategy, Canada is assisting various FSU countries to: develop and implement effective and practical biosafety/biosecurity standards and guidelines; establish national and/or regional biosafety associations; develop and deliver effective biosafety and biosecurity training; put in place enhanced physical security measures and equipment. In addition to biosafety and biosecurity, the GPP supports a broad range of Biological Non-Proliferation projects and initiatives, including dozens of projects aimed at redirecting former biological weapons scientists. To date, most of these activities have been supported through Canada's contribution to the International Science and Technology Center (ISTC) and the Science and Technology Centre Ukraine (STCU).(author)

  10. The GLOBE Program: Partnerships in Action

    Science.gov (United States)

    Henderson, S.; Kennedy, T.; Lemone, M.; Blurton, C.

    2004-12-01

    The GLOBE Program is a worldwide science and education partnership endeavor designed to increase scientific understanding of Earth as a system, support improved student achievement in science and math, and enhance environmental awareness through inquiry-based learning activities. GLOBE began on the premise that teachers and their students would partner with scientists to collect and analyze environmental data using specific protocols in five study areas - atmosphere, soils, hydrology, land cover, and phenology. As the GLOBE network grew, additional partnerships flourished making GLOBE an unprecedented collaboration of individuals worldwide - primary, secondary, and tertiary students, teachers and teacher educators, scientists, government officials, and others - to improve K-12 education. Since its inception in 1994, more than one million students in over 14,000 schools around the world have taken part in The GLOBE Program. The GLOBE Web site (http://www.globe.gov) is the repository for over 11 million student-collected data measurements easily accessible to students and scientists worldwide. Utilizing the advantages of the Internet for information sharing and communication, GLOBE has created an international community. GLOBE enriches students by giving them the knowledge and skills that they will need to become informed citizens and responsible decision-makers in an increasingly complex world. Understanding that all members of a community must support change if it is to be sustainable, GLOBE actively encourages the development of GLOBE Learning Communities (GLCs) which are designed to get diverse stakeholder groups involved in a local or regional environmental issue. Central to the GLC is the engagement of local schools. GLCs go beyond individual teachers implementing GLOBE in the isolation of their classrooms. Instead, the GLC brings multiple teachers and grade levels together to examine environmental issues encouraging the participation of a broad range of

  11. The InterCon network: a program for education partnerships at the University of Texas-Houston Health Science Center.

    Science.gov (United States)

    Castro, G A; Bouldin, P A; Farver, D W; Maugans, L A; Sanders, L C; Booker, J

    1999-04-01

    The University of Texas-Houston Health Science Center (UT-Houston) has created programs and activities to address the state's pressing needs in minority education. Through InterCon, a network of universities and K-12 schools, UT-Houston works with its partners to identify competitive candidates in the current pool of minority graduates with bachelor's degrees and to help them--along with their non-minority counterparts--progress in their education. Another objective is to expand the pool of minorities underrepresented in medicine who complete high school and go to college. In 1994 UT-Houston and Prairie View A&M University created a collaborative venture to provide new educational opportunities at UT-Houston for Prairie View's predominantly African American students. A three-track summer internship program--a result of that collaboration--has since been expanded to partnerships with other minority and majority universities throughout Texas. In 1998, for example, 108 undergraduate students from these universities (and 40 other universities nationwide) participated in research, professional, and administrative summer internships at UT-Houston. The InterCon network also has partnerships with K-12 schools. UT-Houston works with inner-city, suburban, and rural school districts to develop education models that can be transferred throughout the state. The partnerships deal with helping to teach basic academic skills and computer literacy, improve science-related instruction, meet demands for health promotion materials and information for school-initiated health and wellness programs, and develop distance-learning paradigms. UT-Houston views InterCon as a program helping Texas institutions to engage and adapt to the socioeconomic factors, demographic changes, and technology explosion that currently challenge public education.

  12. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions

  13. A community translational research pilot grants program to facilitate community--academic partnerships: lessons from Colorado's clinical translational science awards.

    Science.gov (United States)

    Main, Deborah S; Felzien, Maret C; Magid, David J; Calonge, B Ned; O'Brien, Ruth A; Kempe, Allison; Nearing, Kathryn

    2012-01-01

    National growth in translational research has increased the need for practical tools to improve how academic institutions engage communities in research. One used by the Colorado Clinical and Translational Sciences Institute (CCTSI) to target investments in community-based translational research on health disparities is a Community Engagement (CE) Pilot Grants program. Innovative in design, the program accepts proposals from either community or academic applicants, requires that at least half of requested grant funds go to the community partner, and offers two funding tracks: One to develop new community-academic partnerships (up to $10,000), the other to strengthen existing partnerships through community translational research projects (up to $30,000). We have seen early success in both traditional and capacity building metrics: the initial investment of $272,742 in our first cycle led to over $2.8 million dollars in additional grant funding, with grantees reporting strengthening capacity of their community- academic partnerships and the rigor and relevance of their research.

  14. Technology-Enhanced Science Partnership Initiative: Impact on Secondary Science Teachers

    Science.gov (United States)

    Ng, Wan; Fergusson, Jennifer

    2017-07-01

    The issue of student disengagement in school science continues to pose a threat to lifting the participation rates of students undertaking STEM courses and careers in Australia and other countries globally. In Australia, several science initiatives to reverse the problem have been funded over the last two decades. Many of these initiatives involve partnerships with scientists, science educators and with industries, as is the case in this paper. The research in this paper investigated a recent partnership initiative between secondary science teachers, scientists and an educational technology company to produce science e-modules on adaptive learning platforms, enabling students to engage in personalised, inquiry-based learning and the investigation of real-world problems. One of the objectives of the partnership project was to build theoretical and pedagogical skills in teachers to deliver science by exposing them to new ways of engaging students with new digital tools, for example analytics. Using a mixed methods approach, the research investigated science teachers' pedagogical involvement in the partnership project and their perceptions of the project's impact on their teaching and students' learning. The findings indicate that the teachers believed that new technology could enhance their teaching and students' learning and that while their students were motivated by the online modules, there was still a need for scaffolding for many of the students. The effectiveness of this would depend on the teachers' ability to internalise the new technological and content knowledge resulting from the partnership and realign them with their existing pedagogical framework. The research is significant in identifying elements for successful partnership projects as well as challenges that need to be considered. It is significant in facilitating continuous discourse about new evidence-based pedagogical approaches to science education in engaging students to learn STEM subjects in a

  15. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community

    Science.gov (United States)

    Jearld, A.

    2011-12-01

    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. Participating institutions are the Marine Biological Laboratory, Northeast Fisheries Science Center of NOAA's Fisheries Service, Sea Education Association, U.S. Geological Survey, Woods Hole Oceanographic Institution, the Woods Hole Research Center, and University of Maryland Eastern Shore. Aimed at college juniors and seniors with some course work in marine and/or environmental sciences, PEP is a four-week course and a six-to-eight-week individual research project under the guidance of a research mentor. Forty-six students have participated to date. Investigators from the science institutions serve as course faculty and research mentors. We listened to experts regarding critical mass, mentoring, adequate support, network recruitment, and then built a program based on those features. Three years in we have a program that works and that has its own model for choosing applicants and for matching with mentors. We continue fine-tuning our match process, enhancing mentoring skills, preparing our students for a variety of lab cultures, and setting expectations high while remaining supportive. Our challenges now are to keep at it, using leverage instead of capacity to make a difference. Collaboration, not competition, is key since a rising tide floats all boats.

  16. Evaluating RITES, a Statewide Math and Science Partnership Program

    Science.gov (United States)

    Murray, D. P.; Caulkins, J. L.; Burns, A. L.; de Oliveira, G.; Dooley, H.; Brand, S.; Veeger, A.

    2013-12-01

    The Rhode Island Technology-Enhanced Science project (RITES) is a NSF-MSP Program that seeks to improve science education by providing professional development to science teachers at the 5th through 12th grade levels. At it's heart, RITES is a complex, multifaceted project that is challenging to evaluate because of the nature of its goal: the development of a large, statewide partnership between higher education and K12 public school districts during a time when science education strategies and leadership are in flux. As a result, these difficulties often require flexibility and creativity regarding evaluation, study design and data collection. In addition, the research agenda of the project often overlaps with the evaluator's agenda, making collaboration and communication a crucial component of the project's success. In it's 5th year, RITES and it's evaluators have developed a large number of instruments, both qualitative and quantitative, to provide direction and feedback on the effectiveness of the project's activities. RITES personnel work closely with evaluators and researchers to obtain a measure of how RITES' 'theory-of-action' affects both student outcomes and teacher practice. Here we discuss measures of teacher and student content gains, student inquiry gains, and teacher implementation surveys. Using content questions based on AAAS and MOSART databases, teachers in the short courses and students in classrooms showed significant normalized learning gains with averages generally above 0.3. Students of RITES-trained teachers also outperformed their non-RITES peers on the inquiry-section of the NECAP test, and The results show, after controlling for race and economic status, a small but statistically significant increase in test scores for RITES students. Technology use in the classroom significantly increased for teachers who were 'expected implementers' where 'expected implementers' are those teachers who implemented RITES as the project was designed. This

  17. Next Generation Science Partnerships

    Science.gov (United States)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  18. Extension through Partnerships: Research and Education Center Teams with County Extension to Deliver Programs

    Science.gov (United States)

    Mullahey, J. Jeffrey

    2011-01-01

    Budget reductions have severely affected resources available to deliver agriculture and natural resource Extension programs in Florida. University of Florida/Institute of Food and Agricultural Sciences delivers Extension programming through a unique partnership between research and education centers and county Extension. Science-based information…

  19. Evaluation results of the GlobalWatershed GK-12 Fellowship Program - a model for increased science literacy and partnership

    Science.gov (United States)

    Mayer, A. S.; Vye, E.

    2016-12-01

    The Michigan Tech GlobalWatershed GK-12 Fellowship program bridges the gap between K-12 learning institutions and the scientific community with a focus on watershed research. Michigan Tech graduate students (fellows) work in tandem with teachers on the development of relevant hands-on, inquiry based lesson plans and activities based on their doctoral research projects in watershed science. By connecting students and teachers to state of the art academic research in watershed science, teachers are afforded a meaningful way in which to embed scientific research as a component of K-12 curricula, while mentoring fellows on the most pertinent and essential topics for lesson plan development. Fellows fulfill their vital responsibility of communicating their academic research to a broader public while fostering improved teaching and communication skills. A goal of the project is to increase science literacy among students so they may understand, communicate and participate in decisions made at local, regional, and global levels. The project largely works with schools located in Michigan's western Upper Peninsula but also partners with K-12 systems in Sonora, Mexico. While focusing on local and regional issues, the international element of the project helps expand student, teacher, and fellow worldviews and global awareness of watershed issues and creates meaningful partnerships. Lesson plans are available online and teacher workshops are held regularly to disseminate the wealth of information and resources available to the broader public. Evaluation results indicate that fellows' skill and confidence in their ability to communicate science increased as a results of their participation of the program, as well as their desire to communicate science in their future careers. Teachers' confidence in their capacity to present watershed science to their students increased, along with their understanding of how scientific research contributes to understanding of water

  20. Partner-built ecosystem science - The National Ocean Partnership Program as a builder of EBM Tools and Data

    Science.gov (United States)

    Hoffman, P. L.; Green, R. E.; Kohanowich, K. M.

    2016-12-01

    The National Ocean Partnership Program (NOPP) was created in 1997 by federal public law to identify "and carry out partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community in the areas of data, resources, education, and communications." Since that time, numerous federal agencies have pooled talent, funding, and scientific resources (e.g. ships, aircraft, remote sensors and computing capability) to address pressing ocean science needs which no one entity can manage alone. In this presentation, we will address the ways the National Ocean Policy identifies ecosystem-based management (EBM) as a foundation for providing sound science-based and adaptable management to maintain the health, productivity, and resilience of U.S. ocean, coastal, and Great Lakes ecosystems. Because EBM is an important approach for efficient and effective interagency, multi-jurisdictional, and cross-sectoral marine planning and management, ocean science partnerships such as those provided by NOPP create a pool of regionally-pertinent, nationally-available data from which EBM decision makers can draw to address critical management issues. Specifically, we will provide examples drawn from the last five years of funding to illustrate how the NOPP process works, how it is managed by a federal Interagency Working Group (IWG-OP), and how EBM practitioners can both partner with others through the NOPP and offer guidance on the implementation of projects beneficial to the regional needs of the EBM community. Projects to be discussed have been carried out under the following themes: Arctic Cumulative Impacts: Marine Arctic Ecosystem Study (MARES) - Ecosystem Dynamics and Monitoring of the Beaufort Sea: An Integrated Science Approach. Biodiversity Indicators: Demonstration of a U.S. Marine Biodiversity Observation Network (Marine BON) Long-Term Observations: Coordinated Regional Efforts That Further the U.S. Integrated Ocean Observing System

  1. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  2. Building sustained partnerships in Greenland through shared science

    Science.gov (United States)

    Culler, L. E.; Albert, M. R.; Ayres, M. P.; Grenoble, L. A.; Virginia, R. A.

    2013-12-01

    Greenland is a hotspot for polar environmental change research due to rapidly changing physical and ecological conditions. Hundreds of international scientists visit the island each year to carry out research on diverse topics ranging from atmospheric chemistry to ice sheet dynamics to Arctic ecology. Despite the strong links between scientific, social, and political issues of rapid environmental change in Greenland, communication with residents of Greenland is often neglected by researchers. Reasons include language barriers, difficulties identifying pathways for communication, balancing research and outreach with limited resources, and limited social and cultural knowledge about Greenland by scientists. Dartmouth College has a legacy of work in the Polar Regions. In recent years, a National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) in Polar Environmental Change funded training for 25 Ph.D. students in the Ecology, Earth Science, and Engineering graduate programs at Dartmouth. An overarching goal of this program is science communication between these disciplines and to diverse audiences, including communicating about rapid environmental change with students, residents, and the government of Greenland. Students and faculty in IGERT have been involved in the process of engaging with and sustaining partnerships in Greenland that support shared cultural and educational experiences. We have done this in three ways. First, a key component of our program has been hosting students from Ilisimatusarfik (the University of Greenland). Since 2009, five Greenlandic students have come to Dartmouth and formed personal connections with Dartmouth students while introducing their Greenlandic culture and language (Kalaallisut). Second, we have used our resources to extend our visits to Greenland, which has allowed time to engage with the community in several ways, including sharing our science via oral and poster presentations at Katuaq

  3. Promoting US-China Critical Zone Science Collaboration and Coordination Through Established Subnational Bilateral Science Partnerships: The US-China EcoPartnership for Economic and Environmental Sustainability.

    Science.gov (United States)

    Filley, T. R.; Guo, D.; Plante, A. F.

    2015-12-01

    The concept of critical zone (CZ) science has gained wide recognition with actively funded and emerging CZ observatory programs across the globe. There is much to be gained through international collaboration that links field, laboratory, and modeling efforts from across the emerging global CZ networks, but building international ties is difficult, especially when peer-to-peer connections are nascent, separated by great distances, and span different cultural and political environments. The U.S. and China share many climatic and geological similarities but differ greatly in the magnitude and timescale of human alteration of their landscapes making the comparative study of their respective pasts, current state, and future co-evolution an outstanding scientific opportunity to better understand, predict, and respond to human influence on the CZ. Leveraging the infrastructure and trust capital of longstanding sub-national volunteer scientific networks to bring together people and organizations is a resource-efficient mechanism to build cross-network CZ programs. The U.S.-China EcoPartnership for Environmental Sustainability (USCEES) is one of 30 current EcoPartnerships established beginning in May 2008 by a joint agreement between the U.S. Department of State and China's National Development and Reform Commission with the overarching goal of addressing the interconnected challenges of environmental, social, and economic sustainability through bi-national research innovation, communication, and entrepreneurship. The 2015 USCEES annual conference on "Critical Zone Science, Sustainability, and Services in a Changing World" was co-sponsored by the U.S. Cross-CZO Working Group on Organic Matter Dynamics and hosted three NSF-funded workshops on organic matter dynamics:1) methods for large and complex data analysis, 2) erosion and deposition processes, and 3) mineralogical and microbial controls on reactivity and persistence. This paper highlights outcomes from the workshops

  4. Customizing Process to Align with Purpose and Program: The 2003 MS PHD'S in Ocean Sciences Program Evaluative Case Study

    Science.gov (United States)

    Williamson, V. A.; Pyrtle, A. J.

    2004-12-01

    How did the 2003 Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Ocean Sciences Program customize evaluative methodology and instruments to align with program goals and processes? How is data captured to document cognitive and affective impact? How are words and numbers utilized to accurately illustrate programmatic outcomes? How is compliance with implicit and explicit funding regulations demonstrated? The 2003 MS PHD'S in Ocean Sciences Program case study provides insightful responses to each of these questions. MS PHD'S was developed by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science. Key components of this initiative include development of a community of scholars sustained by face-to-face and virtual mentoring partnerships; establishment of networking activities between and among undergraduate, graduate, postgraduate students, scientists, faculty, professional organization representatives, and federal program officers; and provision of forums to address real world issues as identified by each constituent group. The evaluative case study of the 2003 MS PHD'S in Ocean Sciences Program consists of an analysis of four data sets. Each data set was aligned to document progress in the achievement of the following program goals: Goal 1: The MS PHD'S Ocean Sciences Program will successfully market, recruit, select, and engage underrepresented student and non-student participants with interest/ involvement in Ocean Sciences; Goal 2: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by quantitative analysis of user-feedback; Goal 3: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by qualitative analysis of user-feedback, and; Goal 4: The MS PHD'S Ocean Sciences Program will develop a constituent base adequate to demonstrate evidence of interest, value, need and sustainability in

  5. Exploring the impact of an industrial volunteer/school science partnership on elementary teaching strategies and attitudes about future science study: A case study

    Science.gov (United States)

    White, Michael Robert

    This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type

  6. Responding to complex societal challenges: A decade of Earth System Science Partnership (ESSP) interdisciplinary research

    NARCIS (Netherlands)

    Ignaciuk, A.; Rice, M.; Bogardi, J.; Canadell, J.G.; Dhakal, S.; Ingram, J.; Leemans, R.; Rosenberg, M.

    2012-01-01

    The Earth system is an integrated, self-regulating system under increasing pressure from anthropogenic transformation. The Earth System Science Partnership (ESSP), which was established by the international global environmental change research programs (i.e., DIVERSITAS, IGBP, IHDP and WCRP)

  7. F-Gas Partnership Programs

    Science.gov (United States)

    Provides basic information and resources for the Fluorinated Gas Partnership Programs, which were launched as a joint effort by EPA and industry groups to reduce the amount of fluorinated gases emitted through a variety of industrial processes.

  8. Intermediate Trends in Math and Science Partnership-Related Changes in Student Achievement with Management Information System Data

    Science.gov (United States)

    Dimitrov, Dimiter M.

    2009-01-01

    This substudy in the evaluation design of the Math and Science Partnership (MSP) Program Evaluation examines student proficiency in mathematics and science for the MSPs' schools in terms of changes across three years (2003/04, 2004/05, and 2005/06) and relationships with MSP-related variables using Management Information System data with the…

  9. Northern Eurasia Earth Science Partnership Initiative: evolution of scientific investigations to applicable science

    International Nuclear Information System (INIS)

    Soja, Amber J; Groisman, Pavel Ya

    2012-01-01

    The letters collected in this focus issue of Environmental Research Letters on ‘Environmental, socio-economic and climatic changes in Northern Eurasia and their feedbacks to the global Earth system’ represent the third special issue based on the results of research within the Northern Eurasia Earth Science Partnership Initiative (NEESPI: http://neespi.org) program domain. Through the years, NEESPI researchers have presented a diverse array of articles that represent a variety of spatial scales and demonstrate the degree to which abrupt climatic and socio-economic changes are acting across Northern Eurasia and feed back to the global Earth system. (synthesis and review)

  10. Developing Partnerships between Higher Education Faculty, K-12 Science Teachers, and School Administrators via MSP initiatives: The RITES Model

    Science.gov (United States)

    Caulkins, J. L.; Kortz, K. M.; Murray, D. P.

    2011-12-01

    The Rhode Island Technology Enhanced Science Project (RITES) is a NSF-funded Math and Science Partnership (MSP) project that seeks to improve science education. RITES is, at its core, a unique partnership that fosters relationships between middle and high school science teachers, district and school administrators, higher education (HE) faculty members, and science education researchers. Their common goal is to enhance scientific inquiry, increase classroom technology usage, and improve state level science test scores. In one of the more visible examples of this partnership, middle and high school science teachers work closely with HE science faculty partners to design and teach professional development (PD) workshops. The PD sessions focus on technology-enhanced scientific investigations (e.g. use of probes, online simulations, etc.), exemplify inquiry-based instruction, and relate expert content knowledge. Teachers from these sessions express substantial satisfaction in the program, report increased comfort levels in teaching the presented materials (both via post-workshop surveys), and show significant gains in content knowledge (via pre-post assessments). Other benefits to this kind of partnership, in which K-12 and HE teachers are considered equals, include: 1) K-12 teachers are empowered through interactions with HE faculty and other science teachers in the state; 2) HE instructors become more informed not only about good pedagogical practices, but also practical aspects of teaching science such as engaging students; and 3) the PD sessions tend to be much stronger than ones designed and presented solely by HE scientists, for while HE instructors provide content expertise, K-12 teachers provide expertise in K-12 classroom practice and implementation. Lastly, the partnership is mutually beneficial for the partners involved because both sides learn practical ways to teach science and inquiry at different levels. In addition to HE faculty and K-12 science teacher

  11. Partnership in Computational Science

    Energy Technology Data Exchange (ETDEWEB)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  12. Green Power Partnership Related Programs & Organizations

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page provides a brief program overview, including vision and accomplishments.

  13. Meaningful Engagement of Organizational and Agency Partnerships to Enhance Diversity within the Earth System Science Community: A Case Study

    Science.gov (United States)

    Pyrtle, A. J.; Whitney, V. W.; Powell, J. M.; Bailey, K. L.

    2006-12-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science Initiative (MS PHD'S) was established by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science community. The MS PHD'S launched its pilot program in 2003 with twenty professional organizations, agencies and institutions as partners. Each year partnership alliances have grown. In the second year or programming, thirty-one partnering agencies/institutions supported involvement of MS PHD'S student participants and for 2005-2006, representatives from forty-five agencies and institutions have provided similar support and exposure to the third cohort of student participants. Nineteen scientists served as meeting mentors during the MS PHD'S pilot program in 2003. By the following year, twenty-two additional scientists partnered with MS PHD'S mentees. During 2005-2006, twenty-one new scientists served as program mentors. Thus far, the MS PHD'S program has successfully engaged sixty-two minority and non-minority scientists as mentors to MS PHD'S student participants. AGU, AMS, ASLO, ESA, TOS, NAS OSB and JOI continue to serve as MS PHD'S Society Partners and hosts for MS PHD'S student activities in conjunction with their meetings. Each of the five professional society partners provided assistance in identifying mentors, provided complimentary memberships and meeting registrations for MS PHD'S student participants. AGU, AMS, ASLO, JOI and TOS have sponsored more than 90 conference registration and travel awards for the purpose of student participants engaging in MS PHD'S Professional Development Program Phase 2 activities at their international meetings. How did MS PHD'S establish meaningful engagement of organizational and agency partnerships to enhance diversity within the Earth system science community? This case study reveals replicable processes and constructs to enhance the quality of meaningful collaboration and engagement

  14. The Ohio Partnership for the Far East Region Science Teachers

    Science.gov (United States)

    Beiersdorfer, Raymond; Sturrus, W. Gregg

    2008-03-01

    The Ohio Partnership for Far East Region Science Teachers (OPFERST) is a three-year project funded by Federal Math Science Partnership Funds through a grant to the Ohio Dept. of Education. OPFERST is a partnership (opferst.ysu.edu) of Youngstown State University science and education faculty, trained facilitators and the county and city science consultants. Every (47) school district in the region signed on and during the first year 32 districts participated. During the first two years, 198 teachers representing Ashtabula, Columbiana, Mahoning and Trumbull Counties, as well as Warren City and Youngstown City schools have participated. The vision of OPFERST is to improve the teaching and learning of the Ohio Science Academic Content Standards. Project goals are: 1) Increase science content knowledge of teachers; 2) Implement effective instructional practices; 3) Improve students performance in science; and 4) Develop professional learning communities which will lead to programmatic changes within districts. Goals one through three are met by modeling inquiry-based methods for teaching science content standards. Goal four is met by ongoing meetings through-out the school year, classroom visits by YSU faculty and fieldtrips to the YSU Campus by classes led by OPFERST teachers. Evaluation of OPFERST includes demographic and classroom practice data, pre- and post-tests of participants, journals, homework and the administration of evaluation instruments with some OPFERST participants' students.

  15. Mapping International University Partnerships Identified by East African Universities as Strengthening Their Medicine, Nursing, and Public Health Programs.

    Science.gov (United States)

    Yarmoshuk, Aaron N; Guantai, Anastasia Nkatha; Mwangu, Mughwira; Cole, Donald C; Zarowsky, Christina

    International university partnerships are recommended for increasing the capacity of sub-Saharan African universities. Many publications describe individual partnerships and projects, and tools are available for guiding collaborations, but systematic mappings of the basic, common characteristics of partnerships are scarce. To document and categorize the international interuniversity partnerships deemed significant to building the capacity of medicine, nursing, and public health programs of 4 East African universities. Two universities in Kenya and 2 in Tanzania were purposefully selected. Key informant interviews, conducted with 42 senior representatives of the 4 universities, identified partnerships they considered significant for increasing the capacity of their institutions' medicine, nursing, and public health programs in education, research, or service. Interviews were transcribed and analyzed. Partners were classified by country of origin and corresponding international groupings, duration, programs, and academic health science components. One hundred twenty-nine university-to-university partnerships from 23 countries were identified. Each university reported between 25 and 36 international university partners. Seventy-four percent of partnerships were with universities in high-income countries, 15% in low- and middle-income countries, and 11% with consortia. Seventy percent included medicine, 37% nursing, and 45% public health; 15% included all 3 programs. Ninety-two percent included an education component, 47% research, and 24% service; 12% included all 3 components. This study confirms the rapid growth of interuniversity cross-border health partnerships this century. It also finds, however, that there is a pool of established international partnerships from numerous countries at each university. Most partnerships that seek to strengthen universities in East Africa should likely ensure they have a significant education component. Universities should make

  16. School Business Community Partnership Brokers. Program Guidelines, 2010-2013

    Science.gov (United States)

    Australian Government Department of Education, Employment and Workplace Relations, 2009

    2009-01-01

    These guidelines for 2010-2013 relate specifically to the Partnership Brokers program. This program is part of the Australian Government's contribution to the Youth Attainment and Transitions National Partnership and will commence on 1 January 2010. These Guidelines set out the requirements for the provision of services by organisations contracted…

  17. A program to enhance k-12 science education in ten rural New York school districts.

    Science.gov (United States)

    Goodell, E; Visco, R; Pollock, P

    1999-04-01

    The Rural Partnership for Science Education, designed by educators and scientists in 1991 with funding from the National Institutes of Health, works in two rural New York State counties with students and their teachers from kindergarten through grade 12 to improve pre-college science education. The Partnership is an alliance among ten rural New York school districts and several New York State institutions (e.g., a regional academic medical center; the New York Academy of Sciences; and others), and has activities that involve around 4,800 students and 240 teachers each year. The authors describe the program's activities (e.g., summer workshops for teachers; science exploration camps for elementary and middle-school students; enrichment activities for high school students). A certified science education specialist directs classroom demonstrations throughout the academic year to support teachers' efforts to integrate hands-on activities into the science curriculum. A variety of evaluations over the years provides strong evidence of the program's effectiveness in promoting students' and teachers' interest in science. The long-term goal of the Partnership is to inspire more rural students to work hard, learn science, and enter the medical professions.

  18. NASA Earth Science Partnerships - The Role and Value of Commercial and Non-Profit Partnerships with Government in the Earth Sciences

    Science.gov (United States)

    Favors, J.; Cauffman, S.; Ianson, E.; Kaye, J. A.; Friedl, L.; Green, D. S.; Lee, T. J.; Murphy, K. J.; Turner, W.

    2017-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, and technology development. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations with technical and non-technical expertise. This presentation will focus on a new commercial and non-profit partnership effort being undertaken by ESD to integrate expertise unique to these sectors with expertise at NASA to jointly achieve what neither group could alone. Highlights will include case study examples of joint work with perspectives from both NASA and the partner, building interdisciplinary teams with diverse backgrounds but common goals (e.g., economics and Earth observations for valuing natural capital), partnership successes and challenges in the co-production of science and applications, utilizing partner networks to amplify project outcomes, and how involving partners in defining the project scope drives novel and unique scientific and decision-making questions to arise.

  19. The Woods Hole Partnership Education Program (PEP) (Invited)

    Science.gov (United States)

    Jearld, A.; Liles, G.; Gutierrez, B.

    2013-12-01

    In March 2009, the Woods Hole Diversity Initiative (WHDI) launched the Partnership Education Program (PEP), a multi-institutional effort to increase diversity in the student population (and ultimately the work force) in the Woods Hole science community. PEP, a summer research internship program, is open to students of all backgrounds but is designed especially to provide opportunities for individuals from populations under-represented in science, technology, engineering, and mathematics (STEM) and who otherwise would not have had the opportunity to come to Woods Hole to study or do research. A month-long course, 'Ocean and Environmental Sciences: Global Climate Change,' sets the stage for their summer research projects. The PEP model is emerging as an effective and sustainable approach to bringing students into the STEM research community. PEP is carefully structured to provide critical support for students as they complete their undergraduate experience and prepare for careers and/or graduate school. In its first five years, PEP has brought to the Woods Hole science community more than 75 students from over 50 colleges and universities, including many that do not typically send talent into marine and/or ecological research. PEP is unusual (perhaps even unique) in that it is a collaborative initiative involving seven partner institutions. Working together, the PEP collaborative has established a critical mass of under-represented students who are now in graduate school and/or working in STEM areas.

  20. The value of partnerships in state obesity prevention and control programs.

    Science.gov (United States)

    Hersey, James; Kelly, Bridget; Roussel, Amy; Curtis, LaShawn; Horne, Joseph; Williams-Piehota, Pamela; Kuester, Sarah; Farris, Rosanne

    2012-03-01

    State health departments funded by the Centers for Disease Control and Prevention's Nutrition, Physical Activity, and Obesity Program collaborate with multiple partners to develop and implement comprehensive obesity prevention and control programs. A mixed-methods evaluation of 28 state programs over a 5-year period assessed states' progress on program requirements, including developing statewide partnerships and coordinating with partners to support obesity prevention and control efforts. States with greater partnership involvement leveraged more funding support for their programs, passed more obesity-related policies, and were more likely to implement obesity interventions in multiple settings. Case studies provided guidance for establishing and maintaining strong partnerships. Findings from this study offer emerging evidence to support assumptions about the centrality of partnerships to states' success in obesity program development and implementation and related health promotion activities.

  1. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  2. Partnerships for the Design, Conduct, and Analysis of Effectiveness, and Implementation Research: Experiences of the Prevention Science and Methodology Group

    Science.gov (United States)

    Brown, C. Hendricks; Kellam, Sheppard G.; Kaupert, Sheila; Muthén, Bengt O.; Wang, Wei; Muthén, Linda K.; Chamberlain, Patricia; PoVey, Craig L.; Cady, Rick; Valente, Thomas W.; Ogihara, Mitsunori; Prado, Guillermo J.; Pantin, Hilda M.; Gallo, Carlos G.; Szapocznik, José; Czaja, Sara J.; McManus, John W.

    2012-01-01

    What progress prevention research has made comes through strategic partnerships with communities and institutions that host this research, as well as professional and practice networks that facilitate the diffusion of knowledge about prevention. We discuss partnership issues related to the design, analysis, and implementation of prevention research and especially how rigorous designs, including random assignment, get resolved through a partnership between community stakeholders, institutions, and researchers. These partnerships shape not only study design, but they determine the data that can be collected and how results and new methods are disseminated. We also examine a second type of partnership to improve the implementation of effective prevention programs into practice. We draw on social networks to studying partnership formation and function. The experience of the Prevention Science and Methodology Group, which itself is a networked partnership between scientists and methodologists, is highlighted. PMID:22160786

  3. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  4. A New Frontier for LIS Programs: E-Government Education, Library/Government Partnerships, and the Preparation of Future Information Professionals

    Science.gov (United States)

    Jaeger, Paul T.; Bertot, John Carlo; Shuler, John A.; McGilvray, Jessica

    2012-01-01

    This paper examines the implications of the continued growth of e-government information, communication, and services for Library and Information Science programs in the United States in light of the development of e-government educational programs and library/government partnerships. The implementation of e-government raises several important…

  5. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Science.gov (United States)

    Moore, S. E.

    2010-12-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement and abundance. With regard to the three pillars of the SEARCH program, these long-term OBSERVATIONS provide a foundation for research seeking to UNDERSTAND and RESPOND to the effects of rapid climate change on the marine ecosystem. Specifically, research on the coastal ecosystem near Barrow, Alaska focuses on late-summer feeding habitat for bowheads in an area where whales are hunted in autumn. This work is a partnership among agency, academic and local scientists and the residents of Barrow, all of whom seek to better UNDERSTAND how recent dramatic changes in sea ice, winds and offshore industrial activities influence whale movements and behavior. In regard to RESPONDING to climate change, the nascent Sea Ice for Walrus Outlook (SIWO) is a science partnership that projects sea ice and wind conditions for five villages in the Bering Strait region. The objective of the SIWO is to provide information on physical conditions in the marine environment at spatial and temporal scales relevant to walrus hunters. Marine mammals are a strong and dynamic nexus for partnerships among scientists, Arctic residents, resource managers and the general public - as such, they are essential elements to any science plan for a sustainable Arctic.

  6. How behavioural science can contribute to health partnerships: the case of The Change Exchange.

    Science.gov (United States)

    Byrne-Davis, Lucie M T; Bull, Eleanor R; Burton, Amy; Dharni, Nimarta; Gillison, Fiona; Maltinsky, Wendy; Mason, Corina; Sharma, Nisha; Armitage, Christopher J; Johnston, Marie; Byrne, Ged J; Hart, Jo K

    2017-06-12

    Health partnerships often use health professional training to change practice with the aim of improving quality of care. Interventions to change practice can learn from behavioural science and focus not only on improving the competence and capability of health professionals but also their opportunity and motivation to make changes in practice. We describe a project that used behavioural scientist volunteers to enable health partnerships to understand and use the theories, techniques and assessments of behavioural science. This paper outlines how The Change Exchange, a collective of volunteer behavioural scientists, worked with health partnerships to strengthen their projects by translating behavioural science in situ. We describe three case studies in which behavioural scientists, embedded in health partnerships in Uganda, Sierra Leone and Mozambique, explored the behaviour change techniques used by educators, supported knowledge and skill development in behaviour change, monitored the impact of projects on psychological determinants of behaviour and made recommendations for future project developments. Challenges in the work included having time and space for behavioural science in already very busy health partnership schedules and the difficulties in using certain methods in other cultures. Future work could explore other modes of translation and further develop methods to make them more culturally applicable. Behavioural scientists could translate behavioural science which was understood and used by the health partnerships to strengthen their project work.

  7. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    Science.gov (United States)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  8. Partnership Opportunities In Earth System Science Education Between Historically Black and Historically White Universities: Elizabeth City State University and the University of New Hampshire

    Science.gov (United States)

    Williams, J. E.; Hayden, L. B.; Wake, C. P.; Varner, R. K.; Graham, K.; Rock, B. N.; Hale, S.; Hurtt, G. C.; Porter, W.; Blackmon, R.; Bryce, J. G.; Branch, B. D.; Johnson, J. E.

    2009-12-01

    Federal efforts to promote the participation of underrepresented students in the science, technology, engineering and mathematics disciplines (STEM) in higher education have been in effect over several decades. The Science and Engineering Equal Opportunities Act of 1980 aimed to create equal opportunity in the STEM disciplines by promoting and broadening the participation of underrepresented talent in science and engineering. Since that time, federal agencies such as the National Science Foundation, NOAA and NASA, scientific organizations such as the American Geophysical Union, and other organizations such as the Educational Testing Service have created programs, diversity plans and cutting edge reports designed to further explicate the need to broaden the participation of underrepresented student talent in these disciplines. Despite increases in the degrees awarded to underrepresented students in the STEM disciplines, enhancing diversity in these disciplines continues to remain a significant challenge. This paper describes a strategic approach to this challenge via the development of a collaborative partnership model between two universities: the historically black Elizabeth City State University (ESCU) and the historically white University of New Hampshire (UNH). The alliance, built on a mutually-agreed upon set of partnership principles, strives to enhance opportunities for underrepresented students to pursue careers in STEM disciplines, specifically those in Earth system science and remote sensing. In examining the partnership, six promising practices that help advance its success come to the forefront. These practices include institutional commitment and faculty engagement, mutual respect and shared time commitment, identifying engaged leadership, engaging critical change agents, initiating difficult dialogues, and preparing for growth and evolution. Outcomes of the partnership to date include the successful submission and funding of four collaborative

  9. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  10. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  11. University-School Partnerships: Pre-Service and In-Service Teachers Working Together to Teach Primary Science

    Science.gov (United States)

    Kenny, John Daniel

    2012-01-01

    This paper reports on a partnership approach preparing pre-service primary teachers to teach science. Partnerships involving pre-service teachers and volunteer in-service colleagues were formed to teach science in the classroom of the colleague, with support from the science education lecturer. Each pre-service teacher collaboratively planned and…

  12. Social network analysis of public health programs to measure partnership.

    Science.gov (United States)

    Schoen, Martin W; Moreland-Russell, Sarah; Prewitt, Kim; Carothers, Bobbi J

    2014-12-01

    In order to prevent chronic diseases, community-based programs are encouraged to take an ecological approach to public health promotion and involve many diverse partners. Little is known about measuring partnership in implementing public health strategies. We collected data from 23 Missouri communities in early 2012 that received funding from three separate programs to prevent obesity and/or reduce tobacco use. While all of these funding programs encourage partnership, only the Social Innovation for Missouri (SIM) program included a focus on building community capacity and enhancing collaboration. Social network analysis techniques were used to understand contact and collaboration networks in community organizations. Measurements of average degree, density, degree centralization, and betweenness centralization were calculated for each network. Because of the various sizes of the networks, we conducted comparative analyses with and without adjustment for network size. SIM programs had increased measurements of average degree for partner collaboration and larger networks. When controlling for network size, SIM groups had higher measures of network density and lower measures of degree centralization and betweenness centralization. SIM collaboration networks were more dense and less centralized, indicating increased partnership. The methods described in this paper can be used to compare partnership in community networks of various sizes. Further research is necessary to define causal mechanisms of partnership development and their relationship to public health outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Partnerships: The Key to Sustainability and Reach for E/PO

    Science.gov (United States)

    Eisenhamer, Bonnie; McCallister, D.; Ryer, H.

    2013-06-01

    The Space Telescope Science Institute (STScI) is the home institution for the E/PO activities of the Hubble and future James Webb space telescopes. Over time, STScI’s Office of Public Outreach has established the infrastructure needed for an E/PO program that reaches various audiences at the local, regional, and national levels. Partnerships are a critical element of this infrastructure, and sustainability of our E/PO program is ensured through our ongoing partnerships with organizations and institutions with staying power and reach. We have learned from past efforts that strategic partnerships can foster innovation, support diversity initiatives, and increase impact in a cost-effective way while providing target audiences with greater access to NASA SMD science and resources. Partnerships are utilized to field-test educational products and programs, disseminate materials and initiatives, and support professional development activities. Partners are selected based upon specific criteria such as potential for reach, the percentage of underrepresented educators and students served, complementary program goals, and willingness to collect and share evaluation data and results with us. This poster will highlight examples and benefits of strategic partnerships over time.

  14. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  15. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  16. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    Science.gov (United States)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  17. Research Awards: Canadian Partnerships Program Deadline: 12 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... IDRC's Canadian Partnerships (CP) Program offers a Research ... For this, they may consider quantitative and qualitative methods, case studies, ... What types of processes do Canadian organizations use to learn about their ...

  18. Twenty-first Century Space Science in The Urban High School Setting: The NASA/John Dewey High School Educational Outreach Partnership

    Science.gov (United States)

    Fried, B.; Levy, M.; Reyes, C.; Austin, S.

    2003-05-01

    A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This

  19. Evaluation of DOE's Partnership in Low-Income Residential Retrofit (PILIRR) Program

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, J.W.; Lee, A.D.

    1989-05-01

    In July 1986, the US Department of Energy (DOE) awarded competitive grants to five states to conduct pilot projects to establish partnerships and use resource leveraging to stimulate support for low-income residential energy retrofits. The projects were conducted under DOE's Partnerships in Low-Income Residential Retrofit (PILIRR) Program. These projects have been monitored and analyzed through a concurrent process evaluation conducted by the Pacific Northwest Laboratory (PNL). This study reports the findings of that evaluation. The overriding goal of the PILIRR Program was to determine whether the states could stimulate support for low-income residential energy improvements from non-federal sources. The goal for the process evaluation was to conduct an assessment of the processes used by the states and the extent to which they successfully established partnerships and leveraged resources. Five states were selected to participate in the program: Florida, Iowa, Kentucky, Oklahoma and Washington. Each state proposed a different approach to promote non-federal support for low-income residential weatherization. Three of the five states--Florida, Iowa, and Washington--established partnerships that led to retrofits during the monitoring period (October 1986--October 1988). Kentucky established its partnership during the monitoring period, but did not accomplish its retrofits until after monitoring was complete. Oklahoma completed development of its marketing program and had begun marketing efforts by the end of the monitoring period. 16 refs., 7 figs., 1 tab.

  20. The Woods Hole Partnership Education Program (PEP): Broadening Participation in the Geosciences

    Science.gov (United States)

    Scott, O.; Jearld, A., Jr.; Liles, G.; Gutierrez, B.

    2015-12-01

    In March 2009, the Woods Hole Diversity Initiative launched the Partnership Education Program (PEP), a multi-institutional effort to increase diversity in the student population (and ultimately the work force) in the Woods Hole science community. PEP, a summer research internship program, is open to students of all backgrounds but is designed especially to provide opportunities for URM in science, technology, engineering, and mathematics (STEM). PEP is a 10-week program which provides intensive mentored research, a credit-bearing course and supplemental career and professional development activities. Students have opportunities to work in various research areas of geosciences. PEP is emerging as an effective and sustainable approach to bringing students into the STEM research community. PEP is carefully structured to provide critical support for students as they complete their undergraduate experience and prepare for geosciences careers and/or graduate school. The PEP experience is intended to provide students with an entry into the Woods Hole science community, one of the most vibrant marine and environmental research communities in the world. The program aims to provide a first-hand introduction to emerging issues and real-world training in the research skills that students need to advance in science, either as graduate students or bachelors-level working scientists. This is a long-recognized need and efforts are being made to ensure that the students begin to acquire skills and aptitudes that position them to take advantage of a wide range of opportunities. Of note is that the PEP is transitioning into a two year program where students are participating in a second year as a research intern or employee. Since 2013, at least four partner institutions have invited PEP alumni to participate in their respective programs as research assistants and/or full-time technicians.

  1. Creating and Sustaining University-Community Partnerships in Science Education (Invited)

    Science.gov (United States)

    Finkelstein, N.

    2009-12-01

    Despite years of research and investment, we have yet to see the widespread implementation of a myriad research-proven instructional strategies in STEM education[1]. To address this challenge, we present and analyze one such strategy, a theoretically-grounded model of university-community partnership [2] that engages university students and children in a collective enterprise that has the potential to improve the participation and education of all. We document the impact of this effort on: university participants who learn about education, the community and science; children in the community who learn about science, the nature of science and develop their identities and attitudes towards science; and, shifts in institutional structures which may allow these programs to be part of standard practice. This project is designed to be sustained and scaled, and is analyzed through the application of a new framework [3] which brings together theories of STEM change that come from studies in higher education, faculty development and disciplinary-based education research in STEM. [1] National Research Council. (2003). Improving Undergraduate Instruction in Science, Technology, Engineering, and Mathematics: Report of A Workshop. Washington, D.C.: The National Academies Press. [2] Finkelstein, N. and Mayhew, L. (2008). Acting in Our Own Self-Interest: Blending University and Community. Proceedings of the 2008 Physics Education Research Conf, AIP Press. Melville NY, 1064, 19-22. [3] Henderson, C., Finkelstein, N. & Beach A. (to appear). Beyond Dissemination in College science teaching: An Introduction to Four Core Change Strategies. Accepted May 2009 in Journal of College Science Teaching.

  2. Initiating New Science Partnerships in Rural Education (INSPIRE): Enhancing Scientific Communication by Bringing STEM Research into the Classroom

    Science.gov (United States)

    Pierce, D.; Radencic, S.; Funderburk, W. K.; Walker, R. M.; Jackson, B. S.; Dawkins, K. S.; Schmitz, D.; Bruce, L. M.; McNeal, K.

    2014-12-01

    INSPIRE, a five-year partnership between Mississippi State University and three local school districts, is designed to strengthen the communication skills of graduate Fellows in geosciences, physics, astronomy, chemistry, and engineering as they incorporate their research into inquiry-based lessons in 7th - 12th grade science and math classrooms. All lesson plans designed and taught by the graduate Fellows must include one or more connections to their research, and these connections must be demonstrated to the students during the lessons. International research partnerships with Australia, the Bahamas, England, and Poland provide valuable opportunities for graduate Fellows to conduct field work abroad and allow our partner teachers to have authentic research experiences that they can bring back to their classrooms. Program effectiveness has been examined using pre- and post-year attitudinal surveys, formal lesson plan documents, Fellow and teacher journals, focus group meetings with a project evaluator, and direct observation of Fellow-led classroom activities. Analyses of data gathered during the past four years of the partnership will be presented that examine the diversity in approaches taken by Fellows to communicate big ideas, changes in the ability of Fellows to find connections between their research and classroom lessons while keeping them aligned with state and national standards, and the quality of the mentorship provided to the Fellows by our partner teachers. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program of the National Science Foundation (Award No. DGE-0947419).

  3. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  4. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  5. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    Science.gov (United States)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other

  6. A Partnership Training Program in Breast Cancer Diagnosis: Concept Development of the Next Generation Diagnostic Breast Imaging Using Digital Image Library and Networking Techniques

    National Research Council Canada - National Science Library

    Chouikha, Mohamed F

    2004-01-01

    ...); and Georgetown University (Image Science and Information Systems, ISIS). In this partnership training program, we will train faculty and students in breast cancer imaging, digital image database library techniques and network communication strategy...

  7. `INCLUDING' Partnerships to Build Authentic Research Into K-12 Science Education

    Science.gov (United States)

    Turrin, M.; Lev, E.; Newton, R.; Xu, C.

    2017-12-01

    Opportunities for authentic research experiences have been shown effective for recruiting and retaining students in STEM fields. Meaningful research experiences entail significant time in project design, modeling ethical practice, providing training, instruction, and ongoing guidance. We propose that in order to be sustainable, a new instructional paradigm is needed, one that shifts from being top-weighted in instruction to a distributed weight model. This model relies on partnerships where everyone has buy-in and reaps rewards, establishing broadened networks for support, and adjusting the mentoring model. We use our successful Secondary School Field Research Program as a model for this new paradigm. For over a decade this program has provided authentic geoscience field research for an expanding group of predominantly inner city high school youth from communities underrepresented in the sciences. The program has shifted the balance with returning participants now serving as undergraduate mentors for the high school student `researchers', providing much of the ongoing training, instruction, guidance and feedback needed. But in order to be sustainable and impactful we need to broaden our base. A recent NSF-INCLUDES pilot project has allowed us to expand this model, linking schools, informal education non-profits, other academic institutions, community partners and private funding agencies into geographically organized `clusters'. Starting with a tiered mentoring model with scientists as consultants, teachers as team members, undergraduates as team leaders and high school students as researchers, each cluster will customize its program to reflect the needs and strengths of the team. To be successful each organization must identify how the program fits their organizational goals, the resources they can contribute and what they need back. Widening the partnership base spreads institutional commitments for research scientists, research locations and lab space

  8. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    Science.gov (United States)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  9. DEVELOPMENT STRATEGY OF PARTNERSHIP OF HIGHER EDUCATION, SCIENCE AND BUSINESS

    Directory of Open Access Journals (Sweden)

    I. Mazur

    2014-12-01

    Full Text Available In the article the cooperation of higher education, science and business is analysed. A conflict of civilizations wave development in the confrontation of two forces: the "factory of Education" and force change is disclosed. European and Ukrainian higher education quality estimation is analysed. The effect of unsynchronization in time is educed between the necessities of business and possibilities of education and science. Reasons of bribery are exposed at higher school. The development strategy of partnership of higher education, science and business is proposed.

  10. The Catalyst Scholarship Program at Hunter College. A Partnership among Earth Science, Physics, Computer Science and Mathematics

    Science.gov (United States)

    Salmun, Haydee; Buonaiuto, Frank

    2016-01-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…

  11. Challenges to establishing successful partnerships in community health promotion programs: local experiences from the national implementation of healthy eating activity and lifestyle (HEAL™) program.

    Science.gov (United States)

    Dennis, Sarah; Hetherington, Sharon A; Borodzicz, Jerrad A; Hermiz, Oshana; Zwar, Nicholas A

    2015-04-01

    Community-based programs to address physical activity and diet are seen as a valuable strategy to reduce risk factors for chronic disease. Community partnerships are important for successful local implementation of these programs but little is published to describe the challenges of developing partnerships to implement health promotion programs. The aim of this study was to explore the experiences and opinions of key stakeholders on the development and maintenance of partnerships during their implementation of the HEAL™ program. Semi-structured interviews with key stakeholders involved in implementation of HEAL™ in four local government areas. The interviews were transcribed verbatim and analysed thematically. Partnerships were vital to the success of the local implementation. Successful partnerships occurred where the program met the needs of the partnering organisation, or could be adapted to do so. Partnerships took time to develop and were often dependent on key people. Partnering with organisations that had a strong influence in the community could strengthen existing relationships and success. In remote areas partnerships took longer to develop because of fewer opportunities to meet face to face and workforce shortages and this has implications for program funding in these areas. Partnerships are important for the successful implementation of community preventive health programs. They take time to develop, are dependent on the needs of the stakeholders and are facilitated by stable leadership. SO WHAT?: An understanding of the role of partnerships in the implementation of community health programs is important to inform several aspects of program delivery, including flexibility in funding arrangements to allow effective and mutually beneficial partnerships to develop before the implementation phase of the program. It is important that policy makers have an understanding of the time it takes for partnerships to develop and to take this into consideration

  12. Partnership Among Peers: Lessons Learned From the Development of a Community Organization-Academic Research Training Program.

    Science.gov (United States)

    Jewett-Tennant, Jeri; Collins, Cyleste; Matloub, Jacqueline; Patrick, Alison; Chupp, Mark; Werner, James J; Borawski, Elaine A

    2016-01-01

    Community engagement and rigorous science are necessary to address health issues. Increasingly, community health organizations are asked to partner in research. To strengthen such community organization-academic partnerships, increase research capacity in community organizations, and facilitate equitable partnered research, the Partners in Education Evaluation and Research (PEER) program was developed. The program implements an 18-month structured research curriculum for one mid-level employee of a health-focused community-based organization with an organizational mentor and a Case Western Reserve University faculty member as partners. The PEER program was developed and guided by a community-academic advisory committee and was designed to impact the research capacity of organizations through didactic modules and partnered research in the experiential phase. Active participation of community organizations and faculty during all phases of the program provided for bidirectional learning and understanding of the challenges of community-engaged health research. The pilot program evaluation used qualitative and quantitative data collection techniques, including experiences of the participants assessed through surveys, formal group and individual interviews, phone calls, and discussions. Statistical analysis of the change in fellows' pre-test and post-test survey scores were conducted using paired sample t tests. The small sample size is recognized by the authors as a limitation of the evaluation methods and would potentially be resolved by including more cohort data as the program progresses. Qualitative data were reviewed by two program staff using content and narrative analysis to identify themes, describe and assess group phenomena and determine program improvements. The objective of PEER is to create equitable partnerships between community organizations and academic partners to further research capacity in said organizations and develop mutually beneficial research

  13. Translational science matters: forging partnerships between biomedical and behavioral science to advance the public's health.

    Science.gov (United States)

    Mensah, George A; Czajkowski, Susan M

    2018-03-29

    The prevention and effective treatment of many chronic diseases such as cardiovascular disease, cancer and diabetes are dependent on behaviors such as not smoking, adopting a physically-active lifestyle, eating a healthy diet, and adhering to prescribed medical and behavioral regimens. Yet adoption and maintenance of these behaviors pose major challenges for individuals, their families and communities, as well as clinicians and health care systems. These challenges can best be met through the integration of the biomedical and behavioral sciences that is achieved by the formation of strategic partnerships between researchers and practitioners in these disciplines to address pressing clinical and public health problems. The National Institutes of Health has supported a number of clinical trials and research initiatives that demonstrate the value of biomedical and behavioral science partnerships in translating fundamental discoveries into significant improvements in health outcomes. We review several such examples of collaborations between biomedical and behavioral researchers, describe key initiatives focused on advancing a transdisciplinary translational perspective, and outline areas which require insights, tools and findings from both the biomedical and behavioral sciences to advance the public's health.

  14. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    Science.gov (United States)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and

  15. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  16. Creating value-added linkages through creative programming: a partnership for nursing education.

    Science.gov (United States)

    Caldwell, Linda M; Luke, Gerri; Tenofsky, Linda M

    2007-01-01

    Academic and clinical institutions can effectively collaborate to deliver programs that enhance the educational level of the nursing staff. Creative programming, which offers flexibility and convenience, and a reasonable cost are key elements in the success of a program. Open communication and mutual recognition and respect of the talents, abilities, and values of all developers of the program are essential factors in effective collaborations leading to successful partnerships. Although clear expectations and clarity of functions are important once the partnership has developed, flexibility and a desire to "own" both the problems and the successes of a program are crucial to success.

  17. 76 FR 3609 - Proposed Information Collection; Comment Request; Census in Schools and Partnership Program Research

    Science.gov (United States)

    2011-01-20

    ... in Schools and Partnership Program Research AGENCY: U.S. Census Bureau, Commerce. ACTION: Notice... Schools (CIS) Program and the Partnership Program (PP) with three primary objectives: (1) To increase the.... The CIS Program educated primary and secondary school students about the 2010 Census; the students, in...

  18. The North Cascadia Adaptation Partnership: A Science-Management Collaboration for Responding to Climate Change

    Directory of Open Access Journals (Sweden)

    Crystal L. Raymond

    2013-01-01

    Full Text Available The U.S. Forest Service (USFS and National Park Service (NPS have highlighted climate change as an agency priority and issued direction to administrative units for responding to climate change. In response, the USFS and NPS initiated the North Cascadia Adaptation Partnership (NCAP in 2010. The goals of the NCAP were to build an inclusive partnership, increase climate change awareness, assess vulnerability, and develop science-based adaptation strategies to reduce these vulnerabilities. The NCAP expanded previous science-management partnerships on federal lands to a larger, more ecologically and geographically complex region and extended the approach to a broader range of stakeholders. The NCAP focused on two national forests and two national parks in the North Cascades Range, Washington (USA, a total land area of 2.4 million ha, making it the largest science-management partnership of its kind. The NCAP assessed climate change vulnerability for four resource sectors (hydrology and access; vegetation and ecological disturbance; wildlife; and fish and developed adaptation options for each sector. The NCAP process has proven to be a successful approach for implementing climate change adaptation across a region and can be emulated by other land management agencies in North America and beyond.

  19. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    Science.gov (United States)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  20. FHWA Research and Technology Evaluation: Public-Private Partnership Capacity Building Program

    Science.gov (United States)

    2018-02-01

    This report details the evaluation of the Federal Highway Administrations Office of Innovative Program Delivery Public-Private Partnership (P3) Capacity Building Program (P3 Program). The evaluators focused on the P3 Programs P3 Toolkit as an e...

  1. States, Earth Science, and Decision-Making: Five Years of Lessons Learned by the NASA DEVELOP National Program Working with a State Government

    Science.gov (United States)

    Favors, J.; Ruiz, M. L.; Rogers, L.; Ross, K. W.; Childs-Gleason, L. M.; Allsbrook, K. N.

    2017-12-01

    Over a five-year period that spanned two administrations, NASA's DEVELOP National Program engaged in a partnership with the Government of the Commonwealth of Virginia to explore the use of Earth observations in state-level decision making. The partnership conducted multiple applied remote sensing projects with DEVELOP and utilized a shared-space approach, where the Virginia Governor's Office hosted NASA DEVELOP participants to mature the partnership and explore additional science opportunities in the Commonwealth. This presentation will provide an overview of various lessons learned from working in an administrative and policy environment, fostering the use of science in such an environment, and building substantive relationships with non-technical partners. An overview of the projects conducted in this partnership will provide an opportunity to explore specific best practices that enhanced the work and provide tips to enhance the potential for success for other science and technology organizations considering similar partnerships.

  2. The Maryland nuclear science baccalaureate degree program: The university perspective

    International Nuclear Information System (INIS)

    Janke, T.A.

    1989-01-01

    Nuclear utilities' efforts in response to industry-wide pressures to provide operations staff with degree opportunities have encountered formidable barriers. This paper describes, from the university's perspective, the development and operation of the University of Maryland University College (UMUC) special baccalaureate program in nuclear science. This program has successfully overcome these problems to provide degree education on-site, on-line, and on time. Program delivery began in 1984 with one utility and a single site. It is currently delivered at eight sites under contract to six utilities with a total active student count of over 500. The first graduates are expected in 1989. The program is an accredited university program and enjoys licensure approval from the six states within which it operates. In addition to meeting US Nuclear Regulatory Commission proposed guidelines for degreed operators, the program increasingly appears as part of utility management development programs for all plant personnel and a factor in employee retention. The owner utilities, the University of Maryland, and the growing user's group are committed to the academic integrity, technical capability, and responsiveness of the program. The full support of this partnership speaks well for the long-term service of the Bachelor of Science in Nuclear Science program to the nuclear power industry

  3. Integrating local environmental research into K-12 science classrooms and the value of graduate student-educator partnerships

    Science.gov (United States)

    Ward, N. D.; Petrik-Finley, R.

    2015-12-01

    Collaboration between researchers and K-12 educators enables an invaluable exchange of teaching philosophies and educational tools. Programs that partner graduate students with K-12 educators serve the dual purpose of training future educators and providing K-12 students with unique opportunities and perspectives. The benefits of this type of partnership include providing students with enhanced educational experiences and positive student-mentor relationships, training STEM graduate students in effective teaching strategies, and providing teachers with a firsthand resource for scientific information and novel educational materials. Many high school students have had little exposure to science beyond the classroom. Frequent interactions with "real-life" scientists can help make science more approachable and is an effective strategy for promoting science as a career. Here I describe my experiences and several lessons designed as a NSK GK-12 fellow. For example, a month-long unit on biogeochemical principles was framed as a crime scene investigation of a fish kill event in Hood Canal, Washington, in which students were given additional pieces of evidence to solve the mystery as they satisfied checkpoints in their understanding of key concepts. The evidence pieces included scientific plots, maps, datasets, and laboratory exercises. A clear benefit of this investigation-style unit is that students were able to learn the material at their individual pace. This structure allowed for a streamlined integration of differentiated materials such as simplified background readings or visual learning aids for struggling students or more detailed news articles and primary literature for more advanced students. Although the NSF GK-12 program has been archived, educators and researchers should pursue new partnerships, leveraging local and state-level STEM outreach programs with the goal of increasing national exposure of the societal benefits of such synergistic activities.

  4. The Inquiry Based Science and Technology Education Program (IN-STEP): The Evaluation of the First Year

    Science.gov (United States)

    Corcoran, Thomas B.

    2008-01-01

    This is the first report on the evaluation of the Inquiry Based Science and Technology Education Program (IN-STEP), an innovative and ambitious science education initiative for lower secondary schools being undertaken by a public-private partnership in Thailand funded by MSD-Thailand, an affiliate of Merck & Co. IN-STEP is a public-private…

  5. CloudSat Education Network: Partnerships for Outreach

    Science.gov (United States)

    TeBockhorst, D.

    2014-12-01

    CloudSat Education Network (CEN): Partnerships to improve the understanding of clouds in formal and informal settings. Since The CloudSat satellite launched in 2006 the Formal and Informal education programs for the mission have been focused on bringing an understanding about the mission science and the importance of clouds, climate & weather science. This has been done by creating and strengthening partnership and collaboration within scientific and educational communities around the country and the world. Because CloudSat was formally recognized as a Earth System Science Pathfinder campaign with the GLOBE program, the CEN developed a set of field protocols for student observations that augmented the GLOBE atmosphere protocols when there was a satellite overpass. This shared process between GLOBE & CloudSat resulted in the training & creation of CEN schools that are both GLOBE schools and CloudSat schools, and also produced three GLOBE partnerships that specialize in cloud science education and outreach. In addition, the CEN has developed productive relationships with other NASA missions and EPO teams. Specifically, in collaboration with the NASA CERES mission projects S'Cool and MyNASAData, we have co-presented at NSTA conferences and with schools participating in a NASA EPOESS-funded formal education project. This collaborative work has been a very real benefit to a wide variety of audiences needing to strengthen their understanding of clouds and their roles in the earth system, and we hope will serve as a model to future missions looking to involve the public in mission science.

  6. WVU--community partnership that provides science and math enrichment for underrepresented high school students.

    Science.gov (United States)

    Rye, J A; Chester, A L

    1999-04-01

    In response to the need to help West Virginia secondary school students overcome educational and economic barriers and to increase the number of health professionals in the state, the Health Sciences and Technology Academy (hereafter, "the Academy") was established in 1994. The Academy is a partnership between West Virginia University (WVU)--including the Robert C. Byrd Health Sciences Center, Eberly College of Arts and Sciences, and the College of Human Resources and Education--and members of the community, including secondary-school teachers, health care professionals, and other community leaders. The Academy targets students from underrepresented groups (mainly African Americans and financially disadvantaged whites) in grades nine through 12. By November 1997, 290 students (69% girls and 33% African American) from 17 counties were Academy participants. Funding is from the W. K. Kellogg Foundation, Howard Hughes Medical Institute, the National Institutes of Health, the Coca-Cola Foundation, and other sources. Academy programs are an on-campus summer institute and community-based clubs, where students engage in activities for science and math enrichment, leadership development, and health careers awareness. In the Academy's clubs, students carry out extended investigations of problems related to human health and local communities. Most students report that the Academy has increased their interest in health care careers, and almost all who have continued to participate in Academy programs through their senior year have been accepted into college.

  7. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  8. Translating Current Science into Materials for High School via a Scientist-Teacher Partnership

    Science.gov (United States)

    Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo

    2014-01-01

    Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the…

  9. How to build science-action partnerships for local land-use planning and management: lessons from Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Jessica Cockburn

    2016-03-01

    Full Text Available The gap between scientific knowledge and implementation in the fields of biodiversity conservation, environmental management, and climate change adaptation has resulted in many calls from practitioners and academics to provide practical solutions responding effectively to the risks and opportunities of global environmental change, e.g., Future Earth. We present a framework to guide the implementation of science-action partnerships based on a real-world case study of a partnership between a local municipality and an academic institution to bridge the science-action gap in the eThekwini Municipal Area, South Africa. This partnership aims to inform the implementation of sustainable land-use planning, biodiversity conservation, environmental management, and climate change adaptation practice and contributes to the development of human capacity in these areas of expertise. Using a transdisciplinary approach, implementation-driven research is being conducted to develop several decision-making products to better inform land-use planning and management. Lessons learned through this partnership are synthesized and presented as a framework of enabling actions operating at different levels, from the individual to the interorganizational. Enabling actions include putting in place enabling organizational preconditions, assembling a functional well-structured team, and actively building interpersonal and individual collaborative capacity. Lessons learned in the case study emphasize the importance of building collaborative capacity and social capital, and paying attention to the process of transdisciplinary research to achieve more tangible science, management, and policy objectives in science-action partnerships. By documenting and reflecting on the process, this case study provides conceptual and practical guidance on bridging the science-action gap through partnerships.

  10. Building Climate Literacy Through Strategic Partnerships

    Science.gov (United States)

    Turrin, M.; Creyts, T. T.; Bell, R. E.; Meadows, C. A.

    2012-12-01

    One of the challenges of developing climate science literacy is establishing the relevance of both climate science and climate change at a local community level. By developing partnerships with community-based informal science education providers, we are able to build our climate science and climate change content into existing programs. Employing a systems science approach facilitates these partnerships as our systems science program links with a range of topics, demonstrating the multiple connections between climate, our communities and our daily lives. Merging hands on activities, collaborative projects, and new technology, we encourage learning through doing by engaging participants in active exploration of climate science concepts. Many informal education venues operating locally, from large science museums to small grass-roots community groups, provide ongoing opportunities to connect with students. Through our collaborations we have worked with various types and sizes of non-classroom science providers including: the Intrepid Sea, Air and Space Museum "Greater Opportunities Advancing Leadership and Science" camps for high school girls, Hudson River Park Trust 'Science on the River' events, the annual New York City World Science Festival, and the AAUW's annual STEM Super Scholars Workshops among others. This range of venues has enabled us to reach various ages, backgrounds and interests advancing climate literacy in a number of forums. Major outcomes of these efforts are: (1) Building capacity with community groups: Many local organizations running community programs do not have in-house science expertise. Both science educators and local organization benefit from these collaborations. Science educators and scientists provide up to date climate science information to the community groups while these programs establish strong working relationships between our research and the local community. (2) Developing climate science literacy and lifelong learning: We

  11. Models of Interinstitutional Partnerships between Research Intensive Universities and Minority Serving Institutions (MSI) across the Clinical Translational Science Award (CTSA) Consortium

    Science.gov (United States)

    Fair, Alecia; Norris, Keith; Verbalis, Joseph G.; Poland, Russell; Bernard, Gordon; Stephens, David S.; Dubinett, Steven M.; Imperato‐McGinley, Julianne; Dottin, Robert P.; Pulley, Jill; West, Andrew; Brown, Arleen; Mellman, Thomas A.

    2013-01-01

    Abstract Health disparities are an immense challenge to American society. Clinical and Translational Science Awards (CTSAs) housed within the National Center for Advancing Translational Science (NCATS) are designed to accelerate the translation of experimental findings into clinically meaningful practices and bring new therapies to the doorsteps of all patients. Research Centers at Minority Institutions (RCMI) program at the National Institute on Minority Health and Health Disparities (NIMHD) are designed to build capacity for biomedical research and training at minority serving institutions. The CTSA created a mechanism fostering formal collaborations between research intensive universities and minority serving institutions (MSI) supported by the RCMI program. These consortium‐level collaborations activate unique translational research approaches to reduce health disparities with credence to each academic institutions history and unique characteristics. Five formal partnerships between research intensive universities and MSI have formed as a result of the CTSA and RCMI programs. These partnerships present a multifocal approach; shifting cultural change and consciousness toward addressing health disparities, and training the next generation of minority scientists. This collaborative model is based on the respective strengths and contributions of the partnering institutions, allowing bidirectional interchange and leveraging NIH and institutional investments providing measurable benchmarks toward the elimination of health disparities. PMID:24119157

  12. Tradition and Technology. A Magnet School-Museum Partnership.

    Science.gov (United States)

    Judd, Michael; Judd, Elizabeth

    1996-01-01

    Presents a case study of an educational partnership between an Albuquerque magnet elementary school and the New Mexico Museum of Natural History and Science. Descriptions of the school and museum are provided as well as the program's goals, current activities and products, outcomes, and future directions. The Proyecto Futuro program, a multiyear…

  13. Building community partnerships to implement the new Science and Engineering component of the NGSS

    Science.gov (United States)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  14. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  15. Creating Effective Partnerships in Ecosystem-Based Management: A Culture of Science and Management

    Directory of Open Access Journals (Sweden)

    Carlie S. Wiener

    2011-01-01

    Full Text Available An ecosystem-based management research partnership between the Hawai‘i Institute of Marine Biology and Office of National Marine Sanctuaries, specifically with the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve and, later, the Papahānaumokuākea Marine National Monument, provides a case study to analyze integration of scientific research into management plans through collaborative communications. Ecosystem-based management seeks input from disparate stakeholders and requires effective communication systems for the public, science, and management partners that bypass differences in organizational culture and communication styles. Here, we examine a successful partnership within the framework of ecosystem-based management to survey and evaluate cultural differences, understand what facilitates collaborative communication, highlight factors that impede a successful partnership, and identify areas for improvement. Effective communication has been achieved through an analysis of the organizations cultures and structures to better define communication links. Although specific differences were noted in organization and style, successful integration was accomplished through techniques such as the development of symposia and semiannual reports. This paper will explore the organizational culture analysis and structure evaluation, which are components of a larger study. This science management integration project is an example of how organizational analysis can lead to recommendations for improved communication and integration of science and management.

  16. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  17. Building a science of partnership-focused research: forging and sustaining partnerships to support child mental health prevention and services research.

    Science.gov (United States)

    Bradshaw, Catherine P; Haynes, Katherine Taylor

    2012-07-01

    Building on growing interest in translational research, this paper provides an overview of a special issue of Administration and Policy in Mental Health and Mental Health Service Research, which is focused on the process of forging and sustaining partnerships to support child mental health prevention and services research. We propose that partnership-focused research is a subdiscipline of translational research which requires additional research to better refine the theoretical framework and the core principles that will guide future research and training efforts. We summarize some of the major themes across the eight original articles and three commentaries included in the special issue. By advancing the science of partnership-focused research we will be able to bridge the gap between child mental health prevention and services research and practice.

  18. Scientist-Teacher Partnerships as Professional Development: An Action Research Study

    Energy Technology Data Exchange (ETDEWEB)

    Willcuts, Meredith H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-04-01

    The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study’s findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participated in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses – that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.

  19. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    Science.gov (United States)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  20. Increasing student engagement in science through field-based research: University of Idaho's WoW STEMcore Program

    Science.gov (United States)

    Squires, A. L.; Boylan, R. D.; Rittenburg, R.; Boll, J.; Allan, P.

    2013-12-01

    A recent statewide survey assessing STEM perceptions in Idaho showed that high school student interest in science and preparation for college are declining. To address this decline we are piloting an interdisciplinary, community and field-based water science education approach for 10th - 12th grade science courses during the 2013-14 school year called WoW STEMcore. The program is led by graduate students in the University of Idaho (UI) Waters of the West (WoW) program. Our methods are based on proven best practices from eight years of NSF GK-12 experience at UI and over a decade of GK-12 experience at more than 300 programs in the U.S. WoW STEMcore works to strengthen partnerships between WoW graduate students, high school teachers, and regional organizations that work on natural resource management or place-based science education with the intent of sustaining and merging efforts to increase scientific literacy among high school students and to better prepare them for higher education. In addition, graduate students gain outreach, education and communication experience and teachers are exposed to new and relevant research content and methods. WoW STEMcore is fostering these partnerships through water themed projects at three northern Idaho high schools. The pilot program will culminate in Spring 2014 with a regional Water Summit in which all participating students and partners will converge at a two-day youth scientific conference and competition where they can showcase their research and the skills they gained over the course of the year. We hypothesize that through a graduate student-led, field-based program that gets students out of the classroom and thinking about water resource issues in their communities, we will 1) fuel high school students' interest in science through hands on and inquiry-based pedagogy and 2) improve preparation for higher education by providing graduate student mentors to discuss the pathway from high school to college to a career. In

  1. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999; TOPICAL

    International Nuclear Information System (INIS)

    Hazen, Terry C.

    2000-01-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs

  2. UCSF partnership to enrich science teaching for sixth graders in San Francisco's schools.

    Science.gov (United States)

    Doyle, H J

    1999-04-01

    Increasing the diversity of students entering the health professions is a challenging goal for medical schools. One approach to this goal is to share the enthusiasm and energy of medical students with younger students, who may pursue medical education in the future. The MedTeach program, established in 1989 and coordinated by the Science & Health Education Partnership of the University of California, San Francisco (UCSF), does so by partnering volunteer medical students from UCSF with sixth-grade classes studying the human body. In 1997-98, around 350 sixth-graders in the San Francisco Schools benefitted from the program. Each team of medical student's visits its class ten to 12 times a year to present engaging, hands-on lessons on body systems and health. The medical students are also role models for the middle-school students. In addition, the diverse student population of San Francisco public schools provides a rich environment for the medical students to improve their communication and teaching skills.

  3. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    Science.gov (United States)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  4. Campus Partnerships Improve Impact Documentation of Nutrition Programs

    Science.gov (United States)

    Brinkman, Patricia

    2015-01-01

    Partnerships with other campus college units can provide ways of improving Extension's impact documentation. Nutrition programs have relied upon knowledge gained and people's self report of behavior change. Partnering with the College of Nursing, student nurses provided blood screenings during the pre and 6 month follow-up of a pilot heart risk…

  5. A National Partnership-Based Summer Learning Initiative to Engage Underrepresented Students with Science, Technology, Engineering and Mathematics

    Science.gov (United States)

    Melvin, Leland

    2010-01-01

    In response to the White House Educate to Innovate campaign, NASA developed a new science, technology, engineering, and mathematics (STEM) education program for non-traditional audiences that also focused on public-private partnerships and nationwide participation. NASA recognized that summer break is an often overlooked but opportune time to engage youth in STEM experiences, and elevated its ongoing commitment to the cultivation of diversity. The Summer of Innovation (SoI) is the resulting initiative that uses NASA's unique missions and resources to boost summer learning, particularly for students who are underrepresented, underserved and underperforming in STEM. The SoI pilot, launched in June 2010, is a multi-faceted effort designed to improve STEM teaching and learning through partnership, multi-week summer learning programs, special events, a national concluding event, and teacher development. The SoI pilot features strategic infusion of NASA content and educational resource materials, sustainability through STEM Learning Communities, and assessments of effectiveness of SoI interventions with other pilot efforts. This paper examines the inception and development of the Summer of Innovation pilot project, including achievements and effectiveness, as well as lessons learned for future efforts.

  6. Climate in Context - How partnerships evolve in regions

    Science.gov (United States)

    Parris, A. S.

    2014-12-01

    In 2015, NOAA's RISA program will celebrate its 20th year of exploration in the development of usable climate information. In the mid-1990s, a vision emerged to develop interdisciplinary research efforts at the regional scale for several important reasons. Recognizable climate patterns, such as the El Nino Southern Oscillation (ENSO), emerge at the regional level where our understanding of observations and models coalesce. Critical resources for society are managed in a context of regional systems, such as water supply and human populations. Multiple scales of governance (local, state, and federal) with complex institutional relationships can be examined across a region. Climate information (i.e. data, science, research etc) developed within these contexts has greater potential for use. All of this work rests on a foundation of iterative engagement between scientists and decision makers. Throughout these interactions, RISAs have navigated diverse politics, extreme events and disasters, socio-economic and ecological disruptions, and advances in both science and technology. Our understanding of information needs is evolving into a richer understanding of complex institutional, legal, political, and cultural contexts within which people can use science to make informed decisions. The outcome of RISA work includes both cases where climate information was used in decisions and cases where capacity for using climate information and making climate resilient decisions has increased over time. In addition to balancing supply and demand of scientific information, RISAs are engaged in a social process of reconciling climate information use with important drivers of society. Because partnerships are critical for sustained engagement, and because engagement is critically important to the use of science, the rapid development of new capacity in regionally-based science programs focused on providing climate decision support is both needed and challenging. New actors can bolster

  7. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  8. Systemic Thinking and Partnership Working: A Cross Sectional Study in a Medical Sciences University in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khammarnia

    2016-01-01

    Full Text Available Background: Systemic thinking can provide practice in multidisciplinary team working and improve the organizational efficacy. This study aimed to determine the association between systemic thinking and partnership working in the employees of a medical sciences university in the south of Iran. Methods: A cross-sectional study was performed in Zahedan University of Medical Sciences (ZAUMS in 2015. The study population consisted of all employees in ZAUMS; 370 participants were selected through stratified random sampling. Two standard questionnaires were used for data gathering. The data were analyzed in SPSS (v21 using Pearson, One way ANOVA, and logistic regression. The level of significance was considered as 0.05. Results: In this study, 225 participants (60.8% were female and their mean age was 34.7±8.7. The score of partnership working for 362 participants was higher than the mean standard (40. Systemic thinking had a positive association with partnership working (p=0.001 and married status of the participants (p=0.04. Partnership working in male and older staff was more than others in ZAUMS (p<0.001 and p=0.01, respectively. Conclusion: Systematic thinking had a positive association with the employees’ working partnership. Moreover, the male staff had better systematic thinking. It is recommended that the managers should promote systematic thinking in staff, especially in females, for better partnership and efficacy in organizations.

  9. Workforce and graduate school outcomes of NOAA's Educational Partnership Program

    Science.gov (United States)

    Christenson, T.; Kaplan, M.

    2017-12-01

    Underrepresented groups, including Black, Hispanic, Native American, Alaska Native, Native Hawaiian and Pacific Island professionals remain underrepresented in STEM fields generally, and in the ocean and atmospheric sciences specifically. NOAA has tried to address this disparity through a number of initiatives under the Educational Partnership Program with Minority Serving Institutions (EPP MSI) which currently has two components: four Cooperative Science Centers (CSCs) aligned with NOAA's mission areas; and an Undergraduate Scholarship Program (USP), both established in 2001. In order to determine the outcomes for the program participants and the impacts of these programs on degree completions and on the workforce, the EPP MSI undertook a multi-pronged effort to identify career and education achievements for 80% of the approximately 1750 EPP MSI alumni, 75% of whom are from underrepresented groups. This was accomplished through 1) searching online resources (e.g. professional web pages, LinkedIn, etc.), 2) personal communication with program-associated faculty, 3) National Student Clearinghouse, 4) a survey of former scholars conducted by Insight Policy Research, and 5) self-reporting though NOAA's Voluntary Alumni Update System. Results show that 60% of CSC alumni currently hold an advanced degree in a STEM field with another 8% currently working toward one. 66% of EPP Undergraduate Scholars go to graduate school. 72% of CSC and USP alumni are currently employed in or pursuing a graduate degree in a NOAA-related* field. More than 70 CSC graduates currently work for NOAA as contractors or federal employees while more than 240 work for other government agencies. More than 400 are employed in the private sector. Of more than 225 PhD graduates, 66 have completed or currently hold post-doctoral positions in NOAA mission fields; 71 have held faculty positions at major universities. However, one challenge is retaining diverse STEM talent within the Geosciences in light

  10. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships

    Science.gov (United States)

    Spellman, K.

    2017-12-01

    A changing climate has impacted Alaska communities at unprecedented rates, and the need for efficient and effective climate change learning in the Boreal and Arctic regions is urgent. Learning programs that can both increase personal understanding and connection to climate change science and also inform large scale scientific research about climate change are an attractive option for building community adaptive capacity at multiple scales. Citizen science has emerged as a powerful tool for facilitating learning across scales, and for building partnerships across natural sciences research, education, and outreach disciplines. As an early career scientist and interdisciplinary researcher, citizen science has become the centerpiece of my work and has provided some of the most rewarding moments of my career. I will discuss my early career journey building a research and leadership portfolio integrating climate change research, learning research, and public outreach through citizen science. I will share key experiences from graduate student to early career PI that cultivated my leadership skills and ability to build partnerships necessary to create citizen science programs that emphasize synergy between climate change research and education.

  11. Relationship between partnership working and employees’ productivity in a University of Medical Sciences in the South of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khammarnia

    2016-07-01

    Full Text Available Introduction: Partnership working plays an important role in the health system, results in delivery of coordinated packages of services to patients, and reduces the impact of organizational fragmentation. Method: The study aimed to determine the relationship between partnership working and productivity in the employees of a university of medical sciences in the south of Iran. Results: According to the result, partnership and productivity scores were 51.1 + 6.7 and 51.9 + 13.4, respectively. Partnership working had a positive relationship with productivity (r = 0.333, P = 0.001 and age of the employees (r = 0.142, P = 0.007. There was a negative relationship between the employees’ productivity with age and job position in ZAUMS (P= 0.009 and P= 0.001, respectively. The nurses had the highest score of productivity (mean=60.7±13.3. Moreover, employees with an Ph.D. degree (9 persons had the highest scores of partnership and productivity in ZAUMS (53.6±3.1 and 56.8±6.3, respectively. Conclusion: Enhancement of partnership working could increase the employees’ productivity in the health system. It is recommended that younger persons should be used in universities of medical science. Moreover, supportive staff should increase their partnership working to enhance the individual and organizational productivity.

  12. Oil sands geologists in an industry-school partnership : a resource and teaching opportunity

    International Nuclear Information System (INIS)

    Dudley, J.S.; Doram, T.

    1999-01-01

    The province of Alberta has developed a credit course within their Career and Technology Studies Program on the earth science of oil sands for senior high school science students. The course helps students learn to apply basic sciences to earth science through workplace site visits, resource material and team work. This paper described the increasing demand for, and success of, industry-high school partnerships, and provided special emphasis on the Bowness Senior High School-Imperial Oil partnership in Calgary, Alberta. Imperial Oil Resources is a major producer of oil sands and an employer of earth scientists in a variety of careers in which a wide range of technologies is applied. Students enrolled in the credit study program visit the Imperial Oil Resources Research Centre on five different occasions to gain skills and qualities sought by the workplace including communication, adaptability, team work, and science literacy and its application. 9 refs., 1 tab., 2 figs

  13. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, it was to be fuel- blind''). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.

  14. Expanding Earth and Space Science through the Initiating New Science Partnerships In Rural Education (INSPIRE)

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2010-12-01

    The INSPIRE program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on Earth and Space science education and has partnered ten graduate students from MSU with five teachers from local, rural school districts. For the next five years the project will serve to increase inquiry and technology experiences in science and math while enhancing graduate student’s communication skills. Graduate students, from the disciplines of Geosciences, Physics, and Engineering are partnered with Chemistry, Physical Science, Physics, Geometry and Middle school science classrooms and will create engaging inquiry activities that incorporate elements of their research, and integrate various forms of technology. The generated lesson plans that are implemented in the classroom are published on the INSPIRE home page (www.gk12.msstate.edu) so that other classroom instructors can utilize this free resource. Local 7th -12th grade students will attend GIS day later this fall at MSU to increase their understanding and interest in Earth and Space sciences. Selected graduate students and teachers will visit one of four international university partners located in Poland, Australia, England, or The Bahamas to engage research abroad. Upon return they will incorporate their global experiences into their local classrooms. Planning for the project included many factors important to the success of the partnerships. The need for the program was evident in Mississippi K-12 schools based on low performance on high stakes assessments and lack of curriculum in the Earth and Space sciences. Meeting with administrators to determine what needs they would like addressed by the project and recognizing the individual differences among the schools were integral components to tailoring project goals and to meet the unique needs of each school partner. Time for training and team building of INSPIRE teachers and graduate students before the

  15. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    Science.gov (United States)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  16. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Science.gov (United States)

    2010-12-14

    ... Corporation Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative AGENCY... Conservation Service (NRCS) through either the Agricultural Water Enhancement Program (AWEP) or the Cooperative... concerns to be addressed, and specifically what water conservation resource issues and water quality...

  17. Mutual benefits in academic-service partnership: An integrative review.

    Science.gov (United States)

    Sadeghnezhad, Maliheh; Heshmati Nabavi, Fatemeh; Najafi, Fereshteh; Kareshki, Hossein; Esmaily, Habibollah

    2018-05-30

    Academic and service institutions involve with many challenges. Partnership programs are a golden opportunity to achieve mutual benefits to overcome these challenges. Identifying mutual benefits is the cornerstone of forming a successful partnership and guarantee to its continuity. There are definitions and instances of mutual benefits in the literature related to partnership programs, but there is no coherent evidence and clear picture of these benefits. This study is conducted to identify mutual benefits in academic-service partnership by analyzing the definitions and instances of it in the literature. An integrative review of key papers regarding mutual benefits in academic-service partnership was undertaken. This review was guided by the framework described by Whittemore and Knafl. Search of the following databases was conducted: MEDLINE, ERIC, Google Scholar, Emerald Insight and Science Direct. The search terms were mutual benefits, mutual gains, mutual interest, mutual expectations, mutual goals, mutual demand, partnership, collaboration, academic-service partnership and academic service collaboration. Cooper's five-stage integrative review method was used. Quality evaluation of articles was conducted. Data were abstracted from included articles. The analysis was conducted based on the qualitative content analysis of the literature suggested by Zhang and Wildemuth. 28 articles were included in this review. Mutual benefits are described in four categories include: synergy in training and empowerment of human resources, education improvement, access to shared resources, facilitate production and application of beneficial knowledge into practice. Mutual benefits in the academic-service partnership include a range of goals, interests, expectations, and needs of partner organizations that is achievable and measurable through joint planning and collaboration. We suggest academic and service policymakers to consider these benefits in the planning and evaluating

  18. U.S. National forests adapt to climate change through science-management partnerships

    Science.gov (United States)

    Jeremy S. Littell; David L. Peterson; Constance I. Millar; Kathy A. O' Halloran

    2011-01-01

    Developing appropriate management options for adapting to climate change is a new challenge for land managers, and integration of climate change concepts into operational management and planning on United States national forests is just starting. We established science-management partnerships on the Olympic National Forest (Washington) and Tahoe National Forest (...

  19. US utility partnerships

    International Nuclear Information System (INIS)

    Worthington, B.

    1995-01-01

    Activities of the United States Energy Association were reviewed, as well as the manner in which its members are benefitting from the Association's programs. The principal cooperative program set up is the Utility Partnership Program, which was described. Through this program the Association is matching US companies, both electric utilities and gas utilities, with counterparts in Eastern Europe or the former Soviet Union. So far, about 25 partnerships were signed, e.g. in the Czech Republic, in Kazakhstan, in Poland, and in Slovakia. It was estimated that the return to the United States from the investments made by the American government in these Utility Partnership Programs has been well over 100-fold

  20. Contribution of a Master Program to Building Competencies in Nuclear Sciences in Morocco

    International Nuclear Information System (INIS)

    Hakam, Oum Keltoum

    2014-01-01

    Conclusion and perspectives: Given the high number of demands from African countries to join the master and as the master program has developed a wide and structured network of collaborations and partnerships with national and international institutions. We wish to have the support of IAEA and other international organizations to establish a regional master program in nuclear science and engineering focused on safety, security and nonproliferation aspects in order to meet the needs of the African region and to contribute to the proper management of radioactive and nuclear material

  1. Strengthening STEM Education through Community Partnerships.

    Science.gov (United States)

    Lopez, Colleen A; Rocha, Jon; Chapman, Matthew; Rocha, Kathleen; Wallace, Stephanie; Baum, Steven; Lawler, Brian R; Mothé, Bianca R

    2016-01-01

    California State University San Marcos (CSUSM) and San Marcos Elementary Schools have established a partnership to offer a large-scale community service learning opportunity to enrich science curriculum for K-5 students. It provides an opportunity for science, technology, engineering, and math (STEM) majors to give back to the community, allowing them to experience teaching in an elementary classroom setting, in schools that lack the resources and science instructor specialization needed to instill consistent science curricula. CSUSM responded to this need for more STEM education by mobilizing its large STEM student body to design hands-on, interactive science lessons based on Next Generation Science Standards (NGSS). Since 2012, the program has reached out to over four thousand K-5 students, and assessment data have indicated an increase in STEM academic performance and interest.

  2. Strengthening German Programs through Community Engagement and Partnerships with Saturday Morning Schools

    Science.gov (United States)

    Hellebrandt, Josef

    2014-01-01

    German university programs can increase enrollments and diversify their curricula through academic community partnerships with surrounding schools. This article informs about two community-supported initiatives between the German Studies Program at Santa Clara University and the South Bay Deutscher Schulverein, a Saturday Morning School in…

  3. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    Science.gov (United States)

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (partnerships are currently conducting over 20 small-scale geologic field tests and 11 terrestrial field tests.???Development Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments

  4. Increasing the Presence of Underrepresented Minorities in the Geosciences: The Woods Hole Partnership Education Program Model and Outcomes

    Science.gov (United States)

    George, A.; Gutierrez, B.; Jearld, A.; Liles, G.; Scott, O.; Harden, B.

    2017-12-01

    Launched in 2009, the Partnership Education Program (PEP) is supported by six scientific institutions in Woods Hole, Massachusetts through the Woods Hole Diversity Initiative. PEP, which was shaped by experience with other diversity programs as well as input from scientists in Woods Hole, is designed to promote a diverse scientific community by recruiting talent from minority groups that are under-represented in marine and environmental sciences. Focused on college juniors and seniors with course work in marine and/or environmental sciences, PEP is comprised of a four-week course, "Ocean and Environmental Sciences: Global Climate Change," and a six to eight week individual research project under the guidance of a research mentor. Investigators from the six science institutions serve as course faculty and research mentors. Course credit is through PEP's academic partner, the University of Maryland Eastern Shore. PEP students also participate in seminars, workshops, field trips, at-sea experiences, career development activities, and attend lectures at participating science institutions throughout the summer. Students present their research results at the end of the summer with a 15-minute public presentation. A number of PEP participants then presented their work at professional and scientific meetings, such as AGU, using the program as a gateway to graduate education and career opportunities in the marine and environmental sciences. From 2009 through 2017, 138 students from 86 colleges and universities, including many that previously had sent few or no students or faculty to Woods Hole, have participated in the program. Participating organizations are: Northeast Fisheries Science Center (NOAA Fisheries), Marine Biological Laboratory (MBL), Sea Education Association (SEA), U.S. Geological Survey (USGS), Woods Hole Oceanographic Institution (WHOI), Woods Hole Research Center (WHRC), and University of Maryland Eastern Shore (UMES) - academic partner.

  5. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  6. THE INCORPORATION OF THE USA ‘SCIENCE MADE SENSIBLE’ PROGRAM IN SOUTH AFRICAN PRIMARY SCHOOLS: A CROSS-CULTURAL APPROACH TO SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2016-02-01

    Full Text Available The Science Made Sensible (SMS program began as a partnership between the University of Miami (UM, Florida, USA, and some public schools in Miami. In this program, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of the SMS program in Miami, it was extended internationally. The SMS team (two Miami Grade 6/7 science teachers and two UM postgraduate students, 195 learners, and five South African teachers at two primary schools in Pretoria, South Africa, participated in this study. A quantitative research design was employed, and learners, teachers and UM postgraduate students used questionnaires to evaluate the SMS program. The results show that the SMS team was successful in reaching the SMS goals in these South African schools. More than 90% of the learners are of opinion that the SMS team from the USA made them more interested in the natural sciences and fostered an appreciation for the natural sciences. All the South African teachers plan to adopt and adapt some of the pedagogical strategies they learned from the SMS team. This article includes a discussion about the benefits of inquiry-based learning and the similarities and dissimilarities of USA and South Africa’s teaching methods in the science classrooms.

  7. Family and Consumer Sciences Focus on the Human Dimension: The Expanded Food and Nutrition Education Program Example

    Science.gov (United States)

    Cason, Katherine L.; Chipman, Helen; Forstadt, Leslie A.; Rasco, Mattie R.; Sellers, Debra M.; Stephenson, Laura; York, De'Shoin A.

    2017-01-01

    The history of family and consumer sciences (FCS) and the Expanded Food and Nutrition Education Program (EFNEP) is discussed with an emphasis on the critical importance of the human dimension. EFNEP's focus on people, education for change, accountability, strategic partnerships, and public value are highlighted as an example and model for…

  8. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  9. Dialectical dividends: fostering hybridity of new pedagogical practices and partnerships in science education and outreach

    Science.gov (United States)

    Martins Gomes, Diogo; McCauley, Veronica

    2016-09-01

    Science literacy has become socially and economically very important. European countries stress that science graduates are fundamental for economic growth. Nevertheless, there is a declining student participation in science. In response, there has been a call to change the way science is taught in schools, which focuses on inquiry methods rooted in constructivism. Universities and other organisations have responded by developing outreach programmes to improve student engagement in science. Given this context, there is a necessity for research to ascertain if this new relationship between outreach and education is worthwhile. This study examines and compares primary teachers and outreach practitioners understanding and perceptions of constructivist science pedagogy, in an effort to understand the potential of a teacher-outreach partnership. For this, qualitative and quantitative methods were employed, taking a dialectic pragmatic stance. Contradicting the recurrent view, teachers and outreach providers revealed favourable views in relation to constructivism, despite recognising barriers to its implementation. These results support a partnership between teachers and outreach practitioners and the realisation of the hybrid role of each participant. The results also reveal an important dynamic in outreach access to schools. Specifically, the outreach connected teachers acted as gatekeepers by negotiating access into their colleagues classrooms.

  10. Museum-University Partnerships as a New Platform for Public Engagement with Scientific Research

    Science.gov (United States)

    Bell, Jamie; Chesebrough, David; Cryan, Jason; Koster, Emlyn

    2016-01-01

    A growing trend in natural history museums, science museums, and science centers is the establishment of innovative new partnerships with universities to bring scientific research to the public in compelling and transformative ways. The strengths of both kinds of institutions are leveraged in effective and publicly visible programs, activities,…

  11. The Southern Nevada Agency Partnership Science and Research Synthesis: Science to support land management in Southern Nevada

    Science.gov (United States)

    Jeanne C. Chambers; Matthew L. Brooks; Burton K. Pendleton; Carol B. Raish

    2013-01-01

    This synthesis provides information related to the Southern Nevada Agency Partnership (SNAP) Science and Research Strategy Goal 1 - to restore, sustain and enhance southern Nevada’s ecosystems - and Goal 2 - to provide for responsible use of southern Nevada’s lands in a manner that preserves heritage resources and promotes an understanding of human interaction with the...

  12. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  13. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    Science.gov (United States)

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments and results from the Characterization Phase have helped to refine goals and activities in the Validation and Deployment Phases. The RCSP Program encourages and requires open information sharing among

  14. Partnership Selection Involving Mixed Types of Uncertain Preferences

    Directory of Open Access Journals (Sweden)

    Li-Ching Ma

    2013-01-01

    Full Text Available Partnership selection is an important issue in management science. This study proposes a general model based on mixed integer programming and goal-programming analytic hierarchy process (GP-AHP to solve partnership selection problems involving mixed types of uncertain or inconsistent preferences. The proposed approach is designed to deal with crisp, interval, step, fuzzy, or mixed comparison preferences, derive crisp priorities, and improve multiple solution problems. The degree of fulfillment of a decision maker’s preferences is also taken into account. The results show that the proposed approach keeps more solution ratios within the given preferred intervals and yields less deviation. In addition, the proposed approach can treat incomplete preference matrices with flexibility in reducing the number of pairwise comparisons required and can also be conveniently developed into a decision support system.

  15. Sustaining International Partnerships: The European Master of Science Program In Occupational Therapy: A Case Study

    DEFF Research Database (Denmark)

    Ilott, Irene; Kottorp, Anders; la Cour, Karen

    2013-01-01

    Abstract International partnerships are a mechanism for supporting the academic development of occupational therapy and promoting cultural competence. This case study describes the factors that have helped to sustain a post-qualifying programme implemented by five higher education institutions...... comprises students from an average of eight countries to optimize inter-cultural dialogue. Four factors support sustainability. These are 1) supportive professional European networks; 2) timeliness and alignment with European higher education policy; 3) partnership structures and processes that emphasize...

  16. Opening the Black Box: Conceptualizing Community Engagement From 109 Community-Academic Partnership Programs.

    Science.gov (United States)

    Ahmed, Syed M; Maurana, Cheryl; Nelson, David; Meister, Tim; Young, Sharon Neu; Lucey, Paula

    2016-01-01

    This research effort includes a large scale study of 109 community-academic partnership projects funded by the Healthier Wisconsin Partnership Program (HWPP), a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin (MCW) in Milwaukee, Wisconsin. The study provides an analysis unlike other studies, which have been smaller, and/or more narrowly focused in the type of community-academic partnership projects analyzed. To extract themes and insights for the benefit of future community-academic partnerships and the field of community-engaged research (CEnR). Content analysis of the final reports submitted by 109 community-academic partnership projects awards within the time frame of March 2005 to August 2011. Thirteen themes emerged from the report analysis: community involvement, health accomplishments, capacity building, sustainability, collaboration, communication, best practices, administration, relationship building, clarity, adjustment of plan, strategic planning, and time. Data supported previous studies in the importance of some themes, and provided insights regarding how these themes are impactful. The case analysis revealed new insights into the characteristics of these themes, which the authors then grouped into three categories: foundational attributes of successful community-academic partnership, potential challenges of community-academic partnerships, and outcomes of community-academic partnerships. The insights gained from these reports further supports previous research extolling the benefits of community-academic partnerships and provides valuable direction for future partners, funders and evaluators in how to deal with challenges and what they can anticipate and plan for in developing and managing community-academic partnership projects.

  17. Addressing medical school diversity through an undergraduate partnership at Texas A&M Health Science Center: a blueprint for success.

    Science.gov (United States)

    Parrish, Alan R; Daniels, Dennis E; Hester, R Kelly; Colenda, Christopher C

    2008-05-01

    Imperative to increasing diversity in the physician workforce is increasing the pool of qualified underrepresented minority applicants to medical schools. With this goal in mind, the Texas A&M Health Science Center College of Medicine (A&M College of Medicine) has partnered with Prairie View A&M University (PVAMU), a historically black college and university that is a component of the Texas A&M university system, to develop the undergraduate medical academy (UMA). The UMA was established by legislative mandate in 2003 and is a state-funded program. The authors describe the development of partnership between the A&M College of Medicine and PVAMU, focusing on the key attributes that have been identified for success. The administrative structure of the UMA ensures that the presidents of the two institutions collaborate to address issues of program oversight and facilitates a direct relationship between the dean and associate dean for academic affairs of A&M College of Medicine and the director of the UMA to define the program objectives and structure. The authors delineate the admission process to the UMA, as well as the academic requirements of the program. Students attend lecture series during the academic year and participate in summer programs on the A&M College of Medicine campus in addition to receiving intensive academic counseling and opportunities for tutoring in several subjects. The authors also describe the initial success in medical school admissions for UMA students. This partnership provides a model blueprint that can be adopted and adapted by other medical schools focused on increasing diversity in medicine.

  18. Valued Youth Partnerships: Programs in Caring. Cross-Age Tutoring Dropout Prevention Strategies.

    Science.gov (United States)

    Intercultural Development Research Association, San Antonio, TX.

    This booklet provides information about the Valued Youth Partnership (VYP) program for dropout prevention. Begun in 1984 with the support of the Coca-Cola Company and the collaboration of the Intercultural Development Research Association, the VYP program is being implemented in the Edgewood and South San Antonio school districts in San Antonio,…

  19. Evaluation of a cross-sector community initiative partnership: delivering a local sport program.

    Science.gov (United States)

    Kihl, Lisa A; Tainsky, Scott; Babiak, Kathy; Bang, Hyejin

    2014-06-01

    Corporate community initiatives (CCI) are often established via cross-sector partnerships with nonprofit agencies to address critical social problems. While there is a growing body of literature exploring the effectiveness and social impact of these partnerships, there is a limited evaluative research on the implementation and execution processes of CCIs. In this paper, we examined the implementation and operational processes in the delivery of a professional sport organization's CCI initiative using program theory evaluation. The findings showed discrepancies between the associate organization and the implementers regarding understanding and fulfilling responsibilities with performing certain aspects (maintaining accurate records and program marketing) of the service delivery protocol. Despite program stakeholders being satisfied overall with the program delivery, contradictions between program stakeholders' satisfaction in the quality of program delivery was found in critical components (marketing and communications) of the service delivery. We conclude that ongoing evaluations are necessary to pinpoint the catalyst of the discrepancies along with all partners valuing process evaluation in addition to outcome evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Developing a transcultural academic-community partnership to arrest obesity.

    Science.gov (United States)

    Lee, Rebecca E; Soltero, Erica G; Mama, Scherezade K; Saavedra, Fiorella; Ledoux, Tracey A; McNeill, Lorna

    2013-01-01

    Innovative and empirically tested strategies are needed to define and understand obesity prevention and reduction in a transcultural society. This manuscript describes the development of Science & Community, a partnership developed over a 3-year period with the end goal of implementing a community-based participatory research (CBPR) trial to reduce and prevent obesity. Outreach strategies focused on promoting the project via existing and new channels and identifying and contacting potential partners using established strategies. Science & Community developed and fostered partnerships by hosting a series of interactive meetings, including three Opportunity Receptions, four Community Open Forum Symposia, and quarterly Community Advisory Board (CAB) meetings. Opportunity Reception (N = 62) and Symposia attendees (N = 103) represented the diversity of the community, and participants reported high satisfaction with content and programming. From these events, the CAB was formed and was comprised of 13 community representatives. From these meetings, a Partnership representing 34 organizations and 614 individuals emerged that has helped to guide the development of future proposals and strategies to reduce obesity in Houston/Harris County.

  1. Public preception on education partnership programs between Indonesia and australia in East Nusa Tenggara Province

    Science.gov (United States)

    Lobo, M.; Guntur, R. D.; Nalley, H. M.

    2018-05-01

    A research about partnership program in education between the government of Indonesia and Australia in East Nusa Tenggara Province (ENTP) has been conducted. The aim is to list the programs between the countries on the region in the last twenty years, together with their implementations to the community based on all the stakeholders’ perspectives. The samples taken by purposive sampling which targeted those who had direct involvement to the programs in the Districts of Sikka, Ende and Ngada. A literature review, questioners and a depth interview were employed in the data collection. The results show that the main partnership projects were NTT-PEP (Nusa Tenggara Timur-Primary Education Partnership), AIBEP (Australia Indonesia Building Education Project) and ProDEP (Professional Development for Education Personal). While the first and the third programs were targeting on human resources development, the second project was more focusing on the infrastructures. The analysis shows that in general, the majority of people think that the program implementation was good. Similar results were also reflected in the group of superintendent and the community. However, totally different feature was found in the group of government officials where all of them perceived that the program was good and need to be continued and sustained.

  2. US - India Partnership in Science and Technology, Environment and Health: Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Satish V [Georgetown University

    2010-10-06

    Today, the US – India strategic partnership is rooted in shared values and is broad in nature and scope, with our two countries working together on global and energy security, climate change and clean environment, life sciences and public health, economic prosperity and trade, and education. A key outcome of this partnership has been the signing of the historic Indo-US Civil Nuclear Deal. Science and technology (S&T) have always been important elements of this partnership, and US Secretary of State Condoleezza Rice and Indian S&T Minister Kapil Sibal signed an agreement on S&T Cooperation between the two countries in October 2005. In March 2006, recognizing the expanding role of S&T, President George Bush and Prime Minister Manmohan Singh formed a Bi-National S&T Commission and established a Joint S&T Endowment Fund focused on innovation, entrepreneurship and commercialization. In July 2009, US Secretary of State Hillary Clinton and Indian Foreign Minister Krishna signed the Endowment Agreement with a total equivalent funding of $30M (equal contribution from US and India). While these steps take our engagement to new heights, US-India collaboration in S&T is not new and has been ongoing for several decades, principally through agencies like NSF, NIH, EPA, DOE, NASA, NOAA, the PL480 US-India Fund, and the Indian Diaspora. However, acting as a damper, especially during the cold war days, this engagement has been plagued by sanctions and the resulting tensions and mistrust which continue to linger on even today. In this context, several ongoing activities in energy, space, climate change and education will be highlighted. Also, with the S&T and the Civil Nuclear Agreements and climate change as examples, the interplay of science, policy and politics will be discussed.

  3. Healthcare organization-education partnerships and career ladder programs for health care workers.

    Science.gov (United States)

    Dill, Janette S; Chuang, Emmeline; Morgan, Jennifer C

    2014-12-01

    Increasing concerns about quality of care and workforce shortages have motivated health care organizations and educational institutions to partner to create career ladders for frontline health care workers. Career ladders reward workers for gains in skills and knowledge and may reduce the costs associated with turnover, improve patient care, and/or address projected shortages of certain nursing and allied health professions. This study examines partnerships between health care and educational organizations in the United States during the design and implementation of career ladder training programs for low-skill workers in health care settings, referred to as frontline health care workers. Mixed methods data from 291 frontline health care workers and 347 key informants (e.g., administrators, instructors, managers) collected between 2007 and 2010 were analyzed using both regression and fuzzy-set qualitative comparative analysis (QCA). Results suggest that different combinations of partner characteristics, including having an education leader, employer leader, frontline management support, partnership history, community need, and educational policies, were necessary for high worker career self-efficacy and program satisfaction. Whether a worker received a wage increase, however, was primarily dependent on leadership within the health care organization, including having an employer leader and employer implementation policies. Findings suggest that strong partnerships between health care and educational organizations can contribute to the successful implementation of career ladder programs, but workers' ability to earn monetary rewards for program participation depends on the strength of leadership support within the health care organization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Strategic Partnerships that Strengthen Extension's Community-Based Entrepreneurship Programs: An Example from Maine

    Science.gov (United States)

    Bassano, Louis V.; McConnon, James C., Jr.

    2011-01-01

    This article explains how Extension can enhance and expand its nationwide community-based entrepreneurship programs by developing strategic partnerships with other organizations to create highly effective educational programs for rural entrepreneurs. The activities and impacts of the Down East Micro-Enterprise Network (DEMN), an alliance of three…

  5. Partnership model of vocational education with the business sector in civil engineering expertise program of Vocational Secondary Schools

    Directory of Open Access Journals (Sweden)

    I Kadek Budi Sandika

    2018-01-01

    Full Text Available This study aims to: (1 develop a partnership model of vocational education with business sectors in civil engineering expertise program of vocational secondary schools in Bali and (2testing the effectiveness and efficiency of partnership model developed. The study used the design and development model of Richey & Klein (2009, which consists of three main phases, namely the phase of model development, model validation, and model testing. The phase of model development used the qualitative approach, through literature review, observation and interview. Expert review techniques were used in the model validation phase. The model testing used pre-experimental design with one-shot case study. The study found that the partnership model of vocational education with the business sector in civil engineering expertise program of vocational secondary schools in Bali involves several components, such as key stakeholders, the underlying principle of partnership, orientation/common goal, the management of educational resources (teachers and facilities, curriculum development, implementation of learning/training and work practices, competency test of graduates, distribution of learning outcomes/output, as well as monitoring, evaluation and feedback of partnership program. Experimental results show that the partnership model developed has met all of the criteria (effective, practical and efficient.

  6. Asthma Education and Intervention Program: Partnership for Asthma Trigger-Free Homes (PATH)

    National Research Council Canada - National Science Library

    Golden, Cheryl

    2008-01-01

    ...) are the co-Principal Investigators for the Partnership for Asthma Trigger-Free Homes. The PATH study's goal is reducing the asthma disease burden on low-income housing residents by means of a peer-based education program...

  7. The Upper San Pedro Partnership: A Case Study of Successful Strategies to Connect Science to Societal Needs

    Science.gov (United States)

    Goodrich, D. C.; Richter, H.; Varady, R.; Browning-Aiken, A.; Shuttleworth, J.

    2006-12-01

    The Upper San Pedro Partnership (USPP) (http://www.usppartnership.com/) has been in existence since 1998. Its purpose is to coordinate and cooperate in the implementation of comprehensive policies and projects to meet the long-term water needs of residents within the U.S. side of the basin and of the San Pedro Riparian National Conservation Area. The Partnership consists of 21 local, state, and Federal agencies, NGO's and a private water company. In 2004 it was recognized by Congress in Section 321 of Public Law 108-136 and required to make annual reports to Congress on its progress in bringing the basin water budget into balance by 2011. The Partnership is dedicated to science-based decision making. This presentation will provide an overview of the evolution of natural resources research in the binational (U.S.-Mexico) San Pedro Basin into a mature example of integrated science and decision making embodied in the USPP. It will discuss the transition through science and research for understanding; to science for addressing a need; to integrated policy development and science. At each stage the research conducted becomes more interdisciplinary, first across abiotic disciplines (hydrology, remote sensing, atmospheric science), then a merging of abiotic and biotic disciplines (adding ecology and plant physiology), and finally a further merging with the social sciences and policy and decision making for resource management. Federal, university, and NSF SAHRA Science and Technology Center research has been planned and conducted directly with the USPP. Because of the success the San Pedro has been designated as an operational HELP (Hydrology for the Environment, Life, and Policy) demonstration basin—the most advanced category. Lessons learned from this experience will be reviewed with the intent providing guidance to ensure that hydrologic and watershed research is socially and scientifically relevant and will directly address the needs of policy makers and resource

  8. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  9. Overcoming Constraints of Building Successful Partnerships Incorporating STEM Research Into K-12 Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2011-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE is currently in its second year of partnering ten graduate students from the STEM fields of Geosciences, Engineering and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to increase inquiry and technology experiences in science and math while enhancing graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in the classrooms. Each graduate student is responsible for the development of two lessons each month of the school year that are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach throughout the local community. Numerous challenges were met during the formation of the program as well as throughout the first year in which the project management team worked together to find solutions ensuring that INSPIRE maintained successful partnerships for all involved. Proposed solutions of the following key components were identified by INSPIRE through the development, implementation, and continuous evaluation (internal and external) of the first year of the program as areas that can pose challenges to the construction of strong relationships between STEM research and K-12 classrooms: initializing the partnerships with the K-12 classrooms and STEM graduate fields at the university; maintaining strong partnerships; providing appropriate training and support; developing sound

  10. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners

  11. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  12. Lessons learned: Evaluating the program fidelity of UNWomen Partnership for Peace domestic violence diversion program in the Eastern Caribbean.

    Science.gov (United States)

    Jeremiah, Rohan D; Quinn, Camille R; Alexis, Jicinta M

    2018-08-01

    To date, there have been a plethora of punitive and diversion programs to address domestic violence around the world. However, the evaluative scholarship of such programs overwhelmingly reflects studies in developed countries while barely showcasing the realities of addressing domestic violence in developing countries. This paper features a multi-year (2008-2011) evaluation study that measured the fidelity of the United Nations Partnership for Peace (PfP) domestic violence diversion program in the Eastern Caribbean country of Grenada. Our findings illuminate organic engagement strategies that were built within existing multi-sectoral partnerships that included magistrate court judges, law enforcement officials, and social service agencies. Furthermore, we documented how the locally-devised implementation strategies ensured the program's fidelity within a resource-limited context. This paper contributes to the global evaluative scholarship, highlighting the lessons learned about implementing culturally-adapted and theoretically-driven domestic violence diversion within a developing country. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Environmental and radiological remediation under Canada's global partnership program 2004-11 - 59185

    International Nuclear Information System (INIS)

    Washer, Michael J.

    2012-01-01

    Following the '911' attack on the USA in 2001 the international community under Canada's G8 leadership established a $20 billion Global Partnership initiative in 2002 to collaboratively address threats to global security posed by the proliferation and potential terrorist use of Weapons and Materials of Mass Destruction (WMMD) and related materials and knowledge. This major international initiative addressed four priority areas: (1) Chemical Weapon Destruction (2) Nuclear powered submarine eliminations (3) Nuclear and radiological security; and (4) Employment for former weapon scientists. Additionally the initiative has addressed Biological Non- Proliferation. Canada's execution of all these program areas has resulted in substantial environmental benefits aside from the eradication and securing of WMMD. This paper reviews the environmental and radiological remediation achievements of the four primary Global Partnership program areas addressed under Canadian funding 2004 through 2011. (author)

  14. FY 2014 Continuation of Solicitation for the Office of Science Financial Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Saundry, Peter [National Council for Science and the Environment, Washington, DC (United States)

    2014-04-01

    On January 28-30, 2014, the National Council for Science and the Environment (NCSE) hosted its 14th National Confrerence and Global Forum on Science, Policy and the Environment: Building Climate Solutions. The conference was held at the Hyatt Regency Crystal City near the Washington, DC National Airport. The conference engaged over 1,100 key individuals from a variety of fields, including natural and social sciences, humanities and engineering and government and policy, as well as business and civil society. They developed actionable partnerships, strategies and tactics that advanced solutions minimizing the impacts of anthropogenic climate change. The conference was organized around the two major areas where climate actions are necessary: [1] The Built Environment; and, [2] Agriculture and Natural Resources. This “multi-sector approach” of the conference enables participants to work across traditional boundaries of discipline, science, policy and application by engaging a diverse team of scientists, public- and private-sector program managers, and policy-makers. The confernce was two and a half days long. During this time, over 200 speakers presented in 8 keynote addresses, 7 plenary roundtable discussions, 30 symposia and 23 workshops. The goal of the workshops was to generate additional action through development of improved strategies, tools, and partnerships. During the workshops, participants developed actionable outcomes, committed to further collaboration and implementation, and outlined follow-up activities for post-conference. A list of recommendations from the workshop follows this summary. NCSE’s annual conference has become a signature event for the organization, recognized for its notable presenters, innovative programming, and outcome-oriented approach. Each year, over 1,100 participants attend the event, representing federal agencies, higher education institutions, state and local governments, non-governmental and civic organizations

  15. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  16. Northern Eurasia Earth Science Partnership Initiative in the past 12 months: An Update

    Science.gov (United States)

    Groisman, Pavel; Lowford, Richard

    2013-04-01

    Eight years ago Northern Eurasia Earth Science Partnership Initiative (NEESPI) was launched with the release of its Science Plan (http://neespi.org). Gradually, the Initiative was joined by numerous international projects launched in EU, Russia, the United States, Canada, Japan, and China. Throughout its duration, NEESPI served and is serving as an umbrella for more than 155 individual international research projects. Currently, the total number of the ongoing NEESPI projects (as on January 2013) is 48 and has changed but slightly compared to its peak (87 in 2008). The past 12 months (from the previous EGU Assembly) were extremely productive in the NEESPI outreach. We organized three Open Science Sessions at the three major Geoscience Unions/Assembly Meetings (JpGU, AGU, and this EGU Session) and three International NEESPI Workshops. The programs of two of these Workshops (in Yoshkar Ola and Irkutsk, Russia) included Summer Schools for early career scientists. More than 150 peer-reviewed papers, books, and/or book chapters were published in 2012 or are in press (this list was still incomplete at the time of preparation of this abstract). In particular, a suite of 25 peer-reviewed NEESPI articles was published in the Forth Special NEESPI Issue of "Environmental Research Letters" (ERL) http://iopscience.iop.org/1748-9326/focus/NEESPI3 (this is the third ERL Issue). In December 2012, the next Special ERL NEESPI Issue was launched http://iopscience.iop.org/1748-9326/focus/NEESPI4. Northern Eurasia is a large study domain. Therefore, it was decided to describe the latest findings related to its environmental changes in several regional monographs in English. Three books on Environmental Changes in the NEESPI domain were published by the University of Helsinki (Groisman et al. 2012), "Akademperiodyka" (Groisman and Lyalko 2012), and Springer Publishing House (Groisman and Gutman 2013) being devoted to the high latitudes of Eurasia, to Eastern Europe, and to Siberia

  17. The Transuranic Waste Program's integration and planning activities and the contributions of the TRU partnership

    International Nuclear Information System (INIS)

    Harms, T.C.; O'Neal, W.; Petersen, C.A.; McDonald, C.E.

    1994-02-01

    The Technical Support Division, EM-351 manages the integration and planning activities of the Transuranic Waste Program. The Transuranic Waste Program manager provides transuranic waste policy, guidance, and issue resolution to Headquarters and the Operations Offices. In addition, the program manager is responsible for developing and implementing an integrated, long-range waste management plan for the transuranic waste system. A steering committee, a core group of support contractors, and numerous interface working groups support the efforts of the program manager. This paper provides an overview of the US Department of Energy's transuranic waste integration activities and a long-range planning process that includes internal and external stakeholder participation. It discusses the contributions and benefits provided by the Transuranic Partnership, most significantly, the integration activities and the body of data collected and assembled by the Partnership

  18. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    Science.gov (United States)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  19. The Southern Nevada Agency Partnership Science and Research Synthesis: Science to support land management in Southern Nevada - Executive Summary

    Science.gov (United States)

    Jeanne C. Chambers; Matthew L. Brooks; Burton K. Pendleton; Carol B. Raish

    2013-01-01

    This synthesis provides information related to the Southern Nevada Agency Partnership (SNAP) Science and Research Strategy Goal 1 - to restore, sustain and enhance southern Nevada’s ecosystems - and Goal 2 - to provide for responsible use of southern Nevada’s lands in a manner that preserves heritage resources and promotes an understanding of human interaction with the...

  20. Adding SPICE to Science

    Science.gov (United States)

    Levey, Douglas

    2005-01-01

    In this article, the author would like to raise awareness of GK?12 programs by sharing experiences from SPICE (Science Partners in Inquiry-based Collaborative Education), a partnership between the University of Florida and Alachua County Public Schools. SPICE pairs nine graduate student fellows with nine middle school science teachers. Each…

  1. Utilizing Local Partnerships to Enhance Workforce Development

    Science.gov (United States)

    Whikehart, John

    2009-01-01

    The Indiana Center for the Life Sciences, an award-winning partnership between education, government, and the private sector, houses state-of-the-art science labs, classrooms, and industry training space for community college students and local employers. This innovative partnership prepares both the current and future workforce for careers in the…

  2. Building capacity in implementation science research training at the University of Nairobi.

    Science.gov (United States)

    Osanjo, George O; Oyugi, Julius O; Kibwage, Isaac O; Mwanda, Walter O; Ngugi, Elizabeth N; Otieno, Fredrick C; Ndege, Wycliffe; Child, Mara; Farquhar, Carey; Penner, Jeremy; Talib, Zohray; Kiarie, James N

    2016-03-08

    Health care systems in sub-Saharan Africa, and globally, grapple with the problem of closing the gap between evidence-based health interventions and actual practice in health service settings. It is essential for health care systems, especially in low-resource settings, to increase capacity to implement evidence-based practices, by training professionals in implementation science. With support from the Medical Education Partnership Initiative, the University of Nairobi has developed a training program to build local capacity for implementation science. This paper describes how the University of Nairobi leveraged resources from the Medical Education Partnership to develop an institutional program that provides training and mentoring in implementation science, builds relationships between researchers and implementers, and identifies local research priorities for implementation science. The curriculum content includes core material in implementation science theory, methods, and experiences. The program adopts a team mentoring and supervision approach, in which fellows are matched with mentors at the University of Nairobi and partnering institutions: University of Washington, Seattle, and University of Maryland, Baltimore. A survey of program participants showed a high degree satisfaction with most aspects of the program, including the content, duration, and attachment sites. A key strength of the fellowship program is the partnership approach, which leverages innovative use of information technology to offer diverse perspectives, and a team model for mentorship and supervision. As health care systems and training institutions seek new approaches to increase capacity in implementation science, the University of Nairobi Implementation Science Fellowship program can be a model for health educators and administrators who wish to develop their program and curricula.

  3. Best Practices in University-Community Partnerships: Lessons Learned from a Physical-Activity-Based Program

    Science.gov (United States)

    Walsh, David

    2006-01-01

    Universities have the potential to make significant contributions to their neighboring schools and youth agencies through university-community partnerships and the programs they spawn. However, even with proven goals, trained staff, and eager students, collaborative physical-activity-based youth development programs can fail despite the best…

  4. Building a Culture of Authentic Partnership: One Academic Health Center Model for Nursing Leadership.

    Science.gov (United States)

    Heath, Janie; Swartz, Colleen

    2017-09-01

    Senior nursing leaders from the University of Kentucky (UK) College of Nursing and UK HealthCare have explored the meaning of an authentic partnership. This article quantifies the tangible benefits and outcomes from this maturing academic nursing and clinical practice partnership. Benefits include inaugural academic nursing participation in health system governance, expanded integration of nursing research programs both in the college and in the health science center, and the development of collaborative strategies to address nursing workforce needs.

  5. Education, Outreach, and Diversity Partnerships and Science Education Resources From the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Randall, D.; Denning, S.; Jones, B.; Russell, R.; Gardiner, L.; Hatheway, B.; Johnson, R. M.; Drossman, H.; Pandya, R.; Swartz, D.; Lanting, J.; Pitot, L.

    2007-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. The new National Science Foundation- funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is a major research program addressing this problem over the next five years through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interactions among the many physical and chemical processes that are active in cloud systems. At the end of its first year, CMMAP has established effective partnerships between scientists, students, and teachers to meet its goals to: (1) provide first-rate graduate education in atmospheric science; (2) recruit diverse undergraduates into graduate education and careers in climate science; and (3) develop, evaluate, and disseminate educational resources designed to inform K-12 students, teachers, and the general public about the nature of the climate system, global climate change, and career opportunities in climate science. This presentation will describe the partners, our challenges and successes, and measures of achievement involved in the integrated suite of programs launched in the first year. They include: (1) a new high school Colorado Climate Conference drawing prestigious climate scientists to speak to students, (2) a summer Weather and Climate Workshop at CSU and the National Center for Atmospheric Research introducing K-12 teachers to Earth system science and a rich toolkit of teaching materials, (3) a program from CSU's Little Shop of Physics reaching 50 schools and 20,000 K-12 students through the new "It's Up In the Air" program, (4) expanded content, imagery, and interactives on clouds, weather, climate, and modeling for students, teachers, and the public on The Windows to the Universe web site at University Corporation for Atmospheric Research

  6. The Significance of Ongoing Teacher Support in Earth Science Education Programs: Evidence from the GLOBE Program

    Science.gov (United States)

    Penuel, B.; Korbak, C.; Shear, L.

    2003-12-01

    study, SRI researchers used the data on student data reporting activity from different partners to identify candidate sites for case studies, where we might investigate the nature of follow-up activities provided by successful partners more closely. We worked to select 2 regional partners that had evidence of high percentages of teachers trained that reported data and that also offered follow-up to teachers. Case study researchers conducted observations within 2-3 active GLOBE schools supported by each regional partner organization and interviewed teachers, principals, and partner staff. On the basis of our observation data and transcripts from interviews, we compiled profiles of schools' implementation and analyzed the core activities of each regional partner. Researchers found that keys to promoting successful implementation in one partnership were: one partnership were: close alignment with state mathematics and science initiatives; mentors that helped teachers by modeling inquiry in GLOBE and by assisting with equipment set-up and curriculum planning; and allowing room for schools to adopt diverse goals for GLOBE. In the second partnership, keys to success included a strategic approach to developing funding for the program; a focus on integration of culturally-relevant knowledge into teacher preparation; follow-up support for teachers; and use of GLOBE as an opportunity to investigate local evidence of climate change. Both partner organizations were challenged by funding limitations that prevented them from providing as much follow-up support as they believe is necessary.

  7. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    Science.gov (United States)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz

  8. Measuring Satisfaction with Family-Professional Partnership in Early Intervention and Early Childhood Special Education Programs in Qatar

    Science.gov (United States)

    Al-Hadad, Nawal Khalil

    2010-01-01

    Family-professional partnership has been considered a recommended practice in Early Intervention/Early Childhood Special Education (EI/ECSE) programs for young children with disabilities and their families for the past two decades. The importance of establishing successful partnerships between families and professionals in educational planning has…

  9. Between Vulnerability and Risk: Promoting Access and Equity in a School-University Partnership Program

    Science.gov (United States)

    Bourke, Alan; Jayman, Alison Jenkins

    2011-01-01

    This article utilizes interview data to explore how notions of risk operate in a school-university partnership program. Our analysis traces the divergence between conceptualizations of "at-risk" in scholarship, its use in policy, and students' responses to this terminology. Although students targeted in such programs are often…

  10. Design and Delivery of Professional Development Through Partnerships: Long-Term, Short-Term, and Everything In-Between

    Science.gov (United States)

    Urquhart, M. L.; Curry, B.; Hairston, M. R.

    2009-12-01

    Professional development for teachers can take a variety of forms, each with unique challenges and needs. At the University of Texas at Dallas (UTD), we have leveraged partnerships between multiple groups including the Masters of Arts in Teaching program in Science Education, the joint US Air Force/NASA CINDI mission, an ionospheric explorer built at UTD, and the UTD Regional Collaborative for Excellence in Science Teaching. Each effort models, and in the case of the later two has created, inquiry-based lessons around Earth-systems science. A space science mission, currently in low Earth orbit aboard the Air Force satellite C/NOFS, provides real world connections to classroom science, scientific data and visualizations, and funding to support delivery of professional development in short courses and workshops at teacher conferences. Workshops and short course in turn often serve to recruit teachers into our longer-term programs. Long-term professional development programs such as the Collaborative provide opportunities to test curriculum and teacher learning, an interface to high-quality sustained efforts within talented communities of teachers, and much more. From the birth of our CINDI Educational Outreach program to the Collaborative project that produced geoscience kit-based modules and associated professional development adopted throughout the state of Texas, we will share highlights of our major professional development initiatives and how our partnerships have enabled us to better serve the needs of K-12 teachers expected to deliver geoscience and space science content in their classrooms.

  11. Partnership for Environmental Technology Education

    International Nuclear Information System (INIS)

    Dickinson, Paul R.; Fosse, Richard

    1992-01-01

    The need for broad cooperative effort directed toward the enhancement of science and mathematics education, including environmental science and technology has been recognized as a national priority by government, industry, and the academic community alike. In an effort to address this need, the Partnership for Environmental Technology Education (PETE) has been established in the five western states of Arizona, California, Hawaii, Nevada and Utah. PETE'S overall objectives are to link the technical resources of the DOE, ERA, and NASA Laboratories and private industry with participating community colleges to assist in the development and presentation of curricula for training environmental-Hazardous Materials Technicians and to encourage more transfer students to pursue studies in environmental science at four-year institutions. The program is co-sponsored by DOE and EPA. DoD participation is proposed. PETE is being evaluated by its sponsors as a regional pilot with potential for extension nationally. (author)

  12. 24 CFR 92.200 - Private-public partnership.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Private-public partnership. 92.200 Section 92.200 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM Program Requirements § 92.200 Private-public partnership...

  13. Program for educating nuclear engineers in Japan. Partnership with industry, government and academe begins

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki

    2007-01-01

    Since the beginning of the 21st century, educating the next generation of nuclear engineers has been of interest to groups who are concerned with the recent decline in the number of nuclear engineers in universities and industries. Discussions and proposals have been summarized in independent reports by industry (JAIF; Japan Atomic Industrial Forum), government (Science Council of Japan) and the academe (AESJ; Atomic Energy Society of Japan). In June 2005 a Committee on Education (CE) was established within AESJ with the intention of coordinating the groups interested in nuclear education in Japan. The birth of CE was timely, because the importance of nuclear education was emphasized in 'Framework for Nuclear Energy Policy (Oct., 2005)' which was adopted by the Atomic Energy Commission. The Nuclear Energy Subcommittee of the METI (Ministry of Economy, Trade and Industry) Advisory Committee deliberated concrete actions for achieving the basic goals of the Framework for Nuclear Energy Policy and their recommendations were drawn up as a 'Nuclear Energy National Plan'. This was the MEXT (Ministry of Education, Culture, Sports, Science and Technology) and METI action plan to create nuclear energy training programs for universities, etc. A task group, consisting of members from industry, government and academe was organized within JAIF to give advice to these training programs. The author of this paper (and chairman of CE) participated in and made proposals to the task group as a representative of the academe. In this paper, the proposal made by CE and the outline of the final program will be reported. Furthermore, the importance of the partnership between industry, government and academe will be emphasized. (author)

  14. Teens-as-teachers nutrition program increases interest in science among schoolchildren and fosters self-efficacy in teens

    Directory of Open Access Journals (Sweden)

    Virginia L.J. Bolshakova

    2018-04-01

    Full Text Available The Healthy Living Ambassador Program brings health, teen leadership, and teamwork to California's elementary school gardens through interdisciplinary UC Cooperative Extension collaboration, community-based partnerships and teen teaching. During spring 2015, teen ambassadors trained by Extension educators and volunteers at UC Elkus Ranch in San Mateo County taught nutrition science, food cultivation and healthy living skills in an 8-week, garden-based, after-school nutrition and physical education program for elementary school children in an urban setting. We conducted a pilot study using a mixed-methods approach to measure and explore the program's impact on children's vegetable selection and consumption preferences, as well as perceived self-efficacy in teen healthy living behavior. The children trended toward an increased preference for gardening, cooking and science, and teens displayed an increase in perceived health self-efficacy.

  15. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    Science.gov (United States)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  16. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    Science.gov (United States)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  17. State Partnership Program: Does the Partnership Between the California National Guard and Ukraine Support the U.S. Engagement Strategy and Is It a Relevant Mission

    National Research Council Canada - National Science Library

    Ellsworth, Kevin

    2000-01-01

    .... The National Guard's State Partnership Program is an engagement tool that exemplifies the democratic process through the citizen-soldier and their connection to the heart of America's communities...

  18. 75 FR 55541 - NOAA Regional Ocean Partnership Funding Program-FY2011 Funding Competition

    Science.gov (United States)

    2010-09-13

    ...-01] RIN 0648-ZC20 NOAA Regional Ocean Partnership Funding Program--FY2011 Funding Competition AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce...-profit organizations (requirements described in full announcement) that NOAA is soliciting proposals for...

  19. 76 FR 78343 - HOME Investment Partnerships Program: Improving Performance and Accountability; and Updating...

    Science.gov (United States)

    2011-12-16

    ... CFR Parts 91 and 92 HOME Investment Partnerships Program: Improving Performance and Accountability... Performance and Accountability; and Updating Property Standards AGENCY: Office of the Assistant Secretary for... regulatory requirements and establish new requirements designed to enhance accountability by States and units...

  20. 77 FR 21067 - Funding Opportunity Title: Risk Management Education and Outreach Partnerships Program

    Science.gov (United States)

    2012-04-09

    ..., crop insurance, marketing contracts, and other existing and emerging risk management tools.'' For the... Management or other similar topics. Legal: Legal and Succession Planning or other similar topics; Marketing... Management Education and Outreach Partnerships Program Announcement Type: Announcement of Availability of...

  1. Sowing the Seeds of Strategic Success Across West Africa: Propagating the State Partnership Program to Shape the Security Environment

    Science.gov (United States)

    2017-06-09

    region’s continued growth in economics , population, influence, and the correlating 17 increase in risks to stability from radicalization and...environment and stem the tide of regional instability . The National Guard’s State Partnership Program is a security cooperation tool that Geographic... instability . The National Guard’s State Partnership Program is a security cooperation tool that Geographic Combatant Commanders can leverage to enhance the

  2. Implementing an Alcohol and Other Drug Use Prevention Program Using University-High School Partnerships: Challenges and Lessons Learned

    Science.gov (United States)

    Milroy, Jeffrey J.; Orsini, Muhsin Michael; Wyrick, David L.; Fearnow-Kenney, Melodie; Wagoner, Kimberly G.; Caldwell, Rebecca

    2015-01-01

    Background: School-based alcohol and other drug use prevention remains an important national strategy. Collaborative partnerships between universities and high schools have the potential to enhance prevention programming; however, there are challenges to sustaining such partnerships. Purpose: The purpose of this commentary is to underscore…

  3. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    Science.gov (United States)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  4. Pathways to Youth Empowerment and Community Connectedness: A Study of Youth-Adult Partnership in Malaysian After-School, Co-Curricular Programs.

    Science.gov (United States)

    Zeldin, Shepherd; Krauss, Steven Eric; Kim, Taehan; Collura, Jessica; Abdullah, Haslinda

    2016-08-01

    After-school programs are prevalent across the world, but there is a paucity of research that examines quality within the "black box" of programs at the point of service. Grounded in current theory, this research examined hypothesized pathways between the experience of youth-adult partnership (youth voice in decision-making; supportive adult relationships), the mediators of program safety and engagement, and the developmental outcomes of youth empowerment (leadership competence, policy control) and community connectedness (community connections, school attachment). Surveys were administered to 207 ethnically diverse (47.3 % female; 63.3 % Malay) youth, age 15-16, attending after-school co-curricular programs in Kuala Lumpur, Malaysia. Results showed that youth voice in program decision-making predicted both indicators of youth empowerment. Neither youth voice nor supportive adult relationships was directly associated with community connectedness, however. Program engagement mediated the associations between youth-adult partnership and empowerment. In contrast, program safety mediated the associations between youth-adult partnership and community connectedness. The findings indicate that the two core components of youth-adult partnership-youth voice and supportive adult relationships-may operate through different, yet complementary, pathways of program quality to predict developmental outcomes. Implications for future research are highlighted. For reasons of youth development and youth rights, the immediate challenge is to create opportunities for youth to speak on issues of program concern and to elevate those adults who are able and willing to help youth exercise their voice.

  5. Earth system science K-12 scientist-student partnerships using paleontological materials

    Science.gov (United States)

    Harnik, P. G.; Ross, R. M.; Chiment, J. J.; Sherpa, J. M.

    2001-05-01

    Reducing the discrepancy between the dynamic science that researchers experience and the static fact-driven science education in which k-12 students participate at school is an important component to national science education reform. Scientist-student partnerships (SSPs) involving whole classes in Earth systems research provide a solution to this problem, but existing models have often lacked rigorous scientific data quality control and/or evaluation of pedagogical effectiveness. The Paleontological Research Institution has been prototyping two SSPs with an eye toward establishing protocols to insure both scientific and educational quality of the partnership. Data quality analysis involves making statistical estimates of data accuracy and employing robust statistical techniques for answering essential questions with noisy data. Educational evaluation takes into account affective variables, such as student motivation and interest, and compares the relative pedagogical effectiveness of SSPs with more traditional hands-on activities. Paleontology is a natural subject for scientist-student partnerships because of its intrinsic appeal to the general public, and because its interdisciplinary content serves as a springboard for meeting science education standards across the physical and life sciences. The "Devonian Seas" SSP involves classes in identifying fossil taxa and assessing taphonomic characteristics from Devonian-aged Hamilton Group shales in Central New York. The scientific purpose of the project is to establish at high stratigraphic resolution the sequence of dysoxic biofacies composition, which will shed light on the sensitivity of epeiric sea communities to environmental (e.g., sea level) changes. The project is undertaken in upper elementary school and secondary school Earth science classes, and in some cases has involved field-based teacher training and collection of samples. Students in small teams collaborate to identify taxa within the samples, then

  6. Resident partnerships: an effective strategy for training in primary care.

    Science.gov (United States)

    Adam, P; Williamson, H A; Zweig, S C; Delzell, J E

    1997-06-01

    To facilitate resident training in the ambulatory setting, a few family practice residency programs use a partnership system to train residents. Partnerships are pairs of residents from the same year that rotate together on inpatient services. We identified and characterized the advantages and disadvantages of partnership programs in family practice residencies. We conducted a national survey of family practice residencies, followed by phone interviews with residency directors of programs with partnerships. A total of 305 of 407 (75%) residencies responded; 10 programs fit our definition of partnership. Program directors were positive about resident partnerships. Benefits included improved outpatient continuity, enhanced medical communication skills, and emotional and intellectual support. Disadvantages were decreased inpatient exposure and difficulty coordinating residents' schedules. Directors were favorable about partnerships, which seem to be an underutilized technique to improve residency training.

  7. Evaluating an HIV and AIDS Community Training Partnership Program in Five Diamond Mining Communities in South Africa

    Science.gov (United States)

    Rispel, L. C.; Peltzer, K.; Nkomo, N.; Molomo, B.

    2010-01-01

    In 2006, De Beers Consolidated Diamond Mines in South Africa entered into a partnership, with the Soul City Institute for Health and Development Communications to implement an HIV and AIDS Community Training Partnership Program (CTPP), initially in five diamond mining areas in three provinces of South Africa. The aim of CTPP was to improve HIV…

  8. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  9. Considering Weight Loss Programs and Public Health Partnerships in American Evangelical Protestant Churches.

    Science.gov (United States)

    Miller, D Gibbes

    2018-06-01

    The obesity epidemic is a critical public health threat facing the USA. With the advent of American Evangelical Protestant (AEP) weight loss guides and narratives, AEP churches could potentially aid public health agencies in combatting obesity, and some scholars have called for investment in partnerships between public health agencies and religious institutions. This paper examines the theological and social underpinnings of AEP weight loss programs and considers the potential benefits and risks of public health partnerships with AEP churches to combat obesity. While AEP churches may be successful at empowering people to lose weight, AEP weight loss also carries several risks. These risks include reinforcing gendered bodily norms, stigmatizing both overweight bodies and unhealthy behaviors deemed to be sinful (for example, overeating), and failing to acknowledge social factors that promote obesity. These risks must be assessed and minimized to create appropriate public health weight loss partnerships with AEP communities.

  10. Impact of a Student-Teacher-Scientist Partnership on Students' and Teachers' Content Knowledge, Attitudes toward Science, and Pedagogical Practices

    Science.gov (United States)

    Houseal, Ana K.; Abd-El-Khalick, Fouad; Destefano, Lizanne

    2014-01-01

    Engaging K-12 students in science-based inquiry is at the center of current science education reform efforts. Inquiry can best be taught through experiential, authentic science experiences, such as those provided by Student-Teacher-Scientist Partnerships (STSPs). However, very little is known about the impact of STSPs on teachers' and…

  11. An overview of the Southern Nevada Agency Partnership science and research synthesis: Chapter 1 in The Southern Nevada Agency Partnership science and research synthesis: science to support land management in southern Nevada

    Science.gov (United States)

    Chambers, Jeanne C.; Brooks, Matthew L.; Turner, Kent; Raish, Carol B.; Ostoja, Steven M.

    2013-01-01

    Maintaining and restoring the diverse ecosystems and resources that occur in southern Nevada in the face of rapid socio-economic and ecological change presents numerous challenged to Federal land managers. Rapid population growth since the 1980s, the land uses associated with that growth, and the interactions of those uses with the generally dry and highly variable climate result in numerous stresses to ecosystems, species, and cultural resource. In addition, climate models predict that the rate of temperature increase and, thus, changes in ecological processes, will be highest for ecosystems like the Mojave Desert. The Southern Nevada Agency Partnership (SNAP; http:www.SNAP.gov) was established in 1999 to address common issues pertaining to public lands in southern Nevada. Partners include the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and USDA Forest Service and they work with each other, the local community, and other partners. SNAP agencies manage more than seven million acres of public lands in southern Nevada (95% of the land area). Federal land includes two national recreation areas, two national conservation area, four national wildlife refuges, 18 congressionally designated wilderness areas, five wilderness study areas, and 22 areas of critical environmental concern. The partnership's activities are mainly centered in Southern Nevada's Clark County (fig. 1.1), but lands managed by SNAP partner agencies also include portions of Lake Mead National Recreation Area in Mohave County, Arizona, U.S. Fish and Wildlife Service, and USDA Forest Service-managed lands in Lincoln and Nye Counties, Nevada, and all lands and activities managed by the Southern Nevada District Office of the Bureau of Land Management. These lands encompass nine distinct ecosystem types (fig. 1.2), support multiple species of management concern an 17 listed species, and are rich in cultural and historic resource. This introductory executive summary

  12. Community Partnership to Address Snack Quality and Cost in After-School Programs

    Science.gov (United States)

    Beets, Michael W.; Tilley, Falon; Turner-McGrievy, Gabrielle; Weaver, Robert G.; Jones, Sonya

    2014-01-01

    Background: Policies call on after-school programs (ASPs) to serve more nutritious snacks. A major barrier for improving snack quality is cost. This study describes the impact on snack quality and expenditures from a community partnership between ASPs and local grocery stores. Methods: Four large-scale ASPs (serving ~500 children, aged 6-12?years,…

  13. The Bowie State University Professional Development Schools Network Partnership

    Science.gov (United States)

    Garin, Eva; Taylor, Traki; Madden, Maggie; Beiter, Judy; Davis, Julius; Farmer, Cynthia; Nowlin, Dawn

    2015-01-01

    The Bowie State University PDS Network Partnership is one of the 2015 Exemplary PDS Partnerships recognized by the National Association for Professional Development Schools. This partnership is built on a series of signature programs that define and support our partnership work. This article describes each of those signature programs that make our…

  14. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    Directory of Open Access Journals (Sweden)

    Joseph P. Kenny

    2008-01-01

    Full Text Available Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also address interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.

  15. Partnering to Enhance Planetary Science Education and Public Outreach Program

    Science.gov (United States)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  16. Utilizing Science Outreach to Foster Professional Skills Development in University Students

    Science.gov (United States)

    Eng, Edward; Febria, Catherine

    2011-01-01

    Students seek unique experiences to obtain and enhance professional development skills and to prepare for future careers. Through the Let's Talk Science Partnership Program (LTSPP), a voluntary science outreach program at University of Toronto Scarborough, students are given the opportunity to continually improve on skills which include: the…

  17. Science and Engineering of the Environment of Los Angeles: A GK-12 Experiment at Developing Science Communications Skills in UCLA's Graduate Program

    Science.gov (United States)

    Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.

    2008-12-01

    Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.

  18. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  19. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program. Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light & Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, it was to be ``fuel- blind``). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.

  20. Transactional, Cooperative, and Communal: Relating the Structure of Engineering Engagement Programs with the Nature of Partnerships

    Science.gov (United States)

    Thompson, Julia D.; Jesiek, Brent K.

    2017-01-01

    This paper examines how the structural features of engineering engagement programs (EEPs) are related to the nature of their service-learning partnerships. "Structure" refers to formal and informal models, processes, and operations adopted or used to describe engagement programs, while "nature" signifies the quality of…

  1. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    Science.gov (United States)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  2. A study of a museum-school partnership

    Science.gov (United States)

    Wojton, Mary Ann

    Partnerships between museums and schools never have been more important than they are today. Schools, especially urban schools, are facing challenges, including low student achievement and difficulty obtaining funding. Partners can help schools overcome these challenges by sharing educational and financial resources. Nearly 11,000 American museums spend more than $1 billion annually to provide over 18 million instructional hours for k-12 educational programs such as professional development for teachers, guided field trips, and staff visits to schools. Museums would seem like natural partners for challenged urban schools. Yet museums and schools struggle to establish and maintain effective partnerships. This study examined a partnership between a science center and an urban elementary school to provide additional knowledge and resources for those in the field to overcome these challenges in order to create relationships that help students. Using qualitative methods with interpretive descriptive purposes (Erickson, 1986; Glesne, 1999; Lincoln & Guba, 2000), the research design is based on several methods of data collection, including face-to-face, semi-structured interviews; observations; written text; and field notes. Participants in this study included students, parents, teachers, school administrators and museum educators. In addition, adult representatives of community organizations were interviewed to determine the impact of the partnership on the community. The study found that an effective partnership will have four basic elements: mutual goals, communication plan, key leader support, planning and research, and four interpersonal elements: personal responsibility, honesty, communication at the intimate level, and trust. Partners may have difficulty developing these to their fullest extent due to time limitations. No partnership is perfect. By creating strong interpersonal relationships, partners can mitigate challenges caused by limited basic elements and

  3. I-LLINI Partnerships for 21st Century Teachers

    Science.gov (United States)

    Read, K.; Wong, K.; Charlevoix, D. J.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    I-LLINI Partnerships is two-year State funded program to initiate enhance communication between the faculty at University of Illinois and K-12 teachers in the surrounding communities. The program focuses on math and science with a particular emphasis on the use of technology to teaching math and science to middle-school aged children. The Partnership provides participating teachers with a suite of technology including a computer, digital camera, and software, as well as a small stipend. University partners include representatives from the Departments of Mathematics as well as the Department of Atmospheric Sciences and the Department of Geology. The Atmospheric Sciences and Geology faculty have partnered to provide content using an Earth Systems Science approach to presenting content to the teachers. Additionally, teachers provide feedback to university faculty with relation to how they might better prepare future science teachers. Teacher participants are required to attend a series of workshops during the academic year as well as a summer workshop. The first workshop was held June 2008 on the University of Illinois campus. Our poster will highlight the first workshop providing a discussion and photographs of the activities, an analysis of the benefits and challenges - both to the university representatives as well as the teachers ­ and a summary of future changes planned for the 2009 summer workshop. During the second morning of the workshop, the science teachers participated in an EcoBlitz via a field trip to a collect data from a stream near campus. During the EcoBlitz, math teachers attended tutorial sessions on campus on statistical analysis software. The EcoBliz teachers were provided with instruments and equipment necessary to collect data on the weather conditions and water quality of the stream. Instruments included a temperature probe, turbidity sensor, dissolved oxygen sensor and a hand held weather instrument. Data was recorded with Vernier Lab

  4. Developing a common strategy for integrative global change research and outreach: the Earth System Science Partnership (ESSP)

    NARCIS (Netherlands)

    Leemans, R.; Asrar, G.; Canadell, J.G.; Ingram, J.; Larigauderie, A.; Mooney, H.; Nobre, C.; Patwardhan, A.; Rice, M.; Schmidt, F.; Seitzinger, S.; Virji, H.; Vörösmarthy, C.; Yuoung, O.

    2009-01-01

    The Earth System Science Partnership (ESSP) was established in 2001 by four global environmental change (GEC) research programmes: DIVERSITAS, IGBP, IHDP and WCRP. ESSP facilitates the study of the Earth's environment as an integrated system in order to understand how and why it is changing, and to

  5. Earthwatch and the HSBC Climate Partnership: Impacting the Bottom Line One Citizen Scientist at a Time

    Science.gov (United States)

    Kusek, K. M.; Stover, D. B.; Phillips, R.; Jones, A.; Campbell, J.

    2009-12-01

    Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results will establish baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests in a changing climate. A critical component of the program is the engagement of 2,200 HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Their charge is to develop a project they will implement back in their office that furthers HSBC’s commitment to sustainability. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified versions of the two-week field program. New models of citizen science engagement are currently under development, and Earthwatch will share “lessons learned” and stories documenting the effectiveness of the program design from a research, engagement and business perspective. By the end

  6. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    Science.gov (United States)

    Ianson, Eric E.

    2016-01-01

    NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  7. Promoting children's agency and communication skills in an informal science program

    Science.gov (United States)

    Wulf, Rosemary; Hinko, Kathleen; Finkelstein, Noah

    2013-01-01

    The Partnerships for Informal Science Education in the Community (PISEC) program at the University of Colorado Boulder brings together university and community institutions to create an environment where K-12 students join with university educators to engage in inquiry-based scientific practices after school. In our original framing, these afterschool activities were developed to reinforce the traditional learning goals of the classroom, including mastering scientific content, skills and processes. Recently, the primary focus of the PISEC curriculum has been shifted towards the development of students' scientific identity, an explicit objective of informal learning environments. The new curriculum offers students more activity choices, affords opportunities for scientific drawings and descriptions, and provides incentive for students to design their own experiments. We have analyzed student science notebooks from both old and new curricula and find that with the redesigned curriculum, students exhibit increased agency and more instances of scientific communication while still demonstrating substantial content learning gains.

  8. Green Power Partnership Eligible Organizations

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Many different types of organizations are eligible to become Partners.

  9. Benefits of Green Power Partnership

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Learn about the benefits of becoming a Green Power Partner.

  10. University partnerships with the corporate sector faculty experiences with for-profit matriculation pathway programs

    CERN Document Server

    Winkle, Carter

    2013-01-01

    Carter Winkle provides emperically derived insight into both positive and negative implications of the contemporary phenomena of partnerships between universities and private, for-profit educational service providers resulting in matriculation pathway programs for non-native English speaking students in the United States.

  11. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    Science.gov (United States)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  12. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  13. Forging School-Scientist Partnerships: A Case of Easier Said than Done?

    Science.gov (United States)

    Falloon, Garry

    2013-12-01

    Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.

  14. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    Science.gov (United States)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a

  15. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  16. Community Partnership to Address Snack Quality and Cost in Afterschool Programs

    Science.gov (United States)

    Tilley, Falon; Turner-McGrievy, Gabrielle; Weaver, Robert Glenn; Jones, Sonya

    2014-01-01

    Background Policies call on afterschool programs (ASPs) to serve more nutritious snacks. A major barrier for improving snack quality is cost. This study describes the impact on snack quality and expenditures from a community-partnership between ASPs and local grocery stores. Methods Four large-scale ASPs (serving ∼500 children aged 6-12 years each day) and a single local grocery store chain participated in the study. The nutritional quality of snacks served was recorded pre-intervention (18 weeks spring/fall 2011) and post-intervention (7 weeks spring 2012) via direct observation, along with cost/child/snack/day. Results Pre-intervention snacks were low-nutrient-density salty snacks (eg, chips, 3.0 servings/week), sugar-sweetened beverages (eg, powdered-lemonade, 1.9 servings/week), and desserts (eg, cookies, 2.1servings/week), with only 0.4 servings/week of fruits and no vegetables. By post-intervention, fruits (3.5 servings/week) and vegetables (1.2 servings/week) increased, while sugar-sweetened beverages and desserts were eliminated. Snack expenditures were $0.26 versus $0.24 from pre-intervention to post-intervention. Partnership savings versus purchasing snacks at full retail cost was 24.5% or $0.25/serving versus $0.34/serving. Conclusions This innovative partnership can serve as a model in communities where ASPs seek to identify low-cost alternatives to providing nutritious snacks. PMID:25040123

  17. Developing a collaborative community partnership program in medical asepsis with tattoo studios.

    Science.gov (United States)

    Bechtel, G A; Garrett, C; Grover, S

    1995-10-01

    The possibility of transmission of infectious agents during tattooing has become a legitimate issue of concern for health care providers. A collaborative educational program was developed by a county health department, College of Nursing, and tattoo artists to address issues of medical asepsis with the goal of producing a mechanism for certification of tattoo studios. The group's effort was enhanced by recognizing each other's value systems and by the mutual need for a successful program. A framework for developing, implementing, and evaluating community partnerships was addressed. This program demonstrated that community health nurses can play an instrumental role in collaborating with both health care providers and personal-service workers to minimize transmission of infectious agents during cosmetic procedures.

  18. National Science Resources Center Project to Improve Science Teaching in Elementary Schools with Special Emphasis on Department of Defense Dependents Schools and Other Schools Serving Children of Military Personnel

    Science.gov (United States)

    1992-10-01

    2555. NCTM to Publish Resource Directory ANNOUNCEMENTS The National Council of Teachers of Mathematics ’ ( NCTM ) Committee for a Coin- Coalition Launches...science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools...elementary school teachers . The units also link science with other curriculum areas, including mathematics , language arts, social studies, and art. In

  19. Partnership Education in the Forest

    Directory of Open Access Journals (Sweden)

    Heidi G Bruce

    2017-10-01

    Full Text Available Heidi Bruce is a founding board member of the Orcas Island Forest School, an outdoor early childhood education program located on Orcas Island, Washington State. In this article, she describes the interconnectedness of nature-based education and Partnership education, as outlined in Riane Eisler‘s book, Tomorrow’s Children: A Blueprint for Partnership Education in the 21st Century (2000. She also shares her experience in advocating for the first legislation in the country that creates a pilot program for licensing nature-based early childhood education programs.

  20. NOAA's Big Data Partnership and Applications to Ocean Sciences

    Science.gov (United States)

    Kearns, E. J.

    2016-02-01

    New opportunities for the distribution of NOAA's oceanographic and other environmental data are being explored through NOAA's Big Data Partnership (BDP) with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Corp. and the Open Cloud Consortium. This partnership was established in April 2015 through Cooperative Research and Development Agreements, and is seeking new, financially self-sustaining collaborations between the Partners and the federal government centered upon NOAA's data and their potential value in the information marketplace. We will discuss emerging opportunities for collaboration among businesses and NOAA, progress in making NOAA's ocean data more widely accessible through the Partnerships, and applications based upon this access to NOAA's data.

  1. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  2. Partnership between CTSI and business schools can promote best practices for core facilities and resources.

    Science.gov (United States)

    Reeves, Lilith; Dunn-Jensen, Linda M; Baldwin, Timothy T; Tatikonda, Mohan V; Cornetta, Kenneth

    2013-08-01

    Biomedical research enterprises require a large number of core facilities and resources to supply the infrastructure necessary for translational research. Maintaining the financial viability and promoting efficiency in an academic environment can be particularly challenging for medical schools and universities. The Indiana Clinical and Translational Sciences Institute sought to improve core and service programs through a partnership with the Indiana University Kelley School of Business. The program paired teams of Masters of Business Administration students with cores and programs that self-identified the need for assistance in project management, financial management, marketing, or resource efficiency. The projects were developed by CTSI project managers and business school faculty using service-learning principles to ensure learning for students who also received course credit for their participation. With three years of experience, the program demonstrates a successful partnership that improves clinical research infrastructure by promoting business best practices and providing a valued learning experience for business students. © 2013 Wiley Periodicals, Inc.

  3. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  4. Building sustainable community partnerships into the structure of new academic public health schools and programs.

    Science.gov (United States)

    Gaughan, Monica; Gillman, Laura B; Boumbulian, Paul; Davis, Marsha; Galen, Robert S

    2011-01-01

    We describe and assess how the College of Public Health at the University of Georgia, established in 2005, has developed formal institutional mechanisms to facilitate community-university partnerships that serve the needs of communities and the university. The College developed these partnerships as part of its founding; therefore, the University of Georgia model may serve as an important model for other new public health programs. One important lesson is the need to develop financial and organizational mechanisms that ensure stability over time. Equally important is attention to how community needs can be addressed by faculty and students in academically appropriate ways. The integration of these 2 lessons ensures that the academic mission is fulfilled at the same time that community needs are addressed. Together, these lessons suggest that multiple formal strategies are warranted in the development of academically appropriate and sustainable university-community partnerships.

  5. The AMTEX Partnership{trademark}. Fourth quarter report, September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, D.K.; Quisenberry, R.K.

    1994-06-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the DOE laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operational and program management of the AMTEX Partnership is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership.

  6. The AMTEX Partnership. Second quarter report, Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, D.K.; Quisenberry, R.K. [AMTEX Partnership (United States)

    1995-03-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby reserving and creating US jobs. The operations and program management of the AMTEX Partnership is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership.

  7. A REGIONAL PARTNERSHIP ON RADIOLOGICAL SECURITY

    International Nuclear Information System (INIS)

    Morris, Fred A.; Murray, A.; Dickerson, S.; Tynan, Douglas M.; Rawl, Richard R.; Hoo, Mark S.

    2007-01-01

    In 2004, Australia, through the Australian Nuclear Science and Technology Organisation (ANSTO) created the Regional Security of Radioactive Sources (RSRS) project and partnered with the U.S. Department of Energy's National Nuclear Security Administration (NNSA) and the International Atomic Energy Agency (IAEA) to form the Southeast Asian Regional Radiological Security Partnership (RRSP). The intent of the RRSP/RSRS partnership is to cooperate with regional neighbors in Southeast Asia to improve the security of their radioactive sources. This Southeast Asian Partnership supports NNSA and IAEA objectives to improve the security of high risk radioactive sources by raising awareness of the need, and developing national programs, to: protect and control such materials; improve the security of such materials and recover and condition the materials no longer in use. To date, agreed upon joint activities have included assistance with the improvement of regulatory infrastructure for the control of radioactive sources, training on the physical protection of radioactive sources, training and assistance with the search, location, identification and securing of orphan radioactive sources and overall assistance with implementing the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. Since the inception of the partnership, ten Southeast Asian nations have participated in a range of activities from receiving general training on the security of radioactive sources to receiving specialized equipment and training to locate orphan or abandoned radioactive sources. By having a shared vision and objectives for radioactive source security in the Southeast Asian region, ANSTO and NNSA have been able to develop a successful partnership which has effectively utilized the technical, financial and political resources of each contributing partner. An example of how this partnership works is the cooperation with the Nuclear Energy Regulatory Agency, Indonesia (BAPETEN) to

  8. Engaging Students and Teachers in Immersive Learning Experiences Alongside NASA Scientists and With Support from Institutional Partnerships

    Science.gov (United States)

    Jones, A. P.; Bleacher, L.; Glotch, T. D.; Heldmann, J. L.; Bleacher, J. E.; Young, K. E.; Selvin, B.; Firstman, R.; Lim, D. S. S.; Johnson, S. S.; Kobs-Nawotniak, S. E.; Hughes, S. S.

    2015-12-01

    The Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) teams of NASA's Solar System Exploration Research Virtual Institute conduct research that will help us more safely and effectively explore the Moon, Near Earth Asteroids, and the moons of Mars. These teams are committed to making their scientific research accessible and to using their research as a lens through which students and teachers can better understand the process of science. In partnership with the Alan Alda Center for Communicating Science at Stony Brook University, in spring of 2015 the RIS4E team offered a semester-long course on science journalism that culminated in a 10-day reporting trip to document scientific fieldwork in action during the 2015 RIS4E field campaign on the Big Island of Hawaii. Their work is showcased on ReportingRIS4E.com. The RIS4E science journalism course is helping to prepare the next generation of science journalists to accurately represent scientific research in a way that is appealing and understandable to the public. It will be repeated in 2017. Students and teachers who participate in FINESSE Spaceward Bound, a program offered in collaboration with the Idaho Space Grant Consortium, conduct science and exploration research in Craters of the Moon National Monument and Preserve. Side-by-side with NASA researchers, they hike through lava flows, operate field instruments, participate in science discussions, and contribute to scientific publications. Teachers learn about FINESSE science in the field, and bring it back to their classrooms with support from educational activities and resources. The second season of FINESSE Spaceward Bound is underway in 2015. We will provide more information about the RIS4E and FINESSE education programs and discuss the power of integrating educational programs within scientific programs, the strength institutional partnerships can

  9. Improving Industry-Relevant Nuclear-Knowledge Development through Special Partnerships

    International Nuclear Information System (INIS)

    Cilliers, A.

    2016-01-01

    Full text: South African Network for Nuclear Education Science and Technology (SAN NEST) has the objective to develop the nuclear education system in South Africa to a point where suitably qualified and experienced nuclear personnel employed by nuclear science and technology programmes in South Africa are predominantly produced by the South African education system. This is done to strengthen the nuclear science and technology education programmes to better meet future demands in terms of quality, capacity and relevance. To ensure sustainable relevance, it is important to develop special partnerships with industry. This paper describes unique partnerships that were developed with nuclear industry partners. The success of these partnerships has ensured more industry partners to embrace the model which has proven to develop relevant knowledge, support research and provide innovative solutions for industry. (author

  10. Growing partnerships: leveraging the power of collaboration through the Medical Education Partnership Initiative.

    Science.gov (United States)

    Olapade-Olaopa, Emiola Oluwabunmi; Baird, Sarah; Kiguli-Malwadde, Elsie; Kolars, Joseph C

    2014-08-01

    A major goal of the Medical Education Partnership Initiative (MEPI) is to improve local health systems by strengthening medical education in Sub-Saharan Africa. A new approach to collaboration was intended to overcome the one-sided nature of many partnerships that often provide more rewards to institutions from wealthy countries than to their Sub-Saharan African counterparts. The benefits of this MEPI approach are reflected in at least five positive outcomes. First, effective partnerships have been developed across a diverse group of MEPI stakeholders. Second, a "community of practice" has been established to continue strengthening medical education in Sub-Saharan Africa. Third, links have been strengthened among MEPI health science schools in Sub-Saharan Africa, their communities, and ministries of both health and education. Fourth, respect among partners in the United States for a culture of ownership and self-determinism among their African counterparts committed to improving education has been enhanced. And finally, performance metrics for strengthening of health science education in Sub-Saharan Africa have been advanced. Meanwhile, partner medical schools in the United States have witnessed the benefits of collaborating across traditional disciplinary boundaries, such as physicians working within highly functioning community-based health care teams with many of the participating schools in Sub-Saharan Africa. MEPI demonstrates that North-South as well as South-South partnerships, with an explicit focus on improving local health systems through better education, can be designed to empower partners in the South with support from collaborators in the North.

  11. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  12. EarthCube Cyberinfrastructure: The Importance of and Need for International Strategic Partnerships to Enhance Interconnectivity and Interoperability

    Science.gov (United States)

    Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.

    2017-12-01

    The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.

  13. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 1

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear conference held in Sydney from 1-6 May 1994, embraced the use of the atom in energy production and in science and technology. The focus was on selected topics of current and ongoing interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers. They have been indexed separately. This document, Volume 1 covers the following topics: Pacific partnership; perspectives on nuclear energy, science and technology in Pacific Basin countries; nuclear energy and sustainable development; economics of the power reactors; new power reactor projects; power reactor technology; advanced reactors; radioisotope and radiation technology; biomedical applications

  14. RIS4E Science Journalism Program

    Science.gov (United States)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience

  15. The influence of science funding agencies in support of effective decision-maker scientist partnerships

    Science.gov (United States)

    Arnott, J. C.; Lemos, M. C.

    2017-12-01

    A wealth of evidence supports the idea that collaboration between scientists and decision-makers is an influential factor in generating actionable knowledge. Nevertheless, persistent obstacles across the research-policy-practice interface limit the amount of engagement that may be necessary to satisfy demands for information to support decisions. Funding agencies have been identified as one possible driver of change, but few multi-year studies have been conducted to trace the influence of program designs on research practices or other outcomes. To fill this gap, we examine a body of applied science projects (n=120) funded through NOAA's National Estuarine Research Reserve System from 1998-2014. Periodic innovation in the structure of this funding program, including requirements for end user engagement and the inclusion of collaboration specialists, offers a natural experiment from which to test hypotheses about the how funding program design influences research practice, utilization, and broader impacts. Using content analysis of project reports and interviews of project team members, end users, and program managers (n=40), we produce a data that can be analyzed through both statistical and qualitative methods. We find that funder mandates significantly influence the intensity of interaction between researchers and practitioners as well as affect long-term change in research cultures. When interaction intensifies, corresponding gains appear in the readiness of research to support decision-making and the readiness of user groups to incorporate findings into their work. While collaborative methods transform research practice and positively influence the applied contexts in which partnerships occur, it remains less clear whether this actually increases the direct use of scientific to inform decisions. For example, collaboration may lead to outcomes other than new knowledge or knowledge application, yielding many positive outcomes that are distinct from knowledge use

  16. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    Science.gov (United States)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  17. Financial services partnerships labor-management dynamics

    CERN Document Server

    Samuel, Peter

    2013-01-01

    The purpose of this book is to evaluate the debate on partnership, using original research data. Samuel provides a novel categorisation with which to synthesise and clarify a highly diverse literature on labour-management partnership, thus helping to refine the contemporary partnership debate. Secondly, he clarifies the circumstances under which 'effective' labour-management partnership is possible, while simultaneously elaborating why the achievement of 'mutual gains' is highly improbable in a liberal-market context. Thirdly, the book presents an integrated analysis of the interplay between macro-, meso- (industry) and micro-level factors. Fourthly, the research design enables the study to go beyond the case studies to make defendable empirical generalizations at the level of the industry. Finally, it advances a theoretical explanation of labour-management partnerships in 'liberal market' economies by bridging two opposing neo-institutional positions in the social sciences.

  18. Performance of the Digital Science Partnership Remotely-Operated 0.5-Meter Corrected Dall-Kirkham Telescopes

    Science.gov (United States)

    Kielkopf, John F.; Carter, B.; Brown, C.; Hart, R.; Hay, J.; Waite, I.

    2007-12-01

    The Digital Science Partnership, a collaboration of the University of Louisville and the University of Southern Queensland, operates a pair of 0.5-meter telescopes for teaching, research, and informal education. The instruments were installed at sites near Toowoomba, Australia, and Louisville, Kentucky in 2006. The Planewave Instruments optical systems employ a unique Dall-Kirkham design incorporating a two-element corrector that demagnifies the image, flattens the focal plane, and reduces coma. These instruments have a moderately fast f/6.8 focal ratio and maintain image quality with little vignetting over a field 42 mm in diameter (0.7 degree). With a 9-micron pixel CCD such as the KAF-6303E, the image scale of 0.55 seconds of arc per pixel typically yields seeing-limited image quality at our sites. The telescopes and their enclosure are operated in a live remote observing mode through Linux-based software, including a dome-control system that uses RFID tags for absolute rotation encoding. After several months of testing and development we have examples of images and photometry from both sites that illustrate the performance of the system. We will discuss image quality, as well as practical matters such as pointing accuracy and field acquisition, auto-guiding, communication latency in large file transfer, and our experience with remote observing assisted by teleconferencing. Time-delay-integration (TDI) imaging, in which the telescope is stationary while the CCD is clocked to track in right ascension, is under study. The technique offers wide fields of view with very high signal-to-noise ratio, and can be implemented in robotically operated instruments used in monitoring, rapid-response, and educational programs. Results for conventional and TDI imaging from the dark site in Australia compared to the brighter suburban site in Kentucky show the benefits of access to dark sites through international partnerships that remote operation technology offers.

  19. Manufacturing Educational Change: Impact Evaluation of the Lansing Area Manufacturing Partnership Pilot Program. Executive Summary.

    Science.gov (United States)

    MacAllum, Keith; Taylor, Susan Hubbard; Johnson, Amy Bell

    The Lansing Area Manufacturing Partnership (LAMP) is an academically rigorous, business/labor-driven school-to-career program in Lansing, Michigan, that includes business, union, school, and parent partners and provides participating students with work-based learning experiences for 2.5 hours every day throughout their senior year. LAMP's…

  20. Necessary but Not Sufficient: The Role of Policy for Advancing Programs of School, Family, and Community Partnerships

    Directory of Open Access Journals (Sweden)

    Joyce L. Epstein

    2016-09-01

    Full Text Available Since the release of Equality of Educational Opportunity, researchers have emphasized the importance of applying the results of research to policies for school improvement. Policies tell educators to do something, but not how to enact specific laws. This study analyzes data from 347 schools in 21 districts to identify variables that support the enactment of policies for parental engagement. We address research questions on how school and district practices affect the quality of school-based partnership programs. Our results indicate that a policy on parental involvement may be a good first step, but other factors—principals’ support for family and community engagement and active facilitation of research-based structures and processes by district leaders—are important for establishing a basic partnership program. These factors promote programs that engage all students’ families. Schools that take these steps have higher percentages of engaged families and report higher rates of average daily attendance among their students.

  1. Boundary Dynamics: Implications for Building Parent-School Partnerships

    Science.gov (United States)

    Price-Mitchell, Marilyn

    2009-01-01

    This article draws on systems theory, complexity theory, and the organizational sciences to engage boundary dynamics in the creation of parent-school partnerships. These partnerships help children succeed through an emergent process of dialogue and relationship building in the peripheral spaces where parents and schools interact on behalf of…

  2. Partnerships in obesity prevention: maximising co-benefits.

    Science.gov (United States)

    Jones, Michelle; Verity, Fiona

    2017-03-01

    Issue addressed Partnerships were used to increase healthy eating and active living in children for the Obesity Prevention and Lifestyle (OPAL) program, a systems-wide, community-based childhood obesity prevention program in South Australia. This part of the multi-component evaluation examines stakeholders' perceptions of how OPAL staff worked in partnership and factors contributing to strong partnerships. Methods Pre- and post-interviews and focus groups with multi-sector stakeholders (n=131) across six OPAL communities were analysed using NVivo8 qualitative data analysis software. Results Stakeholders reflected positively on projects developed in partnership with OPAL, reporting that staff worked to establish co-benefits. They identified several factors that contributed to the strengthening of partnerships: staff skills, visibility, resources and sustainability. Conclusions Rather than implementing projects with stakeholders with shared organisational goals, local shared projects were implemented that included a breadth of co-benefits, allowing multi-sector stakeholders to meet their own organisational goals. Practitioners who have the capacity to be flexible, persistent, knowledgeable and skilled communicators are required to negotiate projects, achieving benefit for both health and stakeholders' organisational goals. So what? Engaging in partnership practice to broker co-benefits at the micro or program level has been an effective model for community engagement and change in OPAL. It foregrounds the need for the inclusion of value to partners, which differs from situations in which organisations come together around common goals.

  3. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  4. Actionable Science in the Gulf of Mexico: Connecting Researchers and Resource Managers

    Science.gov (United States)

    Lartigue, J.; Parker, F.; Allee, R.; Young, C.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) RESTORE Science Program was established in the wake of the Deepwater Horizon oil spill to to carry out research, observation, and monitoring to support the long-term sustainability of the Gulf of Mexico ecosystem, including its fisheries. Administered in partnership with the US Fish and Wildlife Service, the Science Program emphasizes a connection between science and decision-making. This emphasis translated into an engagement process that allowed for resource managers and other users of information about the ecosystem to provide direct input into the science plan for the program. In developing funding opportunities, the Science Program uses structured conversations with resource managers and other decision makers to focus competitions on specific end user needs. When evaluating proposals for funding, the Science Program uses criteria that focus on applicability of a project's findings and products, end user involvement in project planning, and the approach for transferring findings and products to the end user. By including resource managers alongside scientific experts on its review panels, the Science Program ensures that these criteria are assessed from both the researcher and end user perspectives. Once funding decisions are made, the Science Program assigns a technical monitor to each award to assist with identifying and engaging end users. Sharing of best practices among the technical monitors has provided the Science Program insight on how best to bridge the gap between research and resource management and how to build successful scientist-decision maker partnerships. During the presentation, we will share two case studies: 1) design of a cooperative (fisheries scientist, fisheries managers, and fishers), Gulf-wide conservation and monitoring program for fish spawning aggregations and 2) development of habitat-specific ecosystem indicators for use by federal and state resource managers.

  5. Marine Language Exchange Program: A 21st Century International and Interdisciplinary Partnership

    Science.gov (United States)

    Robigou, V.; Nichols-Pecceu, M.

    2001-12-01

    The ability of scientists to communicate across cultural and linguistic barriers is crucial for the global economic sustainability and protection of the world\\'{}s oceans. Yet students with majors in the sciences and engineering constitute less than 2% of those who study abroad each year. And even rarer are students who study in countries where English is not the first language. The Marine Language Exchange program is a case study of an international and interdisciplinary collaboration between faculties in the languages and the sciences who address this gap. A consortium of U.S. and European institutions including Eckerd College (Florida), University of Washington (Washington), University of Hilo (Hawaii), Université de la Rochelle (France), Université de Liège (Belgium), and Universidad de Las Palmas (Spain) is developing a multilingual, marine sciences exchange program in an effort to internationalize their Marine Sciences departments. The program includes a three-week, intensive "bridge" course designed to reinforce second language skills in the context of marine sciences, and prepare undergraduate students for the cultural and educational differences of their host country. Following this immersion experience students from each institution enroll in courses abroad including marine sciences specialization for full academic credit. This session will review the Marine Language Exchange program activities since 2000 and will discuss the ideological and practical aspects of the program. The program successes, difficulties and future directions will also be presented. Different disciplinary approaches -Second Language Acquisition, English as a Second Language and Marine Science- prepare science students to contribute to the study and the management of the world\\'{}s oceans with an awareness of the cultural issues reflected by national marine policies. Based on this case study, other universities could initiate their own international and interdisciplinary

  6. Using Partnerships to Promote Health and Physical Education

    Science.gov (United States)

    Hicks, Lisa; Hancher-Rauch, Heidi; Casselman, Katelin

    2012-01-01

    School and higher education partnerships are an excellent opportunity for all involved to receive mutually beneficial outcomes. This article describes the benefits of a P-12-university partnership, as well as specific examples of projects and assignments that can serve as advocacy resources, creative programming, program assessment, or to meet…

  7. Partnerships for Global Child Health.

    Science.gov (United States)

    Steenhoff, Andrew P; Crouse, Heather L; Lukolyo, Heather; Larson, Charles P; Howard, Cynthia; Mazhani, Loeto; Pak-Gorstein, Suzinne; Niescierenko, Michelle L; Musoke, Philippa; Marshall, Roseda; Soto, Miguel A; Butteris, Sabrina M; Batra, Maneesh

    2017-10-01

    Child mortality remains a global health challenge and has resulted in demand for expanding the global child health (GCH) workforce over the last 3 decades. Institutional partnerships are the cornerstone of sustainable education, research, clinical service, and advocacy for GCH. When successful, partnerships can become self-sustaining and support development of much-needed training programs in resource-constrained settings. Conversely, poorly conceptualized, constructed, or maintained partnerships may inadvertently contribute to the deterioration of health systems. In this comprehensive, literature-based, expert consensus review we present a definition of partnerships for GCH, review their genesis, evolution, and scope, describe participating organizations, and highlight benefits and challenges associated with GCH partnerships. Additionally, we suggest a framework for applying sound ethical and public health principles for GCH that includes 7 guiding principles and 4 core practices along with a structure for evaluating GCH partnerships. Finally, we highlight current knowledge gaps to stimulate further work in these areas. With awareness of the potential benefits and challenges of GCH partnerships, as well as shared dedication to guiding principles and core practices, GCH partnerships hold vast potential to positively impact child health. Copyright © 2017 by the American Academy of Pediatrics.

  8. Essential Partnerships in the Data Management Life Cycle

    Science.gov (United States)

    Kinkade, D.; Allison, M. D.; Chandler, C. L.; Copley, N. J.; Gegg, S. R.; Groman, R. C.; Rauch, S.

    2015-12-01

    An obvious product of the scientific research process is data. Today's geoscience research efforts can rapidly produce an unprecedented volume of multidisciplinary data that can pose management challenges for the facility charged with curating that information. How do these facilities achieve efficient data management in a high volume, heterogeneous data world? Partnerships are critical, especially for small to mid-sized data management offices, such as those dedicated to academic research communities. The idea of partnerships can encompass a wide range of collaborative relationships aimed at helping these facilities meet the evolving needs of their communities. However, one basic and often overlooked partnership in the data management process is that of the information manager and the Principal Investigator (PI) or data originator. Such relationships are critical in discerning the best possible management strategy, and in obtaining the most robust metadata necessary for reuse of multidisciplinary datasets. Partnerships established early in the data life cycle enable efficient management and dissemination of data in high volumes and heterogeneous formats. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created to fulfill the data management needs of PIs funded by the NSF Ocean Sciences Biological and Chemical Sections, and Division of Polar Programs. Since its inception, the Office has relied upon the close relationships it cultivates between its data managers and PIs in order to provide effective data management for a wide variety of ecological and biogeochemical oceanographic data. This presentation will highlight some of the successful partnerships BCO-DMO has made with individual and collaborative investigators, as well as those with other data managers representing specific research communities.

  9. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  10. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    Science.gov (United States)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  11. NOAA Education Partnerships 2013 Portfolio Review. Final Report

    Science.gov (United States)

    Payne, Diana L.; Baek, John Y.

    2014-01-01

    This Partnerships Working Group (PWG) study responds to recommendations from the National Research Council's (NRC) NOAA's Education Program: Review and Critique (2010) for NOAA to better understand how NOAA Education partnerships are formed, fostered, sustained, and evaluated. The NRC report noted that while partnerships were mentioned as a means…

  12. 26 CFR 1.50B-4 - Partnerships.

    Science.gov (United States)

    2010-04-01

    ... § 1.50A-3, or if the partnership fails to pay comparable wages and such failure is subject to the... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Partnerships. 1.50B-4 Section 1.50B-4 Internal... Credit for Expenses of Work Incentive Programs § 1.50B-4 Partnerships. (a) General rule—(1) In general...

  13. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  14. 75 FR 60771 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Science.gov (United States)

    2010-10-01

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0080] Critical Infrastructure Partnership... that the meeting may adjourn early if the committee has completed its business. For additional..., Section Chief Partnership Programs, Partnership and Outreach Division, Office of Infrastructure Protection...

  15. The Latest in Corporate-College Partnerships.

    Science.gov (United States)

    Meister, Jeanne C.

    2003-01-01

    Success factors in establishing corporate-college partnerships include communicating a shared vision for success, defining the degree of customization and flexibility from a university, and mutually devising a marketing and recruitment program. The metrics for success must be defined early and managed throughout the partnership. (JOW)

  16. New Media and Models for Engaging Under-Represented Students in Science

    Science.gov (United States)

    Mayhew, Laurel M.; Finkelstein, Noah D.

    2008-10-01

    We describe the University of Colorado Partnerships for Informal Science Education in the Community (PISEC) program in which university students participate in classroom and after school science activities with local precollege children. Across several different formal and informal educational environments, we use new technological tools, such as stop action motion (SAM) movies [1] to engage children so that they may develop an understanding of science through play and "show and tell". This approach provides a complementary avenue for reaching children who are otherwise underrepresented in science and under-supported in more formal educational settings. We present the model of university community partnership and demonstrate its utility in a case study involving an African American third grade student learning about velocity and acceleration.

  17. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  18. Community-Academic Partnership to implement a Breast and Cervical Cancer screening education program in Puerto Rico

    Science.gov (United States)

    Colón-López, Vivian; González, Daisy; Vélez, Camille; Fernández-Espada, Natalie; Soler, Alana Feldman; Escobar, Kelly Ayala; Ayala-Marín, Alelí M.; Soto-Salgado, Marievelisse; Calo, William A.; Aragón, Angela Pattatucci; Rivera-Díaz, Marinilda; Fernández, María E.

    2018-01-01

    Objective To describe how a community-academic partnership between Taller Salud Inc., a community-based organization, and the Puerto Rico Community Cancer Control Outreach Program of the University of Puerto Rico was crucial in the adaptation and implementation of Cultivando La Salud (CLS), an evidence-based educational outreach program designed to increase breast and cervical cancer screening among Hispanic women living in Puerto Rico. This collaboration facilitated the review and adaptation of the CLS intervention to improve cultural appropriateness, relevance, and acceptability for Puerto Rican women. Methods A total of 25 interviewers and 12 Lay Health Workers (LHWs) were recruited and trained to deliver the program. The interviewers recruited women who were non-adherent to recommended screening guidelines for both breast and cervical cancer. LHWs then provided one-on-one education using the adapted CLS materials. Results A total of 444 women were recruited and 48% of them were educated through this collaborative effort. Conclusions Our main accomplishment was establishing the academic-community partnership to implement the CLS program. Nevertheless, in order to promote better collaborations with our community partners, it is important to carefully delineate and establish clear roles and shared responsibilities for each partner for the successful execution of research activities, taking into consideration the community’s needs. PMID:29220062

  19. Community-Academic Partnership to Implement a Breast and Cervical Cancer Screening Education Program in Puerto Rico.

    Science.gov (United States)

    Colón-López, Vivian; González, Daisy; Vélez, Camille; Fernández-Espada, Natalie; Feldman-Soler, Alana; Ayala-Escobar, Kelly; Ayala-Marín, Alelí M; Soto-Salgado, Marievelisse; Calo, William A; Pattatucci-Aragón, Angela; Rivera-Díaz, Marinilda; Fernández, María E

    2017-12-01

    To describe how a community-academic partnership between Taller Salud Inc., a community-based organization, and the Puerto Rico Community Cancer Control Outreach Program of the University of Puerto Rico was crucial in the adaptation and implementation of Cultivando La Salud (CLS), an evidencebased educational outreach program designed to increase breast and cervical cancer screening among Hispanic women living in Puerto Rico. This collaboration facilitated the review and adaptation of the CLS intervention to improve cultural appropriateness, relevance, and acceptability for Puerto Rican women. A total of 25 interviewers and 12 Lay Health Workers (LHWs) were recruited and trained to deliver the program. The interviewers recruited women who were non-adherent to recommended screening guidelines for both breast and cervical cancer. LHWs then provided one-on-one education using the adapted CLS materials. A total of 444 women were recruited and 48% of them were educated through this collaborative effort. Our main accomplishment was establishing the academic-community partnership to implement the CLS program. Nevertheless, in order to promote better collaborations with our community partners, it is important to carefully delineate and establish clear roles and shared responsibilities for each partner for the successful execution of research activities, taking into consideration the community's needs.

  20. PEER Business and Industry Partnership (BIP)

    Science.gov (United States)

    products laboratories publications nisee b.i.p. members education FAQs links bip members PEER Business and Industry Partnership (BIP) Current BIP members Joining the BIP Program Site Map Search PEER Business and PEER. For an annual donation, the PEER Business and Industry Partnership (BIP) involves members in PEER

  1. Museums, Zoos, and Gardens: How Formal-Informal Partnerships Can Impact Urban Students' Performance. Working Paper #04-13

    Science.gov (United States)

    Weinstein, Meryle; Whitesell, Emilyn Ruble; Schwartz, Amy Ellen

    2013-01-01

    In this paper we provide the first rigorous evidence of the impact of a partnership between public middle schools and informal science institutions (ISIs), such as museums and zoos, on student outcomes. This study focuses on Urban Advantage (UA), a program in New York City (NYC) that explicitly draws upon the expertise and resources of the city's…

  2. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  3. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  4. SED/Apple Computer, Inc., Partnership Program.

    Science.gov (United States)

    Stoll, Peter F.

    1991-01-01

    In 1990, the New York State Education Department (SED), Apple Computer, Inc., Boards of Cooperative Educational Services (BOCES), and school districts formed a partnership to explore the contribution technology can make to schools based on Apple Computer's Learning Society and SED's Long-Range Plan for Technology in Elementary and Secondary…

  5. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3–6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. PMID:26086660

  6. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  7. Working Together: Building Successful Policy and Program Partnerships for Immigrant Integration

    Directory of Open Access Journals (Sweden)

    Els de Graauw

    2017-03-01

    Full Text Available Supporting and investing in the integration of immigrants and their children is critically important to US society. Successful integration contributes to the nation’s economic vitality, its civic and political health, and its cultural diversity. But although the United States has a good track record on immigrant integration, outcomes could be better. A national, coherent immigrant integration policy infrastructure is needed. This infrastructure can build on long-standing partnerships between civil society and US public institutions. Such partnerships, advanced under Republican- and Democratic-led administrations, were initially established to facilitate European immigrants’ integration in large American cities, and later extended to help refugees fleeing religious persecution and war. In the twenty-first century, we must expand this foundation by drawing on the growing activism by cities and states, new civil society initiatives, and public-private partnerships that span the country. A robust national integration policy infrastructure must be vertically integrated to include different levels of government and horizontally applied across public and private sector actors and different types of immigrant destinations. The resultant policy should leverage public-private partnerships, drawing on the energy, ideas, and work of community-based nonprofit organizations as well as the leadership and support of philanthropy, business, education, faith-based, and other institutions. A new coordinating office to facilitate interagency cooperation is needed in the executive branch; the mandate and programs of the Office of Refugee Resettlement need to be secured and where possible expanded; the outreach and coordinating role of the Office of Citizenship needs to be extended, including through a more robust grant program to community-based organizations; and Congress needs to develop legislation and appropriate funding for a comprehensive integration

  8. From the Northern Eurasia Earth Science Partnership Initiative to the Northern Eurasia Future Initiative

    Science.gov (United States)

    Streletskiy, D. A.; Groisman, P. Y.; Shugart, H. H., Jr.; Gulev, S.; Maksyutov, S. S.; Qi, J.

    2017-12-01

    Since 2004, the Northern Eurasia Earth Science Partnership Initiative (NEESPI) - an interdisciplinary program of internationally-supported Earth systems and science research - has addressed large-scale and long-term manifestations of climate and environmental changes over Northern Eurasia and their impact on the Global Earth system. With 40 books and more than 1500 peer-reviewed journal publications to its credit, NEESPI's output can now be used to directly support decision-making for societal needs. Specifically, it was decided to shift gradually the foci of regional studies in Northern Eurasia towards applications with the following major Science Question: "What dynamic and interactive change(s) will affect societal well-being, activities, and health, and what might be the mitigation and adaptation strategies that could support sustainable development and decision-making activities in Northern Eurasia?" To answer this question requires a stronger socio-economic component in the ongoing and future regional studies focused on sustainable societal development under changing climatic and environmental conditions. The NEESPI Research Team has reorganized itself into "Northern Eurasia Future Initiative" (NEFI) and developed a new Science Plan released in June 2016. The Plan underwent a 6-month-long public review and was finalized at the end of 2016. Its description was thereafter split between two review papers: Groisman et al. (2017) and Monier et al. (2017). The first paper describes the Plan rationale and a new set of topical questions. The second paper describes a major modeling approach that will be employed in addressing the "what to do" questions of the NEFI Research (cf., presentation by Monier et al. at this Session). In the current presentation, we outline the new NEFI research foci and present latest NEFI findings including international projects in the Eurasian Arctic, boreal zone, and the Dry Land Belt of Northern Eurasia (cf., also presentations at sister

  9. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  10. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  11. A Science-Faith Partnership to Provide Education and Facilitate Action on Climate Change and Energy Use

    Science.gov (United States)

    Cervenec, J. M.; Hitzhusen, G.; Ward, S.; Foster, C.

    2014-12-01

    In 2009, the Byrd Polar Research Center (BPRC) and Ohio Interfaith Power and Light (OhIPL) collaborated on a climate change education summit for scientists and clergy. Since that first program, a robust partnership has been nurtured where researchers at the center regularly contribute to events within the faith community. In 2014 alone, BPRC supported OhIPL in hosting a Teach-In event on climate change before a live audience that was simultaneously broadcast to three remote sites across Ohio; a State of the Climate event at the Ohio Statehouse that featured presentations by a scientist, a policymaker, and a member of the faith community; and an Earthkeeping Summit to bring together members of the faith community from across Ohio. OhIPL has helped BPRC fulfill one of our mission objectives of communicating science to a broad community. OhIPL engages houses of worship of all denominations through faith and education with a goal of moving them towards actions that reduce energy consumption. Houses of worship take actions for various reasons - including creation care, concerns of social justice related to climate change, or a desire to save money through building efficiency.

  12. A Partnership and Coping Enhancement Program for Couples Undergoing In Vitro Fertilization Treatment: An Intervention Study.

    Science.gov (United States)

    Ying, Liying; Wu, Xiangli; Wu, Lai Har; Shu, Jing; Loke, Alice Yuen

    2018-02-15

    This is a feasibility study to examine the effects of a partnership and coping enhancement program (PCEP) on improving the psychological well-being and marital functions of couples undergoing in vitro fertilization treatment. A total of 100 couples were recruited consecutively and assigned to a PCEP intervention group or a routine care control group. The couples in the PCEP group received an additional face-to-face, couple-based, 90-minute session on enhancing partnership and coping on the day of the embryo transfer (ET). The outcome measures were assessed at baseline (T0), 10 days after the ET (T1), and one month after the ET (T2). The level of anxiety of the women was lower in the intervention than in the control group at T1. Significant improvements in partnership and dyadic coping were seen in women at T2. The men of infertile couples reported a significant improvement in the scores for partnership at T2. The PCEP had no significant effects on marital satisfaction and marital adjustment for both the females and males of the infertile couples. The findings indicated that the PCEP is feasible and acceptable. Before a larger simple-size randomized controlled trial with participants drawn from multiple reproductive medical centers is conducted to further confirm its effectiveness.

  13. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  14. Parks, Place and Pedagogy - Education Partnerships with the National Park Service

    Science.gov (United States)

    Vye, E. C.; Rose, W. I.; Nash, B.; Klawiter, M.; Huntoon, J. E.; Engelmann, C. A.; Gochis, E. E.; MiTEP

    2011-12-01

    The Michigan Teaching Excellence Program (MITEP) is a multi-year program of teacher leadership development that empowers science teachers in Grand Rapids, Kalamazoo, and Jackson to lead their schools and districts through the process of improving science teaching and learning. A component of this program is facilitated through partnership between academia, K-12 educators, and the National Park Service (NPS) that aims to develop place-based education strategies that improve diversity and Earth Science literacy. This tangible education method draws upon both the sense of place that National Parks offer and the art of interpretation employed by the park service. Combined, these deepen cognitive process and provide a more diverse reflection of what place means and the processes behind shaping what we see. Our partnerships present participants the opportunity to intern in a Midwest national park for 3-8 weeks during their third year in the program. In summer 2011, eleven teachers from the Grand Rapids school district participated in this innovative way of learning and teaching Earth Science. One goal was to develop geological interpretive materials desired and needed for the parks. Secondly, and important to place-based educational methodologies, these deliverables will be used as a way of bringing the parks to urban classrooms. Participants lived in the parks and worked directly with both national park and Michigan Tech staff to create lesson plans, podcasts, media clips, video, and photographic documentation of their experiences. These lesson plans will be hosted in the Views of the National Park website in an effort to provide innovative teaching resources nationally for teachers or free-choice learners wishing to access information on Midwest national parks. To the benefit of park staff, working with teachers from urban areas offered an opportunity for park staff to access diverse learners in urban settings unable to visit the park. The foundation has been laid for

  15. 77 FR 24992 - OSHA Strategic Partnership Program for Worker Safety and Health (OSPP); Extension of the Office...

    Science.gov (United States)

    2012-04-26

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2011-0861] OSHA... and Health Administration (OSHA), Labor. ACTION: Request for public comments. SUMMARY: OSHA solicits... specified in the OSHAs Strategic Partnership Program for Worker Safety and Health (OSPP). DATES: Comments...

  16. Model Youth Programs: A Key Strategy for Developing Community-University Partnerships Using a Community Youth Development Approach

    Directory of Open Access Journals (Sweden)

    Yolanda Anyon

    2008-06-01

    Full Text Available Universities across the nation face the charge of enhancing their intellectual capital as a learning institution while also contributing to the greater social good. While there is great potential for university-community partnerships to generate lessons for youth workers and policy makers, create powerful new knowledge for the academic field, and provide transformative experiences for community members, partnerships often fail to produce such meaningful results. In the San Francisco Bay Area, community residents who have been involved in such unsuccessful initiatives frequently perceived that university partners spent insufficient time learning about the community context, prioritized research objectives over community needs and did not make long-term commitments. Despite these challenges, community-university partnerships can be useful strategies for advancing the field of youth development by strengthening research and practice in local contexts. This paper presents how the design and implementation of model youth programs served as an effective strategy in developing a partnership between a university-based center and two local communities over a 5-year period. It also describes essential lessons that other communities, research institutions or universities may use to launch, implement, expand and sustain their own successful partnerships to build local capacity to implement youth development practices, promote positive outcomes for young people, and generate knowledge about the impact of youth development approaches.

  17. NOAA's Joint Polar Satellite System's (JPSS) Proving Ground and Risk Reduction (PGRR) Program - Bringing JPSS Science into Support of Key NOAA Missions!

    Science.gov (United States)

    Sjoberg, W.; McWilliams, G.

    2017-12-01

    This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.

  18. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  19. G8 global partnership. France's contribution

    International Nuclear Information System (INIS)

    2005-09-01

    Program for Russia (MNEPR) will provide a framework for our cooperation by giving the parties involved the guarantees they need for successfully running the programs. Bilateral cooperation for the disposition of Russian weapons-grade plutonium is covered by a separate arrangement; - cooperation in the chemical field will be organised in the framework of a specific agreement; - cooperation in the biological field is set up through the International Science and Technology Centre (ISTC) in Moscow. Operational management of these cooperation projects has been entrusted to the French Atomic Energy Commission (CEA) in liaison with the General Secretariat for National Defence (SGDN) and the administrations financing these programs: the Ministry of Defence, the Ministry of Foreign Affairs and the Ministry of the Economy, Finance and Industry. As these programs involve a large number of persons, efficient coordination between donors and beneficiaries is essential. For the remediation of the Gremikha site for example the BERD, manager of the NDEP fund, the European Union (through TACIS) and France are coordinating their efforts with ROSATOM. The Contact Expert Group, under the aegis of the IAEA, also contributes to coordination in this field.With regard to dismantling of radioactive sources (RTGs), France is developing a program closely coordinated with Norway. Under the framework of the G8 and through contact with the various contributors and recipients, the Global Partnership Working Group (GPWG) follows up the implementation of these cooperation projects

  20. Academe-Industry Partnership: Basis for Enhanced Learning Guide in the New Science General Education Course

    Directory of Open Access Journals (Sweden)

    Alma D. Agero

    2016-11-01

    Full Text Available This study explores the academe-industry partnership of Cebu Technological University Bachelor of Science in Hospitality Management and Bachelor of Science in Industrial Technology major in Food Preparation and Services courses, SY 2014-2015 to improve the quality of course offering. It takes on the feedback received from supervisors of 50 different hotels and restaurants of Cebu province, as well as the self-rating of 185 OJTs of the two courses as regard to OJTs' level of functional and science-based core competencies. This descriptive research utilizes Likert-type research-made survey questionnaire which was previously tested for validity and reliability. The findings revealed that industry supervisors evaluated the trainees as Competent in core competencies (Bartending, Bread and pastry products, Cookery, Customer services, Front office services, food and beverages as well as functional skills (Problem solving, Leadership, Communication, Independent work, Creativity, Negotiation, Teamwork, Time management and Initiative. However, they found the students need of strengthening their problem solving and communication skills. The researchers therefore developed an enhanced learning guide for the New Science GE course to address the gaps based on the industry feedback.

  1. Scientists + Artists: An Introduction to Mutually Beneficial Partnerships

    Science.gov (United States)

    Sparks, A.

    2017-12-01

    As world leaders, climate and energy scientists, and others examine our future climate, new ways of collaborating and communicating across different social sectors are becoming more crucial. What images and stories are evoked when you think about the future of the planet? Storytelling and images are basic tools for artists, and are increasingly recognized as critical tools for scientists, educators, and people interested in communicating science to broader public audiences. Science/arts collaborations have numerous benefits and can be challenging when partners have different lexicons for making sense of the world. This participatory session will explore the benefits and role of science/arts partnerships when communicating and engaging with stakeholders from varying backgrounds. Attendees will develop shared vocabulary and examine collaborative tools that can help both non-artists and non-scientists better communicate about climate change, energy policies, and other topics. For newcomers, this will be a 101 primer to community engagement and using the arts and/or collaborating with artists to reach broader audiences with your work. Experienced attendees will examine their own previous partnerships to reflect on the successes and learn from the challenges. Topics to be covered include: 1) understanding shared values between artists/scientists; 2) clarifying target audiences; and 3) identifying factors and components critical for healthy partnerships across sectors. Theater director and engagement strategist Ashley Sparks leads this interactive session and reflects on learnings from her partnership with the Energy Foundation, the Network for Energy, Water, and Health in Affordable Buildings, and the Natural Resources Defense Council. In partnership with engineers and technical experts she has been leading efforts to create a story bank focused on increasing energy efficiency in affordable multifamily housing.

  2. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  3. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  4. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  5. National Youth Sports Program: Math/Science. Final report, [June 1, 1992--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    NYSP, a partnership of NCAA, HHS, and colleges and universities, is aimed at sports instruction and physical activity for disadvantaged youth. In 1992, DOE joined in to add a mathematics/science component. Federal funds were used to conduct mathematics and science education components on a limited pilot basis at 16 sites. Recommendations for future improvements are given.

  6. Inter-Institutional Partnerships Propel A Successful Collaborative Undergraduate Degree Program In Chemistry.

    Science.gov (United States)

    D'Souza, Malcolm J; Wang, Qiquan

    2012-10-01

    Small private liberal arts colleges are increasingly tuition-dependent and mainly attract students by creating student-centered learning communities. On the other hand, larger universities tend to be trendsetters where its faculty tend to seek intellectual independence and are involved in career focused cutting-edge research. The Institutional Development Awards (IDeA) and Experimental Program to Stimulate Competitive Research (EPSCoR) are federal-state-university partnerships that builds basic research infrastructure and coax the state-wide higher education institutions to collaborate with each other in order to enhance their competitiveness. As a result in Delaware, Wesley College instituted curricular and operational changes to launch an undergraduate program in biological chemistry where its students take three upper division chemistry courses and can choose to participate in annual summer undergraduate internships at nearby Delaware State University.

  7. International Collaborative Research Partnerships: Blending Science with Management and Diplomacy.

    Science.gov (United States)

    Lau, Chuen-Yen; Wang, Crystal; Orsega, Susan; Tramont, Edmund C; Koita, Ousmane; Polis, Michael A; Siddiqui, Sophia

    2014-12-01

    As globalization progressively connects and impacts the health of people across the world, collaborative research partnerships provide mutual advantages by sharing knowledge and resources to address locally and globally relevant scientific and public health questions. Partnerships undertaken for scientific research are similar to business collaborations in that they require attention to partner systems, whether local, international, political, academic, or non-academic. Scientists, like diplomats or entrepreneurs, are representatives of their field, culture, and country and become obligatory agents in health diplomacy. This role significantly influences current and future collaborations with not only the immediate partner but with other in country partners as well. Research partnerships need continuous evaluation of the collaboration's productivity, perspectives of all partners, and desired outcomes for success to avoid engaging in "research tourism", particularly in developing regions. International engagement is a cornerstone in addressing the impact of infectious diseases globally. Global partnerships are strategically aligned with national, partner and global health priorities and may be based on specific requests for assistance from the partnering country governments. Here we share experiences from select research collaborations to highlight principles that we have found key in building long-term relationships with collaborators and in meeting the aim to address scientific questions relevant to the host country and strategic global health initiatives.

  8. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    workshops have been enriched by the incorporation of earth and space science information and curricular materials from NASA. In addition, visits to Ames Research Center have given BAESI participants an opportunity to explore the Educator Resource Center, learn about NASA's programs for teachers and students, and experience presentations by NASA scientists engaged in cutting edge research about the earth system. Project ALERT demonstrates the power of a state-based partnership that unites scientists and educators with diverse perspectives and strengths in a synergistic effort to improve science education.

  9. A collection of research reporting, theoretical analysis, and practical applications in science education: Examining qualitative research methods, action research, educator-researcher partnerships, and constructivist learning theory

    Science.gov (United States)

    Hartle, R. Todd

    2007-12-01

    Educator-researcher partnerships are increasingly being used to improve the teaching of science. Chapter 1 provides a summary of the literature concerning partnerships, and examines the justification of qualitative methods in studying these relationships. It also justifies the use of Participatory Action Research (PAR). Empirically-based studies of educator-researcher partnership relationships are rare despite investments in their implementation by the National Science Foundation (NSF) and others. Chapter 2 describes a qualitative research project in which participants in an NSF GK-12 fellowship program were studied using informal observations, focus groups, personal interviews, and journals to identify and characterize the cultural factors that influenced the relationships between the educators and researchers. These factors were organized into ten critical axes encompassing a range of attitudes, behaviors, or values defined by two stereotypical extremes. These axes were: (1) Task Dictates Context vs. Context Dictates Task; (2) Introspection vs. Extroversion; (3) Internal vs. External Source of Success; (4) Prior Planning vs. Implementation Flexibility; (5) Flexible vs. Rigid Time Sense; (6) Focused Time vs. Multi-tasking; (7) Specific Details vs. General Ideas; (8) Critical Feedback vs. Encouragement; (9) Short Procedural vs. Long Content Repetition; and (10) Methods vs. Outcomes are Well Defined. Another ten important stereotypical characteristics, which did not fit the structure of an axis, were identified and characterized. The educator stereotypes were: (1) Rapport/Empathy; (2) Like Kids; (3) People Management; (4) Communication Skills; and (5) Entertaining. The researcher stereotypes were: (1) Community Collaboration; (2) Focus Intensity; (3) Persistent; (4) Pattern Seekers; and (5) Curiosity/Skeptical. Chapter 3 summarizes the research presented in chapter 2 into a practical guide for participants and administrators of educator-researcher partnerships

  10. Where science meets technology Cern and Oracel - a long-standing partnership

    CERN Multimedia

    Garvey, Kelsey

    2009-01-01

    "Even though the partnership between Cern and Oracle has lasted 27 years, the partnership between Cern openlab and Oarcle only began in 2003. This collaboration has allowed both companies to team up at the intersection of business and technology and to excel in their respective endeavours" (1 page)

  11. The AMTEX Partnership{trademark}. Fourth quarter FY95 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operations and program management of the AMTEX Partnership{trademark} is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership. Progress is reported on the following projects: computer-aided fabric evaluation; cotton biotechnology; demand activated manufacturing architecture; electronic embedded fingerprints; on-line process control for flexible fiber manufacturing; rapid cutting; sensors for agile manufacturing; and textile resource conservation.

  12. Discover Earth: An earth system science program for libraries and their communities

    Science.gov (United States)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  13. U. S. EPA voluntary programs and the oil and gas industry : Natural Gas STAR and Energy STAR Buildings Partnership

    International Nuclear Information System (INIS)

    Gunnung, P.

    2000-01-01

    The structure of two EPA programs directed towards wasted energy in buildings, reducing emissions, increasing energy efficiency and maximizing profits are described. The programs are based on a partnership approach between EPA and participants, and involve elements of plans and performance benchmarks, an integrated approach and communications and demonstration of successful initiatives. EPA provides planning and technical support in the form of a website, software tools, manuals, electronic sources and a purchasing tool kit. The Energy STAR Building Partnership has over 3,000 participants, and can boast of a cumulative saving of over $ 1.4 billion in energy bills and carbon dioxide emission reduction of 44.1 billion pounds, resulting from efficiency upgrades. The Natural Gas Partnership between the EPA and the oil and natural gas industry to cost effectively reduce methane emissions from the production, transmission, and distribution of natural gas also has had a number of successful initiatives such as replacement or retrofit of high bleed pneumatic devices, installation of flash tank separators on glycol dehydrators and other partner-reported projects such as replacement of wet seals with dry seals on compressors and connecting glycol pump to vapour recovery unit. As a results of these and other initiatives, annual methane emission was reduced by 22.2 bcf in 1998 as opposed to 3.4 bcf prior to the beginning of the program in 1993. Approximately 67 per cent of all reductions can be attributed to partner innovation. Overall assessment is that the program is innovative, achieves both economic and environmental goals, facilitates government and industry cooperation and is living proof that non-regulatory, cooperative programs work

  14. Ten Years of Northern Eurasia Earth Science Partnership Initiative (NEESPI): Results and Future Plans

    Science.gov (United States)

    Groisman, P. Y.; Gutman, G.; Gulev, S.; Maksyutov, S. S.

    2014-12-01

    During recent decades, Northern Eurasia was affected by unprecedented climate and environmental changes. Several droughts and heat waves alternated with hazardous extreme precipitation and flood events. Permafrost thaw, retreating Arctic sea ice, increasing areas of forest fire, and dramatic regional warming buffeted this region, tossing northern Eurasia from one extreme condition to the next. The region stores nearly half of the Earth's terrestrial carbon in permafrost, wetlands, and forested land, so ecosystem changes that release stored carbon could profoundly affect the world's climate. Furthermore, changes to climate and to hydrological and biogeochemical cycles are starting to affect daily life. For example, infrastructure is collapsing as permafrost thaws, severe winter storms increasingly bring businesses to a halt, and a growing water deficit is beginning to strain agricultural production and forestry. To pool resources and facilitate research, the Northern Eurasia Earth Science Partnership Initiative (NEESPI, http://neespi.org) was launched in 2004. With its multidisciplinary focus, the internationally funded NEESPI (more than165 individual international projects during the past decade) has challenged participants to research climate-ecosystem interactions, societal impacts from extreme events in Northern Eurasia, and the feedbacks of these interactions and impacts to the global Earth system. Among the numerous Institutional and private sponsors from the United States, European Union, Russia, China, and Japan, the cornerstone support for the NEESPI studies was provided by the NASA Land Cover and Land Use Change Program and the Russian Academy of Sciences. At this presentation we shall overview the environmental studies conducted by the NEESPI community, brief the audience about the main achievements of the NEESPI researchers, and lay down the plans for the future studies. At the side event of the Meeting, we are going to initiate preparation of the book

  15. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  16. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    Science.gov (United States)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  17. How partnership accelerates Open Science: High Energy Physics and INSPIRE, a case study of a complex repository ecosystem

    CERN Document Server

    AUTHOR|(CDS)2079501; Hecker, Bernard Louis; Holtkamp, Annette; Mele, Salvatore; O'Connell, Heath; Sachs, Kirsten; Simko, Tibor; Schwander, Thorsten

    2013-01-01

    Public calls, agency mandates and scientist demand for Open Science are by now a reality with different nuances across diverse research communities. A complex “ecosystem” of services and tools, mostly communityDdriven, will underpin this revolution in science. Repositories stand to accelerate this process, as “openness” evolves beyond text, in lockstep with scholarly communication. We present a case study of a global discipline, HighDEnergy Physics (HEP), where most of these transitions have already taken place in a “social laboratory” of multiple global information services interlinked in a complex, but successful, ecosystem at the service of scientists. We discuss our firstDhand experience, at a technical and organizational level, of leveraging partnership across repositories and with the user community in support of Open Science, along threads relevant to the OR2013 community.

  18. Fat dogs and coughing horses: K-12 programming for veterinary workforce development.

    Science.gov (United States)

    San Miguel, Sandra F; Carleton Parker, Loran; Adedokun, Omolola A; Burgess, Wilella D; Cipriani Davis, Kauline S; Blossom, Thaddaeus D; Schneider, Jessica L; Mennonno, Ann M; Ruhl, Joseph D; Veatch, Jennifer H; Wackerly, Amy J; Shin, Soo Yeon; Ratliff, Timothy L

    2013-01-01

    Workforce development strategies to educate, inform, and diversify the veterinary profession of the future must begin with children in elementary school. This article provides a description of the Fat Dogs and Coughing Horses program, which takes a multifaceted approach toward informing young students, beginning in first grade, about the interesting work and career opportunities available in the field of veterinary medicine. The program, a collaboration among Purdue University and Indiana public schools, is supported by a Science Education Partnership Award from the Office of Research Infrastructure Programs, a component of the National Institutes of Health. The overall goal of the program is to provide formal and informal educational opportunities for students, parents, teachers, and the public about the science involved in keeping people and their animals healthy. Examples of health concerns that impact both people and their pets are used to inform and excite children about careers in the health sciences. The program resulted in (1) curricula for students in Grades 1-3, 6, and 9; (2) four children's books and a set of collectible cards which highlight veterinarians, veterinary technicians, and research scientists who work with animals; and (3) four traveling museum-level quality exhibits. Preliminary assessment data has shown that the implementation of the curricula enhanced student science learning and science attitudes and interests. The program provides evidence that partnerships among professionals in veterinary medicine and K-12 education can result in impactful workforce development programs.

  19. Strengthening Communication and Scientific Reasoning Skills of Graduate Students Through the INSPIRE Program

    Science.gov (United States)

    Pierce, Donna M.; McNeal, K. S.; Radencic, S. P.; Schmitz, D. W.; Cartwright, J.; Hare, D.; Bruce, L. M.

    2012-10-01

    Initiating New Science Partnerships in Rural Education (INSPIRE) is a five-year partnership between Mississippi State University and three nearby school districts. The primary goal of the program is to strengthen the communication and scientific reasoning skills of graduate students in geosciences, physics, chemistry, and engineering by placing them in area middle school and high school science and mathematics classrooms for ten hours a week for an entire academic year as they continue to conduct their thesis or dissertation research. Additional impacts include increased content knowledge for our partner teachers and improvement in the quality of classroom instruction using hands-on inquiry-based activities that incorporate ideas used in the research conducted by the graduate students. Current technologies, such as Google Earth, GIS, Celestia, benchtop SEM and GCMS, are incorporated into many of the lessons. Now in the third year of our program, we will present the results of our program to date, including an overview of documented graduate student, teacher, and secondary student achievements, the kinds of activities the graduate students and participating teachers have developed for classroom instruction, and the accomplishments resulting from our four international partnerships. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program (Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.

  20. Innovative Graduate Research Education for Advancement of Implementation Science in Adolescent Behavioral Health.

    Science.gov (United States)

    Burton, Donna L; Levin, Bruce Lubotsky; Massey, Tom; Baldwin, Julie; Williamson, Heather

    2016-04-01

    An innovative approach to research education that integrates the theory and principles of implementation science, participatory research, and service learning in the area of adolescent behavioral health is presented. Qualitative interviews and surveys of program participants have been conducted to assess the program's curricula, service-learning partnerships, student (scholar) satisfaction, and views of community partnerships and academic mentors. The Institute has experienced the successful completion of its first and second cohorts and enrollment of a third cohort of scholars. Community partners are utilizing results of service-learning projects to influence agency operations. Institute scholars have identified research and service learning experiences as key factors in the decision to apply to the Institute graduate certificate program. The availability of tuition support is identified as valuable but not ranked as the most important reason for scholar interest in the program. Academic mentors report positive relationships with community agencies. Future iterations of the program will expand options for distance learning and alternatives to traditional graduate education for community-based scholars. Community partner agency capacity for participation is expected to change over time. Methods are being identified to both sustain existing partnerships and develop new community partnership relationships.

  1. A Study on The Effectiveness of a Pilot Inquiry-Based Middle School Science Program on Non- Cognitive Outcomes and Academic Achievement

    Science.gov (United States)

    Dionisio, Rui Meira

    The randomized research study assessed the effect of an inquiry-based science (IBS) program on non-cognitive outcomes and academic achievement. The study was the result of a grant that was awarded by Professional Resources in Science and Mathematics (PRISM), a program affiliated with Montclair State University in conjunction with Bristol-Myers Squibb, and part of the New Jersey Statewide Systemic Initiative (NJSSI). The NJSSI is a partnership of schools, districts, colleges and universities, science centers, businesses, and museums dedicated to improving the teaching and learning of science, mathematics, and technology in New Jersey. The quantitative research study utilized an IBS instructional program titled Science and Technology Concepts for Middle Schools (STC/MS) and was implemented in two middle schools within the same suburban school district. This study examined the effect of IBS classrooms on learning outcomes specifically related to gender and special education. Evaluation of student learning outcomes was conducted through the administration of three instruments: the Academic Self-Concept (ASC) scale, unit assessments, and NJASK 8 Science. The ASC scale and unit assessments were administered as a pretest and posttest in IBS classrooms. NJASK 8 Science scale scores were obtained through reporting of student performance data from the New Jersey Department of Education to the district. The quantitative analysis in this study provided evidence that IBS classrooms had a positive effect on academic achievement. Overall, students in IBS classrooms performed better than students in traditional classrooms on unit assessments. Additionally, male students and special education students in IBS classrooms outperformed students in traditional classrooms on unit assessments.

  2. Forging a partnership between operations and training

    International Nuclear Information System (INIS)

    Sheppard, J.J.

    1991-01-01

    Following the accident at Three Mile Island in 1979, the world of training changed radically, and the field became very specialized and technical. In some cases, this led to a marked separation between Operations and Training and a decrease in the effectiveness of the training program due to divergent objectives and needs. By recognizing the mutual needs between Operations and Training, defining each group's role and developing mutual objectives, an effective program can be implemented and a true partnership formed. Following the implementation of the mutually agreed upon program, an ongoing measurement of the effectiveness of the program can help to strengthen the partnership and to assure that corrective action is taken in a timely manner, when required

  3. Green Power Partnership Frequently Asked Questions

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page provides a brief program overview, including vision and accomplishments.

  4. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  5. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  6. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  7. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    Science.gov (United States)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  8. Toward enhanced learning of science: An educational scheme for informal science institutions

    Science.gov (United States)

    Suzuki, Midori

    Current educational operation for informal science institutions tend to be based on the staff's experience and intuition rather than on educational theories or research findings. This status study sought research evidence for an educational scheme to give informal science institutions. Evidence for this scheme came from surveys to determine specific circumstances of educational operations and visitor behaviors. The Provus discrepancy model, seeking gaps between the actual and desired states, guided this investigation of how informal science education institution staff view the nature and status of educational operations. Another investigation sought visitors' views of the effectiveness of the main idea for exhibit understanding (n=68 for each group of with the main idea and without the main idea), effective labels (n=68), expectations toward on-site lessons(n=22 and 65 for student groups, and n=2 for teachers), and possibilities for assessments of museum operations. Institutional data were collected via a web portal, with a separate site created for administrators (n=41), exhibit developers (n=21), and program planners (n=35). The survey asked about actual and desired states in terms of goals and roles of staff, contents of exhibits and programs, assessment, and professional development. The four visitor surveys were administered individually at the North Carolina Museum of Natural Sciences. The institutional survey found that most institutions focus on attitudinal reinforcement rather than visitor learning, do not overtly value research or long-term assessment, and value partnerships with K-12 schools more than other groups. It is also clarified that the staff do not have a clear vision of the nature or function of an operations manuals. Large gaps were found between the actual and desired states in terms of assessment (administrators, exhibit developers, and program planners), professional development (exhibit developers and program planners), and partnerships

  9. High Return on Investments in Scientist-Educator Partnerships: Broader Impact Strategies That Endure and Propagate

    Science.gov (United States)

    Peach, C. L.; Franks, S. E.

    2004-12-01

    Tackling the broader impact section of a research proposal need not be a dilemma that "rears its ugly head" with each proposal deadline. By investing in partnerships with informal science education (ISE) organizations, researchers can establish a foundation for efficient, high quality, research-based educational outreach (EO) that can help them fulfill their broader impact obligations for years to come. Just as an interdisciplinary research project requires collaboration among scientists from a variety of disciplines, a research project with exemplary EO requires partnerships with those who specialize in science education. By engaging in such partnerships scientists gain access to professionals who have expertise in translating research topics into concept-centered programs, exhibits and online resources, and to the diverse student, teacher and public audience reached through ISE. By leveraging the intellectual and material resources of researchers and educators, these potentially long-lived relationships provide an efficient and effective means for achieving broader impact. Ultimately, the efficacy of this investment strategy depends on relieving the researcher of the time consuming burden of seeking out appropriate partners, initiating partnerships and conferring with science educators on potential projects. Recognizing this barrier to scientists' participation, the California Center for Ocean Sciences Education Excellence (CACOSEE) has adopted a unique approach - one in which CACOSEE serves primarily as a catalyst and facilitator of researchers EO activities rather than as an EO provider. We have apprised ourselves of the programs, interests and needs of a carefully selected group of ISE organizations and used this information as the basis for creating a spectrum of EO opportunities for researchers. These options are flexible, scalable and easily customized to fit the research interests, time constraints and budgetary limitations of any researcher. Through e

  10. The North Dakota lignite partnership

    International Nuclear Information System (INIS)

    Porter, C.R.

    1998-01-01

    The State of North Dakota and the Lignite Energy Council have formed a government/industry partnership to promote the use of North Dakota lignite. The partnership provides funding and management for the Lignite Research, Development and Marketing Program. The program funds activities which preserve and enhance jobs and lignite production; ensure economic growth, stability and opportunity; and maintain a stable and competitive tax base. Funding is provided for activities in three areas: marketing feasibility studies, small research projects, and demonstration projects. Funding is derived from the state coal severance tax. Approximately $3,000,000 annually is appropriated from coal severance revenues for program activities. North Dakota is the ninth largest coal producing state, with lignite as the only rank of coal found in the state. Energy is the second largest economic sector in North Dakota, and it currently comprises over 12% of the state's total economic base. This paper reviews the North Dakota lignite industry and describes studies and projects which have received funding from the program

  11. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  12. Reciprocal Learning in Partnership Practice: An Exploratory Study of a Home Visiting Program for Mothers with Depression

    Science.gov (United States)

    Fowler, Cathrine; Dunston, Roger; Lee, Alison; Rossiter, Chris; McKenzie, Jo

    2012-01-01

    This paper reports on a small exploratory study that investigates the place and role of reciprocal learning within a partnership-based home visiting program for mothers experiencing depression. The study is one important example of an increased focus on reciprocal learning within practice that has significant implications for the development of…

  13. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  14. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    Science.gov (United States)

    Sparrow, E. B.

    2003-12-01

    The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole

  15. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    Science.gov (United States)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  16. The Future of the State Partnership Program: Benefits, Policy and Leveraging

    Science.gov (United States)

    2017-04-06

    of partnerships to assist three post-Soviet bloc countries in their democratic transition. The importance of establishing partnerships has been...future because the costs and responsibilities of global leadership will be spread among the U.S. and its partners.23 The

  17. NASA's Coordinated Efforts to Enhance STEM Education: Bringing NASA Science into the Library

    Science.gov (United States)

    Meinke, B. K.; Thomas, C.; Eyermann, S.; Mitchell, S.; LaConte, K.; Hauck, K.

    2015-11-01

    Libraries are community-centered, free-access venues serving learners of all ages and backgrounds. Libraries also recognize the importance of science literacy and strive to include science in their programming portfolio. Scientists and educators can partner with local libraries to advance mutual goals of connecting the public to Earth and Space Science. In this interactive Special Interest Group (SIG) discussion, representatives from the NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) community's library collaborations discussed the opportunities for partnership with public and school libraries; explored the resources, events, and programs available through libraries; explored NASA science programming and professional development opportunities available for librarians; and strategized about the types of support that librarians require to plan and implement programs that use NASA data and resources. We also shared successes, lessons learned, and future opportunities for incorporating NASA science programming into library settings.

  18. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  19. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  20. The Quest for Transformative Partnerships in STEM Education: A Comparison of Policies, Structures and Evaluation Practices

    Science.gov (United States)

    Kingsley, G.

    2004-12-01

    One of the frequent policy prescriptions offered by federal officials for improving science, technology, engineering and mathematics (STEM) education in the United States is to encourage the development of partnerships between higher education, elementary and secondary education, and informal education. This prescription is not unique to STEM education. Rather stimulating the creation and development of partnerships has become one of the preferred strategies for reforming governmental programs through several administrations. This research presents a comparison of several policies designed to stimulate partnerships across multiple organizations. In doing so we examine assumptions about the nature of partnerships embedded in policies and the consequences of these assumptions on the organization and the evaluation of the partnerships. A recurring theme we observe among policies is the quest for transformative partnerships where changing the strategies and behaviors of the participating partners is seen as a necessary, if not sufficient, condition for producing the desired policy outcomes (usually articulated as improving the performance of the school, teacher, student, and even all three). While the goal of policy makers is to achieve transformation, the goal of participating organizations seems to be more instrumental, anchored in their own institutional goals and missions. In this analysis define partnership as voluntary arrangements between organizations, anchored by agreements, to promote the exchange, sharing, or co-development of products and/or programs. The analysis first examines the degree to which policies produce such inter-organizational relationships. Six concepts are drawn for organizational and inter-organizational relations research as a framework for examining the influence of policy upon the pre-conditions for partnership, partnering activities, and the evaluation of partnership performance outcomes. We examine the degree to which policy addresses

  1. NASA Earth Science Disasters Program Response Activities During Hurricanes Harvey, Irma, and Maria in 2017

    Science.gov (United States)

    Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.

    2017-12-01

    will provide an overview of the response activities and data products provided by the NASA Earth Science Disasters program, partnerships with federal end-users and the International Charter, and preliminary feedback from end-user partners during response efforts following Hurricanes Harvey, Irma, and Maria..

  2. Aspirations and realities in a North-South partnership for health promotion: lessons from a program to promote safe male circumcision in Botswana.

    Science.gov (United States)

    Katisi, Masego; Daniel, Marguerite; Mittelmark, Maurice B

    2016-07-28

    International donors support the partnership between the Government of Botswana and two international organisations: U.S. Centers for Disease Control and Prevention and Africa Comprehensive HIV/AIDS Partnership to implement Voluntary Medical Male Circumcision with the target of circumcising 80 % of HIV negative men in 5 years. Botswana Government had started integration of the program into its health system when international partners brought in the Models for Optimizing Volume and Efficiency to strengthen delivery of the service and push the target. The objective of this paper is to use a systems model to establish how the functioning of the partnership on Safe Male Circumcision in Botswana contributed to the outcome. Data were collected using observations, focus group discussions and interviews. Thirty participants representing all three partners were observed in a 3-day meeting; followed by three rounds of in-depth interviews with five selected leading officers over 2 years and three focus group discussions. Financial resources, "ownership" and the target influence the success or failure of partnerships. A combination of inputs by partners brought progress towards achieving set program goals. Although there were tensions between partners, they were working together in strategising to address some challenges of the partnership and implementation. Pressure to meet the expectations of the international donors caused tension and challenges between the in-country partners to the extent of Development Partners retreating and not pursuing the mission further. Target achievement, the link between financial contribution and ownership expectations caused antagonistic outcome. The paper contributes enlightenment that the functioning of the visible in-country partnership is significantly influenced by the less visible global context such as the target setters and donors.

  3. STREAMS - Supporting Underrepresented Groups in Earth Sciences

    Science.gov (United States)

    Carvalho-Knighton, K.; Johnson, A.

    2009-12-01

    In Fall 2008, STREAMS (Supporting Talented and Remarkable Environmental And Marine Science students) Scholarship initiative began at the University of South Florida St. Petersburg, the only public university in Pinellas County. STREAMS is a partnership between the University of South Florida St. Petersburg’s (USFSP) Environmental Science and Policy Program and University of South Florida’s (USF) College of Marine Science. The STREAMS Student Scholarship Program has facilitated increased recruitment, retention, and graduation of USFSP environmental science and USF marine science majors. The STREAMS program has increased opportunities for minorities and women to obtain undergraduate and graduate degrees, gain valuable research experience and engage in professional development activities. STREAMS scholars have benefited from being mentored by USFSP and USF faculty and as well as MSPhDs students and NSF Florida-Georgia LSAMP Bridge to Doctorate graduate fellows. In addition, STREAMS has facilitated activities designed to prepare student participants for successful Earth system science-related careers. We will elucidate the need for this initiative and vision for the collaboration.

  4. A Graduate Student's Experience and Perspective on a Student-Teacher-Researcher Partnership

    Science.gov (United States)

    Bostic, J.; Stylinski, C.; Doty, C.

    2017-12-01

    Teachers and their K-12 students lack firsthand experience in science research and often harbor misconceptions about science practices and the nature of science. To address this challenge, the NOAA-funded Student-Teacher-Researcher (STAR) partnership that provides rural high school students with authentic research experiences investigating the amount and sources of nitrate in schoolyard runoff. Teachers received training, guiding curricular materials aligned with NGSS and in-classroom support. With a focus on evidence-based reasoning skills, students actively participate in the research process through sample collection, data analysis, and an in-person discussion of conclusions and implications with our scientist team. As a member of this team, I assisted with refining the study design, analyzing nitrate isotope runoff samples, and sharing insights and feedback with students during the in-person discussion session. Assessment results indicate student gained an understanding of nitrate pollution and of science practices. As a graduate student, young scientist, and possessor of a B.S. in Science Education, I already recognized the value of involving K-12 students and teachers in authentic research experiences, as these experiences expose students to the nature of science while also improving content knowledge. During the STAR partnership, I learned firsthand some of the obstacles presented during outreach involving partnerships between a research institution and schools, such as inflexibility of school scheduling and the need for flexibility with research questions requiring complex lab analysis. Additionally, I discovered the challenge of working systemically across a school district, which can have broad impact but limit student experiences. Highlights of my experience included interactions with students and teachers, especially when students have unexpected answers to my questions, providing novel explanations for patterns observed in the data. Despite the

  5. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  6. Evolution of an academic–public library partnership

    Directory of Open Access Journals (Sweden)

    Robert J, Engeszer

    2016-01-01

    Full Text Available A partnership to improve access to health information via an urban public library system was established in St. Louis, Missouri, in 2011. A multiyear project was outlined that included an information needs assessment, a training class for public library staff, information kiosks at library branches for delivering printed consumer health materials, and a series of health-related programming. The partnership evolved to include social service and community organizations to carry out project goals and establish a sustainable program that met the health and wellness interests of the community.

  7. National Clean Fleets Partnership (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  8. Gender differences in partner interactions during an after-school science peer tutoring program

    Science.gov (United States)

    Brei-Crawley, M. Jo

    This teacher research study examined an after-school science program called SSTAR (Science Students Teaching as Resources) to determine if this program encourages early scientific involvement for girls, specifically the investigation of simple machines. SSTAR's overall goal was to develop scientific skills in fourth grade tutors who were partnered with second grade tutees. This study was conducted during two different SSTAR study sessions, identified as the pilot study (year one) and the expanded study (year two). The SSTAR program and the data collection instruments were refined and modified during this two-year process. Four data collection instruments were used to gather data and insights into this program; video-taped interactions between tutor and tutee, a writing assessment, a performance assessment and focus group discussions. The video taped partnership interactions found that tutors used similar instructional strategies and tutees gave similar response strategies. However, these strategies varied according to the gender of the partner. A written assessment, in the form of an open ended question was given to just the tutors at the beginning and end of their session. Additionally, a performance assessment was given. This assessment asked the tutors to construct a machine from the Legos(c) that were provided. This assessment was also done in a pretest/post-test format. Scores from the writing and performance assessment were then compared and the performance assessment showed more tutor growth in knowledge of simple machines than the writing assessment. Overall students made comments stating they enjoyed the SSTAR program and would sign up again. They had no preference for a same gender or opposite gender partner among either tutor or tutee discussions. All the data examined shows evidence that SSTAR was an effective program for tutor growth in the scientific area of simple machines. While the original study focus was specifically on girls, both genders

  9. Succession planning for the future through an academic-practice partnership: a nursing administration master's program for emerging nurse leaders.

    Science.gov (United States)

    Sherman, Rose; Dyess, Susan; Hannah, Ed; Prestia, Angela

    2013-01-01

    A global nursing leadership shortage is projected by the end of this decade. There is an urgent need to begin developing emerging nurse leaders now. This article describes the work of an academic-practice partnership collaborative of nurse leaders. The goal of the partnership is to develop and promote an innovative enhanced nursing administration master's program targeted to young emerging nurse leaders, who have not yet moved into formal leadership roles. An action research design is being used in program development and evaluation. Qualities needed by emerging leaders identified through research included a need to be politically astute, competency with business skills required of nurse leaders today, comfort with ambiguity, use of a caring approach, and leadership from a posture of innovation. The current curriculum was revised to include clinical immersion with a nurse leader from the first semester in the program, a change from all online to online/hybrid courses, innovative assignments, and a strong mentorship component. Eighteen young emerging nurse leaders began the program in January 2012. Early outcomes are positive. The emerging nurse leaders may be uniquely positioned, given the right skills sets, to be nurse leaders in the new age.

  10. The Centers for Ocean Science Education Excellence (COSEE) initiative

    Science.gov (United States)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  11. Determinants of Private Long-Term Care Insurance Purchase in Response to the Partnership Program.

    Science.gov (United States)

    Lin, Haizhen; Prince, Jeffrey T

    2016-04-01

    To assess three possible determinants of individuals' response in their private insurance purchases to the availability of the Partnership for Long-Term Care (PLTC) insurance program: bequest motives, financial literacy, and program awareness. The health and retirement study (HRS) merged with data on states' implementation of the PLTC program. Individual-level decision on private long-term care insurance is regressed on whether the PLTC program is being implemented for a given state-year, asset dummies, policy determinant variable, two-way and three-way interactions of these variables, and other controls, using fixed effects panel regression. Analysis used a sample between 50 and 69 years of age from 2002 to 2010, resulting in 12,695 unique individuals with a total of 39,151 observations. We find mild evidence that intent to bequest influences individual purchase of insurance. We also find that program awareness is necessary for response, while financial literacy notably increases responsiveness. Increasing response to the PLTC program among the middle class (the stated target group) requires increased efforts to create awareness of the program's existence and increased education about the program's benefits, and more generally, about long-term care risks and needs. © Health Research and Educational Trust.

  12. Creating Next Generation Teacher Preparation Programs to Support Implementation of the Next Generation Science Standards and Common Core State Standards in K-12 Schools: An Opportunity for the Earth and Space Sciences

    Science.gov (United States)

    Geary, E. E.; Egger, A. E.; Julin, S.; Ronca, R.; Vokos, S.; Ebert, E.; Clark-Blickenstaff, J.; Nollmeyer, G.

    2015-12-01

    A consortium of two and four year Washington State Colleges and Universities in partnership with Washington's Office of the Superintendent of Public Instruction (OSPI), the Teachers of Teachers of Science, and Teachers of Teachers of Mathematics, and other key stakeholders, is currently working to improve science and mathematics learning for all Washington State students by creating a new vision for STEM teacher preparation in Washington State aligned with the Next Generation Science Standards (NGSS) and the Common Core State Standards (CCSS) in Mathematics and Language Arts. Specific objectives include: (1) strengthening elementary and secondary STEM Teacher Preparation courses and curricula, (2) alignment of STEM teacher preparation programs across Washington State with the NGSS and CCSS, (3) development of action plans to support implementation of STEM Teacher Preparation program improvement at Higher Education Institutions (HEIs) across the state, (4) stronger collaborations between HEIs, K-12 schools, government agencies, Non-Governmental Organizations, and STEM businesses, involved in the preparation of preservice STEM teachers, (5) new teacher endorsements in Computer Science and Engineering, and (6) development of a proto-type model for rapid, adaptable, and continuous improvement of STEM teacher preparation programs. A 2015 NGSS gap analysis of teacher preparation programs across Washington State indicates relatively good alignment of courses and curricula with NGSS Disciplinary Core Ideas and Scientific practices, but minimal alignment with NGSS Engineering practices and Cross Cutting Concepts. Likewise, Computer Science and Sustainability ideas and practices are not well represented in current courses and curricula. During the coming year teams of STEM faculty, education faculty and administrators will work collaboratively to develop unique action plans for aligning and improving STEM teacher preparation courses and curricula at their institutions.

  13. Tools and benefits of „Partnership for Peace” program for the Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Nicolae ŢÂU

    2018-03-01

    Full Text Available The article reviews the tools and mechanisms of the „Partnership for Peace” Program and its benefits for our country. Among the main benefits, the authors mention: reforming the defense and security sector, ensuring the interoperability of its own forces with those of the allied and partner countries with regard to participate in NATO PfP multinational exercises and operations, protecting the environment by destroying and neutralizing expired ammunition stocks, neutralization and disposal of pesticide and chemical stocks.

  14. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  15. The International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M.; Morrow, C.; Thompson, B.

    2006-12-01

    The International Heliophysical Year (IHY) will celebrate the 50th anniversary of the International Geophysical Year (IGY) and will continue its tradition of international research collaboration. The term "heliophysical" is an extension of the term "geophysical", where the Earth, Sun & Solar System are studied not as separate domains but through the universal processes governing the heliosphere. IHY represents a logical next-step, extending the studies into the heliosphere and thus including the drivers of geophysical change. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe the IHY Education and Outreach Program, how to participate and the benefits in doing so. ~

  16. So, You Want to be a Science Communicator?

    Science.gov (United States)

    Radzilowicz, John G.

    2009-03-01

    The late Carl Sagan opined that somehow we have managed to create a global civilization dependant on science and technology in which almost no one understands science and technology. This is an unacceptable recipe for disaster with social, political and financial implications for the future of scientific research. And so, like it or not, popular science communication, more than ever before, is an important and necessary part of the scientific enterprise. Public outreach programs, media interviews, and popular articles have become required parts of the scientist's professional repertoire. But, what does it take to be a good science communicator? What is needed to develop and deliver meaningful public outreach programs? How do you handle non-technical presentations? And, what help is available in developing the necessary skills for good popular science communication? This presentation will look at the essential components of effective science communication aimed at a broad public audience. The components of successful science communication in programs, presentations and articles will be discussed. Specific attention will be given to how university-museum partnerships can expand the reach and enhance the quality of public outreach programs.

  17. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  18. Impact challenges in community science-with-practice: lessons from PROSPER on transformative practitioner-scientist partnerships and prevention infrastructure development.

    Science.gov (United States)

    Spoth, Richard; Greenberg, Mark

    2011-09-01

    At present, evidence-based programs (EBPs) to reduce youth violence are failing to translate into widespread community practice, despite their potential for impact on this pervasive public health problem. In this paper we address two types of challenges in the achievement of such impact, drawing upon lessons from the implementation of a partnership model called PROSPER. First, we address five key challenges in the achievement of community-level impact through effective community planning and action: readiness and mobilization of community teams; maintaining EBP implementation quality; sustaining community teams and EBPs; demonstrating community-level impact; and continuous, proactive technical assistance. Second, we consider grand challenges in the large-scale translation of EBPs: (1) building, linking and expanding existing infrastructures to support effective EBP delivery systems, and (2) organizing networks of practitioner-scientist partnerships-networks designed to integrate diffusion of EBPs with research that examines effective strategies to do so. The PROSPER partnership model is an evidence-based delivery system for community-based prevention and has evolved through two decades of NIH-funded research, assisted by land grant universities' Cooperative Extension Systems. Findings and lessons of relevance to each of the challenges are summarized. In this context, we outline how practitioner-scientist partnerships can serve to transform EBP delivery systems, particularly in conjunction with supportive federal policy.

  19. Best Practices for Operating Government-Industry Partnerships in Cyber Security

    Directory of Open Access Journals (Sweden)

    Larry Clinton

    2015-12-01

    Full Text Available Since the publication of the first National Strategy to Secure Cyber Space in 2003 the US federal government has realized that due to the interconnected nature of the Internet, securing the system would require an industry-government partnership. However, defining exactly what that new partnership would look like and how it would operate has been unclear. The ramifications of this ambiguous strategy have been noted elsewhere including the 2011 JSS article “A Relationship on the Brink” which described the dysfunctional state of public private partnerships with respect to cyber security. Subsequently, a joint industry-government study of partnership programs has generated a consensus list of “best practices” for operating such programs successfully. Moreover, subsequent use of these principles seems to confirm their ability to enhance the partnership and hopefully helps ameliorate, to some degree, the growing cyber threat. This article provides a brief history of the evolution of public-private partnerships in cyber security, the joint study to assess them and the 12 best practices generated by that analysis.

  20. Alpena Community College Workplace Partnership Project. Final Report.

    Science.gov (United States)

    Alpena Community Coll., MI.

    This document consists of materials produced during the Workplace Partnership Project (WPP), a National Workplace Literacy Program-funded workplace literacy partnership between Alpena Community College (ACC) in Alpena, Michigan, and area businesses. Presented first is a personal reflection in which the project director shares some of the lessons…

  1. Partnerships in natural resource agencies: a conceptual framework

    Science.gov (United States)

    Catherine V. Darrow; Jerry J. Vaske

    1995-01-01

    To meet financial constraints while maintaining or improving programs, natural resource managers have increasingly turned to partnerships with other public agencies or private businesses. The process of developing a successful partnership, however, is rarely chronicled, much less empirically studied. By using the available natural resource and business management...

  2. Helping students make meaning of authentic investigations: findings from a student–teacher–scientist partnership

    Science.gov (United States)

    Dolan, Erin

    2013-01-01

    As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs. PMID:23828722

  3. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students.

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Measuring Science Inquiry Skills in Youth Development Programs: The Science Process Skills Inventory

    Directory of Open Access Journals (Sweden)

    Mary E. Arnold

    2013-03-01

    Full Text Available In recent years there has been an increased emphasis on science learning in 4-H and other youth development programs. In an effort to increase science capacity in youth, it is easy to focus only on developing the concrete skills and knowledge that a trained scientist must possess. However, when science learning is presented in a youth-development setting, the context of the program also matters. This paper reports the development and testing of the Science Process Skills Inventory (SPSI and its usefulness for measuring science inquiry skill development in youth development science programs. The results of the psychometric testing of the SPSI indicated the instrument is reliable and measures a cohesive construct called science process skills, as reflected in the 11 items that make up this group of skills. The 11 items themselves are based on the cycle of science inquiry, and represent the important steps of the complete inquiry process.

  5. A prism of excellence: The Charleston Veterans Administration Nursing Academic Partnership.

    Science.gov (United States)

    Coxe, D Nicole; Conner, Brian T; Lauerer, Joy; Skipper, Janice; York, Janet; Fraggos, Mary; Stuart, Gail W

    2016-01-01

    The Veterans Administration (VA) has been committed to academic affiliate training partnerships for nearly 70 years in efforts to enhance veteran-centric health care. One such effort, the VA Nursing Academy (VANA) program, was developed in 2007 in response to the nationwide nursing shortage and began as a five-year pilot with funding competitively awarded to 15 partnerships between local VA medical centers and schools of nursing. The VANA program evolved into the VA Nursing Academic Partnership (VANAP) program following the initial pilot. This article describes the development and evolution of the Charleston VANAP, which includes the Ralph H Johnson VA Medical Center (RHJ VAMC) and the Medical University of South Carolina College of Nursing (MUSC CON). The VA Office of Academic Affiliations (OAA) funded a large portion of the initial five years of the Charleston VANAP. Once the national funding source ceased, the RHJ VAMC and the MUSC CON entered into a Memorandum of Understanding (MOU) to offer in-kind contributions to the partnership. The Charleston VANAP is the only program in the nation to offer three different nurse trainee programs and this article highlights some of the more notable achievements from each program. The Charleston VANAP is a comprehensive partnership between the RHJ VAMC and the MUSC CON that truly demonstrates a commitment to assure that the very best care be provided to Veterans, our Nation's heroes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Public-Private Partnerships and Sustainable Regional Innovation Systems

    DEFF Research Database (Denmark)

    Lehmann, Martin; Christensen, Per; Johnson, Bjørn

    -private partnerships. The role of universities if and when actively participating in ‘life outside the ivory tower’ is addressed. These partnerships are also discussed in a regional context. With point of departure in innovation theory, we combine ‘sustainable development’ with the Regional System of Innovation...... approach to propose a new concept – Sustainable Regional Innovation System – in which regional initiatives such as Public-Private(-Academic) Partnerships play an integrated role, not least in the context of ‘learning and innovation for sustainable development’. Two cases are presented to underline...... be playing in public-private partnerships for sustainable development, and the links and benefits this may provide towards universities fulfilling their first (science) and second (education) missions. In this paper, the first part is dedicated to the discussion and clarification of the concept of public...

  7. The Howard University Program in Atmospheric Sciences (HUPAS): A Program Exemplifying Diversity and Opportunity

    Science.gov (United States)

    Morris, Vernon R.; Joseph, Everette; Smith, Sonya; Yu, Tsann-wang

    2012-01-01

    This paper discusses experiences and lessons learned from developing an interdisciplinary graduate program (IDP) during the last 10 y: The Howard University Graduate Program in Atmospheric Sciences (HUPAS). HUPAS is the first advanced degree program in the atmospheric sciences, or related fields such as meteorology and earth system sciences,…

  8. Building Sustainable Capacity with University Partnerships

    Science.gov (United States)

    Harris, J. M.

    2013-05-01

    Universities can play an important role in building scientific and technical capacity by providing educational opportunities for local and regional populations in developing countries. These opportunities may be short term or long term through for example faculty exchanges, student exchanges, and collaborative teaching and research activities. As the demand for talented graduates expands in developing countries, local universities face competition for students, lecturers, and professors from the same industries and communities they serve. This competition is in many ways counterproductive to building the sustainable human resource that is needed to support local development, management, and governance. Such competition is particularly evident for top science and engineering students in energy rich countries. University partnerships, e.g., in particular those between universities in OECD countries and universities in developing countries, have an important role to play in bridging the gap between today's lack of capacity and a sustainable human resource for the future. Such university partnerships, however, face many challenges, some of which can be traced to organizational and cultural differences In this presentation, I will discuss how university partnerships are formed, some of the benefits to partners, and some pitfalls to avoid during implementation of university partnerships. The examples are taken from Stanford partnerships that involve geoscience and engineering, and will include representative goals and content of the example partnerships. These partnerships I'll describe are actually trilateral, with partners from two or more universities and a private company or government agency. I conclude the presentation with a brief discussion on multiculturalism, perhaps the most important consideration when planning a partnership between diverse organizations. Organizers of partnerships must recognize the fact that multiculturalism and diversity are assets that

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  10. The development of Sonic Pi and its use in educational partnerships: Co-creating pedagogies for learning computer programming

    OpenAIRE

    Aaron, S; Blackwell, Alan Frank; Burnard, Pamela Anne

    2017-01-01

    Sonic Pi is a new open source software tool and platform originally developed for the Raspberry Pi computer, designed to enable school children to learn programming by creating music. In this article we share insights from a scoping study on the development of Sonic Pi and its use in educational partnerships. Our findings draw attention to the importance of collaborative relationships between teacher and computer scientist and the value of creative pedagogies for learning computer programming...

  11. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  12. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  13. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  14. Space Surveillance Tech Area Benefits From University Partnerships

    Science.gov (United States)

    Cole, K.; Voss, D.; Pietruszewski, A.; King, L.; Hohnstadt, P.; Feirstine, K.; Crassidis, J.; D'Angelo, M.; Linares, R.

    2011-09-01

    The University Nanosat Program (UNP) is a two year small satellite competition held among leading universities across the nation. In the past 12 years UNP has involved 27 universities and over 5000 students in a variety of engineering fields and other disciplines, in the process of designing and managing the development of a satellite. The UNP is a partnership between the Air Force Office of Scientific Research (AFOSR), the Air Force Research Laboratory (AFRL), and the American Institute of Aeronautics and Astronautics (AIAA). The program’s primary purpose is to help train engineering students in satellite design, fabrication, and testing by requiring them to build the satellite themselves through the mentorship of their Principle Investigator, industry mentors, and a series of six program reviews managed by the AFRL Program Office. Each university-built satellite attempts to further a specific technology or perform a scientific mission. Technologies advanced through the program include all aspects of small satellite designs including structures, propulsion, imaging, navigation and have helped further science payloads such as energetic particle detectors, plasma probes, photometers, and many others. This paper will discuss the educational impact on students involved in a hands-on, hardware focused program, with emphasis given to two UNP satellites relevant to Space Surveillance Technologies. The most recent winner of the UNP competition, Michigan Technological University’s Oculus-ASR, is a calibration instrument for AMOS’ telescopic non-resolved object characterization program. Another example is the University of Buffalo, which is calibrating with the AFRL MESSA program in the current competition cycle. The University of Buffalo’s nanosatellite is being designed to collect multi-band photometric data of glinting geostationary space objects. Both these satellites are excellent examples of the relevance and quality of innovation and technology that can be

  15. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    Science.gov (United States)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards

  16. Marketing the Job Training Partnership Act.

    Science.gov (United States)

    Markowicz, Arlene, Ed.; And Others

    1984-01-01

    This quarterly contains 11 bulletins that profile marketing campaigns for the Job Training Partnership Act (JTPA) that have been implemented successfully in local programs throughout the United States. For each program, the description provides information on the operator, funding, results, time span, background, marketing/public relations…

  17. An Academic-Practice Partnership to Advance DNP Education and Practice.

    Science.gov (United States)

    Howard, Patricia B; Williams, Tracy E

    During the past decade, the growth of doctor of nursing practice (DNP) programs in the United States has been phenomenal, with most focusing on the preparation of advanced practice registered nurses. Simultaneously, academic-practice partnerships have been a frequent subject of discussion for nursing's leading academic, administrative, and practice organizations. Numerous reports about academic-practice partnerships concerning aspects of baccalaureate nursing education exist, but partnership accounts for DNP programs are essentially nonexistent. The purpose of this article is to describe the initial phase of an academic-practice partnership between a multisystem health care organization and a college of nursing in a public land-grant university in the southeastern United States. The 7-year partnership agreement between Norton Healthcare and the University of Kentucky College of Nursing was designed to prepare 5 cohorts of 20 to 30 baccalaureate-prepared staff nurses as DNP graduates for advanced practice registered nurse eligibility. The description of partnering institution characteristics frames an emphasis on elements of the partnership proposal, contractual agreement, and partner responsibilities along with the logic model evaluation plan. Lessons learned include the importance of proposals and contracts to sustain the partnership, frequent communication to build trust, and strategic analysis for rapid response to challenging situations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    Science.gov (United States)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into

  19. Working better together: new approaches for understanding the value and challenges of organizational partnerships.

    Science.gov (United States)

    Riggs, Elisha; Block, Karen; Warr, Deborah; Gibbs, Lisa

    2014-12-01

    Inter-agency partnerships are critical for addressing the interrelated circumstances associated with the social and health determinants of health inequalities. However, there are many challenges in evaluating partnership processes and outcomes. We discuss a mixed methods study that explored partnership processes in an innovative program that aims to promote social and economic inclusion for young newly arrived refugees. A theoretically informed evaluation was designed and data collected in three ways: an organizational ethnographic approach; a partnership self-assessment tool and semi-structured interviews. Partnership assessments and interviews were collected at two points in time providing progressive process data. Analyses explore divergent levels of staff satisfaction with the partnership's operations, particularly between staff working in program development (strategic management) and program delivery (service provision) roles. Follow-up data collection indicated satisfaction with partnership processes had improved. The partnership did achieve its aim of increasing the level of cooperation between service providers to support young people from refugee backgrounds. This paper presents insights into how to evaluate inter-agency partnerships and reports both methodological and empirical findings. It provides an approach for a better understanding of the levels at which individuals operate within such partnerships, indicates areas where support and attention is needed. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  1. Partnership of Environmental Education and Research-A compilation of student research, 1999-2008

    Science.gov (United States)

    Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.

    2011-01-01

    The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.

  2. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    Science.gov (United States)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  3. When friendship connects a large circle of people: the value of partnerships

    International Nuclear Information System (INIS)

    Weinberg, A.D.

    1998-01-01

    As a part of the joint US Kazakstan effort to reduce the remnants of the nuclear weapons testing program, a health care partnership was initiated. This presentation will describe how this partnership, rooted in Project Sapphire, has successfully reached its initial goals and how it has served as the foundation for additional programs. Each of these related program initiatives has been woven into a larger, long-term set of partnerships. These programs are having a significant impact on the rejuvenation of the National Nuclear Center and the efforts of the Ministry of Health and Regional Administrations to effectively manage the remaining health concerns of the public exposed to both direct and indirect effects upon the health of the population associated with the nuclear testing program. The value of such partnerships is being applied to both government and public activities in a synergistic manner. Ultimately such efforts will have economic, scientific and social benefits that will improve the health and well being of Kazakstan and its people as it moves into the X XI century. (author)

  4. NASA SMD Science Education and Public Outreach Forums: A Five-Year Retrospective

    Science.gov (United States)

    Smith, Denise A.; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie

    2014-06-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The objective is to enhance the overall coherence of SMD education and public outreach (E/PO), leading to more effective, efficient, and sustainable use of SMD science discoveries and learning experiences. We summarize progress and next steps towards achieving this goal with examples drawn from Astrophysics and cross-Forum efforts. Over the past five years, the Forums have enabled leaders of individual SMD mission and grant-funded E/PO programs to work together to place individual science discoveries and learning resources into context for audiences, conveying the big picture of scientific discovery based on audience needs. Forum-organized collaborations and partnerships extend the impact of individual programs to new audiences and provide resources and opportunities for educators to engage their audiences in NASA science. Similarly, Forum resources support scientists and faculty in utilizing SMD E/PO resources. Through Forum activities, mission E/PO teams and grantees have worked together to define common goals and provide unified professional development for educators (NASA’s Multiwavelength Universe); build partnerships with libraries to engage underserved/underrepresented audiences (NASA Science4Girls and Their Families); strengthen use of best practices; provide thematic, audience-based entry points to SMD learning experiences; support scientists in participating in E/PO; and, convey the impact of the SMD E/PO program. The Forums have created a single online digital library (NASA Wavelength, http://nasawavelength.org) that hosts all peer-reviewed SMD-funded education materials and worked with the SMD E/PO community to compile E/PO program metrics (http://nasamissionepometrics.org/). External evaluation shows the Forums are meeting their objectives. Specific examples

  5. Strengthening Knowledge Co-Production Capacity: Examining Interest in Community-University Partnerships

    Directory of Open Access Journals (Sweden)

    Kathleen P. Bell

    2013-09-01

    Full Text Available Building successful, enduring research partnerships is essential for improving links between knowledge and action to address sustainability challenges. Communication research can play a critical role in fostering more effective research partnerships, especially those concerned with knowledge co-production processes. This article focuses on community-university research partnerships and factors that influence participation in the co-production process. We identify specific pathways for improving partnership development through a prospective analytical approach that examines community officials’ interest in partnering with university researchers. Using survey responses from a statewide sample of Maine municipal officials, we conduct a statistical analysis of community-university partnership potential to test a conceptual model of partnership interest grounded in natural resource management theory and environmental communication. Our findings both support and advance prior research on collaborations. Results reveal that belief in the helpfulness of the collaborator to solve problems, institutional proximity, familiarity, perceived problem severity and problem type and trust influence interest in developing community-university partnerships. These findings underscore the benefits of proactively assessing partnership potential prior to forming partnerships and the important roles for communication research within sustainability science, especially with regard to strengthening partnership formation and knowledge co-production processes.

  6. Mothers’ experiences in the Nurse-Family Partnership program: a qualitative case study

    Directory of Open Access Journals (Sweden)

    Landy Christine

    2012-09-01

    Full Text Available Abstract Background Few studies have explored the experiences of low income mothers participating in nurse home visiting programs. Our study explores and describes mothers' experiences participating in the Nurse-Family Partnership (NFP Program, an intensive home visiting program with demonstrated effectiveness, from the time of program entry before 29 weeks gestation until their infant's first birthday. Methods A qualitative case study approach was implemented. A purposeful sample of 18 low income, young first time mothers participating in a pilot study of the NFP program in Hamilton, Ontario, Canada partook in one to two face to face in-depth interviews exploring their experiences in the program. All interviews were digitally recorded and transcribed verbatim. Conventional content analysis procedures were used to analyze all interviews. Data collection and initial analysis were implemented concurrently. Results The mothers participating in the NFP program were very positive about their experiences in the program. Three overarching themes emerged from the data: 1. Getting into the NFP program; 2. The NFP nurse is an expert, but also like a friend providing support; and 3. Participating in the NFP program is making me a better parent. Conclusions Our findings provide vital information to home visiting nurses and to planners of home visiting programs about mothers' perspectives on what is important to them in their relationships with their nurses, how nurses and women are able to develop positive therapeutic relationships, and how nurses respond to mothers' unique life situations while home visiting within the NFP Program. In addition our findings offer insights into why and under what circumstances low income mothers will engage in nurse home visiting and how they expect to benefit from their participation.

  7. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  8. THE IMPLEMENTATION OF CORPORATE PARTNERSHIP PROGRAM WITH SMALL AND MEDIUM ENTERPRISES TO ENHANCE A BUSINESS GROWTH: A STUDY ON THE PARTNERSHIP OF PT. CHAROEN POKPHAND INDONESIA THROUGH PT. SINAR SARANA SENTOSA WITH BROILER CHICKEN BREEDERS IN BLITAR REGENCY

    Directory of Open Access Journals (Sweden)

    Haryanto D.T.

    2017-11-01

    Full Text Available The development of business world today has undergone much progress. Various types of businesses have started to pop up. Speaking of livestock, the livestock sector is an integral part of agricultural sector development prioritized to meet the needs of food and nutrition. The development of livestock sector is part of the overall development which aims to provide food in the form of meat, milk, and eggs which have high nutritional value as well as increasing the farmer's or breeder’s income and expand the employment opportunity. The chickenbroiler is a very effective chicken to produce meat. In general, the main weaknesses in this business lie in the relatively small capital, lack of knowledge on maintaining the management capability, and relatively high price of feed. Another problem that occurs in this business is the field of marketing. One of the best ways that can be recommended in the development of broiler chicken agribusiness is the implementation of vertical coordination system with the partnership pattern. The problem discussed by the author in this study is about the partnership concept application between PT. Charoen Pokphand Indonesia through its subsidiary of PT. Sinar Sarana Sentosa and Small and Medium Enterprises (SMEs of broiler chicken breeders in improving the business growth in Blitar. This study is conditional and can be developed after the researcher conducted the research directly. This aims to analyze the problems about the application of partnerships and factors that support and inhibit the partnership, thus, it is possible that the theory of broiler chicken breeders partnership is developed. This research uses descriptive qualitative approach. In the research results, companies and breeders also need each other. It means that the company needs good breeding results. Breeders as the plasma need guidance to maximize the results. The majority of plasma breeders that participate in the partnership program with PT. Sinar

  9. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  10. Neuroscience in Middle Schools: A Professional Development and Resource Program That Models Inquiry-based Strategies and Engages Teachers in Classroom Implementation

    OpenAIRE

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J.; Dubinsky, Janet M.

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5–8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU...

  11. Earthwatch and the HSBC Climate Partnership: Linking climate change and forests management one citizen scientist at a time

    Science.gov (United States)

    Stover, D. B.; Jones, A.; Kusek, K.; Bebber, D.; Phillips, R.; Campbell, J.

    2010-12-01

    Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC banking employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results are establishing baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests within a changing climate. A critical component of the program is the engagement of 2,200 corporate HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Program participants are empowered and have successfully developed sustainability projects they implement back in their office, homes and communities that furthers corporate and public commitment to sustainability and combating the effects of climate change. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified one week versions of the field program. New models of citizen science engagement are currently under development, with best practices and

  12. Atoms for food - A global partnership

    International Nuclear Information System (INIS)

    Wedekind, L.

    2008-10-01

    The International Atomic Energy Agency (IAEA) and Food and Agriculture Organization of the United Nations (FAO) have been partners for nearly half a century, contributing to efforts toward shared goals of food security. Their mission - through a Joint Division headquartered at the IAEA in Austria - is to help countries effectively use nuclear science and related technologies for food and agricultural development. Millions of people today look to a better future because of the foresight and longstanding investment of FAO and IAEA Member States in the 'Atoms for Food' partnership. Worldwide, more than 100 countries are working together through the Joint Division to increase their harvests, combat animal and plant diseases and pests, and protect the lands, water resources, and environments on which food and agricultural production depend. This century's stark realities of hunger, poverty, climate change, and environmental degradation bring an unprecedented scale of challenges to the fields of food and agriculture. Action requires the research, expertise, and experience of the FAO/IAEA partnership and other effective alliances worldwide to help countries achieve and sustain higher levels of food security for their people. The two organizations are well matched. FAO brings to the table its comprehensive knowledge and networks on food and agriculture. The IAEA, in turn, contributes technical know-how, specifically in agricultural and related applications of nuclear science and technology. The partnership's potential builds on decades of experience

  13. Building science-based groundwater tools and capacity in Armenia for the Ararat Basin

    Science.gov (United States)

    Carter, Janet M.; Valder, Joshua F.; Anderson, Mark T.; Meyer, Patrick; Eimers, Jo L.

    2016-05-18

    The U.S. Geological Survey (USGS) and U.S. Agency for International Development (USAID) began a study in 2016 to help build science-based groundwater tools and capacity for the Ararat Basin in Armenia. The growth of aquaculture and other uses in the Ararat Basin has been accompanied by increased withdrawals of groundwater, which has resulted in a reduction of artesian conditions (decreased springflow, well discharges, and water levels) including loss of flowing wells in many places (Armenia Branch of Mendez England and Associates, 2014; Yu and others, 2015). This study is in partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships (STIP) effort through the Advanced Science and Partnerships for Integrated Resource Development (ASPIRED) program and associated partners, including the Government of Armenia, Armenia’s Hydrogeological Monitoring Center, and the USAID Global Development Lab and its GeoCenter. Scientific tools will be developed through this study that groundwater-resource managers, such as those in the Ministry of Nature Protection, in Armenia can use to understand and predict the consequences of their resource management decisions.

  14. ANSTO - Program of Research 1993-1994

    International Nuclear Information System (INIS)

    1993-01-01

    The 1993-1994 Program of Research outlines ANSTO's scientific activities in four key research areas, Advanced Materials, Application of Nuclear Physics, Biomedicine and Health and Environmental Science. The effort has been channeled into applied research and development in partnership with industry and appropriate national and international institutions and into interdisciplinary strategic research projects to enhance the scientific base of the key research activities. A list of scientific publications originated from these program areas is also included. ills

  15. Transcending jurisdictions: developing partnerships for health in Manitoba First Nation communities.

    Science.gov (United States)

    Eni, Rachel; Phillips-Beck, Wanda

    2011-09-01

    The article describes national, regional and community-level activities that contributed to the Manitoba First Nation partnership in maternal and child health programming. The activities reveal a potential for health change that is possible through working together across jurisdictional boundaries. Although we are only in the early phases of program implementation, the Manitoba First Nation Strengthening Families Maternal Child Health Program already suggests considerable successes and measurable outcomes. The article encourages development of further partnerships in the promotion of First Nation health and wellness programming.

  16. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  17. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  18. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  19. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    Science.gov (United States)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  20. Proceedings of the precollege-university partnerships for science and mathematics education conference

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    In April of 1992 in Atlanta, Georgia, nearly 50 elementary and secondary educators and about 100 postsecondary educators convened to explore their common interests in the conference on precollege-university partnerships. This report summarizes the remarks and conclusions of speakers, panelists, and of attendees gathered in regional work groups. During the course of the conference, attendees heard from federal agencies and foundations which fund education-related projects and learned of their enthusiastic support of partnerships. In our national need to manage education and training resources wisely, these funding agents see partnership benefits such as renewed excitement for teaching at all levels, effective and technologically up-to-date in-service training, more and better-prepared high school graduates entering colleges, and a general enhancement of understanding among educators at all levels of teaching. As an added benefit, the partnership concept promotes discussion and understanding in an atmosphere of respect, appreciation, and self-esteem. Several hours of the conference were devoted to panels addressing five questions important to education coalitions. The panelists represented a wide variety of teaching levels, geographic locations, educational experiences, and ethnic groups.

  1. The North American Development Partnership: Experiment in International Collaboration.

    Science.gov (United States)

    Carlson, Burton L.; Goguen, Robert A.; Jarvis, Phillip S.; Lester, Juliette N.

    2000-01-01

    Describes how career development programs became the focus of an international partnership between the United States and Canada. Discusses the partnership's efforts at developing training and materials that promote the use of occupational and labor markets information and the creation of a computer-based career information delivery system.…

  2. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  3. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  4. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    Science.gov (United States)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  5. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships

    Science.gov (United States)

    Chambers, L. H.

    2017-12-01

    Cloud and aerosol feedbacks remain the largest source of uncertainty in understanding and predicting Earth's climate (IPCC, 2013), and are the focus of multiple ongoing research studies. Clouds are a challenge because of their extreme variability and diversity. This is also what makes them interesting to people. Clouds may be the only essential climate variable with an Appreciation Society (https://cloudappreciationsociety.org/). As a result, clouds led me into a multi-decade effort to engage a wider public in observing and understanding our planet. A series of experiences in the mid-1990's led to a meeting with educators that resulted in the creation of the Students' Cloud Observations On-Line Project (S'COOL), which I directed for about 2 decades, and which engaged students around the world in ground truth observation and data analysis for the Clouds and the Earth's Radiant Energy System (CERES) satellite instruments. Beginning around 2003, I developed a contrail observation protocol for the GLOBE Program to serve a similar function for additional audiences. Starting in 2004, I worked with an interdisciplinary team to launch the MY NASA DATA Project, an effort to make the vast trove of NASA Earth Science data actually usable in K-12 classrooms and student projects. Later I gained key experiences around strategic partnerships as I worked from 2008 onward with tri-agency partners at NOAA and NSF to integrate activities around climate change education. Currently I serve as Program Scientist for Education & Communication in the Earth Science Division at NASA, where I have the privilege to oversee and guide these and related activities in education and public engagement around Earth system science. As someone who completed advanced degrees in aerospace engineering without ever taking an Earth science class, this ongoing engagement is very important to me. Understanding Earth processes should be integral to how all people choose to live on our planet. In my experience

  6. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  7. Managing Movement as Partnership

    Science.gov (United States)

    Kimbrell, Sinead

    2011-01-01

    The associate director of education at Hubbard Street Dance Chicago recounts her learning and teaching through managing the Movement as Partnership program. Included are detailed descriptions of encounters with teachers and students as they create choreography reflective of their inquiry into integrating dance and literacy arts curriculum in the…

  8. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  9. Plasma Physics at the National Science Foundation

    Science.gov (United States)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  10. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    Science.gov (United States)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher

  11. Partnerships panel: natural, resource partnerships: literature synthesis and research agenda

    Science.gov (United States)

    Steve Selin; Nancy Myers

    1995-01-01

    This paper presents a summary of an annotated bibliography on natural resource partnerships. Resource areas and management functions addressed in the partnership literature are examined. Partnership research is summarized and broken into categories including: Partnership outcomes, assessing the potential for partnerships, characteristics of successful partnerships,...

  12. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  13. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  14. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  15. Science, Society and Policy

    Science.gov (United States)

    White, K. S.; Teich, A. H.

    2010-12-01

    Apart from the journals they produce, scientific societies play an important role in communicating scientific findings and norms to the broader society. The American Association for the Advancement of Science (AAAS) includes among its goals to promote and defend the integrity of science and its use; provide a voice for science on societal issues; promote the responsible use of science in public policy; and increase public engagement with science and technology. AAAS websites and programs, including Communicating Science (www.aaas.org/communicatingscience), Working with Congress (http://www.aaas.org/spp/cstc/wwc/book.htm) and ScienceCareers.org (http://sciencecareers.sciencemag.org), provide tools for scientists to become more directly engaged in effectively communicating their findings and involved in the policy process. Education programs work to build the next generation of scientists and a science-literate public. To bridge the current communication gap between scientists, the public and policymakers, AAAS, like other scientific societies, maintains policy and outreach programs with limited budgets and staff. AAAS works to engage policymakers and provide scientific underpinning to key issues through congressional briefings, meetings, policy briefs, and media outreach. AAAS responds to challenges to accepted scientific findings and processes through op-eds, letters to government officials, resolutions, and Board statements. Some of these initiatives occur on a local level in partnership with local civic leaders, whose endorsement makes them more powerful. On a national scale, they assure that the voice of science is included in the debate. The changing media landscape presents opportunities and challenges for future AAAS endeavors.

  16. BEGIN Partnership: Using Problem-Based Learning to Teach Genetics & Bioethics

    Science.gov (United States)

    Markowitz, Dina; DuPre, Michael J.; Holt, Susan; Chen, Shaw-Ree; Wischnowski, Michael

    2008-01-01

    A science education center at a university medical school had grant funding to develop a genetics curriculum unit, but needed a dissemination plan. A statewide science teacher organization that provided professional development training was facing decreased funding. These two groups combined their efforts, and created a unique partnership, called…

  17. National Guard State Partnership Program: Supporting U.S. Southern Command Security Cooperation Program

    National Research Council Canada - National Science Library

    Peart, Raphael G

    2006-01-01

    .... SPP has provided a meaningful extension of U.S. soft power within the region. It accomplished this by establishing strategic partnerships between National Guard units and various newly formed former Soviet countries...

  18. The NASA 2017 Eclipse Education Program: Through the Eyes of NASA to the Hearts of a Nation

    Science.gov (United States)

    Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy D.; Lewis, Elaine; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Bleacher, Lora; Kirk, Michael S.; jones, andrea

    2016-05-01

    The August 21, 2017, eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships from across the country being leveraged to enhance our reach and impact. We also discuss the observations and science of current and future NASA missions such as SDO, Hinode and Solar Probe Plus along with their relationship to such a unique celestial event as a total solar eclipse.

  19. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M

  20. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs

  1. A search for factors related to successful performance by Rebuild America partnerships

    International Nuclear Information System (INIS)

    Schweitzer, Martin; Ogle-Graham, Laura

    2005-01-01

    Under the sponsorship of the US Department of Energy's Office of Energy Efficiency and Renewable Energy, staff at Oak Ridge National Laboratory (ORNL) studied the Rebuild America program for the purpose of identifying key factors associated with successful operations. This involved performing a quantitative analysis of the relationships between program results and selected characteristics of the partnerships as well as soliciting opinion data from partnership representatives regarding the factors related to good performance. The statistical analysis revealed that partnership age and the number of projects per partnership were both positively related to all the results measures tested, by themselves and in the presence of each other. The factors most frequently mentioned by the interviewed partnership representatives as influencing good partnership performance were: general assistance from the Rebuild America representative; open communications among all partners; existence of a 'champion' for the partnership; support from the relevant city or state government; effective marketing to attract new partners; strong community interest; quick return on investment; interaction with other community organizations; and continuity of funding. A full discussion of all study findings can be found in the ORNL Report entitled an examination of Rebuild America partnership accomplishments and the factors influencing them (ORNL/CON-490, Oak Ridge National Laboratory, Oak Ridge, TN)

  2. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program. SUMMARY: The Secretary intends to use the grant slate developed in FY 2009 for the Minority Science and...

  3. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    International Nuclear Information System (INIS)

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE's two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document

  4. Ford Partnership for Advanced Studies (Ford PAS)

    Science.gov (United States)

    Carrier, Cheryl

    2006-01-01

    This article features the Ford Partnership for Advanced Studies (Ford PAS) program that helps students gain knowledge about real-life business issues. Ford PAS is an educational program that combines college-prep academics with the critical 21st century skills students will need to succeed in college and in the workplace. The Ford PAS program uses…

  5. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    Science.gov (United States)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  6. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  7. Climate Science Program at California State University, Northridge

    Science.gov (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  8. The Specification of Science Education Programs in the Local Public Library: Focusing on the Programs In G-city

    Directory of Open Access Journals (Sweden)

    In-Ja Ahn*

    2012-06-01

    Full Text Available The city of 'G' has been made a number of achievements with its science program as a part of public library's cultural program during the last 5 years. Recently, the national science centre has been established in the same city, the debate is now needed whether the science program in the public library have reasons to be maintained or to be reduced. The aim of this research is on the operating strategies of the science program in the public library. The research methods include case studies of operational strategies in domestic and foreign science centre, the level of satisfaction of local citizen on the science program, the vision of science program in the advancement of public library in the century. In results, the research proposes that the science program in public library should be maintained, but with locally characterised programs. In addition, the study also advised on the provision of scientific information, the strengthened search functions, and the development of user-centred services for those in science fields.

  9. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  10. The GLOBE Program in Alabama: A Mentoring Approach to State-wide Implementation

    Science.gov (United States)

    Cox, G. N.

    2003-12-01

    Established in 1997, the GLOBE in Alabama (GIA) partnership has trained more than 1,000 teachers in almost 500 schools - over 25% of the total number of K-12 schools in Alabama. Over those five years, GIA has strived to achieve recognition of GLOBE as the "glue" to Alabama's new education program, the Alabama Math, Science and Technology Initiative (AMSTI). In 2003, GIA trained over 370 AMSTI K-8 teachers at two AMSTI hub sites in north Alabama. As the AMSTI program grows with the addition of future hub sites (eleven are planned), GIA must ready itself to train thousands of AMSTI teachers during the two-week summer professional development institutes that are part of AMSTI. A key component of AMSTI is a mentoring program conducted by math and science specialists - classroom educators loaned to the AMSTI hub sites by the school systems each hub site serves. The AMSTI mentoring program mirrors the GIA mentoring model begun in 1999 that originally funded regional GLOBE master teachers to provide technical assistance, feedback, and coaching for other GLOBE teachers. In schools where GIA mentor teachers were working, nearly a 100% increase in GLOBE student data reporting was noted. The GIA mentors now work within the hub site framework to ensure implementation of GLOBE as an integrated part of AMSTI. With the continued support of the State of Alabama, GIA will establish a network of mentors who work with the AMSTI hub site specialists in providing support for all AMSTI teachers. GIA is administered by the National Space Science and Technology Center, a partnership between NASA and the State of Alabama's seven research universities. Operational funding for GIA has been provided by the University of Alabama in Huntsville's Earth System Science Center, the NASA Marshall Space Flight Center, the Alabama Space Grant Consortium, The Alabama Department of Economic and Community Affairs, the Alabama State Department of Education, and Legacy. GIA has been able to build on these

  11. Communicating facts through third-party partnerships

    International Nuclear Information System (INIS)

    Kearns, K.D.

    1989-01-01

    Every day in the United States people are making decisions about the future of nuclear energy, while it continues to be one of our most controversial issues. How these decisions turn out and whether they are based on fact and need or fear and misconceptions will depend in large part on how active a role knowledgeable people choose to play in the public arena. The participation of scientists and engineers, industry employees, and operators is particularly important because of the respect the public has for their knowledge of the issues. There are a number of very successful programs in which individuals participate through meaningful partnerships with larger national public information efforts. This paper reviews two such partnership programs and makes generalized conclusions about their success and their importance

  12. Advanced Science for Kids: Multicultural Assessment and Programming.

    Science.gov (United States)

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  13. Leveraging Research Partnerships to Co-Produce Actionable Science and Build Institutional Capacity

    Science.gov (United States)

    Fleming, P.; Chinn, A.; Rufo Hill, J.; Edgerly, J.; Garcia, E.

    2017-12-01

    Seattle Public Utilities (SPU) provides high quality drinking water to 1.4 million people in the greater Seattle area and storm, wastewater and solid waste services to the City of Seattle. SPU's engagement on climate change has evolved significantly over the past 20 years. What began in 1997 as an inquiry into how El Nino may affect water supply has evolved into a broad based ongoing exploration that includes extensive in-house knowledge, capacity and expertise. This presentation will describe SPU's evolution from a funder and consumer of climate research to an active contributor to the development of applied research products, highlighted SPU's changing role in three climate impacts assessment studies. It will describe how SPU has leveraged these studies and partnerships to enhance its knowledge base, build its internal institutional capacity and produce actionable science that it is helping to foster incorporation of climate change into various aspects of utility planning and decision making. It will describe the PUMA Project and how the results from that research effort are being factored into SPU's state mandated Water System Plan.

  14. Urban partnership agreement and congestion reduction demonstration programs : lessons learned on congestion pricing from the Seattle and Atlanta household travel behavior surveys.

    Science.gov (United States)

    2014-04-01

    This paper presents lessons learned from household traveler surveys administered in Seattle and Atlanta as part of the evaluation of the Urban Partnership Agreement and Congestion Reduction Demonstration Programs. The surveys use a two-stage panel su...

  15. The LSSTC Data Science Fellowship Program

    Science.gov (United States)

    Miller, Adam; Walkowicz, Lucianne; LSSTC DSFP Leadership Council

    2017-01-01

    The Large Synoptic Survey Telescope Corporation (LSSTC) Data Science Fellowship Program (DSFP) is a unique professional development program for astronomy graduate students. DSFP students complete a series of six, one-week long training sessions over the course of two years. The sessions are cumulative, each building on the last, to allow an in-depth exploration of the topics covered: data science basics, statistics, image processing, machine learning, scalable software, data visualization, time-series analysis, and science communication. The first session was held in Aug 2016 at Northwestern University, with all materials and lectures publicly available via github and YouTube. Each session focuses on a series of technical problems which are written in iPython notebooks. The initial class of fellows includes 16 students selected from across the globe, while an additional 14 fellows will be added to the program in year 2. Future sessions of the DSFP will be hosted by a rotating cast of LSSTC member institutions. The DSFP is designed to supplement graduate education in astronomy by teaching the essential skills necessary for dealing with big data, serving as a resource for all in the LSST era. The LSSTC DSFP is made possible by the generous support of the LSST Corporation, the Data Science Initiative (DSI) at Northwestern, and CIERA.

  16. Green Power Partnership Top 30 Retail

    Science.gov (United States)

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This list represents the largest green power users among retail partners within the GPP.

  17. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  18. Science Meets Literacy and Art at the Library

    Science.gov (United States)

    LaConte, K. M.; Shipp, S. S.; Halligan, E.

    2011-12-01

    The Lunar and Planetary Institute's Explore! program is designed to engage and inspire children in Earth and space science in the library and other informal learning environments. Eight online thematic Explore! modules make up-to-date science accessible to rural communities - often where the library is the closest center of public learning - and other underserved audiences. The program prepares librarians to engage their communities in science through experiences with the modules, interactions with scientists, exploration of the resources available within the library learning environment, and development of local partnerships. Through hands-on science activities, art, and reading, Explore! reaches library patrons between the ages of 8 and 13 through librarian-led, locally facilitated programs across the nation. For example, NASA Lunar Science Institute research into lunar formation, evolution, and orbital dynamics are woven into a comic book that serves as a journal and art piece for participants in Marvel Moon programs (http://www.lpi.usra.edu/explore/marvelMoon). In another example, children compare cloud types and atmospheric structure on Earth and Jupiter, and then they consider artwork of Jupiter's clouds and the future discoveries of NASA's upcoming Juno mission as they write "Jovian Poetry" (http://www.lpi.usra.edu/explore/solar_system/activities/weatherStations). Explore! program facilitators are provided resources for making use of children's science books and local professional scientists and engineers.

  19. The Pennsylvania Academy for the Profession of Teaching; Rural Fellowship Program: A Science Curriculum Development Partnership. Project "Prepare Them for the Future."

    Science.gov (United States)

    Beisel, Raymond W.

    This report describes development of the "Prepare Them for the Future" project, a K-3 activity-oriented science curriculum. The program, funded through two grants, was driven by the need to boost the distressed labor-based economy in rural western Pennsylvania. Data showed a drop of 1,100 coal-mining jobs between 1980 and 1986 in Indiana…

  20. Life Sciences Program Tasks and Bibliography

    Science.gov (United States)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  1. Earth, Meet Pluto: The New Horizons Education and Communications Partnership

    Science.gov (United States)

    Buckley, M.

    2015-12-01

    The unique partnership between the NASA New Horizons education/communications and public affairs programs tapped into the excitement of visiting an unexplored planet in a new region of the solar system - resulting in unprecedented public participation in and coverage of a planetary mission. With a range of hands-on learning experiences, Web materials and online , the program provided opportunities for students, educators, museums, science centers, the media, Web surfers and other members of the public to ride along on the first mission to Pluto and the Kuiper Belt. The programs leveraged resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on this historic NASA endeavor. The E/C program included a variety of formal lesson plans and learning materials — based on New Horizons science and engineering goals, and aligned with National Research Council's National Science Education Standards — that continue to help students in grades K-12 learn more about science, technology, engineering and mathematics. College students designed and built an actual flight instrument on New Horizons and held internships with the spacecraft integration and test team. New Horizons E/C programs went well beyond the classroom, from a chance for people to send their names to Pluto on board the New Horizons spacecraft before launch, to opportunities for the public to access milestone events and the first-ever close-up views of Pluto in places such as museums, science centers and libraries, TV and the Web — as well as thousands who attended interactive "Plutopalooza" road shows across the country. Teamed with E/C was the public affairs strategy to communicate New Horizons news and messages to media, mission stakeholders, the scientific community and the public. These messages include various aspects of New Horizons, including the progress of the mission and key milestones and achievements

  2. An Examination of Rebuild America Partnership Accomplishments and the Factors Influencing Them

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.

    2003-10-16

    The Rebuild America program was established in 1994 to accelerate the adoption of energy efficiency measures and practices in existing public facilities, commercial buildings, and multifamily housing units. More recently, the program has expanded to include new construction as well. The program encourages the formation of partnerships involving state and local governments, private businesses, and other organizations to help identify and solve problems related to energy use in buildings. Rebuild America does not directly fund actual building improvements. Instead, it provides the Rebuild Partners with the technical tools and assistance they need to plan and implement building projects and stimulates other entities to make substantial investments in energy efficiency. At the request of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, staff at Oak Ridge National Laboratory studied the Rebuild America program for the purpose of identifying key factors associated with successful operations. Substantial amounts of data were collected directly from Rebuild America partnerships concerning the results achieved by each of their individual projects, both committed and completed. In addition, data were collected from secondary sources on a limited number of factors describing partnership setting and characteristics. By combining these two data sets, we were able to perform statistical analyses testing the potential relationship between each partnership characteristic and each of four key results measures. The influences on successful partnership performance also were determined in another way, which allowed a broader examination of potentially important factors. Telephone interviews were conducted with representatives from 61 high-performing Rebuild America partnerships throughout the United States. The respondents were asked to identify the most important factors influencing good performance and the types of Rebuild America products

  3. "Who's gonna plant the trees?!?": Creating effective synergies between community and research goals in scientist-community partnerships

    Science.gov (United States)

    Declet-Barreto, J.; Johnson, C.

    2017-12-01

    Harnessing science into effective, community-focused action requires ongoing partnerships that increase both understanding and trust between communities and scientists. One hurdle to overcome is that often, research questions and goals do not line up with the most pressing perceived or objective issues that a partner community faces. Another barrier is that community members often do not have a clear idea of how communities could benefit from the research, an issue that can create confusion and undermine community support for a partnership. In this session, we will discuss some of our successes and misses in developing research partnerships and actionable science for the benefit of communities. We will share stories on how we crafted effective actionable research products in partnership with Environmental Justice and other vulnerable communities.

  4. On learning science and pseudoscience from prime-time television programming

    Science.gov (United States)

    Whittle, Christopher Henry

    The purpose of the present dissertation is to determine whether the viewing of two particular prime-time television programs, ER and The X-Files, increases viewer knowledge of science and to identify factors that may influence learning from entertainment television programming. Viewer knowledge of scientific dialogue from two science-based prime-time television programs, ER, a serial drama in a hospital emergency room and The X-Files, a drama about two Federal Bureau of Investigation agents who pursue alleged extraterrestrial life and paranormal activity, is studied. Level of viewing, education level, science education level, experiential factors, level of parasocial interaction, and demographic characteristics are assessed as independent variables affecting learning from entertainment television viewing. The present research involved a nine-month long content analysis of target television program dialogue and data collection from an Internet-based survey questionnaire posted to target program-specific on-line "chat" groups. The present study demonstrated that entertainment television program viewers incidentally learn science from entertainment television program dialogue. The more they watch, the more they learn. Viewing a pseudoscientific fictional television program does necessarily influence viewer beliefs in pseudoscience. Higher levels of formal science study are reflected in more science learning and less learning of pseudoscience from entertainment television program viewing. Pseudoscience learning from entertainment television programming is significantly related to experience with paranormal phenomena, higher levels of viewer parasocial interaction, and specifically, higher levels of cognitive parasocial interaction. In summary, the greater a viewer's understanding of science the more they learn when they watch their favorite science-based prime-time television programs. Viewers of pseudoscience-based prime-time television programming with higher levels

  5. Providing Health Sciences Services in a Joint-Use Distributed Learning Library System: An Organizational Case Study.

    Science.gov (United States)

    Enslow, Electra; Fricke, Suzanne; Vela, Kathryn

    2017-01-01

    The purpose of this organizational case study is to describe the complexities librarians face when serving a multi-campus institution that supports both a joint-use library and expanding health sciences academic partnerships. In a system without a centralized health science library administration, liaison librarians are identifying dispersed programs and user groups and collaborating to define their unique service and outreach needs within a larger land-grant university. Using a team-based approach, health sciences librarians are communicating to integrate research and teaching support, systems differences across dispersed campuses, and future needs of a new community-based medical program.

  6. Making Waves: Marine Citizen Science for Impact

    Directory of Open Access Journals (Sweden)

    Marie-Lise Schläppy

    2017-05-01

    Demonstrating citizen science data quality through a precision study on data and analysis of 15 years of standardized Reef Check (RC reef health data in Queensland, Australia.Identifying and responding to data gaps through volunteer monitoring of sub-tropical rocky reefs in South East Queensland, Australia.Adapting citizen science protocols to enhance capacity building, partnerships and strategic natural resource management applications through reef habitat mapping.Tailoring new pathways for sharing citizen science findings and engaging volunteers with the community via a Reef Check Australia Ambassadors community outreach program.These case studies offer insights into considerations for developing targeted and flexible citizen science projects, showcasing the work of volunteers and project stakeholders, and collaborating with partners for applications beneficial to research, management and education.

  7. Utility-Marketer Partnerships. An Effective Strategy for Marketing Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brown, E. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-04-01

    This paper explores whether partnerships between utilities and independent marketers are an effective strategy for marketing green power. We present case studies of voluntary and mandatory partnerships covering green power program design and implementation in both regulated and restructured electricity markets. We also include perspectives (based on interviews) from utilities, marketers, and regulators involved in developing and implementing these partnerships. From these case studies and interviews, we describe lessons learned about developing effective partnerships, including such issues as respective roles in marketing and administration, product branding, and contract and incentive structures. Based on experience to date, strategic partnerships between utilities and marketers can be an effective approach to marketing green power. Partnerships leverage the sales and resource procurement experience of marketers and the utility’s reputation and access to customers. Further, partnerships can create greater incentives for success because marketers have a vested financial interest in maximizing customer participation and green power sales.

  8. Utility-Marketing Partnerships: An Effective Strategy for Marketing Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Brown, E. S.

    2006-04-01

    This paper explores whether partnerships between utilities and independent marketers are an effective strategy for marketing green power. We present case studies of voluntary and mandatory partnerships covering green power program design and implementation in both regulated and restructured electricity markets. We also include perspectives (based on interviews) from utilities, marketers, and regulators involved in developing and implementing these partnerships. From these case studies and interviews, we describe lessons learned about developing effective partnerships, including such issues as respective roles in marketing and administration, product branding, and contract and incentive structures. Based on experience to date, strategic partnerships between utilities and marketers can be an effective approach to marketing green power. Partnerships leverage the sales and resource procurement experience of marketers and the utility?s reputation and access to customers. Further, partnerships can create greater incentives for success because marketers have a vested financial interest in maximizing customer participation and green power sales.

  9. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  10. Case Studies of Liberal Arts Computer Science Programs

    Science.gov (United States)

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  11. 2014-2015 Partnership accomplishments report on joint activities: National Gap Analysis Program and LANDFIRE

    Science.gov (United States)

    Davidson, Anne; McKerrow, Alexa; Long, Don; Earnhardt, Todd

    2015-01-01

    The intended target audience for this document initially is management and project technical specialist and scientists involved in the Gap Analysis Program (GAP) and the Landscape Fire and Resource Management Planning Tools - (LANDFIRE) program to help communicate coordination activities to all involved parties. This document is also intended to give background information in other parts of the USGS and beyond, although some details given are relatively oriented to management of the respective programs. Because the Gap Analysis Program (GAP) and the Landscape Fire and Resource Management Planning Tools - LANDFIRE programs both rely on characterizations of land cover using similar scales and resolutions, the programs have been coordinating their work to improve scientific consistency and efficiency of production. Initial discussions and informal sharing of ideas and work began in 2008. Although this collaboration was fruitful, there was no formal process for reporting results, plans, or outstanding issues, nor was there any formally-defined coordinated management team that spanned the two programs. In 2012, leadership from the two programs agreed to strengthen the coordination of their respective work efforts. In 2013 the GAP and LANDFIRE programs developed an umbrella plan of objectives and components related to three mutual focus areas for the GAP and LANDFIRE collaboration for the years 2013 and 2014 (GAP/LANDFIRE 2013). The evolution of this partnership resulted in the drafting of an inter-program Memorandum of Understanding (MOU) in 2014. This MOU identified three coordination topics relevant to the two programs participating at this point in the MOU history: Vegetation mappingDisturbance classesFormal quality assessment

  12. NASA Science4Girls: Engaging Girls in STEM at Their Local Library

    Science.gov (United States)

    Meinke, B.; Smith, D.; Bleacher, L.; Hauck, K.; Soeffing, C.; NASA SMD EPO Community

    2014-07-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. The initiative has expanded from the successful 2012 Astro4Girls pilot to engage girls in all four NASA science discipline areas, which broadens the impact of the pilot by enabling audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  13. Finding pathways to more equitable and meaningful public-scientist partnerships

    Science.gov (United States)

    Daniela Soleri; Jonathan W. Long; Monica D. Ramirez-Andreotta; Ruth Eitemiller; Rajul Pandyaǁ

    2016-01-01

    For many, citizen science is exciting because of the possibility for more diverse, equitable partnerships in scientific research with outcomes considered meaningful and useful by all, including public participants. This was the focus of a symposium we organized at the 2015 conference of the Citizen Science Association. Here we synthesize points made by symposium...

  14. Western Hemisphere Knowledge Partnerships

    Science.gov (United States)

    Malone, T. F.

    2001-05-01

    , and application of knowledge concerning the nature of -- and interaction among -- matter, living organisms, energy, information, and human behavior. This strategy calls for innovative partnerships among the physical, biological, health, and social sciences, engineering, and the humanities. New kinds of partnership must also be forged among academia, business and industry, governments, and nongovernmental organizations. Geophysicists can play an important role in these partnerships. A focus for these partnerships is to manage the individual economic productivity that drives both human development and global change. As world population approaches stability during the twenty-first century, individual economic productivity will be the critical link between the human and the natural systems on planet Earth. AGU is among a core group of individuals and institutions proposing Western Hemisphere Knowledge Partnerships (WHKP) to test the hypothesis that knowledge, broadly construed, is an important organizing principle in choosing a path into the future. The WHKP agenda includes: (1) life-long learning, (2) the health and resilience of natural ecosystems, (3) eco-efficiency in economic production and consumption, (4) extension of national income accounts, (5) environmentally benign sources of energy, (6) delivery of health care, (7) intellectual property rights, and (8) networks for action by local communities.Collaboratories and distance education technologies will be major tools. A panel of experts will explore this proposal.

  15. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  16. Evaluating the Impact of the Medical Education Partnership Initiative at the University of Zimbabwe College of Health Sciences Using the Most Significant Change Technique.

    Science.gov (United States)

    Connors, Susan C; Nyaude, Shemiah; Challender, Amelia; Aagaard, Eva; Velez, Christine; Hakim, James

    2017-09-01

    In medical education, evaluating outcomes from programs intended to transform attitudes or influence career trajectories using conventional methods of monitoring is often difficult. To address this problem, the authors adapted the most significant change (MSC) technique to gain a more comprehensive understanding of the impact of the Medical Education Partnership Initiative (MEPI) program at the University of Zimbabwe College of Health Sciences. In 2014-2015, the authors applied the MSC to systematically examine the personal significance and level of positive transformation that individuals attributed to their MEPI participation. Interviews were conducted with 28 participants nominated by program leaders. The authors coded results inductively for prevalent themes in participants' stories and prepared profiles with representative quotes to place the stories in context. Stakeholders selected 9 themes and 18 stories to illustrate the most significant changes. Six themes (or outcomes) were expected, as they aligned with MEPI goals-becoming a better teacher, becoming a better clinician, increased interest in teaching, increased interest in research, new career pathways (including commitment to practice in Zimbabwe), and improved research skills. Three themes were unexpected-increased confidence, expanded interprofessional networks, and improved interpersonal interactions. The authors found the MSC to be a useful and systematic evaluation approach for large, complex, and transformative initiatives like MEPI. The MSC seemed to encourage participant reflection, support values inquiry by program leaders, and provide insights into the personal and cultural impacts of MEPI. Additional trial applications of the MSC technique in academic medicine are warranted.

  17. Involving stakeholders in the commissioning and implementation of fishery science projects: experiences from the U.K. Fisheries Science Partnership.

    Science.gov (United States)

    Armstrong, M J; Payne, A I L; Deas, B; Catchpole, T L

    2013-10-01

    Following from similar initiatives worldwide, the U.K.'s Fisheries Science Partnership (FSP) was established in 2003 to provide the fishing industry with opportunities to propose and participate in scientific studies in collaboration with fishery scientists. Key concepts were that most of the available funding would support industry participation, that industry, not scientists, would come up with the ideas for projects, and that commercial fishing vessels and fishing methods would be used to address specific concerns of the fishing industry in a scientifically controlled manner. Nearly 100 projects had been commissioned by March 2012, covering annual time-series surveys of stocks subject to traditional assessment, and ad hoc projects on, e.g. gear selectivity, discard survival, tagging and migration and fishery development. The extent to which the results of the projects have been used by stakeholders, fishery scientists and fishery managers at a national and E.U. level is evaluated, along with the degree of industry interest and involvement, and reasons are identified for successes or failures in the uptake of the results into management and policy. Finally, the question is posed whether the programme has been successful in improving the engagement of the fishing community in the science-management process and in fostering communication and greater trust between fishers, scientists and managers. © 2013 Crown Copyright. © 2013 The Fisheries Society of the British Isles.

  18. Discussions across Borders: A German-American Partnership

    Science.gov (United States)

    Zeiser, Pamela A.; Fuchs, Doris; Engelkamp, Stephan

    2013-01-01

    This article reports on our experiences in a German-American partnership in internationalizing the curriculum. In a globalized world, engaging other cultures and identities as well as understanding global issues and events from other perspectives are important qualifications that allow students to gain different insights in political science. Yet,…

  19. STEREO-IMPACT Education and Public Outreach: Sharing STEREO Science

    Science.gov (United States)

    Craig, N.; Peticolas, L. M.; Mendez, B. J.

    2005-12-01

    The Solar TErrestrial RElations Observatory (STEREO) is scheduled for launch in Spring 2006. STEREO will study the Sun with two spacecrafts in orbit around it and on either side of Earth. The primary science goal is to understand the nature and consequences of Coronal Mass Ejections (CMEs). Despite their importance, scientists don't fully understand the origin and evolution of CMEs, nor their structure or extent in interplanetary space. STEREO's unique 3-D images of the structure of CMEs will enable scientists to determine their fundamental nature and origin. We will discuss the Education and Public Outreach (E/PO) program for the In-situ Measurement of Particles And CME Transients (IMPACT) suite of instruments aboard the two crafts and give examples of upcoming activities, including NASA's Sun-Earth day events, which are scheduled to coincide with a total solar eclipse in March. This event offers a good opportunity to engage the public in STEREO science, because an eclipse allows one to see the solar corona from where CMEs erupt. STEREO's connection to space weather lends itself to close partnerships with the Sun-Earth Connection Education Forum (SECEF), The Exploratorium, and UC Berkeley's Center for New Music and Audio Technologies to develop informal science programs for science centers, museum visitors, and the public in general. We will also discuss our teacher workshops locally in California and also at annual conferences such as those of the National Science Teachers Association. Such workshops often focus on magnetism and its connection to CMEs and Earth's magnetic field, leading to the questions STEREO scientists hope to answer. The importance of partnerships and coordination in working in an instrument E/PO program that is part of a bigger NASA mission with many instrument suites and many PIs will be emphasized. The Education and Outreach Porgram is funded by NASA's SMD.

  20. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  1. Frontier Fields: A Cost-Effective Approach to Bringing Authentic Science to the Education Community

    Science.gov (United States)

    Eisenhamer, B.; Lawton, B.; Summers, F.; Ryer, H.

    2015-11-01

    For more than two decades, the Hubble EPO program has sought to bring the wonders of the universe to the education community and the public, and to engage audiences in the adventure of scientific discovery. Program components include standards-based, curriculum-support materials, exhibits and exhibit components, and professional development workshops. The main underpinnings of the program's infrastructure are scientist-educator development teams, partnerships, and an embedded program evaluation component. The Space Telescope Science Institute's Office of Public Outreach is leveraging this existing infrastructure to bring the Frontier Fields science program to the education community in a cost-effective way. Frontier Fields observations and results have been, and will continue to be, embedded into existing product lines and professional development offerings. We also are leveraging our new social media strategy to bring the science program to the public in the form of an ongoing blog.

  2. The Committed Intimate Partnerships of Incarcerated African-American Men: Implications for Sexual HIV Transmission Risk and Prevention Opportunities.

    Science.gov (United States)

    Khan, Maria R; El-Bassel, Nabila; Golin, Carol E; Scheidell, Joy D; Adimora, Adaora A; Coatsworth, Ashley M; Hu, Hui; Judon-Monk, Selena; Medina, Katie P; Wohl, David A

    2017-10-01

    Incarceration is thought to influence HIV transmission by disrupting partnerships that provide support and protect against sex risk-taking. Current correctional facility-based family-strengthening programs focus on marital partnerships, a minority of inmates' partnerships. Research on the sex partnerships of incarcerated African-American men and the types of partnerships most likely to protect against HIV-related sex risk is limited. Improved understanding can inform expansion of correctional facility-based family-strengthening programs to a greater proportion of protective partnerships and HIV risk reduction programs to partnerships vulnerable to sex risk. Project DISRUPT is a cohort study of African-American men being released from prison in North Carolina who were in committed heterosexual partnerships at prison entry. Using baseline survey data (N = 189), we conducted latent class analysis (LCA) to identify subgroups of participants with distinct relationship profiles and measured associations between relationship characteristics and multiple partnerships of inmates and their partners in the six months before incarceration. LCA indicated a two-class solution, with relationships distinguished by satisfaction/stability (satisfied/stable class: 58.0%; dissatisfied/unstable class: 42.0%); each class had comparable relationship length and levels of marriage and cohabitation. Dissatisfied/unstable relationships were associated with multiple partnerships among participants (AOR 2.93, 95% CI 1.50, 5.72) and partners (AOR 4.95, 95% CI 1.68, 14.58). Satisfaction indicators-versus length, marriage, or cohabitation-were the strongest independent correlates of inmates' and partners' multiple partnerships. Pre-incarceration economic deprivation, mental disorder symptoms, substance use, and violence in relationships were associated with dissatisfaction/instability. Prison-based programs designed to maintain healthy partnerships, strengthen relationship skills, and reduce

  3. Museums, zoos, and gardens: how formal-informal partnerships can impact urban students' performance in science.

    Science.gov (United States)

    Weinstein, Meryle; Whitesell, Emilyn Ruble; Schwartz, Amy Ellen

    2014-12-01

    Informal science education institutions (ISEIs) are critical partners in public science education, as they support the science efforts of school systems by providing authentic opportunities for scientific inquiry. This study reports findings from an evaluation of urban advantage (UA), a collaboration between the New York City Department of Education and eight ISEIs designed to improve science education in New York City (NYC) middle schools. Now in its 10th year, the program harnesses the resources and expertise of NYC's ISEIs to (a) enhance the science content knowledge of middle school science teachers, (b) develop teachers' skills at using inquiry-based approaches in their classrooms, and (c) improve the science achievement of middle school students. We examine whether the UA program has led to increased student achievement on the eighth-grade New York State standardized science exam for students in participating schools; in supplemental analyses, we examine the effects on longer term (ninth-grade) outcomes. We use a difference-in-differences framework with school fixed effects to estimate the impact of attending a UA school in eighth grade on science achievement. Our key outcome is performance on New York State's eighth-grade intermediate-level science assessment; longer term outcomes include enrollment at specialized science, technology, engineering, and math high schools as well as taking and passing the high school (Regents) science exams. We find that attending a UA school increases student performance on the eighth-grade science exam by approximately 0.05 SD, and there is some evidence of small effects on Regents taking and passing rates. © The Author(s) 2014.

  4. Public-private partnerships in translational medicine: concepts and practical examples.

    Science.gov (United States)

    Luijten, Peter R; van Dongen, Guus A M S; Moonen, Chrit T; Storm, Gert; Crommelin, Daan J A

    2012-07-20

    The way forward in multidisciplinary research according to former NIH's director Elias Zerhouni is to engage in predictive, personalized, preemptive and participatory medicine. For the creation of the optimal innovation climate that would allow for such a strategy, public-private partnerships have been widely proposed as an important instrument. Public-private partnerships have become an important instrument to expedite translational research in medicine. The Netherlands have initiated three large public-private partnerships in the life sciences and health area to facilitate the translation of valuable basic scientific concepts to new products and services in medicine. The focus of these partnerships has been on drug development, improved diagnosis and regenerative medicine. The Dutch model of public-private partnership forms the blueprint of a much larger European initiative called EATRIS. This paper will provide practical examples of public-private partnerships initiated to expedite the translation of new technology for drug development towards the clinic. Three specific technologies are in focus: companion diagnostics using nuclear medicine, the use of ultra high field MRI to generate sensitive surrogate endpoints based on endogenous contrast, and MRI guidance for High Intensity Focused Ultrasound mediated drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Personal Relationship to the Art of Music: A Research Project in Progress from the New York Philharmonic's School Partnership Program

    Science.gov (United States)

    Carrick, Richard; Easton, Hilary; Hong-Park, Jihea; Langlais, Rachel; Mannoia, Richard

    2012-01-01

    Begun in 1994, the New York Philharmonic School Partnership Program (SPP) gives elementary schools the unique opportunity of integrating symphonic music into the school community through collaborations between Philharmonic teaching artists and classroom teachers in full-year residencies. During the three-year curriculum, students gain skills in…

  6. Building Extension Partnerships with Government to Further Water Conservation Efforts

    Science.gov (United States)

    McKee, Brandon; Huang, Pei-wen; Lamm, Alexa

    2017-01-01

    Extension, being a local, state and federally funded program has a natural partnership with government agencies at all three levels, however these partnerships could be built upon and targeted at specific audiences for greater effect if more is known about how government influences public perception. The government has recognized the need for…

  7. IDRC-GDN: A Strengthened Partnership for Research Capacity ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC-GDN: A Strengthened Partnership for Research Capacity Building. This project provides core funding to the Global Development Network (GDN) over three years. GDN supports social science researchers in developing and transition countries. Its core mission is to enhance policy-relevant research capacity by ...

  8. Education in the Direction of Public-Private Partnership

    Directory of Open Access Journals (Sweden)

    Norma Suely Siqueira Eiras

    2008-07-01

    Full Text Available The process of the neoliberalism reveals, at its more intense moment, the submission of all the levels of the life human being the mercantile transactions, the capitalist inclination to the world-wide trading. In this manner, the neoliberal proposals objectify, over all, the creation of an only feeling to guarantee the success of its ideals of globalization, free-economy and State minimum, not inhibit the social politics, but partnership of the market. Amongst the artifices used for the neoliberal proposers, placed the Public-Private Partnerships (PPPs with which this article concerns. From the conceptualization and characterization of the instrument Public-Private Partnerships (PPPs, national and European projects, developed through the PPPs, had been analyzed. The subjects of these projects involve Technology of Computer science and Communication and eLearning (education + technology + in the distance. Reflections had evidenced that the partnerships between governments and multinationals companies can lead to a loss of control on the part of the State on the educational formation of the citizens and the loss of identity of its resumes. The explanation for this phenomenon happens of the trend to the globalization. On the other hand, these partnerships bring profits politicians to the governments and economic to the companies.

  9. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  10. Programs of the Office of the Science Advisor (OSA)

    Science.gov (United States)

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  11. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  12. A diagnostic evaluation model for complex research partnerships with community engagement: the partnership for Native American Cancer Prevention (NACP) model.

    Science.gov (United States)

    Trotter, Robert T; Laurila, Kelly; Alberts, David; Huenneke, Laura F

    2015-02-01

    Complex community oriented health care prevention and intervention partnerships fail or only partially succeed at alarming rates. In light of the current rapid expansion of critically needed programs targeted at health disparities in minority populations, we have designed and are testing an "logic model plus" evaluation model that combines classic logic model and query based evaluation designs (CDC, NIH, Kellogg Foundation) with advances in community engaged designs derived from industry-university partnership models. These approaches support the application of a "near real time" feedback system (diagnosis and intervention) based on organizational theory, social network theory, and logic model metrics directed at partnership dynamics, combined with logic model metrics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  14. Examining the Complexities of School-Museum Partnerships

    Science.gov (United States)

    Gupta, Preeti; Adams, Jennifer; Kisiel, James; Dewitt, Jennifer

    2010-01-01

    We examine the research conducted by Kang, Anderson and Wu by discussing it in a larger context of science museum-school partnerships. We review how the disconnect that exists between stakeholders, the historical and cultural contexts in which formal and informal institutions are situated, and ideas of globalization, mediate the success for…

  15. A Partnership in Observational and Computational Astronomy (POCA)

    Science.gov (United States)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2009-01-01

    A partnership has been established between South Carolina State University (SCSU, a Historically Black College/University), the National Optical Astronomy Observatory (NOAO) and Clemson University (CU) under an award from NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. The mission of POCA is to develop an effective, long-term partnership that combines the strengths of the three institutions to increase the scientific and educational output of all the partners with special emphasis on enhancing diversity in the field of astronomy. Components of the program include enhancing faculty and student research in astronomy at SCSU, recruiting and retaining underrepresented minority students into the field, outreach through planetarium programs and museum exhibits and developing web based resources in astronomy education. Activities in the first year of the program are discussed. We have begun developing and testing several new astronomy laboratory exercises. Our first summer internship program has concluded successfully. With PAARE scholarship money, we are now supporting four physics majors at SCSU who have chosen the astronomy option (concentration) for their degree. SCSU undergraduates have acquired observing experience on the KPNO Mayall 4-meter telescope under the guidance of faculty and graduate students from CU. NOAO astronomers have collaborated with SCSU faculty to begin a research program that studies RV Tauri stars. Funds from PAARE are supporting follow-up research to a just-completed doctoral dissertation by E. A. Mayo described elsewhere in these proceedings. Future plans for graduate fellowships and related activities are discussed in addition to summer internships for POCA undergraduates at CU and NOAO. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  16. Engineering, global health, and inclusive innovation: focus on partnership, system strengthening, and local impact for SDGs.

    Science.gov (United States)

    Clifford, Katie L; Zaman, Muhammad H

    2016-01-01

    The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering-global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all.

  17. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  18. A Program to Prepare Graduate Students for Careers in Climate Adaptation Science

    Science.gov (United States)

    Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.

    2017-12-01

    We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.

  19. Green Power Partnership Long-term Contracts

    Science.gov (United States)

    The U.S. EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. This page lists Partners that signed a contract to purchase green power for 5 years or more.

  20. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  1. Iterative and Event-Based Frameworks for University and School District Technology Professional Development Partnerships

    Science.gov (United States)

    Winslow, Joseph; Dickerson, Jeremy; Weaver, Carmen; Josey, Fair

    2016-01-01

    Forming technology partnerships between universities and public schools in an era of competition and economic difficulty is a challenge. However, when these partnerships are formed and sustained, the benefits for both are extremely valuable. For a university instructional technology graduate program and school partnership to be successful, the…

  2. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  3. Social Capital and Educational Partnerships: Reciprocity, Altruism, and Self-Interest

    Science.gov (United States)

    Moquett, Kerry Davis

    2012-01-01

    Over the past few decades, partnerships between school districts and post-secondary institutions have increased. The primary purpose has been to create and deliver dual enrollment programs for high school students. This case study focused on one partnership between a large school district in California and a private four-year non-profit college.…

  4. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  5. Honduras - Public Financial Management and Public-Private Partnerships

    Data.gov (United States)

    Millennium Challenge Corporation — The Honduras Threshold Country Program (TCP) aims to increase the efficiency and transparency of public financial management (PFM) and public private partnerships...

  6. Better Together: Expanding Rural Partnerships to Support Families

    Science.gov (United States)

    Shaklee, Harriet; Bigbee, Jeri; Wall, Misty

    2012-01-01

    Chronic shortages of health, social service, and mental health professionals in rural areas necessitate creative partnerships in support of families. Cooperative extension professionals in Family and Consumer Sciences and community health nurses, who can bring critical skills to human services teams, are introduced as trusted professionals in…

  7. 77 FR 30351 - Sec. 221 Public Private Partnerships Public Meeting

    Science.gov (United States)

    2012-05-22

    ... statute requires that such a program be based on public- private partnership (PPP) principles and maximize... implement a PPP equipage incentives program. FOR FURTHER INFORMATION CONTACT: Ann Tedford, Office of Finance...

  8. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  9. State-private partnership: aspects of application in the agricultural sphere

    Directory of Open Access Journals (Sweden)

    E. R. Zakirova

    2017-01-01

    Full Text Available The relevance of the study is determined by the importance of using the mechanism of public-private partnership in the agro-industrial complex, which allows, under conditions of mutual benefit for the state and business, to expand the resource base and channel untapped resources to sustainable agricultural development. The aim of the article is to study theoretical approaches and substantiate practical recommendations aimed at improving the mechanism of public-private partnership in the Russian agro-industrial complex. In preparing the article, general scientific methods of research were used: analysis and synthesis, generalization, comparison, classification. Results. The mechanism of public-private partnership in modern conditions is investigated, its definitions and essence are analyzed, its importance as an effective form of realization of investment activity is defined. The benefits of implementing public-private partnership projects for the state, business and the whole economy are systematized. Key risks for participants of public-private partnership are highlighted. The foreign experience of realization of joint projects of the state and business is analyzed. Features of public-private partnership in Russia are considered, tendencies of its development are determined. It is established that the agro-industrial complex as a sphere of application of public-private partnership needs special attention, since it is responsible for life support and ensures food security of the country. The program-targeted approach is analyzed, which is implemented in the form of the State Program for the Development of Agriculture and Regulation of Agricultural Products, Raw Materials and Foodstuffs of the Russian Federation. The government benefits from investing in the development of the agro-industrial complex are determined. The directions of methodical work in the sphere of the implementation of public-private projects are singled out. It is concluded

  10. A concept for performance management for Federal science programs

    Science.gov (United States)

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  11. The Role of Partnership in Value Chain of Sweet Potato in Regency of West Java (Case Study of PT Galih Estetika Indonesia Partnership

    Directory of Open Access Journals (Sweden)

    Eva Farichatul Aeni

    2017-09-01

    Full Text Available The partnership between the farmers and PT Galih Estetika Indonesia as the exporter company in the field of sweet potato processing is expected to support the development of sweet potato agribusiness in Kuningan Regency and become one of the solutions for farmers’ problems. Termination of partnership contracts undertaken by the farmers will have an impact on the implementation of partnerships, company operations as well as the value chain. This study aims to analyze the pattern of partnership, degree of partnership, value chain structure, value chain governance, farmers’ income (partner and non-partner and margin. The method of data processing and data analysis used the descriptive analysis qualitative and quantitative descriptive analysis. The results showed that the pattern of partnership that is formed is a centralized pattern with the degree value of partnership of 716 (madya pattern. The structure of the value chain by mapping the actors and their activities result in relationships and coordination between the parties. Farmers with companies belong to the modular type in VCG. Economic benefits indicate that net income of partner farmers is Rp22,157,828/Ha, while non-partner farmers obtain Rp12,306,789/Ha and the smallest margin is obtained by the coordinator. The analysis shows that farmers' incomes are larger, but partnership planning has not been ideal. Therefore, the roles of farmers, companies and related agencies are required in the running of the ideal sweet potato partnership program.Keywords: sweet potato partnership, partnership pattern, value chain, value chain governance, revenue

  12. Revisiting Public School/University Partnerships for Formal Leadership Development: A Brief 30-Year Retrospective

    Science.gov (United States)

    Thompson, David C.

    2016-01-01

    In this article, the Kansas State University Chair of the Department of Educational Leadership reviews the strong history of his department's university and public school partnerships and the impact these partnerships have had on leadership preparation programs. Almost 30 years ago, Kansas State University foresaw the power of partnerships with…

  13. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    Science.gov (United States)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  14. Ostomy Home Skills Program

    Medline Plus

    Full Text Available ... Military Health System Strategic Partnership Military Health System Strategic Partnership About Excelsior Surgical Society ... Programs Quality Programs Overview About Quality Programs ACS Leadership in Quality ACS Leadership in Quality Setting the ...

  15. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  16. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    Science.gov (United States)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in

  17. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  18. Results of nine Connecticut Cancer Partnership implementation projects.

    Science.gov (United States)

    Morra, Marion E; Mowad, Linda Z; Hogarty, Lucinda Hill; Kettering, Shiu-Yu

    2012-01-01

    The Connecticut Cancer Partnership (Partnership), through funds from the Connecticut legislature, the AttorneyGeneral Fund and some limited federal funding, has spearheaded the implementation of a series of projects by Connecticut institutions and State of Connecticut departments. Among them are projects in prevention, detection, treatment, survivorship and end-of-life care, along with programs that target ethnic and uninsured populations. This article highlights funding sources, procedures for choosing projects and summaries for nine completed projects of interest to practicing physicians. It also includes a listing of additional projects currently underway. The use of shared funding among the State's partners highlights the energy of the Partnership in carrying out the common vision embodied in the Connecticut Cancer Plan.

  19. TRU partnership-Working smarter-Not harder

    International Nuclear Information System (INIS)

    Armstrong, D.W.; Briggs, S.R.; Martin, M.R.; Turner, D.R.

    1994-01-01

    The open-quotes TRU Partnershipclose quotes was initiated and continues to function under the catch phrase philosophy of open-quotes work smarter, not harderclose quotes. The parntership participants have realized that DOE no longer has the funding available to reinvent the wheel at each site. Information and experiences from each site need to accurately and timely provided to the other sites for their use. The project teams from the different TRU waste handling sites benefit enormously from the strong network that has developed between TRU partnership participants. The partnership working interface places design manager in touch with design manager, project manager with project manager, etc. across site boundaries, and equally important, across corporate boundaries. The TRU Partnership has created a team atmosphere for the participants. The team focus is on the common challenge of managing TRU waste projects to support site needs and the needs of the national TRU waste program. Although consistency of approach for all projects at any given site is important, the TRU Partnership provides an intersite forum to establish consistency and understanding across all DOE projects managing TRU waste. The TRU Partnership has adopted the Westinghouse Electric Corporation open-quotes Savings Through Sharingclose quotes philosophy as an integral part of its organizational objectives. As applied by the group, the approach concentrates on information and experiences that can enhance development and reduce costs for (TRU) waste projects

  20. Using social media to promote international student partnerships.

    Science.gov (United States)

    Garrett, Bernard M; Cutting, Roger

    2012-11-01

    This paper describes a project to establish and evaluate online study partnerships, using social networking applications, between final year Canadian nursing students at the University of British Columbia (UBC) and second year undergraduate science education students at the University of Plymouth (UoP) in the UK. The project took place between 2009 and 2010 and evaluated the use of social networking applications with international interdisciplinary partnerships between Canadian and UK students. A multi-method evaluation strategy incorporating questionnaires, online focus groups and web analytics was used to explore the value of social media to promote the exchange of ideas and discussion of scientific philosophy in different contexts, between students working in disciplines with differing philosophical perspectives principally modern/post-modern, quantitative/qualitative, empirical/theoretical. This project resulted in a very successful collaborative partnership between UK and Canadian students. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Evaluating virtual STEM mentoring programs: The SAGANet.org experience

    Science.gov (United States)

    Som, S. M.; Walker, S. I.; Miller, E.; Anbar, M.; Kacar, B.; Forrester, J. H.

    2014-12-01

    Many school districts within the United States continue to seek new ways of engaging students within Science, Technology, Engineering, and Mathematics (STEM) disciplines. SAGANet.org, a web-based 501c3 Astrobiology outreach initiative, works with a number of schools, partnering K-12 students and their families with professional scientist mentors from around the world to teach and inspire students using virtual technology platforms. Current programs include two mentoring partnerships: pairing scientist-mentors with at-risk youth at the Pittsburg Community School in Pittsburg CA, and pairing scientist-mentors with families from the Kyrene del Cielo Elementary School in Chandler AZ. These programs represent two very different models for utilizing the virtual media platform provided by SAGANet.org to engage K-12 students and their families in STEM. For the former, scientists mentor the students of the Pittsburg School as part of the formal in-class curriculum. For the latter, scientists work with K-5 students and their families through Cielo's Science & Engineering Discovery Room to develop a science project as part of an informal learning experience that is independent of the formal curriculum. In this presentation, we (1) discuss the challenges and successes of engaging these two distinct audiences through virtual media, (2) present the results of how these two very-different mentoring partnership impact K-12 students science self-efficacy, interest in science, and STEM career awareness, and (3) share the impact of the mentoring experience on the mentor's confidence and self-efficacy with communicating science to the public.

  2. Building A Collaborative And Distributed E&O Program For EarthScope

    Science.gov (United States)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.

    2003-12-01

    EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.

  3. A London shop window for PPARC industry partnership successes

    CERN Multimedia

    Neale, R

    2002-01-01

    The UK Particle Physics and Astronomy Research Council recently held a seminar in London to reveal the results of the impressive work they are doing in fostering partnerships between science and industry. They have many different types of funded programmes, the purpose of all of them is to encourage industry and entrepreneurs to both benefit from and service the requirements of particle physics science and technology (1 page).

  4. Science Innovation Through Industry Partnership: Lessons from AMPERE in Bridging the Federal Sponsor/Private Corporation Divide

    Science.gov (United States)

    Anderson, B. J.; Korth, H.; Erlandson, R. E.

    2017-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) was made possible by harnessing an fortuitous capability of the Iridium Communications constellation of 70 polar orbiting satellites. In 1996 it was realized that the attitude magnetometers on-board the Iridium satellites, then in fabrication, could potentially be used to obtain the first ever global and continuous measurements of the Birkeland currents with a sufficiently short re-sampling cadence (10 minutes) to track the dynamic evolution of the large-scale currents. The experience of taking this idea from 1996 through various research grant supported efforts, mission of opportunity proposal attempts, and finally through funding and implementation as a National Science Foundation geospace facility, revealed a number of challenges both in proposing innovative solutions to existing sponsor programs and also in working between the federal sponsor community and the private commercial space environment. Implementing AMPERE required a code change to on-board software on the Iridium satellites and it proved necessary to engage NASA to adjust the solicitation language to allow AMPERE. For NASA proposals we also encountered a conflict with respect to federal sponsorship such that the original business configuration of Iridium could not accept the accounting regime implied by a sub-contract derived from a federal contract acquisition. Subsequent mission of opportunity efforts encountered various other challenges including the cancellation of an explorer to fund the exploration initiative in 2001. The facilities proposal to NSF was almost not submitted owing a funding vehicle disparity between the preferred proposer structure (contract) vs NSF's requirement to fund only grants and a final hurdle concerned the structure of the contract with Iridium which was initially a sub-contract but was changed to a fixed-price data purchase due to NSF's limitations on funding fee-bearing engineering

  5. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  6. Risk assessment for public-private partnerships : a primer.

    Science.gov (United States)

    2014-01-01

    The Federal Highway Administrations (FHWAs) : Office of Innovative Program Delivery (IPD) : assists States and local governments in developing : knowledge, skills, and abilities in innovative finance : techniques. Publicprivate partnerships ...

  7. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  8. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  9. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  10. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  11. Science Diplomacy in the Geosciences (Invited)

    Science.gov (United States)

    Sztein, E.; Casadevall, T.

    2013-12-01

    Science can provide advice to inform and support foreign policy objectives (science in diplomacy), diplomacy can facilitate international scientific cooperation (diplomacy for science), and scientific cooperation can improve international relations (science for diplomacy) (The Royal Society, 2010). Historically, science policy and science diplomacy have served to both build relationships with other countries, to raise the status of science across borders, and to produce concrete scientific/societal results. International scientific cooperation is necessary for the advancement of science in the U.S. and abroad, among other societal benefits. Among the wide spectrum of scientific challenges, natural hazards and global environmental change are of great international importance, not only for the development of the intellectual pursuit of science, but because of their very concrete effects on populations and natural systems. In general, science diplomacy policy is determined at the political level through bilateral and multilateral science and technology agreements and partnerships, while the practice of science diplomacy is usually in the hands of individual scientists. Among the U.S. government efforts are the Department of State's Science Envoy program (mostly active in Muslim-majority nations) and the United States Geological Survey-Office of Foreign Disaster Assistance's Volcano Disaster Assistance Program. Individual scientists and their institutions establish collaborations one-on-one, in small principal investigator or research group collaborations, in bilateral agreements between universities, or in activities organized under the auspices of larger programs, such as those of scientific unions or international organizations (National Research Council, 2012). Among many programs, the U.S. has strong participation in the Intergovernmental Panel on Climate Change (IPCC), and in Future Earth (a global environmental change initiative) and the Integrated Research on

  12. Response to science education reforms: The case of three science education doctoral programs in the United States

    Science.gov (United States)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question

  13. EU Science Diplomacy and Framework Programs as Instruments of STI Cooperation

    Directory of Open Access Journals (Sweden)

    К. А. Ibragimova

    2017-01-01

    Full Text Available This article examines the tools that the EU in interactions with third countries in the field of STI uses. The EU is a pioneer in the use of science and technology in the international arena, the creation of strategic bilateral agreements on science and technology and the conduct of political dialogues at the highest political level (at the country and regional levels. The EU actively uses its foreign policy instruments of influence, including the provision of access to its framework programs to researchers from third countries, as well as scientific diplomacy. The success of these programs and scientific diplomacy shows the effectiveness of the EU as a global actor. In its foreign policy global innovation strategy, the EU proceeds from the premise that no state in the world today can cope independently with modern global challenges such as climate change, migration, terrorism, etc. Therefore, the solution of these issues requires both an expert evaluation from an independent world scientific community, and the perseverance of diplomats and officials of branch ministries of national states capable of conveying the views of their government in international negotiations and defending national interests of the country to find a solution that suits everyone. The EU has the resources to create a "cumulative effect" by developing and applying common norms on the territory of theUnion, analyzing the innovation policies of member states and the possibility of sharing best practices. At the same time, the EU shares its vision of problems, values and priorities with partners and uses the tools of "soft power" (including its smart and normative force and scientific diplomacy in the field of STI. The soft power of the EU in the field of STI lies in the attractiveness of the EU as a research area in which it is possible to conduct modern high-quality international research with the involvement of scientific teams from different countries in both physical

  14. The North Cascadia Adaptation Partnership: a science-management collaboration for responding to climate change

    Science.gov (United States)

    Crystal L. Raymond; David L. Peterson; Regina M. Rochefort

    2013-01-01

    The U.S. Forest Service (USFS) and National Park Service (NPS) have highlighted climate change as an agency priority and issued direction to administrative units for responding to climate change. In response, the USFS and NPS initiated the North Cascadia Adaptation Partnership (NCAP) in 2010. The goals of the NCAP were to build an inclusive partnership, increase...

  15. Bridging the Gap: The Role of Research in Science Education

    Science.gov (United States)

    Adams, M. L.; Michael, P. J.

    2001-12-01

    Teaching in K-12 science classrooms across the country does not accurately model the real processes of science. To fill this gap, programs that integrate science education and research are imperative. Teachers Experiencing Antarctica and the Arctic (TEA) is a program sponsored and supported by many groups including NSF, the Division of Elementary, Secondary, and Informal Education (ESIE), and the American Museum of Natural History (AMNH). It places teachers in partnerships with research scientists conducting work in polar regions. TEA immerses K-12 teachers in the processes of scientific investigation and enables conveyance of the experience to the educational community and public at large. The TEA program paired me with Dr. Peter Michael from the University of Tulsa to participate in AMORE (Arctic Mid-Ocean Ridge Expedition) 2001. This international mission, combining the efforts of the USCGC Healy and RV Polarstern, involved cutting-edge research along the geologically and geophysically unsampled submarine Gakkel Ridge. While in the field, I was involved with dredge operations, CTD casts, rock cataloging/ processing, and bathymetric mapping. While immersed in these aspects of research, daily journals documented the scientific research and human aspects of life and work on board the Healy. E-mail capabilities allowed the exchange of hundreds of questions, answers and comments over the course of our expedition. The audience included students, numerous K-12 teachers, research scientists, NSF personnel, strangers, and the press. The expedition interested and impacted hundreds of individuals as it was proceeding. The knowledge gained by science educators through research expeditions promotes an understanding of what research science is all about. It gives teachers a framework on which to build strong, well-prepared students with a greater awareness of the role and relevance of scientific research. Opportunities such as this provide valauble partnerships that bridge

  16. PARTNERSHIP ROLE IN THE MANAGEMENT OF EUROPEAN STRUCTURAL AND INVESTMENT FUNDS

    Directory of Open Access Journals (Sweden)

    APOSTOLACHE Mihaela Adina

    2014-06-01

    Full Text Available This paper highlights the importance of the Code of Conduct on the Partnership, as partnership is a basic principle in the programming of European structural and investment funds, from conception, management and implementation to their monitoring and evaluation, a principle that adapts the actions to be taken to regional and local needs and priorities. Partnership encourages close cooperation between public authorities in the member states, at national, regional and local level, with the private sector and other stakeholders.

  17. Overview of NASA's Universe of Learning: An Integrated Astrophysics STEM Learning and Literacy Program

    Science.gov (United States)

    Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.

  18. The Effects of Situated Learning Through a Community Partnership in a Teacher Preparation Program

    Directory of Open Access Journals (Sweden)

    Shelly Meyers

    2013-08-01

    Full Text Available This article examines the value of using an alternative approach to college course instruction in an off-campus location, an agency for individuals with developmental disabilities. The situated learning model is an alternative to the traditional college course instructional approach for preservice teachers. This model immerses students in the actual setting where they can practice the skills and apply the concepts emphasized in the curriculum. Through a partnership between the college, the community agency, and a public school, graduate students in the special education program developed and implemented a life-skills curriculum for individuals with developmental disabilities, at the same time learning essential principles of delivering instruction. The school-aged students who participated in the study were from a racially mixed urban school district, while the adult clients from the community agency attended the program at the end of their community-based workday. Based on the results of surveys and focus group discussions, participants in the study indicated that the situated learning model of instruction in a community setting better prepared them in the acquisition and application of their teaching skills, and built their competence in developing educational programs for individuals with disabilities.

  19. The ASI science program

    Science.gov (United States)

    Musso, Carlo

    2002-03-01

    Italy came in the space business in 1963, being the third nation in the world, after the Soviet Union and the United States, to put an artificial satellite into orbit. In 1988 the Italian Space Agency (ASI) was constituted, with the mandate of planning, coordinating and executing civil space activities in Italy. The core of national space activities is science, for which Italy spends about 25% of the ASI budget, both in national and international programs. The community served by the scientific directorate of ASI is a very wide one, ranging from the science of the Universe and the exploration of the Solar System to life sciences, from Earth observation to the development of new technologies. The success of Italian space research appears under many different points of view. The national satellite BeppoSAX, named after Giuseppe Beppo Occhialini, widely contributed to solve the γ-ray burst puzzle, obtaining the relevant acknowledgment of the ``Bruno Rossi Prize''. Italian researchers kept the PI-ship of various payloads on board ESA missions, such as Epic for XMM-Newton, Ibis for Integral, Virtis and Giada for Rosetta, PFS and Marsis for Mars Express. Also in the field of the cosmic microwave background (CMB) two important experiments are foreseen in the next future, with Italian PIs: SPOrt on board the International Space Station, dedicated to the polarization of CMB, and LFI (Low Frequency Instrument) on board the ESA Planck satellite, to study CMB anisotropy. Meanwhile, a great success has been obtained with the balloon experiment Boomerang. Moreover, ASI started a national scientific and technological small mission program. The first three missions are on their way: Agile (a γ-ray observatory), David (an experiment to test very high frequency data transmission), and a third one, devoted to Earth science. .

  20. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order