WorldWideScience

Sample records for science ocean currents

  1. Ocean Science for Decision-Making: Current Activities of the National Research Council's Ocean Studies Board

    Science.gov (United States)

    Roberts, S.; Glickson, D.; Mengelt, C.; Forrest, S.; Waddell, K.

    2012-12-01

    The National Research Council is a private, nonprofit organization chartered by Congress in 1916 as an expansion of the U.S. National Academy of Sciences. Its mission is to improve the use of science in government decision making and public policy, increase public understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. Within the National Research Council, the Ocean Studies Board (OSB) mission is to explore the science, policies, and infrastructure needed to understand, manage, and conserve coastal and marine environments and resources. OSB undertakes studies and workshops on emerging scientific and policy issues at the request of federal agencies, Congress, and others; provides program reviews and guidance; and facilitates communication on oceanographic issues among different sectors. OSB also serves as the U.S. National Committee to the international, nongovernmental Scientific Committee on Oceanic Research (SCOR). OSB has produced reports on a wide range of topics of interest to researchers and educators, the federal government, the non-profit sector, and industry. Recent reports have focused on ecosystem services in the Gulf of Mexico after the Deepwater Horizon oil spill, sea level rise on the U.S. west coast, scientific ocean drilling needs and accomplishments, requirements for sustained ocean color measurements, critical infrastructure for ocean research, tsunami warning and preparedness, ocean acidification, and marine and hydrokinetic power resource assessments. Studies that are currently underway include responding to oil spills in the Arctic, evaluating the effectiveness of fishery stock rebuilding plans, and reviewing the National Ocean Acidification Research Plan. OSB plays an important role in helping create policy decisions and disseminating important information regarding various aspects of ocean science.

  2. Ocean Science Video Challenge Aims to Improve Science Communication

    Science.gov (United States)

    Showstack, Randy

    2013-10-01

    Given today's enormous management and protection challenges related to the world's oceans, a new competition calls on ocean scientists to effectively communicate their research in videos that last up to 3 minutes. The Ocean 180 Video Challenge, named for the number of seconds in 3 minutes, aims to improve ocean science communication while providing high school and middle school teachers and students with new and interesting educational materials about current science topics.

  3. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science

    Science.gov (United States)

    Holloway, A. E.

    2016-02-01

    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  4. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  5. Ocean FEST (Families Exploring Science Together)

    Science.gov (United States)

    Bruno, B. C.; Wiener, C. S.

    2009-12-01

    Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In

  6. Meeting report: Ocean 'omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013).

    Science.gov (United States)

    Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F

    2014-06-15

    The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.

  7. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  8. Meeting report: Ocean ‘omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013)

    Science.gov (United States)

    Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.

    2014-01-01

    The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495

  9. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  10. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 2 (2004) >. Log in or Register to get access to full text downloads.

  11. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 6, No 2 (2008) >. Log in or Register to get access to full text downloads.

  12. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  13. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  14. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  15. Advancing Ocean Science Through Coordination, Community Building, and Outreach

    Science.gov (United States)

    Benway, H. M.

    2016-02-01

    The US Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org) is a dynamic network of scientists working across disciplines to understand the ocean's role in the global carbon cycle and how marine ecosystems and biogeochemical cycles are responding to environmental change. The OCB Project Office, which is based at the Woods Hole Oceanographic Institution (WHOI), serves as a central information hub for this network, bringing different scientific disciplines together and cultivating partnerships with complementary US and international programs to address high-priority research questions. The OCB Project Office plays multiple important support roles, such as hosting and co-sponsoring workshops, short courses, working groups, and synthesis activities on emerging research issues; engaging with relevant national and international science planning initiatives; and developing education and outreach activities and products with the goal of promoting ocean carbon science to broader audiences. Current scientific focus areas of OCB include ocean observations (shipboard, autonomous, satellite, etc.); changing ocean chemistry (acidification, expanding low-oxygen conditions, etc.); ocean carbon uptake and storage; estuarine and coastal carbon cycling; biological pump and associated biological and biogeochemical processes and carbon fluxes; and marine ecosystem response to environmental and evolutionary changes, including physiological and molecular-level responses of individual organisms, as well as shifts in community structure and function. OCB is a bottom-up organization that responds to the continually evolving priorities and needs of its network and engages marine scientists at all career stages. The scientific leadership of OCB includes a scientific steering committee and subcommittees on ocean time-series, ocean acidification, and ocean fertilization. This presentation will highlight recent OCB activities and products of interest to the ocean science community.

  16. Youth Science Ambassadors: Connecting Indigenous communities with Ocean Networks Canada tools to inspire future ocean scientists and marine resource managers

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.

    2017-12-01

    This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This

  17. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    and inquiry-based ocean sciences activities for children and families visiting informal institutions. The following COSIA partners have taught the course: Hampton University - Virginia Aquarium; Oregon State University - Hatfield Marine Science Visitor's Center; Rutgers University - Liberty Science Center; University of California, Berkeley - Lawrence Hall of Science; University of Southern California - Aquarium of the Pacific; and Scripps Institution of Oceanography - Birch Aquarium. Communicating Ocean Sciences has also been taught at Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), University of Washington, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.

  18. Ocean FEST: Families Exploring Science Together

    Science.gov (United States)

    Bruno, Barbara C.; Wiener, Carlie; Kimura, Arthur; Kimura, Rene

    2011-01-01

    This project engages elementary school students, parents, teachers, and administrators in ocean-themed family science nights based on a proven model. Our key goals are to: (1) educate participants about ocean and earth science issues that are relevant to their communities; and (2) inspire more underrepresented students, including Native Hawaiians,…

  19. Drift in ocean currents impacts intergenerational microbial exposure to temperature.

    Science.gov (United States)

    Doblin, Martina A; van Sebille, Erik

    2016-05-17

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.

  20. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  1. Geoengineering Downwelling Ocean Currents. A Cost Assessment

    International Nuclear Information System (INIS)

    Zhou, S.; Flynn, P.C.

    2005-01-01

    Downwelling ocean currents carry carbon into the deep ocean (the solubility pump), and play a role in controlling the level of atmospheric carbon. The formation of North Atlantic Deep Water (NADW) also releases heat to the atmosphere, which is a contributor to a mild climate in Europe. One possible response to the increase in anthropogenic carbon in the atmosphere and to the possible weakening of the NADW is modification of downwelling ocean currents, by an increase in carbon concentration or volume. This study assesses the costs of seven possible methods of modifying downwelling currents, including using existing industrial techniques for exchange of heat between water and air. Increasing carbon concentration in downwelling currents is not practical due to the high degree of saturation of high latitude surface water. Two of the methods for increasing the volume of downwelling currents were found to be impractical, and four were too expensive to warrant further consideration. Formation of thicker sea ice by pumping ocean water onto the surface of ice sheets is the least expensive of the methods identified for enhancing downwelling ocean currents. Modifying downwelling ocean currents is highly unlikely to ever be a competitive method of sequestering carbon in the deep ocean, but may find future application for climate modification

  2. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    Science.gov (United States)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  3. What can Citizen Science do for Ocean Science and Ocean Scientists?

    Science.gov (United States)

    Best, M.; Hoeberechts, M.; Mangin, A.; Oggioni, A.; Orcutt, J. A.; Parrish, J.; Pearlman, J.; Piera, J.; Tagliolato, P.

    2016-12-01

    The ocean represents over 70% of our planet's surface area, over 90% of the living space. Humans are not marine creatures, we therefore have fundamentally not built up knowledge of the ocean in the same way we have on land. The more we learn about the ocean, the more we understand it is the regulatory engine of our planet…How do we catch up? Answers to this question will need to come from many quarters; A powerful and strategic option to complement existing observation programs and infrastructure is Citizen Science. There has been significant and relevant discussion of the importance of Citizen Science to citizens and stakeholders. The missing effective question is sometimes what is the potential of citizen science for scientists? The answers for both scientists and society are: spatial coverage, remote locations, temporal coverage, event response, early detection of harmful processes, sufficient data volume for statistical analysis and identification of outliers, integrating local knowledge, data access in exchange for analysis (e.g. with industry) and cost-effective monitoring systems. Citizens can be involved in: instrument manufacture and maintenance, instrument deployment/sample collection, data collection and transmission, data analysis, data validation/verification, and proposals of new topics of research. Such opportunities are balanced by concern on the part of scientists about the quality, the consistency and the reliability of citizen observations and analyses. Experience working with citizen science groups continues to suggest that with proper training and mentoring, these issues can be addressed, understanding both benefits and limitations. How to do it- implementation and maintenance of citizen science: How to recruit, engage, train, and maintain Citizen Scientists. Data systems for acquisition, assessment, access, analysis, and visualisation of distributed data sources. Tools/methods for acquiring observations: Simple instruments, Smartphone Apps

  4. Global Ocean Currents Database (GOCD) (NCEI Accession 0093183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ocean Currents Database (GOCD) is a collection of quality controlled ocean current measurements such as observed current direction and speed obtained from...

  5. Archives: Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... Archives: Western Indian Ocean Journal of Marine Science. Journal Home > Archives: Western Indian Ocean Journal of Marine Science. Log in or Register to get access to full text downloads.

  6. Western Indian Ocean Journal of Marine Science: Journal ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Journal Home > About the Journal > Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Log in or Register to get access to full text downloads.

  7. National Ocean Sciences Bowl in 2014: A National Competition for High School Ocean Science Education

    Science.gov (United States)

    2015-03-31

    and Environmental Science (NJ). Through creative storytelling and visualization, "Ocean Acidification" addressed human actions that increase carbon... history . They also are beginning to understand the interplay between areas of science, something that is rarely taught. To he an effective scientist

  8. Aquantis C-Plane Ocean Current Turbine Project

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex [Dehlsen Associates, LLC, Santa Barbara, CA (United States)

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  9. Grass Roots Design for the Ocean Science of Tomorrow

    Science.gov (United States)

    Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.

    2010-12-01

    Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences

  10. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  11. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    Science.gov (United States)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The

  12. Trends and frontiers for the science and management of the oceans.

    Science.gov (United States)

    Mumby, Peter J

    2017-06-05

    People have an enduring fascination with the biology of the oceans. When the BBC's 'Blue Planet' series first aired on British television almost a quarter of the nation tuned in. As the diversity of science in this special issue of Current Biology attests, the ocean presents a challenging environment for study while also exhibiting some of the most profound and disruptive symptoms of global change. Marine science has made major advances in the past few decades, which were primarily made possible through important technological innovations. This progress notwithstanding, there are persistent challenges in achieving an understanding of marine processes at appropriate scales and delivering meaningful insights to guide ocean policy and management. Naturally, the examples chosen below betray my ecological leanings, but I hope that many of the issues raised resonate with readers in many different disciplines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. On the Ocean, Communicating Science Through Radio Broadcasts

    Science.gov (United States)

    Daugherty, M.; Campbell, L.

    2016-02-01

    The outcomes of oceanic research are of critical importance to the general public. Communicating these results in a relatable and efficient manner however, is no simple task. To further the cause of scientific outreach done for the benefit of society, a weekly radio show was created at Texas A&M University, taking cutting edge research and translating it into applicable, interesting radio segments. The show, named "On the Ocean", was created by the Department of Oceanography to inform and entertain listeners of the general public on marine issues affecting their lives. On the Ocean is an effort to present high-level research without sacrificing the complexity of the science conducted. On the Ocean is a uniquely designed module with a systematic approach in teaching a new oceanographic concept each month. On the Ocean has a format of monthly topics with a two minute show each week. The first monthly installment is general, introducing the topic and its relevancy. The second and third shows are cause or effect, or possibly something very interesting the public would not already know. The fourth installment highlights how researchers study the topic, with the contributing professor's specific research methods emphasized. All shows are co-created with, and inspected for validity, by Texas A&M University professors, and edited for radio adaption by graduate students. In addition to airing on public broadcast radio to the College Station/Bryan TX area, the show also includes a globally accessible interactive website with podcasts, additional figures, and links to better elaborate on the material presented, as well as credit the contributing professors. The website also allows these professors the opportunity to present their research visually and link to their current work. Overall, On the Ocean is a new tool to deliver applicable science.

  14. Communicating Ocean Science at the Lower-Division Level

    Science.gov (United States)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  15. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada

    2006-06-01

    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  16. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  17. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  18. Aquantis Ocean Current Turbine Development Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  19. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  20. Social media connecting ocean sciences and the general public: the @OceanSeaIceNPI experiment

    Science.gov (United States)

    Pavlov, A. K.; Granskog, M. A.; Gerland, S.; Meyer, A.; Hudson, S. R.; Rösel, A.; King, J.; Itkin, P.; Cohen, L.; Dodd, P. A.; de Steur, L.

    2016-02-01

    As researchers we are constantly being encouraged by funding agencies, policy-makers and journalists to conduct effective outreach and to communicate our latest research findings. As environmental scientists we also understand the necessity of communicating our research to the general public. Many of us wish to become better science communicators but have little time and limited funding available to do so. How can we expend our science communication past project-based efforts that have a limited lifetime? Most critically, how can a small research groups do it without additional resources such as funds and communication officers? Social media is one answer, and has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and researchers are exploring the full breadth of possibilities brought by social media for reaching out to the general public, journalists, policy-makers, stake-holders, and research community. However, smaller research groups and labs are still underrepresented in social media. When it comes to practice, some essential difficulties can be encountered: identifying key target groups, defining the framework for sharing responsibilities and interaction within the research group, and finally, choosing a currently up-to-date social medium as a technical solution for communicating your research. Here, a group of oceanography and sea ice researchers (@OceanSeaIceNPI) share the positive experience of developing and maintaining for more than one year a researcher-driven outreach effort currently implemented through Instagram, Twitter and Facebook. We will present potential pitfalls and challenges that small research groups could face, and how to better overcome them. This will hopefully inspire and help other research groups and labs to conduct their own effective ocean science communication.

  1. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  2. Public affairs events at Ocean Sciences Meeting

    Science.gov (United States)

    Uhlenbrock, Kristan

    2012-02-01

    AGU public affairs will be cohosting two special events at Ocean Sciences 2012 that offer scientists opportunities to expand their communication, policy, and media experience. Join the conversations that highlight two important topics to connect science to society.

  3. NOAA Ocean Exploration: Science, Education and Ocean Literacy Online and in Social Media

    Science.gov (United States)

    Keener-Chavis, P.

    2012-12-01

    "Engagement" in ocean science initially might seem like a simple concept, however within an agency like NOAA, with a broad mission and a wide variety of stakeholders, the concept of engagement becomes quite complex. Several years ago, a Kellogg Commission Report was submitted to NOAA's Science Advisory Board to assist the Agency with more closely defining-and refining-how it could more effectively engage with the multiple audiences with which it works. For NOAA, engagement is a two-way relationship that unfolds in a commitment of service to society. It is an Enterprise-wide capability represented in NOAA's Next Generation Strategic Plan and carries the same weight across the Agency as science and technology. NOAA's Office of Ocean Exploration and Research (OER) engages scientists, educators and the public through a variety of online and social media offerings explicitly tied to the exploration science of its expeditions. The principle platform for this engagement is the Ocean Explorer website (http://oceanexplorer.noaa.gov). It is the single point of entry for formal and informal educators and the public to chronicled OER expeditions to little known regions of the world ocean. The site also enables access to live streaming video and audio from the United States' first ship solely dedicated to ocean exploration, the NOAA Ship Okeanos Explorer and the Institute for Exploration's E/V Nautilus. Video includes footage from the remotely operated vehicles, sonar displays, navigation displays, and mapping data displays. Through telepresence technologies and other online communication tools, scientists at remote locations around the world, including Exploration Command Centers, collaborate in deep-sea exploration conducted by the Okeanos Explorer. Those wanting access to the ship's track, oceanographic data, daily updates, web logs, and imagery during an expedition can access the online Okeanos Explorer Digital Atlas. Information on archived expeditions can be accessed

  4. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  5. Lindstrom Receives 2013 Ocean Sciences Award: Citation

    Science.gov (United States)

    Gordon, Arnold L.; Lagerloef, Gary S. E.

    2014-09-01

    Eric J. Lindstrom's record over the last 3 decades exemplifies both leadership and service to the ocean science community. Advancement of ocean science not only depends on innovative research but is enabled by support of government agencies. As NASA program scientist for physical oceanography for the last 15 years, Eric combined his proven scientific knowledge and skilled leadership abilities with understanding the inner workings of our government bureaucracy, for the betterment of all. He is a four-time NASA headquarters medalist for his achievements in developing a unified physical oceanography program that is well integrated with those of other federal agencies.

  6. One kind of atmosphere-ocean three layer model for calculating the velocity of ocean current

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Z; Xi, P

    1979-10-01

    A three-layer atmosphere-ocean model is given in this paper to calcuate the velocity of ocean current, particularly the function of the vertical coordinate, taking into consideratiln (1) the atmospheric effect on the generation of ocean current, (2) a calculated coefficient of the eddy viscosity instead of an assumed one, and (3) the sea which actually varies in depth.

  7. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  8. Attorneys for the Ocean - Graduate Training in the Transatlantic Helmholtz Research School for Ocean System Science and Technology (HOSST/TOSST)

    Science.gov (United States)

    van den Bogaard, Christel; Dullo, Christian; Devey, Colin; Kienast, Markus; Wallace, Douglas

    2016-04-01

    The worldwide growth in population and standards of living is leading to ever increasing human pressure on the oceans: as a source of resources, a transportation/trade pathway, and a sink for pollutants. However, use of the world's ocean is not presently guided by any over-arching management plan at either national or international level. Marine science and technology provide the necessary foundation, both in terms of system understanding and observational and modeling tools, to address these issues and to ensure that management of ocean activities can be placed on the best-possible scientific footing. The transatlantic Helmholtz Research School Ocean Science and Technology pools the complementary expertise of the Helmholtz Centre for Ocean Research Kiel (GEOMAR), the Christian-Albrechts-Universität zu Kiel, Dalhousie University and the Institute for Ocean Research Enterprise (IORE), to train the next generation of researchers in the key scientific areas critical for responsible resource utilization and management of the ocean with special emphasis on our "local ocean" - the North Atlantic. The Research School is organized around three themes which encompass key sensitivities of the North Atlantic to external forcing and resource exploitation: 4D Ocean Dynamics, Ecosystem Hotspots, and Seafloor Structures. Interactions within and between these themes regulate how the ocean system responds to both anthropogenic and natural change. The HOSST/TOSST fellows gain an in-depth understanding of how these ocean systems interact, which in turn provides a solid understanding for the formulation of scientifically-sound management practices. Given the broad scope of the school, student education is two-pronged: it provides excellent institutional support where needed, including scientific input, personal support and financial incentives, while simultaneously generating an open "intellectual space" in which ingenious, often unpredictable, ideas can take root, overcoming

  9. Ocean Filmmaking Camp @ Duke Marine Lab: Building Community with Ocean Science for a Better World

    Science.gov (United States)

    De Oca, M.; Noll, S.

    2016-02-01

    A democratic society requires that its citizens are informed of everyday's global issues. Out of all issues those related to ocean conservation can be hard to grasp for the general public and especially so for disadvantaged racial and ethnic groups. Opportunity-scarce communities generally have more limited access to the ocean and to science literacy programs. The Ocean Filmmaking Camp @ Duke Marine Lab (OFC@DUML) is an effort to address this gap at the level of high school students in a small coastal town. We designed a six-week summer program to nurture the talents of high school students from under-represented communities in North Carolina with training in filmmaking, marine science and conservation. Our science curriculum is especially designed to present the science in a locally and globally-relevant context. Class discussions, field trips and site visits develop the students' cognitive abilities while they learn the value of the natural environment they live in. Through filmmaking students develop their voice and their media literacy, while connecting with their local community, crossing class and racial barriers. By the end of the summer this program succeeds in encouraging students to engage in the democratic process on ocean conservation, climate change and other everyday affairs affecting their local communities. This presentation will cover the guiding principles followed in the design of the program, and how this high impact-low cost program is implemented. In its first year the program was co-directed by a graduate student and a local high school teacher, who managed more than 20 volunteers with a total budget of $1,500. The program's success was featured in the local newspaper and Duke University's Environment Magazine. This program is an example of how ocean science can play a part in building a better world, knitting diverse communities into the fabric of the larger society with engaged and science-literate citizens living rewarding lives.

  10. An ocean current inversion accuracy analysis based on a Doppler spectrum model

    Institute of Scientific and Technical Information of China (English)

    BAO Qingliu; ZHANG Youguang; LIN Mingsen; GONG Peng

    2017-01-01

    Microwave remote sensing is one of the most useful methods for observing the ocean parameters.The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars.While the effect of the ocean currents and waves is interactional.It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly.In order to study the relationship between the ocean surface current speed and the Doppler frequency shift,a numerical ocean surface Doppler spectrum model is established and validated with a reference.The input parameters of ocean Doppler spectrum include an ocean wave elevation model,a directional distribution function,and wind speed and direction.The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function (CDOP).What is more,the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed.All these simulations are in Ku band.The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors.With VV polarization,the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s,and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.

  11. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  12. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  13. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  14. Ocean Color and Earth Science Data Records

    Science.gov (United States)

    Maritorena, S.

    2014-12-01

    The development of consistent, high quality time series of biogeochemical products from a single ocean color sensor is a difficult task that involves many aspects related to pre- and post-launch instrument calibration and characterization, stability monitoring and the removal of the contribution of the atmosphere which represents most of the signal measured at the sensor. It is even more challenging to build Climate Data Records (CDRs) or Earth Science Data Records (ESDRs) from multiple sensors as design, technology and methodologies (bands, spectral/spatial resolution, Cal/Val, algorithms) differ from sensor to sensor. NASA MEaSUREs, ESA Climate Change Initiative (CCI) and IOCCG Virtual Constellation are some of the underway efforts that investigate or produce ocean color CDRs or ESDRs from the recent and current global missions (SeaWiFS, MODIS, MERIS). These studies look at key aspects of the development of unified data records from multiple sensors, e.g. the concatenation of the "best" individual records vs. the merging of multiple records or band homogenization vs. spectral diversity. The pros and cons of the different approaches are closely dependent upon the overall science purpose of the data record and its temporal resolution. While monthly data are generally adequate for biogeochemical modeling or to assess decadal trends, higher temporal resolution data records are required to look into changes in phenology or the dynamics of phytoplankton blooms. Similarly, short temporal resolution (daily to weekly) time series may benefit more from being built through the merging of data from multiple sensors while a simple concatenation of data from individual sensors might be better suited for longer temporal resolution (e.g. monthly time series). Several Ocean Color ESDRs were developed as part of the NASA MEaSUREs project. Some of these time series are built by merging the reflectance data from SeaWiFS, MODIS-Aqua and Envisat-MERIS in a semi-analytical ocean color

  15. Airborne Optical Remote Sensing of Ocean Surface Current Variability

    Science.gov (United States)

    Anderson, S. P.; Zuckerman, S.; Stuart, G.

    2016-02-01

    Accurate and timely knowledge of open ocean surface currents are needed for a variety of engineering and emergency missions, as well as for improving scientific understanding of ocean dynamics. This paper presents surface current observations from a new airborne current measurement capability called the Remote Ocean Current Imaging System (ROCIS). ROCIS exploits space-time processing of airborne ocean wave imagery to produce real-time maps of surface currents every 1 km along the flight track. Post-processing of the data allows for more in depth sensitivity studies than can be undertaken with the real-time measurements alone, providing swaths of current retrievals at higher spatial resolutions. Currents can be calculated on scales down to 100 m, across swaths 3 km wide, along the entire flight path. Here, we report on results for multiple ROCIS data collection flights over the Gulf of Mexico conducted in 2012, 2014 and 2015. We show comparisons to in situ current measurements, explore performance as a function of altitude, dwell, wind speed, and wave height, and discuss sources of error. We present examples of current retrievals revealing mesoscale and submesoscale variability. Lastly, we present horizontal kinetic energy spectra from select flights covering a range of spatial scales from hundreds of meters to hundreds of kilometers.

  16. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  17. Impetus and barriers to teaching ocean literacy: A perspective from landlocked middle school science teachers

    Science.gov (United States)

    Gillan, Amy Larrison

    The demand for a more ocean literate citizenry is growing rapidly in response to an ocean increasingly in peril. Discovering how to include students far removed from the ocean in our teaching about the ocean is imperative to meeting that charge. The purpose of the present study was to investigate the extent to which middle school science teachers in landlocked states addressed important ocean literacy concepts and what they perceived to be barriers and motivators to their doing so. This descriptive study was based on a nation-wide survey of middle school science teachers and content analyses of their most commonly used science textbooks and their state science standards. Data was analyzed quantitatively. Results indicated that landlocked and coastal teachers are similar in terms of their infrequency of teaching about the ocean, yet a number of their perceptions of barriers and motivators to do so vary. The barrier most often mentioned was middle school state science standards, which characteristically ignore the ocean sciences. The results are discussed in terms of their impact on ocean literacy professional development providers, science textbook publishers, and state science standards revision committees.

  18. Stand Up for Science: Lessons on Ocean Acidification from the Agua Hedionda Lagoon

    OpenAIRE

    Waters, Shannon

    2016-01-01

    Climate science has been a hallmark discipline at Scripps Institution of Oceanography (SIO) and other oceanographic institutions for decades. However, despite the dedication from researchers to investigate the connections between climate science and ocean health, people outside the scientific community are largely unaware of climate-related ocean health issues like ocean warming and ocean acidification.  And yet one demographic group seems especially interested in ocean health issues: teenage...

  19. AMS Weather Studies and AMS Ocean Studies: Dynamic, College-Level Geoscience Courses Emphasizing Current Earth System Data

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P.; Ruwe, E. E.

    2008-12-01

    AMS Weather Studies and AMS Ocean Studies are introductory college-level courses developed by the American Meteorological Society, with NSF and NOAA support, for local offering at undergraduate institutions nationwide. The courses place students in a dynamic and highly motivational educational environment where they investigate the atmosphere and world ocean using real-world and real-time environmental data. Over 360 colleges throughout the United States have offered these courses in course environments ranging from traditional lecture/laboratory to completely online. AMS Diversity Projects aim to increase undergraduate student access to the geosciences through implementation of the courses at minority-serving institutions and training programs for MSI faculty. The AMS Weather Studies and AMS Ocean Studies course packages consist of a hard-cover, 15-chapter textbook, Investigations Manual with 30 lab-style activities, and course website containing weekly current weather and ocean investigations. Course instructors receive access to a faculty website and CD containing answer keys and course management system-compatible files, which allow full integration to a college's e-learning environment. The unique aspect of the courses is the focus on current Earth system data through weekly Current Weather Studies and Current Ocean Studies investigations written in real time and posted to the course website, as well as weekly news files and a daily weather summary for AMS Weather Studies. Students therefore study meteorology or oceanography as it happens, which creates a dynamic learning environment where student relate their experiences and observations to the course, and actively discuss the science with their instructor and classmates. With NSF support, AMS has held expenses-paid course implementation workshops for minority-serving institution faculty planning to offer AMS Weather Studies or AMS Ocean Studies. From May 2002-2007, AMS conducted week-long weather workshops

  20. 76 FR 26721 - Re-Issuance of a General Permit to the National Science Foundation for the Ocean Disposal of Man...

    Science.gov (United States)

    2011-05-09

    ...EPA proposes to re-issue a permit authorizing the National Science Foundation (NSF) to dispose of ice piers in ocean waters. Permit re-issuance is necessary because the current permit has expired. EPA does not propose changes to the content of the permit because ocean disposal under the terms of the previous permit will continue to meet the ocean disposal criteria.

  1. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    Science.gov (United States)

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  2. Automated sensor networks to advance ocean science

    Science.gov (United States)

    Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.

    2010-12-01

    The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.

  3. The Centers for Ocean Science Education Excellence (COSEE) initiative

    Science.gov (United States)

    Cook, S.; Rom, E.

    2003-04-01

    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  4. Ocean Sciences and Remote Sensing Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: A 52,000 ft 2 state-of-the-art buildig designed to house NRL's Oceanography Division, part of the Ocean and Atmospheric Science and Technology Directorate....

  5. Focus: knowing the ocean: a role for the history of science.

    Science.gov (United States)

    Rozwadowski, Helen M

    2014-06-01

    While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.

  6. Motionally-induced electromagnetic fields generated by idealized ocean currents

    Science.gov (United States)

    Tyler, R. H.; Mysak, L. A.

    Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport

  7. Connecting Coastal Communities with Ocean Science: A Look at Ocean Sense and the Inclusion of Place-based Indigenous Knowledge

    Science.gov (United States)

    McLean, M. A.; Brown, J.; Hoeberechts, M.

    2016-02-01

    Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.

  8. Promoting Lifelong Ocean Education: Shaping Tomorrow's Earth Stewards and the Science and Technology Workforce

    Science.gov (United States)

    Meeson, Blanche

    2006-01-01

    The coming ocean observing systems provide an unprecedented opportunity to change both the public perception of our oceans, and to inspire, captivate and motivate our children, our young adults and even our fellow adults to pursue careers allied with the oceans and to become stewards of our Planet's last unexplored environment. Education plans for the operational component, the Integrated Ocean Observing System (IOOS), and for the research component, Ocean Research Interactive Observatory Networks (ORION), are designed to take advantage of this opportunity. In both cases, community recommendations were developed within the context of the following assumptions: 1. Utilize research on how people learn, especially the four-pronged model of simultaneous learner-centered, knowledge-center, assessment-centered and community-centered learning 2. Strive for maximum impact on national needs in science and technology learning 3. Build on the best of what is already in place 4. Pay special attention to quality, sustainability, and scalability of efforts 5. Use partnerships across federal, state and local government, academia, and industry. Community recommendations for 100s and ORION education have much in common and offer the opportunity to create a coherent education effort allied with ocean observing systems. Both efforts focus on developing the science and technology workforce of the future, and the science and technology literacy of the public within the context of the Earth system and the role of the oceans and Great Lakes in that system. Both also recognize that an organized education infrastructure that supports sustainability and scalability of education efforts is required if ocean observing education efforts are to achieve a small but measurable improvement in either of these areas. Efforts have begun to develop the education infrastructure by beginning to form a community of educators from existing ocean and aquatic education networks and by exploring needs and

  9. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  10. Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report

    Science.gov (United States)

    St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam

    2009-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…

  11. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report

    Science.gov (United States)

    Phillips, Michelle; St. John, Mark

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  12. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    Science.gov (United States)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  13. Ka-band Doppler Scatterometer for Measurements of Ocean Vector Winds and Surface Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Ocean surface currents impact heat transport, surface momentum and gas fluxes, ocean productivity and marine biological communities. Ocean currents also have social...

  14. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems

    International Nuclear Information System (INIS)

    Martin Taylor, S.

    2009-01-01

    The health of the world's oceans and their impact on global environmental and climate change make the development of cabled observing systems vital and timely as a data source and archive of unparalleled importance for new discoveries. The VENUS and NEPTUNE Canada observatories are on the forefront of a new generation of ocean science and technology. Funding of over $100M, principally from the Governments of Canada and BC, for these two observatories supports integrated ocean systems science at a regional scale enabled by new developments in powered sub-sea cable technology and in cyber-infrastructure that streams continuous real-time data to Internet-based web platforms. VENUS is a coastal observatory supporting two instrumented arrays in the Saanich Inlet, near Victoria, and in the Strait of Georgia, off Vancouver. NEPTUNE Canada is an 800 km system on the Juan de Fuca Plate off the west coast of British Columbia, which will have five instrumented nodes in operation over the next 18 months. This paper describes the development and management of these two observatories, the principal research themes, and the applications of the research to public policy, economic development, and public education and outreach. Both observatories depend on partnerships with universities, government agencies, private sector companies, and NGOs. International collaboration is central to the development of the research programs, including partnerships with initiatives in the EU, US, Japan, Taiwan and China.

  15. Western Indian Ocean Journal of Marine Science: Submissions

    African Journals Online (AJOL)

    Already have a Username/Password for Western Indian Ocean Journal of Marine Science? ... Editorial Policy ... The manuscript is your own original work, and does not duplicate any other previously published work, including your own ...

  16. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    Science.gov (United States)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  17. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation

    Science.gov (United States)

    Macko, S.; Szuba, T.

    2007-12-01

    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  18. Western Gulf of Mexico June 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jun_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  19. Eastern Gulf of Mexico April 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Apr_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  20. Eastern Gulf of Mexico November 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Nov_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  1. Eastern Gulf of Mexico February 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Feb_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  2. Eastern Gulf of Mexico March 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Mar_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  3. Western Gulf of Mexico October 1994 Ocean Currents, Geographic NAD83, MMS (1999)[ocean_currents_wgom_Oct_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  4. Eastern Gulf of Mexico May 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_May_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  5. Western Gulf of Mexico July 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jul_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  6. Western Gulf of Mexico May 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_May_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  7. Eastern Gulf of Mexico August 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Aug_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  8. Eastern Gulf of Mexico October 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Oct_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  9. Western Gulf of Mexico August 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Aug_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  10. Western Gulf of Mexico April 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Apr_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  11. Eastern Gulf of Mexico September 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Sep_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  12. Western Gulf of Mexico January 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Jan_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  13. Eastern Gulf of Mexico June 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jun_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  14. Eastern Gulf of Mexico July 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jul_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  15. Western Gulf of Mexico March 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Mar_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  16. Western Gulf of Mexico September 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Sep_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  17. Western Gulf of Mexico February 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Feb_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  18. Eastern Gulf of Mexico December 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Dec_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  19. Western Gulf of Mexico November 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Nov_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  20. Eastern Gulf of Mexico January 1997 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_Jan_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  1. Western Gulf of Mexico December 1994 Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_Dec_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  2. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    The Western Indian Ocean Journal of Marine Science (WIOJMS) provides an avenue for ... Effects of blood meal as a substitute for fish meal in the culture of juvenile Silver ... area of eastern Africa: the case of Quirimbas National Park, Mozambique ... This work is licensed under a Creative Commons Attribution 3.0 License.

  3. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    Science.gov (United States)

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  4. Bringing cutting-edge Earth and ocean sciences to under-served and rural audiences through informal science education

    Science.gov (United States)

    Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.

    2017-12-01

    The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.

  5. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  6. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    2009 3-day videoconferencing event, 3 graduate students and the lab PI connected to nine, 7th grade life science classes (~300 students) using SKYPE. Each of the nine videoconferences lasted for ~50 minutes and included a mini-lab tour, a short presentation on the graduate students’ field and lab-based research activities, and interspersed question and answer sessions. Teachers are currently exploring ways they can further capitalize on the connection to the research lab and are writing up a “how to” guide for SKYPE lab to classroom videoconferencing. LHS has been evaluating this videoconference project to get feedback from the participants about the collaboration, the technology, and the format in order to improve the program in the future. The collaboration has now been turned over to the graduate students and teachers with little facilitation by COSEE CA staff. COSEE CA is applying the approach to other earth and ocean science topics by offering “Virtual Lab Tours” as a broader impact option.

  7. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    Science.gov (United States)

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  8. Drift in ocean currents impacts intergenerational microbial exposure to temperature

    NARCIS (Netherlands)

    Doblin, Martina A.; Van Sebille, Erik

    2016-01-01

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes,

  9. Emergence of a global science-business initiative for ocean stewardship.

    Science.gov (United States)

    Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Rockström, Johan

    2017-08-22

    The ocean represents a fundamental source of micronutrients and protein for a growing world population. Seafood is a highly traded and sought after commodity on international markets, and is critically dependent on healthy marine ecosystems. A global trend of wild stocks being overfished and in decline, as well as multiple sustainability challenges associated with a rapid growth of aquaculture, represent key concerns in relation to the United Nations Sustainable Development Goals. Existing efforts aimed to improve the sustainability of seafood production have generated important progress, primarily at the local and national levels, but have yet to effectively address the global challenges associated with the ocean. This study highlights the importance of transnational corporations in enabling transformative change, and thereby contributes to advancing the limited understanding of large-scale private actors within the sustainability science literature. We describe how we engaged with large seafood producers to coproduce a global science-business initiative for ocean stewardship. We suggest that this initiative is improving the prospects for transformative change by providing novel links between science and business, between wild-capture fisheries and aquaculture, and across geographical space. We argue that scientists can play an important role in facilitating change by connecting knowledge to action among global actors, while recognizing risks associated with such engagement. The methods developed through this case study contribute to identifying key competences in sustainability science and hold promises for other sectors as well.

  10. Preliminary determination of the energy potential of ocean currents along the southern coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andrea; Beluco, Alexandre; de Almeida, Luiz Emilio B. [Inst. Pesquisas Hidraulicas, Univ. Fed Rio Grande do Sul, Porto Alegre (Brazil)

    2013-07-01

    The ocean can be a strategic alternative for obtaining energy supplies, both from ocean waves as from sea currents and tides. Among these features, the power generation projects based on ocean currents are still under development. Generating energy from ocean can have great impact on the Brazilian energy grid, since Brazil has a vast coastline, with more than 9,000 km long, with potential for generating energy from ocean currents not fully estimated. This article presents a preliminary determination of the energy potential for power generation from ocean currents along the coast of Rio Grande do Sul, the southernmost state of Brazil, and also presents notes that contribute to the characterization of the system of ocean currents in the region. The data used were obtained in two areas near Tramandai, allowing the determination of velocities and directions of the currents on a seasonal basis. The maximum speeds obtained rarely exceed 0.750 m/s, while the average speeds do not exceed 0.200 m/s. A relationship with the prevailing winds in the region was identified. Unfortunately, the results do not allow optimism about the power generation from ocean currents on the southern coast of Brazil, at least over the continental shelf.

  11. The role of ocean currents for carbonate platform stratigraphy (Invited)

    Science.gov (United States)

    Betzler, C.; Lindhorst, S.; Luedmann, T.; Eberli, G. P.; Reijmer, J.; Huebscher, C. P.

    2013-12-01

    Breaks and turnovers in carbonate bank growth and development record fluctuations in sea-level and environmental changes. For the carbonate banks of the Bahamas, the Maldives, the Queensland, and the Marion Plateau, sea-level changes and synchronous oceanographic and atmospheric circulation events were recorded through compositional and architectural changes. Most of these major carbonate edifices contain drift deposits, indicating that oceanic currents were a major driver of carbonate-bank evolution. It is proposed that such currents have a larger imprint on the growth patterns and the stratigraphic packaging of carbonates than previously thought. In the Bahamas, slope facies of carbonate banks exposed to deep oceanic currents are not arranged into sediment-texture controlled and depth-dependant strike-continuous facies belts. Facies patterns are controlled by the interplay of shallow-water input, succeeding sediment sorting as well as redistribution and erosion processes. This complements the classical windward - leeward classification of carbonate platform slopes and accounts for the significant and potentially dominant process of alongslope sediment transport and dispersal. Deep oceanic currents also have the potential to steepen the carbonate bank slopes, through sediment winnowing at the distal slope, such as for example in the Maldives. This process can be enhanced as the bank grows and expands in size which may accelerate currents. Oceanic current onset or amplification, however, may also account for slope steepening as an externally, i.e. climate-driven agent, thus forcing the banks into an aggradation mode of growth which is not a response to sea-level fluctuations or a result of the windward / leeward exposure of the bank edge. Ignorance of the impact of currents on platforms and platform slopes may lead to an erroneous conclusion that changes in sediment production, distribution, and morphologies of sediment bodies are features solely related to sea

  12. Marine Technology for Teachers and Students: A Multi-modal Approach to Integrate Technology and Ocean Sciences Instruction

    Science.gov (United States)

    Gingras, A.; Knowlton, C. W.; Scowcroft, G. A.; Babb, I.; Coleman, D.; Morin, H.

    2016-02-01

    The Marine Technology for Teachers and Students (MaTTS) Project implements a year-long continuum of activities beginning with educators reading and reporting on peer-reviewed publications, followed by face-to-face, hands-on weekend workshops and virtual professional development activities. Teams of teacher and student leaders then participate in an intensive, residential Summer Institute (SI) that emphasizes hands-on building of marine related technologies and exposure to career pathways through direct interactions with ocean scientists and engineers. During the school year, teachers integrate ocean science technology and data into their classrooms and participate, along with colleagues and students from their schools, in science cafes and webinars. Student leaders transfer knowledge gained by engaging their district's middle school students in ocean science activities and technologies by serving as hosts for live broadcasts that connect classrooms with ocean scientists and engineers though the Inner Space Center, a national ocean science telecommunications hub. Communication technologies bridge formal and informal learning environments, allowing MaTTS participants to interact with their fellow cohort members, scientists, and engineers both during and outside of school. Evaluation results indicate that for teachers both the weekend workshops and SI were most effective in preparing them to integrate ocean science and technology in STEM curricula and increase their ocean science content knowledge and leadership characteristics. For students the SI and the middle school interactions supported gains in knowledge, awareness, leadership skills and interest in ocean sciences and technologies, and related STEM careers. In particular, the connections made by working directly with scientists have positively impacted both student and teacher leaders. This presentation will provide an overview of the MaTTS model and early evaluation results.

  13. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  14. Dynamic reusable workflows for ocean science

    Science.gov (United States)

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle

    2016-01-01

    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic

  15. Dynamic Reusable Workflows for Ocean Science

    Directory of Open Access Journals (Sweden)

    Richard P. Signell

    2016-10-01

    Full Text Available Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog searches and data access now make it possible to create catalog-driven workflows that automate—end-to-end—data search, analysis, and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused, and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS which automates the skill assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC Catalog Service for the Web (CSW, then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enter the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased

  16. Survey on utility technology of a tidal and ocean current energy

    Science.gov (United States)

    Hirose, Manabu; Kadoyu, Masataka; Tanaka, Hiroyoshi

    1987-06-01

    A study is made to show the current technological levels in Japan and other nations regarding the conversion of tidal current or ocean current energy to electric power and to determine the latent energy quantities and energy-related characteristics of tidal and ocean currents. In Japan, relatively large-scale experiments made so far mostly used one of the following three types of devices: Savonius-wheel type, Darrieus-wheel type, and cross-flow-wheel type. Field experiments of tidal energy conversion have been performed at the Naruto and Kurushima Straits. The energy in the Kuroshio current is estimated at about 170 billion kWh per year. Ocean current energy does not undergo large seasonal variations. The total energy in major straits and channels in the Inland Sea and other sea areas to the west is estimated at about 124 billion kWh per year. Tidal current energy shows large seasonal variations, but it is possible to predict the changes. A survey is made to determine energy-related characteristics of a tidal current at Chichino-seto, Kagoshima Prefecture. At Chichino-seto, the flow velocity ranges from 0 to 2.2m/s, with a latent tidal current energy of about 70 kW, of which about 20 kW can actually be utilized.

  17. Science Potential of a Deep Ocean Antineutrino Observatory

    International Nuclear Information System (INIS)

    Dye, S.T.

    2007-01-01

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and θ 13 . At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle

  18. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    Next, the evaluation has been carried out by comparing the OSCAR currents with currents measured by moored buoys ... measurements, to derive the surface current prod- uct, known ... ogy of surface currents based on drifter data. The ... and prediction (RAMA). ..... of satellite derived forcings on numerical ocean model sim-.

  19. Dynamics of a Marine Turbine for Deep Ocean Currents

    Directory of Open Access Journals (Sweden)

    Ling-Yuan Chang

    2016-09-01

    Full Text Available For most of the ocean currents, such as the Kuroshio at east Taiwan, the Gulf Stream at east Florida and the Agulhas Current at southeast Africa, the depth of the seabed is generally deeper than one hundred meters, some waters of which can even reach one thousand meters. In such deep waters, the design of the turbine, as well as the anchoring system shall have special features so that existing ocean engineering technologies can be applied and the engineering cost can be lowered. Thus, as regards design, in addition to the analysis of the interaction between turbine and current, priority shall also be given to the design of the anchoring system of the turbine. To address the concerns, the authors propose an ocean turbine featured as follows: (1 it can be anchored in deep waters with a single cable; (2 it can generate high power in a current of moderate flow speed while producing low drag; (3 it can be self-balanced against current disturbance; (4 it is shrouded to enhance power efficiency; (5 the dynamic variations due to the interaction between the turbine and current are small. All of these features are confirmed with the computational results, leading to a detailed design of the turbine structure. If the easy-to-install high-efficiency shrouded turbines, having the capability to self-balance and requiring minimum maintenance effort, are successfully developed, the power supply pressure in Taiwan can be greatly alleviated. The Kuroshio was chosen as the typical current for the present dynamic analysis because, firstly, the flow characteristics of Kuroshio are similar to those of other large-scale currents mentioned above, and secondly, the data of Kuroshio are highly available to us so that a thorough analysis can be done.

  20. Energy extraction from ocean currents using straight bladed cross-flow hydrokinetic turbine

    Directory of Open Access Journals (Sweden)

    Prasad Dudhgaonkar

    2017-04-01

    Full Text Available Harvesting marine renewable energy remains to be a prime focus of researchers across the globe both in environmental and in commercial perspectives. India is blessed with a long coastline, and the seas around Indian peninsula offer ample potential to tap various ocean energy forms. National Institute of Ocean Technology carries out research and various ocean energy technologies, out of which harnessing kinetic energy in seawater currents is one. This article presents the open sea trials recently carried out on National Institute of Ocean Technology’s cross-flow hydrokinetic ocean current turbine in South Andaman. The turbine was designed to generate 100 W electricity at 1.2 m/s current speed and was built in-house. The turbine was initially tested in a seawater channel and then was deployed in Macpherson Strait in Andaman. It was fitted below a floating platform designed especially for this purpose, and the performance of the turbine was continuously logged inside an on-board data acquisition system. The trials were successful and in line with computations.

  1. 11th National Conference on Science, Policy, and the Environment: Our Changing Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Peter Saundry

    2012-04-17

    On January 19-21, 2011, The National Council for Science and the Environment (NCSE) successfully convened its 11th National Conference on Science, Policy and the Environment: Our Changing Oceans in Washington, DC at the Ronald Reagan Building and International Trade Center. Over 1,247 participants attended the conference, representing federal, state and local governments, university and colleges across the US, civil society organizations, the business community, and international entities. In addition, the conference was webcast to an audience across several states. The conference provided a forum to examine the profound changes our ocean will undergo over the next 25-50 years and share various perspectives on the new research, tools, and policy initiatives to protect and sustain our ocean. Conference highlights and recommendations are available to the public on NCSE's conference website, www.OurChangingOceans.org.

  2. A New Approach to Data Publication in Ocean Sciences

    Science.gov (United States)

    Lowry, Roy; Urban, Ed; Pissierssens, Peter

    2009-12-01

    Data are collected from ocean sciences activities that range from a single investigator working in a laboratory to large teams of scientists cooperating on big, multinational, global ocean research projects. What these activities have in common is that all result in data, some of which are used as the basis for publications in peer-reviewed journals. However, two major problems regarding data remain. First, many data valuable for understanding ocean physics, chemistry, geology, biology, and how the oceans operate in the Earth system are never archived or made accessible to other scientists. Data underlying traditional journal articles are often difficult to obtain. Second, when scientists do contribute data to databases, their data become freely available, with little acknowledgment and no contribution to their career advancement. To address these problems, stronger ties must be made between data repositories and academic journals, and a “digital backbone” needs to be created for data related to journal publications.

  3. A Field Course in Ocean Sciences that Emphasizes Sustainabilty

    Science.gov (United States)

    Macko, S. A.; O'Connell, M. T.

    2016-12-01

    Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. During regular session (18 week) or shorter term (4 week) summer classes such long trips are logistically difficult owing to large numbers of students involved or timing. This approach, to use a field basis for a course supplement addresses the requests by utilizing local resources and trips for a limited number of students (20) to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time, readings, along with paper and laboratories. In addition, short day-long trips to locations where the ocean was "captured" were also used to supplement the experience as well as speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and NOAA) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local stores, or larger city markets in Washington, Baltimore and Virginia Beach and International distribution centers, enhanced the understanding of productivity in the ocean, and viability of the fisheries sustainability. The course could then address not only the particulars of the marine science, but also aspects of sustainability with discussions on ethics, including keeping animals in captivity or overfishing of particular species and the special difficulties that arise from captive or culturing ocean populations. In addition, the

  4. The future of naval ocean science research

    Science.gov (United States)

    Orcutt, John A.; Brink, Kenneth

    The Ocean Studies Board (OSB) of the National Research Council reviewed the changing role of basic ocean science research in the Navy at a recent board meeting. The OSB was joined by Gerald Cann, assistant secretary of the Navy for research, development, and acquisition; Geoffrey Chesbrough, oceanographer of the Navy; Arthur Bisson, deputy assistant secretary of the Navy for antisubmarine warfare; Robert Winokur, technical director of the Office of the Oceanographer of the Navy; Bruce Robinson, director of the new science directorate at the Office of Naval Research (ONR); and Paul Gaffney, commanding officer of the Naval Research Laboratory (NRL). The past 2-3 years have brought great changes to the Navy's mission with the dissolution of the former Soviet Union and challenges presented by conflicts in newly independent states and developing nations. The new mission was recently enunciated in a white paper, “From the Sea: A New Direction for the Naval Service,” which is signed by the secretary of the Navy, the chief of naval operations, and the commandant of the Marine Corps. It departs from previous plans by proposing a heavier emphasis on amphibious operations and makes few statements about the traditional Navy mission of sea-lane control.

  5. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  6. Data Stewardship in the Ocean Sciences Needs to Include Physical Samples

    Science.gov (United States)

    Carter, M.; Lehnert, K.

    2016-02-01

    Across the Ocean Sciences, research involves the collection and study of samples collected above, at, and below the seafloor, including but not limited to rocks, sediments, fluids, gases, and living organisms. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). iSamples (Internet of Samples in the Earth Sciences) is a Research Coordination Network within the EarthCube program that aims to advance the use of innovative cyberinfrastructure to support and advance the utility of physical samples and sample collections for science and ensure reproducibility of sample-based data and research results. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture for a shared cyberinfrastructure to manage collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Repositories that curate

  7. Science Potential of a Deep Ocean Antineutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii 96744 (United States)

    2007-06-15

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and {theta}{sub 13}. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  8. Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Honecker, Johanna

    gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from...... as quantified quality measures associated with the 23 GOCE gravity models.......The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved...

  9. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power

  10. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  11. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    Science.gov (United States)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other

  12. The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms

    Science.gov (United States)

    Williams, P.

    2016-02-01

    The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database (OACurriculumCollection.org). This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.

  13. Going from lectures to expeditions: Creating a virtual voyage in undergraduate ocean science education

    Science.gov (United States)

    Reed, D.; Garfield, N.; Locke, J.; Anglin, J.; Karl, H.; Edwards, B.

    2003-04-01

    The WWW provides for new collaborations in distributed learning in higher education. The lead author has developed a highly successful online course at the undergraduate level with an enrollment of more than 300 non-science majors each year, We are currently initiating a new focus for the course by emphasizing sea-going research, primarily in the northeastern Pacific Ocean, through the development of a virtual oceanographic voyage over the WWW. The "virtual voyage" courseware combines elements of experiential learning with anytime, anywhere access of the WWW to stimulate inquiry-based learning in the ocean sciences. The first leg of the voyage is currently being synthesized from contemporary ocean research sponsored by a collaboration of U.S. government agencies, including NSF, NOAA, and the USGS. The initial portion of this effort involves transforming portions of USGS Circular 1198, Beyond the Golden Gate -- Oceanography, Geology, Biology, and Environmental Issues in the Gulf of the Farallones, into an interactive expedition by which students participate as scientists aboard a research vessel departing from San Francisco. Virtual experiments on the voyage are patterned after research cruises over the past decade in two national marine sanctuaries and include the technologies of data acquisition and data analysis, as well as providing insight into the methodologies of working marine scientists. Real-time data for monitoring the marine environment are embedded into several modules; for example, students will analyze data from offshore buoys and satellite imagery to assess ocean conditions prior to departing from port. Multibeam sonar is used to create seafloor maps near the Golden Gate Bridge and sediment cores provide evidence of sea-level change in the region. Environmental studies in the region include locating canisters of low-level radioactive waste and assessing potential sites for the disposal for dredged materials from the San Francisco Bay. Upon completion

  14. Western Gulf of Mexico, June 1993 to June 1994 Average Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_wgom_AVG_MMS_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the western...

  15. Eastern Gulf of Mexico, February 1996 to June 1997 Average Ocean Currents, Geographic NAD83, MMS (1999) [ocean_currents_egom_AVG_MMS_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is one data set of a data package consisting of thirteen point data sets that have as attributes the direction and velocity of ocean currents in the 'eastern'...

  16. Modeling, Simulation, and Experiment of Switched Reluctance Ocean Current Generator System

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2013-01-01

    Full Text Available This paper presents nonlinear simulation model of switched reluctance (SR ocean current generator system on MATLAB/SIMULINK with describing the structure of generator system. The developed model is made up of main model, rotor position calculation module, controller module, gate module, power converter module, phase windings module, flux-linkage module, torque module, and power calculation module. The magnetization curves obtained by two-dimensional finite-element electromagnetic field calculation and the conjugated magnetic energy graphics obtained from the three-dimensional graphics of flux linkage are stored in the “Lookup Table” modules on MATLAB/SIMULINK. The hardware of the developed three-phase 12/8 structure SR ocean current generator system prototype with the experimental platform is presented. The simulation of the prototype is performed by the developed models, and the experiments have been carried out under the same condition with different output power, turn-off angle, and rotor speed. The simulated phase current waveforms agree well with the tested phase current waveforms experimentally. The simulated output voltage curves agree well with the tested output voltage curves experimentally. It is shown that the developed nonlinear simulation model of the three-phase 12/8 structure SR ocean current generator system is valid.

  17. Promoting Ocean Literacy through American Meteorological Society Programs

    Science.gov (United States)

    Passow, Michael; Abshire, Wendy; Weinbeck, Robert; Geer, Ira; Mills, Elizabeth

    2017-04-01

    American Meteorological Society Education Programs provide course materials, online and physical resources, educator instruction, and specialized training in ocean, weather, and climate sciences (https://www.ametsoc.org/ams/index.cfm/education-careers/education-program/k-12-teachers/). Ocean Science literacy efforts are supported through the Maury Project, DataStreme Ocean, and AMS Ocean Studies. The Maury Project is a summer professional development program held at the US Naval Academy designed to enhance effective teaching of the science, technology, engineering, and mathematics of oceanography. DataStreme Ocean is a semester-long course offered twice a year to participants nationwide. Created and sustained with major support from NOAA, DS Ocean explores key concepts in marine geology, physical and chemical oceanography, marine biology, and climate change. It utilizes electronically-transmitted text readings, investigations and current environmental data. AMS Ocean Studies provides complete packages for undergraduate courses. These include online textbooks, investigations manuals, RealTime Ocean Portal (course website), and course management system-compatible files. It can be offered in traditional lecture/laboratory, completely online, and hybrid learning environments. Assistance from AMS staff and other course users is available.

  18. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1979-01-20 to 1984-04-26 (NODC Accession 8500007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from January 20, 1979 to April 26, 1984. Data were submitted by Pacific...

  19. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1979-01-20 to 1984-04-01 (NODC Accession 8700077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from January 20, 1979 to April 1, 1984. Data were submitted by Pacific Marine...

  20. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1990-04-30 to 1991-05-15 (NODC Accession 9400005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from April 30, 1990 to May 15, 1991. Data were submitted by Pacific Marine...

  1. Current meter data from moored current meter casts in the Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1986-05-28 to 1987-05-11 (NODC Accession 8900168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Pacific Ocean from 28 May 1986 to 01 May 1983. Data were submitted by Pacific Marine...

  2. 77 FR 72831 - Meeting of the Ocean Research Advisory Panel

    Science.gov (United States)

    2012-12-06

    ... commentary. ADDRESSES: The meeting will be held at the Consortium for Ocean Leadership, 1201 New York Avenue... Committee Act (5 U.S.C. App. 2). The meeting will include discussions on ocean research, resource management, and other current issues in the ocean science and management communities. Dated: November 29, 2012. L...

  3. Advances in the science and technology of ocean management

    CERN Document Server

    Smith, Hance

    2002-01-01

    This book reviews key developments in the field of marine science and technology. It focuses on three major themes such as the importance of technical developments in ocean management, the application of these developments to specific sea uses ranging from fish farming to the disposal of industrial waste, and the long-term issues that such developments raise.

  4. Chasing Science at Sea: Racing Hurricanes, Stalking Sharks, and Living Undersea With Ocean Experts

    Science.gov (United States)

    Lee, Cindy

    2008-12-01

    Ellen Prager's new book, Chasing Science at Sea, is a personal account of why fieldwork is so important in many areas of ocean science, and how exciting that fieldwork can be. Prager has interwoven her own story of studying carbonates at the interface between biology and geology with stories from friends and colleagues. Storm stories and up-close-and-personal encounters with ocean creatures such as reef squid, marine iguanas, and whales abound. Throughout the book, she emphasizes the idea that the combination of observations and serendipity plays a critical role in science, and she gives examples of where this combination has led to especially important discoveries (e.g., that of hydrothermal vent organisms).

  5. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Science.gov (United States)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  6. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  7. Current meter data from moored current meter casts in the South Pacific Ocean as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 1981-11-21 to 1983-11-20 (NODC Accession 8500258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the South Pacific Ocean from November 21, 1981 to November 20, 1983. Data were submitted by...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. ... Geosciences Division, Marine, Geo and Planetary Sciences Group, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area, Space Applications Centre ...

  9. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  10. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  11. IAEA Meeting Focuses on Nuclear and Isotopic Science to Protect Oceans

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: The marine ecosystems that keep the oceans healthy are subject to increasing stress. Levels of acidity are rising in a process that is taking place at a more rapid pace than ever observed before. This poses risks to all life in the ocean - and all who depend on the oceans. Starting today, some of the world's top marine scientists are meeting in Vienna to discuss this multi-faceted problem and ways to tackle it. Science conducted and coordinated by the IAEA that uses isotopic techniques plays a key role in learning about ocean acidification and its effects. ''In dealing with threats to the health of the seas, governments need accurate data. For that, they need skilled researchers who can devise accurate models to help predict future conditions. That way, governments can start implementing the appropriate strategies to protect the seas and oceans,'' IAEA Director General Yukiya Amano told participants in the IAEA's Scientific Forum, titled The Blue Planet - Nuclear Applications for a Sustainable Marine Environment. ''The IAEA helps to make this possible. We promote a comprehensive approach to the study, monitoring and protection of marine, coastal and terrestrial ecosystems. We support effective global cooperation to address the threats to our oceans.'' The oceans not only produce as much as half of the world's oxygen; they also absorb more than a quarter of man-made CO 2 . This reduces the greenhouse effect, but it also increases the acidity of seawater, resulting in a hostile environment for calciferous plankton, crustaceans, molluscs and coral reefs. With all parts of the ecosystem connected, all life in the oceans suffers from the increased level of acidity. The two-day Forum, held on the sidelines of the IAEA's annual General Conference, is divided into three sessions. The first session focuses on the pressures faced by the coastal and marine systems and the need for partnerships and science to develop targeted responses. The second session addresses

  12. Customizing Process to Align with Purpose and Program: The 2003 MS PHD'S in Ocean Sciences Program Evaluative Case Study

    Science.gov (United States)

    Williamson, V. A.; Pyrtle, A. J.

    2004-12-01

    How did the 2003 Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Ocean Sciences Program customize evaluative methodology and instruments to align with program goals and processes? How is data captured to document cognitive and affective impact? How are words and numbers utilized to accurately illustrate programmatic outcomes? How is compliance with implicit and explicit funding regulations demonstrated? The 2003 MS PHD'S in Ocean Sciences Program case study provides insightful responses to each of these questions. MS PHD'S was developed by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science. Key components of this initiative include development of a community of scholars sustained by face-to-face and virtual mentoring partnerships; establishment of networking activities between and among undergraduate, graduate, postgraduate students, scientists, faculty, professional organization representatives, and federal program officers; and provision of forums to address real world issues as identified by each constituent group. The evaluative case study of the 2003 MS PHD'S in Ocean Sciences Program consists of an analysis of four data sets. Each data set was aligned to document progress in the achievement of the following program goals: Goal 1: The MS PHD'S Ocean Sciences Program will successfully market, recruit, select, and engage underrepresented student and non-student participants with interest/ involvement in Ocean Sciences; Goal 2: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by quantitative analysis of user-feedback; Goal 3: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by qualitative analysis of user-feedback, and; Goal 4: The MS PHD'S Ocean Sciences Program will develop a constituent base adequate to demonstrate evidence of interest, value, need and sustainability in

  13. Surface and subsurface geostrophic current variability in the Indian Ocean from altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Cadden, D.D.H.; Subrahmanyam, B.; Chambers, D.P.; Murty, V.S.N.

    the World Ocean Atlas 2005. The results of this method were validated with currents measured using Acoustic Doppler Current Profilers moored along the equator at 77 degrees E, 83 degrees E, and 93 degrees E. The measured and computed currents compared...

  14. Barriers to teaching ocean science in Greek schools

    Science.gov (United States)

    Papathanassiou, Martha; McHugh, Patricia; Domegan, Christine; Gotensparre, Susan; Fauville, Geraldine; Parr, Jon

    2017-04-01

    Most European citizens are not aware of the full extent of the medical, economic, social, political and environmental importance of the sea to Europe and beyond. Most citizens are not aware of how our day-to-day actions can have a cumulative effect on the health of the ocean - a necessary resource that must be protected for all life on the planet Earth to exist. In other words, European citizens lack a sense of "Ocean Literacy" - an understanding of the ocean's influence on us and our influence on the ocean. Sea Change, a 3.5 million EU-funded project started in March 2015, is designed to bring about a fundamental 'Sea Change' in the way European citizens view their relationship with the sea, by empowering them as 'Ocean Literate' citizens - to take direct and sustainable action towards healthy seas and ocean, healthy communities and ultimately, a healthy planet. The project involves 17 partners from nine countries across Europe and will bring about real actions using behavior change and social engagement methodologies. Building upon the latest research on citizen and stakeholder attitudes, perceptions and values, the Sea Change partnership will design and implement mobilisation activities focused on education, community, government agencies, policy makers and citizens. Eight consultations were held around Europe with regards to barriers to teaching ocean science at schools. All project partners used a Collective Intelligence (CI) methodology to involve target group(s) in active, direct participation for Sea Change. CI is a "barriers and value" structuring methodology, a process of critical learning and reflection followed by action, and then by more critical learning to enable mobilisation, design and development 'with' people rather than on their behalf. In Greece, the consultation was carried out by HCMR, the lead partner for Greece. Participants were recruited through personal contact and existing education networks that the HCMR has previously worked with. In

  15. Remote sensing of ocean currents using ERTS imagery

    Science.gov (United States)

    Maul, G. A.

    1973-01-01

    Major ocean currents such as the Loop Current in the eastern Gulf of Mexico have surface manifestations which can be exploited for remote sensing. Surface chlorophyll-a concentrations, which contribute to the shift in color from blue to green in the open sea, were found to have high spatial variability; significantly lower concentrations were observed in the current. The cyclonic edge of the current is an accumulation zone which causes a peak in chlorophyll concentration. The dynamics also cause surface concentrations of algae, which have a high reflectance in the near infrared. Combining these observations gives rise to an edge effect which can show up as a bright lineation on multispectral imagery delimiting the current's boundary under certain environmental conditions. When high seas introduce bubbles, white caps, and foam, the reflectance is dominated by scattering rather than absorption. This has been detected in ERTS imagery and used for current location.

  16. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences

    Science.gov (United States)

    Bruno, B. C.

    2007-05-01

    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on

  17. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 5 .... Current products based on Ocean General Circulation Models like ECCO2 ... An assessment of wind forcing impact on a spectral wave model for the Indian Ocean .... variability over India and its subregions using a regional climate model (RegCM3).

  19. Current meter data from moored current meter casts in the Northeast Pacific Ocean as part of the Ocean Prediction Through Observation Modeling and Analysis (OPTOMA) project, 1984-09-26 to 1985-07-16 (NODC Accession 9600075)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Northeast Pacific Ocean from September 26, 1984 to July 16, 1985. Data were submitted by...

  20. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  1. 77 FR 42297 - Meeting of the Ocean Research and Resources Advisory Panel

    Science.gov (United States)

    2012-07-18

    ... Consortium for Ocean Leadership, 1201 New York Avenue NW., 4th Floor, Washington, DC 2005. FOR FURTHER... discussions on ocean research, resource management, and other current issues in the ocean science and management communities. J.M. Beal, Lieutenant Commander, Office of the Judge Advocate General, U.S. Navy...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  3. Using Citizen Science to Close Gaps in Cabled Ocean Observatory Research

    Science.gov (United States)

    Morley, M. G.; Moran, K.; Riddell, D. J.; Hoeberechts, M.; Flagg, R.; Walsh, J.; Dobell, R.; Longo, J.

    2015-12-01

    Ocean Networks Canada operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, and a community observatory in Cambridge Bay, Nunavut. Continuous power and connectivity permit large volumes of data to be collected and made available to scientists and citizens alike over the Internet through a web-based interface. The Oceans 2.0 data management system contains over one quarter petabyte of data, including more than 20,000 hours of video from fixed seafloor cameras and a further 8,000 hours of video collected by remotely operated vehicles. Cabled observatory instrument deployments enable the collection of high-frequency, long-duration time series of data from a specific location. This enables the study of important questions such as whether effects of climate change—for instance, variations in temperature or sea-level—are seen over the long term. However, cabled observatory monitoring also presents challenges to scientific researchers: the overwhelming volume of data and the fixed spatial location can be barriers to addressing some big questions. Here we describe how Ocean Networks Canada is using Citizen Science to address these limitations and supplement cabled observatory research. Two applications are presented: Digital Fishers is a crowd-sourcing application in which participants watch short deep-sea video clips and make annotations based on scientific research questions. To date, 3,000 participants have contributed 140,000 scientific observations on topics including sablefish abundance, hydrothermal vent geology and deep-sea feeding behaviour. Community Fishers is a program in which ordinary citizens aboard vessels of opportunity collect ocean data including water temperature, salinity, dissolved oxygen and chlorophyll. The program's focus is to directly address the typical quality concerns around data that are collected using a citizen science approach. This is done by providing high quality scientific

  4. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science

    Science.gov (United States)

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre

    2012-01-01

    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  5. Mechanical Extraction of Power From Ocean Currents and Tides

    Science.gov (United States)

    Jones, Jack; Chao, Yi

    2010-01-01

    A proposed scheme for generating electric power from rivers and from ocean currents, tides, and waves is intended to offer economic and environmental advantages over prior such schemes, some of which are at various stages of implementation, others of which have not yet advanced beyond the concept stage. This scheme would be less environmentally objectionable than are prior schemes that involve the use of dams to block rivers and tidal flows. This scheme would also not entail the high maintenance costs of other proposed schemes that call for submerged electric generators and cables, which would be subject to degradation by marine growth and corrosion. A basic power-generation system according to the scheme now proposed would not include any submerged electrical equipment. The submerged portion of the system would include an all-mechanical turbine/pump unit that would superficially resemble a large land-based wind turbine (see figure). The turbine axis would turn slowly as it captured energy from the local river flow, ocean current, tidal flow, or flow from an ocean-wave device. The turbine axis would drive a pump through a gearbox to generate an enclosed flow of water, hydraulic fluid, or other suitable fluid at a relatively high pressure [typically approx.500 psi (approx.3.4 MPa)]. The pressurized fluid could be piped to an onshore or offshore facility, above the ocean surface, where it would be used to drive a turbine that, in turn, would drive an electric generator. The fluid could be recirculated between the submerged unit and the power-generation facility in a closed flow system; alternatively, if the fluid were seawater, it could be taken in from the ocean at the submerged turbine/pump unit and discharged back into the ocean from the power-generation facility. Another alternative would be to use the pressurized flow to charge an elevated reservoir or other pumped-storage facility, from whence fluid could later be released to drive a turbine/generator unit at a

  6. Partner-built ecosystem science - The National Ocean Partnership Program as a builder of EBM Tools and Data

    Science.gov (United States)

    Hoffman, P. L.; Green, R. E.; Kohanowich, K. M.

    2016-12-01

    The National Ocean Partnership Program (NOPP) was created in 1997 by federal public law to identify "and carry out partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community in the areas of data, resources, education, and communications." Since that time, numerous federal agencies have pooled talent, funding, and scientific resources (e.g. ships, aircraft, remote sensors and computing capability) to address pressing ocean science needs which no one entity can manage alone. In this presentation, we will address the ways the National Ocean Policy identifies ecosystem-based management (EBM) as a foundation for providing sound science-based and adaptable management to maintain the health, productivity, and resilience of U.S. ocean, coastal, and Great Lakes ecosystems. Because EBM is an important approach for efficient and effective interagency, multi-jurisdictional, and cross-sectoral marine planning and management, ocean science partnerships such as those provided by NOPP create a pool of regionally-pertinent, nationally-available data from which EBM decision makers can draw to address critical management issues. Specifically, we will provide examples drawn from the last five years of funding to illustrate how the NOPP process works, how it is managed by a federal Interagency Working Group (IWG-OP), and how EBM practitioners can both partner with others through the NOPP and offer guidance on the implementation of projects beneficial to the regional needs of the EBM community. Projects to be discussed have been carried out under the following themes: Arctic Cumulative Impacts: Marine Arctic Ecosystem Study (MARES) - Ecosystem Dynamics and Monitoring of the Beaufort Sea: An Integrated Science Approach. Biodiversity Indicators: Demonstration of a U.S. Marine Biodiversity Observation Network (Marine BON) Long-Term Observations: Coordinated Regional Efforts That Further the U.S. Integrated Ocean Observing System

  7. @OceanSeaIceNPI: Positive Practice of Science Outreach via Social Media

    Science.gov (United States)

    Meyer, A.; Pavlov, A.; Rösel, A.; Granskog, M. A.; Gerland, S.; Hudson, S. R.; King, J.; Itkin, P.; Negrel, J.; Cohen, L.; Dodd, P. A.; de Steur, L.

    2016-12-01

    As researchers, we are keen to share our passion for science with the general public. We are encouraged to do so by colleagues, journalists, policy-makers and funding agencies. How can we best achieve this in a small research group without having specific resources and skills such as funding, dedicated staff, and training? How do we sustain communication on a regular basis as opposed to the limited lifetime of a specific project? The emerging platforms of social media have become powerful and inexpensive tools to communicate science for various audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. A small group of oceanographers, sea ice, and atmospheric scientists at the Norwegian Polar Institute have been running their social media science outreach for two years @OceanSeaIceNPI. Here we share our successful experience of developing and maintaining a researcher-driven outreach through Instagram, Twitter and Facebook. We present our framework for sharing responsibilities within the group to maximize effectiveness. Each media channel has a target audience for which the posts are tailored. Collaboration with other online organizations and institutes is key for the growth of the channels. The @OceanSeaIceNPI posts reach more than 4000 followers on a weekly basis. If you have questions about our @OceanSeaIceNPI initiative, you can tweet them with a #ask_oceanseaicenpi hashtag anytime.

  8. Ocean Modeling and Visualization on Massively Parallel Computer

    Science.gov (United States)

    Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.

    1997-01-01

    Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.

  9. Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)

    Science.gov (United States)

    Jiang, L.; Wang, M.

    2016-02-01

    The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.

  10. Open science resources for the discovery and analysis of Tara Oceans data.

    Science.gov (United States)

    Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah

    2015-01-01

    The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.

  11. Harnessing the Ocean's Power : Energy from Waves and Currents (Part I)

    OpenAIRE

    Yukihisa, Washio; Japan Marine Science and Technology Center

    1985-01-01

    The oceans are a potential source of renewable and pollution-free energy of particular importance to Japan. In this Issue we look at current development work to harness wave energy for power generation.

  12. The 50th Anniversary of the International Indian Ocean Expedition: An Update on Current Planning Efforts and Progress

    Science.gov (United States)

    Hood, Raleigh; D'Adamo, Nick; Burkill, Peter; Urban, Ed; Bhikajee, Mitrasen

    2014-05-01

    The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. In the 50 years since the IIOE three fundamental changes have taken place in ocean science. The first is the deployment of a broad suite of oceanographic sensors on satellites that have dramatically improved the characterization of both physical and biological oceanographic variability. The second is the emergence of new components of the ocean observing system, most notably remote sensing and Argo floats. And the third is the development of ocean modeling in all its facets from short-term forecasting to seasonal prediction to climate projections. These advances have revolutionized our understanding of the global oceans, including the Indian Ocean. Compared to the IIOE era, we now have the capacity to provide a much more integrated picture of the Indian Ocean, especially if these new technologies can be combined with targeted and well-coordinated in situ measurements. In this presentation we report on current efforts to motivate an IIOE 50th Anniversary Celebration (IIOE-2). We envision this IIOE-2 as a 5-year expedition and effort beginning in 2015 and continuing through to 2020. An important objective of our planning efforts is assessing ongoing and planned research activities in the Indian Ocean in the 2015 to 2020 time frame, with the goal of embracing and

  13. Strategies for reducing ocean plastic debris should be diverse and guided by science

    Science.gov (United States)

    Rochman, Chelsea M.

    2016-04-01

    Studies suggest that trillions of microplastic particles are floating on the surface of the global oceans and that the total amount of plastic waste entering the ocean will increase by an order of magnitude by 2025. As such, this ever-increasing problem demands immediate mitigation and reduction. Diverse solutions have been proposed, ranging from source reduction to ocean-based cleanup. These solutions are most effective when guided by scientific evidence. A study published in Environmental Research Letters (Sherman and van Sebille 2016 Environ. Res. Lett. 11 014006) took a closer look at the potential effectiveness of ocean-based cleanup. They conclude that it will be most cost-effective and ecologically beneficial if clean-up efforts focus on the flux of microplastics from the coasts rather than in the center of the oceans where plastic accumulates in so called ‘garbage patches’. If followed, this example may become one of a series of examples where science has informed a solution to the complex problem of plastic pollution.

  14. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    Science.gov (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  15. Impact of data assimilation on ocean current forecasts in the Angola Basin

    Science.gov (United States)

    Phillipson, Luke; Toumi, Ralf

    2017-06-01

    The ocean current predictability in the data limited Angola Basin was investigated using the Regional Ocean Modelling System (ROMS) with four-dimensional variational data assimilation. Six experiments were undertaken comprising a baseline case of the assimilation of salinity/temperature profiles and satellite sea surface temperature, with the subsequent addition of altimetry, OSCAR (satellite-derived sea surface currents), drifters, altimetry and drifters combined, and OSCAR and drifters combined. The addition of drifters significantly improves Lagrangian predictability in comparison to the baseline case as well as the addition of either altimetry or OSCAR. OSCAR assimilation only improves Lagrangian predictability as much as altimetry assimilation. On average the assimilation of either altimetry or OSCAR with drifter velocities does not significantly improve Lagrangian predictability compared to the drifter assimilation alone, even degrading predictability in some cases. When the forecast current speed is large, it is more likely that the combination improves trajectory forecasts. Conversely, when the currents are weaker, it is more likely that the combination degrades the trajectory forecast.

  16. NODC Standard Product: Ocean current drifter data (2 disc set) (NODC Accession 0098060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These CD-ROMs hold over 4 million surface current observations, almost all obtained by the ship drift method. Date, data source, position, and current direction and...

  17. Report on Workshop "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups"

    Directory of Open Access Journals (Sweden)

    Mitsuo Fukuchi

    2001-03-01

    Full Text Available A workshop on "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups" was held on November 1,2000,at the National Institute of Polar Research with 21 participants. In this workshop, a plan to charter a research vessel other than "Shirase" was introduced and a science plan using the chartered research vessel by 43rd Japanese Antarctic Research Expedition was discussed. This study is going to be conducted in the sea ice area around 140-150°E in mid-summer (February 2002, when biological production becomes active in the Antarctic Ocean. Oceanographic observations using "Shirase" are difficult to conduct in this season since she supports a wide range of summer operations around Syowa Station. The relationships between biological production and greenhouse effect gas production and the vertical transport of organic materials from the surface to deep ocean will be the focus of this study. At this stage, one deputy leader and three members of JARE, and 25-26 other scientists including graduate students and foreign scientists, will participate in the field observations using the chartered vessel. The members of JARE will conduct a project science program of the VI Phase of JARE, while the other participants will do part of the science program "Antarctic Ocean in Earth System". Since further observations for several years after the summer of 2002 will be required to understand the role of the Antarctic Ocean in global climate change, we have applied for a Grant-in-Aid for Scientific Research for the next project, which will start from 2001,to the Ministry of Education, Science, Sports and Culture of Japan. The proposal was discussed in detail in this workshop.

  18. Ocean to Outback: Leonie Rennie's Contribution to Science Education in Australia

    Science.gov (United States)

    Venville, Grady

    2009-01-01

    In this article I initially borrow a metaphor from an art exhibition, "Ocean to Outback," as a way to express my perspective on the contribution that Leonie Rennie has made to science education in Australia. I then consider Leonie's contributions as overlapping themes. In particular, Leonie's well-known research on gender and issues of…

  19. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  20. Current meter and other data collected using current meter casts from R/V RESEARCHER and R/V CALANUS in the Atlantic and Pacific Ocean as part of the Eastern Pacific Ocean Circulation Study (EPOCS) and Subtropical Atlantic Current Study (STACS), 23 March 1983 - 19 November 1986 (NODC Accession 8700226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from R/V RESEARCHER and R/V CALANUS in the Atlantic and Pacific Ocean from March 23, 1983 to...

  1. Wave measurement in severe ocean currents

    Digital Repository Service at National Institute of Oceanography (India)

    Diwan, S.G.; Suryavanshi, A.K.; Nayak, B.U.

    The measurement of ocean waves has been of particular interest, as wave data and understanding of wave phenomena are essential to ocean engineering, coastal engineering and to many marine operations. The National Institute of Oceanography, Goa...

  2. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events

    Science.gov (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.

    2008-12-01

    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  3. Western Indian Ocean Journal of Marine Science - Vol 6, No 2 (2008)

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. ... Assessment of Heavy Metal Pollution in Sediment and Polychaete Worms from the Mzinga Creek and Ras Dege Mangrove Ecosystems, Dar es Salaam, Tanzania · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  4. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    Science.gov (United States)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  5. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  6. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association, Inc., Anchorage, AK (United States)

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  7. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian

    2012-01-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  8. Ocean currents modify the coupling between climate change and biogeographical shifts.

    Science.gov (United States)

    García Molinos, J; Burrows, M T; Poloczanska, E S

    2017-05-02

    Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.

  9. Current direction, temperature, and salinity data from moored current meter casts in the North Pacific Ocean from 1983-06-01 to 1983-08-01 (NODC Accession 8500147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and salinity data were collected using moored current meter casts in the North Pacific Ocean from June 1, 1983 to August 1, 1983....

  10. Current meter and temperature profile data from moored current meter casts in the TOGA area - Atlantic Ocean from 10 September 1970 - 27 October 1980 (NODC Accession 8600320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using moored current meter - PCM casts in the TOGA area - Atlantic Ocean from September 10, 1970 to October...

  11. The relationship between the statistics of open ocean currents and the temporal correlations of the wind stress

    International Nuclear Information System (INIS)

    Bel, Golan; Ashkenazy, Yosef

    2013-01-01

    We study the statistics of wind-driven open ocean currents. Using the Ekman layer model for the integrated currents, we investigate analytically and numerically the relationship between the wind-stress distribution and its temporal correlations and the statistics of the open ocean currents. We found that temporally long-range correlated winds result in currents whose statistics is proportional to the wind-stress statistics. On the other hand, short-range correlated winds lead to Gaussian distributions of the current components, regardless of the stationary distribution of the winds, and therefore to a Rayleigh distribution of the current amplitude, if the wind stress is isotropic. We found that the second moment of the current speed exhibits a maximum as a function of the correlation time of the wind stress for a non-zero Coriolis parameter. The results were validated using an oceanic general circulation model. (paper)

  12. A Roadmap for Antarctic and Southern Ocean Science for the Next Two Decades and Beyond

    Science.gov (United States)

    Kennicutt, M. C., II

    2015-12-01

    Abstract: Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.

  13. Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond

    Science.gov (United States)

    Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.

    2017-12-01

    While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and www.ANGARI.org. While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom

  14. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE)

    Science.gov (United States)

    Greely, T. M.; Lodge, A.

    2009-12-01

    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  15. Current direction and CTD data from moored current meter and CTD casts in the Atlantic Ocean from 1980-08-04 to 1981-08-14 (NODC Accession 8200240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the Atlantic Ocean from August 4, 1980 to August 14, 1981. Data were...

  16. The artificial object detection and current velocity measurement using SAR ocean surface images

    Science.gov (United States)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  17. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun

    2015-01-01

    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  18. Mapping the ocean current strength and persistence in the Agulhas to inform marine energy development

    CSIR Research Space (South Africa)

    Meyer, I

    2017-04-01

    Full Text Available sensing - Acoustic Doppler Current Profiler - Natal pulses U N C O R R EC TE D PR O O F 1 Mapping the Ocean Current Strength 2 and Persistence in the Agulhas to Inform 3 Marine Energy Development 4 I. Meyer, L. Braby, M. Krug and B. Backeberg 5... International Publishing AG 2017 Z. Yang and A. Copping (eds.), Marine Renewable Energy, DOI 10.1007/978-3-319-53536-4_8 1 A u th o r P ro o f U N C O R R EC TE D PR O O F 16 Current. Western boundary ocean currents have become an area of focus (Duerr and 17...

  19. Environmental science: Oceans lose oxygen

    Science.gov (United States)

    Gilbert, Denis

    2017-02-01

    Oxygen is essential to most life in the ocean. An analysis shows that oxygen levels have declined by 2% in the global ocean over the past five decades, probably causing habitat loss for many fish and invertebrate species. See Letter p.335

  20. Current meter and marine toxic substances data from moored current meter casts and other instruments in the North Pacific Ocean as part of the Deep Ocean Mining and Environmental Study (DOMES) project, 1975-08-29 to 1977-12-01 (NODC Accession 7800741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and marine toxic substances data were collected using moored current meter casts and other instruments in the North Pacific Ocean from August 29, 1975...

  1. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  2. SCUBAnauts International: Exploration and Discovery in the Ocean Sciences

    Science.gov (United States)

    Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.

    2007-12-01

    The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.

  3. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  4. Current direction and CTD data from moored current meter and CTD casts in the North Pacific Ocean from 1979-02-05 to 1980-12-01 (NODC Accession 8300042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the North Pacific Ocean from February 5, 1979 to December 1, 1980. Data...

  5. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  6. 75 FR 48731 - Notice of Availability for Public Comment on the Draft Joint Subcommittee on Ocean Science and...

    Science.gov (United States)

    2010-08-11

    ..., the academic community and the private sector in providing IOOS environmental information, products...-Private Use Policy is available for review at Web site URL: http://www.iooc.us . For the public unable to... Subcommittee on Ocean Science and Technology--Interagency Ocean Observation Committee Public-Private Use Policy...

  7. Real-time Science and Educational Collaboration Online from the Indian Ocean

    Science.gov (United States)

    Wilson, R. H.; Sager, W. W.

    2007-12-01

    During Summer of 2007, scientists and students (via the web) jointly participated in research during the Ninety East Ridge Expedition (cruise KNOX06RR) . Staff organizers from Joint Oceanographic Institutions" JOI Learning and the Integrated Ocean Drilling Program planned and implemented an interactive website to allow students to directly participate with scientists during the site survey aboard the R/V Roger Revelle. Dr. Will Sager and middle school teacher Rory Wilson collaborated daily during the scientific expedition with science team, ship crew and students. From the outset, students were involved and helped to guide the program; this included coming up with the website name and initial design work. Communication with students included the website, individual and group emails and video conferences with student groups. Seven secondary schools from the USA, Europe, India and Thailand participated actively in the project from June to August. Students viewed daily updates on the website, sent in answers for weekly science challenge questions, and interacted with scientists and crew. Student participants learned about navigation, geophysics and petrology, as well as ship operations and technology. Students and educators tracked the expedition's progress in a multi-media environment. Website statistics were recorded; participation began well and increased during the expedition as more people became engaged with the website. All of the crew and scientists wrote self-profiles to help students learn about the range of ocean careers; several of the scientists and graduate students on board wrote or co- authored website articles for students. During this presentation, we will explore and review the major features of the outreach program using the Sea90e website to demonstrate how this real-time interaction engages students in science learning. We will discuss the benefits of collaboration for science and education in our "classroom at sea."

  8. The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds

    Science.gov (United States)

    Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.

    2013-01-01

    Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352

  9. Between understanding and appreciation. Current science communication in Denmark

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  10. Presal36: a high resolution ocean current model for Brazilian pre-salt area: implementation and validation results

    Energy Technology Data Exchange (ETDEWEB)

    Schoellkopf, Jacques P. [Advanced Subsea do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The PRESAL 36 JIP is a project for the development of a powerful Ocean Current Model of 1/36 of a degree resolution, nested in an existing Global Ocean global Model, Mercator PSY4 (1/12-a-degree resolution ), with tide corrections, improved bathymetry accuracy and high frequency atmospheric forcing (every 3 hours). The simulation outputs will be the 3 dimensional structure of the velocity fields (u,v,w) at 50 vertical levels over the water column, including geostrophic, Ekman and tidal currents, together with Temperature, Salinity and sea surface height at a sub-mesoscale spatial resolution. Simulations will run in hindcast, nowcast and forecast modes, with a temporal resolution of 3 hours . This Ocean current model will allow to perform detailed statistical studies on various areas using conditions analysed using hindcast mode, short term operational condition prediction for various surface and sub sea operations using realtime and Forecast modes. The paper presents a publication of significant results of the project, in term of pre-sal zoomed model implementation, and high resolution model validation. It demonstrate the capability to properly describe ocean current phenomenon at beyond mesoscale frontier. This project demonstrate the feasibility of obtaining accurate information for engineering studies and operational conditions, based on a 'zoom technique' starting from global ocean models. (author)

  11. Temperature profile and other data collected using current meter from the CHAIN from the Atlantic Ocean in part of the International Decade of Ocean Exploration / Mid-Ocean Dynamics Experiment from 12 February 1969 to 16 March 1972 (NODC Accession 7601355)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, current meter, and wind speed/direction data were collected using current meter from the TRIDENT, KNORR, and BILLIE 2 in the Atlantic Ocean from...

  12. Current meter data from moored current meter casts and other instruments in the Northwest and Southwest Pacific Ocean from 01 October 1992 to 15 March 1993 (NODC Accession 9400088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts and other instruments in the Northwest and Southwest Pacific Ocean from October 1, 1992 to March...

  13. The Gulf of Mexico Coastal Ocean Observing System: A Gulf Science Portal

    Science.gov (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Jochens, A. E.

    2013-12-01

    The Gulf of Mexico Coastal Ocean Observing System's (GCOOS) regional science portal (gcoos.org) was designed to aggregate data and model output from distributed providers and to offer these, and derived products, through a single access point in standardized ways to a diverse set of users. The portal evolved under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) program where automated largely-unattended machine-to-machine interoperability has always been a guiding tenet for system design. The web portal has a business unit where membership lists, new items, and reference materials are kept, a data portal where near real-time and historical data are held and served, and a products portal where data are fused into products tailored for specific or general stakeholder groups. The staff includes a system architect who built and maintains the data portal, a GIS expert who built and maintains the current product portal, the executive director who marshals resources to keep news items fresh and data manger who manages most of this. The business portal is built using WordPress which was selected because it appeared to be the easiest content management system for non-web programmers to add content to, maintain and enhance. The data portal is custom built and uses database, PHP, and web services based on Open Geospatial Consortium standards-based Sensor Observation Service (SOS) with Observations and Measurements (O&M) encodings. We employ a standards-based vocabulary, which we helped develop, which is registered at the Marine Metadata Interoperability Ontology Registry and Repository (http://mmisw.org). The registry is currently maintained by one of the authors. Products appearing in the products portal are primarily constructed using ESRI software by a Ph.D. level Geographer. Some products were built with other software, generally by graduate students over the years. We have been sensitive to the private sector when deciding which products to produce. While

  14. Shore-based Path Planning for Marine Vehicles Using a Model of Ocean Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop path planning methods that incorporate an approximate model of ocean currents in path planning for a range of autonomous marine vehicles such as surface...

  15. The Ocean Literacy Campaign

    Science.gov (United States)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  16. Physical, currents, nutrients, and other data from bottle and GEK casts from the FUJI and SHIRASE in the Indian Ocean, North Pacific Ocean, South Pacific Ocean, and Southern Oceans (> 60 degrees South) from 06 December 1965 to 10 January 1994 (NODC Accession 0000039)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, currents, nutrients, and other data were collected from bottle and GEK casts from the FUJI and SHIRASE in the Indian Ocean and other locations from 06...

  17. Exploring Ocean-World Habitability within the Planned Europa Clipper Mission

    Science.gov (United States)

    Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.

    2017-12-01

    A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of

  18. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses

    Science.gov (United States)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.

    2017-12-01

    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.

  19. Engaging Ocean Grads As Interdisciplinary Professional Problem Solvers: Why Preparing Our Future Ocean Leaders Means Inspiring Them to Look Beyond Their Academic Learning.

    Science.gov (United States)

    Good, L. H.; Erickson, A.

    2016-02-01

    Academic learning and research experiences alone cannot prepare our emerging ocean leaders to take on the challenges facing our oceans. Developing solutions that incorporate environmental and ocean sciences necessitates an interdisciplinary approach, requiring emerging leaders to be able to work in collaborative knowledge to action systems, rather than on micro-discipline islands. Professional and informal learning experiences can enhance graduate marine education by helping learners gain the communication, collaboration, and innovative problem-solving skills necessary for them to interact with peers at the interface of science and policy. These rich experiences can also provide case-based and hands-on opportunities for graduate learners to explore real-world examples of ocean science, policy, and management in action. However, academic programs are often limited in their capacity to offer such experiences as a part of a traditional curriculum. Rather than expecting learners to rely on their academic training, one approach is to encourage and support graduates to seek professional development beyond their university's walls, and think more holistically about their learning as it relates to their career interests. During this session we discuss current thinking around the professional learning needs of emerging ocean leaders, what this means for academic epistemologies, and examine initial evaluation outcomes from activities in our cross-campus consortium model in Monterey Bay, California. This innovative model includes seven regional academic institutions working together to develop an interdisciplinary ocean community and increase access to professional development opportunities to better prepare regional ocean-interested graduate students and early career researchers as future leaders.

  20. Linking the oceans to public health: current efforts and future directions.

    Science.gov (United States)

    Kite-Powell, Hauke L; Fleming, Lora E; Backer, Lorraine C; Faustman, Elaine M; Hoagland, Porter; Tsuchiya, Ami; Younglove, Lisa R; Wilcox, Bruce A; Gast, Rebecca J

    2008-11-07

    We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research.We find that:* There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health."* The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases.* The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.

  1. Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.

    Science.gov (United States)

    Tohkin, Masahiro

    2017-01-01

    I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.

  2. Aspects of marine geoscience: a review and thoughts on potential for observing active processes and progress through collaboration between the ocean sciences.

    Science.gov (United States)

    Mitchell, Neil C

    2012-12-13

    Much progress has been made in the UK in characterizing the internal structures of major physiographic features in the oceans and in developing understanding of the geological processes that have created or shaped them. UK researchers have authored articles of high impact in all areas described here. In contrast to terrestrial geoscience, however, there have been few instrumented observations made of active processes by UK scientists. This is an area that could be developed over the next decades in the UK. Research on active processes has the potential ability to engage the wider public: Some active processes present significant geo-hazards to populations and offshore infrastructure that require monitoring and there could be commercial applications of technological developments needed for science. Some of the suggestions could involve studies in shallow coastal waters where ship costs are much reduced, addressing tighter funding constraints over the near term. The possibilities of measuring aspects of volcanic eruptions, flowing lava, turbidity currents and mass movements (landslides) are discussed. A further area of potential development is in greater collaboration between the ocean sciences. For example, it is well known in terrestrial geomorphology that biological agents are important in modulating erosion and the transport of sediments, ultimately affecting the shape of the Earth's surface in various ways. The analogous effect of biology on large-scale geomorphology in the oceans is also known but remains poorly quantified. Physical oceanographic models are becoming increasingly accurate and could be used to study further the patterns of erosion, particle transport and deposition in the oceans. Marine geological and geophysical data could in turn be useful for further verification of such models. Adapting them to conditions of past oceans could address the shorter-period movements, such as due to internal waves and tides, which have been barely addressed in

  3. Successes, Challenges and Lessons Learned for Recruiting, Engaging and Preparing a Diverse Student Population for 21st Century Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2015-12-01

    Diversity within the Ocean Sciences workforce is still underperforming relative to other scientific disciplines, a problem that will be only be solved by recruiting, engaging and retaining a more diverse student population. The Monterey Bay Regional Ocean Science Research Experiences for Undergraduates program is housed at California State University, Monterey Bay (CSUMB), an HSI with strong connections to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system. From this unique position, 11 sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students engage in rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for a program designed to prepare students for 21st century Ocean Science careers.

  4. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December 1993 (NODC Accession 9900057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December...

  5. Surface currents in the equatorial Indian Ocean during spring and fall - An altimetry based analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Somayajulu, Y.K.

    This communication presents the results of a study aimed at investigating the nature and variability of surface currents in the equatorial Indian Ocean between 5 degrees N and 5 degrees S during spring and fall seasons. Geostrophic surface currents...

  6. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994 (NODC Accession 9700042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994....

  7. Spatial-Temporal Variations of Turbidity and Ocean Current Velocity of the Ariake Sea Area, Kyushu, Japan Through Regression Analysis with Remote Sensing Satellite Data

    OpenAIRE

    Yuichi Sarusawa; Kohei Arai

    2013-01-01

    Regression analysis based method for turbidity and ocean current velocity estimation with remote sensing satellite data is proposed. Through regressive analysis with MODIS data and measured data of turbidity and ocean current velocity, regressive equation which allows estimation of turbidity and ocean current velocity is obtained. With the regressive equation as well as long term MODIS data, turbidity and ocean current velocity trends in Ariake Sea area are clarified. It is also confirmed tha...

  8. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    Science.gov (United States)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards

  9. Ocean Current Power Generator. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost that is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.

  10. Changing currents: a strategy for understanding and predicting the changing ocean circulation.

    Science.gov (United States)

    Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn

    2012-12-13

    Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions.

  11. Numerical Modeling of Ocean Circulation

    Science.gov (United States)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  12. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond

    OpenAIRE

    Kennicutt, M.C.; Chown, S.L.; Cassano, J.J.; Liggett, D.; Peck, L.S.; Massom, R.; Rintoul, S.R.; Storey, J.; Vaughan, D.G.; Wilson, T.J.; Allison, I.; Ayton, J.; Badhe, R.; Baeseman, J.; Barrett, P.J.

    2015-01-01

    Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consu...

  13. Current meter and other data from current meter casts from NOAA Ship RESEARCHER in the North and South Pacific Ocean from 1984-06-28 to 1984-07-01 (NODC Accession 8500226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean from June 28, 1984 to July 1, 1984....

  14. Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb

    Science.gov (United States)

    Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve

    2011-01-01

    This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.

  15. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    2001-01-01

    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  16. Scales and scaling in turbulent ocean sciences; physics-biology coupling

    Science.gov (United States)

    Schmitt, Francois

    2015-04-01

    Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.

  17. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  18. Intraseasonal variability of upper-ocean currents and photosynthetic primary production along the U.S. west coast associated with the Madden-Julian Oscillation

    Science.gov (United States)

    Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.

    2017-12-01

    In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.

  19. Archive of Geosample Data and Information from the University of Hawaii at Manoa School of Ocean and Earth Science and Technology (SOEST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST) is a partner in the Index to Marine and Lacustrine Geological Samples...

  20. Energy from the ocean. Report of the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fifth Congress, Second Session by the Science Policy Research Division, Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    In the area of renewable sources of energy from the ocean, the report includes chapters on ocean thermal energy conversion; energy from ocean waves; energy from ocean currents; energy from tides; energy from oceanic winds; energy from salinity gradients; and energy from oceanic bioconversion. Also covered are the nonrenewable sources of energy from the ocean with chapters on deep ocean oil and gas; offshore geothermal energy; and offshore hard mineral energy resources. The report concludes with a bibliography and a selection of current articles on the general subject of the energy potential of the oceans.

  1. Global Ocean Carbon and Biogeochemistry Coordination

    Science.gov (United States)

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur

    2016-04-01

    The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the

  2. Current meter data from moored current meter casts in the Northeast Pacific Ocean as part of the Flow Over Abrupt Topography project from 1990-01-06 to 1991-12-03 (NODC Accession 9500077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Northeast Pacific Ocean from January 6, 1990 to December 3, 1991. Data were submitted by...

  3. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015

    OpenAIRE

    Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd

    2018-01-01

    Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 20...

  4. Current meter data from moored current meter casts and other instruments in the TOGA Area - Pacific Ocean (30 N to 30 S) from 1992-01-01 to 1993-02-17 (NODC Accession 9600019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts and other instruments in the TOGA Area - Pacific Ocean (30 N to 30 S) from January 1, 1992 to...

  5. Five Aspects of Current Trends in German Library Science

    Science.gov (United States)

    Steierwald, Ulrike

    2006-01-01

    The specialisation Library Science at the Hochschule Darmstadt/University of Applied Science Darmstadt is the newest academic program in Germany for the higher education of librarians. Five current trends in library science in Germany reflect the new "Darmstadt Model": (1) The delimitation of a specific professional field…

  6. An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems

    Science.gov (United States)

    Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia

    2016-01-01

    We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…

  7. The rôle of the complete Coriolis force in cross-equatorial flow of abyssal ocean currents

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    Ocean currents flowing close to or across the equator are strongly constrained by the change in sign of f, the locally vertical component of the Earth's rotation vector, across the equator. We investigate these currents using a shallow water model that includes both the locally vertical and locally horizontal components of the Earth's rotation vector, thus accounting for the complete Coriolis force. We therefore avoid making the so-called "traditional approximation" that retains only the part of the Coriolis force associated with the locally vertical component of the rotation vector. Including the complete Coriolis force contributes an additional term to the fluid's potential vorticity, which may partially balance the change in sign of f as fluid crosses the equator over suitably shaped bathymetry. We focus on the Antarctic Bottom Water, which crosses the equator northwards in the western Atlantic ocean where the local bathymetry forms an almost-zonal channel. We show that this bathymetry facilitates the current's equatorial crossing via the action of the "non-traditional" component of the Coriolis force. We illustrate this process using both analytical and numerical solutions for flow of an abyssal current over idealised equatorial topography. We also consider the one-dimensional geostrophic adjustment of a body of fluid across the equator, and show that the "non-traditional" contribution to the fluid's angular momentum permits a larger cross-equatorial transport. These results underline the importance of including the complete Coriolis force in studies of the equatorial ocean, particularly in the weakly-stratified abyssal ocean where the non-traditional component is most pronounced.

  8. Advancing Climate Literacy through Investment in Science Education Faculty, and Future and Current Science Teachers: Providing Professional Learning, Instructional Materials, and a Model for Locally-Relevant and Culturally-Responsive Content

    Science.gov (United States)

    Halversen, C.; Apple, J. K.; McDonnell, J. D.; Weiss, E.

    2014-12-01

    The Next Generation Science Standards (NGSS) call for 5th grade students to "obtain and combine information about ways individual communities use science ideas to protect Earth's resources and environment". Achieving this, and other objectives in NGSS, will require changes in the educational system for both students and teachers. Teachers need access to high quality instructional materials and continuous professional learning opportunities starting in pre-service education. Students need highly engaging and authentic learning experiences focused on content that is strategically interwoven with science practices. Pre-service and early career teachers, even at the secondary level, often have relatively weak understandings of the complex Earth systems science required for understanding climate change and hold alternative ideas and naïve beliefs about the nature of science. These naïve understandings cause difficulties in portraying and teaching science, especially considering what is being called for in NGSS. The ACLIPSE program focuses on middle school pre-service science teachers and education faculty because: (1) the concepts that underlie climate change align well with the disciplinary core ideas and practices in NGSS for middle grades; and (2) middle school is a critical time for capturing students interest in science as student engagement by eighth grade is the most effective predictor of student pursuit of science in high school and college. Capturing student attention at this age is critical for recruitment to STEM careers and lifelong climate literacy. THE ACLIPSE program uses cutting edge research and technology in ocean observing systems to provide educators with new tools to engage students that will lead to deeper understanding of the interactions between the ocean and climate systems. Establishing authentic, meaningful connections between indigenous and place-based, and technological climate observations will help generate a more holistic perspective

  9. Ocean Research - Perspectives from an international Ocean Research Coordination Network

    Science.gov (United States)

    Pearlman, Jay; Williams, Albert, III

    2013-04-01

    The need for improved coordination in ocean observations is more urgent now given the issues of climate change, sustainable food sources and increased need for energy. Ocean researchers must work across disciplines to provide policy makers with clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions asked over the last 100 years at the time and space scales that are relevant. Programs like GLOBEC moved us forward but we are still challenged by the disciplinary divide. Interdisciplinary problem solving must be addressed not only by the exchange of data between the many sides, but through levels where questions require day-to-day collaboration. A National Science Foundation-funded Research Coordination Network (RCN) is addressing approaches for improving interdisciplinary research capabilities in the ocean sciences. During the last year, the RCN had a working group for Open Data led by John Orcutt, Peter Pissierssens and Albert Williams III. The teams has focused on three areas: 1. Data and Information formats and standards; 2. Data access models (including IPR, business models for open data, data policies,...); 3. Data publishing, data citation. There has been a significant trend toward free and open access to data in the last few years. In 2007, the US announced that Landsat data would be available at no charge. Float data from the US (NDBC), JCOMM and OceanSites offer web-based access. The IODE is developing its Ocean Data Portal giving immediate and free access to ocean data. However, from the aspect of long-term collaborations across communities, this global trend is less robust than might appear at the surface. While there are many standard data formats for data exchange, there is not yet widespread uniformity in their adoption. Use of standard data formats can be encouraged in several ways: sponsors of

  10. Not Just About the Science: Cold War Politics and the International Indian Ocean Expedition

    Science.gov (United States)

    Harper, K.

    2016-12-01

    The International Indian Ocean Expedition broke ground for a series of multi-national oceanographic expeditions starting in the late 1950s. In and of itself, it would have been historically significant—like the International Geophysical Year (1957-58)—for pulling together the international scientific community during the Cold War. However, US support for this and follow-on Indian Ocean expeditions were not just about the science; they were also about diplomacy, specifically efforts to bring non-aligned India into the US political orbit and out of the clutches of its Cold War enemy, the Soviet Union. This paper examines the behind-the-scenes efforts at the highest reaches of the US government to extract international political gain out of a large-scale scientific effort.

  11. Reaching out in new Ways: Bridging the gap Between Science and Media Through the National Oceanic and Atmospheric Administration's Office of Ocean Exploration

    Science.gov (United States)

    Gorell, F. R.; Martinez, C.

    2006-12-01

    NOAA's Office of Ocean Exploration (OE) was created in response to the recommendations of the President's Panel on Ocean Exploration in 2000. With the establishment of OE, NOAA developed a great opportunity to reach out to teachers, students, and the general public to share the excitement of discovery. As exciting expeditions are the core of our NOAA program, outreach efforts are focused around these cruises. Through various initiatives, OE works with the science community to share the excitement of ocean science and discovery with a wide variety of audiences. Initiatives include media events held during port calls, media conference calls arranged with scientists at sea, journalists' participation in expeditions, and select interviews with scientist-explorers. NOAA OE is now poised to initiate a major ongoing satellite-based education and public outreach program from its new dedicated research vessel, the Okeanos Explorer that will become operational in 2008. Through telepresence technology designed by the Institute for Exploration (IFE) in Mystic, CT, expeditions can be managed `virtually' by scientists working from Science Command Centers on land, live education broadcasts can be produced in real-time, and media events can be held through shore-based consoles connected to scientists at sea. Three pilot programs were successfully completed in the past few years demonstrating the potential for this new technology to allow for unlimited access to data, including video, from expeditions, sharing in real-time the excitement of discovery through multiple virtual pathways. News media provide a powerful means to inform and educate the public. In some cases, scientists may believe that interaction with media representatives poses risks unmatched by rewards. While it is important to serve the public's right to know, scientist-explorers on NOAA-sponsored ocean expeditions have a recognized interest in protecting certain data, including images, for a number of legitimate

  12. The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer

    Directory of Open Access Journals (Sweden)

    Anja Engel

    2017-05-01

    Full Text Available Despite the huge extent of the ocean's surface, until now relatively little attention has been paid to the sea surface microlayer (SML as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean's surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.

  13. Ocean images in music compositions and folksongs

    Science.gov (United States)

    Liu, C. M.

    2017-12-01

    In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.

  14. Communicating Ocean Acidification

    Science.gov (United States)

    Pope, Aaron; Selna, Elizabeth

    2013-01-01

    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  15. Current meter, phytoplankton, and wind data from moored current meter casts and other instruments in the North Pacific Ocean as part of the Deep Ocean Mining and Environmental Study (DOMES) project, 1975-08-29 to 1977-02-24 (NODC Accession 7700458)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter, phytoplankton, and wind data were collected using moored current meter casts and other instruments in the Gulf of Mexico from August 29, 1975 to...

  16. Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand

    2017-04-01

    Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.

  17. Temperature, current meter, and other data using current meter, thermistor, and mooring casts from the HUNT from the Pacific Ocean as part of the International Decade of Ocean Exploration / International Southern Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) project, from 1982-06-28 to 1983-11-23 (NODC Accession 9500019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, conductivity, east-west current component, north-south current component, depth, pressure, and salinity data were collected using current meter,...

  18. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  19. Managing ocean information in the digital era--events in Canada open questions about the role of marine science libraries.

    Science.gov (United States)

    Wells, Peter G

    2014-06-15

    Information is the foundation of evidence-based policies for effective marine environmental protection and conservation. In Canada, the cutback of marine science libraries introduces key questions about the role of such institutions and the management of ocean information in the digital age. How vital are such libraries in the mission of studying and protecting the oceans? What is the fate and value of the massive grey literature holdings, including archival materials, much of which is not in digital form but which often contains vital data? How important is this literature generally in the marine environmental sciences? Are we likely to forget the history of the marine pollution field if our digital focus eclipses the need for and access to comprehensive collections and skilled information specialists? This paper explores these and other questions against the backdrop of unprecedented changes in the federal libraries, marine environmental science and legislation in Canada. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Ocean Physicochemistry versus Climate Change

    OpenAIRE

    Góralski, Bogdan

    2014-01-01

    It is the dwindling ocean productivity which leaves dissolved carbon dioxide in the seawater. Its solubility is diminished by the rise in ocean water temperature (by one degree Celsius since 1910, according to IPCC). Excess carbon dioxide is emitted into the atmosphere, while its growing concentration in seawater leads to ocean acidification. Ocean acidification leading to lowering pH of surface ocean water remains an unsolved problem of science. My today’s lecture will mark an attempt at ...

  1. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  2. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  3. Ocean transport and variability studies of the South Pacific, Southern, and Indian Oceans

    Science.gov (United States)

    Church, John A.; Cresswell, G. R.; Nilsson, C. S.; Mcdougall, T. J.; Coleman, R.; Rizos, C.; Penrose, J.; Hunter, J. R.; Lynch, M. J.

    1991-01-01

    The objectives of this study are to analyze ocean dynamics in the western South Pacific and the adjacent Southern Ocean and the eastern Indian Ocean. Specifically, our objectives for these three regions are, for the South Pacific Ocean: (1) To estimate the volume transport of the east Australian Current (EAC) along the Australian coast and in the Tasman Front, and to estimate the time variability (on seasonal and interannual time scales) of this transport. (2) To contribute to estimating the meridional heat and freshwater fluxes (and their variability) at about 30 deg S. Good estimates of the transport in the western boundary current are essential for accurate estimates of these fluxes. (3) To determine how the EAC transport (and its extension, the Tasman Front and the East Auckland Current) closes the subtropical gyre of the South Pacific and to better determine the structure at the confluence of this current and the Antarctic Circumpolar Current. (4) To examine the structure and time variability of the circulation in the western South Pacific and the adjacent Southern Ocean, particularly at the Tasman Front. For the Indian Ocean: (5) To study the seasonal interannual variations in the strength of the Leeuwin Current. (6) To monitor the Pacific-Indian Ocean throughflow and the South Equatorial and the South Java Currents between northwest Australia and Indonesia. (7) To study the processes that form the water of the permanent oceanic thermocline and, in particular, the way in which new thermocline water enters the permanent thermocline in late winter and early spring as the mixed layer restratifies. For the Southern Ocean: (8) To study the mesoscale and meridional structure of the Southern Ocean between 150 deg E and 170 deg E; in particular, to describe the Antarctic frontal system south of Tasmania and determine its interannual variability; to estimate the exchanges of heat, salt, and other properties between the Indian and Pacific Oceans; and to investigate the

  4. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  5. The Smartfin: How Citizen Scientist Surfers Could Help Inform Coastal Ocean Science and Conservation.

    Science.gov (United States)

    Stern, A.

    2016-12-01

    Coastal marine ecosystems only represent a small percentage of the global ocean's surface area. However, these ecosystems are highly productive, rich in biodiversity, and are where the vast majority of human activity occurs. The complex interaction between seawater, land, and atmosphere makes coastal ecosystems some of the most dynamic in terms of seawater chemistry. In order to capture these dynamic changes in seawater chemistry across appropriate spatial and temporal scales requires a large amount of measurements. Unfortunately, it is often challenging to maintain an array of oceanographic sensors in coastal ecosystems, especially in high energy areas like the surf zone. Citizen science has the potential to increase the collection of oceanographic data from coastal systems where traditional methods are more difficult or expensive to implement. This talk will highlight the Smartfin, a surfboard mounted fin that measures seawater chemical parameters, physical wave characteristics, and GPS location during an ordinary surf session. Created by environmental non-profit Lost Bird, the Smartfin is a partnership between non-profits (Lost Bird and Surfrider Foundation), researchers (Scripps Institution of Oceanography), engineers (Board Formula), and the citizen science community. With an estimated 23 million surfers worldwide the Smartfin could greatly enhance vital data collection in coastal regions as well as raise awareness about our changing coastal and ocean ecosystems.

  6. Between understanding and appreciation. Current science communication in Denmark (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  7. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  8. The diversity of Indian Ocean Heterotardigrada

    Directory of Open Access Journals (Sweden)

    Roberto SANDULLI

    2007-09-01

    Full Text Available Information about Indian Ocean tardigrades is quite scarce and in most cases refers to species in coastal coralline sediment and occasionally in abyssal mud. The present data concern species found in the intertidal sand of Coco and La Digue Islands in the Seychelles, previously unsampled for tardigrades, as well as species in subtidal sediment found at depths ranging between 1 and 60 m off the shores of the Maldive Atolls. These sediments are all very similar and consist of heterogeneous coralline sand, moderately or scarcely sorted. Sixteen species (three new to science were found in the Seychelles, belonging to Renaudarctidae, Stygarctidae, Halechiniscidae, Batillipedidae and Echiniscoididae. Diversity and evenness data are also interesting, with maximum values of H' = 2.59 and of J = 0.97. In the Maldives 25 species were found (two new to science belonging to Neostygarctidae, Stygarctidae, Halechiniscidae and Batillipedidae. Such a number of species, despite the low percentage of tardigrade fauna (only 0.6% of the total meiofauna, contributes to the high values of both diversity and evenness, with H' ranging between 1.5 and 2.6 and J between 0.6 and 1. The Indian Ocean tardigrade fauna currently numbers 31 species of Arthrotardigrada and 2 species of Echiniscoidida. In the present study, Arthrotardigrada are the most abundant and all the families are present except Neoarctidae. Halechiniscidae is present with all the sub-families (except Euclavartinae, thus contributing to the high diversity values. Furthermore, 18 species, representing more than 50% of the total marine tardigrade fauna, are new records for the Indian Ocean, including five species new to science.

  9. IAEA To Launch Centre On Ocean Acidification

    International Nuclear Information System (INIS)

    2012-01-01

    activities which are not currently funded at national or international levels. The centre's role will be to facilitate, promote and communicate these activities related to global actions on ocean acidification, including international observation, joint platforms and facilities, collaboration between natural and social sciences, exchange of students and scientists, joint experiments, definition of best practices, open-access bibliographic database, data management, capacity building and dissemination. (IAEA)

  10. International Search for Life in Ocean Worlds

    Science.gov (United States)

    Sherwood, B.

    2015-12-01

    We now know that our solar system contains diverse "ocean worlds." One has abundant surface water and life; another had significant surface water in the distant past and has drawn significant exploration attention; several contain large amounts of water beneath ice shells; and several others evince unexpected, diverse transient or dynamic water-related processes. In this century, humanity will explore these worlds, searching for life beyond Earth and seeking thereby to understand the limits of habitability. Of our ocean worlds, Enceladus presents a unique combination of attributes: large reservoir of subsurface water already known to contain salts, organics, and silica nanoparticles originating from hydrothermal activity; and able to be sampled via a plume predictably expressed into space. These special circumstances immediately tag Enceladus as a key destination for potential missions to search for evidence of non-Earth life, and lead to a range of potential mission concepts: for orbital reconnaissance; in situ and returned-sample analysis of plume and surface-fallback material; and direct sulcus, vent, cavern, and ocean exploration. Each mission type can address a unique set of science questions, and would require a unique set of capabilities, most of which are not yet developed. Both the questions and the capability developments can be sequenced into a programmatic precedence network, the realization of which requires international cooperation. Three factors make this true: exploring remote oceans autonomously will cost a lot; the Outer Space Treaty governs planetary protection; and discovery of non-Earth life is an epochal human imperative. Results of current planning will be presented in AGU session 8599: how ocean-world science questions and capability requirements can be parsed into programmatically acceptable mission increments; how one mission proposed into the Discovery program in 2015 would take the next step on this path; the Decadal calendar of

  11. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.; Arbic, Brian K.; Chassignet, Eric P.; Coward, Andrew C.; Maltrud, Mathew; Merryfield, William J.; Srinivasan, Ashwanth; Varghese, Anson

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between

  12. Incentivizing More Effective Marine Protected Areas with the Global Ocean Refuge System (GLORES

    Directory of Open Access Journals (Sweden)

    Sarah O. Hameed

    2017-06-01

    Full Text Available Healthy oceans are essential to human survival and prosperity, yet oceans are severely impacted worldwide by anthropogenic threats including overfishing, climate change, industrialization, pollution, and habitat destruction. Marine protected areas (MPAs have been implemented around the world and are effective conservation tools that can mitigate some of these threats and build resilience when designed and managed well. However, despite a rich scientific literature on MPA effectiveness, science is not the main driver behind the design and implementation of many MPAs, leading to variable MPA effectiveness and bias in global MPA representativity. As a result, the marine conservation community focuses on promoting the creation of more MPAs as well as more effective ones, however no structure to improve or accelerate effective MPA implementation currently exists. To safeguard marine ecosystems on a global scale and better monitor progress toward ecosystem protection, robust science-based criteria are needed for evaluating MPAs and synthesizing the extensive and interdisciplinary science on MPA effectiveness. This paper presents a strategic initiative led by Marine Conservation Institute called the Global Ocean Refuge System (GLORES. GLORES aims to set standards to improve the quality of MPAs and catalyze strong protection for at least 30% of the ocean by 2030. Such substantial increase in marine protection is needed to maintain the resilience of marine ecosystems and restore their benefits to people. GLORES provides a comprehensive strategy that employs the rich body of MPA science to scale up existing marine conservation efforts.

  13. RU COOL's scalable educational focus on immersing society in the ocean through ocean observing systems

    Science.gov (United States)

    Schofield, O.; McDonnell, J. D.; Kohut, J. T.; Glenn, S. M.

    2016-02-01

    Many regions of the ocean are exhibiting significant change, suggesting the need to develop effective focused education programs for a range of constituencies (K-12, undergraduate, and general public). We have been focused on developing a range of educational tools in a multi-pronged strategy built around using streaming data delivered through customized web services, focused undergraduate tiger teams, teacher training and video/documentary film-making. Core to the efforts is on engaging the undergraduate community by leveraging the data management tools of the U.S. Integrated Ocean Observing System (IOOS) and the education tools of the U.S. National Science Foundation's (NSF) Ocean Observing Initiative (OOI). These intuitive interactive browser-based tools reduce the barriers for student participation in sea exploration and discovery, and allowing them to become "field going" oceanographers while sitting at their desk. Those undergraduate student efforts complement efforts to improve educator and student engagement in ocean sciences through exposure to scientists and data. Through professional development and the creation of data tools, we will reduce the logistical costs of bringing ocean science to students in grades 6-16. We are providing opportunities to: 1) build capacity of scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia. We are using a blended learning approach to promote partnerships and cross-disciplinary sharing. Finally we use data and video products to entrain public support through the development of science documentaries about the science and people who conduct it. For example Antarctic Edge is a feature length award-winning documentary about climate change that has garnered interest in movie theatres

  14. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.

    1999-01-01

    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  15. Absolute Geostrophic Velocity Inverted from the Polar Science Center Hydrographic Climatology (PHC3.0) of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156425)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called PHC-V) comprises 3D gridded climatological fields of absolute geostrophic velocity of the Arctic Ocean inverted from the Polar science center...

  16. Do swimming animals mix the ocean?

    Science.gov (United States)

    Dabiri, John

    2013-11-01

    Perhaps. The oceans are teeming with billions of swimming organisms, from bacteria to blue whales. Current research efforts in biological oceanography typically focus on the impact of the marine environment on the organisms within. We ask the opposite question: can organisms in the ocean, especially those that migrate vertically every day and regionally every year, change the physical structure of the water column? The answer has potentially important implications for ecological models at local scale and climate modeling at global scales. This talk will introduce the still-controversial prospect of biogenic ocean mixing, beginning with evidence from measurements in the field. More recent laboratory-scale experiments, in which we create controlled vertical migrations of plankton aggregations using laser signaling, provide initial clues toward a mechanism to achieve efficient mixing at scales larger than the individual organisms. These results are compared and contrasted with theoretical models, and they highlight promising avenues for future research in this area. Funding from the Office of Naval Research and the National Science Foundation is gratefully acknowledged.

  17. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  18. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    Energy Technology Data Exchange (ETDEWEB)

    National Research Council

    2011-04-22

    . Consequently, a coordinated national plan for making future strategic investments becomes an imperative to address societal needs. Such a plan should be based upon known priorities and should be reviewed every 5-10 years to optimize the federal investment. The committee examined the past 20 years of technological advances and ocean infrastructure investments (such as the rise in use of self-propelled, uncrewed, underwater autonomous vehicles), assessed infrastructure that would be required to address future ocean research questions, and characterized ocean infrastructure trends for 2030. One conclusion was that ships will continue to be essential, especially because they provide a platform for enabling other infrastructure autonomous and remotely operated vehicles; samplers and sensors; moorings and cabled systems; and perhaps most importantly, the human assets of scientists, technical staff, and students. A comprehensive, long-term research fleet plan should be implemented in order to retain access to the sea. The current report also calls for continuing U.S. capability to access fully and partially ice-covered seas; supporting innovation, particularly the development of biogeochemical sensors; enhancing computing and modeling capacity and capability; establishing broadly accessible data management facilities; and increasing interdisciplinary education and promoting a technically-skilled workforce. The committee also provided a framework for prioritizing future investment in ocean infrastructure. They recommend that development, maintenance, or replacement of ocean research infrastructure assets should be prioritized in terms of societal benefit, with particular consideration given to usefulness for addressing important science questions; affordability, efficiency, and longevity; and ability to contribute to other missions or applications. These criteria are the foundation for prioritizing ocean research infrastructure investments by estimating the economic costs and benefits

  19. Exploring the Oceans in 4D: Using Paleoceanography to Engage Students in Interdisciplinary Science

    Science.gov (United States)

    Waite, A. J.; Fournier, A.; Paxson, M.; Grant, C.; MacFadden, B. J.

    2015-12-01

    Recent collaborations between educators and scientists have helped to change the face of K-12 education and allow for the development of curricula that closely mimic real word scientific inquiry in ever more accessible formats. Here we capitalize on collaborations established by the Great American Biotic Interchange - Research Experience for Teachers (GABI-RET) and the Panama Canal Project - Partnerships in International Research and Education (PCP-PIRE) to create a series of hands-on activities that investigate the dynamic response of various components of the Earth's system to changes in ocean gateways through time. In particular, we focus on the rise of the Isthmus of Panama and subsequent closure of the Central American Seaway that provide an opportune platform for the interdisciplinary teaching of multiple secondary education topics. Relevant themes include, but are not limited to, geologic time, dating techniques, plate tectonics, ocean circulation, climate, and the speciation/diversification of life. We have taken a versatile approach to these activities by simulating deep sea sediment cores, complete with 3D printed microfossils and related data, that allow students to actively apply the scientific method to simplified geologic archives, graph and assess evidence, and debate their findings in a project based format. The exercises themselves are designed to meet Next Generation and Florida State Science Standards for 6th grade Earth Science and 12th grade Environmental Management/Science classes, though the nature of the activities can be adapted to intermediary skill levels with relative ease. The project kit is designed for use in classrooms without ready access to computers or microscopes and the associated lesson plans/materials will be made available through the GABI-RET and PaleoTEACH websites.

  20. Depth of origin of ocean-circulation-induced magnetic signals

    Science.gov (United States)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  1. Springer handbook of ocean engineering

    CERN Document Server

    Xiros, Nikolaos

    2016-01-01

    The handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes but is not limited to; an overview of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies, and ocean vehicles and automation. The handbook will be of interest to practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore, and marine engineering and naval architecture.

  2. Ocean Literacy After-School

    Science.gov (United States)

    Hlinka, Lisa

    2016-04-01

    Ocean Literacy is a topic that is often underrepresented in secondary school science curriculum. To combat this deficit, our School has partnered up with Hudson River Community Sailing (HRCS), a local organization in New York City that offers an after-school program to high-need high school students in the surrounding community. This organization has developed a 9th grade Sail Academy which allows students from participating public high schools to increase their proficiency in math and science by learning basic sailing, navigation, and boat building. Upon successfully completing the 9th grade Sail Academy curriculum, students enter the "First Mates Program" which offers a scaffolded set of youth development experiences that prepare students for college, career, leadership, and stewardship. This program is built in the context of a new Ocean Literacy Curriculum focused around 3 major topics within Ocean Literacy: Marine Debris, Meteorology, and Ecology (specifically water quality). The learning experiences include weekly data collection of marine debris, weather conditions, and water quality testing in the Hudson River adjacent to the HRCS Boathouse. Additionally there are weekly lessons engaging students in the fundamentals of each of the 3 topics and how they are also important in the lens of sailing. During the marine debris portion of the curriculum students identify sources of marine debris, impacts on the local environment, and study how debris can travel along the ocean currents leading in to larger garbage gyres. To supplement the curriculum, students embarked on a day trip to the Newtown Creek Wastewater Treatment Facility in Brooklyn, NY to learn how and where NYC receives its drinking water, how wastewater is treated, and how water quality in the local area can be easily influenced. While on the trip, students did their data collection of marine debris, weather conditions, and water quality testing at Newtown Creek, and then they compared their results

  3. Role of the ocean in climate changes

    Science.gov (United States)

    Gulev, Sergey K.

    1992-01-01

    The present program aimed at the study of ocean climate change is prepared by a group of scientists from State Oceanographic Institute, Academy of Science of Russia, Academy of Science of Ukraine and Moscow State University. It appears to be a natural evolution of ideas and achievements that have been developed under national and international ocean research projects such as SECTIONS, WOCE, TOGA, JGOFS and others. The two primary goals are set in the program ROCC. (1) Quantitative description of the global interoceanic 'conveyor' and it's role in formation of the large scale anomalies in the North Atlantic. The objectives on the way to this goal are: to get the reliable estimates of year-to-year variations of heat and water exchange between the Atlantic Ocean and the atmosphere; to establish and understand the physics of long period variations in meridianal heat and fresh water transport (MHT and MFWT) in the Atlantic Ocean; to analyze the general mechanisms, that form the MHT and MFWT in low latitudes (Ekman flux), middle latitudes (western boundary currents) and high latitudes (deep convection) of the North Atlantic; to establish and to give quantitative description of the realization of global changes in SST, surface salinity, sea level and sea ice data. (2) Development of the observational system pointed at tracing the climate changes in the North Atlantic. This goal merges the following objectives: to find the proper sites that form the inter annual variations of MHT; to study the deep circulation in the 'key' points; to develop the circulation models reflecting the principle features of interoceanic circulation; and to define global and local response of the atmosphere circulation to large scale processes in the Atlantic Ocean.

  4. How can we make Science Education and Careers more attractive for Young People?

    Science.gov (United States)

    Knickmeier, K.; Kruse, K.

    2016-02-01

    The Kiel Science Factory (Kieler Forschungswerkstatt) is a school and teaching laboratory, which breaches the gap between school education and university research. Since opening in October 2012, 3.430 pupils worked at the Kiel Science Factory, and joined the different programs (ocean:lab, nano:lab, geo:lab), the numbers of visitors are increasing. The combination of experts in research and experts in education is very effective to attract young peoplés interest for a scientific career, to communicate science and to increase interest of teachers in current science. The biggest lab is the ocean:lab, it is jointly offered by Kiel University, Cluster of Excellence "Future Ocean" and Leibniz Institute for Science and Mathematics Education at Kiel University (IPN). The ocean:lab is addressing to school classes from grade 3 to 13, and it is strongly involved in pre-service teacher education. Appropriate to their respective level of study, pupils and students get fascinating insights into marine sciences and the working methods of real scientists. Furthermore teacher trainings and summer schools are producing an enthusiasm, which affects as well teachers as their students. The visiting pupils are mainly from Northern Germany, but also from e.g. Austria, Poland and Japan. Topics are the ocean as an ecosystem and how it is affected by anthropogenic impacts. The program offers an integrated investigation of the ecosystem "ocean" (from Plankton to marine mammals) with an interdisciplinary focus on biological aspects and abiotic factors of the habitat. In addition to pollution of the ocean through plastic waste and noise, the effects of climate change and eutrophication plays a role in discussions and tasks. New formats (e.g. an international Citizen Science Project and Expeditionary Learning) are carried out. The developed material is part of expedition boxes, which can be borrowed for project work in schools and science centers. http://www.forschungs-werkstatt.de/

  5. Ocean Networks Canada's "Big Data" Initiative

    Science.gov (United States)

    Dewey, R. K.; Hoeberechts, M.; Moran, K.; Pirenne, B.; Owens, D.

    2013-12-01

    Ocean Networks Canada operates two large undersea observatories that collect, archive, and deliver data in real time over the Internet. These data contribute to our understanding of the complex changes taking place on our ocean planet. Ocean Networks Canada's VENUS was the world's first cabled seafloor observatory to enable researchers anywhere to connect in real time to undersea experiments and observations. Its NEPTUNE observatory is the largest cabled ocean observatory, spanning a wide range of ocean environments. Most recently, we installed a new small observatory in the Arctic. Together, these observatories deliver "Big Data" across many disciplines in a cohesive manner using the Oceans 2.0 data management and archiving system that provides national and international users with open access to real-time and archived data while also supporting a collaborative work environment. Ocean Networks Canada operates these observatories to support science, innovation, and learning in four priority areas: study of the impact of climate change on the ocean; the exploration and understanding the unique life forms in the extreme environments of the deep ocean and below the seafloor; the exchange of heat, fluids, and gases that move throughout the ocean and atmosphere; and the dynamics of earthquakes, tsunamis, and undersea landslides. To date, the Ocean Networks Canada archive contains over 130 TB (collected over 7 years) and the current rate of data acquisition is ~50 TB per year. This data set is complex and diverse. Making these "Big Data" accessible and attractive to users is our priority. In this presentation, we share our experience as a "Big Data" institution where we deliver simple and multi-dimensional calibrated data cubes to a diverse pool of users. Ocean Networks Canada also conducts extensive user testing. Test results guide future tool design and development of "Big Data" products. We strive to bridge the gap between the raw, archived data and the needs and

  6. Origin of the ``Ocean Bible"

    Science.gov (United States)

    Munk, W. H.

    2002-12-01

    ``The Oceans" is such a landmark for Sverdrup and the Scripps Institution that one ought to take a look at how it came about. The book came very close to NOT being written. Sverdrup was about to decline an invitation by Prentice Hall when his secretary persuaded him to accept. The contract called for 500-600 pages, it ended up with 1087 pages. Royalty was 10% (\\$0.27 to each author for the copy I purchased in 1943). Sverdrup had estimated a market of 550 copies. By the end of 1965 23,766 copies of the American edition alone had been sold. The book was completed in the early war years under very trying conditions for Sverdrup personally. When it did appear in print, a year after Pearl Harbor, the distribution was restricted to the continental United States because ``...it would be of great aid to the enemy should it fall into his hands." The book carries the mark of Sverdrup's lifelong emphasis on the synthesis of observations: ``we have preferred definite statements to mere enumeration of uncorrelated observations and conflicting interpretations." The result was a coherent presentation of ocean science, a remarkable achievement considering how badly the ocean was undersampled. I will describe my experience as a willing listener while Sverdrup was contemplating of how to organize Chapter XV: The Water Masses and Currents of the Oceans.

  7. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  8. Warming of the West Spitsbergen Current and sea ice north of Svalbard

    Directory of Open Access Journals (Sweden)

    Jan Piechura

    2009-06-01

    Full Text Available This research was supported by a grant from the Fifth European Union Frame-work Programme project ASOF-N, contract EVK2-CT-200200139, the Sixth Frame-work Programme DAMOCLES, contract 018509GOCE, and grants from the Polish Ministry of Science and Higher Education, decisions 61/N-IPY/2007/0 and 175/IPY/2007/01.AbstractAccording to the results of recent research, besides the atmospheric circulation, it is heat transport to the Arctic Ocean (AO by ocean currents, the West Spitsbergen Current (WSC in particular, that is playing a significant role in the process of Arctic warming. Data collected by the Institute of Oceanology, Polish Academy of Sciences (IO PAS, in the Norwegian and Greenland Seas, and Fram Strait during the last 20 years reveal considerable changes in the amount of heat transported by the WSC into the Arctic Ocean. An increase in Atlantic Water (AW temperature and the intensification of heat transport were observed in 2004-06; after this period, both parameters decreased. The aim of this study was to find out whether the fluctuations in heat input by the WSC have influenced the sea-ice distribution around Svalbard. In fact they do, but oceanic heat transport should nonetheless be regarded as just one of many processes influencing sea-ice behaviour.

  9. Modeling Ships and Space Craft The Science and Art of Mastering the Oceans and Sky

    CERN Document Server

    Hagler, Gina

    2013-01-01

    Modeling Ships and Space Craft: The Science and Art of Mastering the Oceans and Sky begins with the theories of Aristotle and Archimedes, moving on to examine the work of Froude and Taylor, the early aviators and the Wright Brothers, Goddard and the other rocket men, and the computational fluid dynamic models of our time. It examines the ways each used fluid dynamic principles in the design of their vessels. In the process, this book covers the history of hydrodynamic (aero and fluid) theory and its progression – with some very accessible science examples – including seminal theories. Hydrodynamic principles in action are also explored with examples from nature and the works of man. This is a book for anyone interested in the history of technology – specifically the methods and science behind the use of scale models and hydrodynamic principles in the marine and aeronautical designs of today.

  10. Ocean current observations near McMurdo Station, Antarctica from 1991 to 1993: Relation to wastewater discharge dispersal

    International Nuclear Information System (INIS)

    Barry, J.P.

    1994-08-01

    Analyses of ocean currents in the vicinity of McMurdo Station, Antarctica, are relevant to the transport and dispersal of wastewater from the McMurdo Station sewage outfall pipe. Observations of ocean currents during the initial phases of this study have been presented by Howington and McFeters. These studies, using coliform bacterial counts as an indicator of dispersion of the wastewater plume and current meters to measure flow patterns, indicated that dispersal of the plume by local currents does not effectively remove the plume from the vicinity of McMurdo Sound, under the present outfall pipe location. Moreover, these studies suggest that, although the flow pattern is generally consistent with transport of the plume away from McMurdo Station, episodes of current reversal are sufficient to transport the wastewater plume along the shore toward the southeast, eventually overlapping the seawater intake area near the McMurdo jetty. Several concerns included (a) impacts of wastewater inputs to nearshore benthic and pelagic habitats adjacent to McMurdo Station, (b) effects of wastewater input to the McMurdo Station fresh water intake source, and (c) reduction in human impacts on the McMurdo Sound ecosystem. These concerns motivated studies to characterize nearshore currents more extensively in relation to dispersal of the wastewater plume. This report discusses analysis results of current observations from November 1992 to November 1993

  11. A Southern Ocean variability study using the Argo-based Model for Investigation of the Global Ocean (AMIGO)

    Science.gov (United States)

    Lebedev, Konstantin

    2017-04-01

    depths exceeding 2000 m, in which Argo data are lacking, the temperature and salinity data were taken from the WOA-09 database. The constant temperature and salinity values from the Argo data for the corresponding month (year, season) derived using the variational technique described above were specified as the boundary conditions at the ocean surface. The constant wind stress in the corresponding month (year, season) was specified from the ECMWF ERA-Interim reanalysis data. The mass, salt, and heat transports over several regions of the Antarctic Circumpolar Current (ACC) and at its northern boundary (35° S) were calculated, seasonal and intra-decadal variation of the transports was studied. The calculations cover the 12-year period from 2005 to 2016. The AMIGO database enjoys free public access on the Internet at: http://argo.ocean.ru/. The results are represented as monthly, seasonal, and annual data and climatological mean fields. The spatial resolution of the data is one degree in latitude and longitude, and the temporal resolution is one month. The work was supported by the Russian Science Foundation (project 16-17-10149).

  12. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  13. Enhancing Graduate Education and Research in Ocean Sciences at the Universidad de Concepcion (UDEC) and in Chile: Cooperation Between UDEC and Woods Hole Oceanographic Institution.

    Science.gov (United States)

    Farrington, J.; Pantoja, S.

    2007-05-01

    The Woods Hole Oceanographic Institution, USA (WHOI) and the University of Concepcion, Chile (UDEC) entered into an MOU to enhance graduate education and research in ocean sciences in Chile and enhance research for understanding the Southeastern Pacific Ocean. The MOU was drafted and signed after exchange visits of faculty. The formulation of a five year program of activities included: exchange of faculty for purposes of enhancing research, teaching and advising; visits of Chilean graduate students to WHOI for several months of supplemental study and research in the area of their thesis research; participation of Chilean faculty and graduate students in WHOI faculty led cruises off Chile and Peru (with Peruvian colleagues); a postdoctoral fellowship program for Chilean ocean scientists at WHOI; and the establishment of an Austral Summer Institute of advanced undergraduate and graduate level intensive two to three week courses on diverse topics at the cutting edge of ocean science research co-sponsored by WHOI and UDEC for Chilean and South American students with faculty drawn from WHOI and other U.S. universities with ocean sciences graduate schools and departments, e.g. Scripps Institution of Oceanography, University of Delaware. The program has been evaluated by external review and received excellent comments. The success of the program has been due mainly to: (1) the cooperative attitude and enthusiasm of the faculty colleagues of both Chilean Universities (especially UDEC) and WHOI, students and postdoctoral fellows, and (2) a generous grant from the Fundacion Andes- Chile enabling these activities.

  14. Bringing an Ocean to School.

    Science.gov (United States)

    MacMillan, Mark W.

    1997-01-01

    Describes a school program in which two sixth-grade science classes researched, created, and put together an ocean museum targeted at kindergarten through eighth graders who are geographically distanced from the ocean. Details the process for investigating topical areas, organizing teams of students, researching, writing, creating displays, and…

  15. The Climate Science Special Report: Rising Seas and Changing Oceans

    Science.gov (United States)

    Kopp, R. E.

    2017-12-01

    a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) under high-emissions scenarios. Any slowdown will reduce ocean heat and carbon absorption and raise sea levels off the northeastern US A full AMOC collapse, improbable in the current century, would lead to an additional 0.5 m of sea-level rise and offset 0-2°C of warming over the US.

  16. The role of ocean currents in the temperature selection of plankton : Insights from an individual-based model

    NARCIS (Netherlands)

    Hellweger, Ferdi L.; Van Sebille, Erik; Calfee, Benjamin C.; Chandler, Jeremy W.; Zinser, Erik R.; Swan, Brandon K.; Fredrick, Neil D.

    2016-01-01

    Biogeography studies that correlate the observed distribution of organisms to environmental variables are typically based on local conditions. However, in cases with substantial translocation, like planktonic organisms carried by ocean currents, selection may happen upstream and local environmental

  17. Seaglider surveys at Ocean Station Papa: Circulation and water mass properties in a meander of the North Pacific Current

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2016-09-01

    A Seaglider autonomous underwater vehicle augmented the Ocean Station Papa (OSP; 50°N, 145°W) surface mooring, measuring spatial structure on scales relevant to the monthly evolution of the moored time series. During each of three missions from June 2008 to January 2010, a Seaglider made biweekly 50 km × 50 km surveys in a bowtie-shaped survey track. Horizontal temperature and salinity gradients measured by these surveys were an order of magnitude stronger than climatological values and sometimes of opposite sign. Geostrophically inferred circulation was corroborated by moored acoustic Doppler current profiler measurements and AVISO satellite altimetry estimates of surface currents, confirming that glider surveys accurately resolved monthly scale mesoscale spatial structure. In contrast to climatological North Pacific Current circulation, upper-ocean flow was modestly northward during the first half of the 18 month survey period, and weakly westward during its latter half, with Rossby number O>(0.01>). This change in circulation coincided with a shift from cool and fresh to warm, saline, oxygen-rich water in the upper-ocean halocline, and an increase in vertical fine structure there and in the lower pycnocline. The anomalous flow and abrupt water mass transition were due to the slow growth of an anticyclonic meander within the North Pacific Current with radius comparable to the scale of the survey pattern, originating to the southeast of OSP.

  18. From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning

    Science.gov (United States)

    Popescu, Florin; Ayache, Stephane; Escalera, Sergio; Baró Solé, Xavier; Capponi, Cecile; Panciatici, Patrick; Guyon, Isabelle

    2016-04-01

    The big data transformation currently revolutionizing science and industry forges novel possibilities in multi-modal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost - a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques. This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image. We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized representation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC's H2020-sponsored 'See.4C' project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology

  19. Conductivity data from moored current meter casts in the North Pacific Ocean from 1979-04-23 to 1981-10-01 (NODC Accession 8200163)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity data were collected using moored current meter casts in the North Pacific Ocean from April 23, 1979 to October 1, 1981. Data were submitted by...

  20. Slow science: the value of long ocean biogeochemistry records.

    Science.gov (United States)

    Henson, Stephanie A

    2014-09-28

    Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical-biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication.

  1. Scientists’ perspectives on global ocean research priorities

    Directory of Open Access Journals (Sweden)

    Murray Alan Rudd

    2014-08-01

    Full Text Available Diverse natural and social science research is needed to support policies to recover and sustain healthy oceans. While a wide variety of expert-led prioritization initiatives have identified research themes and priorities at national and regional scale, over the past several years there has also been a surge in the number of scanning exercises that have identified important environmental research questions and issues ‘from the bottom-up’. From those questions, winnowed from thousands of contributions by scientists and policy-makers around the world who participated in terrestrial, aquatic and domain-specific horizon scanning and big question exercises, I identified 657 research questions potentially important for informing decisions regarding ocean governance and sustainability. These were distilled to a short list of 67 distinctive research questions that, in an internet survey, were ranked by 2179 scientists from 94 countries. Five of the top 10 research priorities were shared by respondents globally. Despite significant differences between physical and ecological scientists’ priorities regarding specific research questions, they shared seven common priorities among their top 10. Social scientists’ priorities were, however, much different, highlighting their research focus on managerial solutions to ocean challenges and questions regarding the role of human behavior and values in attaining ocean sustainability. The results from this survey provide a comprehensive and timely assessment of current ocean research priorities among research-active scientists but highlight potential challenges in stimulating crossdisciplinary research. As ocean and coastal research necessarily becomes more transdisciplinary to address complex ocean challenges, it will be critical for scientists and research funders to understand how scientists from different disciplines and regions might collaborate and strengthen the overall evidence base for ocean

  2. Greater Role of Geostrophic Currents on Ekman Dynamics in the Western Arctic Ocean as a Mechanism for Beaufort Gyre Stabilization

    Science.gov (United States)

    Steele, M.; Zhong, W.; Zhang, J.; Zhao, J.

    2017-12-01

    Seven different methods, with and without including geostrophic currents, were used to explore Ekman dynamics in the western Arctic Ocean for the period 1992-2014. Results show that surface geostrophic currents have been increasing and are much stronger than Ekman layer velocities in recent years (2003-2014) when the oceanic Beaufort Gyre (BG) is spinning up in the region. The new methods that include geostrophic currents result in more realistic Ekman pumping velocities than a previous iterative method that does not consider geostrophic currents and therefore overestimates Ekman pumping velocities by up to 52% in the central area of the BG over the period 2003-2014. When the BG is spinning up as seen in recent years, geostrophic currents become stronger, which tend to modify the ice-ocean stress and to cause an Ekman divergence that counteracts wind-driven Ekman convergence in the Canada Basin. This is a mechanism we have identified to play an important and growing role in stabilizing the Ekman convergence and therefore the BG in recent years. This mechanism may be used to explain three scenarios that describe the interplay of changes in wind forcing, sea ice motion, and geostrophic currents that control the variability of the Ekman dynamics in the central BG during 1992-2014. Results also reveal several upwelling regions in the southern and northern Canada Basin and the Chukchi Abyssal Plain which may plays a significant role in biological processes in these regions.

  3. Greater Role of Geostrophic Currents in Ekman Dynamics in the Western Arctic Ocean as a Mechanism for Beaufort Gyre Stabilization

    Science.gov (United States)

    Zhong, Wenli; Steele, Michael; Zhang, Jinlun; Zhao, Jinping

    2018-01-01

    Seven different methods, with and without including geostrophic currents, were used to explore Ekman dynamics in the western Arctic Ocean for the period 1992-2014. Results show that surface geostrophic currents have been increasing and are much stronger than Ekman layer velocities in recent years (2003-2014) when the oceanic Beaufort Gyre (BG) is spinning up in the region. The new methods that include geostrophic currents result in more realistic Ekman pumping velocities than a previous iterative method that does not consider geostrophic currents and therefore overestimates Ekman pumping velocities by up to 52% in the central area of the BG over the period 2003-2014. When the BG is spinning up as seen in recent years, geostrophic currents become stronger, which tend to modify the ice-ocean stress and moderate the wind-driven Ekman convergence in the Canada Basin. This is a mechanism we have identified to play an important and growing role in stabilizing the Ekman convergence and therefore the BG in recent years. This mechanism may be used to explain three scenarios that describe the interplay of changes in wind forcing, sea ice motion, and geostrophic currents that control the variability of the Ekman dynamics in the central BG during 1992-2014. Results also reveal several upwelling regions in the southern and northern Canada Basin and the Chukchi Abyssal Plain which may play a significant role in physical and biological processes in these regions.

  4. Investigating the Potential Impact of the Surface Water and Ocean Topography (SWOT) Altimeter on Ocean Mesoscale Prediction

    Science.gov (United States)

    Carrier, M.; Ngodock, H.; Smith, S. R.; Souopgui, I.

    2016-02-01

    NASA's Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide sea surface height anomaly (SSHA) observations with a wider swath width and higher spatial resolution than current satellite altimeters. It is expected that this will help to further constrain ocean models in terms of the mesoscale circulation. In this work, this expectation is investigated by way of twin data assimilation experiments using the Navy Coastal Ocean Model Four Dimensional Variational (NCOM-4DVAR) data assimilation system using a weak constraint formulation. Here, a nature run is created from which SWOT observations are sampled, as well as along-track SSHA observations from simulated Jason-2 tracks. The simulated SWOT data has appropriate spatial coverage, resolution, and noise characteristics based on an observation-simulator program provided by the SWOT science team. The experiment is run for a three-month period during which the analysis is updated every 24 hours and each analysis is used to initialize a 96 hour forecast. The forecasts in each experiment are compared to the available nature run to determine the impact of the assimilated data. It is demonstrated here that the SWOT observations help to constrain the model mesoscale in a more consistent manner than traditional altimeter observations. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model analysis and forecast of mesoscale features and surface ocean transport.

  5. IMOS: How seals are changing the way we monitor the Southern Ocean

    Science.gov (United States)

    Harcourt, R.; McMahon, C.; Jonsen, I.; Goldsworthy, S.; Hindell, M.; Hoenner, X.; Thums, M.

    2016-02-01

    IMOS (Integrated Marine Observing System) operates a wide range of ocean observing equipment throughout Australia's coastal waters and also the open oceans. This fully integrated, national system, covers physical, chemical and biological ocean sciences forming the basis for robust and informed study of the worlds oceans. Of particular interest in understanding global climate processes is the Southern Ocean (SO), but studying this remote region is difficult and most observations are collected during the short ice-free summer when the region is accessible. Through Winter and Spring it is extremely difficult to collect biophysical ocean information in the Southern Ocean. The importance of good observations from this region, the home of the Antarctic Circumpolar Current (ACC), the largest current system in the world, which connects water masses from the global ocean basins cannot be over emphasised. IMOS through the Australian Animal Tracking and Monitoring System (AATAMS) has made important inroads into collecting otherwise hard to obtain observations from the SO by using CTD bio-loggers to monitor coastal and oceanic movements of marine animals from the Australian mainland as far south as the Antarctic continent. In particular seals equipped with satellite-linked CTD tags have provided unique temporal and spatial coverage of the Southern Ocean. This includes extensive data from the Antarctic continental slope and shelf regions during the winter months, which is outside the conventional areas of Argo autonomous floats and ship-based studies. Over 75,000 temperature and salinity profiles have been collected from 20-140 °E, between the Kerguelen archipelago and Prydz Bay Antarctica. These data offer invaluable new insights into the water masses, oceanographic processes and provides a vital tool for oceanographers seeking to advance our understanding of this key component of the global ocean climate. Here we present an overview of the IMOS database of hydrographic (i

  6. Conductivity data from moored current meter casts in the North Pacific Ocean from 1980-08-05 to 1981-08-01 (NODC Accession 8300053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity data were collected using moored current meter casts in the North Pacific Ocean from August 5, 1980 to August 1, 1981. Data were submitted by University...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... support the well-known fact that oceanic eddies are distributed worldwide in the ocean. ... The classification of typical vortical features in the ocean detected in remote ...

  8. Current meter data from moored current meter casts in the Northwest Atlantic Ocean (limit-40 W) as part of the Outer Continental Shelf - Georges Bank (OCS -Georges Bank) project from 1980-10-27 to 1982-11-01 (NODC Accession 8600087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Northwest Atlantic Ocean (limit-40 W) from November 27, 1980 to November 1, 1982. Data were...

  9. The current state of science in radiation protection

    International Nuclear Information System (INIS)

    Kaul, A.

    1985-01-01

    The qualification 'according to the current state of science and technology' is regularly found in radiation protection laws. It is assumed that the state of science and technology is codified in the publications of ICRP and ICRU, the International Comissions on Radiological Protection and - Units respectively, and in the UN publication USCEAR. An investigation is made on the extent the regulations of FRD comply with this requirement. Stochastic and non-stochastic damages are differentiated and the problem of assigning equivalent whole-body doses to exposures of specific body organs is considered. (G.Q.)

  10. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System

    Directory of Open Access Journals (Sweden)

    C. Hauri

    2013-01-01

    Full Text Available Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS have a naturally low pH and aragonite saturation state (Ωarag, making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS to conduct preindustrial and transient (1995–2050 simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO2 and increasing oceanic dissolved inorganic carbon concentrations at the lateral boundaries, as projected by the NCAR CSM 1.4 model for the IPCC SRES A2 scenario. Our results show a large seasonal variability in pH (range of ~ 0.14 and Ωarag (~ 0.2 for the nearshore areas (50 km from shore. This variability is created by the interplay of physical and biogeochemical processes. Despite this large variability, we find that present-day pH and Ωarag have already moved outside of their simulated preindustrial variability envelopes (defined by ±1 temporal standard deviation due to the rapidly increasing concentrations of atmospheric CO2. The nearshore surface pH of the northern and central CCS are simulated to move outside of their present-day variability envelopes by the mid-2040s and late 2030s, respectively. This transition may occur even earlier for nearshore surface Ωarag, which is projected to depart from its present-day variability envelope by the early- to mid-2030s. The aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m within the next 25 yr, causing near-permanent undersaturation in subsurface waters. Due to the model's overestimation of Ωarag, this transition may occur even earlier than simulated by the model. Overall, our study shows that the CCS joins the Arctic and Southern oceans as one of only a few known ocean regions presently approaching the dual threshold of

  11. OBIS-USA: Enhancing Ocean Science Outcomes through Data Interoperability and Usability

    Science.gov (United States)

    Goldstein, P.; Fornwall, M.

    2014-12-01

    Commercial and industrial information systems have long built and relied upon standard data formats and transactions. Business processes, analytics, applications, and social networks emerge on top of these standards to create value. Examples of value delivered include operational productivity, analytics that enable growth and profit, and enhanced human communication and creativity for innovation. In science informatics, some research and operational activities operate with only scattered adoption of standards and few of the emergent benefits of interoperability. In-situ biological data management in the marine domain is an exemplar. From the origination of biological occurrence records in surveys, observer programs, monitoring and experimentation, through distribution techniques, to applications, decisions, and management response, marine biological data can be difficult, limited, and costly to integrate because of non-standard and undocumented conditions in the data. While this presentation identifies deficits in marine biological data practices, the presentation also identifies this as a field of opportunity. Standards for biological data and metadata do exist, with growing global adoption and extensibility features. Scientific, economic, and social-value motivations provide incentives to maximize marine science investments. Diverse science communities of national and international scale begin to see benefits of collaborative technologies. OBIS-USA (http://USGS.gov/obis-usa) is a program of the United States Geological Survey. This presentation shows how OBIS-USA directly addresses the opportunity to enhance ocean science outcomes through data infrastructure, including: (1) achieving rapid, economical, and high-quality data capture and data flow, (2) offering technology for data storage and methods for data discovery and quality/suitability evaluation, (3) making data understandable and consistent for application purposes, (4) distributing and integrating data in

  12. Current and other data from fixed platforms from the South Atlantic Ocean as part of the International Decade of Ocean Exploration / International Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) from 1975-02-22 to 1980-02-24 (NODC Accession 9500011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current and other data were collected from fixed platforms in the South Atlantic Ocean from 22 February 1975 to 24 February 1980. Data were collected by the Texas...

  13. Impact of North Atlantic Current changes on the Nordic Seas and the Arctic Ocean

    OpenAIRE

    Kauker, Frank; Gerdes, Rüdiger; Karcher, Michael; Köberle, Cornelia

    2005-01-01

    The impact of North Atlantic Current (NAC) volume, heat, and salt transport variability onto the NordicSeas and the Arctic Ocean is investigated using numerical hindcast and sensitivity experiments. Theocean-sea ice model reproduces observed propagation pathways and speeds of SST anomalies.Part of the signal reaching the entrance to the Nordic Seas between Iceland and Scotland originatesin the lower latitude North Atlantic. Response experiments with different prescribed conditionsat 50N show ...

  14. Ocean array alters view of Atlantic conveyor

    Science.gov (United States)

    Kornei, Katherine

    2018-02-01

    Oceanographers have put a stethoscope on the coursing circulatory system of the Atlantic Ocean, and they have found a skittish pulse that's surprisingly strong in the waters east of Greenland—discoveries that should improve climate models. The powerful currents known as the Atlantic meridional overturning circulation (AMOC) are an engine in Earth's climate. The AMOC's shallower limbs—which include the Gulf Stream—move warm water from the tropics northward, warming Western Europe. In the north, the waters cool and sink, forming deeper limbs that transport the cold water back south—and sequester anthropogenic carbon in the process. Last week, at the American Geophysical Union's Ocean Sciences meeting, scientists presented the first data from an array of instruments moored in the subpolar North Atlantic, a $35 million, seven-nation project known as the Overturning in the Subpolar North Atlantic Program (OSNAP). Since 2004, researchers have gathered data from another array, at 26°N, stretching from Florida to Africa. But OSNAP is the first to monitor the circulation farther north, where a critical aspect of the overturning occurs. The observations reveal unexpected eddies and strong variability in the AMOC currents. They also show that the currents east of Greenland contribute the most to the total AMOC flow. Climate models, on the other hand, have emphasized the currents west of Greenland in the Labrador Sea.

  15. GEROS-ISS: Ocean Remote Sensing with GNSS Reflectometry from the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Camps, Adriano

    on exploiting reflected signals of opportunity from Global Navigation Satellite Systems (GNSS) at L-band to measure key parameters of ocean surfaces. GEROS will utilize the U.S. American GPS (Global Positioning System) and pioneer the exploitation of signals from Galileo and possibly other GNSS systems (GLONASS......, QZSS, BeiDou), for reflectometry and occultation, thereby improving the accuracy as well as the spatio-temporal resolution of the derived geophysical properties. The primary mission objectives of GEROS are: (1) to measure the altimetric sea surface height of the ocean using reflected GNSS signals...... the oceanographic significance of the expected measurements and to demonstrate the usefulness of the GEROS concept. The presentation will give an overview on the current status of the GEROS experiment, review the science activities within the international GARCA study and related ESA-supported science activities....

  16. Current direction, wind wave spectra, and CTD data from moored current meter and CTD casts in the North Atlantic Ocean from 1982-09-15 to 1983-09-15 (NODC Accession 8500148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and CTD data were collected using moored current meter and CTD casts in the Gulf of Mexico from September 3, 1982 to September...

  17. Ekman Upwelling, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  18. Temperature profile data collected using current meter, mooring, thermistor casts from the Atlantic Ocean in part of the International Decade of Ocean Exploration / Mid-Ocean Dynamics Experiment from 11 March 1973 to 01 July 1973 (NODC Accession 7700106)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using current meter, mooring, thermistor casts from March 11, 1973 to July 1, 1973. Data were submitted by Woods Hole Oceanographic...

  19. Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk

    Science.gov (United States)

    Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.

    2010-01-01

    For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.

  20. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  1. National Status and Trends, Benthic Surveillance Project Pathology, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  2. The deep ocean under climate change.

    Science.gov (United States)

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  3. The Second International Indian Ocean Expedition (IIOE-2)

    Science.gov (United States)

    Cowie, Greg; Hood, Raleigh

    2015-04-01

    the development of sustainable coastal zone, ecosystem, and fisheries management strategies for the Indian Ocean. Other goals of IIOE-2 include helping to build research capacity and improving availability and accessibility of oceanographic data from the region. The IIOE-2 Science Plan is structured around six scientific themes. Each theme comprises a set of core questions fundamental to our need to understand the forcings, processes, and resultant variability of the Indian Ocean and to develop the capacity to predict how this variability will impact human populations in the future. In this presentation we will report on current efforts to motivate an IIOE-2 and we will present the draft science plan that has been commissioned by SCOR.

  4. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ocean Bottom Seismometers technology: current state and future outlook

    Science.gov (United States)

    Ilinskiy, Dmitry; Ganzha, Oleg

    2016-04-01

    The beginning of 2000s was marked by a significant progress in the development and use of self-pop-up sea-bottom seismic recorders (Ocean Bottom Seismometers). In Russia it was a novel solution developed by the Russian Academy of Sciences Experimental Design Bureau of Oceanological Engineering. This recorder and its clones have been widely used not only for the Earth crust studies, but also for investigations of sub-basalt structures and gas hydrate exploration. And what has happened over the last 10 years? Let us look closely at the second generation of ocean bottom stations developed by Geonodal Solutions (GNS) as an illustration of the next step forward in the sea-bottom acquisition technology. First of all, hardware components have changed dramatically. The electronic components became much smaller, accordingly, the power consumption and electronic self-noise were dropped down significantly. This enabled development of compact station 330 mm in diameter instead of previous 450mm. The weight fell by half, while the autonomy increased up to 90 days due to both decreased energy consumption and increased capacity of the batteries. The dynamic range of recorded seismic data has expended as a result of decreased set noise and the application of 24-bit A/D converters. The instruments dimensions have been reduced, power consumption decreased, clock accuracy was significantly improved. At the same time, development of advanced time reference algorithms enabled to retain instrument accuracy around 1 ms during all the autonomous recording period. The high-speed wireless data transfer technology offered a chance to develop "maintenance-free" station throughout its operation time. The station can be re-used at the different sea bottom locations without unsealing of the deep-water container for data download, battery re-charge, clock synchronization. This noticeably reduces the labor efforts of the personnel working with the stations. This is critically important in field

  6. Using the Theme of Mass Extinctions to Teach Science to Non-Science Major College and University Students

    Science.gov (United States)

    Boness, D. A.

    2013-12-01

    The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.

  7. OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students

    Science.gov (United States)

    Perry, R. B.; Hamner, W. M.

    2006-12-01

    OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, http://www.msc.ucla.edu/oceanglobe/ OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an

  8. Wind and temperature data from current meter in the TOGA - Pacific Ocean (30 N to 30 S) as part of the Equatorial Pacific Ocean Climate Studies (EPOCS), 28 May 1994 to 21 March 1995 (NODC Accession 9800041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind and temperature data were collected using current meter in the TOGA Area - Pacific Ocean (30 N to 30 S) from May 28, 1994 to March 21, 1995. Data were submitted...

  9. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    Science.gov (United States)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  10. Ocean Acidification: a review of the current status of research and institutional developments

    NARCIS (Netherlands)

    Beek, van I.J.M.; Dedert, M.

    2012-01-01

    Ocean acidification is defined as the change in ocean chemistry driven by the oceanic uptake of chemical inputs to the atmosphere, including carbon, nitrogen and sulphur compounds. Ocean acidification is also referred to as ‘the other CO2 problem’ of anthropogenic carbon dioxide (CO2) emissions

  11. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  12. Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean

    Directory of Open Access Journals (Sweden)

    D. P. Chambers

    2012-10-01

    Full Text Available The latest release of GRACE (Gravity Recovery and Climate Experiment gravity field coefficients (Release-05, or RL05 are evaluated for ocean applications. Data have been processed using the current methodology for Release-04 (RL04 coefficients, and have been compared to output from two different ocean models. Results indicate that RL05 data from the three Science Data Centers – the Center for Space Research (CSR, GeoForschungsZentrum (GFZ, and Jet Propulsion Laboratory (JPL – are more consistent among themselves than the previous RL04 data. Moreover, the variance of residuals with the output of an ocean model is 50–60% lower for RL05 data than for RL04 data. A more optimized destriping algorithm is also tested, which improves the results slightly. By comparing the GRACE maps with two different ocean models, we can better estimate the uncertainty in the RL05 maps. We find the standard error to be about 1 cm (equivalent water thickness in the low- and mid-latitudes, and between 1.5 and 2 cm in the polar and subpolar oceans, which is comparable to estimated uncertainty for the output from the ocean models.

  13. The 360 Degree Fulldome Production "Clockwork Ocean"

    Science.gov (United States)

    Baschek, B.; Heinsohn, R.; Opitz, D.; Fischer, T.; Baschek, T.

    2016-02-01

    The investigation of submesoscale eddies and fronts is one of the leading oceanographic topics at the Ocean Sciences Meeting 2016. In order to observe these small and short-lived phenomena, planes equipped with high-resolution cameras and fast vessels were deployed during the Submesoscale Experiments (SubEx) leading to some of the first high-resolution observations of these eddies. In a future experiment, a zeppelin will be used the first time in marine sciences. The relevance of submesoscale processes for the oceans and the work of the eddy hunters is described in the fascinating 9-minute long 360 degree fulldome production Clockwork Ocean. The fully animated movie is introduced in this presentation taking the observer from the bioluminescence in the deep ocean to a view of our blue planet from space. The immersive media is used to combine fascination for a yet unknown environment with scientific education of a broad audience. Detailed background information is available at the parallax website www.clockwork-ocean.com. The Film is also available for Virtual Reality glasses and smartphones to reach a broader distribution. A unique Mobile Dome with an area of 70 m² and seats for 40 people is used for science education at events, festivals, for politicians and school classes. The spectators are also invited to participate in the experiments by presenting 360 degree footage of the measurements. The premiere of Clockwork Ocean was in July 2015 in Hamburg, Germany and will be worldwide available in English and German as of fall 2015. Clockwork Ocean is a film of the Helmholtz-Zentrum Geesthacht produced by Daniel Opitz and Ralph Heinsohn.

  14. OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products

    Science.gov (United States)

    Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively (http://nomads.ncep.noaa.gov/txt_descriptions/marRutledge-1.pdf). The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output (http://www.opc.ncep.noaa.gov/newNCOM/NCOM_currents.shtml) with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability (http://www.northerngulfinstitute.org/edac/ocean_nomads.php) under the NGI Ecosystem Data Assembly Center (EDAC) project (http://www.northerngulfinstitute.org/edac/). Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed (http://testbed.sura.org/) this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS (http://www.ncddc.noaa.gov/ocean-nomads/). Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas

  15. What Will Science Gain From Mapping the World Ocean Floor?

    Science.gov (United States)

    Jakobsson, M.

    2017-12-01

    It is difficult to estimate how much of the World Ocean floor topography (bathymetry) that has been mapped. Estimates range from a few to more than ten percent of the World Ocean area. The most recent version of the bathymetric grid compiled by the General Bathymetric Chart of the Oceans (GEBCO) has bathymetric control points in 18% of the 30 x 30 arc second large grid cells. The depth values for the rest of the cells are obtained through interpolation guided by satellite altimetry in deep water. With this statistic at hand, it seems tenable to suggest that there are many scientific discoveries to be made from a complete high-resolution mapping of the World Ocean floor. In this presentation, some of our recent scientific discoveries based on modern multibeam bathymetric mapping will be highlighted and discussed. For example, how multibeam mapping provided evidence for a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions, a hypothesis proposed nearly half a century ago, and how groundwater escape features are visible in high-resolution bathymetry in the Baltic Sea, with potential implications for the freshwater budget and distribution of nutrients and pollutants. Presented examples will be placed in the context of mapping resolution, systematic surveys versus mapping along transits, and scientific hypothesis driven mapping versus ocean exploration. The newly announced Nippon Foundation - GEBCO Seabed 2030 project has the vision to map 100% of the World Ocean floor mapped by 2030. Are there specific scientific areas where we can expect new discoveries from all mapping data collected through the Seabed 2030 project? Are there outstanding hypothesis that can be tested from a fully mapped World Ocean floor?

  16. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    Directory of Open Access Journals (Sweden)

    G. Jordà

    2007-07-01

    Full Text Available The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions project. A one way sequential coupling approach is adopted to link the wave model (WAM to the circulation model (SYMPHONIE. The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bottom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean, a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  17. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  18. Ocean Current Velocity Moored Time-Series Records, collected from moored Acoustic Doppler Current Profilers (ADCP) during 2011 near Grammanik Bank SPAG and Frenchcap Cay, USVI (NODC Accession 0088064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between April 2011 and September 2011 on shallow water moorings located on the coastal shelf south of...

  19. Shelf sea tidal currents and mixing fronts determined from ocean glider observations

    Science.gov (United States)

    Sheehan, Peter M. F.; Berx, Barbara; Gallego, Alejandro; Hall, Rob A.; Heywood, Karen J.; Hughes, Sarah L.; Queste, Bastien Y.

    2018-03-01

    Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October-2 December 2013) glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day-1. During the first part of the deployment (from mid-October until mid-November), results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December), a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source regions. The glider observations

  20. Shelf sea tidal currents and mixing fronts determined from ocean glider observations

    Directory of Open Access Journals (Sweden)

    P. M. F. Sheehan

    2018-03-01

    Full Text Available Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October–2 December 2013 glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day−1. During the first part of the deployment (from mid-October until mid-November, results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December, a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source

  1. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    Science.gov (United States)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  2. Archive of Geosample Information from Scientific Ocean Drilling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Texas A and M University (TAMU), JOIDES Resolution Science Operator of the International Ocean Discovery Program (IODP), is a partner in the Index to Marine and...

  3. The Ocean in Depth - Ideas for Using Marine Technology in Science Communication

    Science.gov (United States)

    Gerdes, A.

    2009-04-01

    By deploying camera and video systems on remotely operated diving vehicles (ROVs), new and fascinating insights concerning the functioning of deep ocean ecosystems like cold-water coral reef communities can be gained. Moreover, mapping hot vents at mid-ocean ridge locations, and exploring asphalt and mud volcanoes in the Gulf of Mexico and the Mediterranean Sea with the aid of video camera systems have illustrated the scientific value of state-of-the-art diving tools. In principle, the deployment of sophisticated marine technology on seagoing expeditions and their results - video tapes and photographs of fascinating submarine environments, publication of new scientific findings - offer unique opportunities for communicating marine sciences. Experience shows that an interest in marine technology can easily be stirred in laypersons if the deployment of underwater vehicles such as ROVs during seagoing expeditions can be presented using catchwords like "discovery", "new frontier", groundbreaking mission", etc. On the other hand, however, a number of restrictions and challenges have to be kept in mind. Communicating marine science in general, and the achievements of marine technology in particular, can only be successful with the application of a well-defined target-audience concept. While national and international TV stations and production companies are very much interested in using high quality underwater video footage, the involvement of journalists and camera teams in seagoing expeditions entails a number a challenges: berths onboard research vessels are limited; safety aspects have to be considered; copyright and utilisation questions of digitalized video and photo material has to be handled with special care. To cite one example: on-board video material produced by professional TV teams cannot be used by the research institute that operated the expedition. This presentation aims at (1)informing members of the scientific community about new opportunities related

  4. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  5. The monsoon currents in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Vinayachandran, P.N.; Unnikrishnan, A.S.

    . Journal of Geo- physical Research 97, 20169?20178. Pond, S., Pickard, G. L., 1983. Introductory dynamical oceanography, 2nd Edition. Pergamon Press, Oxford. Potemra, J. T., Luther, M. E., O'Brien, J. J., 1991. The seasonal circulation of the upper ocean...

  6. Temperature and conductivity data from moored current meter casts in the North Pacific Ocean from 1978-10-18 to 1980-08-01 (NODC Accession 8200188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and conductivity data were collected using moored current meter casts in the North Pacific Ocean from October 18, 1978 to August 1, 1980. Data were...

  7. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications

    Science.gov (United States)

    Johnson, G. C.; Chambers, D. P.

    2013-12-01

    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  8. Current meter data from moored current meter casts in the Caribbean Sea as part of the Ocean Thermal Energy Conversion (OTEC) project from 1979-09-27 to 1979-12-01 (NODC Accession 8100607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Caribbean Sea from September 27, 1979 to December 1, 1979. Data were submitted by...

  9. Estimation of the Atmosphere-Ocean Fluxes of Greenhouse Gases and Aerosols at the Finer Resolution of the Coastal Ocean

    Czech Academy of Sciences Publication Activity Database

    Vieira, V.; Sahlée, E.; Juruš, Pavel; Clementi, E.; Pettersson, H.; Mateus, M.

    2016-01-01

    Roč. 18 (2016), EGU2016-1990-1 ISSN 1607-7962. [EGU General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985807 Keywords : greenhouse gases * carbon cycle * atmosphere- ocean interaction * atmosphere modelling * ocean modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  10. Current meter data from moored current meter casts in the Caribbean Sea as part of the Ocean Thermal Energy Conversion (OTEC) project from 1979-02-15 to 1980-02-01 (NODC Accession 8100608)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Caribbean Sea from February 15, 1979 to February 1, 1980. Data were submitted by University...

  11. A pivotal role for ocean eddies in the distribution of microbial communities across the Antarctic Circumpolar Current.

    Directory of Open Access Journals (Sweden)

    Siddarthan Venkatachalam

    Full Text Available Mesoscale variability and associated eddy fluxes play crucial roles in ocean circulation dynamics and the ecology of the upper ocean. In doing so, these features are biologically important, providing a mechanism for the mixing and exchange of nutrients and biota within the ocean. Transient mesoscale eddies in the Southern Ocean are known to relocate zooplankton communities across the Antarctic Circumpolar Current (ACC and are important foraging grounds for marine top predators. In this study we investigated the role of cyclonic and anti-cyclonic eddies formed at the South-West Indian Ridge on the spatial variability and diversity of microbial communities. We focused on two contrasting adjacent eddies within the Antarctic Polar Frontal Zone to determine how these features may influence the microbial communities within this region. The water masses and microbiota of the two eddies, representative of a cyclonic cold core from the Antarctic zone and an anti-cyclonic warm-core from the Subantarctic zone, were compared. The data reveal that the two eddies entrain distinct microbial communities from their points of origin that are maintained for up to ten months. Our findings highlight the ecological impact that changes, brought by the translocation of eddies across the ACC, have on microbial diversity.

  12. Norwegian Ocean Observatory Network (NOON)

    Science.gov (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  13. Measuring Ocean Literacy in Pre-Service Teachers: Psychometric Properties of the Greek Version of the Survey of Ocean Literacy and Experience (SOLE)

    Science.gov (United States)

    Markos, Angelos; Boubonari, Theodora; Mogias, Athanasios; Kevrekidis, Theodoros

    2017-01-01

    The aim of the present study was to respond to the increasing demand for comprehensive tools for the measurement of ocean literacy, by investigating the psychometric characteristics of a Greek version of the Survey of Ocean Literacy and Experience (SOLE), an instrument that assesses conceptual understanding of general ocean sciences content,…

  14. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  15. Marine Benthic Habitats and Seabed Suitability Mapping for Potential Ocean Current Energy Siting Offshore Southeast Florida

    Directory of Open Access Journals (Sweden)

    Amanda Mulcan

    2015-05-01

    Full Text Available This study examines the legal framework for ocean current energy policy and regulation to develop a metric for assessing the biological and geological characteristics of a seabed area with respect to the siting of OCE devices, a framework of criteria by which to assess seabed suitability (seabed suitability framework that can facilitate the siting, and implementation of ocean current energy (OCE projects. Seafloor geology and benthic biological data were analyzed in conjunction with seafloor core sample geostatistical interpolation to locate suitable substrates for OCE anchoring. Existing submarine cable pathways were considered to determine pathways for power transmission cables that circumvent biologically sensitive areas. Suitability analysis indicates that areas east of the Miami Terrace and north of recently identified deep-sea coral mounds are the most appropriate for OCE siting due to abundance of sand/sediment substrate, existing underwater cable route access, and minimal biological presence (i.e., little to no benthic communities. Further reconnaissance requires higher resolution maps of geological substrate and benthic community locations to identify specific OCE development locations, classify benthic conditions, and minimize potentially negative OCE environmental impacts.

  16. "Going with the flow" or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta in the South Pacific Ocean Using Satellite Tags and Ocean Circulation Data.

    Directory of Open Access Journals (Sweden)

    Donald R Kobayashi

    Full Text Available The movement of juvenile loggerhead turtles (n = 42 out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses--Real time circulation data, and three different vertical strata (0-5 m, 0-40 m, 0-100 m of HYCOM (HYbrid Coordinate Ocean Model circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed.

  17. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    Science.gov (United States)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  18. Current meter components and other data from XCP casts from VARIOUS SMALL VESSELS and other platforms from the North Atlantic Ocean as part of the OCEAN DUMPING and other projects from 01 December 1990 to 01 June 1991 (NODC Accession 9300076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components and other data were collected from XCP casts from VARIOUS SMALL VESSELS and other platforms in the North Atlantic Ocean. Data were collected...

  19. Smithsonian Ocean Portal | Find Your Blue

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor life. These two are in the middle of a courtship. VIEW ARCHIVE Ocean Optimism Success Stories in Ocean

  20. Ocean plankton. Structure and function of the global ocean microbiome.

    Science.gov (United States)

    Sunagawa, Shinichi; Coelho, Luis Pedro; Chaffron, Samuel; Kultima, Jens Roat; Labadie, Karine; Salazar, Guillem; Djahanschiri, Bardya; Zeller, Georg; Mende, Daniel R; Alberti, Adriana; Cornejo-Castillo, Francisco M; Costea, Paul I; Cruaud, Corinne; d'Ovidio, Francesco; Engelen, Stefan; Ferrera, Isabel; Gasol, Josep M; Guidi, Lionel; Hildebrand, Falk; Kokoszka, Florian; Lepoivre, Cyrille; Lima-Mendez, Gipsi; Poulain, Julie; Poulos, Bonnie T; Royo-Llonch, Marta; Sarmento, Hugo; Vieira-Silva, Sara; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Bowler, Chris; de Vargas, Colomban; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric; Raes, Jeroen; Acinas, Silvia G; Bork, Peer

    2015-05-22

    Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  1. A current perspective on medical informatics and health sciences librarianship.

    Science.gov (United States)

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  2. Current and future directions of DNA in wildlife forensic science.

    Science.gov (United States)

    Johnson, Rebecca N; Wilson-Wilde, Linzi; Linacre, Adrian

    2014-05-01

    Wildlife forensic science may not have attained the profile of human identification, yet the scale of criminal activity related to wildlife is extensive by any measure. Service delivery in the arena of wildlife forensic science is often ad hoc, unco-ordinated and unregulated, yet many of those currently dedicated to wildlife conservation and the protection of endangered species are striving to ensure that the highest standards are met. The genetic markers and software used to evaluate data in wildlife forensic science are more varied than those in human forensic identification and are rarely standardised between species. The time and resources required to characterise and validate each genetic maker is considerable and in some cases prohibitive. Further, issues are regularly encountered in the construction of allelic databases and allelic ladders; essential in human identification studies, but also applicable to wildlife criminal investigations. Accreditation and certification are essential in human identification and are currently being strived for in the forensic wildlife community. Examples are provided as to how best practice can be demonstrated in all areas of wildlife crime analysis and ensure that this field of forensic science gains and maintains the respect it deserves. This review is aimed at those conducting human identification to illustrate how research concepts in wildlife forensic science can be used in the criminal justice system, as well as describing the real importance of this type of forensic analysis. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  3. CURRENT DIRECTION, turbidity and other data from FIXED PLATFORM and UNKNOWN PLATFORMS OF CANADA in the North Pacific Ocean, Northwest Passage and other waters from 1979-01-01 to 1987-12-31 (NCEI Accession 9000069)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains microfische data provided by the Canadian Fisheries and Oceans and taken from the Canadian Data Report of Hydrography and Sciences. The...

  4. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  5. Marine data management: a positive evolution from JGOFS to OCEANS

    Science.gov (United States)

    Avril, B.

    2003-04-01

    The JGOFS project has been highly successful in providing new insights into global biogeochemical cycling of carbon and associated elements in the oceans through a multi-national effort at the regional scale (process studies in the North Atlantic, Arabian Sea, Equatorial Pacific, Southern Ocean and North Pacific), global scale (carbon survey) and from long-term measurements at key ocean sites (time-series). The database thus created is very large and complex in diversity and format, and it is currently managed at the international level, thank to the efforts of the JGOFS Data Management Task Team. To be fully usable for current and future studies, the JGOFS datasets will be organised as a single database (so-called, the International JGOFS Master Dataset), in a single format and in a single location (in the World Data Centre (WDC) system, thanks to an initiative of PANGAEA / WDC-MARE; and on CDs or DVDs) before the end of the project (Dec. 2003). This should be achieved by adapting previously developed tools, especially from the US-JGOFS DMO (for the user query interface) and from ODV/PANGAEA (for the datasets visualization and metadata handling). Whilst the OCEANS project science and implementation plans are being prepared, the international oceanographic community is now hoping to benefit from the JGOFS data management experience and to elaborate beforehand the best design and practices for its data management. The draft OCEANS data management plan (international data policy and recommendations for participating international agencies and national data managers) is presented. This plan should result in the rapid and full availability of data, and its long-term preservation and accessibility, thanks to a better, integrated and fully implemented data management system.

  6. Linking sardine recruitment in coastal areas to ocean currents using surface drifters and HF radar. A case study in the Gulf of Manfredonia, Adriatic Sea

    DEFF Research Database (Denmark)

    Sciascia, Roberta; Berta, Maristella; Carlson, Daniel Frazier

    2017-01-01

    Understanding the role of ocean currents in the recruitment of commercially and ecologically important fish is an important step towards developing sustainable resource management guidelines. To this end, we attempt to elucidate the role of surface ocean transport in supplying recruits of sardine...

  7. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    Science.gov (United States)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials

  8. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    Directory of Open Access Journals (Sweden)

    Marie-Béatrice Forel

    2012-09-01

    Full Text Available Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO2, raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1 problems with evidence for ocean acidification preserved in sedimentary rocks, where proposed marine dissolution surfaces may be subaerial. Sedimentary evidence that the extinction was partly due to ocean acidification is therefore inconclusive; (2 Fossils of marine animals potentially affected by ocean acidification are imperfect records of past conditions; selective extinction of hypercalcifying organisms is uncertain evidence for acidification; (3 The current high rates of acidification may not reflect past rates, which cannot be measured directly, and whose temporal resolution decreases in older rocks. Thus large increases in CO2 in the past may have occurred over a long enough time to have allowed assimilation into the oceans, and acidification may not have stressed ocean biota to the present extent. Although we acknowledge the very likely occurrence of past ocean acidification, obtaining support presents a continuing challenge for the Earth science community.

  9. Cartography and Geographic Information Science in Current Contents

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula

    2009-12-01

    Full Text Available The Cartography and Geographic Information Science (CaGIS journal was published as The American Cartographer from 1974 to 1989, after that as Cartography and Geographic Information System, and since then has been published with its current name. It is published by the Cartography and Geographic Information Society, a member of the American Congress on Surveying and Mapping.

  10. Global Climate Change and Ocean Education

    Science.gov (United States)

    Spitzer, W.; Anderson, J.

    2011-12-01

    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in

  11. Vertical current data collected using current meter from KNORR and other platforms in North/South Pacific and Atlantic Ocean from 05 May 1974 to 27 April 1982 (NODC Accession 8600269)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Vertical current profiler data collected from various ships off of the "White Horse" instrument. Data were submitted by Dr. James Luyten of Woods Hole Oceanographic...

  12. Taking Poseidon's Measure from Space: Advances in our Understanding of the Ocean

    Science.gov (United States)

    Avery, S. K.

    2017-12-01

    In many ways the ocean defines our planet and makes it livable. It provides marine resources and ecosystem services that are critical to a sustainable society. Today we understand that there is a growing need to predict, manage, and adapt to changes on our planet - changes that occur not only in the atmosphere but also in the ocean. Over the last 40 years remarkable advances in measuring key ocean quantities have been made - through the development of new satellite technologies and successful missions as well as through in-situ observing systems enabled by advances in robotics, communications, navigation, and sensors. Ocean science (and atmospheric science) is a science of numbers, imaging, and numerical models. Predictability of the ocean is tied to the scale of variability in space and time. Satellite observations have spectacularly showed us the incredible structure and variability of the ocean. It has been the combination of satellites and in-situ sensors that have allowed us to advance understanding and prediction. This presentation will highlight some of the key scientific advances that have been enabled by satellites.

  13. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  14. Water temperature, ocean currents, and others in Ross Sea from 1998-02-12 to 2011-11-12 (NCEI Accession 0164025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of physical parameters of sea water (temperature, salinity, current speed and direction) measured at specific depths on a mooring in the Terra...

  15. Ocean current velocity, temperature and salinity collected during 2010 and 2011 in Vieques Sound and Virgin Passage (NODC Accession 0088063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between March 2010 and April 2011 on shallow water moorings located in Vieques Sound, Puerto Rico,...

  16. Stochastic and Statistical Methods in Climate, Atmosphere, and Ocean Science

    NARCIS (Netherlands)

    D.T. Crommelin (Daan); B. Khouider; B. Engquist

    2015-01-01

    htmlabstractIntroduction The behavior of the atmosphere, oceans, and climate is intrinsically uncertain. The basic physical principles that govern atmospheric and oceanic flows are well known, for example, the Navier-Stokes equations for fluid flow, thermodynamic properties of moist air, and the

  17. An initial assessment of Ocean Energy Resources in the Western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, Linus; Ehnberg, Jimmy

    2011-07-01

    The demand for modern energy is accelerating in the Western Indian Ocean (coastal East Africa). A mixture of different energy sources will by necessity be the option for the long-term future and the most adequate solutions naturally vary between locations. The vast coastlines and many islands of the region make ocean energy (OE) a relevant field to explore. With an early understanding of the resources strategic planning towards sustainable development is facilitate. Moreover, early awareness facilitates a respectful integration of new technologies in the fragile and for local people invaluable ecosystems. This study provides a first assessment of the frontier OE technologies and corresponding resources in the region. Five renewable Ocean Energy technologies have been reviewed and the physical resource abundance for respective energy source has been screened based on available literature and databases. The Western Indian Ocean is shared between nine African countries and two French departments. The studied countries are the Comoros, Kenya, Madagascar, Mauritius, Mayotte, Mozambique, the Seychelles, Tanzania, and Reunion. The energy situation is insufficient throughout the region, either as consequence of lacking domestic energy sources or rudimentary grid extension. The results indicate that ocean energy resources are abundant in much of the region, but different sources have potential in different areas. Several countries have favourable physical conditions for extracting energy from waves and from the temperature gradient between the surface and deep water. Wave power is a young but currently available technology which can be utilized for both large- and small-scale applications. Ocean Thermal Energy Conversion is a technology under development that, once proven, may be applicable for large-scale power production. The physical conditions for small-scale tidal barrage power, tidal stream power, and ocean current power are less pronounced but may be of interest at

  18. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    Science.gov (United States)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  19. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    Science.gov (United States)

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  20. Engaging wider publics with studying and protecting the ocean

    Science.gov (United States)

    Nauen, Cornelia E.

    2015-04-01

    The ocean is dying. The vast scientific literature diagnoses massive reductions in the biomass of fish and invertebrates from overfishing, increasing destruction of coral ecosystems in the tropics from climate change, extensive dead zones from eutrophication and collapse of marine bird populations from ingesting plastic. Even though Darwin suspected already The scale is becoming apparent only from meta-analyses at regional or even global scales as individual studies tend to focus on one fishery or one type of organisms or geographic location. In combination with deep rooted perceptions of the vastness of the ocean the changes are difficult to comprehend for specialists and the general public alike. Even though more than half of humanity is estimated to live in coastal zones as defined by some, urbanisation is removing about half from regular, more direct exposure. Yet, there is much still to be explored, not only in the deep, little studied, parts. The ocean exercises great fascination on many people heightened since the period of discovery and the mystery of far-flung places, but the days, when Darwin's research results were regularly discussed in public spaces are gone. Rachel Carson's prize-winning and best selling book "The Sea Around Us", some serialised chapters in magazines and condensations in "Reader's Digest" transported the poetic rendering of science again to a wider public. But compared to the diversity of scientific inquiry about the ocean and importance for life-support system earth there is much room for engaging ocean science in the broad sense with larger and diverse publics. Developing new narratives rooted in the best available sciences is among the most promising modes of connecting different areas of scientific inquiry and non-specialists alike. We know at latest since Poincaré's famous dictum that "the facts don't speak". However, contextualised information can capture the imagination of the many and thus also reveal unexpected connections

  1. Urban science education: examining current issues through a historical lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-12-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions. When the findings from these urban science education studies were consolidated with the historical overview provided, it was revealed that the basic design and regulatory policies of urban schools have not substantively changed since their establishment in the nineteenth century. Teachers in urban science classrooms continue to face issues of inequality, poverty, and social injustice as they struggle to meet the needs of an increasingly diverse student population. Furthermore, persistent concerns of conflicting Discourses, cultural dissonance, and oppression create formidable barriers to science learning. Despite the many modifications in structure and organization, urban students are still subjugated and marginalized in systems that emphasize control and order over high-quality science education.

  2. ESN information bulletin. European science notes information bulletin reports on current European/Middle eastern science

    Energy Technology Data Exchange (ETDEWEB)

    Orendorf, C.R.

    1989-10-01

    The European Science Notes Information Bulletin (ESNIB) 89-09 is a compilation of reports on recent developments in European science of specific interest to the U.S. research and development community, and is issued in support of the mission of the Office of Naval Research European Office. Issue Number 89-09, in addition to European area news, notes, and abstracts, contains reports in the fields of Acoustics, Computer Science, Condensed-Matter Physics, Materials Science, Mathematics, Physics, Psychology, and Solid-State Physics. It is not intended to be part of the scientific literature. The value of the ESNIB to Americans is to call attention to current activity in European science and technology and to identify the institutions and people responsible for these efforts. The ESNIB authors are primarily ONREUR staff members; other reports are prepared by or in cooperation with staff members of the USAF European Office of Aero space Research and Development or the U.S. Army Research, Development and Standardization Group. Scientists from the U.S. who are traveling in Europe may also be invited to submit reports.

  3. The impact of the ocean observing system on estimates of the California current circulation spanning three decades

    Science.gov (United States)

    Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme

    2017-08-01

    Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the

  4. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert [University of Washington; Bretherton, Chris [University of Washington; McFarquhar, Greg [University of Illinois - Urbana; Protat, Alain [Bureau of Meteorology - Melbourne; Quinn, Patricia [NOAA PMEL; Siems, Steven [Monash Univ., Melbourne, VIC (Australia); Jakob, Christian [Monash Univ., Melbourne, VIC (Australia); Alexander, Simon [Australian Antarctic Division; Weller, Bob [Woods Hole Oceanographic Institute

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  5. National Status and Trends, Benthic Surveillance Project DNA-Xenobiotic Adducts Data, 1991, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  6. The current status of forensic science laboratory accreditation in Europe.

    Science.gov (United States)

    Malkoc, Ekrem; Neuteboom, Wim

    2007-04-11

    Forensic science is gaining some solid ground in the area of effective crime prevention, especially in the areas where more sophisticated use of available technology is prevalent. All it takes is high-level cooperation among nations that can help them deal with criminality that adopts a cross-border nature more and more. It is apparent that cooperation will not be enough on its own and this development will require a network of qualified forensic laboratories spread over Europe. It is argued in this paper that forensic science laboratories play an important role in the fight against crime. Another, complimentary argument is that forensic science laboratories need to be better involved in the fight against crime. For this to be achieved, a good level of cooperation should be established and maintained. It is also noted that harmonization is required for such cooperation and seeking accreditation according to an internationally acceptable standard, such as ISO/IEC 17025, will eventually bring harmonization as an end result. Because, ISO/IEC 17025 as an international standard, has been a tool that helps forensic science laboratories in the current trend towards accreditation that can be observed not only in Europe, but also in the rest of the world of forensic science. In the introduction part, ISO/IEC 17025 states that "the acceptance of testing and calibration results between countries should be facilitated if laboratories comply with this international standard and if they obtain accreditation from bodies which have entered into mutual recognition agreements with equivalent bodies in other countries using this international standard." Furthermore, it is emphasized that the use of this international standard will assist in the harmonization of standards and procedures. The background of forensic science cooperation in Europe will be explained by using an existing European forensic science network, i.e. ENFSI, in order to understand the current status of forensic

  7. A Survey of Current Computer Information Science (CIS) Students.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.

    This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…

  8. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  9. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization

    Science.gov (United States)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.

    2017-12-01

    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  10. ESN information bulletin. European science notes information bulletin reports on current European/Middle eastern science

    Energy Technology Data Exchange (ETDEWEB)

    Orendorf, C.R.

    1990-06-01

    The European Science Notes Information Bulletin (ESNIB) 90-05 is a compilation of reports on recent developments in European science of specific interest to the U.S. research and development community, and is issued in support of the mission of the Office of Naval Research European Office. Issue Number 90-05, in addition to European area news, notes, and abstracts, contains reports in the fields of Acoustics, Atmospheric Electricity, Computer Science, Electronics, and Physics. The value of the ESNIB to Americans is to call attention to current activity in European science and technology and to identify the institutions and people responsible for these efforts. The ESNIB authors are primarily ONREUR staff members; other reports are prepared by or in cooperation with staff members of the USAF European Office of Aerospace Research and Development or the U.S. Army Research, Development and Standardination Group. Scientists from the U.S. who are traveling in Europe may also be invited to submit reports.

  11. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  12. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... 835 215, India. Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India. Divecha Centre for Climate Change, Indian Institute of Science, Bangalore 560 012, India. Laboratoire Image Ville Environnement, UMR 7362CNRS/UDS, 3, rue de l'Argonne, 67000 Strasbourg, France.

  14. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015.

    Science.gov (United States)

    Mohn, Christian; Denda, Anneke; Christiansen, Svenja; Kaufmann, Manfred; Peine, Florian; Springer, Barbara; Turnewitsch, Robert; Christiansen, Bernd

    2018-04-01

    Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP) measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount), as well as east of the Cape Verde archipelago (Senghor Seamount). The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193.

  15. Turbines in the ocean

    Science.gov (United States)

    Smith, F. G. W.; Charlier, R. H.

    1981-10-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami; here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  16. A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean

    Science.gov (United States)

    Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew

    2017-12-01

    Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.

  17. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Discoverer Enterprise oil platform from May 23, 2010 to July 04, 2010 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083684)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  18. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Development Driller III from 2010-05-31 to 2010-07-04 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083634)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  19. Inaugural AGU Science Policy Conference

    Science.gov (United States)

    Uhlenbrock, Kristan

    2012-01-01

    AGU will present its inaugural Science Policy Conference, 30 April to 3 May 2012, at the Ronald Reagan Building and International Trade Center, located in downtown Washington, D. C. This conference will bring together leading scientists, policy makers, industry professionals, press, and other stakeholders to discuss natural hazards, natural resources, oceans, and Arctic science and the role these sciences play in serving communities. To bridge the science and policy fields, AGU plans to host this conference every 2 years and focus on the applications of Earth and space sciences to serve local and national communities. "Our nation faces a myriad of challenges such as the sustainability of our natural resources, current and future energy needs, and the ability to mitigate and adapt to natural and manmade hazards," said Michael McPhaden, president of AGU. "It is essential that policies to address these challenges be built on a solid foundation of credible scientific knowledge."

  20. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  1. Exploring the southern ocean response to climate change

    Science.gov (United States)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  2. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  3. FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter Brewer; Dr. James Barry

    2002-09-30

    We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', based upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two

  4. Monitoring of ocean storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2003-02-01

    It has been proposed that atmospheric CO2 accumulation could be slowed by capture of CO2 from point sources and subsequent storage of that CO2 in the ocean. If applied, such sequestration efforts would need to be monitored for compliance, effectiveness, and unintended consequences. Aboveground inspection and monitoring of facilities and practices, combined with ocean observations, could assure compliance with ocean sequestration guidelines and regulations. Ocean observations could be made using a variety of sensors mounted on moorings or underwater gliders. Long-term effectiveness and leakage to the atmosphere must be estimated from models, since on large spatial scales it will be impossible to observationally distinguish carbon stored by a project from variable concentrations of background carbon. Furthermore, the ocean naturally would absorb roughly 80% of fossil fuel CO2 released to the atmosphere within a millennium. This means that most of the CO2 sequestered in the ocean that leaks out to the atmosphere will be reabsorbed by the ocean. However, there is no observational way to distinguish remaining carbon from reabsorbed carbon. The science of monitoring unintended consequences in the deep ocean interior is at a primitive state. Little is understood about ecosystems of the deep ocean interior; and even less is understood about how those ecosystems would respond to added CO2. High priority research objectives should be (1) to improve our understanding of the natural ecosystems of the deep ocean, and (2) to improve our understanding of the response of these ecosystems to increased oceanic CO2 concentrations and decreased ocean pH.

  5. Indian Ocean Rim Cooperation

    DEFF Research Database (Denmark)

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  6. Ocean currents generate large footprints in marine palaeoclimate proxies

    NARCIS (Netherlands)

    van Sebille, E.; Scussolini, P.; Durgadoo, J.V.; Peeters, F.J.C.; Biastoch, A.; Weijer, W.; Turney, C.; Paris, C.B.; Zahn, R.

    2015-01-01

    Fossils of marine microorganisms such as planktic foraminifera are among the cornerstones of palaeoclimatological studies. It is often assumed that the proxies derived from their shells represent ocean conditions above the location where they were deposited. Planktic foraminifera, however, are

  7. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Mathematics, Teachers College of Qingdao University, Qingdao 266071, People's Republic of China; School of Mathematical Sciences, Ocean University of China, Qingdao 266100, People's Republic of China; School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, People's ...

  8. Organophosphorus esters in the oceans and possible relation with ocean gyres

    International Nuclear Information System (INIS)

    Cheng, Wenhan; Xie, Zhouqing; Blais, Jules M.; Zhang, Pengfei; Li, Ming; Yang, Chengyun; Huang, Wen; Ding, Rui; Sun, Liguang

    2013-01-01

    Four organophosphorus esters (OPEs) were detected in aerosol samples collected in the West Pacific, the Indian Ocean and the Southern Ocean from 2009 to 2010, suggesting their circumpolar and global distribution. In general, the highest concentrations were detected near populated regions in China, Australia and New Zealand. OPE concentrations in the Southern Ocean were about two orders of magnitude lower than those near major continents. Additionally, relatively high OPE concentrations were detected at the Antarctic Peninsula, where several scientific survey stations are located. The four OPEs investigated here are significantly correlated with each other, suggesting they may derive from the same source. In the circumpolar transect, OPE concentrations were associated with ocean gyres in the open ocean. Their concentrations were positively related with average vorticity in the sampling area suggesting that a major source of OPEs may be found in ocean gyres where plastic debris is known to accumulate. -- Highlights: •We provide OPE concentrations in aerosols in a circumpolar expedition. •We find strong anthropogenic source of OPE pollution. •We suggest potential relationship between ocean gyres and OPE pollution. -- Our work provides a circumpolar investigation on OPEs in the Southern Ocean and we suggest a possibility that ocean currents and gyres may act as important roles in global transport of OPEs

  9. Real-time current, wave, temperature, salinity, and meteorological data from Gulf of Maine Ocean Observing System (GoMOOS) buoys, 11/30/2003 - 12/7/2003 (NODC Accession 0001259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Maine Ocean Observing System (GoMOOS) collected real-time data with buoy-mounted instruments (e.g., accelerometers and Acoustic Doppler Current...

  10. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    M. H. England

    1994-08-01

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of

  11. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    Matthew H. England

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean

  12. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  13. Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution.

    Science.gov (United States)

    Muss, A; Robertson, D R; Stepien, C A; Wirtz, P; Bowen, B W

    2001-03-01

    Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.

  14. Current, physical profile, and meteorological data collected as part of the Exploratory Study of Deepwater Currents in the Gulf of Mexico by Science Applications International Corporation (SAIC), 2/28/2003 - 4/11/2004 (NODC Accession 0031345)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Minerals Management Service (MMS) awarded a contract to Science Applications International Corporation (SAIC) to conduct a four-year study titled: Exploratory...

  15. Current meter data from moored current meter casts in the Gulf of Mexico as part of the Ocean Thermal Energy Conversion (OTEC) project from 18 October 1977-10-18 to 1979-07-01 (NODC Accession 8000284)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Gulf of Mexico from October 18, 1977 to June 1, 1979. Data were submitted by Atlantic...

  16. Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization

    Science.gov (United States)

    Westberry, Toby K.; Behrenfeld, Michael J.; Milligan, Allen J.; Doney, Scott C.

    2013-03-01

    Significant effort has been invested in understanding the role of iron in marine ecosystems over the past few decades. What began as shipboard amendment experiments quickly grew into a succession of in situ, mesoscale ocean iron fertilization (OIF) experiments carried out in all three high nutrient low chlorophyll (HNLC) regions of the world ocean. Dedicated process studies have also looked at regions of the ocean that are seasonally exposed to iron-replete conditions as natural OIF experiments. However, one problem common to many OIF experiments is determination of biological response beyond the duration of the experiment (typicallyfloristic shifts in the phytoplankton community. Further, a consistent pattern of decreased satellite fluorescence efficiency (FLH:Chl or ϕf) following OIF is observed that is in agreement with current understanding of phytoplankton physiological responses to relief from iron stress. The current study extends our ability to retrieve phytoplankton physiology from space-based sensors, strengthens the link between satellite fluorescence and iron availability, and shows that satellite ocean color analyses provide a unique tool for monitoring OIF experiments.

  17. Marine organism concentrations, carbonate chemistry variables, and nutrient concentrations from Atlantis ecosystem model simulation output in the California Current from 2013-01-01 to 2053-12-31 to understand vulnerability of California current food webs and economics to ocean acidification (NCEI Accession 0131198)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the model output of a study to evaluate likely economic and ecological outcomes of ocean acidification in the California Current....

  18. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  19. Putting Science First: Using the Precautionary Principle in the Central Arctic Ocean to Prevent a Fishing Disaster Before it Occurs (Invited)

    Science.gov (United States)

    Nachman, C.

    2017-12-01

    As ice conditions change and ocean temperatures continue to rise, the potential for living marine resources to migrate farther north and for vessels to journey north with them is expanding. To date, the central Arctic Ocean (CAO) has remained relatively unexposed to human activities, including commercial fishing. However, as conditions continue to change, the potential for expansion of fishing fleets exists. In July 2015, the five Arctic coastal states signed a declaration concerning the prevention of unregulated high seas fishing in the CAO. Recognizing the need to involve additional nations with interests in the Arctic region, in December 2015, the five Arctic coastal states, along with China, the European Union, Japan, Iceland, and Korea, began a process to negotiate a binding agreement to prevent unregulated fishing in the high seas of the CAO. A key underlying goal of the negotiations is to reach agreement that nations would establish a joint program of scientific research and monitoring to better understand the CAO ecosystem and whether fish stocks might exist there that could be harvested on a sustainable basis and the possible impacts of such fisheries on the ecosystems. The data collected through the international joint science program will compose a key piece of the decision-making at the policy level regarding establishing appropriate measures or organizations to manage fishing in the CAO should the science indicate potentials for commercial fishing in the CAO. Since the beginning of these high-level negotiations, the policy makers have consistently agreed that conducting collaborative science is the primary way to determine whether sustainable commercial fishing could one day occur in the region. I will highlight the policy negotiation process and parallel science meetings to date to demonstrate how science can influence policy to prevent a fishing disaster.

  20. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  1. Ocean Connections with the Historic Whaling Ship Charles W. Morgan

    Science.gov (United States)

    Whitney, M. M.

    2016-02-01

    This scientific outreach project involved the Charles W. Morgan, Mystic Seaport's historic whaling ship. We educated K-2 students, trained undergraduate and graduate students, and informed the general public about oceanographic data collection, pathways from coastal to ocean waters, and connections in marine ecosystems. I was aboard the Charles W. Morgan for the Provincetown to Stellwagen Bank leg of the historic 38th voyage in summer 2014. While at sea, our voyager team released several GPS-tracked surface drifters to reveal important flow pathways and how the Stellwagen Bank National Marine Sanctuary is connected to other ocean areas. These drifters were built by graduate and undergraduate students and the drifter artwork was designed by elementary school students. Surface currents dispersed the drifters and carried them much farther offshore than the Charles W. Morgan itself. Many drifters reached Georges Bank, another important biologically productive area. The Charles W. Morgan encountered whales for the first time in decades. Some of the food-chain connections that may explain the abundance of whales at Stellwagen bank that summer are described. This outreach project has been presented in lectures to high school teachers and the general public and also featured in an online interview, a television news story, and a newspaper article. K-2 students at an elementary school math and science day first painted drifters in advance of the voyage, viewed real-time updates in the months following drifter release, and engaged in activities illustrating ocean connectivity and marine habitats at the end of the following academic year. We aimed to convey how sensitive whales are to human activities (on land and water) and to changes in the marine environment. Successes and lessons learned will be discussed. ED003: Creative Ways to Connect Ocean Sciences to the Public

  2. Current meter components and other data from FIXED PLATFORMS from the North Atlantic Ocean and others locations from 09 January 1977 to 01 July 1983 (NODC Accession 8600153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS from the North Atlantic Ocean and others locations from 09 January 1977 to 01 July 1983. Data were...

  3. Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean)

    Science.gov (United States)

    Betzler, Christian; Lüdmann, Thomas; Hübscher, Christian; Fürstenau, Jörn

    2013-05-01

    Periplatform ooze is an admixture of pelagic carbonate and sediment derived from neritic carbonate platforms. Compositional variations of periplatform ooze allow the reconstruction of past sea-level changes. Periplatform ooze formed during sea-level highstands is finer grained and richer in aragonite through the elevated input of material from the flooded platform compared to periplatform ooze formed during the episodes of lowered sea level. In many cases, however, the sea floor around carbonate platforms is subjected to bottom currents which are expected to affect sediment composition, i.e. through winnowing of the fine fraction. The interaction of sea-level driven highstand shedding and current impact on the formation of periplatform ooze has hitherto not been analyzed. To test if a sea-level driven input signal in periplatform ooze is influenced or even distorted by changing current activity, an integrated study using seismic, hydroacoustic and sedimentological data has been performed on periplatform ooze deposited in the Inner Sea of the Maldives. The Miocene to Pleistocene succession of drift deposits is subdivided into nine units; limits of seismostratigraphic units correspond to changes or turnarounds in grain size trends in cores recovered at ODP Site 716 and NEOMA Site 1143. For the Pleistocene it can be shown how changes in grain size occur in concert with sea-level changes and changes of the monsoonal system, which is thought to be a major driver of bottom currents in the Maldives. A clear highstand shedding pattern only appears in the data at a time of relaxation of monsoonal strength during the last 315 ky. Results imply (1) that drift sediments provide a potential target for analyzing past changes in oceanic currents and (2) that the ooze composition bears a mixed signal of input and physical winnowing at the sea floor.

  4. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    Science.gov (United States)

    Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian

    2015-04-01

    Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the

  5. Temperature profiles and current measurements from the Nathaniel B. Palmer during the 1997 Dovetail cruise in the Southern Ocean (NODC Accession 9900243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection includes temperature profiles from CTD casts and current measurements from hull-mounted ADCP system aboard the research vessel Nathaniel B....

  6. New Community Education Program on Oceans and Global Climate Change: Results from Our Pilot Year

    Science.gov (United States)

    Bruno, B. C.; Wiener, C.

    2010-12-01

    Ocean FEST (Families Exploring Science Together) engages elementary school students and their parents and teachers in hands-on science. Through this evening program, we educate participants about ocean and earth science issues that are relevant to their local communities. In the process, we hope to inspire more underrepresented students, including Native Hawaiians, Pacific Islanders and girls, to pursue careers in the ocean and earth sciences. Hawaii and the Pacific Islands will be disproportionately affected by the impacts of global climate change, including rising sea levels, coastal erosion, coral reef degradation and ocean acidification. It is therefore critically important to train ocean and earth scientists within these communities. This two-hour program explores ocean properties and timely environmental topics through six hands-on science activities. Activities are designed so students can see how globally important issues (e.g., climate change and ocean acidification) have local effects (e.g., sea level rise, coastal erosion, coral bleaching) which are particularly relevant to island communities. The Ocean FEST program ends with a career component, drawing parallel between the program activities and the activities done by "real scientists" in their jobs. The take-home message is that we are all scientists, we do science every day, and we can choose to do this as a career. Ocean FEST just completed our pilot year. During the 2009-2010 academic year, we conducted 20 events, including 16 formal events held at elementary schools and 4 informal outreach events. Evaluation data were collected at all formal events. Formative feedback from adult participants (parents, teachers, administrators and volunteers) was solicited through written questionnaires. Students were invited to respond to a survey of five questions both before and after the program to see if there were any changes in content knowledge and career attitudes. In our presentation, we will present our

  7. The EuroSITES network: Integrating and enhancing fixed-point open ocean observatories around Europe

    Science.gov (United States)

    Lampitt, Richard S.; Larkin, Kate E.; EuroSITES Consortium

    2010-05-01

    EuroSITES is a 3 year (2008-2011) EU collaborative project (3.5MEuro) with the objective to integrate and enhance the nine existing open ocean fixed point observatories around Europe (www.eurosites.info). These observatories are primarily composed of full depth moorings and make multidisciplinary in situ observations within the water column as the European contribution to the global array OceanSITES (www.oceansites.org). In the first 18 months, all 9 observatories have been active and integration has been significant through the maintenance and enhancement of observatory hardware. Highlights include the enhancement of observatories with sensors to measure O2, pCO2, chlorophyll, and nitrate in near real-time from the upper 1000 m. In addition, some seafloor missions are also actively supported. These include seafloor platforms currently deployed in the Mediterranean, one for tsunami detection and one to monitor fluid flow related to seismic activity and slope stability. Upcoming seafloor science missions in 2010 include monitoring benthic biological communities and associated biogeochemistry as indicators of climate change in both the Northeast Atlantic and Mediterranean. EuroSITES also promotes the development of innovative sensors and samplers in order to progress capability to measure climate-relevant properties of the ocean. These include further developing current technologies for autonomous long-term monitoring of oxygen consumption in the mesopelagic, pH and mesozooplankton abundance. Many of these science missions are directly related to complementary activities in other European projects such as EPOCA, HYPOX and ESONET. In 2010 a direct collaboration including in situ field work will take place between ESONET and EuroSITES. The demonstration mission MODOO (funded by ESONET) will be implemented in 2010 at the EuroSITES PAP observatory. Field work will include deployment of a seafloor lander system with various sensors which will send data to shore in real

  8. Current direction, bathythermograph (xbt), CTD, and other data from moored current meter casts and other instruments in the Northwest Atlantic Ocean (limit-40 W) and North American Coastline-South as part of the North Carolina FRontal Eddy Dynamics Experiment (FRED) project, 1987-05-07 to 1987-11-01 (NODC Accession 8900181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, bathythermograph (xbt), CTD, and other data were collected using moored current meter casts and other instruments in the Northwest Atlantic Ocean...

  9. Perspectives for Expanded Ocean Observing on the Southeast Florida Shelf and between Cuba and the Bahamas and the US

    Science.gov (United States)

    Soloviev, A.; Dodge, R. E.; Proni, J.

    2012-12-01

    A long term ocean observing system was established on the Southeast Florida shelf near Ft. Lauderdale by the Nova Southeastern University Oceanographic Center (NSUOC) in late 1990s as a cooperative agreement between the NSU Oceanographic Center and USF College of Marine Science. The system has been supported and upgraded during a number of projects funded by the US federal government and private industries. Currently it consists of two ADCP moorings deployed at 240 m and 11 m isobath and coastal meteorological station and primarily serves to support the Office of Naval Research and other Federal agencies projects. During active observational phases, the area is monitored using the new generation of synthetic aperture radar (SAR) satellites (TerraSAR-X, Cosmo SkyMed, ALOS PALSAR, RADARSAT 2). The NSUOC Ocean observing system is a component of SECOORA, which has been integrating coastal and ocean observing data in the Southeast United States as a part of IOOS. In this paper we overview the results obtained during more than a decade of observations and discuss perspectives for expanded ocean observing on the Southeast Florida Shelf and between Cuba, Bahamas and US. Increased ocean observations are needed of the major western boundary current, known as the Loop Current in the Gulf of Mexico and the Florida Current in the Straits Florida. This ocean current occurs to the west and north of Cuba and along the southeast US. Observations will provide better understanding of the processes that maintain, and account for, the current variability and will be useful in myriad practical applications. A major application is the need to monitor the occurrence of, and to forecast entrainment, trajectories, and detrainment of, potential oil spills that may propagate from Cuban drilling sites located along the north coast of Cuba as well as from proposed drilling in the Bahamas. Such ocean observation information can be used as input for operational response models and result in best

  10. Salinity and sigma-t data from moored current meter and CTD casts in the North Pacific Ocean from 1979-08-26 to 1982-06-07 (NODC Accession 8200146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and sigma-t data were collected using moored current meter and CTD casts in the North Pacific Ocean from August 26, 1979 to June 7, 1982. Data were...

  11. Broader Impact Guidance for Florida Ocean Scientists: Process, Products and Outcomes

    Science.gov (United States)

    Cook, S.

    2016-02-01

    In response to the 2011 National Science Board report National Science Foundation's Merit Review Criteria: Review and Revision, in 2012 significant changes were made to the portions of the National Science Foundation's (NSF's) Grant Proposal Guide that describe the Foundation's expectations with respect to the Broader Impacts (BI) criterion and what reviewers should look for in assessing the quality of the required BI components of proposals. Over the past 5 years, COSEE Florida (the Florida Center for Ocean Sciences Education Excellence) has provided individualized content and editorial `coaching' on Broader Impacts for Florida scientists and educators submitting proposals to NSF. As of September 2015, 32% of the plans prepared with our guidance have been associated with projects that have received support. This presentation will review 1) the current BI guidance provided by NSF in the 2012 and subsequent editions of the Grant Proposal Guide, 2) the administrative process used by COSEE Florida to identify and assist scientists in understanding these changes and preparing fundable BI plans, 3) the characteristics of submitted plans in terms of type of plan, PI career stage and demographics 4) `lessons learned' about plan strengths and weaknesses and 5) the products developed (or currently under development) as COSEE Florida legacy documents to guide current and future scientists in addressing the Broader Impacts criterion. Resources developed by other Centers in the national COSEE network and the new National Alliance for Broader Impacts (NABI) will also be described.

  12. Translating Current Science into Materials for High School via a Scientist-Teacher Partnership

    Science.gov (United States)

    Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo

    2014-01-01

    Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the…

  13. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 1992-02-26 to 1993-04-14 (NODC Accession 9700264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS. Data were collected by Oregon State University (OSU) as part of the World Ocean Circulation...

  14. A Two-Ocean Bouillabaisse: Science, Politics, and the Central American Sea-Level Canal Controversy.

    Science.gov (United States)

    Keiner, Christine

    2017-11-01

    As the Panama Canal approached its fiftieth anniversary in the mid-1960s, U.S. officials concerned about the costs of modernization welcomed the technology of peaceful nuclear excavation to create a new waterway at sea level. Biologists seeking a share of the funds slated for radiological-safety studies called attention to another potential effect which they deemed of far greater ecological and evolutionary magnitude - marine species exchange, an obscure environmental issue that required the expertise of underresourced life scientists. An enterprising endeavor to support Smithsonian naturalists, especially marine biologists at the Smithsonian Tropical Research Institute in Panama, wound up sparking heated debates - between biologists and engineers about the oceans' biological integrity and among scientists about whether the megaproject represented a research opportunity or environmental threat. A National Academy of Sciences panel chaired by Ernst Mayr failed to attract congressional funding for its 10-year baseline research program, but did create a stir in the scientific and mainstream press about the ecological threats that the sea-level canal might unleash upon the Atlantic and Pacific. This paper examines how the proposed megaproject sparked a scientific and political conversation about the risks of mixing the oceans at a time when many members of the scientific and engineering communities still viewed the seas as impervious to human-facilitated change.

  15. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015

    Directory of Open Access Journals (Sweden)

    Christian Mohn

    2018-04-01

    Full Text Available Seamounts are amongst the most common physiographic structures of the deep-ocean landscape, but remoteness and geographic complexity have limited the systematic collection of integrated and multidisciplinary data in the past. Consequently, important aspects of seamount ecology and dynamics remain poorly studied. We present a data collection of ocean currents and raw acoustic backscatter from shipboard Acoustic Doppler Current Profiler (ADCP measurements during six cruises between 2004 and 2015 in the tropical and subtropical Northeast Atlantic to narrow this gap. Measurements were conducted at seamount locations between the island of Madeira and the Portuguese mainland (Ampère, Seine Seamount, as well as east of the Cape Verde archipelago (Senghor Seamount. The dataset includes two-minute ensemble averaged continuous velocity and backscatter profiles, supplemented by spatially gridded maps for each velocity component, error velocity and local bathymetry. The dataset is freely available from the digital data library PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.883193. Keywords: Seamounts, Northeast Atlantic, Shipboard ADCP, CODAS processing, DIVA gridding

  16. Current Crisis in Science Education? Women in Science and Problems for the Behavioral Scientists. Some Perspectives of a Physicist.

    Science.gov (United States)

    Dresselhaus, Mildred S.

    A number of problems exist in society which require the cooperation of physical and social scientists. One of these problems is the current crisis in science education. There are several aspects to this problem, including the declining interest of students in math and science at a time when functioning in our society requires more, not less,…

  17. CRED Recording Current Meter (RCM); AMSM, TUT; Long: -170.75830, Lat: -14.37498 (WGS84); Sensor Depth: 22.00m; Data Range: 20020303-20040224.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Recording Current Meters (RCM) provide a time series of water...

  18. CRED Recording Current Meter (RCM); PRIA, KIN; Long: -162.35925, Lat: 06.38263 (WGS84); Sensor Depth: 7.60m; Data Range: 20020318-20040402.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Recording Current Meters (RCM) provide a time series of water...

  19. U.S. ocean acidification researchers: First national meeting

    Science.gov (United States)

    Cooley, Sarah R.; Kleypas, Joan; Benway, Heather

    2011-09-01

    Ocean Carbon and Biogeochemistry Program Ocean Acidification Principal Investigators' Meeting; Woods Hole, Massachusetts, 22-24 March 2011 ; Ocean acidification (OA) is the progressive decrease in seawater pH and change in inorganic carbon chemistry caused by uptake of anthropogenic carbon dioxide (CO2). Marine species respond to OA in multiple ways that could profoundly alter ocean ecosystems and the goods and services they provide to human communities. With major support from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Science Foundation (NSF) and additional support from the U.S. Environmental Protection Agency (EPA), the Naval Postgraduate School, and the U.S. Geological Survey (USGS), the Ocean Carbon and Biogeochemistry (OCB) Project Office and Ocean Acidification Subcommittee (http://www.us-ocb.org/about/subcommittees.html) held the first multidisciplinary workshop for U.S. OA researchers at the Woods Hole Oceanographic Institution. The 112 attendees included ecologists, paleoceanographers, instrumentation specialists, chemists, biologists, economists, ocean and ecosystem modelers, and communications specialists.

  20. Current practice and future prospects for social data in coastal and ocean planning.

    Science.gov (United States)

    Le Cornu, Elodie; Kittinger, John N; Koehn, J Zachary; Finkbeiner, Elena M; Crowder, Larry B

    2014-08-01

    Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well-established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation-oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social-ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision-support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem-based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. © 2014 Society for Conservation Biology.

  1. Urban Science Education: Examining Current Issues through a Historical Lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-01-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions.…

  2. Indian Ocean experiments with a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Wainer, I. [Sao Paulo, Univ. (Brazil). Dept. of Oceanography

    1997-03-01

    A coupled ocean-atmosphere model is used to investigate the equatorial Indian Ocean response to the seasonally varying monsoon winds. Special attention is given to the oceanic response to the spatial distribution and changes in direction of the zonal winds. The Indian Ocean is surrounded by an Asian land mass to the North and an African land mass to the West. The model extends latitudinally between 41 N and 41 S. The asymmetric atmospheric model is driven by a mass source/sink term that is proportional to the sea surface temperature (SST) over the oceans and the heat balance over the land. The ocean is modeled using the Anderson and McCreary reduced-gravity transport model that includes a prognostic equation for the SST. The coupled system is driven by the annual cycle as manifested by zonally symmetric and asymmetric land and ocean heating. They explored the different nature of the equatorial ocean response to various patterns of zonal wind stress forcing in order to isolate the impact of the remote response on the Somali current. The major conclusions are : i) the equatorial response is fundamentally different for easterlies and westerlies, ii) the impact of the remote forcing on the Somali current is a function of the annual cycle, iii) the size of the basin sets the phase of the interference of the remote forcing on the Somali current relative to the local forcing.

  3. Variability at Multiple Scales: Using an Array of Current- and Pressure-Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  4. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  5. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  6. Climate Ocean Modeling on Parallel Computers

    Science.gov (United States)

    Wang, P.; Cheng, B. N.; Chao, Y.

    1998-01-01

    Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.

  7. Ocean Acidification from space: recent advances

    Science.gov (United States)

    Sabia, Roberto; Shutler, Jamie; Land, Peter; Fernandez-Prieto, Diego; Donlon, Craig; Reul, Nicolas

    2017-04-01

    satellite data sources. The overarching long-term objectives are to develop new algorithms and data processing strategies to overcome the relative immaturity of OA satellite products currently available, and to produce a global, temporally evolving, quasi-operational suite of OA satellite-derived data. References: [1] Land, P., J. Shutler, H. Findlay, F. Girard-Ardhuin, R. Sabia, N. Reul, J.-F. Piolle, B. Chapron, Y. Quilfen, J. Salisbury, D. Vandemark, R. Bellerby, and P. Bhadury, "Salinity from space unlocks satellite-based assessment of ocean acidification", Environmental Science & Technology, DOI: 10.1021/es504849s, Publication Date (Web): January 8, 2015 [2] Salisbury, J., D. Vandemark, B. Jönsson, W. Balch, S. Chakraborty, S. Lohrenz, B. Chapron, B. Hales, A. Mannino, J.T. Mathis, N. Reul, S.R. Signorini, R. Wanninkhof, and K.K. Yates. 2015. How can present and future satellite missions support scientific studies that address ocean acidification? Oceanography 28(2):108-121, http://dx.doi.org/10.5670/oceanog.2015.35. [3] Sabia R., D. Fernández-Prieto, J. Shutler, C. Donlon, P. Land, N. Reul, Remote Sensing of Surface Ocean pH Exploiting Sea Surface Salinity Satellite Observations, IGARSS '15 (International Geoscience and Remote Sensing Symposium), Milano, Italy, July 27 -31, 2015.

  8. Basic study for tsunami detection with DBF ocean radar

    International Nuclear Information System (INIS)

    Sakai, Shin'ichi; Matsuyama, Masafumi; Okuda, Kouzou; Uehara, Fumihiro

    2015-01-01

    To develop early tsunami warning system utilizing ocean radars, the evaluation of the variety of measuring coverage and data accuracy is indispensable in real oceans. The field observation was carried out at 5 minutes interval with two digital beam forming ocean radars with VHF band from 2012 to 2014 in the sea of Enshu. The high data acquisition areas are found in the extent of 17 km off the coast on a hill site and of 13 km on a low ground site. The measured current by the ocean radar were well correlated with that by the current-meter in the depth of 2 m near the coast with the correlation coefficient of ∼0.6. It is inferred that the main factor of difference in both data sets was due to the presence of wind-driven current through the multi-regression analysis with both current data and wind data. In addition, the order of the temporal current deviations as to the representative time-scale of one hour is about 5 cm/s under the ordinary sea conditions, which suggest that ocean radars could sufficiently detect the current deviation due to grant tsunami. (author)

  9. Salinity, sigma-t, and temperature data from moored current meter and CTD casts in the North Atlantic Ocean from 1981-08-29 to 1981-12-07 (NODC Accession 8300048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity, sigma-t, and temperature data were collected using moored current meter and CTD casts in the North Atlantic Ocean from August 29, 1981 to December 7, 1981....

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Seetaramayya. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 283-293. Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999.

  11. Ocean Drilling Program: Web Site Access Statistics

    Science.gov (United States)

    web site ODP/TAMU Science Operator Home Ocean Drilling Program Web Site Access Statistics* Overview See statistics for JOIDES members. See statistics for Janus database. 1997 October November December

  12. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  13. Ocean Drilling: Forty Years of International Collaboration

    Science.gov (United States)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki

    2010-10-01

    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  14. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    Digital Repository Service at National Institute of Oceanography (India)

    Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.E.; Pfeil, B.; Olsen, A; Metzl, N.; Kozyr, A; Fassbender, A; Manke, A; Malczyk, J.; Akl, J.; Alin, S.R.; Bellerby, R.G.J.; Borges, A; Boutin, J.; Brown, P.J.; Cai, W.-J.; Chavez, F.P.; Chen, A.; Cosca, C.; Feely, R.A.; Gonzalez-Davila, M.; Goyet, C.; Hardman-Mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C.W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R.M.; Kortzinger, A.; Landschutzer, P.; Lauvset, S.K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A.M.; Padin, X.A.; Park, G.-H.; Paterson, K.; Perez, F.F.; Pierrot, D.; Poisson, A.; Rios, A.F.; Salisbury, J.; Santana-Casiano, J.M.; Sarma, V.V.S.S.; et al.

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2...

  15. Enhancing Ocean Research Data Access

    Science.gov (United States)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  16. Charting the Course for Ocean Science in the United States for the Next Decade: An Ocean Research Priorities Plan and Implementation Strategy

    National Research Council Canada - National Science Library

    2007-01-01

    .... Understanding society's impact on the ocean and the ocean's impact on society forms the basis for ensuring a clean, healthy, and stable ocean environment that can be responsibly used and enjoyed for generations to come...

  17. Contrasting Effects of Historical Sea Level Rise and Contemporary Ocean Currents on Regional Gene Flow of Rhizophora racemosa in Eastern Atlantic Mangroves.

    Directory of Open Access Journals (Sweden)

    Magdalene N Ngeve

    Full Text Available Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate

  18. Eastward and northward components of ocean current, water temperature, and others collected from moorings in North East Pacific Coast from 1990-10-09 to 1991-02-26 (NCEI Accession 0164862)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Dynamics of the Columbia River Plume Project was sponsored by the National Science Foundation (NSF) grant number OCE 8918193 to Barbara Hickey, Lead Principal...

  19. Communicating polar science to the general public: sharing the social media experience of @OceanSeaIceNPI

    Science.gov (United States)

    Rösel, Anja; Pavlov, Alexey K.; Granskog, Mats A.; Gerland, Sebastian; Meyer, Amelie; Hudson, Stephen R.; King, Jennifer; Itkin, Polona; Cohen, Lana; Dodd, Paul; de Steur, Laura

    2016-04-01

    The findings of climate science need to be communicated to the general public. Researchers are encouraged to do so by journalists, policy-makers and funding agencies and many of us want to become better science communicators. But how can we do this at the lab or small research group level without specifically allocated resources in terms of funds and communication officers? And how do we sustain communication on a regular basis and not just during the limited lifetime of a specific project? One of the solutions is to use the emerging platform of social media, which has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. The group of oceanographers, sea ice and atmospheric scientists at the Norwegian Polar Institute (@OceanSeaIceNPI( will share our experiences developing and maintaining researcher-driven outreach for over a year through Instagram, Twitter and Facebook. We will present our solutions to some of the practical considerations such as identifying key target groups, defining the framework for sharing responsibilities and interactions within the research group, and choosing an up-to-date and appropriate social medium. By sharing this information, we aim to inspire and assist other research groups and labs in conducting their own effective science communication.

  20. The origin of continents and oceans

    National Research Council Canada - National Science Library

    Wegener, Alfred 1880-1930; Biram, John

    1966-01-01

    ... and Antarctica up through the Indian Ocean, and closing the remaining gaps. Wegener then explained various phenomena in historical geology, geomorphy, paleontology, paleoclimatology, and similar areas of science in terms of this continental drift."--From back cover.

  1. National Status and Trends, Benthic Surveillance Project Aryl Hydrocarbon Hydrolase (AHH) Data, 1988-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National Status...

  2. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and ... Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan.

  4. Ocean Observatories and the Integrated Ocean Observing System, IOOS: Developing the Synergy

    Science.gov (United States)

    Altalo, M. G.

    2006-05-01

    The National Office for Integrated and Sustained Ocean Observations is responsible for the planning, coordination and development of the U.S. Integrated Ocean Observing System, IOOS, which is both the U.S. contribution to GOOS as well as the ocean component of GEOSS. The IOOS is comprised of global observations as well as regional coastal observations coordinated so as to provide environmental information to optimize societal management decisions including disaster resilience, public health, marine transport, national security, climate and weather impact, and natural resource and ecosystem management. Data comes from distributed sensor systems comprising Federal and state monitoring efforts as well as regional enhancements, which are managed through data management and communications (DMAC) protocols. At present, 11 regional associations oversee the development of the observing System components in their region and are the primary interface with the user community. The ocean observatories are key elements of this National architecture and provide the infrastructure necessary to test new technologies, platforms, methods, models, and practices which, when validated, can transition into the operational components of the IOOS. This allows the IOOS to remain "state of the art" through incorporation of research at all phases. Both the observatories as well as the IOOS will contribute to the enhanced understanding of the ocean and coastal system so as to transform science results into societal solutions.

  5. 75 FR 4043 - Science Advisory Board; Draft Report of the NOAA Science Advisory Board Oceans and Health Working...

    Science.gov (United States)

    2010-01-26

    ...: January 20, 2010. Mark E. Brown, Chief Financial Officer, Office of Oceanic and Atmospheric Research... decide to entertain: (1) What are NOAA's unique and important scientific roles in addressing ocean health...

  6. Artificial radionuclides in the oceans

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1979-10-01

    The report highlights the areas of major contributions that the nuclear era has made to the understanding of oceanography and the marine sciences, and in particular the application to the public health problems that arise through anthropogenic exploitation of the oceans for the disposal of radioactive materials

  7. Intraseasonal meridional current variability in the eastern equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ogata, T.; Sasaki, H.; Murty, V.S.N.; Sarma, M.S.S.; Masumoto, Y.

    . [2007] demonstrate the possibility of the air-sea interac- tion in the eastern Indian Ocean at the intraseasonal time- scale by analyzing observed and simulated data. Recent studies also reveal that multiscale air-sea interactions be- tween intraseasonal...

  8. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    Science.gov (United States)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  9. Our Storied Sea: Crafting a Collective Narrative of the Ocean through Accompaniment

    Science.gov (United States)

    Savoie, Gianna M.

    Never before have we had such broad access to scientific information about the sea, yet as the world's oceans slip into a state of crisis, the American public's grasp of the issues is far from firm. But how do we begin to understand something as vast as the ocean, an area that covers more than two-thirds of our planet, when less than ten-percent of it has been explored? The ocean we "know" represents many things to many people; for some, it is a realm to be feared, for others, it is a resource to be exploited, and yet for others, it is a home to protect. This dissertation tracks an ever-evolving narrative of the ocean and examines how we come to infuse it with meaning. I contend that many Westerners relate to this space that we call the sea as a place not through a personal history, but via a translated history by those who have conveyed that experience to the public through visual storytelling. As we have been primarily on the receiving end of narratives "owned" and dictated by select voices, I argue there has remained a disconnect with the sea that has troubled our relationship with it. In today's rapidly expanding media landscape, we now have the opportunity to participate in the ocean's story as never before. I propose we disrupt the notion of "narrative ownership" as it may serve to limit understanding, and turn instead to a shared narrative that embraces diverse perspectives in order to broaden our depth of knowledge and our relationship with the sea. Further, this work examines the ways in which the shifting digital and social media terrain is enabling ocean scientists to blur the lines between science and advocacy in order to invest the public in stewardship. I argue that in order to be effective, the science narrative can no longer simply inform; it must engage the public by incorporating human agency into the story of the ocean. Only when we share a collective narrative of the ocean, will we be able to fully invest in its protection. To that end, I

  10. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  11. Partnering and teamwork to create content for spherical display systems to enhance public literacy in earth system and ocean sciences

    Science.gov (United States)

    Beaulieu, S. E.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.; Spargo, A.; Brickley, A.; Emery, M.

    2013-12-01

    Spherical display systems, also known as digital globes, are technologies that, in person or online, can be used to help visualize global datasets and earth system processes. Using the InterRidge Global Database of Active Submarine Hydrothermal Vent Fields and imagery from deep-sea vehicles, we are creating content for spherical display systems to educate and excite the public about dynamic geophysical and biological processes and exploration in the deep ocean. The 'Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents' is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, hosting a Magic Planet and Science On a Sphere (SOS), respectively. The main activities in the first year of our project were geared towards team building and content development. Here we will highlight the partnering and teamwork involved in creating and testing the effectiveness of our new content. Our core team is composed of a lead scientist, educators at both institutions, graphic artists, and a professional evaluator. The new content addresses key principles of Earth Science Literacy and Ocean Literacy. We will share the collaborative, iterative process by which we developed two educational pieces, 'Life without sunlight' and 'Smoke and fire underwater' - each focusing on a different set of 3 literacy principles. We will share how we conducted our front-end and formative evaluations and how we focused on 2 NSF Informal Education Impact Categories for our evaluation questionnaire for the public. Each educational piece is being produced as a stand-alone movie and as an interactive, docent-led presentation integrating a number of other datasets available from NOAA's SOS Users Network. The proximity of our two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS.

  12. Analyzing Ocean Tracks: A model for student engagement in authentic scientific practices using data

    Science.gov (United States)

    Krumhansl, K.; Krumhansl, R.; Brown, C.; DeLisi, J.; Kochevar, R.; Sickler, J.; Busey, A.; Mueller-Northcott, J.; Block, B.

    2013-12-01

    The collection of large quantities of scientific data has not only transformed science, but holds the potential to transform teaching and learning by engaging students in authentic scientific work. Furthermore, it has become imperative in a data-rich world that students gain competency in working with and interpreting data. The Next Generation Science Standards reflect both the opportunity and need for greater integration of data in science education, and emphasize that both scientific knowledge and practice are essential elements of science learning. The process of enabling access by novice learners to data collected and used by experts poses significant challenges, however, recent research has demonstrated that barriers to student learning with data can be overcome by the careful design of data access and analysis tools that are specifically tailored to students. A group of educators at Education Development Center, Inc. (EDC) and scientists at Stanford University's Hopkins Marine Station are collaborating to develop and test a model for student engagement with scientific data using a web-based platform. This model, called Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, provides students with the ability to plot and analyze tracks of migrating marine animals collected through the Tagging of Pacific Predators program. The interface and associated curriculum support students in identifying relationships between animal behavior and physical oceanographic variables (e.g. SST, chlorophyll, currents), making linkages between the living world and climate. Students are also supported in investigating possible sources of human impact to important biodiversity hotspots in the Pacific Ocean. The first round of classroom testing revealed that students were able to easily access and display data on the interface, and collect measurements from the animal tracks and oceanographic data layers. They were able to link multiple types of data to draw powerful

  13. SPINDLE: A 2-Stage Nuclear-Powered Cryobot for Ocean World Exploration

    Science.gov (United States)

    Stone, W.; Hogan, B.; Siegel, V. L.; Howe, T.; Howe, S.; Harman, J.; Richmond, K.; Flesher, C.; Clark, E.; Lelievre, S.; Moor, J.; Rothhammer, B.

    2016-12-01

    SPINDLE (Sub-glacial Polar Ice Navigation, Descent, and Lake Exploration) is a 2-stage autonomous vehicle system consisting of a robotic ice-penetrating carrier vehicle (cryobot) and a marsupial, hovering autonomous underwater vehicle (HAUV). The cryobot will descend through an ice body into a sub-ice aqueous environment and deploy the HAUV to conduct long range reconnaissance, life search, and sample collection. The HAUV will return to, and auto-dock with, the cryobot at the conclusion of the mission for subsequent data uplink and sample return to the surface. The SPINDLE cryobot has been currently designed for a 1.5 kilometer penetration through a terrestrial ice sheet and the HAUV has been designed for persistent exploration and science presence in for deployments up to a kilometer radius from the cryobot. Importantly, the cryobot is bi-directional and vertically controllable both in an ice sheet as well as following breakthrough into a subglacial water cavity / ocean. The vehicle has been designed for long-duration persistent science in subglacial cavities and to allow for subsequent return-to-surface at a much later date or subsequent season. Engineering designs for the current SPINDLE cryobot will be presented in addition to current designs for autonomous rendezvous, docking, and storing of the HAUV system into the cryobot for subsequent recovery of the entire system to the surface. Taken to completion in a three-phase program, SPINDLE will deliver an integrated and field-tested system that will be directly transferable into a Flagship-class mission to either the hypothesized shallow lakes of Europa, the sub-surface ocean of Ganymede, or the geyser/plume sources on both Europa and Enceladus. We present the results of several parallel laboratory investigations into advanced power transmission systems (laser, high voltage) as well as onboard systems that enable the SPINDLE vehicle to access any subglacial lake on earth while using non-nuclear surrogate, surface

  14. Natural radionuclides tracing in marine surface waters along the northern coast of Oman Sea by combining the radioactivity analysis, oceanic currents and the SWAN model results

    International Nuclear Information System (INIS)

    Zare, Mohammad Reza; Mostajaboddavati, Mojtaba; Kamali, Mahdi; Tari, Marziyeh; Mosayebi, Sanaz; Mortazavi, Mohammad Seddigh

    2015-01-01

    Highlights: • This study estimates radioactive pollution diffusion in coastline of the Oman Sea. • 36 high volume surface water samples were analyzed using a portable HPGe detector. • Oceanic currents in the northern coast of Oman Sea were investigated. • The spectral wave model SWAN was used for wave parameters simulation. • Currents and preferable wave directions were coupled with higher radioactivity. - Abstract: This study aims to establish a managed sampling plan for rapid estimate of natural radio-nuclides diffusion in the northern coast of the Oman Sea. First, the natural radioactivity analysis in 36 high volume surface water samples was carried out using a portable high-resolution gamma-ray spectrometry. Second, the oceanic currents in the northern coast were investigated. Then, the third generation spectral SWAN model was utilized to simulate wave parameters. Direction of natural radioactivity propagation was coupled with the preferable wave vectors and oceanic currents direction that face to any marine pollution, these last two factors will contribute to increase or decrease of pollution in each grid. The results were indicated that the natural radioactivity concentration between the grids 8600 and 8604 is gathered in the grid 8600 and between the grids 8605 and 8608 is propagated toward middle part of Oman Sea

  15. Arctic Ice-Ocean Coupling and Gyre Equilibration Observed With Remote Sensing

    Science.gov (United States)

    Dewey, Sarah; Morison, James; Kwok, Ronald; Dickinson, Suzanne; Morison, David; Andersen, Roger

    2018-02-01

    Model and observational evidence has shown that ocean current speeds in the Beaufort Gyre have increased and recently stabilized. Because these currents rival ice drift speeds, we examine the potential for the Beaufort Gyre's shift from a system in which the wind drives the ice and the ice drives a passive ocean to one in which the ocean often, in the absence of high winds, drives the ice. The resultant stress exerted on the ocean by the ice and the resultant Ekman pumping are reversed, without any change in average wind stress curl. Through these curl reversals, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization. This manuscript constitutes one of the first observational studies of ice-ocean stress inclusive of geostrophic ocean currents, by making use of recently available remote sensing data.

  16. Engaging in Argument from Evidence and the Ocean Sciences Sequence for Grades 3-5: A case study in complementing professional learning experiences with instructional materials aligned to instructional goals

    Science.gov (United States)

    Schoedinger, S. E.; Weiss, E. L.

    2016-12-01

    K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers

  17. Communicating Ocean Acidification and Climate Change to Public Audiences Using Scientific Data, Interactive Exploration Tools, and Visual Narratives

    Science.gov (United States)

    Miller, M. K.; Rossiter, A.; Spitzer, W.

    2016-12-01

    The Exploratorium, a hands-on science museum, explores local environmental conditions of San Francisco Bay to connect audiences to the larger global implications of ocean acidification and climate change. The work is centered in the Fisher Bay Observatory at Pier 15, a glass-walled gallery sited for explorations of urban San Francisco and the Bay. Interactive exhibits, high-resolution data visualizations, and mediated activities and conversations communicate to public audiences the impacts of excess carbon dioxide in the atmosphere and ocean. Through a 10-year education partnership with NOAA and two environmental literacy grants funded by its Office of Education, the Exploratorium has been part of two distinct but complementary strategies to increase climate literacy beyond traditional classroom settings. We will discuss two projects that address the ways complex scientific information can be transformed into learning opportunities for the public, providing information citizens can use for decision-making in their personal lives and their communities. The Visualizing Change project developed "visual narratives" that combine scientific visualizations and other images with story telling about the science and potential solutions of climate impacts on the ocean. The narratives were designed to engage curiosity and provide the public with hopeful and useful information to stimulate solutions-oriented behavior rather than to communicate despair about climate change. Training workshops for aquarium and museum docents prepare informal educators to use the narratives and help them frame productive conversations with the pubic. The Carbon Networks project, led by the Exploratorium, uses local and Pacific Rim data to explore the current state of climate change and ocean acidification. The Exploratorium collects and displays local ocean and atmosphere data as a member of the Central and Northern California Ocean Observing System and as an observing station for NOAA's Pacific

  18. NERC's Biogeochemical Ocean Flux Study (North Atlantic Data Set) was collected aboard the RRS DISCOVERY and CHARLES DARWIN in the North Atlantic Ocean from 19890417 to 19910728 (NODC Accession 0000708)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biogeochemical Ocean Flux Study (BOFS) was a Community Research Project of the Marine and Atmospheric Sciences Directorate of the Natural Environment Research...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Charuta V Prabhu. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 267-277. Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October — November, 1998 (BOBMEX-Pilot).

  2. Current STR-based techniques in forensic science

    Directory of Open Access Journals (Sweden)

    Phuvadol Thanakiatkrai

    2013-01-01

    Full Text Available DNA analysis in forensic science is mainly based on short tandem repeat (STR genotyping. The conventional analysis is a three-step process of DNA extraction, amplification and detection. An overview of various techniques that are currently in use and are being actively researched for STR typing is presented. The techniques are separated into STR amplification and detection. New techniques for forensic STR analysis focus on increasing sensitivity, resolution and discrimination power for suboptimal samples. These are achieved by shifting primer-binding sites, using high-fidelity and tolerant polymerases and applying novel methods to STR detection. Examples in which STRs are used in criminal investigations are provided and future research directions are discussed.

  3. Science communication in Brazil: A historical review and considerations about the current situation.

    Science.gov (United States)

    Massarani, Luisa; Moreira, Ildeu DE Castro

    2016-09-01

    In this paper, we present a historical overview of the science communication activities in Brazil since the nineteenth century and we analyze the current situation and its main concerns. The principal scopes and tools for science communication discussed here are the following: science centers and museums, mass media and large public events for communicating science and technology (S&T). In recent years, such activities have had a significant breakthrough in Brazil. Yet, there is still a long way to go in order to deliver a quality and extensive science and technology communication to the Brazilians as well as to achieve a suitable level of social appropriation of knowledge on S&T by the Brazilian society. Some of the main challenges that we are facing are discussed herein.

  4. Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements

    Science.gov (United States)

    Hu,Yongxiang

    2009-01-01

    CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.

  5. The sea as science: ocean research institutions and strategies in Portugal in the twentieth century (from the First Republic to democracy).

    Science.gov (United States)

    Rollo, Maria Fernanda; Queiroz, Maria Inês; Brandão, Tiago

    2014-01-01

    Historical perspective has revealed the many aspects of Portugal's interest in the sea, evident in a series of initiatives and entities throughout the twentieth century. From the beginning of the century until the 1974 Revolution, the genesis of organizations devoted to the scientific study of the sea is analyzed, observing their specific missions in the context of the formulation of science policy, and more specifically "ocean policies." The Portuguese valued knowledge of the sea due to their maritime vocation, coastal life and geographic position. Traversing different historical and political contexts and development cycles, the assumptions and political implications that accentuate the strategic dimension of science policy, visible in the geopolitical affirmation of oceanography, are studied.

  6. Temperature profile and current speed/direction data from ADCP, XBT, buoy, and CTD casts in the Northwest Pacific Ocean from 01 March 1989 to 01 June 1995 (NODC Accession 0000031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and current speed/direction data were collected using ADCP, XBT, buoy, and CTD casts in the Northwest Pacific Ocean from 01 March 1989 to 01 June...

  7. Science education with the help of media. Educating science concerning the help of current news of media referring to it

    International Nuclear Information System (INIS)

    Lazar, I.; Agoston, L.

    2005-01-01

    In the last decades, at the beginning of the 21st century high school students turn their back on science more frequently than before, therefore the generation of the community of reliable scientists and experts becomes the elder. The time spent studying science in schools is also decreasing. However, mass-communication, electronic and traditional media plays more and more part in the description and explanation of scientific problems in our time. Media is inundated with questions, facts and rumours in connection with science, therefore imaginary fears, beliefs and superstitions can get into the limelight of interests. Problems like keeping people frightened with radioactivity and the ionizing and non-ionizing radiations is probably the most popular way of making ''bad news'' (panic) in the mass-media, and they particularly call our attention to the most current tasks in education of the next generations. In order to help to keep the public informed in a precise and exact way, it's necessary to put natural science into practice in high schools. Our new method of science education could prove the necessity of science taught through the current news of the media. This means students learn by making discussions and corrections of the news. The Science and Media Project provides the possibility of applying scientific ways of thinking about questions of our environment and life and it also improves critical approach towards new information. This method is put to practice by real project works, including a lot of fieldwork and reading of papers and scientific literature, enabling the students to discover and solve problems by themselves. (author)

  8. Marine Physical Laboratory Multi-Disciplinary Ocean Science and Technology Program

    Science.gov (United States)

    1991-04-01

    ambierit noise were made with the advent of large. of 3800 m. Reflection profiles and drill logs from this hole scale seismome ter arrays." Sensor arrays...Deaion. and S C Webb."A deep-sea differential pressure frequency. The array was too limited in extent to make spa- gauge ." J. Aimos Ocean Tech. 2. 237...75, 847-864 (1985). 2"P. K Spudich andi I A. Orcutt," Petrology and porcisit% of tn oceanic "M E Dougherty and R. A. Stephen."Seismic energy

  9. Using Web 2.0 tools to connect shore-based users to live science from the wide blue ocean

    Science.gov (United States)

    Cooper, S. K.; Peart, L.; Collins, J.

    2009-12-01

    The fast-expanding use of social networking tools, combined with improved connectivity available through satellite-provided internet on board the scientific ocean drilling vessel JOIDES Resolution (the JR), has allowed for a whole new kind of interaction. Unlike in the not-so-distant past, when non-participants were forced to wait for months to read about the results of ongoing research, web tools allow almost instantaneous participation in ship-based ocean science. Utilizing a brand new portal, joidesresolution.org, scientists and educators at sea can post daily blogs about their work and respond to questions and comments on those blogs, update the JR’s Facebook and Twitter pages, and post videos and photos to YouTube and Flickr regularly. Live video conferencing tools also allow for direct interaction with scientists and a view into the work being done on board in real time. These tools have allowed students, teachers and families, groups and individuals on shore to follow along with the expeditions of the ship and its exciting scientific explorations -- and become a part of them. Building this community provides a whole range of rich interactions and brings seafloor research and the real process of science to those who would never before have had access to it. This presentation will include an overview of the web portal and its associated social networking sites, as well as a discussion of the challenges and lessons learned over nearly a year of utilizing these new tools. The web portal joidesresolution.org home page.

  10. Effect of Interannual Variability on the Ocean Acidification-induced Habitat Restriction of the Humboldt Current System.

    Science.gov (United States)

    Franco, A. C.; Gruber, N.; Munnich, M.

    2016-02-01

    The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water varies substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, accentuating productivity during La Niña events and dampening it during El Niño, altering the dynamics of the whole ecosystem. On top of this natural variability, the continuing acidification of the upper ocean in response to raising atmospheric CO2 may decrease pH further and increase the volume of water corrosive to aragonite in this region, leading to a progressively smaller suitable habitat for sensitive organisms. Here we use an eddy-resolving basin-scale ocean model that covers the whole Pacific Ocean with higher resolution near the coast off South America ( 6 km) to investigate the role of ENSO events on low aragonite saturation episodes and productivity variations. We compare 2 simulations: a hindcast simulation that spans the last 30 years and a future scenario that represents year 2090 (following IPCC's "business-as-usual" scenario). We found that in the region off Peru, the sole effect of increasing atmospheric CO2 to 840 matm shoals the annual average aragonite saturation depth to 30 m, creating a year round presence of aragonite undersaturated water in the euphotic zone. We then contrast the effect on primary productivity and the aragonite saturation state of at least eight El Niño and eight La Niña episodes that have been reported for the past 30 years, in an attempt to answer the question: does habitat availability under future ocean acidification will resemble a pervasive La Niña-like state?

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Krishnamoorthy. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 425-435. Detection of marine aerosols with IRS P4-Ocean Colour Monitor · Indrani Das M Mohan K Krishnamoorthy · More Details Abstract Fulltext PDF.

  12. ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change

    Science.gov (United States)

    Weiss, N.; Wood, J. H.

    2016-12-01

    The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.

  13. Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections.

    Science.gov (United States)

    Marshall, Kristin N; Kaplan, Isaac C; Hodgson, Emma E; Hermann, Albert; Busch, D Shallin; McElhany, Paul; Essington, Timothy E; Harvey, Chris J; Fulton, Elizabeth A

    2017-04-01

    The benefits and ecosystem services that humans derive from the oceans are threatened by numerous global change stressors, one of which is ocean acidification. Here, we describe the effects of ocean acidification on an upwelling system that already experiences inherently low pH conditions, the California Current. We used an end-to-end ecosystem model (Atlantis), forced by downscaled global climate models and informed by a meta-analysis of the pH sensitivities of local taxa, to investigate the direct and indirect effects of future pH on biomass and fisheries revenues. Our model projects a 0.2-unit drop in pH during the summer upwelling season from 2013 to 2063, which results in wide-ranging magnitudes of effects across guilds and functional groups. The most dramatic direct effects of future pH may be expected on epibenthic invertebrates (crabs, shrimps, benthic grazers, benthic detritivores, bivalves), and strong indirect effects expected on some demersal fish, sharks, and epibenthic invertebrates (Dungeness crab) because they consume species known to be sensitive to changing pH. The model's pelagic community, including marine mammals and seabirds, was much less influenced by future pH. Some functional groups were less affected to changing pH in the model than might be expected from experimental studies in the empirical literature due to high population productivity (e.g., copepods, pteropods). Model results suggest strong effects of reduced pH on nearshore state-managed invertebrate fisheries, but modest effects on the groundfish fishery because individual groundfish species exhibited diverse responses to changing pH. Our results provide a set of projections that generally support and build upon previous findings and set the stage for hypotheses to guide future modeling and experimental analysis on the effects of OA on marine ecosystems and fisheries. © 2017 John Wiley & Sons Ltd.

  14. Fritz Schott's Contributions to the Understanding of the Ocean Circulation

    Science.gov (United States)

    Visbeck, M.

    2009-04-01

    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  15. Climate change in the oceans: Human impacts and responses.

    Science.gov (United States)

    Allison, Edward H; Bassett, Hannah R

    2015-11-13

    Although it has far-reaching consequences for humanity, attention to climate change impacts on the ocean lags behind concern for impacts on the atmosphere and land. Understanding these impacts, as well as society's diverse perspectives and multiscale responses to the changing oceans, requires a correspondingly diverse body of scholarship in the physical, biological, and social sciences and humanities. This can ensure that a plurality of values and viewpoints is reflected in the research that informs climate policy and may enable the concerns of maritime societies and economic sectors to be heard in key adaptation and mitigation discussions. Copyright © 2015, American Association for the Advancement of Science.

  16. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene

    Science.gov (United States)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.

    2013-12-01

    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  17. Understanding current causes of women's underrepresentation in science.

    Science.gov (United States)

    Ceci, Stephen J; Williams, Wendy M

    2011-02-22

    Explanations for women's underrepresentation in math-intensive fields of science often focus on sex discrimination in grant and manuscript reviewing, interviewing, and hiring. Claims that women scientists suffer discrimination in these arenas rest on a set of studies undergirding policies and programs aimed at remediation. More recent and robust empiricism, however, fails to support assertions of discrimination in these domains. To better understand women's underrepresentation in math-intensive fields and its causes, we reprise claims of discrimination and their evidentiary bases. Based on a review of the past 20 y of data, we suggest that some of these claims are no longer valid and, if uncritically accepted as current causes of women's lack of progress, can delay or prevent understanding of contemporary determinants of women's underrepresentation. We conclude that differential gendered outcomes in the real world result from differences in resources attributable to choices, whether free or constrained, and that such choices could be influenced and better informed through education if resources were so directed. Thus, the ongoing focus on sex discrimination in reviewing, interviewing, and hiring represents costly, misplaced effort: Society is engaged in the present in solving problems of the past, rather than in addressing meaningful limitations deterring women's participation in science, technology, engineering, and mathematics careers today. Addressing today's causes of underrepresentation requires focusing on education and policy changes that will make institutions responsive to differing biological realities of the sexes. Finally, we suggest potential avenues of intervention to increase gender fairness that accord with current, as opposed to historical, findings.

  18. Western Indian Ocean Journal of Marine Science - Vol 8, No 2 (2009)

    African Journals Online (AJOL)

    Eddy formation around South West Mascarene Plateau (Indian Ocean) as evidenced by satellite 'global ocean colour' data · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. MR Badal, SDDV Rughooputh, L Rydberg, IS Robinson, C Pattiaratchi.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Sarkar. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 157-169. Palaeomonsoon and palaeoproductivity records of O, C and CaCO3 variations in the northern Indian Ocean sediments · A Sarkar R Ramesh S K Bhattacharya ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Radhakrishna. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 605-615. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean – A process oriented modelling approach · K M Sreejith M ...