WorldWideScience

Sample records for science methods students

  1. Science Teaching Methods Preferred by Grade 9 Students in Finland

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Uitto, Anna; Byman, Reijo; Meisalo, Veijo

    2010-01-01

    Students find science relevant to society, but they do not find school science interesting. This survey study analyzes Finnish grade 9 students' actual experiences with science teaching methods and their preferences for how they would like to study science. The survey data were collected from 3,626 grade 9 students (1,772 girls and 1,832 boys)…

  2. Transforming student's discourse as a method of teaching science inquiry

    Science.gov (United States)

    Livingston, David

    2005-07-01

    A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in

  3. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    Science.gov (United States)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  4. Introducing Students to the Application of Statistics and Investigative Methods in Political Science

    Science.gov (United States)

    Wells, Dominic D.; Nemire, Nathan A.

    2017-01-01

    This exercise introduces students to the application of statistics and its investigative methods in political science. It helps students gain a better understanding and a greater appreciation of statistics through a real world application.

  5. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  6. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  7. The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course

    Science.gov (United States)

    Abdi, Ali

    2014-01-01

    The purpose of this study was to investigate the effects of inquiry-based learning method on students' academic achievement in sciences lesson. A total of 40 fifth grade students from two different classes were involved in the study. They were selected through purposive sampling method. The group which was assigned as experimental group was…

  8. A science methods course in a professional development school context: A case study of student teachers

    Science.gov (United States)

    Sopko, Linda Diane

    The purpose of this case study was to explore how six student teachers constructed their personal understanding about teaching science to elementary students in the context of a professional development school (PDS). The science methods course was one of five university courses that they attended at the PDS site. The participants spent the remainder of the school day in an assigned classroom where they assisted the classroom teacher in a paraprofessional role. This study was an attempt to determine the knowledge that the participants constructed of science instruction and the school during the preservice semester of their PDS experience and what knowledge was transferred into their student teaching practices. The methodology selected was qualitative. A case study was conducted to determine the constructs of the participants. Data collection included documents concerning the PDS school and personal artifacts of the student teachers. Student teachers, cooperating teachers, and administrators were interviewed. The student teachers were also observed teaching. Triangulation was achieved with the use of multiple data sources, a reflexive journal, and peer debriefers. A cross case comparison was used to identify issues salient to the research questions. The PDS context immediately challenged the participants' prior conceptions about how children learn and should be instructed. Participants believed that the situational knowledge constructed during the PDS semester contributed to their self-confidence during student teaching. The instructional emphasis on standardized tests in the PDS and the limited emphasis on science curriculum and instruction constructed an image of science as a minor component in the elementary curriculum. The student teachers were able to transfer knowledge of inquiry-based instructional strategies, as modeled and practiced in their science methods course, into their science lesson during student teaching. One student teacher used inquiry

  9. The effectiveness of constructivist science instructional methods on high school students' motivation

    Science.gov (United States)

    Cook, Michele T.

    2007-12-01

    A problem facing educators is students' academic motivation to successfully complete science class offerings and pass state standardized tests. This study focused on the effectiveness of constructivist science instructional methods to motivate high school science students to complete classroom activities. It was the intent of this study to provide a voice for students regarding what activities promote their motivation. A constant comparative analysis including open, axial, and selective coding of participants' interview responses and classroom observations provided codes used to develop a substantive theory of motivation and personal investment in students' learning. The findings of this study were that teachers should provide students with constructivist lessons such as cooperative groups, problem-based learning, and inquiry questions in which to learn content objectives. As social beings, students are more motivated to participate in activities that allow them to work with peers, contribute their own ideas, and relate topics of interest to their own realities. Keeping these ideas in mind during lesson preparation will increase students' motivation and achievement. Variation of instruction should include activities that reflect multiple intelligences and real world situations. The researcher recommends the development of professional learning communities as a way for teachers to share teaching practices that motivate students to learn and become problem solvers, thus promoting social change in educators' pedagogy in the researcher's teaching community. In an era of educational accountability and federal regulations, this study provides an important tool for teachers to employ in order to meet the educational needs of their students.

  10. Effect of Demonstration Method of Teaching on Students' Achievement in Agricultural Science

    Science.gov (United States)

    Daluba, Noah Ekeyi

    2013-01-01

    The study investigated the effect of demonstration method of teaching on students' achievement in agricultural science in secondary school in Kogi East Education Zone of Kogi State. Two research questions and one hypothesis guided the study. The study employed a quasi-experimental research design. The population for the study was 18225 senior…

  11. Integration of ICT Methods for Teaching Science and Astronomy to Students and Teachers

    Science.gov (United States)

    Ghosh, Sumit; Chary, Naveen; Raghavender, G.; Aslam, Syed

    All children start out as scientist, full of curiosity and questions about the world, but schools eventually destroy their curiosity. In an effective teaching and learning process, the most challenging task is to motivate the students. As the science subjects are more abstract and complex, the job of teachers become even more daunting. We have devised an innovative idea of integrating ICT methods for teaching space science to students and teachers. In a third world country like India, practical demonstrations are given less importance and much emphasis is on theoretical aspects. Even the teachers are not trained or aware of the basic concepts. With the intention of providing the students and as well as the teachers more practical, real-time situations, we have incorporated innovative techniques like video presentation, animations, experimental models, do-yourself-kits etc. In addition to these we provide hands on experience on some scientific instruments like telescope, Laser. ICT has the potential to teach complex science topics to students and teachers in a safe environment and cost effective manner. The students are provided with a sense of adventure, wherein now they can manipulate parameters, contexts and environment and can try different scenarios and in the process they not only learn science but also the content and also the reasoning behind the content. The response we have obtained is very encouraging and students as well as teachers have acknowledged that they have learnt new things, which up to now they were ignorant of.

  12. Using Science Inquiry Methods to Promote Self-Determination and Problem-Solving Skills for Students with Moderate Intellectual Disability

    Science.gov (United States)

    Miller, Bridget; Doughty, Teresa; Krockover, Gerald

    2015-01-01

    This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…

  13. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-03-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology, chemistry, and physics, respectively, as well as primary school science). The qualitative data from the first study are based on student teachers' drawings of themselves in teaching situations. It was formulated using Grounded Theory to test three scales: Beliefs about Classroom Organisation, Beliefs about Teaching Objectives, and Epistemological Beliefs. Three further quantitative studies give insight into student teachers' curricular beliefs, their beliefs about the nature of science itself, and about the student- and/or teacher-centredness of science teaching. This paper describes a design to integrate all these data within a mixed methods framework. The aim of the current study is to describe a broad, triangulated picture of freshman science student teachers' beliefs about teaching and learning within their respective science teaching domain. The study reveals clear tendencies between the sub-groups. The results suggest that freshman chemistry and-even more pronouncedly-freshman physics student teachers profess quite traditional beliefs about science teaching and learning. Biology and primary school student teachers express beliefs about their subjects which are more in line with modern educational theory. The mixed methods approach towards the student teachers' beliefs is reflected upon and implications for science education and science teacher education are discussed.

  14. The simulation method in learning interpersonal communication competence--experiences of masters' degree students of health sciences.

    Science.gov (United States)

    Saaranen, Terhi; Vaajoki, Anne; Kellomäki, Marjaana; Hyvärinen, Marja-Leena

    2015-02-01

    This article describes the experiences of master students of nursing science in learning interpersonal communication competence through the simulation method. The exercises reflected challenging interactive situations in the field of health care. Few studies have been published on using the simulation method in the communication education of teachers, managers, and experts in this field. The aim of this study is to produce information which can be utilised in developing the simulation method to promote the interpersonal communication competence of master-level students of health sciences. This study used the qualitative, descriptive research method. At the Department of Nursing Science, the University of Eastern Finland, students major in nursing science specialise in nursing leadership and management, preventive nursing science, or nurse teacher education. Students from all three specialties taking the Challenging Situations in Speech Communication course participated (n=47). Essays on meaningful learning experiences collected using the critical incident technique, underwent content analysis. Planning of teaching, carrying out different stages of the simulation exercise, participant roles, and students' personal factors were central to learning interpersonal communication competence. Simulation is a valuable method in developing the interpersonal communication competence of students of health sciences at the masters' level. The methods used in the simulation teaching of emergency care are not necessarily applicable as such to communication education. The role of teacher is essential to supervising students' learning in simulation exercises. In the future, it is important to construct questions that help students to reflect specifically on communication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Mixed-Methods Study on the Impact of Socratic Seminars on Eighth Grade Students' Comprehension of Science Texts

    Science.gov (United States)

    Roncke, Nancy

    This formative, convergent-mixed methods research study investigated the impact of Socratic Seminars on eighth grade science students' independent comprehension of science texts. The study also highlighted how eighth grade students of varying reading abilities interacted with and comprehended science texts differently during and after the use of Socratic Seminars. In order to document any changes in the students' overall comprehension of science texts, this study compared the experimental and control groups' pre- and post-test performances on the Content Area Reading Assessment (Leslie & Caldwell, 2014) and self-perception surveys on students' scientific reading engagement. Student think-alouds and interviews also captured the students' evolving understandings of the science texts. At the conclusion of this sixteen-week study, the achievement gap between the experimental and control group was closed in five of the seven categories on the Content Area Reading Assessment, including supporting an inference with textual evidence, determining central ideas, explaining why or how, determining word meaning, and summarizing a science text. Students' self-perception surveys were more positive regarding reading science texts after the Socratic Seminars. Finally, the student think-alouds revealed that some students moved from a literal interpretation of the science texts to inquiries that questioned the text and world events.

  16. Choosing Science: A Mixed-Methods Study of Factors Predicting Latino and Latina High School Students' Decisions to Pursue Science Degrees

    Science.gov (United States)

    Stein, Rachel S.

    Latino/as are an increasingly large subset of the United States population; however, they continue to be underrepresented in science careers. Because of this increase, research regarding Latino/as has improved, but there are still many gaps in regards to gender-specific predictors to pursue science careers. To address this lack of literature, the purpose of this study is to extend previous research and to develop a model of variables that significantly contribute to science career choice among Latino and Latina students when they graduate from high school. In particular the study addressed the following research questions: (1) What are the differences in science outcomes for Latino and Latina students? (2) What are the differences in factors involved in science outcomes for Latino and Latina students? (3) For Latino and Latina students what are the differences in the factors that predict students' choice to pursue a science degree and/or high scores on the Future Plans in Science Scale? (4) What are the differences in how Latino and Latina students experience science, which account for high achieving students to choose to pursue a science major? This study utilized an explanatory mixed-method approach to examine how cognitive, institutional, and motivational factors may be interrelated and play a role in Latino/as choice to pursue science. The first phase of the study incorporated the collection of survey and database information from 12th grade students at two Southern California high schools. The second phase of the study utilized follow-up focus group interviews to explore the specific differential experiences and views of Latino and Latina students. The results of the study demonstrated multiple significant predictors. Science self-concept and views towards science outside of school were the most significant predictors of students' choice to pursue science. Male students also had major predictors of Spanish proficiency, teacher encouragement, religious views

  17. Projective methodical system of students training to the course «History of computer science»

    OpenAIRE

    С А Виденин

    2008-01-01

    Components of teachers readiness to professional activity are described in the item. The projective methods of training to a course « History of computer science « in favour to improve professional grounding of students' are considered.

  18. Evaluation Methods of the Academic Achievement of Students Ilam University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mirzaei AR

    2015-06-01

    Full Text Available Aims: Academic achievement exams have long played an important role in education and so have been always judged, reviewed and restudied. The aim of this study was to investigate the use of different types of academic achievement exams (evaluation methods by faculty of Ilam University of Medical Sciences. Instrument & Methods: In this descriptive and cross-sectional study, faculty members of Ilam University of Medical Sciences in the second semester of 2013-14 academic year (N=90 were studied by total counting. Data were gathered by a researcher made questionnaire by 29 questions that was assessing the application level of educational progress evaluation methods by faculty members. For data analysis, SPSS 16 software was used and descriptive and inferential statistics (Student T test and one-way ANOVA were performed. Findings: 76 of participants (93.8% placed a greater emphasis on the final exam. The most widely used methods for students' progress evaluation was multiple-choice questions (93.8% n=76, and low used assessment method was 360 degree evaluation (4.9% n=4. Comparing of mean scores of participants based on gender and academic degree, were not showed a significant differences, but comparison of the mean scores of participants based on faculty showed a significant difference (p<0.05. Conclusion: With respect to faculty member's emphasis on use and application of the final evaluation results and preferably less effort and common procedures, as well as less variety of evaluation methods of students' progress, paying attention to the new methods of educational achievement evaluation and implementation training courses for teachers is essential.

  19. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  20. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    Science.gov (United States)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  1. The influence of contextual teaching with the problem solving method on students' knowledge and attitudes toward horticulture, science, and school

    Science.gov (United States)

    Whitcher, Carrie Lynn

    2005-08-01

    Adolescence is marked with many changes in the development of higher order thinking skills. As students enter high school they are expected to utilize these skills to solve problems, become abstract thinkers, and contribute to society. The goal of this study was to assess horticultural science knowledge achievement and attitude toward horticulture, science, and school in high school agriculture students. There were approximately 240 high school students in the sample including both experimental and control groups from California and Washington. Students in the experimental group participated in an educational program called "Hands-On Hortscience" which emphasized problem solving in investigation and experimentation activities with greenhouse plants, soilless media, and fertilizers. Students in the control group were taught by the subject matter method. The activities included in the Hands-On Hortscience curriculum were created to reinforce teaching the scientific method through the context of horticulture. The objectives included evaluating whether the students participating in the Hands-On Hortscience experimental group benefited in the areas of science literacy, data acquisition and analysis, and attitude toward horticulture, science, and school. Pre-tests were administered in both the experimental and control groups prior to the research activities and post-tests were administered after completion. The survey questionnaire included a biographical section and attitude survey. Significant increases in hortscience achievement were found from pre-test to post-test in both control and experimental study groups. The experimental treatment group had statistically higher achievement scores than the control group in the two areas tested: scientific method (p=0.0016) and horticulture plant nutrition (p=0.0004). In addition, the students participating in the Hands-On Hortscience activities had more positive attitudes toward horticulture, science, and school (p=0

  2. Aboriginal Students' Achievement in Science Education: The Effect of Teaching Methods

    Science.gov (United States)

    Bourque, Jimmy; Bouchamma, Yamina; Larose, Francois

    2010-01-01

    Some authors assume that the academic difficulties encountered by Aboriginal students can be partly explained by the discrepancy between teaching methods and Aboriginal learning styles. However, this hypothesis lacks empirical foundations. Using pan-Canadian data, we tried to identify the most efficient teaching methods for Aboriginal students and…

  3. Distance Education Teaching Methods and Student Responses in the Animal Sciences

    Science.gov (United States)

    Bing, Jada Quinome

    2012-01-01

    The overall objective of this dissertation is to observe whether or not an Anatomy & Physiology Distance Education (DistEd) course offered in the Animal Science Department will prove to be valuable in the learning process for students. Study 1 was conducted to determine whether gross anatomy of animals could be taught effectively at the…

  4. Normal Science and the Paranormal: The Effect of a Scientific Method Course on Students' Beliefs.

    Science.gov (United States)

    Morier, Dean; Keeports, David

    1994-01-01

    A study investigated the effects of an interdisciplinary course on the scientific method on the attitudes of 34 college students toward the paranormal. Results indicated that the course substantially reduced belief in the paranormal, relative to a control group. Student beliefs in their own paranormal powers, however, did not change. (Author/MSE)

  5. THE INFLUENCE OF THE ASSESSMENT MODEL AND METHOD TOWARD THE SCIENCE LEARNING ACHIEVEMENT BY CONTROLLING THE STUDENTS? PREVIOUS KNOWLEDGE OF MATHEMATICS.

    OpenAIRE

    Adam rumbalifar; I. g. n. Agung; Burhanuddin tola.

    2018-01-01

    This research aims to study the influence of the assessment model and method toward the science learning achievement by controlling the students? previous knowledge of mathematics. This study was conducted at SMP East Seram district with the population of 295 students. This study applied a quasi-experimental method with 2 X 2 factorial design using the ANCOVA model. The findings after controlling the students\\' previous knowledge of mathematics show that the science learning achievement of th...

  6. Secondary School Students' Predictors of Science Attitudes

    Science.gov (United States)

    Tosun, Cemal; Genç, Murat

    2016-01-01

    The purpose of this study is to identify the factors that affect the secondary school students' attitudes in science. This study was conducted using survey method. The sample of the study was 503 students from four different secondary schools in Bartin and Düzce. Data were obtained using the Survey of Factors Affecting Students' Science Attitudes…

  7. The quantitative methods boot camp: teaching quantitative thinking and computing skills to graduate students in the life sciences.

    Directory of Open Access Journals (Sweden)

    Melanie I Stefan

    2015-04-01

    Full Text Available The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a "boot camp" in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students' engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014 show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.

  8. The quantitative methods boot camp: teaching quantitative thinking and computing skills to graduate students in the life sciences.

    Science.gov (United States)

    Stefan, Melanie I; Gutlerner, Johanna L; Born, Richard T; Springer, Michael

    2015-04-01

    The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a "boot camp" in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students' engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.

  9. Science Careers and Disabled Students.

    Science.gov (United States)

    Jagoda, Sue; Cremer, Bob

    1981-01-01

    Summarizes proceedings and student experiences at the 1980 Science Career Workshop for Physically Disabled Students at the Lawrence Hall of Science (University of California). Includes a description of the key-note speaker's topics, and other workshop activities. (DS)

  10. Encouraging Students with Different Profiles of Perceptions to Pursue Science by Choosing Appropriate Teaching Methods for Each Age Group

    Science.gov (United States)

    Potvin, Patrice; Hasni, Abdelkrim

    2017-06-01

    This research aimed at identifying student profiles of perceptions by means of a clustering method using a validated questionnaire. These profiles describe students' attraction to science and technology (S&T) studies and careers as a variable driven by school S&T self-concept and interest in school S&T. In addition to three rather predictable student profiles (confident enthusiast, average ambitious, and pessimistic dropout), the fourth fairly well-populated profile called confident indifferent was produced. Our second and third research questions allowed us to describe each profile in terms of the instructional methods to which their population was exposed (including the degree to which they were actively involved) and the instructional methods to which they would like more exposure. An analysis of the evolution of the profiles' population over time is also presented. The results suggest that pedagogical variety and active involvement in the decision to pursue S&T are important. The perception of the utility and importance of S&T both in and out of school may also play an important role in these decisions. Minor pedagogical preferences were also found in certain age groups.

  11. A Different Approach to Have Science and Technology Student-Teachers Gain Varied Methods in Laboratory Applications: A Sample of Computer Assisted POE Application

    Science.gov (United States)

    Saka, Arzu

    2012-01-01

    The purpose of this study is to develop a new approach and assess the application for the science and technology student-teachers to gain varied laboratory methods in science and technology teaching. It is also aimed to describe the computer-assisted POE application in the subject of "Photosynthesis-Light" developed in the context of…

  12. Teaching Social Science Research Methods to Undergraduate Medical Students: The State of the Art and Opportunities for Practice and Curriculum Development

    Science.gov (United States)

    Forrest, Simon

    2017-01-01

    There is an expectation that medical students in the UK will be able to demonstrate conversancy with social science relevant to medicine and health, including the means by which the relevant bodies of knowledge are generated through the use of social science research methods. This paper explores the structural and pedagogical challenges and…

  13. Development of Environmental Knowledge, Team Working Skills and Desirable Behaviors on Environmental Conservation of Matthayomsuksa 6 Students Using Good Science Thinking Moves Method with Metacognition Techniques

    Science.gov (United States)

    Ladawan, Charinrat; Singseewo, Adisak; Suksringarm, Paitool

    2015-01-01

    The research aimed to investigate environmental knowledge, team working skills, and desirable behaviors of students learning through the good science thinking moves method with metacognition techniques. The sample group included Matthayomsuksa 6 students from Nadoon Prachasan School, Nadoon District, Maha Sarakham Province. The research tools were…

  14. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-01-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology,…

  15. Scientific Method and Advent of Literacy: Towards Understanding Itaukei and Indo-Fijian School Students' Differential Achievement in Science

    Science.gov (United States)

    Dakuidreketi, Mesake Rawaikela

    2014-01-01

    In general, people believe that if we want our children to be good in and relate well to science, or to enable at least a few of them eventually to become scientists themselves, we may need to be clear about what science is and the nature of its method. Individuals can then wield the method of science, making them scientists. This way of thinking…

  16. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    Science.gov (United States)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization

  17. Cell Phones Transform a Science Methods Course

    Science.gov (United States)

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  18. Making Curveball: Working with students to produce a game that can ‘liven up’ research methods and ethics teaching in the social sciences

    OpenAIRE

    Gerodetti, N; Nixon, D

    2016-01-01

    In this paper we explore our experiences of a staff-student collaborative project that sought to design games and learning resources that could be used to “liven-up” research methods and ethics teaching in the social sciences. The paper highlights the benefits of staff-student collaboration in the design and production of game resources, and in particular, the potential for harnessing students’ experiences of teaching and learning through feeding it into curriculum development. The paper also...

  19. Methods and successes of New York University workshops for science graduate students and post-docs in science writing for general audiences (readers and radio listeners)

    Science.gov (United States)

    Hall, S. S.

    2012-12-01

    Scientists and science administrators often stress the importance of communication to the general public, but rarely develop educational infrastructures to achieve this goal. Since 2009, the Arthur L. Carter Journalism Institute at New York University has offered a series of basic and advanced writing workshops for graduate students and post-docs in NYU's eight scientific divisions (neuroscience, psychology, physics, biology, chemistry, mathematics, anthropology, and computer science). The basic methodology of the NYU approach will be described, along with successful examples of both written and radio work by students that have been either published or broadcast by general interest journalism outlets.

  20. Effectiveness of a Method for Teaching Self-Compassion to Communication Sciences and Disorders Graduate Students.

    Science.gov (United States)

    Beck, Ann R; Verticchio, Heidi

    2018-02-06

    The purpose of this study is to explore the effects of a daily mindfulness practice and 2 types of journaling on participants' development of self-compassion. This was a between-groups design. All participants in a graduate counseling course engaged in a short daily mindfulness practice at the beginning of every class. Participants were randomly assigned to a counseling journal or a gratitude journal group. Participants were to write in their journals 2 to 5 times a week for the duration of the class. Participants completed the Self-Compassion Scale (Neff, 2003) and a questionnaire created by the 1st author before any mindfulness sessions were held and again at the completion of the course. Participants' level of self-compassion increased from pretest to posttest. The self-compassion scores of participants who kept counseling journals increased more than did those of participants who kept gratitude journals. Qualitative data indicated that participants believed that mindfulness was an important quality for clinicians to possess and that they were accepting of the daily mindfulness practice. Engaging in a 12-min daily mindfulness practice utilizing simple yoga postures, breath work, reflective writing, and journaling done at a separate time appears to be an effective technique for increasing students' levels of self-compassion. Maintaining a counseling journal as opposed to a gratitude journal appears to enhance the effect of the daily mindfulness practice on self-compassion.

  1. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  2. "G.P.S Matrices" programme: A method to improve the mastery level of social science students in matrices operations

    Science.gov (United States)

    Lee, Ken Voon

    2013-04-01

    The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.

  3. ENGAGING SCIENCE STUDENTS WITH HANDHELD TECHNOLOGY AND APPLICATIONS BY RE-VISITING THE THAYER METHOD OF TEACHING AND LEARNING

    Directory of Open Access Journals (Sweden)

    Julia Paredes

    2011-12-01

    Full Text Available Organic chemistry instructors integrate handheld technology and applications into course lecture and lab to engage students with tools and techniques students use in the modern world. This technology and applications enable instructors to re-visit the Thayer Method of teaching and learning to create an updated method that works with 21st century students. The Thayer Method is based on the premise that students are willing and capable of making substantial preparation before coming to class and lab in order to maximize efficiency of student-instructor contact time. During this student preparation phase, we engage students with handheld technology and content applications including smart phone viewable course administrative materials; “flashcards” containing basic organic chemistry nomenclature, molecular structures, and chemical reactions; mini-lectures prepared using the Smart Board Airliner Interactive Tablet for upcoming class periods and laboratory technique videos demonstrating tasks they will perform as part of laboratory experimentation. Coupled with a student friendly course text, these handheld applications enable substantial student preparation before class and lab. The method, in conjunction with handheld technology and applications, has been used with positive results in our organic chemistry courses.

  4. Ciencias 2 (Science 2). [Student's Workbook].

    Science.gov (United States)

    Raposo, Lucilia

    Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…

  5. The self-concept of chiropractic students as science students

    Science.gov (United States)

    Shields, Robert F.

    2005-01-01

    Abstract Purpose To determine the self-concepts of chiropractic students as science students and if any personal variable affect their self-concepts. Participants Students in their first trimester and eighth trimester at the Los Angeles College of Chiropractic during the 1993 academic year (n=158). Methods Peterson-Yaakobi Q-Sort, National Assessment of Educational Progress, two-tailed T-test, one way analysis of variance and Spearman-rho correlation. Results The majority of students have positive self- concepts as science students and although there was a difference between the 2 trimesters, it was not significant. As a group they generally had less exposure to science compared to undergraduates from a selected science program. Variables of socio-economic status, undergraduate major, and highest completed level of education did not statistically affect their self-concept. Conclusion Chiropractic students had the self-concept that enables them to subscribe to the philosophical foundations of science and better engage in basic sciences and, later, science-based clinical research. Knowledge of this self- concept can be used in the development of a more rigorous basic science curricula and clinical research programs at chiropractic colleges with the ultimate goal of providing a more firm scientifically based foundation for the profession. PMID:19674649

  6. Making the case for STEM integration at the upper elementary level: A mixed methods exploration of opportunity to learn math and science, teachers' efficacy and students' attitudes

    Science.gov (United States)

    Miller, Brianna M.

    Student achievement in science and math has been linked to per capita gross domestic product (GDP) growth propagating the belief that science, technology, engineering, and math (STEM) education is an important factor in economic prosperity. However, The No Child Left Behind Act of 2001 (NCLB), favors math over science, positioning the subjects as competitors rather than collaborators. Additionally, NCLB focuses almost exclusively on the cognitive outcome of students' achievement with the affective outcome of students' attitudes being nearly ignored. Positive attitudes toward science and math early on are essential for subsequent and cumulative decisions students make in taking courses, choosing majors, and pursuing careers. Positioning students' attitudes as a desirable educational outcome comparable to students' achievement is an emerging goal in the literature. Using the case of one school district in south-central Pennsylvania with three elementary schools, 15 upper elementary teachers, and 361 students, the purpose of this study was to better understand influences on upper elementary students' attitudes toward STEM (SA) subjects and careers. The study aimed to explore two influences on SA, opportunity to learn (OTL) and teacher's efficacy (TE), in the comparative contexts of math and science. The studied employed a mixed methods convergent design in which five data sets from four sources were collected over three phases to triangulate three constructs: OTL, TE, and SA. The goal of the study was to offer recommendations to the case school district for enhancing OTL, TE, and thus SA. Findings regarding OTL revealed that the opportunity to learn science was lower than math. Finding regarding TE revealed that outcome expectancy was lower than personal teaching efficacy in both science and math; and, teachers had low STEM career awareness, STEM integration, and technology use. Findings regarding SA revealed a lower perceived usefulness of science compared to math

  7. The role of entomology in environmental and science education: Comparing outreach methods for their impact on student and teacher content knowledge and motivation

    Science.gov (United States)

    Weeks, Faith J.

    Outreach programming can be an important way for local students and teachers to be exposed to new fields while enhancing classroom learning. University-based outreach programs are offered throughout the country, including most entomology departments as few individuals learn about insects in school and these programs can be excellent sources of entomological education, as well as models to teach environmental and science education. Each department utilizes different instructional delivery methods for teaching about insects, which may impact the way in which students and teachers understand the insect concepts presented. To determine the impact of using entomology to enhance science and environmental education, this study used a series of university-based entomology outreach programs to compare three of the most common delivery methods for their effect on teacher and student content knowledge and motivation, specifically student interest in entomology and teacher self-efficacy. Twenty fifth grade classrooms were assessed over the course of one school year. The results show that teacher knowledge significantly increased when teachers were unfamiliar with the content and when trained by an expert, and teacher self-efficacy did not decrease when asked about teaching with insects. For students, content knowledge increased for each lesson regardless of treatment, suggesting that outreach program providers should focus on working with local schools to integrate their field into the classroom through the delivery methods best suited to the needs of the university, teachers, and students. The lessons also had an impact on student interest in science and environmental education, with an overall finding that student interest increases when using insects in the classroom.

  8. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  9. Applying Alternative Teaching Methods to Impart a Rounded, Liberal Arts and Sciences (LAS) Education: Students' Reflections on the Role of Magazines as Instructional Tools

    Science.gov (United States)

    Sithole, Alec; Kibirige, Joachim; Mupinga, Davison M.; Chiyaka, Edward T.

    2016-01-01

    In a constantly and rapidly changing social world, students from all disciplines ought to attain a rounded education within the tradition of a "Liberal Arts and Sciences" (LAS) context. Students outside of the natural sciences must be encouraged to appreciate the place of those sciences in their lives. Conversely, students in the natural…

  10. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  11. Student leadership in small group science inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  12. Introducing Science to undergraduate students

    Directory of Open Access Journals (Sweden)

    P. Avila Jr

    2006-07-01

    Full Text Available The knowledge of scientific method provides stimulus and development of critical thinking and logical analysis of information besides the training of continuous formulation of hypothesis to be applied in formal scientific issues as well as in everyday facts. The scientific education, useful for all people, is indispensable for the experimental science students. Aiming at the possibility to offer a systematic learning of the scientific principles, we developed a undergraduate course designed to approximate the students to the procedures of scientific production and publication. The course was developed in a 40 hours, containing two modules: I. Introducing Scientific Articles (papers and II. Writing Research Project. The first module deals with: (1 the difference between scientific knowledge and common sense; (2 scientific methodology; (3 scientific publishing categories; (4 logical principles; (5 deduction and induction approach and (6 paper analysis. The second module includes (1 selection of problem to be solved by experimental procedures; (2 bibliography revision; (3 support agencies; (4 project writing and presentation and (5 critical analysis of experimental results. The course used a Collaborative Learning strategy with each topic being developed through activities performed by the students. Qualitative and quantitative (through Likert questionnaires evaluation were carried out in each step of the course, the results showing great appreciation by the students. This is also the opinion of the staff responsible for the planning and development of the course, which is now in its second and improved version.

  13. How do we interest students in science?

    Science.gov (United States)

    Murray, L.

    2016-02-01

    In today's world science literacy is now, more than ever, critical to society. However, today's technically savvy student tends to be bored by "cook-book" laboratory exercises and dated lecture style, which typifies the way that most science courses are taught. To enhance student interest in and understanding of the sciences, we developed two unique programs, in which teachers were provided with the tools and hands-on experience that enabled them to implement research- and inquiry-based projects with their students. The approach was based a framework that is student driven and enables active participation and innovation in the study of the environment. The framework involved selection of a theme and an activity that captured the interest of the participants, participant development of research or investigative questions based on the theme, experimentation to address the research questions, formulation of conclusions, and communication of these results. The projects consisted of two parts: a professional development institute for teachers and the classroom implementation of student research projects, both of which incorporated the framework process. The institutes focused on modeling the framework process, with teachers actively developing questions, researching the question, formulating results and conclusions. This method empowered teachers to be confident in the implementation of the process with their students. With support from project staff, teachers followed up by incorporating the method of teaching with their students. Evaluation results from the programs concluded that projects such as these can increase student interest in and understanding of the scientific process.

  14. Plans of Implementation and Methods for Increasing Student Enrollment in the Earth Systems Science Course at Elizabeth City State University

    Science.gov (United States)

    Porter, W.

    2001-12-01

    This presentation reviews the experience of Elizabeth City State University (ECSU) in offering the Earth Systems Science (ESS) online course sponsored the Earth System Science Education Alliance (ESSEA) and how it relates to our plans to offer the course in the Spring Semester of 2002. The course was offered for the first time at ECSU during the Fall semester 2000. Eight students were enrolled in the course, which may not be considered a large number; however, we felt the administration of the course was successful because of the staff's learning experience. The small number is also a reflection of the nature of ECSU's primary recruitment region of northeastern North Carolina; this area is extremely rural with a smaller population, lower economic development, and fewer cultural amenities than most regions of the state. Our approach to this project is for a long-term effective offering of a course that is much needed, especially in this area of the state. The ultimate goal is to develop ESS as our online offering of courses in the Geoscience Department curriculum as to recruit students who might not have the opportunity to take college-level courses because of daytime work commitments and/or inaccessibility to a local college or university. A major component of ESS is its focus on problem-based learning built upon the life experiences of participating students. Having learned from the previous offering of the course, the following are objectives related to the Spring Semester 2002: 1. To get ESS to become a part of the Geoscience curriculum so that it will be listed on the schedule of classes for the Spring Semester 2002 and each succeeding semester; 2. To aggressively reach out to the public school teachers, especially in the recruitment region of ECSU in northeastern North Carolina, by using effective recruitment strategies; 3. To have an active and continuous communication with prospective students prior to and immediately after the enrollment, as well as being

  15. Effect of Cooperative Learning and Traditional Methods on Students' Achievements and Identifications of Laboratory Equipments in Science-Technology Laboratory Course

    Science.gov (United States)

    Aydin, Suleyman

    2011-01-01

    Science lessons taught via experiments motivate the students, and make them more insistent on learning science. This study aims to examine the effects of cooperative learning on students' academic achievements and their skills in identifying laboratory equipments. The sample for the study consisted of a total of 43 sophomore students in primary…

  16. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  17. Dilemmas of Teaching Inquiry in Elementary Science Methods

    Science.gov (United States)

    Newman, William J., Jr.; Abell, Sandra K.; Hubbard, Paula D.; McDonald, James; Otaala, Justine; Martini, Mariana

    2004-01-01

    Because various definitions of inquiry exist in the science education literature and in classroom practice, elementary science methods students and instructors face dilemmas during the study of inquiry. Using field notes, instructor anecdotal notes, student products, and course artifacts, science methods course instructors created fictional…

  18. Science and Community Engagement: Connecting Science Students with the Community

    Science.gov (United States)

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  19. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    Science.gov (United States)

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  20. Students of Tehran Universities of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Ghezelbash Sima

    2015-07-01

    Full Text Available Introduction: Social anxiety is an important factor in peoples’ mental health. Good mental health while studying in university makes students able to deal effectively with numerous stressors that they experience. The purpose of this study was to determine and compare the social anxiety of nursing students in grades one to four of medical universities in Tehran. Methods: In this analytic cross-sectional study, 400 students from universities of medical sciences in Tehran were recruited by stratified sampling with proportional allocation. Data were collected during the first semester in 2010. Students completed a two-part questionnaire including the Liebowitz social anxiety questionnaire and a demographic information form. Data were analyzed using descriptive statistics methods and an analytical test by SPSS statistical software. Results: There was no statistically significant difference in the total scores of social anxiety of first- to fourth-year students. The mean score of the avoidance of social interaction dimension in fourth-year students was significantly lower than in first year students (p<0.05. Conclusion: In regard to the relationship between social anxiety and interpersonal communication as an associated part of nursing care, decrease of social anxiety of students could play an important role in their mental health. According to the results of this study, it seems that the placement of students in the nursing education system does not produce any changes in their social anxiety.

  1. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  2. Nursing students' attitudes toward science in the nursing curricula

    Science.gov (United States)

    Maroo, Jill Deanne

    The nursing profession combines the art of caregiving with scientific concepts. Nursing students need to learn science in order to start in a nursing program. However, previous research showed that students left the nursing program, stating it included too much science (Andrew et al., 2008). Research has shown a correlation between students' attitudes and their performance in a subject (Osborne, Simon, & Collins, 2003). However, little research exists on the overall attitude of nursing students toward science. At the time of my study there existed no large scale quantitative study on my topic. The purpose of my study was to identify potential obstacles nursing students face, specifically, attitude and motivation toward learning science. According to research the nation will soon face a nursing shortage and students cite the science content as a reason for not completing the nursing program. My study explored nursing students' attitudes toward science and reasons these students are motivated to learn science. I ran a nationwide mixed methods approach with 1,402 participants for the quantitative portion and 4 participants for the qualitative portion. I validated a questionnaire in order to explore nursing students' attitudes toward science, discovered five different attitude scales in that questionnaire and determined what demographic factors provided a statistically significant prediction of a student's score. In addition, I discovered no statistical difference in attitude exists between students who have the option of taking nursing specific courses and those who do not have that option. I discovered in the qualitative interviews that students feel science is necessary in nursing but do not feel nurses are scientists. My study gives a baseline of the current attitude of nursing students toward science and why these students feel the need to learn the science.

  3. Student Science Teachers' Ideas of the Digestive System

    Science.gov (United States)

    Cardak, Osman

    2015-01-01

    The aim of this research is to reveal the levels of understanding of student science teachers regarding the digestive system. In this research, 116 student science teachers were tested by applying the drawing method. Upon the analysis of the drawings they made, it was found that some of them had misconceptions such as "the organs of the…

  4. Students' Ideas on Cooperative Learning Method

    Science.gov (United States)

    Yoruk, Abdulkadir

    2016-01-01

    Aim of this study is to investigate students' ideas on cooperative learning method. For that purpose students who are studying at elementary science education program are distributed into two groups through an experimental design. Factors threaten the internal validity are either eliminated or reduced to minimum value. Data analysis is done…

  5. Student memories: Insights for science reform

    Science.gov (United States)

    Chaillie, Jane Hall

    The purpose of this study was to examine the recollections pre-service teachers majoring in elementary education have of their science experiences during their elementary years and to explore the recollections in the context of science education reform efforts. At the beginning of science methods course work, pre-service elementary teachers reflected on their memories of their own elementary education experiences. Themes from 102 reflective essays collected in two settings and time periods were identified and compared. The themes remained consistent over both settings and time frames studied and fall into three general categories: curriculum and instruction, teacher traits, and student traits. The pre-service teachers expressed difficulty in recalling elementary science experiences and attributed their limited memories to what they perceived as a low priority of science content in the elementary curriculum. Teaching strategies played a prominent role in the memories reported. Hands-on and active learning strategies produced positive memories, while lectures, reading textbooks, and completing worksheets resulted in more negative memories. Furthermore, pre-service teacher essays often failed to connect the learning activities with concept development or understanding. Pre-service teachers were split nearly equally between those who liked and those who disliked elementary science. The attributes of elementary teachers received the least attention in the categories and focused primarily on passion for teaching science. Implications for science reform leaders, teacher education preparation programs, and school administrators and curriculum directors are identified.

  6. Contextual Factors Related to Stereotype Threat and Student Success in Science Technology Engineering Mathematics Education: A Mixed Methods Study

    Science.gov (United States)

    Leker, Lindsey Beth

    Stereotype threat is a widely researched phenomenon shown to impact performance in testing and evaluation situations (Katz, Roberts, & Robinson, 1965; Steele & Aronson, 1995). When related to gender, stereotype threat can lead women to score lower than men on standardized math exams (Spencer, Steele, & Quinn, 1999). Stereotype threat may be one reason women have lower enrollment in most science, technology, engineering, and mathematics (STEM) majors, hold a smaller number of STEM careers than men, and have a higher attrition rate in STEM professions (Hill, Corbet, & Rose, 2010; Picho & Brown 2011; Sorby & Baartmans, 2000). Most research has investigated stereotype threat using experiments yielding mixed results (Stoet & Geary, 2012). Thus, there is a need to explore stereotype threat using quantitative surveys and qualitative methods to examine other contextual factors that contribute to gender difference in STEM fields. This dissertation outlined a mixed methods study designed to, first, qualitatively explore stereotype threat and contextual factors related to high achieving women in STEM fields, as well as women who have failed and/or avoided STEM fields. Then, the quantitative portion of the study used the themes from the qualitative phase to create a survey that measured stereotype threat and other contextual variables related to STEM success and failure/avoidance. Fifteen participants were interviewed for the qualitative phase of the study and six themes emerged. The quantitative survey was completed 242 undergraduate participants. T-tests, correlations, regressions, and mediation analyses were used to analyze the data. There were significant relationships between stereotype threat and STEM confidence, STEM anxiety, giving up in STEM, and STEM achievement. Overall, this mixed methods study advanced qualitative research on stereotype threat, developed a much-needed scale for the measurement of stereotype threat, and tested the developed scale.

  7. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  8. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  9. Students' Psychosocial Perception of Science Laboratory ...

    African Journals Online (AJOL)

    Data was obtained with the Science Laboratory Environment Questionnaire, administered on 338 third year science students. Four factors were found to influence students' perception of their science laboratory environment. Two distinct material environments emerged, which have not been reported in the literature.

  10. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  11. Best practices for measuring students' attitudes toward learning science.

    Science.gov (United States)

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  12. The Science Standards and Students of Color

    Science.gov (United States)

    Strachan, Samantha L.

    2017-01-01

    In a 2014 report, the National Center for Education Statistics (NCES) projected that by the year 2022, minority students will outnumber non-Hispanic white students enrolled in public schools. As the diversity of the student population in the United States increases, concerns arise about student performance in science classes, especially among…

  13. A Mixed Methods Assessment of Students' Flow Experiences during a Mobile Augmented Reality Science Game

    Science.gov (United States)

    Bressler, D. M.; Bodzin, A. M.

    2013-01-01

    Current studies have reported that secondary students are highly engaged while playing mobile augmented reality (AR) learning games. Some researchers have posited that players' engagement may indicate a flow experience, but no research results have confirmed this hypothesis with vision-based AR learning games. This study investigated factors…

  14. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  15. High school students' implicit theories of what facilitates science learning

    Science.gov (United States)

    Carlton Parsons, Eileen; Miles, Rhea; Petersen, Michael

    2011-11-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high school students' implicit theories of what facilitates their learning of science?; (2) With respect to students' self-classifications as African American or European American and female or male, do differences exist in the students' implicit theories? Sample, design and methods: Students in an urban high school located in south-eastern United States were surveyed in 2006 about their thoughts on what helps them learn science. To confirm or disconfirm any differences, data from two different samples were analyzed. Responses of 112 African American and 118 European American students and responses from 297 European American students comprised the data for sample one and two, respectively. Results: Seven categories emerged from the deductive and inductive analyses of data: personal responsibility, learning arrangements, interest and knowledge, communication, student mastery, environmental responsiveness, and instructional strategies. Instructional strategies captured 82% and 80% of the data from sample one and two, respectively; consequently, this category was further subjected to Mann-Whitney statistical analysis at p ethnic differences. Significant differences did not exist for ethnicity but differences between females and males in sample one and sample two emerged. Conclusions: African American and European American students' implicit theories about instructional strategies that facilitated their science learning did not significantly differ but female and male students' implicit theories about instructional strategies that helped them learn science significantly differed. Because students attend and respond to what they think

  16. Reaching Nonscience Students through Science Fiction

    Science.gov (United States)

    Smith, Donald A.

    2009-01-01

    In 2006 I had the chance to design a physics course for students not majoring in scientific fields. I chose to shape the course around science fiction, not as a source for quantitative problems but as a means for conveying important physics concepts. I hoped that, by encountering these concepts in narratives, students with little or no science or…

  17. Science Students' Classroom Discourse: Tasha's Umwelt

    Science.gov (United States)

    Arnold, Jenny

    2012-04-01

    Over the past twenty-five years researchers have been concerned with understanding the science student. The need for such research is still grounded in contemporary issues including providing opportunities for all students to develop scientific literacy and the failure of school science to connect with student's lives, interests and personal identities. The research reported here is unusual in its use of discourse analysis in social psychology to contribute to an understanding of the way students make meaning in secondary school science. Data constructed for the study was drawn from videotapes of nine consecutive lessons in a year-seven science classroom in Melbourne, post-lesson video-stimulated interviews with students and the teacher, classroom observation and the students' written work. The classroom videotapes were recorded using four cameras and seven audio tracks by the International Centre for Classroom Research at the University of Melbourne. Student talk within and about their science lessons was analysed from a discursive perspective. Classroom episodes in which students expressed their sense of personal identity and agency, knowledge, attitude or emotion in relation to science were identified for detailed analysis of the function of the discourse used by students, and in particular the way students were positioned by others or positioned themselves. This article presents the discursive Umwelt or life-space of one middle years science student, Tasha. Her case is used here to highlight the complex social process of meaning making in science classrooms and the need to attend to local moral orders of rights and duties in research on student language use, identity and learning in science.

  18. Structure of Black Male Students Academic Achievement in Science

    Science.gov (United States)

    Rascoe, Barbara

    Educational policies and practices have been largely unsuccessful in closing the achievement gap between Black and White students "Schwartz, 2001". This achievement gap is especially problematic for Black students in science "Maton, Hrabrowski, - Schmitt, 2000. Given the fact that the Black-White achievement gap is still an enigma, the purpose of this article is to address the Black female-Black male academic achievement gap in science majors. Addressing barriers that Black male students may experience as college science and engineering majors, this article presents marketing strategies relative to politics, emotional intelligence, and issues with respect to how science teaching, and Black male students' responses to it, are different. Many Black male students may need to experience a paradigm shift, which structures and enhances their science achievement. Paradigm shifts are necessary because exceptional academic ability and motivation are not enough to get Black males from their first year in a science, technology, education, and mathematics "STEM" major to a bachelor's degree in science and engineering. The conclusions focus on the balance of truth-slippery slopes concerning the confluence of science teachers' further ado and Black male students' theories, methods, and values that position their academic achievement in science and engineering majors.

  19. Radiologic science students' perceptions of parental involvement.

    Science.gov (United States)

    DuBose, Cheryl; Barymon, Deanna; Vanderford, Virginia; Hensley, Chad; Shaver, Gary

    2014-01-01

    A new generation of students is in the classroom, and they are not always alone. Helicopter parents, those who hover around the student and attempt to ease life's challenges, are accompanying the students to radiologic science programs across the nation. To determine radiologic science students' perception regarding their parents' level of involvement in their lives. A survey focused on student perceptions of parental involvement inside and outside of the academic setting was completed by 121 radiologic science students at 4 institutional settings. The analysis demonstrates statistically significant relationships between student sex, age, marital status, and perceived level of parental involvement. In addition, as financial support increases, students' perception of the level of parental involvement also increases. Radiologic science students want their parents to be involved in their higher education decisions. Research indicates that students with involved parents are more successful, and faculty should be prepared for increased parental involvement in the future. Radiologic science students perceive their parents to be involved in their academic careers. Ninety-five percent of respondents believe that the financial support of their parent or parents contributes to their academic success. Sixty-five percent of participants are content with their parents' current level of involvement, while 11% wish their parents were more involved in their academic careers.

  20. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  1. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    Science.gov (United States)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  2. Internet Use Among Science Undergraduate Students: A ...

    African Journals Online (AJOL)

    The objective of this study was to identify and determine the extent of students\\' access to, and use of the Internet using the Science Undergraduate Students of University of Ibadan and University of Lagos as a case study. The study also aimed at comparing the rate of use among this group of students and determine which ...

  3. University Students' Perceptions of Their Science Classrooms

    Science.gov (United States)

    Kaya, Osman Nafiz; Kilic, Ziya; Akdeniz, Ali Riza

    2004-01-01

    The purpose of this study was to investigate the dimensions of the university students' perceptions of their science classes and whether or not the students' perceptions differ significantly as regards to the gender and grade level in six main categories namely; (1) pedagogical strategies, (2) faculty interest in teaching, (3) students interest…

  4. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  5. Project BioEYES: Accessible Student-Driven Science for K-12 Students and Teachers.

    Science.gov (United States)

    Shuda, Jamie R; Butler, Valerie G; Vary, Robert; Farber, Steven A

    2016-11-01

    BioEYES, a nonprofit outreach program using zebrafish to excite and educate K-12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students' pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students' content knowledge and produced favorable shifts in students' attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations.

  6. Moral Perceptions of College Science Students

    Science.gov (United States)

    Nolan, Eric

    This thesis argues that college-level science education is in need of explicit moral focuses centered on society's use of scientific knowledge. Many benefits come with scientific advancements but unfortunately the misuse of scientific knowledge has led to planetary crises that should be a concern for all who inhabit the Earth (e.g., climate change). The teaching of the misuses of science is often left out of college science classrooms and the purpose of this thesis is to see what effect college science students' education has had on their moral perception of these pressing issues. To evaluate how college science students morally perceive these global issues within their educational experiences, two focus group interviews were conducted and analyzed. Students converged on three themes when thinking of society's misuse of science: 1) there is something wrong with the way science is communicated between science and non-science groups; 2) misusing science for private benefit is not right, and 3) it is important for people to comprehend sustainability along different scales of understanding and action. This thesis concludes that although to some extent students were familiar with moral features that stem from society's misuse of science, they did not attribute their learning of those features from any of their required coursework within their programs of study.

  7. Digital Geological Mapping for Earth Science Students

    Science.gov (United States)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  8. Identification and Assessment of Human Errors in Postgraduate Endodontic Students of Kerman University of Medical Sciences by Using the SHERPA Method

    Directory of Open Access Journals (Sweden)

    Saman Dastaran

    2016-03-01

    Full Text Available Introduction: Human errors are the cause of many accidents, including industrial and medical, therefore finding out an approach for identifying and reducing them is very important. Since no study has been done about human errors in the dental field, this study aimed to identify and assess human errors in postgraduate endodontic students of Kerman University of Medical Sciences by using the SHERPA Method. Methods: This cross-sectional study was performed during year 2014. Data was collected using task observation and interviewing postgraduate endodontic students. Overall, 10 critical tasks, which were most likely to cause harm to patients were determined. Next, Hierarchical Task Analysis (HTA was conducted and human errors in each task were identified by the Systematic Human Error Reduction Prediction Approach (SHERPA technique worksheets. Results: After analyzing the SHERPA worksheets, 90 human errors were identified including (67.7% action errors, (13.3% checking errors, (8.8% selection errors, (5.5% retrieval errors and (4.4% communication errors. As a result, most of them were action errors and less of them were communication errors. Conclusions: The results of the study showed that the highest percentage of errors and the highest level of risk were associated with action errors, therefore, to reduce the occurrence of such errors and limit their consequences, control measures including periodical training of work procedures, providing work check-lists, development of guidelines and establishment of a systematic and standardized reporting system, should be put in place. Regarding the results of this study, the control of recovery errors with the highest percentage of undesirable risk and action errors with the highest frequency of errors should be in the priority of control

  9. Ninth Grade Student Responses to Authentic Science Instruction

    Science.gov (United States)

    Ellison, Michael Steven

    This mixed methods case study documents an effort to implement authentic science and engineering instruction in one teacher's ninth grade science classrooms in a science-focused public school. The research framework and methodology is a derivative of work developed and reported by Newmann and others (Newmann & Associates, 1996). Based on a working definition of authenticity, data were collected for eight months on the authenticity in the experienced teacher's pedagogy and in student performance. Authenticity was defined as the degree to which a classroom lesson, an assessment task, or an example of student performance demonstrates construction of knowledge through use of the meaning-making processes of science and engineering, and has some value to students beyond demonstrating success in school (Wehlage et al., 1996). Instruments adapted for this study produced a rich description of the authenticity of the teacher's instruction and student performance. The pedagogical practices of the classroom teacher were measured as moderately authentic on average. However, the authenticity model revealed the teacher's strategy of interspersing relatively low authenticity instructional units focused on building science knowledge with much higher authenticity tasks requiring students to apply these concepts and skills. The authenticity of the construction of knowledge and science meaning-making processes components of authentic pedagogy were found to be greater, than the authenticity of affordances for students to find value in classroom activities beyond demonstrating success in school. Instruction frequently included one aspect of value beyond school, connections to the world outside the classroom, but students were infrequently afforded the opportunity to present their classwork to audiences beyond the teacher. When the science instruction in the case was measured to afford a greater level of authentic intellectual work, a higher level of authentic student performance on

  10. Original science-based music and student learning

    Science.gov (United States)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  11. Who am I? ~ Undergraduate Computer Science Student

    OpenAIRE

    Ferris, Jane

    2012-01-01

    As part of a school review process a survey of the students was designed to gain insight into who the students of the school were. The survey was a voluntary anonymous online survey. Students were able to skip questions and select more than one option in some questions. This was to reduce frustration with participation in the survey and ensure that the survey was completed. This conference details the average undergraduate Computer Science student of a large third level institute.

  12. Incorporating Indonesian Students' "Funds of Knowledge" into Teaching Science to Sustain Their Interest in Science

    Directory of Open Access Journals (Sweden)

    A.N. Md Zain

    2011-12-01

    Full Text Available The purpose of this study was to examine the effect of incorporating students’ funds of knowledge in the teaching of science in sustaining Indonesian students’ interest in science. The researchers employed mixed method approach in this study. This study took place within two suburban secondary schools in Indonesia. Two teachers and a total of 173 students (94 males and 79 females participated in this study. The findings revealed that initially, most students expected that the teaching process would mainly include science experiments or other hands-on activities. Their preferences revealed a critical problem related to science learning: a lack of meaningful science-related activities in the classroom. The findings showed that incorporating students’ funds of knowledge into science learning processes -and thus establishing students’ culture as an important and valued aspect of science learning was effective in not only sustaining but also improving students’ attitudes and increasing their interest in science.

  13. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    Science.gov (United States)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  14. Finding science in students' talk

    Science.gov (United States)

    Yeo, Jennifer

    2009-12-01

    What does it mean to understand science? This commentary extends Brown and Kloser's argument on the role of native language for science learning by exploring the meaning of understanding in school science and discusses the extent that science educators could tolerate adulterated forms of scientific knowledge. Taking the perspective of social semiotics, this commentary looks at the extent that school science can be represented with other discourse practices. It also offers an example to illustrate how everyday language can present potential hindrance to school science learning.

  15. Science Alive!: Connecting with Elementary Students through Science Exploration

    Directory of Open Access Journals (Sweden)

    Aarti Raja

    2016-05-01

    Full Text Available A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  16. Science Alive!: Connecting with Elementary Students through Science Exploration.

    Science.gov (United States)

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  17. Science Students and the Social Sciences: Strange Bedfellows?

    Science.gov (United States)

    Yeong, Foong May

    2014-01-01

    With various internet resources available to students, the main aim of a good university education today should not merely be to provide students with content knowledge, but rather to equip them with essential skills necessary to develop into lifelong learners. Among science educators, repeated calls have been made to promote a more holistic…

  18. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  19. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  20. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  1. A Mixed Method Investigation of Social Science Graduate Students' Statistics Anxiety Conditions before and after the Introductory Statistics Course

    Science.gov (United States)

    Huang, Liuli

    2018-01-01

    Research frequently uses the quantitative approach to explore undergraduate students' anxiety regarding statistics. However, few studies of adults' statistics anxiety use the qualitative method, or a sole focus on graduate students. Moreover, even fewer studies focus on a comparison of adults' anxiety levels before and after an introductory…

  2. Statistical methods for physical science

    CERN Document Server

    Stanford, John L

    1994-01-01

    This volume of Methods of Experimental Physics provides an extensive introduction to probability and statistics in many areas of the physical sciences, with an emphasis on the emerging area of spatial statistics. The scope of topics covered is wide-ranging-the text discusses a variety of the most commonly used classical methods and addresses newer methods that are applicable or potentially important. The chapter authors motivate readers with their insightful discussions, augmenting their material withKey Features* Examines basic probability, including coverage of standard distributions, time s

  3. Exploring the consequences of combining medical students with and without a background in biomedical sciences.

    Science.gov (United States)

    Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa

    2014-07-01

    Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all

  4. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    identified barriers to promoting science in schools were: the difficulty of the subject matter, lack of student interest, the large amount of subject content, lack of perceived relevance of the subject matter to day-to-day life, ineffective teacher characteristics, lack of aspirations to pursue science as a career, inadequate teaching methods, lack of adequate teacher training, lack of proper policies to reward science teachers, and inadequate support for science from the media. Overall, the results from this study provide a greater understanding of the relations of secondary students' science self-concepts and motivation with aspirations and achievement in different science domains across gender and age levels. Hence, this research makes a valuable contribution to the literature by providing new insight. The findings will be useful for science educators in planning and developing science curriculum and policies with regard to student self-concepts and motivation. Equally, science teachers may find implications for classroom practices, for the planning and conducting of science lessons, for conveying scientific concepts and principles to students more effectively, and in considering the need to generate enthusiasm about the subject in young science students. Thus, the findings may offer the necessary strategies to assist in reducing the decline of students' enrolments in science through efficacious attention to student self-concepts and motivation. The newly developed instrument provides a new opportunity for future research to confidently interrogate the psychosocial issues central to science education and promotion. (Abstract shortened by ProQuest.).

  5. Students build glovebox at Space Science Center

    Science.gov (United States)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  6. Practical science communication strategies for graduate students.

    Science.gov (United States)

    Kuehne, Lauren M; Twardochleb, Laura A; Fritschie, Keith J; Mims, Meryl C; Lawrence, David J; Gibson, Polly P; Stewart-Koster, Ben; Olden, Julian D

    2014-10-01

    Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will

  7. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  8. Teacher and student reflections on ICT-rich science inquiry

    DEFF Research Database (Denmark)

    Williams, John; Otrel-Cass, Kathrin

    2017-01-01

    and different ways for students to engage with, explore and communicate science ideas within inquiry. Sample: This project developed case studies with 6 science teachers of year 9 and 10 students, with an average age of 13 and 14 years in three New Zealand high schools. Teacher participants in the project had...... varying levels of understanding and experience with inquiry learning in science. Teacher knowledge and experience with ICT were equally diverse. Design and Methods: Teachers and researchers developed initially in a joint workshop a shared understanding of inquiry, and how this could be enacted. During......Background: Inquiry learning in science provides authentic and relevant contexts in which students can create knowledge to solve problems, make decisions and find solutions to issues in today’s world. The use of electronic networks can facilitate this interaction, dialogue and sharing, and adds...

  9. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-01-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the…

  10. Getting the picture: A mixed-methods inquiry into how visual representations are interpreted by students, incorporated within textbooks, and integrated into middle-school science classrooms

    Science.gov (United States)

    Lee, Victor Raymond

    Modern-day middle school science textbooks are heavily populated with colorful images, technical diagrams, and other forms of visual representations. These representations are commonly perceived by educators to be useful aids to support student learning of unfamiliar scientific ideas. However, as the number of representations in science textbooks has seemingly increased in recent decades, concerns have been voiced that many current of these representations are actually undermining instructional goals; they may be introducing substantial conceptual and interpretive difficulties for students. To date, very little empirical work has been done to examine how the representations used in instructional materials have changed, and what influences these changes exert on student understanding. Furthermore, there has also been limited attention given to the extent to which current representational-use routines in science classrooms may mitigate or limit interpretive difficulties. This dissertation seeks to do three things: First, it examines the nature of the relationship between published representations and students' reasoning about the natural world. Second, it considers the ways in which representations are used in textbooks and how that has changed over a span of five decades. Third, this dissertation provides an in-depth look into how middle school science classrooms naturally use these visual representations and what kinds of support are being provided. With respect to the three goals of this dissertation, three pools of data were collected and analyzed for this study. First, interview data was collected in which 32 middle school students interpreted and reasoned with a set of more and less problematic published textbook representations. Quantitative analyses of the interview data suggest that, counter to what has been anticipated in the literature, there were no significant differences in the conceptualizations of students in the different groups. An accompanying

  11. Attitudes and achievement of Bruneian science students

    Science.gov (United States)

    Dhindsa, Harkirat S.; Chung, Gilbert

    2003-08-01

    The aim of this study was to evaluate attitudes towards and achievement in science of Form 3 students studying in single-sex and coeducational schools in Brunei. The results demonstrated significant differences in attitudes towards and achievement in science of male and female students in single-sex schools and students in coeducational schools. These differences were at moderate level. In single-sex schools, the girls achieved moderately better in science than the boys despite their attitudes were only marginally better than the boys. However, there were no gender differences in attitudes towards and achievement in science of students in coeducational schools. The attitudes towards and achievement in science of girls in single-sex schools were moderately better than those of girls in coeducational schools. Whereas the attitudes towards and achievement in science of boys in single-sex schools were only marginally better than the boys in coeducational schools. However, further research to investigate (a) if these differences are repeated at other levels as well as in other subjects, and (b) the extent to which school type contributed towards these differences is recommended.

  12. Teaching Graduate Students How To Do Informal Science Education

    Science.gov (United States)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  13. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  14. Making science education meaningful for American Indian students: The effect of science fair participation

    Science.gov (United States)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  15. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  16. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    Science.gov (United States)

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  17. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    2017-01-01

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…

  18. Preparing Graduate Students as Science Communicators

    Science.gov (United States)

    Knudson, K.; Gutstein, J.

    2012-12-01

    Our presentation introduces our interdisciplinary curriculum that teaches graduate students at our R-1 university to translate their research to general audiences. We also discuss the challenges we have faced and strategies we have employed to broaden graduate education at our campus to include preparation in science communication. Our "Translating Research beyond Academia" curriculum consists of three separate thematically based courses taught over the academic year: Education and Community Outreach, Science Communication and Writing, Communicating with Policy- and Decision-makers. Course goals are to provide professional development training so that graduate students become more capable professionals prepared for careers inside and outside academia while increasing the public understanding of science and technology. Open to graduate students of any discipline, each course meets weekly for two hours; students receive academic credit through a co-sponsoring graduate program. Students learn effective strategies for communicating research and academic knowledge with the media, the general public, youth, stakeholders, and decision- and policy-makers. Courses combine presentations from university and regional experts with hands-on work sessions aimed towards creating effective communications, outreach and policy plans, broader impacts statements, press releases, blogs, and policy briefs. A final presentation and reflections are required. Students may opt for further training through seminars tailored to student need. Initial results of our analyses of student evaluations and work indicate that students appreciate the interdisciplinary, problem-based approach and the low-risk opportunities for learning professional development skills and for exploring non-academic employment. Several students have initiated engaged work in their disciplines, and several have secured employment in campus science communication positions. Two have changed career plans as a direct result of

  19. Asian students excel in science testing

    Science.gov (United States)

    Showstack, Randy

    Asian countries claimed four of the five top spots in science achievement for eighth grade students, according to a December 5 report on the Third International Mathematics and Science Study - Repeat (TIMSS-R). The top five are: Chinese Taipei, Singapore, Hungary, Japan, and the Republic of Korea.In mathematics, Asian countries scored a clean sweep. The top five are: Singapore, the Republic of Korea, Chinese Taipei, Hong Kong SAR,and Japan.

  20. Elementary student teachers' science content representations

    Science.gov (United States)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  1. An analysis of high-performing science students' preparation for collegiate science courses

    Science.gov (United States)

    Walter, Karen

    This mixed-method study surveyed first year high-performing science students who participated in high-level courses such as International Baccalaureate (IB), Advanced Placement (AP), and honors science courses in high school to determine their perception of preparation for academic success at the collegiate level. The study used 52 students from an honors college campus and surveyed the students and their professors. The students reported that they felt better prepared for academic success at the collegiate level by taking these courses in high school (pstudent GPA with honors science courses (n=55 and Pearson's r=-0.336), while AP courses (n=47 and Pearson's r=0.0016) and IB courses (n=17 and Pearson's r=-0.2716) demonstrated no correlation between perception of preparation and GPA. Students reported various themes that helped or hindered their perception of academic success once at the collegiate level. Those themes that reportedly helped students were preparedness, different types of learning, and teacher qualities. Students reported in a post-hoc experience that more lab time, rigorous coursework, better teachers, and better study techniques helped prepare them for academic success at the collegiate level. Students further reported on qualities of teachers and teaching that helped foster their academic abilities at the collegiate level, including teacher knowledge, caring, teaching style, and expectations. Some reasons for taking high-level science courses in high school include boosting GPA, college credit, challenge, and getting into better colleges.

  2. EFFECTIVENESS OF QUIZ TEAM AND MURDER METHOD ON LEARNING ACTIVITIES AND PROBLEM SOLVING SKILLS IN SOCIAL SCIENCE LEARNING FOR 8th GRADE STUDENTS AT UPI LABORATORY JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Darwanti Darwanti

    2017-06-01

    Full Text Available There are three objectives that shape the study, first, the study is aimed at identifying different problem-solving skills of the students' who were acquainted with quiz team, lecture and MURDER method. Secondly, the study is to point out the difference of students' problem-solving skills when they are exposed to the three methods in a high, moderate, and low intensity. The third objective is to determine interactions among learning methods, learning activities and problem-solving skills. Quasi experiment is used as a method of the study by applying two experiment classes, and one controlled factorial designed class. In analyzing the data, a two-way Anova analysis and variants analysis are implemented to measure the interaction level among the three variables. The results of the study indicate that (1 there are differences in students' problem-solving skills who were exposed to quiz team, lecture and MURDER method; (2 there are also differences in students' problem-solving skills when they were exposed by the mentioned methods in a high, moderate, and low intensity; there are no relevant interactions among learning methods, learning activities and problem-solving skills. The current results are presented such that they can be used as an aid to the methods of social science learning.

  3. NGSS-Aligned, K-12 Climate Science Curricula, taught with citizen science and teacher-led inquiry methods

    Science.gov (United States)

    Zainfeld, S.

    2017-12-01

    Teacher-led inquiry into student learning is a promising method of formative assessment to gain insight into student achievement. NGSS-aligned K-12 Climate Science curricula taught with citizen science and teacher-led inquiry methods are described, along with results from a scientist-teacher collaboration survey.

  4. Uncovering student ideas in physical science

    CERN Document Server

    Keeley, Page

    2014-01-01

    If you and your students can't get enough of a good thing, Volume 2 of Uncovering Student Ideas in Physical Science is just what you need. The book offers 39 new formative assessment probes, this time with a focus on electric charge, electric current, and magnets and electromagnetism. It can help you do everything from demystify electromagnetic fields to explain the real reason balloons stick to the wall after you rub them on your hair.

  5. Individual Difference Predictors of Creativity in Art and Science Students

    Science.gov (United States)

    Furnham, Adrian; Batey, Mark; Booth, Tom W.; Patel, Vikita; Lozinskaya, Dariya

    2011-01-01

    Two studies are reported that used multiple measures of creativity to investigate creativity differences and correlates in arts and science students. The first study examined Divergent Thinking fluency, Self-Rated Creativity and Creative Achievement in matched groups of Art and Science students. Arts students scored higher than Science students on…

  6. Student-Life Stress Level and its Related Factors among Medical Students of Hamadan University of Medical Sciences in 2015

    OpenAIRE

    Roya Nikanjam; Majid Barati; Saeed Bashirian*; Mohammad Babamiri; Ali Fattahi; Alireza Soltanian

    2016-01-01

    Background and Objectives: Student-life stress can lead to various negative consequences such as physical illness, mental disorders or exhaustion. The present study was conducted to evaluate the level of student life stress and its related factors among medical students of Hamadan University of Medical Sciences. Materials and Methods: This cross-sectional study applied multistage random sampling to select 500university students at Hamadan University of Medical Sciences during 2015. The dat...

  7. Student questions in urban middle school science communities of practice

    Science.gov (United States)

    Groome, Meghan

    This dissertation examines student questions within three Communities of Practice (CoP), all urban middle school science environments. The study analyzed student questions from a sociocultural perspective and used ethnographic research techniques to detail how the CoP's shaped questions in the classroom. In the first study, two case study girls attempted to navigate questioning events that required them to negotiation participation. Their access to participation was blocked by participation frameworks that elevated some students as "gatekeepers" while suppressing the participation of others. The next two studies detail the introduction of written questioning opportunities, one into a public middle school classroom and the other into an informal classroom. In both studies, students responded to the interventions differently, most notable the adoption of the opportunity by female students who do not participate orally. Dissertation-wide findings indicate all students were able to ask questions, but varied in level of cognitive complexity, and the diagnostic interventions were able to identify students who were not known to be "target students", students who asked a high number of questions and were considered "interested in science". Some students' roles were as "gatekeepers" to participation of their peers. Two out of three teachers in the studies reported major shifts in their teaching practice due to the focus on questions and the methods used here have been found to be effective in producing educational research as well as supporting high-need classrooms in prior research. In conclusion, these studies indicate that social factors, including participation frameworks, gender dynamics, and the availability of alternative participation methods, play an important role in how students ask science-related questions. It is recommended that researchers continue to examine social factors that reduce student questions and modify their teaching strategies to facilitate

  8. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  9. Students Explaining Science--Assessment of Science Communication Competence

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2013-01-01

    Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is…

  10. Comparative Study of the Effect of Three Teaching Methods of Group, Personal (Face-to-Face, and Compact Disc on Correcting the Pronunciation and Reading of the Prayer in the Students of Qom University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Shabanali Khansanami

    2013-07-01

    Full Text Available Background and Objectives: Emphasis is placed on the correction of reading the prayer as an important precept in Islamic culture, and it is essential to use an effective teaching method to promote the status of reading the prayers in youth. This study was conducted with the aim of comparing the effect of the methods of group teaching, personal (face-to-face teaching and using compact disc (CD on correcting the pronunciation and reading of the prayer in the students of Qom University of Medical Sciences in 2011.Methods: This semi-experimental study was done on the students of the Faculty of Nursery and Midwifery of Qom University of Medical Sciences. The samples were randomly assigned into three groups, and the number of students in each group was 22. A checklist of reading mistakes was completed before the intervention, and then, teaching content was given to them in the form of group and face-to-face teaching and CD. In the following, reading mistakes of the students’ prayer were recorded one month after intervention. Data was analyzed using descriptive statistics, and Kruskal–Wallis and Wilcoxon tests at a significance level of p0.05.Conclusion: Based on the findings of this study, the effect of teaching methods of group, personal, and CD was the same in correcting the students’ reading of the prayer. Therefore, it is suggested that considering the students’ interest and current circumstances, various methods could be used for correction of the students’ reading of the prayer.

  11. Interteach and Student Engagement in Political Science

    Science.gov (United States)

    Slagter, Tracy H.; Scribner, Druscilla L.

    2014-01-01

    "Interteach" is a method of guided discussion and feedback developed by Thomas Boyce and Philip Hineline in 2002. This method, primarily used in the psychology classroom, encourages greater student engagement and responsibility for learning by requiring extensive student preparation, peer-to-peer instruction, and peer evaluation. How can…

  12. Ciencias 1. (Science 1). [Student's Workbook].

    Science.gov (United States)

    Raposo, Lucilia

    Ciencias 1 is the first in a series of science books designed for elementary Portuguese-speaking students. The book contains five sections divided into 43 lessons. The five sections are (1) Matter, (2) The Human Body, (3) Weather, (4) Solids, Liquids, and Gases, and (5) Living Things. Pictorial presentations and picture exercises are included for…

  13. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  14. Student Leadership in Small Group Science Inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-01-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of…

  15. Infuriating Tensions: Science and the Medical Student.

    Science.gov (United States)

    Bishop, J. Michael

    1984-01-01

    Contemporary medical students, it is suggested, view science in particular and the intellect in general as difficult allies at best. What emerges are physicians without inquiring minds, physicians who bring to the bedside not curiosity and a desire to understand but a set of reflexes. (MLW)

  16. Science Education for Students with Special Needs

    Science.gov (United States)

    Villanueva, Mary Grace; Taylor, Jonte; Therrien, William; Hand, Brian

    2012-01-01

    Students with special needs tend to show significantly lower achievement in science than their peers. Reasons for this include severe difficulties with academic skills (i.e. reading, math and writing), behaviour problems and limited prior understanding of core concepts background knowledge. Despite this bleak picture, much is known on how to…

  17. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  18. Work Values of Mortuary Science Students

    Science.gov (United States)

    Shaw, Thomas; Duys, David K.

    2005-01-01

    This article describes a descriptive study in an area significantly lacking validation. The focus of the study was the work values held by mortuary science students from 3 educational programs in the Midwest. The Values Scale (D. Nevill & D. Super, 1989) was used to measure the career-related values of a sample group of 116. According to…

  19. Meteorology and Climate Inspire Secondary Science Students

    Science.gov (United States)

    Charlton-Perez, Andrew; Dacre, Helen; Maskell, Kathy; Reynolds, Ross; South, Rachel; Wood, Curtis

    2010-01-01

    As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was "How do we predict weather and climate?" Making use of the students' familiarity with weather and climate, several concepts of relevance to secondary…

  20. An Investigation of the Effects of Authentic Science Experiences Among Urban High School Students

    Science.gov (United States)

    Chapman, Angela

    Providing equitable learning opportunities for all students has been a persistent issue for some time. This is evident by the science achievement gap that still exists between male and female students as well as between White and many non-White student populations (NCES, 2007, 2009, 2009b) and an underrepresentation of female, African-American, Hispanic, and Native Americans in many science, technology, engineering, and mathematics (STEM) related careers (NCES, 2009b). In addition to gender and ethnicity, socioeconomic status and linguistic differences are also factors that can marginalize students in the science classroom. One factor attributed to the achievement gap and low participation in STEM career is equitable access to resources including textbooks, laboratory equipment, qualified science teachers, and type of instruction. Extensive literature supports authentic science as one way of improving science learning. However, the majority of students do not have access to this type of resource. Additionally, extensive literature posits that culturally relevant pedagogy is one way of improving education. This study examines students' participation in an authentic science experience and argues that this is one way of providing culturally relevant pedagogy in science classrooms. The purpose of this study was to better understand how marginalized students were affected by their participation in an authentic science experience, within the context of an algae biofuel project. Accordingly, an interpretivist approach was taken. Data were collected from pre/post surveys and tests, semi-structured interviews, student journals, and classroom observations. Data analysis used a mixed methods approach. The data from this study were analyzed to better understand whether students perceived the experience to be one of authentic science, as well as how students science identities, perceptions about who can do science, attitudes toward science, and learning of science practices

  1. Students Inspiring Students: An Online Tool for Science Fair Participants

    Science.gov (United States)

    Seeman, Jeffrey I.; Lawrence, Tom

    2011-01-01

    One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…

  2. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  3. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  4. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  5. The key factors affecting students' individual interest in school science lessons

    Science.gov (United States)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The present study aimed to address this gap, using a mixed methods design. Qualitative interview data were collected from 60 Hong Kong junior secondary school students, who were asked to describe the nature of their interest in science lessons and the factors to which they attribute this. Teacher interviews, parent interviews, and classroom observations were conducted to triangulate student interview data. Five factors affecting students' individual interest in school science lessons were identified: situational influences in science lessons, individual interest in science, science self-concept, grade level, and gender. Quantitative data were then collected from 591 students using a questionnaire. Structural equation modelling was applied to test a hypothesised model, which provided an acceptable fit to the student data. The strongest factor affecting students' individual interest in school science lessons was science self-concept, followed by individual interest in science and situational influences in science lessons. Grade level and gender were found to be nonsignificant factors. These findings suggest that teachers should pay special attention to the association between academic self-concept and interest if they want to motivate students to learn science at school.

  6. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    Science.gov (United States)

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  7. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    Science.gov (United States)

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  8. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  9. Science Student Role: Evidence of Social Structural Norms Specific to School Science

    Science.gov (United States)

    Shanahan, Marie-Claire; Nieswandt, Martina

    2011-01-01

    Sociocultural studies of science education have consistently recognized the dialectic nature of students' agency to create and author positions for themselves and the structural constraints that may influence them. This mixed-methods study explores one particular aspect of these potential constraints: the possibility of a social structure specific…

  10. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students' Science Pursuit

    Science.gov (United States)

    Jackson, Matthew C.; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B.

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life…

  11. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  12. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  13. Science knowledge and cognitive strategy use among culturally and linguistically diverse students

    Science.gov (United States)

    Lee, Okhee; Fradd, Sandra H.; Sutman, Frank X.

    Science performance is determined, to a large extent, by what students already know about science (i.e., science knowledge) and what techniques or methods students use in performing science tasks (i.e., cognitive strategies). This study describes and compares science knowledge, science vocabulary, and cognitive strategy use among four diverse groups of elementary students: (a) monolingual English Caucasian, (b) African-American, (c) bilingual Spanish, and (d) bilingual Haitian Creole. To facilitate science performance in culturally and linguistically congruent settings, the study included student dyads and teachers of the same language, culture, and gender. Science performance was observed using three science tasks: weather phenomena, simple machines, and buoyancy. Data analysis involved a range of qualitative methods focusing on major themes and patterns, and quantitative methods using coding systems to summarize frequencies and total scores. The findings reveal distinct patterns of science knowledge, science vocabulary, and cognitive strategy use among the four language and culture groups. The findings also indicate relationships among science knowledge, science vocabulary, and cognitive strategy use. These findings raise important issues about science instruction for culturally and linguistically diverse groups of students.Received: 3 January 1995;

  14. A student's guide to numerical methods

    CERN Document Server

    Hutchinson, Ian H

    2015-01-01

    This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introdu...

  15. Lifestyle of health sciences students at Majmaah University, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Fahad Alfhaid

    2017-02-01

    Full Text Available Background We all want to live a long, happy and healthy life with an abundance of energy and vitality to perform well both mentally and physically. A healthy lifestyle is a valuable resource for reducing the incidence and impact of health problems, enabling you better to cope with life stressors, as well as improving your quality of life. Aims The study was aimed to assess the lifestyle (eating habits and physical activity of health sciences students studying at Majmaah University. Methods This cross-sectional institutional based study was conducted from 25th November 2014-3rd May 2015. A total of 450 students (370 males and 80 females aged between 18–28 years were randomly chosen. Self-reported questionnaire was used for data collection from the College of Medicine, College of Applied Medical Sciences and College of Dentistry. Results Majority of the students, 62.4 per cent, were physically inactive. Students from the College of Medicine, 40.4 per cent, were the most physically active. The most common reason that restrained the students from being active was time limitation. In addition to that, many of the participants, 29.6 per cent, have never had breakfast at home. Also, most of the participants, 42.7 per cent, were not satisfied with their eating habits. Almost one quarter of students were consuming soft drinks more than four times a day. Conclusion There is a high prevalence of sedentary lifestyle, physical inactivity and unhealthy dietary habits among health sciences students studying at Majmaah University. There is an urgent need for arranging health education programs for promoting healthy and active living among health sciences students of Majmaah University in Saudi Arabia.

  16. Teachers' Views about Science and Technology Lesson Effects on the Development of Students' Entrepreneurship Skills

    Science.gov (United States)

    Bacanak, Ahmet

    2013-01-01

    The purpose of this study was to determine the views of science and technology teachers about the effects of 6th, 7th and 8th grade science and technology courses on students' entrepreneurship skills. In the study, phenomenographic method was used and data were collected through a semi-structured interview method with 8 questions. 5 science and…

  17. Qualities of effective secondary science teachers: Perspectives of university biology students

    Science.gov (United States)

    McCall, Madelon J.

    This research was an attempt to hear the student voice concerning secondary science teacher effectiveness and to share that voice with those who impact the educational process. It was a snapshot of university freshmen biology students' opinions of the qualities of effective secondary science teachers based on their high school science experiences. The purpose of this study was to compile a list of effective secondary science teacher qualities as determined through a purposeful sampling of university second semester biology students and determine the role of the secondary science teacher in promoting interest and achievement in science, as well as the teacher's influence on a students' choice of a science career. The research was a mixed methods design using both quantitative and qualitative data obtained through the use of a 24 question electronic survey. There were 125 participants who provided information concerning their high school science teachers. Respondents provided information concerning the qualities of effective secondary science teachers and influences on the students' present career choice. The quantitative data was used to construct a hierarchy of qualities of effective secondary science teachers, divided into personal, professional, and classroom management qualities. The qualitative data was used to examine individual student responses to questions concerning secondary science teacher effectiveness and student career choice. The results of the research indicated that students highly value teachers who are both passionate about the subject taught and passionate about their students. High school science students prefer teachers who teach science in a way that is both interesting and relevant to the student. It was determined that the greatest influence on a secondary student's career choice came from family members and not from teachers. The secondary teacher's role was to recognize the student's interest in the career and provide encouragement

  18. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    Science student teacher's perceptions of good teaching. ... of 50 senior students enrolled in the Bachelor of Education (Further Education and Training ... and teaching strategies employed are perceived to influence what students perceived as ...

  19. Cooperative Learning and Learning Achievement in Social Science Subjects for Sociable Students

    Science.gov (United States)

    Herpratiwi; Darsono; Sasmiati; Pujiyatli

    2018-01-01

    Purpose: The research objective was to compare students' learning achievement for sociable learning motivation students in social science (IPS) using cooperative learning. Research Methods: This research used a quasi-experimental method with a pre-test/post-test design involving 35 fifth-grade students. The learning process was conducted four…

  20. Method in the physical sciences

    CERN Document Server

    Schlesinger, G

    2014-01-01

    Originally published in 1963. Can one discern certain regularities in the manoeuvrings and techniques employed by scientists and can these be formulated into the methodological principles of science? What is the origin and basis of such principles? Are they imposed by objective realities, do they derive from conceptual necessities or are they rooted in our own deep seated predilections? This volume investigates these questions and sheds light on the growth mechanism of the evolving structure of science itself.

  1. The effect of technology on student science achievement

    Science.gov (United States)

    Hilton, June Kraft

    2003-10-01

    Prior research indicates that technology has had little effect on raising student achievement. Little empirical research exists, however, studying the effects of technology as a tool to improve student achievement through development of higher order thinking skills. Also, prior studies have not focused on the manner in which technology is being used in the classroom and at home to enhance teaching and learning. Empirical data from a secondary school representative of those in California were analyzed to determine the effects of technology on student science achievement. The quantitative analysis methods for the school data study included a multiple linear path analysis, using final course grade as the ultimate exogenous variable. In addition, empirical data from a nationwide survey on how Americans use the Internet were disaggregated by age and analyzed to determine the relationships between computer and Internet experience and (a) Internet use at home for school assignments and (b) more general computer use at home for school assignments for school age children. Analysis of data collected from the a "A Nation Online" Survey conducted by the United States Census Bureau assessed these relationships via correlations and cross-tabulations. Finally, results from these data analyses were assessed in conjunction with systemic reform efforts from 12 states designed to address improvements in science and mathematics education in light of the Third International Mathematics and Science Survey (TIMSS). Examination of the technology efforts in those states provided a more nuanced understanding of the impact technology has on student achievement. Key findings included evidence that technology training for teachers increased their use of the computer for instruction but students' final science course grade did not improve; school age children across the country did not use the computer at home for such higher-order cognitive activities as graphics and design or spreadsheets

  2. The Implementation of Pedagogical Content Knowledge (PCK based Guided Inquiry on Science Teacher Students

    Directory of Open Access Journals (Sweden)

    Lulu Tunjung Biru

    2018-05-01

    Full Text Available The aim of this study is examining the learning of Integrated Sciences through PCK based guided inquiry on prospective science teacher students. This research method was descriptive qualitative involving 33 science teacher students who taking Integrated Science 1 Subject in academic year 2016/2017. The research instrument used was the observation sheet to know the implementation PCK based guided inquiry. The results showed that the implementation of the activities of lecturer and science teacher students during the learning process using PCK based guided inquiry was very good conducted.

  3. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  4. Factors that Influence Community College Students' Interest in Science Coursework

    Science.gov (United States)

    Sasway, Hope

    There is a need for science education research that explores community college student, instructor, and course characteristics that influence student interest and motivation to study science. Increasing student enrollment and persistence in STEM is a national concern. Nearly half of all college graduates have passed through a community college at some point in their higher education. This study at a large, ethnically diverse, suburban community college showed that student interest tends to change over the course of a semester, and these changes are related to student, instructor, and course variables. The theoretical framework for this study was based upon Adult Learning Theory and research in motivation to learn science. Adult Learning Theory relies heavily on self-directed learning and concepts of andragogy, or the art and science of teaching adults. This explanatory sequential mixed-methods case study of student course interest utilized quantitative data from 639 pre-and post-surveys and a background and personal experience questionnaire. The four factors of the survey instrument (attention, relevance, confidence, and satisfaction) were related to motivation and interest by interviewing 12 students selected through maximum variation sampling in order to reach saturation. Qualitative data were collected and categorized by these factors with extrinsic and intrinsic themes emerging from personal and educational experiences. Analysis of covariance showed student characteristics that were significant included age and whether the student already held a post-secondary degree. Significant instructor characteristics included whether the instructor taught full- or part-time, taught high school, held a doctoral degree, and had pedagogical training. Significant course characteristics included whether the biology course was a major, elective, or service course; whether the course had a library assignment; and high attrition rate. The binary logistic regression model showed

  5. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  6. Humanities Research Methods in a Liberal Arts and Science Programme

    NARCIS (Netherlands)

    Andeweg, A.; Slob, Daphne

    2017-01-01

    The humanities research methods course at University College Utrecht is one of the graduation requirements for students who major in a humanities discipline, in law, or in politics. There are several challenges to the design of such a course in a Liberal Arts and Sciences (LA&S) context. In our

  7. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  8. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  9. College Student Perceptions of Psychology as a Science as a Function of Psychology Course Enrollment

    Science.gov (United States)

    Pettijohn, Terry F., II; Pettijohn, Terry F.; Brenneman, Miranda M.; Glass, Jamie N.; Brito, Gabriela R.; Terranova, Andrew M.; Kim, JongHan; Meyersburg, C. A.; Piroch, Joan

    2015-01-01

    College students (N = 297) completed a perceptions of psychology as a science survey before and after completion of psychology courses. Psychology as a science scores increased significantly from the beginning to the end of the research methods courses, but scores in introductory psychology courses did not change and scores for students in…

  10. Examining student-generated questions in an elementary science classroom

    Science.gov (United States)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  11. Students' Awareness of Science Teachers' Leadership, Attitudes toward Science, and Positive Thinking

    Science.gov (United States)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-01-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students'…

  12. The Impact of Science Fiction Films on Student Interest in Science

    Science.gov (United States)

    Laprise, Shari; Winrich, Chuck

    2010-01-01

    Science fiction films were used in required and elective nonmajor science courses as a pedagogical tool to motivate student interest in science and to reinforce critical thinking about scientific concepts. Students watched various films and critiqued them for scientific accuracy in written assignments. Students' perception of this activity was…

  13. Historical short stories as nature of science instruction in secondary science classrooms: Science teachers' implementation and students' reactions

    Science.gov (United States)

    Reid-Smith, Jennifer Ann

    This study explores the use of historical short stories as nature of science (NOS) instruction in thirteen secondary science classes. The stories focus on the development of science ideas and include statements and questions to draw students' and teachers' attention to key NOS ideas and misconceptions. This study used mixed methods to examine how teachers implement the stories, factors influencing teachers' implementation, the impact on students' NOS understanding, students' interest in the stories and factors correlated with their interest. Teachers' implementation decisions were influenced by their NOS understanding, curricula, time constraints, perceptions of student ability and resistance, and student goals. Teachers implementing stories at a high-level of effectiveness were more likely to make instructional decisions to mitigate constraints from the school environment and students. High-level implementers frequently referred to their learning goals for students as a rationale for implementing the stories even when facing constraints. Teachers implementing at a low-level of effectiveness were more likely to express that constraints inhibited effective implementation. Teachers at all levels of implementation expressed concern regarding the length of the stories and time required to fully implement the stories. Additionally, teachers at all levels of implementation expressed a desire for additional resources regarding effective story implementation and reading strategies. Evidence exists that the stories can be used to improve students' NOS understanding. However, under what conditions the stories are effective is still unclear. Students reported finding the stories more interesting than textbook readings and many students enjoyed learning about scientists and the development of science idea. Students' interest in the stories is correlated with their attitudes towards reading, views of effective science learning, attributions of academic success, and interest in

  14. Teaching Graduate Students The Art of Science

    Science.gov (United States)

    Snieder, Roel; Larner, Ken; Boyd, Tom

    2012-08-01

    Graduate students traditionally learn the trade of research by working under the supervision of an advisor, much as in the medieval practice of apprenticeship. In practice, however, this model generally falls short in teaching students the broad professional skills needed to be a well-rounded researcher. While a large majority of graduate students considers professional training to be of great relevance, most graduate programs focus exclusively on disciplinary training as opposed to skills such as written and oral communication, conflict resolution, leadership, performing literature searches, teamwork, ethics, and client-interaction. Over the past decade, we have developed and taught the graduate course "The Art of Science", which addresses such topics; we summarize the topics covered in the course here. In order to coordinate development of professional training, the Center for Professional Education has been founded at the Colorado School of Mines. After giving an overview of the Center's program, we sketch the challenges and opportunities in offering professional education to graduate students. Offering professional education helps create better-prepared graduates. We owe it to our students to provide them with such preparation.

  15. Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes

    Science.gov (United States)

    Kapici, Hasan Özgür; Akçay, Hakan

    2016-01-01

    It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…

  16. Popular Science Writing Bringing New Perspectives into Science Students' Theses

    Science.gov (United States)

    Pelger, Susanne

    2018-01-01

    This study analyses which perspectives occur in science students' texts at different points in time during the process of writing a popular science article. The intention is, thus, to explore how popular science writing can help students discover and discuss different perspectives on science matter. For this purpose, texts written by 12 bachelor…

  17. Studying Students' Science Literacy: Non-Scientific Beliefs and Science Literacy Measures

    Science.gov (United States)

    Impey, C.; Buxner, S.

    2015-11-01

    We have been conducting a study of university students' science literacy for the past 24 years. Based on the work of the National Science Board's ongoing national survey of the US public, we have administered the same survey to undergraduate science students at the University of Arizona almost every year since 1989. Results have shown relatively little change in students' overall science literacy, descriptions of science, and knowledge of basic science topics for almost a quarter of a century despite an increase in education interventions, the rise of the internet, and increased access to knowledge. Several trends do exist in students' science literacy and descriptions of science. Students who exhibit beliefs in non-scientific phenomenon (e.g., lucky numbers, creationism) consistently have lower science literacy scores and less correct descriptions of scientific phenomenon. Although not surprising, our results support ongoing efforts to help students generate evidence based thinking.

  18. Do Interactive Globes and Games Help Students Learn Planetary Science?

    Science.gov (United States)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  19. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    Science.gov (United States)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  20. Internship training in computer science: Exploring student satisfaction levels.

    Science.gov (United States)

    Jaradat, Ghaith M

    2017-08-01

    The requirement of employability in the job market prompted universities to conduct internship training as part of their study plans. There is a need to train students on important academic and professional skills related to the workplace with an IT component. This article describes a statistical study that measures satisfaction levels among students in the faculty of Information Technology and Computer Science in Jordan. The objective of this study is to explore factors that influence student satisfaction with regards to enrolling in an internship training program. The study was conducted to gather student perceptions, opinions, preferences and satisfaction levels related to the program. Data were collected via a mixed method survey (surveys and interviews) from student-respondents. The survey collects demographic and background information from students, including their perception of faculty performance in the training poised to prepare them for the job market. Findings from this study show that students expect internship training to improve their professional and personal skills as well as to increase their workplace-related satisfaction. It is concluded that improving the internship training is crucial among the students as it is expected to enrich their experiences, knowledge and skills in the personal and professional life. It is also expected to increase their level of confidence when it comes to exploring their future job opportunities in the Jordanian market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Factors Influencing Achievement in Undergraduate Social Science Research Methods Courses: A Mixed Methods Analysis

    Science.gov (United States)

    Markle, Gail

    2017-01-01

    Undergraduate social science research methods courses tend to have higher than average rates of failure and withdrawal. Lack of success in these courses impedes students' progression through their degree programs and negatively impacts institutional retention and graduation rates. Grounded in adult learning theory, this mixed methods study…

  2. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  3. Next Generation Science Standards: All Standards, All Students

    Science.gov (United States)

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  4. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  5. Students' Regulation of Their Emotions in a Science Classroom

    Science.gov (United States)

    Tomas, Louisa; Rigano, Donna; Ritchie, Stephen M.

    2016-01-01

    Research aimed at understanding the role of the affective domain in student learning in classrooms has undergone a recent resurgence due to the need to understand students' affective response to science instruction. In a case study of a year 8 science class in North Queensland, students worked in small groups to write, film, edit, and produce…

  6. Comparison of Sports Sciences and Education Faculty Students' Aggression Scores

    Science.gov (United States)

    Atan, Tülin

    2016-01-01

    The aim of this study was to compare the aggression scores of Sports Sciences Faculty and Education Faculty students and also to examine the effects of some demographic variables on aggression. Two hundred Sports Sciences Faculty students (who engage in sporting activities four days a week for two hours) and 200 Education Faculty students (who do…

  7. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  8. Midwest Science Festival: Exploring Students' and Parents' Participation in and Attitudes Toward Science.

    Science.gov (United States)

    Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M

    2016-08-01

    Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.

  9. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    Science.gov (United States)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science

  10. Pre-Service Teachers Methods of Teaching Science

    Directory of Open Access Journals (Sweden)

    Dr. Raquel C. Pambid

    2015-02-01

    Full Text Available The study described the teaching methods used by pre-service teachers in Science. It focused on the strategies, techniques, materials, innovative methods and pattern of teaching science used by the pre-service teachers as described in their lesson plans. The qualitative and quantitative design was used in the study. The books, teacher hand-outs from classroom lectures were the sources of methods, strategies and techniques. The chalkboard and self-made drawings and charts were the materials often used. Conventional methods like lecture, open class discussion and demonstration were commonly employed. The strategies included group discussion, use of motivating questions and stories to arouse the interest of students. The direct eye contact, body expressions, jokes and news/trivia were frequent techniques. Integration of values in the lesson became less as the year level increases. The pattern of teaching drawn followed the formal style: I Objectives, II Subject matter, III Learning Tasks, IV Synthesis of the lesson, V Assessment and VI Enrichment. The conventional method and pattern of teaching by the pre-service teachers of PSU suggest that students in the College of Teacher Education should be trained to be more innovative and open in trying out more advanced teaching methods. Furthermore, PSU science pre-service teachers should use methods which can develop higher order thinking skills among high school students.

  11. Strategic Note-Taking for Middle-School Students with Learning Disabilities in Science Classes

    Science.gov (United States)

    Boyle, Joseph R.

    2010-01-01

    While today's teachers use a variety of teaching methods in middle-school science classes, lectures and note-taking still comprise a major portion of students' class time. To be successful in these classes, middle-school students need effective listening and note-taking skills. Students with learning disabilities (LD) are poor note-takers, which…

  12. Activation of Students with Various Teaching Methods

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2011-01-01

    A group of teaching methodes to active engineer students have been tried out. The methodes are developed based on the Pedagogical Cyclic Workflow (PCW). Comparing with earlier evaluation, positive feedback is achieved among the students.......A group of teaching methodes to active engineer students have been tried out. The methodes are developed based on the Pedagogical Cyclic Workflow (PCW). Comparing with earlier evaluation, positive feedback is achieved among the students....

  13. How the nature of science is presented to elementary students in science read-alouds

    Science.gov (United States)

    Rivera, Seema

    Students as early as elementary school age are capable of learning the aspects of the nature of science (NOS), and the National Benchmarks incorporate the NOS as part of the learning objectives for K--2 students. Learning more about elementary science instruction can aid in understanding how the NOS can be taught or potentially integrated into current teaching methods. Although many teaching methods exist, this study will focus on read-alouds because they are recommended for and are very common in elementary schools. The read-aloud practice is particularly helpful to young students because most of these students have a higher listening comprehension than reading comprehension. One of the main components of the read-aloud practice is the discourse that takes place about the trade book. Both explicit and implicit messages are communicated to students by teachers' language and discussion that takes place in the classroom. Therefore, six multisite naturalistic case studies were conducted to understand elementary teachers' understanding of the NOS, students' understandings of the NOS, trade book representations of the NOS, and read-aloud practices and understandings in upstate New York. The findings of the study revealed that teachers and students held mostly naive and mixed understandings of the NOS. The trade books that had explicit connections to the NOS helped teachers discuss NOS related issues, even when the teachers did not hold strong NOS views. Teachers who held more informed NOS views were able to ask students NOS related questions. All teachers showed they need guidance on how to translate their NOS views into discussion and see the significance of the NOS in their classroom. Explicit NOS instruction can improve student understanding of the NOS, however the focus should be not only on teachers and their NOS understanding but also on the books used. These results show that quality trade books with explicit connections to the NOS are a useful instructional tool

  14. Science writing heurisitc: A writing-to-learn strategy and its effect on student's science achievement, science self-efficacy, and scientific epistemological view

    Science.gov (United States)

    Caukin, Nancy S.

    The purpose of this mixed-methods study was to determine if employing the writing-to-learn strategy known as a "Science Writing Heuristic" would positively effect students' science achievement, science self-efficacy, and scientific epistemological view. The publications Science for All American, Blueprints for Reform: Project 2061 (AAAS, 1990; 1998) and National Science Education Standards (NRC 1996) strongly encourage science education that is student-centered, inquiry-based, active rather than passive, increases students' science literacy, and moves students towards a constructivist view of science. The capacity to learn, reason, problem solve, think critically and construct new knowledge can potentially be experienced through writing (Irmscher, 1979; Klein, 1999; Applebee, 1984). Science Writing Heuristic (SWH) is a tool for designing science experiences that move away from "cookbook" experiences and allows students to design experiences based on their own ideas and questions. This non-traditional classroom strategy focuses on claims that students make based on evidence, compares those claims with their peers and compares those claims with the established science community. Students engage in reflection, meaning making based on their experiences, and demonstrate those understandings in multiple ways (Hand, 2004; Keys et al, 1999, Poock, nd.). This study involved secondary honors chemistry students in a rural prek-12 school in Middle Tennessee. There were n = 23 students in the group and n = 8 in the control group. Both groups participated in a five-week study of gases. The treatment group received the instructional strategy known as Science Writing Heuristic and the control group received traditional teacher-centered science instruction. The quantitative results showed that females in the treatment group outscored their male counterparts by 11% on the science achievement portion of the study and the males in the control group had a more constructivist scientific

  15. The Black Cultural Ethos and science teachers' practices: A case study exploring how four high school science teachers meet their African American students' needs in science

    Science.gov (United States)

    Strachan, Samantha L.

    The underachievement of African American students in science has been a persistent problem in science education. The achievement patterns of African American students indicate that researchers must take a closer look at the types of practices that are being used to meet these students' needs in science classrooms. Determining why science teachers decide to employ certain practices in their classrooms begins with a careful examination of teachers' beliefs as well as their instructional approaches. The purpose of this study was to explore four urban high school science teachers' beliefs about their African American students' learning needs and to investigate how these teachers go about addressing students' needs in science classrooms. This research study also explored the extent to which teachers' practices aligned with the nine dimensions of an established cultural instructional theory, namely the Black Cultural Ethos. Qualitative research methods were employed to gather data from the four teachers. Artifact data were collected from the teachers and they were interviewed and observed. Believing that their students had academic-related needs as well as needs tied to their learning preferences, the four science teachers employed a variety of instructional strategies to meet their students where they were in learning. Overall, the instructional strategies that the teachers employed to meet their students' needs aligned with five of the nine tenets of the Black Cultural Ethos theory.

  16. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  17. Using graphic organizers to enhance students' science vocabulary and comprehension of nonfiction science text

    Science.gov (United States)

    Buchanan, Edna

    The purpose of this research was to investigate the effectiveness of Frayer Model and the Hierarchical Organizer as a literacy strategy to improve ninth grade students' science vocabulary and comprehension of non-fictions text in Environmental Science course. The study implemented a sequential explanatory methodology design that included quantitative and qualitative instruments. The research sample consisted of one hundred and two (102) high school environmental science students entering the ninth grade for the first time. The two treatment groups each consisted of thirty-five (35) students, and the control group consisted of 32 students. Treatment group one used the Frayer Model; treatment group two used Hierarchical Organizer and the control group used the traditional teaching methods without the use of a graph organizer. The investigator taught both treatment groups and the control group to ensure reliability. The two treatment groups were taught using graphic organizers as the main lesson plan tool and the control group was taught using guided notes lecture with PowerPoint. A pretest and post-test were administered to each student. Student test scores were evaluated to determine whether knowledge gains differed between the treatment groups and the control group. It was found that the use of graphic organizer instruction was significantly better for student achievement when compared to the use of PowerPoint instruction and that there was much more interaction between student and teacher during the graphic organizer lessons. The delivery of the lesson by the use of graphic organizers seemed to promote more success than the use of the PowerPoint and lecture.

  18. The Perceptions of Elementary School Teachers Regarding Their Efforts to Help Students Utilize Student-to-Student Discourse in Science

    Science.gov (United States)

    Craddock, Jennifer Lovejoy

    The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse for making meaning of science ideas and b) moving students' conceptual development towards a more scientific understanding of the natural world. Based on those foundations, the three research questions that guided this study examined the value elementary teachers place on student-to-student discourse, the various approaches teachers employ to promote the use of student-to-student discourse for learning science, and the factors and conditions that promote and inhibit the use of student-to-student discourse as an effective pedagogical strategy in elementary science. Data were gathered from 23 elementary teachers in a single district using an on-line survey and follow-up interviews with 8 teachers. All data were analyzed and evolving themes led to the following findings: (1) elementary teachers value student-to-student discourse in science, (2) teachers desire to increase time using student-to-student discourse, (3) teachers use a limited number of student-to-student discourse strategies to increase student learning in science, (4) teachers use student-to-student discourse as formative assessment to determine student learning in science, (5) professional development focusing on approaches to student-to-student discourse develops teachers' capacity for effective implementation, (6) teachers perceive school administrators' knowledge of and support for student-to-student discourse as beneficial, (7) time and scheduling constraints limit the use of student-to-student discourse in science. Implications of this study included the necessity of school districts to focus on student-to-student discourse in science, provide teacher and

  19. Student Attitudes, Student Anxieties, and How to Address Them; A handbook for science teachers

    Science.gov (United States)

    Kastrup, Helge

    2016-02-01

    This book is based on a commitment to teaching science to everybody. What may work for training professional scientists does not work for general science education. Students bring to the classrooms preconceived attitudes, as well as the emotional baggage called 'science anxiety'. Students may regard science as cold, unfriendly, and even inherently hostile and biased against women. This book has been designed to deal with each of these issues and results from research in both Denmark and the USA. The first chapter discusses student attitudes towards science and the second discusses science anxiety. The connection between the two is discussed before the introduction of constructivism as a pedagogy that can aid science learning if it also addresses attitudes and anxieties. Much of the book elucidates what the authors have learned as science teachers and science education researchers. They studied various groups including university students majoring in the sciences, mathematics, humanities, social sciences, business, nursing, and education; high-school students; teachers' seminary students; science teachers at all levels from middle school through college; and science administrators. The insights of these groups constitute the most important feature of the book, and by sharing them, the authors hope to help their fellow science teachers to understand student attitudes about science, to recognize the connections between these and science anxiety, and to see how a pedagogy that takes these into account can improve science learning.

  20. Eliciting physics students mental models via science fiction stories

    International Nuclear Information System (INIS)

    Acar, H.

    2005-01-01

    This paper presents the results of an experiment which investigated the effects of the using science fiction stories in physics lessons. A questionnaire form containing 2 open-ended questions related to Jules Vernes story From the Earth to the Moon was used with 353, 9th and 10th grade students to determine their pre-conceptions about gravity and weightlessness. Mental models explaining students scientific and alternative views were constructed, according to students replies. After these studies, 6 students were interviewed. In this interview, researches were done about whether science fiction stories had an effect on bringing students pre-conceptions related to physics subjects out, on students inquiring their own concepts and on increasing students interest and motivation towards physics subjects. Studies in this research show that science fiction stories have an effect on arousing students interest and curiosity, have a role encouraging students to inquire their own concepts and are effective in making students alternative views come out

  1. Analyzing students' attitudes towards science during inquiry-based lessons

    Science.gov (United States)

    Kostenbader, Tracy C.

    Due to the logistics of guided-inquiry lesson, students learn to problem solve and develop critical thinking skills. This mixed-methods study analyzed the students' attitudes towards science during inquiry lessons. My quantitative results from a repeated measures survey showed no significant difference between student attitudes when taught with either structured-inquiry or guided-inquiry lessons. The qualitative results analyzed through a constant-comparative method did show that students generate positive interest, critical thinking and low level stress during guided-inquiry lessons. The qualitative research also gave insight into a teacher's transition to guided-inquiry. This study showed that with my students, their attitudes did not change during this transition according to the qualitative data however, the qualitative data did how high levels of excitement. The results imply that students like guided-inquiry laboratories, even though they require more work, just as much as they like traditional laboratories with less work and less opportunity for creativity.

  2. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  3. Hookah pipe smoking among health sciences students | van der ...

    African Journals Online (AJOL)

    , especially among South African youth. The extent of this practice among health sciences students, and their knowledge regarding the health risks, are unknown. This is important, as these students will become future health professionals ...

  4. Nuclear science summer school for high scholl students

    International Nuclear Information System (INIS)

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  5. Student-Centered Pedagogy and Real-World Research: Using Documents as Sources of Data in Teaching Social Science Skills and Methods

    Science.gov (United States)

    Peyrefitte, Magali; Lazar, Gillian

    2018-01-01

    This teaching note describes the design and implementation of an activity in a 90-minute teaching session that was developed to introduce a diverse cohort of first-year criminology and sociology students to the use of documents as sources of data. This approach was contextualized in real-world research through scaffolded, student-centered tasks…

  6. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    Science.gov (United States)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  7. Psychological Distress and Sources of Stressors amongst Medical and Science Undergraduate Students in Malaysia

    Directory of Open Access Journals (Sweden)

    Ali S Radeef

    2017-08-01

    Full Text Available Background: This study aims to compare the prevalence of psychological distress between medical and science undergraduate students and to assess the sources of stressors that are attributing to it. Methods: A sample of 697 undergraduate students participated in this study, in which 501 were medical students and the remaining 196 were Science students. Psychological distress was assessed using the 12-item General Health Questionnaire. The students were given a list of possible sources of stress which were chosen depending on previous studies. Results: The overall prevalence of psychological distress was 32.6%. Science students showed a significantly higher rate and mean score of psychological distress than medical students, and the mean score was significantly higher during the clinical phase rather than the pre-clinical phase in medical students. Overall, female students had a significantly higher mean score than males, however although the mean score was higher in females it was only significant in the pre-clinical phase. In addition to academic and psychological stressors, factors such as reduced holidays, lack of time for relaxation, and limitation of leisure/entertainment time were among the top ten stressors reported by the students. Conclusions: Psychological distress is common among university students, and it is higher among science students than medical students. Academic and psychological factors can be considered as sources of stressors which may precipitate psychological distress among college students.

  8. Improving Science Scores of Middle School Students with Learning Disabilities through Engineering Problem Solving Activities

    Science.gov (United States)

    Starling, A. Leyf Peirce; Lo, Ya-Yu; Rivera, Christopher J.

    2015-01-01

    This study evaluated the differential effects of three different science teaching methods, namely engineering teaching kit (ETK), explicit instruction (EI), and a combination of the two methods (ETK+EI), in two sixth-grade science classrooms. Twelve students with learning disabilities (LD) and/or attention deficit hyperactivity disorder (ADHD)…

  9. Developing Preservice Teachers' Self-Efficacy through Field-Based Science Teaching Practice with Elementary Students

    Science.gov (United States)

    Flores, Ingrid M.

    2015-01-01

    Thirty preservice teachers enrolled in a field-based science methods course were placed at a public elementary school for coursework and for teaching practice with elementary students. Candidates focused on building conceptual understanding of science content and pedagogical methods through innovative curriculum development and other course…

  10. Negotiating Discourses: Sixth-Grade Students' Use of Multiple Science Discourses during a Science Fair Presentation

    Science.gov (United States)

    Gomez, Kimberley

    2007-01-01

    This study offers important insights into the coexistence of multiple discourses and the link between these discourses and science understanding. It offers concrete examples of students' movement between multiple discourses in sixth-grade science fair presentations, and shows how those multiple discourses in science practices illuminate students'…

  11. Using History of Science to Teach Nature of Science to Elementary Students

    Science.gov (United States)

    Fouad, Khadija E.; Masters, Heidi; Akerson, Valarie L.

    2015-01-01

    Science lessons using inquiry only or history of science with inquiry were used for explicit reflective nature of science (NOS) instruction for second-, third-, and fourth-grade students randomly assigned to receive one of the treatments. Students in both groups improved in their understanding of creative NOS, tentative NOS, empirical NOS, and…

  12. Investigating University Students' Preferences to Science Communication Skills: A Case of Prospective Science Teacher in Indonesia

    Science.gov (United States)

    Suprapto, Nadi; Ku, Chih-Hsiung

    2016-01-01

    The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…

  13. Training teachers to promote Talent Development in Science Students In Science Education

    NARCIS (Netherlands)

    van der Valk, Ton

    2014-01-01

    In recent years, the interest of governments and schools in challenging gifted and talented (G+T) science students has grown (Taber, 2007). In the Netherlands, the government promotes developing science programmes for talented secondary science students. This causes a need for training teachers, but

  14. Implementation of small group discussion as a teaching method in earth and space science subject

    Science.gov (United States)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  15. Using Experiential Learning Through Science Experiments to Increase the Motivation of Students Classified as Emotionally Disturbed

    Science.gov (United States)

    Crozier, Marisa

    When learning is an adventure rather than an exercise in memorization, students can enjoy the process and be motivated to participate in classroom activities (Clem, Mennicke, & Beasley, 2014). Students classified as emotionally disturbed are prone to disruptive behaviors and struggle learning in a traditional science classroom consisting of lecture and demonstrations. They cannot maintain the necessary level of attention nor have the strong reading, writing or memory skills needed to succeed. Therefore, this study examined whether the use of experiential learning would increase on-task behavior and improve the motivation of emotionally disturbed, middle school students in science. Students completed four hands-on experiments aligned with the science curriculum. The data collection methods implemented were an observation checklist with corresponding journal entries, a summative assessment in the form of lab sheets, and student interviews. Through triangulation and analysis, data revealed that the students had more on-task behaviors, were engaged in the lessons, and improved grades in science.

  16. The perception of science teachers on the role of student relationships in the classroom

    Science.gov (United States)

    Mattison, Cheryl Ann

    With the increased accountability of educators comes the responsibility of the entire educational community to find ways in which we can help our students succeed in the classroom. In addition, it is important to discover what it takes to keep those students in school Many science teachers enter the profession unprepared to handle the regular classroom routine. Classroom management, grading, lesson planning, setting up labs, and the myriad of other obligations, can leave teachers overwhelmed and sometimes can get in the way of actually helping students be successful. This study investigated how science teachers viewed the importance of developing strong teacher/student relationships to the increase of student success in a science classroom. I attempted to answer 4 major questions: · How do science teachers in a select high school community view the role of interactive relationships in their classrooms and how that might impact their students? · How do science teachers in a select high school community believe they establish successful interactive relationships with their students? · What do science teachers in a select high school community believe are some of the outcomes of those relationships? · What do science teachers suggest to increase the teacher's ability to form good relationships with their students? A qualitative research method was used including observations, interviews and group discussions of 5 high school science teachers in a small urban school.

  17. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  18. An Investigation of Students' Personality Traits and Attitudes toward Science

    Science.gov (United States)

    Hong, Zuway-R.; Lin, Huann-shyang

    2011-05-01

    The purposes of this study were to validate an instrument of attitudes toward science and to investigate grade level, type of school, and gender differences in Taiwan's students' personality traits and attitudes toward science as well as predictors of attitudes toward science. Nine hundred and twenty-two elementary students and 1,954 secondary students completed the School Student Questionnaire in 2008. Factor analyses, correlation analyses, ANOVAs, and regressions were used to compare the similarities and differences among male and female students in different grade levels. The findings were as follows: female students had higher interest in science and made more contributions in teams than their male counterparts across all grade levels. As students advanced through school, student scores on the personality trait scales of Conscientiousness and Openness sharply declined; students' scores on Neuroticism dramatically increased. Elementary school and academic high school students had significantly higher total scores on interest in science than those of vocational high and junior high school students. Scores on the scales measuring the traits of Agreeableness, Extraversion, and Conscientiousness were the most significant predictors of students' attitudes toward science. Implications of these findings for classroom instruction are discussed.

  19. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  20. Argumentation in Science Class: Its Planning, Practice, and Effect on Student Motivation

    Science.gov (United States)

    Taneja, Anju

    Studies have shown an association between argumentative discourse in science class, better understanding of science concepts, and improved academic performance. However, there is lack of research on how argumentation can increase student motivation. This mixed methods concurrent nested study uses Bandura's construct of motivation and concepts of argumentation and formative feedback to understand how teachers orchestrate argumentation in science class and how it affects motivation. Qualitative data was collected through interviews of 4 grade-9 science teachers and through observing teacher-directed classroom discourse. Classroom observations allowed the researcher to record the rhythm of discourse by characterizing teacher and student speech as teacher presentation (TP), teacher guided authoritative discussion (AD), teacher guided dialogic discussion (DD), and student initiation (SI). The Student Motivation Towards Science Learning survey was administered to 67 students before and after a class in which argumentation was used. Analysis of interviews showed teachers collaborated to plan argumentation. Analysis of discourse identified the characteristics of argumentation and provided evidence of students' engagement in argumentation in a range of contexts. Student motivation scores were tested using Wilcoxon signed rank tests and Mann-Whitney U-tests, which showed no significant change. However, one construct of motivation---active learning strategy---significantly increased. Quantitative findings also indicate that teachers' use of multiple methods in teaching science can affect various constructs of students' motivation. This study promotes social change by providing teachers with insight about how to engage all students in argumentation.

  1. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    Science.gov (United States)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic

  2. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-05-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the quantitative data while a conceptually clustered matrix classified the open-ended responses. The country effect could explain 3-12 % of the variances of subjectivity, empirical testability and diverse methods, but it was not significant for the concepts of tentativeness and socio-cultural embeddedness of science. The open-ended responses showed that students believed scientific theories change due to errors or discoveries. Students regarded empirical evidence as undeniable and objective although they acknowledged experiments depend on theories or scientists' knowledge. The open responses revealed that national situations and curriculum content affected their views. For our future democratic citizens to gain scientific literacy, science curricula should include currently acknowledged NOS concepts and should be situated within societal and cultural perspectives.

  3. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  4. Moving Beyond Concepts: Getting Urban High School Students Engaged in Science through Cognitive Processes

    Science.gov (United States)

    Singh, Renu

    In order to maintain its global position, the United States needs to increase the number of students opting for science careers. Science teachers face a formidable challenge. Students are not choosing science because they do not think coursework is interesting or applies to their lives. These problems often compound for adolescents in urban areas. This action research investigated an innovation aimed at engaging a group of adolescents in the science learning process through cognitive processes and conceptual understanding. It was hoped that this combination would increase students' engagement in the classroom and proficiency in science. The study was conducted with 28 juniors and sophomores in an Environmental Science class in an urban high school with a student body of 97% minority students and 86% students receiving free and reduced lunch. The study used a mixed-methods design. Instruments included a pre- and post-test, Thinking Maps, transcripts of student discourse, and a two-part Engagement Observation Instrument. Data analysis included basic descriptives and a grounded theory approach. Findings show students became engaged in activities when cognitive processes were taught prior to content. Furthermore it was discovered that Thinking Maps were perceived to be an easy tool to use to organize students' thinking and processing. Finally there was a significant increase in student achievement. From these findings implications for future practice and research are offered.

  5. Depression in Nursing Students of Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    F Rafati

    2004-02-01

    Full Text Available Background: University students are important parts of all educational systems. They are susceptible to different psychiatric disturbances, which in turn may cause considerable problems with their course programs. Depression is among the most important indices for investigation on human mental health status. This research was planed to study the prevalence and characteristics of depression and its consequences (suicidality, hopelessness, etc. in nursing students at Shiraz University of Medical Sciences. Methods: All undergraduate nursing students at Fatemeh College of Nursing and Midwifery were tested with Beck Depression Inventory (BDI. Results: This research revealed that 60% of students were depressed, 34% of them had mild depression, 18.4% moderate, 6% relatively severe and 1.6% severe depression. Mean score of BDI was not significantly different between female and male subjects (13.8 ± 9 in females vs. 15.2 ± 10 in males; total 14.1 ± 11 Conclusions: This research shows that there is still a high proportion of University students having depression, which necessitates considerable attention to their problems. Keywords: Nursing Students, Beck Depression Inventory, Depression.

  6. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  7. A comparison of rural high school students in Germany with rural Tennessee high school students' mathematics and science achievement

    Science.gov (United States)

    Harding, R. Fredrick

    individual educational plans for every student. Further study and future investigations are recommended from this study to compare White County and Van Buren County Students with other rural county schools in Tennessee, as well as other states. In addition, the Tennessee students' state mandated science and mathematics could be correlated to the TIMMS to identify trends and relationships. Future comparisons of White County and Van Buren County with higher scoring rural Asian students could be done in search of more effective methods of teaching science and mathematics.

  8. Advanced statistical methods in data science

    CERN Document Server

    Chen, Jiahua; Lu, Xuewen; Yi, Grace; Yu, Hao

    2016-01-01

    This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world. It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a fu...

  9. Social Networking Addiction among Health Sciences Students in Oman

    Directory of Open Access Journals (Sweden)

    Ken Masters

    2015-08-01

    Full Text Available Objectives: Addiction to social networking sites (SNSs is an international issue with numerous methods of measurement. The impact of such addictions among health science students is of particular concern. This study aimed to measure SNS addiction rates among health sciences students at Sultan Qaboos University (SQU in Muscat, Oman. Methods: In April 2014, an anonymous English-language six-item electronic self-reporting survey based on the Bergen Facebook Addiction Scale was administered to a non-random cohort of 141 medical and laboratory science students at SQU. The survey was used to measure usage of three SNSs: Facebook (Facebook Inc., Menlo Park, California, USA, YouTube (YouTube, San Bruno, California, USA and Twitter (Twitter Inc., San Francisco, California, USA. Two sets of criteria were used to calculate addiction rates (a score of 3 on at least four survey items or a score of 3 on all six items. Work-related SNS usage was also measured. Results: A total of 81 students completed the survey (response rate: 57.4%. Of the three SNSs, YouTube was most commonly used (100%, followed by Facebook (91.4% and Twitter (70.4%. Usage and addiction rates varied significantly across the three SNSs. Addiction rates to Facebook, YouTube and Twitter, respectively, varied according to the criteria used (14.2%, 47.2% and 33.3% versus 6.3%, 13.8% and 12.8%. However, addiction rates decreased when workrelated activity was taken into account. Conclusion: Rates of SNS addiction among this cohort indicate a need for intervention. Additionally, the results suggest that addiction to individual SNSs should be measured and that workrelated activities should be taken into account during measurement.

  10. Nuclear analytical methods in the life sciences

    NARCIS (Netherlands)

    de Goeij, J.J.M.

    1994-01-01

    A survey is given of various nuclear analytical methods. The type of analytical information obtainable and advantageous features for application in the life sciences are briefly indicated. These features are: physically different basis of the analytical method, isotopic rather than elemental

  11. Characteristics of medical teachers using student-centered teaching methods.

    Science.gov (United States)

    Kim, Kyong-Jee; Hwang, Jee-Young

    2017-09-01

    This study investigated characteristics of medical teachers who have adopted student-centered teaching methods into their teaching. A 24-item questionnaire consisted of respondent backgrounds, his or her use of student-centered teaching methods, and awareness of the school's educational objectives and curricular principles was administered of faculty members at a private medical school in Korea. Descriptive statistics and chi-square analysis were conducted to compare faculty use of student-centered approaches across different backgrounds and awareness of curricular principles. Overall response rate was 70% (N=140/200), approximately 25% (n=34) of whom were using student-centered teaching methods. Distributions in the faculty use of student-centered teaching methods were significantly higher among basic sciences faculty (versus clinical sciences faculty), with teaching experiences of over 10 years (versus less than 10 years), and who were aware of the school's educational objectives and curricular principles. Our study indicates differences in medical faculty's practice of student-centered teaching across disciplines, teaching experiences, and their understanding of the school's educational objectives curricular principles. These findings have implications for faculty development and institutional support to better promote faculty use of student-centered teaching approaches.

  12. Factors influencing students' physical science enrolment decision at ...

    African Journals Online (AJOL)

    The study used a modified 'multiple worlds' model to investigate how the various worlds of the students influenced their science subject choice. ... Students also reported building enough self-confidence to enrol in physical science by the encouragement they received through informal contact with physics lecturers.

  13. The Need for Visually Impaired Students Participation in Science ...

    African Journals Online (AJOL)

    This paper examines the counselling implication of the need for the visually impaired students' participation in science education. Descriptive research design was adopted for the study while a validated structured questionnaire tagged visually impaired students perception of science education (VISPSE) was administered ...

  14. Female distance education students overtaking males in science ...

    African Journals Online (AJOL)

    This study was initiated to compare the performance of male and female distance education students of the University of Education, Winneba in Integrated Science. This was done by randomly selecting the cumulated grades of male and female students of 2002, 2003 and 2004-year groups in Integrated Science for analysis ...

  15. Assessment of Student Memo Assignments in Management Science

    Science.gov (United States)

    Williams, Julie Ann Stuart; Stanny, Claudia J.; Reid, Randall C.; Hill, Christopher J.; Rosa, Katie Martin

    2015-01-01

    Frequently in Management Science courses, instructors focus primarily on teaching students the mathematics of linear programming models. However, the ability to discuss mathematical expressions in business terms is an important professional skill. The authors present an analysis of student abilities to discuss management science concepts through…

  16. Study Skills of Arts and Science College Students

    Science.gov (United States)

    Sekar, J. Master Arul; Rajendran, K. K.

    2015-01-01

    The main objective of this study is to find out the level of study skills of arts and science college students. Study Skills Check List developed and standardized by Virginia University, Australia (2006) is used to collect the relevant data. The sample consists of 216 Government arts and science college students of Tiruchirappalli district, Tamil…

  17. Students Designing Video Games about Immunology: Insights for Science Learning

    Science.gov (United States)

    Khalili, Neda; Sheridan, Kimberly; Williams, Asia; Clark, Kevin; Stegman, Melanie

    2011-01-01

    Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a…

  18. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  19. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  20. Integrating Scientific Methods and Knowledge into the Teaching of Newton's Theory of Gravitation: An Instructional Sequence for Teachers' and Students' Nature of Science Education

    Science.gov (United States)

    Develaki, Maria

    2012-01-01

    The availability of teaching units on the nature of science (NOS) can reinforce classroom instruction in the subject, taking into account the related deficiencies in textbook material and teacher training. We give a sequence of teaching units in which the teaching of Newton's gravitational theory is used as a basis for reflecting on the…

  1. Different People in Different Places - Secondary School Students' Knowledge About History of Science

    Science.gov (United States)

    Gandolfi, Haira Emanuela

    2018-05-01

    This article presents the results of an exploratory study of students' knowledge about scientists and countries' contributions to science, aiming at answering two research questions: "In which ways are students aware of the history of scientific development carried out by different people in different places of the world? What can be influencing and shaping their awareness?" Thus, this study aimed at depicting students' knowledge about History of Science (HOS), focusing on what they know about science being done by people and communities from different parts of the world and on how this knowledge is constructed through their engagement with school science. An exploratory research was carried out at two multicultural state secondary schools in London, UK, involving 200 students aged 12-15 (58.5% girls, 41.5% boys) and five science teachers. The method involved an initial exploration of students' knowledge about HOS through an open-ended survey, followed by classroom-based observations and semi-structured interviews with the participants. Results showed a disconnection between remembering scientists and knowing about their work and background, hinting at an emphasis on illustrative and decontextualised approaches towards HOS. Additionally, there was a lack of diversity in these students' answers in terms of gender and ethnicity when talking about scientists and countries in science. These findings were further analysed in relation to their implications for school science and for the fields of HOS, science education and public perception of science.

  2. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  3. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    Science.gov (United States)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  4. The Sensitive, Imaginative, Articulate Art Student and Conservative, Cool, Numerate Science Student: Individual Differences in Art and Science Students

    Science.gov (United States)

    Furnham, Adrian; Crump, John

    2013-01-01

    In all 794 young people aged around 30 yrs completed three intelligence (Raven's Progressive matrices: GMA Numerical and GMA Verbal) and one personality inventory (16PF). They were all graduates and 173 were identified clearly as Arts graduates and 518 as Science students. There were various sex differences on all measures. All seven hypotheses…

  5. Hands-on science methods class for pre-service elementary teachers

    Energy Technology Data Exchange (ETDEWEB)

    Manner, B.M. [Univ. of Pittsburgh, PA (United States)

    1994-12-31

    If elementary teachers are to be comfortable teaching science, they must have positive pre-service experiences. A science methods class that is activity-based and student-centered, rather than lecture-based and teacher-centered, peaks their interest in science and alleviates their fears. Activities conducted by the students illustrate science concepts or integrate science with children`s literature books such as The Grouchy Ladybug. These activities are conducted by each student with the rest of the class and the professor acting as an elementary class. Each activity is then evaluated as to the science concept, what was done well, and how it could be improved. The students also relate how the activity would be integrated with other subjects such as social studies, art, math, and language arts. Student feedback indicates this method is enjoyable, educational, and valuable in preparing them to teach science. The {open_quotes}oohs{close_quotes} and {open_quotes}I didn`t know that!{close_quotes} during activities are positives, but students have also learned some science, lost most of their science anxiety, and will teach science with the confidence and enthusiasm that was lacking at the beginning of the course.

  6. QUALITATIVE INDICATORS OF EFFICIENCY OF TECHNOLOGIES DEVELOPING ESP COMPETENCE IN STUDENTS MAJORING IN SCIENCES

    Directory of Open Access Journals (Sweden)

    Наталія Микитинко

    2015-05-01

    Full Text Available The article is dedicated to identifying and diagnosing qualitative indicators of efficiency of technologies developing ESP competence in students majoring in Sciences, namely: indicators of objective and subjective assessment  of students’ ESP competence, students’ motivation regarding professional choice, organizational features of professional training, its contents, the most popular learning activities, use of active methods of study in educational process. The paradigm of experimental research of efficiency of technologies developing ESP competence in students majoring in Sciences has been defined. Based on the interpretation of the qualitative indicators the hypothesis of efficiency of technologies developing ESP competence in students majoring in Sciences has been proven.

  7. Parts of the Whole: Error Estimation for Science Students

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2017-01-01

    Full Text Available It is important for science students to understand not only how to estimate error sizes in measurement data, but also to see how these errors contribute to errors in conclusions they may make about the data. Relatively small errors in measurement, errors in assumptions, and roundoff errors in computation may result in large error bounds on computed quantities of interest. In this column, we look closely at a standard method for measuring the volume of cancer tumor xenografts to see how small errors in each of these three factors may contribute to relatively large observed errors in recorded tumor volumes.

  8. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    Science.gov (United States)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  9. The 6th International Earth Science Olympiad: A Student Perspective

    Science.gov (United States)

    Barlett, Luke; Cathro, Darcy; Mellow, Maddi; Tate, Clara

    2014-01-01

    In October 2012, two students from the Australian Science and Mathematics School and two from Yankalilla Area School were selected to travel to Olavarria, Argentina in order to compete in the 6th International Earth Science Olympiad (IESO). It was an opportunity for individuals with a passion for Earth science to come together from 17 countries to…

  10. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  11. Science Motivation of University Students: Achievement Goals as a Predictor

    Science.gov (United States)

    Arslan, Serhat; Akcaalan, Mehmet; Yurdakul, Cengiz

    2017-01-01

    The objective of this investigation is to make a study of the relationship between achievement goals and science motivation. Research data were collected from 295 university students. Achievement goals and science motivation scales were utilized as measure tools. The link between achievement goals orientation and science motivation was…

  12. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  13. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  14. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  15. Predictors of student success in entry-level science courses

    Science.gov (United States)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses

  16. Basic training in mathematics a fitness program for science students

    CERN Document Server

    Shankar, R

    1995-01-01

    Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences

  17. Evaluation of Student Outcomes in Materials Science and Technology

    Science.gov (United States)

    Piippo, Steven

    1996-01-01

    This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.

  18. Social Networking Addiction among Health Sciences Students in Oman.

    Science.gov (United States)

    Masters, Ken

    2015-08-01

    Addiction to social networking sites (SNSs) is an international issue with numerous methods of measurement. The impact of such addictions among health science students is of particular concern. This study aimed to measure SNS addiction rates among health sciences students at Sultan Qaboos University (SQU) in Muscat, Oman. In April 2014, an anonymous English-language six-item electronic self-reporting survey based on the Bergen Facebook Addiction Scale was administered to a non-random cohort of 141 medical and laboratory science students at SQU. The survey was used to measure usage of three SNSs: Facebook (Facebook Inc., Menlo Park, California, USA), YouTube (YouTube, San Bruno, California, USA) and Twitter (Twitter Inc., San Francisco, California, USA). Two sets of criteria were used to calculate addiction rates (a score of 3 on at least four survey items or a score of 3 on all six items). Work-related SNS usage was also measured. A total of 81 students completed the survey (response rate: 57.4%). Of the three SNSs, YouTube was most commonly used (100%), followed by Facebook (91.4%) and Twitter (70.4%). Usage and addiction rates varied significantly across the three SNSs. Addiction rates to Facebook, YouTube and Twitter, respectively, varied according to the criteria used (14.2%, 47.2% and 33.3% versus 6.3%, 13.8% and 12.8%). However, addiction rates decreased when work-related activity was taken into account. Rates of SNS addiction among this cohort indicate a need for intervention. Additionally, the results suggest that addiction to individual SNSs should be measured and that work-related activities should be taken into account during measurement.

  19. The effects of different gender groupings on middle school students' performance in science lab

    Science.gov (United States)

    Drab, Deborah D.

    Grouping students for labs in science classes is a common practice. This mixed methods quasi-experimental action research study examines homogeneous and heterogeneous gender grouping strategies to determine what gender grouping strategy is the most effective in a coeducational science classroom setting. Sixth grade students were grouped in same-gender and mixed-gender groups, alternating each quarter. Over the course of an academic year, data were collected from four sources. The teacher-researcher observed groups working during hands-on activities to collect data on student behaviors. Students completed post-lab questionnaires and an end-of-course questionnaire about their preferences and experiences in the different grouping strategies. Student scores on written lab assignments were also utilized. Data analysis focused on four areas: active engagement, student achievement, student perceptions of success and cooperative teamwork. Findings suggest that teachers may consider grouping students of different ability levels according to different gender grouping strategies to optimize learning.

  20. Original Science-Based Music and Student Learning

    Science.gov (United States)

    Smolinski, Keith

    2010-01-01

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework…

  1. Students' Preconceptions and Perceptions of Science-Oriented Studies

    NARCIS (Netherlands)

    Korpershoek, Hanke; Kuyper, Hans; Bosker, Roel; van der Werf, Greetje

    2013-01-01

    Do non-science, technology, engineering, and mathematics (STEM) students' views about STEM studies correspond with how STEM students actually perceive these studies? This paper deals with this issue by comparing higher education students' attitudes towards STEM studies between those who actually did

  2. Knowledge of Webloging among Library Science Students: The ...

    African Journals Online (AJOL)

    The study focused on investigating the knowledge of weblogging among library science students in Federal Polytechnic, Nekede. The study used descriptive survey research design. A purposive sampling technique was used to select 115 students among the final year students. A structured questionnaire was developed ...

  3. Attitudes toward Information Competency of University Students in Social Sciences

    Science.gov (United States)

    Pinto, María; Fernández-Pascual, Rosaura; Gómez-Hernández, José A.; Cuevas, Aurora; Granell, Ximo; Puertas, Susana; Guerrero, David; Gómez, Carmen; Palomares, Rocío

    2016-01-01

    This paper examines students' self-assessment of their information literacy, presenting a study involving 1,575 social science students at five Spanish universities. Data were collected and analyzed through a validated instrument that measures the variables of (1) the students' belief in the importance of information literacy skills; (2)…

  4. Mathematics education giving meaning to Social Science students

    DEFF Research Database (Denmark)

    Andersson, Annica; Valero, Paola

    Compulsory mathematics for social science students is problematic. We discuss the case of a group of students in Sweden who met a mathematics course inspired on the ideas of critical mathematics education and ethnomathematics. The evidence collected about students' experiences on this course...

  5. Effects of Different Student Response Modes on Science Learning

    Science.gov (United States)

    Kho, Lee Sze; Chen, Chwen Jen

    2017-01-01

    Student response systems (SRSs) are wireless answering devices that enable students to provide simple real-time feedback to instructors. This study aims to evaluate the effects of different SRS interaction modes on elementary school students' science learning. Three interaction modes which include SRS Individual, SRS Collaborative, and Classroom…

  6. Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    The study investigated the relationship between students self-concept andtheir academic performance in Basic Science. It further examines genderdifference in students performance. The study adopted ex-post factorresearch design and made use of 300 students all from Public Schools. Theadapted Version of ...

  7. Methods Acronyms - The Witty Side of Science

    Directory of Open Access Journals (Sweden)

    Bertosa, B.

    2009-07-01

    Full Text Available The name of a method usually contains its basic principles. To simplify the name of a method and make it easier to remember, an acronym is often used. However, sometimes the name of a method and its acronym are formed in such a way that the result often has quite a different or even humorous meaning. Here we have sorted out acronyms of scientific methods that have unusual or humorous meaning. The summation is a list of representative methods that represent the true face of science: an interesting, skillful and joyful human activity.

  8. Students Explaining Science—Assessment of Science Communication Competence

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2013-12-01

    Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is based on an expert-novice dialog: an older student (explainer, expert) explains a physics phenomenon to a younger peer (addressee, novice) in a controlled test setting. The explanations are video-recorded and analysed by qualitative content analysis. The method was applied in a study with 46 secondary school students as explainers. Our aims were (a) to evaluate whether our model covers the relevant features of SCC, (b) to validate the assessment method and (c) to find characteristics of addressee-adequate explanations. A performance index was calculated to quantify the explainers' levels of competence on an ordinal scale. We present qualitative and quantitative evidence that the index is adequate for assessment purposes. It correlates with results from a written SCC test and a perspective taking test (convergent validity). Addressee-adequate explanations can be characterized by use of graphical representations and deliberate switches between scientific and everyday language.

  9. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  10. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  11. Students' awareness of science teachers' leadership, attitudes toward science, and positive thinking

    Science.gov (United States)

    Lu, Ying-Yan; Chen, Hsiang-Ting; Hong, Zuway-R.; Yore, Larry D.

    2016-09-01

    There appears to be a complex network of cognitive and affective factors that influence students' decisions to study science and motivate their choices to engage in science-oriented careers. This study explored 330 Taiwanese senior high school students' awareness of their science teacher's learning leadership and how it relates to the students' attitudes toward science and positive thinking. Initial results revealed that the optimism of positive thinking is highly and positively correlated with the future participation in science and learning science in school attitudes toward science and self-concept in science. Moreover, structural equation modelling (SEM) results indicated that the subscale of teachers' leadership with idealised influence was the most predictive of students' attitudes toward science (β = .37), and the leadership with laissez-faire was predictive of students' positive thinking (β = .21). In addition, the interview results were consistent with the quantitative findings. The correlation and SEM results indicate some of the associations and potential relationships amongst the motivational and affective factors studied and students' attitudes toward and intentions to study science, which will increase their likelihood of future involvement in science careers.

  12. Global Patterns in Students' Views of Science and Interest in Science

    Science.gov (United States)

    van Griethuijsen, Ralf A. L. F.; van Eijck, Michiel W.; Haste, Helen; den Brok, Perry J.; Skinner, Nigel C.; Mansour, Nasser; Savran Gencer, Ayse; BouJaoude, Saouma

    2015-08-01

    International studies have shown that interest in science and technology among primary and secondary school students in Western European countries is low and seems to be decreasing. In many countries outside Europe, and especially in developing countries, interest in science and technology remains strong. As part of the large-scale European Union funded `Science Education for Diversity' project, a questionnaire probing potential reasons for this difference was completed by students in the UK, Netherlands, Turkey, Lebanon, India and Malaysia. This questionnaire sought information about favourite courses, extracurricular activities and views on the nature of science. Over 9,000 students aged mainly between 10 and 14 years completed the questionnaire. Results revealed that students in countries outside Western Europe showed a greater interest in school science, in careers related to science and in extracurricular activities related to science than did Western European students. Non-European students were also more likely to hold an empiricist view of the nature of science and to believe that science can solve many problems faced by the world. Multilevel analysis revealed a strong correlation between interest in science and having such a view of the Nature of Science.

  13. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  14. The effectiveness of Family Science and Technology Workshops on parental involvement, student achievement, and student curiosity

    Science.gov (United States)

    Kosten, Lora Bechard

    The literature suggests that parental involvement in schools results in positive changes in students and that schools need to provide opportunities for parents to share in the learning process. Workshops are an effective method of engaging parents in the education of their children. This dissertation studies the effects of voluntary Family Science and Technology Workshops on elementary children's science interest and achievement, as well as on parents' collaboration in their child's education. The study involved 35 second and third-grade students and their parents who volunteered to participate. The parental volunteers were randomly assigned to either the control group (children attending the workshops without a parent) or the treatment group (children attending the workshops with a parent). The study was conducted in the Fall of 1995 over a four-week period. The Analysis of Variance (ANOVA) and Kruskal-Wallis tests were used to determine the effects of the workshops on children's science achievement and science curiosity, as well as on parents' involvement with their child's education. The study revealed that there was no significant statistical difference at the.05 level between the treatment/control groups in children's science achievement or science curiosity, or in parent's involvement with their children's education. However, the study did focus parental attention on effective education and points the way to more extensive research in this critical learning area. This dual study, that is, the effects of teaching basic technology to young students with the support of their parents, reflects the focus of the Salve Regina University Ph.D. program in which technology is examined in its effects on humans. In essence, this program investigates what it means to be human in an age of advanced technology.

  15. Perceived social support among students of medical sciences.

    Science.gov (United States)

    Zamani-Alavijeh, Freshteh; Dehkordi, Fatemeh Raeesi; Shahry, Parvin

    2017-06-01

    Social support is emotional and instrumental assistance from family, friends or neighbors, and has an important but different impact on individuals, mainly depending on contextual factors. To determine the status of perceived social support and related personal and family characteristics of medical sciences students in Ahvaz, Iran. In this cross-sectional study, the target population included the students of Ahvaz Jundishapur University of Medical Sciences in the second semester of 2013-2014, of whom 763 were selected by cluster random sampling method. The study tool was a two-part questionnaire containing 48 self-administered questions including 25 questions of measurements of personal and family characteristics and a Persian modified version of Vaux's social support scale (Cronbach's α=0.745). Data were analyzed with T test, ANOVA and chi-square and using SPSS version 16 and 0.05 was considered as the level of significance. The mean score of the perceived social support was 17.06±3.6 and 60.3% of them reported low social support. There was a significant relationship among the perceived social support and sex (p=0.02), faculty (psocial support and importance of social support in reducing stress and academic failure, the planners need to provide efficient supportive interventions for students.

  16. Effects of an intensive middle school science experience on the attitude toward science, self-esteem, career goal orientation, and science achievement of eighth-grade female students

    Science.gov (United States)

    Williams, Tammy Kay

    The purpose of this investigation was to examine the effects of a year long intensive extracurricular middle school science experience on the self-esteem, career goal orientation, and attitude toward science of eighth grade female students using both quantitative and qualitative methods. Sixteen self-selected eighth grade female students participated in extracurricular science experiences such as camping, rock climbing, specimen collecting and hiking, as well as meeting and interacting with female science role models. Data was collected using pre- and posttest methods using the Children's Attitude Toward Science Survey, the Coopersmith Self-Esteem Inventory, and the Self-Directed Search (SDS) Career Explorer. End of year science course grades were examined for seventh and eighth grades and compared to first semester high school grades. Qualitative data was in the form of: (1) focus group interviews conducted prior to field experiences, at the end of all field experiences, and at the end of the first semester of high school, and (2) journal entries from throughout the project. Qualitative data was examined for changes in student perceptions of science as a discipline, self as scientist, women in science, and social comparison of self in science.

  17. On Multifunctional Collaborative Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  18. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  19. Veterinary Students' Recollection Methods for Surgical Procedures

    DEFF Research Database (Denmark)

    Langebaek, Rikke; Tanggaard, Lene; Berendt, Mette

    2016-01-01

    When veterinary students face their first live animal surgeries, their level of anxiety is generally high and this can affect their ability to recall the procedure they are about to undertake. Multimodal teaching methods have previously been shown to enhance learning and facilitate recall; however......, student preferences for recollection methods when translating theory into practice have not been documented. The aim of this study was to investigate veterinary students' experience with recollection of a surgical procedure they were about to perform after using multiple methods for preparation. From...... a group of 171 veterinary students enrolled in a basic surgery course, 26 students were randomly selected to participate in semi-structured interviews. Results showed that 58% of the students used a visual, dynamic method of recollection, mentally visualizing the video they had watched as part...

  20. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  1. Attitudes and Views of Medical Students toward Science and Pseudoscience.

    Science.gov (United States)

    Peña, Adolfo; Paco, Ofelia

    2004-12-01

    To know opinions, attitudes and interest of medical students toward science and pseudoscience. A questionnaire was administered to 124 medical students of the San Marcos University in Lima, Peru. 173 students were surveyed. The response rate was 72%. Eighty-three percent (100/121) of respondents said that science is the best source of knowledge, 67% (82/123) said they were interested in science and technology news, 76% said they had not read any science magazine or book (other than medical texts and journals) in the last five years. Thirteen percent (16/124) of respondents said that astrology is "very scientific" and 40% (50/124) stated that it is "sort of scientific." 50% of respondents shared the opinion that some people possess psychic powers. Medical students' attitudes toward science are generally not favorable.

  2. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  3. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    Science.gov (United States)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  4. The Effectiveness of Blended Learning in Improving Students' Achievement in Third Grade's Science in Bani Kenana

    Science.gov (United States)

    Khader, Nisreen Saleh Khader

    2016-01-01

    The study aimed at identifying the effectiveness of blended learning in improving students' achievement in the third grade's science in the traditional method. The study sample consisted of (108) male and female students, who were divided into two groups: experimental and control. The experimental group studied the units and changes of the…

  5. Determining Science Student Teachers' Cognitive Structure on the Concept of "Food Chain"

    Science.gov (United States)

    Çinar, Derya

    2015-01-01

    The current study aims to determine science student teachers' cognitive structure on the concept of food chain. Qualitative research method was applied in this study. Fallacies detected in the pre-service teachers' conceptual structures are believed to result in students' developing misconceptions in their future classes and will adversely affect…

  6. The Effect of an Experiential Learning Program on Middle School Students' Motivation toward Mathematics and Science

    Science.gov (United States)

    Weinberg, Andrea E.; Basile, Carole G.; Albright, Leonard

    2011-01-01

    A mixed methods design was used to evaluate the effects of four experiential learning programs on the interest and motivation of middle school students toward mathematics and science. The Expectancy-Value model provided a theoretical framework for the exploration of 336 middle school student participants. Initially, participants were generally…

  7. Describing Images: A Case Study of Visual Literacy among Library and Information Science Students

    Science.gov (United States)

    Beaudoin, Joan E.

    2016-01-01

    This paper reports on a study that examined the development of pedagogical methods for increasing the visual literacy skills of a group of library and information science students. Through a series of three assignments, students were asked to provide descriptive information for a set of historical photographs and record reflections on their…

  8. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  9. Motivational component profiles in university students learning histology: a comparative study between genders and different health science curricula

    OpenAIRE

    Campos-Sánchez, Antonio; López-Núñez, Juan Antonio; Carriel, Víctor; Martín-Piedra, Miguel-Ángel; Sola, Tomás; Alaminos, Miguel

    2014-01-01

    Background: The students' motivation to learn basic sciences in health science curricula is poorly understood. The purpose of this study was to investigate the influence of different components of motivation (intrinsic motivation, self-determination, self-efficacy and extrinsic -career and grade-motivation) on learning human histology in health science curricula and their relationship with the final performance of the students in histology. Methods: Glynn Science Motivation Questionnaire ...

  10. Teacher in Residence: Bringing Science to Students

    CERN Multimedia

    Daisy Yuhas

    CERN welcomes its first Teacher in Residence, Terrence Baine of the University of Oslo. Baine, who originally hails from Canada, will be concurrently completing his PhD in Physics Education during his time at CERN. Like CERN’s High School Teacher Programme (HST), of which Baine is an alumnus, the Teacher in Residence position is designed to help educators spread the science of CERN in a form that is accessible to students and can encourage them to pursue physics throughout their education.   Terrence Baine, first 'teacher in residence' at CERN Baine explains, “It’s very important to have a teacher present who can be that middle person between the young peoplecoming here, whom we are trying to enlighten, and the physicists who work at CERN. The Teacher in Residence can act as an on-site educational consultant.” As Teacher in Residence, Baine’s primary project will be to develop teaching modules, or a series of lesson plans, that can help high schoo...

  11. Understanding the Views of the Nature of Science of Undergraduate Science, Technology, Engineering, and Mathematics Students

    Science.gov (United States)

    Hypolite, Karen L.

    2012-01-01

    Much of the nature of science research has been focused on high school students. High school students are primarily the target of such research to aid and to guide them in making informed decisions about possible career choices in the sciences (Bell, Blair, Crawford, & Lederman, 2002). Moreover, during review of the literature, little to no…

  12. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  13. An Analysis of Science Student Teachers' Epistemological Beliefs and Metacognitive Perceptions about the Nature of Science

    Science.gov (United States)

    Yenice, Nilgün

    2015-01-01

    This study has been carried out to identify the relationship between the epistemological beliefs of student teachers and their metacognitive perceptions about the nature of science. The participants of the study totaled 336 student teachers enrolled in the elementary science education division of the department of elementary education at the…

  14. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  15. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  16. Students' perspectives of undergraduate research methods ...

    African Journals Online (AJOL)

    Introduction: in this study we used a model of adult learning to explore undergraduate students' views on how to improve the teaching of research methods and biostatistics. Methods: this was a secondary analysis of survey data of 600 undergraduate students from three medical schools in Uganda. The analysis looked at ...

  17. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  18. The Effectiveness of Traditional and 21st Century Teaching Tools on Students' Science Learning

    Science.gov (United States)

    Bellflower, Julie V.

    Any student seeking a high school diploma from the public school system in one U.S. state must pass the state's high school graduation test. In 2009, only 88% of students at one high school in the state met the basic proficiency requirements on the science portion of the test. Because improved science education has been identified as an explicit national goal, the purpose of this mixed methods study was to determine whether traditional teaching tools (notes, lecture, and textbook) or 21st century teaching tools (online tutorials, video games, YouTube, and virtual labs) lead to greater gains in students' science learning. Bruner's constructivist and Bandura's social cognitive theories served as the foundations for the study. Quantitative research questions were used to investigate the relationship between the type of teaching tools used and student learning gains. Quantitative data from students' pre and posttests were collected and analyzed using a dependent samples t-test. Qualitative data were collected through a focus group interview and participant journals. Analysis of the qualitative data included coding the data and writing a descriptive narrative to convey the findings. Results showed no statistically significant differences in students' science achievement: both types of teaching tools led to student learning gains. As a result, an action plan was developed to assist science educators in the implementation of traditional and 21st century teaching tools that can be used to improve students' science learning. Implications for positive social change included providing science educators with a specific plan of action that will enhance students' science learning, thereby increasing science scores on the state and other high stakes tests.

  19. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  20. Trapped between the two cultures: Urban college students' attitudes toward science

    Science.gov (United States)

    Dawson, Roy Edward

    Most Americans agree that science plays an important part in maintaining our leadership role in economics, health, and security. Yet when it comes to science and math we appear to be baffled. Only 25% of Americans understand the process of science well enough to make informed judgment about scientific research reported in the media (National Science Foundation, 1998). What is it that turns Americans away from science? Is it our culture, schools, families, or friends? This study investigates urban college students' attitudes toward science to determine what changes might promote increased participation in the questions, ethical implications and culture of science. Volunteers completed a science questionnaire which included multiple-choice and open-answer questions. The questions were divided into the categories of individual characteristics, home/family, peers, and school/teachers. The multiple-choice questions were analyzed with quantitative statistical techniques. The open-answer questions were used to rate each student's attitude toward science and then analyzed with qualitative methods. Thirteen factors were significant in predicting science attitude but none of them, by itself, explained a large amount of variation. A multiple regression model indicated that the significant factors (in order of importance) were watching science television with your family, having a father not employed in science, having friends who like science, and imagining yourself to be a successful student. A hierarchical multiple regression analysis indicated that the categories of individual characteristics, family, and peers were all significant contributors to the model's prediction of science attitude. School environment/teachers did not add significant predictive power to the model. The qualitative results indicated that the factors of (1) a student's previous experience in science classes and (2) the curriculum philosophy which his or her science teachers employed appeared to be the

  1. Graduate students teaching elementary earth science through interactive classroom lessons

    Science.gov (United States)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others

  2. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei

    2014-04-01

    Full Text Available Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011 and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS. Methods: In this descriptive cross-sectional study, all dental students admitted to school of dentistry in 2009-2011 years were included. The students’ academic background (scores, grade point average, score of comprehensive basic sciences examination (CBSE were recorded. Data were analyzed by SPSS 16 using one-way analysis of variance (ANOVA and independent t-test. Results: Kermanshah dental students admitted to university in 2009-2011 were mostly female (59.2%, belonged to regions 2 and 3 (81.6% of university entrance exam, had sciences diploma (89.8% and their grade point average of diploma was nearly 18. There was a significant difference between the three groups of students admitted to university in Biology, Chemistry, Mathematics, Arabic, English language and Theology lessones of entrane exam (P<0.05. The students’ failure rate was 1.5% in university coureses. They all (100% passed CBSE and were ranked second nationally in the year. There was no significant difference between male and female students in terms of age, diploma grade point average, grade point average of basic sciences and score of CBSE. Conclusion: Basic science courses of dentistry in Kermanshah enjoyed a rather constant status and students had a good academic level in these courses.

  3. Student science publishing: an exploratory study of undergraduate science research journals and popular science magazines in the US and Europe

    Directory of Open Access Journals (Sweden)

    Mico Tatalovic

    2008-09-01

    Full Text Available Science magazines have an important role in disseminating scientific knowledge into the public sphere and in discussing the broader scope affected by scientific research such as technology, ethics and politics. Student-run science magazines afford opportunities for future scientists, communicators, politicians and others to practice communicating science. The ability to translate ‘scientese’ into a jargon-free discussion is rarely easy: it requires practice, and student magazines may provide good practice ground for undergraduate and graduate science students wishing to improve their communication skills.

  4. Students-exhibits interaction at a science center

    Science.gov (United States)

    Botelho, Agostinho; Morais, Ana M.

    2006-12-01

    In this study we investigate students' learning during their interaction with two exhibits at a science center. Specifically, we analyze both students' procedures when interacting with exhibits and their understanding of the scientific concepts presented therein. Bernstein's theory of pedagogic discourse (1990, 2000) provided the sociological foundation to assess the exhibit-student interaction and allowed analysis of the influence of the characteristics of students, exhibits, and interactions on students' learning. Eight students (ages 12ndash;13 years of age) with distinct sociological characteristics participated in the study. Several findings emerged from the results. First, the characteristics of the students, exhibits, and interactions appeared to influence student learning. Second, to most students, what they did interactively (procedures) seems not to have had any direct consequence on what they learned (concept understanding). Third, the data analysis suggest an important role for designers and teachers in overcoming the limitations of exhibit-student interaction.

  5. Using the Theme of Mass Extinctions to Teach Science to Non-Science Major College and University Students

    Science.gov (United States)

    Boness, D. A.

    2013-12-01

    The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.

  6. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  7. The Gender and Science Digital Library: Affecting Student Achievement in Science.

    Science.gov (United States)

    Nair, Sarita

    2003-01-01

    Describes the Gender and Science Digital Library (GSDL), an online collection of high-quality, interactive science resources that are gender-fair, inclusive, and engaging to students. Considers use by teachers and school library media specialists to encourage girls to enter careers in science, technology, engineering, and math (STEM). (LRW)

  8. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  9. The Impact of Teachers and Their Science Teaching on Students' "Science Interest": A Four-Year Study

    Science.gov (United States)

    Logan, Marianne R.; Skamp, Keith R.

    2013-01-01

    There is a crisis in school science in Australia and this may be related to insufficient students developing an interest in science. This extended study looked at changes in 14 students' interest in science as they moved through junior secondary school into Year 10. Although the majority of these students still had an interest in science in Year…

  10. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    Science.gov (United States)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  11. The profile of problem-solving ability of students of distance education in science learning

    Science.gov (United States)

    Widiasih; Permanasari, A.; Riandi; Damayanti, T.

    2018-05-01

    This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.

  12. Students' perceptions about science: The impact of transition from primary to secondary school

    Science.gov (United States)

    Speering, Wendy; Rennie, Léonie

    1996-09-01

    As students move through school, attitudes to school in general, and science in particular, become less positive. This paper reports on a longitudinal study which mapped, from the students' point of view, the transition between primary and secondary school in Western Australia. The study focused on the subject of science, and used both quantitative and qualitative methods. During the transition, there is a considerable change in the organisation of the school, the curriculum and the teacherstudent relationship. Students in this study, especially the girls, were generally disenchanted with the teaching strategies used in their secondary science classrooms, and regretted the loss of the close teacher-student relationship of their primary school years. Their perceptions were that science in secondary school was not what they had expected, and this experience may have long term implications for their subject and career choices.

  13. Video Creation: A Tool for Engaging Students to Learn Science

    Science.gov (United States)

    Courtney, A. R.

    2016-12-01

    Students today process information very differently than those of previous generations. They are used to getting their news from 140-character tweets, being entertained by You-Tube videos, and Googling everything. Thus, traditional passive methods of content delivery do not work well for many of these millennials. All students, regardless of career goals, need to become scientifically literate to be able to function in a world where scientific issues are of increasing importance. Those who have had experience applying scientific reasoning to real-world problems in the classroom will be better equipped to make informed decisions in the future. The problem to be solved is how to present scientific content in a manner that fosters student learning in today's world. This presentation will describe how the appeal of technology and social communication via creation of documentary-style videos has been used to engage students to learn scientific concepts in a university non-science major course focused on energy and the environment. These video projects place control of the learning experience into the hands of the learner and provide an opportunity to develop critical thinking skills. Students discover how to locate scientifically reliable information by limiting searches to respected sources and synthesize the information through collaborative content creation to generate a "story". Video projects have a number of advantages over research paper writing. They allow students to develop collaboration skills and be creative in how they deliver the scientific content. Research projects are more effective when the audience is larger than just a teacher. Although our videos are used as peer-teaching tools in the classroom, they also are shown to a larger audience in a public forum to increase the challenge. Video will be the professional communication tool of the future. This presentation will cover the components of the video production process and instructional lessons

  14. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  15. Canisius College Summer Science Camp: Combining Science and Education Experts to Increase Middle School Students' Interest in Science

    Science.gov (United States)

    Sheridan, Phillip M.; Szczepankiewicz, Steven H.; Mekelburg, Christopher R.; Schwabel, Kara M.

    2011-01-01

    The Canisius College Summer Science Camp is a successful and effective annual outreach program that specifically targets middle school students in an effort to increase their interest in science. Five broadly defined science topics are explored in a camp-like atmosphere filled with hands-on activities. A 2010 module focused on chemistry topics of…

  16. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  17. Student explanations of their science teachers' assessments, grading practices and how they learn science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  18. Pharmacy students' perceptions of natural science and mathematics subjects.

    Science.gov (United States)

    Prescott, Julie; Wilson, Sarah Ellen; Wan, Kai-Wai

    2014-08-15

    To determine the level of importance pharmacy students placed on science and mathematics subjects for pursuing a career in pharmacy. Two hundred fifty-four students completed a survey instrument developed to investigate students' perceptions of the relevance of science and mathematics subjects to a career in pharmacy. Pharmacy students in all 4 years of a master of pharmacy (MPharm) degree program were invited to complete the survey instrument. Students viewed chemistry-based and biology-based subjects as relevant to a pharmacy career, whereas mathematics subjects such as physics, logarithms, statistics, and algebra were not viewed important to a career in pharmacy. Students' experience in pharmacy and year of study influenced their perceptions of subjects relevant to a pharmacy career. Pharmacy educators need to consider how they can help students recognize the importance of scientific knowledge earlier in the pharmacy curriculum.

  19. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  20. The CSI Academy: Encouraging Diverse Students to Consider Science Careers and Science Teaching

    Science.gov (United States)

    Kaye, Karen; Turner, John F.; Emigh, James

    2011-01-01

    The CSI academies employed a multi-layered, collaborative approach to encourage diverse students to consider STEM careers, including science teaching. The academies recruited a diverse group of high school students. This was due, in large part, to the creation of a unique selection process that identified students with unrealized potential. The…

  1. Study of science students' expectation for university writing courses

    Directory of Open Access Journals (Sweden)

    Shanthi Nadarajan

    2013-07-01

    Full Text Available The New Malaysia Education Blueprint (2012 states that the private sector continues to have concerns for Malaysian graduates’ English proficiency. The present study investigates the views and expectations of science students taking English courses in a public university. The findings revealed that learners saw opportunities to communicate and job applications process as important soft skills. They preferred practical learning methods above traditional teaching methods. Learners considered group performance, personal attitudes and online activities as important learning opportunities, while factual knowledge, report writing were least supported despite the fact that the majority viewed both assessments and instructional process as relevant. The data revealed that though they were dissatisfied with their existing level of proficiency, many students continued to expect an A for their course. An assessment of the learner’s’ language ability revealed that language ability was less under the learner’s control and more dependent on learner proficiency level. Taken together, this study suggests that the curriculum for the Professional Writing course should be highly diversified and balanced, with some emphasis on getting less proficient learners to read and improve their grammar skills while better students should be given opportunities to develop creative talents and interpersonal skills.

  2. Teacher enactment of an inquiry-based science curriculum and its relationship to student interest and achievement in science

    Science.gov (United States)

    Dimichino, Daniela C.

    This mixed-methods case study, influenced by aspects of grounded theory, aims to explore the relationships among a teacher's attitude toward inquiry-based middle school reform, their enactment of such a curriculum, and student interest and achievement in science. A solid theoretical basis was constructed from the literature on the benefits of inquiry-based science over traditional science education, the benefits of using constructivist learning techniques in the classroom, the importance of motivating teachers to change their teaching practices to be more constructive, and the importance of motivating and exciting students in order to boost achievement in science. Data was collected using qualitative documents such as teacher and student interviews, classroom observations, and curriculum development meetings, in addition to quantitative documents such as student science interest surveys and science skills tests. The qualitative analysis focused on examining teacher attitudes toward curricular reform efforts, and the enactments of three science teachers during the initial year of an inquiry-based middle school curriculum adoption using a fidelity of implementation tool constructed from themes that emerged from the data documents utilized in this study. In addition, both qualitative and quantitative tools were used to measure an increase or decrease in student interest and student achievement over the study year, and their resulting relationships to their teachers' attitudes and enactments of the curriculum. Results from data analysis revealed a positive relationship between the teachers' attitude toward curricular change and their fidelity of implementation to the developers' intentions, or curricular enactment. In addition, strong positive relationships were also discovered among teacher attitude, student interest, and student achievement. Variations in teacher enactment also related to variations in student interest and achievement, with considerable positive

  3. Exploring pre-service science teachers' pedagogical capacity for formative assessment through analyses of student answers

    Science.gov (United States)

    Aydeniz, Mehmet; Dogan, Alev

    2016-05-01

    Background: There has been an increasing emphasis on empowering pre-service and in-service science teachers to attend student reasoning and use formative assessments to guide student learning in recent years. Purpose: The purpose of this study was to explore pre-service science teachers' pedagogical capacity for formative assessment. Sample: This study took place in Turkey. The participants include 53 pre-service science teachers in their final year of schooling. All but two of the participants are female. Design and methods: We used a mixed-methods methodology in pursing this inquiry. Participants analyzed 28 responses to seven two-tiered questions given by four students of different ability levels. We explored their ability to identify the strengths and weaknesses in students' answers. We paid particular attention to the things that the pre-service science teachers noticed in students' explanations, the types of inferences they made about students' conceptual understanding, and the affordances of pedagogical decisions they made. Results: The results show that the majority of participants made an evaluative judgment (i.e. the answer is correct or incorrect) in their analyses of students' answers. Similarly, the majority of the participants recognized the type of mistake that the students made. However, they failed to successfully elaborate on fallacies, limitations, or strengths in student reasoning. We also asked the participants to make pedagogical decisions related to what needs to be done next in order to help the students to achieve academic objectives. Results show that 8% of the recommended instructional strategies were of no affordance, 64% of low-affordance, and 28% were of high affordance in terms of helping students achieve the academic objectives. Conclusion: If our goal is to improve pre-service science teachers' noticing skills, and the affordance of feedback that they provide, engaging them in activities that asks them to attend to students' ideas

  4. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  5. An exploration of equitable science teaching practices for students with learning disabilities

    Science.gov (United States)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The

  6. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  7. Mathematical and Statistical Methods for Actuarial Sciences and Finance

    CERN Document Server

    Legros, Florence; Perna, Cira; Sibillo, Marilena

    2017-01-01

    This volume gathers selected peer-reviewed papers presented at the international conference "MAF 2016 – Mathematical and Statistical Methods for Actuarial Sciences and Finance”, held in Paris (France) at the Université Paris-Dauphine from March 30 to April 1, 2016. The contributions highlight new ideas on mathematical and statistical methods in actuarial sciences and finance. The cooperation between mathematicians and statisticians working in insurance and finance is a very fruitful field, one that yields unique  theoretical models and practical applications, as well as new insights in the discussion of problems of national and international interest. This volume is addressed to academicians, researchers, Ph.D. students and professionals.

  8. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  9. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  10. Seeding Science Success: Psychometric Properties of Secondary Science Questionnaire on Students' Self-Concept, Motivation, and Aspirations

    Science.gov (United States)

    Chandrasena, Wanasinghe; Craven, Rhonda G.; Tracey, Danielle; Dillon, Anthony

    2014-01-01

    Every sphere of life has been revolutionised by science. Thus, science understanding is an increasingly precious resource throughout the world. Despite the widely recognised need for better science education, the percentage of school students studying science is particularly low, and the numbers of students pursuing science continue to decline…

  11. Engaging High School Students in Advanced Math and Science Courses for Success in College: Is Advanced Placement the Answer?

    Science.gov (United States)

    Kelley-Kemple, Thomas; Proger, Amy; Roderick, Melissa

    2011-01-01

    The current study provides an in-depth look at Advanced Placement (AP) math and science course-taking in one school district, the Chicago Public Schools (CPS). Using quasi-experimental methods, this study examines the college outcomes of students who take AP math and science courses. Specifically, this study asks whether students who take AP math…

  12. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  13. The Impact of Nursing Students' Prior Chemistry Experience on Academic Performance and Perception of Relevance in a Health Science Course

    Science.gov (United States)

    Boddey, Kerrie; de Berg, Kevin

    2015-01-01

    Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…

  14. Achievement of Serbian eighth grade students in science

    Directory of Open Access Journals (Sweden)

    Antonijević Radovan

    2006-01-01

    Full Text Available The paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia in the fields of the science achievement of Serbian eighth grade students and the science curriculum context of their achievement. There were 4264 students in the sample. It was confirmed that Serbian eighth graders had made average scale score of 468 points in the science, and with this achievement they are placed in the zone of the top of low international benchmarking level, very close to the point of intermediate benchmark. The average science achievement of the Serbian eighth graders is somewhat below the general international science achievement. The best results were achieved in the science content domain of "chemistry", and the lower results in the content domain of "environmental science". Across the defined science cognitive domains, it was confirmed that the Serbian students had achieved the best results in cognitive domain of "factual knowledge" and weaker results in "reasoning and analysis". The achieved results raise many questions about contents of the science curriculum in Serbia, its overall quality and basic characteristics of its implementation. These results can be eligibly used to improve the science curricula and teaching in Serbian primary school. .

  15. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science

    Science.gov (United States)

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.

  16. Direction discovery: A science enrichment program for high school students.

    Science.gov (United States)

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  17. Learning style preferences of Australian health science students.

    Science.gov (United States)

    Zoghi, Maryam; Brown, Ted; Williams, Brett; Roller, Louis; Jaberzadeh, Shapour; Palermo, Claire; McKenna, Lisa; Wright, Caroline; Baird, Marilyn; Schneider-Kolsky, Michal; Hewitt, Lesley; Sim, Jenny; Holt, Tangerine-Ann

    2010-01-01

    It has been identified that health science student groups may have distinctive learning needs. By university educators' and professional fieldwork supervisors' being aware of the unique learning style preferences of health science students, they have the capacity to adjust their teaching approaches to best fit with their students' learning preferences. The purpose of this study was to investigate the learning style preferences of a group of Australian health science students enrolled in 10 different disciplines. The Kolb Learning Style Inventory was distributed to 2,885 students enrolled in dietetics and nutrition, midwifery, nursing, occupational therapy, paramedics, pharmacy, physiotherapy, radiation therapy, radiography, and social work at one Australian university. A total of 752 usable survey forms were returned (response rate 26%). The results indicated the converger learning style to be most frequently preferred by health science students and that the diverger and accommodator learning styles were the least preferred. It is recommended that educators take learning style preferences of health science students into consideration when planning, implementing, and evaluating teaching activities, such as including more problem-solving activities that fit within the converger learning style.

  18. Engaging Oral Health Students in Learning Basic Science Through Assessment That Weaves in Personal Experience.

    Science.gov (United States)

    Leadbeatter, Delyse; Gao, Jinlong

    2018-04-01

    Learning basic science forms an essential foundation for oral health therapy and dentistry, but frequently students perceive it as difficult, dry, and disconnected from clinical practice. This perception is encouraged by assessment methods that reward fact memorization, such as objective examinations. This study evaluated use of a learner-centered assessment portfolio designed to increase student engagement with basic science in an oral health therapy program at the University of Sydney, Australia. The aim of this qualitative study based on focus groups was to investigate students' engagement with basic science courses following introduction of the portfolio. Three assessments were conducted in three subsequent semesters: one based on students' interest in everyday phenomena (one student, for example, explored why she had red hair); the second focussed on scientific evidence and understanding of systemic diseases; and the third explored relations between oral and general health. Students were encouraged to begin with issues from their personal experience or patient care, to focus on what they were curious about, and to ask questions they really cared about. Each student prepared a written report and gave an oral presentation to the entire cohort. After the portfolios were completed, the authors held focus groups with two cohorts of students (N=21) in 2016 and analyzed the results using Zepke's framework for student engagement research. The results showed that the students successfully interweaved personal experience into their studies and that it provided significant motivation for learning. The students described their learning in terms of connection to themselves, their peer community, and their profession. Many additional benefits were identified, from increased student engagement in all courses to appreciation of the relevance of basic science. The findings should encourage dental and allied dental educators to reconsider the effects of assessments and seek

  19. Identifying Teaching Methods that Engage Entrepreneurship Students

    Science.gov (United States)

    Balan, Peter; Metcalfe, Mike

    2012-01-01

    Purpose: Entrepreneurship education particularly requires student engagement because of the complexity of the entrepreneurship process. The purpose of this paper is to describe how an established measure of engagement can be used to identify relevant teaching methods that could be used to engage any group of entrepreneurship students.…

  20. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  1. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    Science.gov (United States)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-01-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them "experiment," "science fair," and "hypothesis," is used to probe the students' knowledge structures.…

  2. An Integrative Cultural Model to better situate marginalized science students in postsecondary science education

    Science.gov (United States)

    Labouta, Hagar Ibrahim; Adams, Jennifer Dawn; Cramb, David Thomas

    2018-03-01

    In this paper we reflect on the article "I am smart enough to study postsecondary science: a critical discourse analysis of latecomers' identity construction in an online forum", by Phoebe Jackson and Gale Seiler (Cult Stud Sci Educ. https://doi.org/10.1007/s11422-017-9818-0). In their article, the authors did a significant amount of qualitative analysis of a discussion on an online forum by four latecomer students with past negative experiences in science education. The students used this online forum as an out-of-class resource to develop a cultural model based on their ability to ask questions together with solidarity as a new optimistic way to position themselves in science. In this forum, we continue by discussing the identity of marginalized science students in relation to resources available in postsecondary science classes. Recent findings on a successful case of a persistent marginalized science student in spite of prior struggles and failures are introduced. Building on their model and our results, we proposed a new cultural model, emphasizing interaction between inside and outside classroom resources which can further our understanding of the identity of marginalized science students. Exploring this cultural model could better explain drop-outs or engagement of marginalized science students to their study. We, then, used this model to reflect on both current traditional and effective teaching and learning practices truncating or re-enforcing relationships of marginalized students with the learning environment. In this way, we aim to further the discussion initiated by Jackson and Seiler and offer possible frameworks for future research on the interactions between marginalized students with past low achievements and other high and mid achieving students, as well as other interactions between resources inside and outside science postsecondary classrooms.

  3. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    Science.gov (United States)

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  4. What Do Students "Construct" According to Constructivism in Science Education?

    Science.gov (United States)

    Bächtold, Manuel

    2013-01-01

    This paper aims at shedding light on what students can "construct" when they learn science and how this construction process may be supported. Constructivism is a pluralist theory of science education. As a consequence, I support, there are several points of view concerning this construction process. Firstly, I stress that constructivism…

  5. Distance learning approach to train health sciences students at the ...

    African Journals Online (AJOL)

    Background: The University of Nairobi (UoN) College of Health Sciences (CHS) established Partnership for Innovative Medical Education in Kenya (PRIME-K) programmeme to enhance health outcomes in Kenya through extending the reach of medical training outside Nairobi to help health sciences students enhance their ...

  6. How Constructivist-Based Teaching Influences Students Learning Science

    Science.gov (United States)

    Seimears, C. Matt; Graves, Emily; Schroyer, M. Gail; Staver, John

    2012-01-01

    The purpose of this article is to provide details about the beneficial processes the constructivist pedagogy has in the area of teaching science. No Child Left Behind could possibly cause detrimental effects to the science classroom and the constructivist teacher, so this essay tells how constructivist-based teaching influences students and their…

  7. Student Interns Share the Spirit of Science | Poster

    Science.gov (United States)

    They came for a science lesson. They left with more. The new Werner H. Kirsten student interns filed into the auditorium in Building 549 to expand their knowledge of fundamental laboratory practices, as part of the Science Skills Boot Camp. A panel of presenters instructed the attendees on skills such as reading scientific papers effectively, practicing proper research ethics,

  8. Improving Students' Attitudes toward Science Using Instructional Congruence

    Science.gov (United States)

    Zain, Ahmad Nurulazam Md; Samsudin, Mohd Ali; Rohandi, Robertus; Jusoh, Azman

    2010-01-01

    The objective of this study was to improve students' attitudes toward science using instructional congruence. The study was conducted in Malaysia, in three low-performing secondary schools in the state of Penang. Data collected with an Attitudes in Science instrument were analysed using Rasch modeling. Qualitative data based on the reflections of…

  9. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    Science.gov (United States)

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  10. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  11. Factors Affecting Students' Choice of Science and Engineering in Portugal.

    Science.gov (United States)

    de Almeida, Maria Jose B. M.; Leite, Maria Salete S. C. P.; Woolnough, Brian E.

    This paper presents the results of a study undertaken in Portugal to determine the influence of different factors on students' (n=499) decisions to study or refuse to study in one of the physical sciences or engineering. Some influencing factors are related to what goes on in school and during science lessons, and other factors are related to the…

  12. Under-represented students' engagement in secondary science learning: A non-equivalent control group design

    Science.gov (United States)

    Vann-Hamilton, Joy J.

    Problem. A significant segment of the U.S. population, under-represented students, is under-engaged or disengaged in secondary science education. International and national assessments and various research studies illuminate the problem and/or the disparity between students' aspirations in science and the means they have to achieve them. To improve engagement and address inequities among these students, more contemporary and/or inclusive pedagogy is recommended. More specifically, multicultural science education has been suggested as a potential strategy for increased equity so that all learners have access to and are readily engaged in quality science education. While multicultural science education emphasizes the integration of students' backgrounds and experiences with science learning , multimedia has been suggested as a way to integrate the fundamentals of multicultural education into learning for increased engagement. In addition, individual characteristics such as race, sex, academic track and grades were considered. Therefore, this study examined the impact of multicultural science education, multimedia, and individual characteristics on under-represented students' engagement in secondary science. Method. The Under-represented Students Engagement in Science Survey (USESS), an adaptation of the High School Survey of Student Engagement, was used with 76 high-school participants. The USESS was used to collect pretest and posttest data concerning their types and levels of student engagement. Levels of engagement were measured with Strongly Agree ranked as 5, down to Strongly Disagree ranked at 1. Participants provided this feedback prior to and after having interacted with either the multicultural or the non-multicultural version of the multimedia science curriculum. Descriptive statistics for the study's participants and the survey items, as well as Cronbach's alpha coefficient for internal consistency reliability with respect to the survey subscales, were

  13. The importance of teacher-student interpersonal relationships for Turkish students' attitudes towards science

    Science.gov (United States)

    Telli, Sibel; den Brok, Perry; Cakiroglu, Jale

    2010-11-01

    The purpose of this study was to examine associations between Turkish high school students' perceptions of their science teachers' interpersonal behaviour and their attitudes towards science. Students' perceptions of the teacher-student interpersonal relationship were mapped with the Questionnaire on Teacher Interaction (QTI), which uses two relational dimensions: influence and proximity. Data on Students' subject-related attitudes were collected with the Test of Science Related Attitudes (TOSRA). A total of 7484 students (Grades 9 to 11) from 278 science classes (55 public schools) in 13 major Turkish cities participated in the study. Multilevel analyses of variance indicated that influence was related with student enjoyment, while proximity was associated with attitudes towards inquiry and with enjoyment.

  14. A Survey of Current Computer Information Science (CIS) Students.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.

    This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…

  15. Chemistry Students' Challenges in Using MBL's in Science Laboratories.

    Science.gov (United States)

    Atar, Hakan Yavuz

    Understanding students' challenges about using microcomputer based laboratories (MBLs) would provide important data in understanding the appropriateness of using MBLs in high school chemistry laboratories. Identifying students' concerns about this technology will in part help educators identify the obstacles to science learning when using this…

  16. The Video Toaster Meets Science + English + At-Risk Students.

    Science.gov (United States)

    Perryess, Charlie

    1992-01-01

    Describes an experimental Science-English class for at-risk students which was team taught and used technology--particularly a Video Toaster (a videotape editing machine)--as a motivator. Discusses procedures for turning videotape taken on field trips into three- to five-minute student productions on California's water crisis. (SR)

  17. University Students' Opinions Concerning Science-Technology-Society Issues

    Science.gov (United States)

    Dolu, Gamze

    2016-01-01

    Determining what students think about science, technology, and society (STS) is of great importance. This also provides the basis for scientific literacy. As such, this study was conducted with a total of 102 senior students attending a university located in western Turkey. This study utilized the survey model as a research model and the…

  18. Students' Risk Perceptions of Nanotechnology Applications: Implications for Science Education

    Science.gov (United States)

    Gardner, Grant; Jones, Gail; Taylor, Amy; Forrester, Jennifer; Robertson, Laura

    2010-01-01

    Scientific literacy as a goal of a science education reform remains an important discourse in the research literature and is a key component of students' understanding and acceptance of emergent technologies like nanotechnology. This manuscript focuses on undergraduate engineering students' perceptions of the risks and benefits posed by…

  19. Outreach to Science Faculty and Students through Research Exhibitions

    Science.gov (United States)

    Chan, Tina; Hebblethwaite, Chris

    2014-01-01

    Penfield Library at the State University of New York at Oswego (SUNY Oswego) has a gallery exhibit space near the front entrance that is used to showcase student-faculty research and art class projects. This article features the library's outreach efforts to science faculty and students through research exhibitions. The library held an exhibition…

  20. Attending to Student Epistemological Framing in a Science Classroom

    Science.gov (United States)

    Hutchison, Paul; Hammer, David

    2010-01-01

    Studies of learning in school settings indicate that many students frame activities in science classes as the production of answers for the teacher or test, rather than as making new sense of the natural world. A case study of an episode from a class taught by the first author demonstrates what productive and unproductive student framing can look…

  1. Newspapers in Science Education: A Study Involving Sixth Grade Students

    Science.gov (United States)

    Lai, Ching-San; Wang, Yun-Fei

    2016-01-01

    The purpose of this study was to explore the learning performance of sixth grade elementary school students using newspapers in science teaching. A quasi-experimental design with a single group was used in this study. Thirty-three sixth grade elementary school students participated in this study. The research instruments consisted of three…

  2. Exploring student teachers' views of science process skills in their ...

    African Journals Online (AJOL)

    2016-08-18

    Aug 18, 2016 ... The purpose of this study was to explore the views of student teachers with regard to the importance they attach to these skills ... and purpose of practical work in science. .... students learn how to use some piece(s) of scientific.

  3. How College Science Students Engage in Note-Taking Strategies

    Science.gov (United States)

    Bonner, Janice M.; Holliday, William G.

    2006-01-01

    A composite theory of college science student note-taking strategies was derived from a periodic series of five interviews with 23 students and with other variables, including original and final versions of notes analyzed during a semester-long genetics course. This evolving composite theory was later compared with Van Meter, Yokoi, and Pressley's…

  4. Designing English for Specific Purposes Course for Computer Science Students

    Science.gov (United States)

    Irshad, Isra; Anwar, Behzad

    2018-01-01

    The aim of this study was to design English for Academic Purposes (EAP) course for University students enrolled in the Computer Science Department. For this purpose, academic English language needs of the students were analyzed by using a 5 point Likert scale questionnaire. Additionally, interviews were also conducted with four faculty members of…

  5. Social Networking among Library and Information Science Undergraduate Students

    Science.gov (United States)

    Alakpodia, Onome Norah

    2015-01-01

    The purpose of this study was to examine social networking use among Library and Information Science students of the Delta State University, Abraka. In this study, students completed a questionnaire which assessed their familiarity with social networking sites, the purpose for which they use social networking site and their most preferred sites to…

  6. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    Science.gov (United States)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  7. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  8. New trends and advanced methods in interdisciplinary mathematical sciences

    CERN Document Server

    2017-01-01

    The latest of five multidisciplinary volumes, this book spans the STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health) disciplines with the intent to generate meaningful interdisciplinary interaction and student interest. Emphasis is placed on important methods and applications within and beyond each field. Topics include geometric triple systems, image segmentation, pattern recognition in medicine, pricing barrier options, p-adic numbers distribution in geophysics data pattern, adelic physics, and evolutionary game theory. Contributions were by invitation only and peer-reviewed. Each chapter is reasonably self-contained and pedagogically presented for a multidisciplinary readership.

  9. Student cognition and motivation during the Classroom BirdWatch citizen science project

    Science.gov (United States)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  10. The Evaluation of Burnout Levels of Sports Sciences Faculty Students

    Science.gov (United States)

    Kocaeksi, Serdar

    2016-01-01

    The aim of this research is to evaluate the burnout levels of sports sciences faculty students in terms of some other variables. 46 Female (Age, M: 20.88 ± 1.86) and 107 male (Age, M: 22.15 ± 2.15) in total 153 students participated in this research. Maslach Burnout Inventory-Student Form (MBI-SF) was used for data collection. Descriptive…

  11. Current Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  12. Student Organizations | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  13. Transfer Students | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  14. Using a Web Site in an Elementary Science Methods Class: Are We Opening a Pandora's Box?

    Science.gov (United States)

    Lewis, Scott P.; O'Brien, George E.

    This paper describes the introduction and use of the World Wide Web (WWW) in an elementary science methods course at Florida International University (FIU). The goals of creating a web site include engaging conversations among educators, providing access to local resources for students, and examining student use of web sites and the Internet. The…

  15. Teacher and Student Perceptions on High School Science Flipped Classrooms: Educational Breakthrough or Media Hype?

    Science.gov (United States)

    Hunley, Rebecca C.

    For years educators have struggled to ensure students meet the rigors of state mandated tests. Challenges that often impede student success are student absences, school closings due to weather, and remediation for students who need additional help while advanced students can move ahead. Many educators, especially secondary math and science teachers, have responded to these issues by implementing a teaching strategy called the flipped classroom where students view lectures, power points, or podcasts outside of school and class time shifts to allow opportunities for collaborative learning. The purpose of this research was to evaluate teacher and student perceptions of high school flipped science classrooms. A qualitative phenomenological study was conducted to observe 3 high school science teachers from Georgia, North Carolina, and Tennessee selected through purposeful sampling who have used the flipped classroom method for a minimum of 2 years. Analysis of data from an online survey, direct observation, teacher interviews, and student focus groups helped to identify challenges and benefits of this teaching and learning strategy. Findings indicated that teachers find the flipped classroom beneficial to build student relationships but requires a significant amount of time to develop. Mixed student reactions revealed benefits of a flipped classroom as a successful learning tool for current and future endeavors for college or career preparation.

  16. Teaching science in a technology rich environment: Probeware's effect on student attitude and achievement

    Science.gov (United States)

    Zelmanowicz, Marc

    Purpose The use of technology in the science classroom has been a major part of the initiative toward increasing student attitude and achievement in Science, Technology, Education and Math [STEM] education in the United States. The purpose of this study was to determine the extent to which the use of probeware in a high school science living environment classroom impacts student attitude towards science and/or student achievement on standards-based assessments. This study sought to answer the following quantitative questions with a qualitative component: To what extent does the use of probeware in a high school level living environment course influence student attitudes toward science compared to students who are not using probeware? What is the impact, if any, on student achievement in a living environment course, as measured by New York State Living Environment Regents [NYSLER] exam grades, between students who use probeware and students who do not? Is there a significant difference between the two groups with regard to achieving mastery on the NYSLER exam? Sample The participants in the study were Living Environment students of a suburban high school outside of New York City. Methods The quasiexperimental study examined the effects of the replacement of traditional scientific equipment with probeware on student attitude and achievement in a living environment classroom. Student attitude was measured by the modified Attitude Toward Science Inventory [mATSI] and student achievement was measured by the New York State Living Environment Regents [NSLER] Exam. Descriptive statistics, ANCOVA and hierarchical regression analysis were conducted to answer the research questions in this study. A qualitative component was included to enhance the understanding of the quantitative analysis. Major Findings Through this study, results demonstrated a statistically significant impact of probeware on student attitude, but did not show a statistically significant impact of

  17. "Why bother so incredibly much?": student perspectives on PISA science assignments

    Science.gov (United States)

    Serder, Margareta; Jakobsson, Anders

    2015-09-01

    Large-scale assessment, such as the Programme for International Assessment (PISA), plays an increasingly important role in current educational practice and politics. However, many scholars have questioned the validity and reliability of the tests and the extent to which they actually constitute trustworthy representations of students' knowledge. In the light of such critical voices the present article adopts a sociocultural perspective of human knowledge and action in order to explore the encounters between students and the science test assignments with which their knowledge is tested. Of particular interest in this study are the described "real-life situations" presented as the relevant background in which scientific literacy is assessed in PISA. According to the sociocultural theoretical onset the methodology used to approach the students' meaning making of the image of science as portrayed in the test were collaborative situations in which students work in small groups with units of PISA assignments, enabling a study of student-assignment encounters in action. The data we worked with consists of video-recordings from 71 Swedish 15-year-old students working with three released units from the PISA science test. According to our analysis, the "real-life situations" described in the test emerge as problematic in the students' meaning-making. This is demonstrated for instance by the students' positioning themselves as being different from and opposed to the fictional pictured students who appear in the backstories of the test. This article provides examples of how the scientific and academic language used by the fictional students in the assignments mediates distance and resistance among the students. The fictional students' use of strict scientific language and methods in day-to-day life situations leads them to be perceived as "little scientists" and as elite stereotypes of the scientific culture. We conclude that, by using assignments of this type, measurements of

  18. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  19. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  20. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within the school curriculum and in OST programs. Nationwide, many OST programs are offered for students but few have engaged in an in-depth assessment. This study included an assessment of two different types of OST programs and direct observations by the researcher. This study involved two advisors (one male, one female), 111 students, and their parents during 2016. Student participants completed two standardized surveys, one to determine their Science Self-Efficacy and another to assess their engagement in science during their OST programs. Parents described their parental involvement and their child's interest in the OST program(s). The OST program advisors participated in lengthy interviews. Additionally, the advisors rated their perceived interest level of the enrolled students and recorded attendance data. Bandura's Social Cognitive Theory (1997a) provided the theoretical framework. This theory describes the multidirectional influence of behavioral factors, personal factors, and environmental factors have on a student's Self-Efficacy. Compiled data from the teachers, students, and parents were used to determine the relationship of selected variables on Science Self-Efficacy of students. A correlational analysis revealed that students who participated in these OST programs possessed a high Mindset for the Enjoyment of science and that teacher ratings were also positively correlated to Mindset and Enjoyment of Science. Descriptive analyses showed that (a) girls who chose to participate in these OST programs possessed higher school grades in their in-school coursework than boys, (b) that parents of girls participated in more

  1. Evaluation of medical students of teacher-based and student-based teaching methods in Infectious diseases course.

    Science.gov (United States)

    Ghasemzadeh, I; Aghamolaei, T; Hosseini-Parandar, F

    2015-01-01

    Introduction: In recent years, medical education has changed dramatically and many medical schools in the world have been trying for expand modern training methods. Purpose of the research is to appraise the medical students of teacher-based and student-based teaching methods in Infectious diseases course, in the Medical School of Hormozgan Medical Sciences University. Methods: In this interventional study, a total of 52 medical scholars that used Section in this Infectious diseases course were included. About 50% of this course was presented by a teacher-based teaching method (lecture) and 50% by a student-based teaching method (problem-based learning). The satisfaction of students regarding these methods was assessed by a questionnaire and a test was used to measure their learning. information are examined with using SPSS 19 and paired t-test. Results: The satisfaction of students of student-based teaching method (problem-based learning) was more positive than their satisfaction of teacher-based teaching method (lecture).The mean score of students in teacher-based teaching method was 12.03 (SD=4.08) and in the student-based teaching method it was 15.50 (SD=4.26) and where is a considerable variation among them (p<0.001). Conclusion: The use of the student-based teaching method (problem-based learning) in comparison with the teacher-based teaching method (lecture) to present the Infectious diseases course led to the student satisfaction and provided additional learning opportunities.

  2. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. JOHNSON

    2011-11-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  3. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. Johnson

    2011-10-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  4. The Value of Supplementing Science Education with Outdoor Instruction for Sixth Grade Students

    Science.gov (United States)

    Jackson, Devin Joseph Guilford

    Science education is moving away from memorization of facts to inquiry based learning. Adding outdoor instruction can be an effective way to promote this exploratory method of learning. The limited number of empirical studies available have shown significant increase in attitudes and learning with outdoor science instruction. An eight-week quasi-experimental teacher research study was conducted to further this research and assess the value of schoolyard science instruction on student engagement and learning. Participants were 60 students in two sixth grade middle school Earth Science classes. A crossover study design was used with two classes alternating as experimental and control groups. NASA Global Precipitation Measurement mission curriculum was used (NASA/GPM, 2011). While the results did not show a clear increase in student engagement and content knowledge, the study adds to the body of knowledge on outdoor instruction and identifies limitations to consider in future studies.

  5. Engaging Students In The Science Of Climate Change

    Science.gov (United States)

    Rhew, R. C.; Halversen, C.; Weiss, E.; Pedemonte, S.; Weirman, T.

    2013-12-01

    Climate change is arguably the defining environmental issue of our generation. It is thus increasingly necessary for every member of the global community to understand the basic underlying science of Earth's climate system and how it is changing in order to make informed, evidence-based decisions about how we will respond individually and as a society. Through exploration of the inextricable interconnection between Earth's ocean, atmosphere and climate, we believe students will be better prepared to tackle the complex issues surrounding the causes and effects of climate change and evaluate possible solutions. If students are also given opportunities to gather evidence from real data and use scientific argumentation to make evidence-based explanations about climate change, not only will they gain an increased understanding of the science concepts and science practices, the students will better comprehend the nature of climate change science. Engaging in argument from evidence is a scientific practice not only emphasized in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), but also emphasized in the Common Core State Standards for English Language Arts & Literacy in History/Social Studies and Science (CCSS). This significant overlap between NGSS and CCSS has implications for science and language arts classrooms, and should influence how we support and build students' expertise with this practice of sciences. The featured exemplary curricula supports middle school educators as they address climate change in their classrooms. The exemplar we will use is the NOAA-funded Ocean Sciences Sequence (OSS) for Grades 6-8: The ocean-atmosphere connection and climate change, which are curriculum units that deliver rich science content correlated to the Next Generation Science Standards (NGSS) Disciplinary Core Ideas and an emphasis on the Practices of Science, as called for in NGSS and the Framework. Designed in accordance with the latest

  6. Systematic Approach to Remediation in Basic Science Knowledge for Preclinical Students: A case study

    Science.gov (United States)

    Amara, Francis

    Remediation of pre-clerkship students for deficits in basic science knowledge should help them overcome their learning deficiencies prior to clerkship. However, very little is known about remediation in basic science knowledge during pre-clerkship. This study utilized the program theory framework to collect and organize mixed methods data of the remediation plan for pre-clerkship students who failed their basic science cognitive examinations in a Canadian medical school. This plan was analyzed using a logic model narrative approach and compared to literature on the learning theories. The analysis showed a remediation plan that was strong on governance and verification of scores, but lacked: clarity and transparency of communication, qualified remedial tutors, individualized diagnosis of learner's deficits, and student centered learning. Participants admitted uncertainty about the efficacy of the remediation process. A remediation framework is proposed that includes student-centered participation, individualized learning plan and activities, deliberate practice, feedback, reflection, and rigorous reassessment.

  7. Future Students | College of Engineering & Applied Science

    Science.gov (United States)

    race car with the Society of Automotive Engineers. Members of the American Society of Mechanical . icons_100x100_Engage Over 20 engineering and computer science organizations await! Race a Baja car or concrete canoe

  8. Indigenous Elementary Students' Science Instruction in Taiwan: Indigenous Knowledge and Western Science

    Science.gov (United States)

    Lee, Huei; Yen, Chiung-Fen; Aikenhead, Glen S.

    2012-12-01

    This preliminary ethnographic investigation focused on how Indigenous traditional wisdom can be incorporated into school science and what students learned as a result. Participants included community elders and knowledge keepers, as well as 4th grade (10-year-old) students, all of Amis ancestry, an Indigenous tribe in Taiwan. The students' non-Indigenous teacher played a central role in developing a science module `Measuring Time' that combined Amis knowledge and Western science knowledge. The study identified two cultural worldview perspectives on time; for example, the place-based cyclical time held by the Amis, and the universal rectilinear time presupposed by scientists. Students' pre-instructional fragmented concepts from both knowledge systems became more informed and refined through their engagement in `Measuring Time'. Students' increased interest and pride in their Amis culture were noted.

  9. Engaging College Students by Singing the Science

    Directory of Open Access Journals (Sweden)

    Richard H. Heineman

    2017-05-01

    Full Text Available Setting scientific ideas to music can increase student engagement and help with memorization. However, some instructors may be intimidated by the thought of performing educational music for their STEM students, or concerned that it is frivolous. To address this issue, I spell out step by step protocols for either writing one’s own parody songs to teach specific concepts, or finding songs online (which can be used directly or modified. I also discuss presentation techniques that help students, such as showing lyrics and adding annotations that clarify or emphasize ideas. A survey suggests that this approach is appreciated and effective.

  10. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  11. Students' science attitudes, beliefs, and context: associations with science and chemistry aspirations

    Science.gov (United States)

    Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley

    2018-04-01

    There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular teaching approaches in school might limit or facilitate their studying aspirations; concurrently, less research has specifically focused on and surveyed disadvantaged students. In order to gain more insight, 4780 students were surveyed, covering those in Year 7 (age 11-12 years) and in Year 8 (age 12-13) from schools in England with high proportions of those from disadvantaged backgrounds. Predictive modelling highlighted that the students' aspirations to study non-compulsory science in the future, and to study the particular subject of chemistry, were strongly associated with their extrinsic motivation towards science (their perceived utility of science, considered as a means to gain particular careers or skills), their intrinsic interest in science, and their engagement in extra-curricular activities. Additionally, their self-concept beliefs (their confidence in their own abilities in science), some teaching approaches, and encouragement from teachers and family alongside family science capital had smaller but still relevant associations.

  12. The effect of instructional methodology on high school students natural sciences standardized tests scores

    Science.gov (United States)

    Powell, P. E.

    Educators have recently come to consider inquiry based instruction as a more effective method of instruction than didactic instruction. Experience based learning theory suggests that student performance is linked to teaching method. However, research is limited on inquiry teaching and its effectiveness on preparing students to perform well on standardized tests. The purpose of the study to investigate whether one of these two teaching methodologies was more effective in increasing student performance on standardized science tests. The quasi experimental quantitative study was comprised of two stages. Stage 1 used a survey to identify teaching methods of a convenience sample of 57 teacher participants and determined level of inquiry used in instruction to place participants into instructional groups (the independent variable). Stage 2 used analysis of covariance (ANCOVA) to compare posttest scores on a standardized exam by teaching method. Additional analyses were conducted to examine the differences in science achievement by ethnicity, gender, and socioeconomic status by teaching methodology. Results demonstrated a statistically significant gain in test scores when taught using inquiry based instruction. Subpopulation analyses indicated all groups showed improved mean standardized test scores except African American students. The findings benefit teachers and students by presenting data supporting a method of content delivery that increases teacher efficacy and produces students with a greater cognition of science content that meets the school's mission and goals.

  13. Physics for students of science and engineering

    CERN Document Server

    Resnick, Robert

    1960-01-01

    A classic that is still in publication, this textbook stress principles rather than scientific procedures, conditioning students to the atmosphere of scientific change they are likely to encounter during their careers.

  14. Choosing Learning Methods Suitable for Teaching and Learning in Computer Science

    Science.gov (United States)

    Taylor, Estelle; Breed, Marnus; Hauman, Ilette; Homann, Armando

    2013-01-01

    Our aim is to determine which teaching methods students in Computer Science and Information Systems prefer. There are in total 5 different paradigms (behaviorism, cognitivism, constructivism, design-based and humanism) with 32 models between them. Each model is unique and states different learning methods. Recommendations are made on methods that…

  15. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  16. The Effects of Motivation on Student Performance on Science Assessments

    Science.gov (United States)

    Glenn, Tina Heard

    Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly affect the numbers in the workforce who are prepared for some STEM jobs. Drawing from self-determination theory and achievement theory, the purpose of this correlational study was to determine whether there were significant relationships between high school academic performance in science classes, motivations (self-efficacy, self-regulation, and intrinsic and extrinsic goal orientation), and academic performance in an introductory online college biology class. Data were obtained at 2 points in time from a convenience multiethnic sample of adult male ( n =16) and female (n = 49) community college students in the southeast United States. Correlational analyses indicated no statistically significant relationships for intrinsic or extrinsic goal orientation, self-efficacy, or self-regulation with high school science mean-GPA nor college biology final course grade. However, high school academic performance in science classes significantly predicted college performance in an entry-level online biology class. The implications of positive social change include knowledge useful for educational institutions to explore additional factors that may motivate students to enroll in science courses, potentially leading to an increase in scientific knowledge and STEM careers.

  17. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  18. Offering a Forensic Science Camp to Introduce and Engage High School Students in Interdisciplinary Science Topics

    Science.gov (United States)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, "Criminal Camp". We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics, and medicine or biology. The main goal of the…

  19. How choosing science depends on students' individual fit to 'science culture'

    NARCIS (Netherlands)

    Taconis, R.; Kessels, U.

    2009-01-01

    In this paper we propose that the unpopularity of science in many industrialised countries is largely due to the gap between the subculture of science, on the one hand, and students' self-image, on the other. We conducted a study based on the self-to-prototype matching theory, testing whether the

  20. How Choosing Science Depends on Students' Individual Fit to "Science Culture"

    Science.gov (United States)

    Taconis, Ruurd; Kessels, Ursula

    2009-01-01

    In this paper we propose that the unpopularity of science in many industrialised countries is largely due to the gap between the subculture of science, on the one hand, and students' self-image, on the other. We conducted a study based on the self-to-prototype matching theory, testing whether the perceived mismatch between the typical…

  1. Student Explanations of Their Science Teachers' Assessments, Grading Practices and How They Learn Science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-01-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During…

  2. Global patterns in students' views of science and interest in science

    NARCIS (Netherlands)

    van Griethuijsen, R.A.L.F.; van Eijck, M.W.; Haste, H.; den Brok, P.J.; Skinner, N.C.; Mansour, N.; Gencer, A.S.; BouJaoude, S.B.

    2015-01-01

    International studies have shown that interest in science and technology among primary and secondary school students in Western European countries is low and seems to be decreasing. In many countries outside Europe, and especially in developing countries, interest in science and technology remains

  3. Offering a Forensic Science Camp To Introduce and Engage High School Students in Interdisciplinary Science Topics

    DEFF Research Database (Denmark)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, “Criminal Camp”. We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics...... of the subjects taught and scientific literacy in general....

  4. A Comparative Study of Hawaii Middle School Science Student Academic Achievement

    Science.gov (United States)

    Askew Cain, Peggy

    The problem was middle-grade students with specific learning disabilities (SWDs) in reading comprehension perform less well than their peers on standardized assessments. The purpose of this quantitative comparative study was to examine the effect of electronic concept maps on reading comprehension of eighth grade students with SWD reading comprehension in a Hawaii middle school Grade 8 science class on the island of Oahu. The target population consisted of Grade 8 science students for school year 2015-2016. The sampling method was a purposeful sampling with a final sample size of 338 grade 8 science students. De-identified archival records of grade 8 Hawaii standardized science test scores were analyzed using a one way analysis of variance (ANOVA) in SPSS. The finding for hypothesis 1 indicated a significant difference in student achievement between SWDs and SWODs as measured by Hawaii State Assessment (HSA) in science scores (p reading comprehension. Recommendations for practice were for educational leadership and noted: (a) teachers should practice using concept maps with SWDs as a specific reading strategy to support reading comprehension in science classes, (b) involve a strong focus on vocabulary building and concept building during concept map construction because the construction of concept maps sometimes requires frontloading of vocabulary, and (c) model for teachers how concept maps are created and to explain their educational purpose as a tool for learning. Recommendations for future research were to conduct (a) a quantitative comparative study between groups for academic achievement of subtests mean scores of SWDs and SWODs in physical science, earth science, and space science, and (b) a quantitative correlation study to examine relationships and predictive values for academic achievement of SWDs and concept map integration on standardized science assessments.

  5. Student Opinions on Mobile Augmented Reality Application and Developed Content in Science Class

    Directory of Open Access Journals (Sweden)

    Damla Karagozlu

    2017-11-01

    Full Text Available As one of the most important branches of science, natural science studies have never lost their currency. The purpose of this study is to examine the development process of Augmented Reality contents which were developed using a design-based research method with the purpose of using it in teaching of natural science topics and to look into student evaluations. In the study which employed design-based research model, developed contents were applied, analysed and re-designed with students constantly. The study group of the research consisted of forty 7th grade students at a private college in 2016-2017 fall semester. Augmented reality contents developed for science teaching were evaluated by teachers and students as effective. According to the teacher and student opinions, it was concluded that augmented reality contents of science teaching developed during design-based research process was nice, easily applicable and useful. It can be said that while developing educative materials for students, applying design-based research model and paying attention to material design principles secures the effectiveness of the developed material.

  6. Science Teaching Methods: A Rationale for Practices

    Science.gov (United States)

    Osborne, Jonathan

    2011-01-01

    This article is a version of the talk given by Jonathan Osborne as the Association for Science Education (ASE) invited lecturer at the National Science Teachers' Association Annual Convention in San Francisco, USA, in April 2011. The article provides an explanatory justification for teaching about the practices of science in school science that…

  7. Connecting Students and Policymakers through Science and Service-Learning

    Science.gov (United States)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present

  8. Astro 101 Students' Perceptions of Science: Results from the "Thinking about Science Survey Instrument"

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.

    2013-01-01

    What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…

  9. Science Teachers' and Senior Secondary Schools Students' Perceptions of Earth and Environmental Science Topics

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2013-01-01

    This article presents an evaluation of a new upper secondary Earth and Environmental Science (EES) course in Western Australia. Twenty-seven EES teachers were interviewed and 243 students were surveyed about the degree of difficulty, relevance and interest of EES topics in the course. The impact of the course on students' views about EES topics…

  10. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  11. Students' Science Attitudes, Beliefs, and Context: Associations with Science and Chemistry Aspirations

    Science.gov (United States)

    Mujtaba, Tamjid; Sheldrake, Richard; Reiss, Michael J.; Simon, Shirley

    2018-01-01

    There is a widespread concern that relatively few students, especially those from disadvantaged backgrounds, continue to study chemistry and other science subjects after compulsory education. Yet it remains unclear how different aspects of students' background and home context, their own attitudes and beliefs, and their experiences of particular…

  12. Prevalence of ADHD among the Students Residing in Dormitory of Ardabil University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Fariba Sadeghi Movahed

    2012-11-01

    Full Text Available Background & Objective: Attention Deficit-Hyperactivity Disorder (ADHD is a heredity and psychological disorder that often continues to adulthood and causes great number of emotional, social, educational and occupational problem for college students. The aim of this study is to determine the prevalence of ADHD among students residing in the dormitory of Ardabil University of Medical Sciences.   Methods: In this cross sectional study, all students in the dormitory of Ardabil University of Medical Sciences were included. They filled the Self reporting Conner’s ADHD questionnaires. Data were extracted and analyzed with SPSS.   Results: During this study, the prevalence of ADHD was 8.6 percent. The males show more involvement rate than females. The students with ADHD showed more incidences of smoking and psychotropic drug consumption.   Conclusion: Due to the high prevalence of ADHD among the college students, early diagnosis and treatment of ADHD seems to be necessary.

  13. Impact of Texas high school science teacher credentials on student performance in high school science

    Science.gov (United States)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  14. Growing minds: The effect of school gardening programs on the science achievement of elementary students

    Science.gov (United States)

    Klemmer, Cynthia Davis

    Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that

  15. The association between academic engagement and achievement in health sciences students

    Science.gov (United States)

    2013-01-01

    Background Educational institutions play an important role in encouraging student engagement, being necessary to know how engaged are students at university and if this factor is involved in student success point and followed. To explore the association between academic engagement and achievement. Methods Cross-sectional study. The sample consisted of 304 students of Health Sciences. They were asked to fill out an on-line questionnaire. Academic achievements were calculated using three types of measurement. Results Positive correlations were found in all cases. Grade point average was the academic rate most strongly associated with engagement dimensions and this association is different for male and female students. The independent variables could explain between 18.9 and 23.9% of the variance (p < 0.05) in the population of university students being analyzed. Conclusions Engagement has been shown to be one of the many factors, which are positively involved, in the academic achievements of college students. PMID:23446005

  16. Psychological Morbidity in Students of Medical College and Science and Art College Students - A Comparative Study

    Directory of Open Access Journals (Sweden)

    Priyanka Mahawar

    2011-07-01

    Full Text Available Considering the importance of quality of life in medical students we have conducted a cross sectional & descriptive study on screening of mental illness of 60 medical students of prefinal year and comparing it with 60 students of third year of Science and Art College. Students were selected via random sampling. GHQ-12 was used as a screening tool and after obtaining scores students were graded in 3 categories - individuals screened positive for psychological morbidity were of Grades 2 and 3 and individuals screened negative for psychological morbidity were of Grade 1 and they were compared according to college, gender & residence. Students screened positive for psychological morbidity as per GHQ-12 were found higher in medical college (87% as compared to Science and Art College (45% and a statistically significant association was found between psychological morbidity and medical students. Psychological morbidity was not significantly associated with residence and gender.

  17. INTRODUCING SCIENCE BY DISTANCE EDUCATION TO UNDERGRADUATE STUDENTS

    Directory of Open Access Journals (Sweden)

    P. Avila Jr.

    2007-05-01

    Full Text Available Exponential growing of scientific and technological knowledge of nowadayssociety demands new abilities and competences of theirs citizens. In the otherhand, the development of Information and Communication Technologies (ICTsand the low cost of equipments provide a new teaching strategy, namely distanceeducation, through intranet or internet. The familiarity with of scientific methodstimulates autonomy in obtaining information, critical thinking and logical analysisof data. These are useful abilities for science students as well as for commoncitizens. Aiming the development of such abilities a distance course wasdeveloped in 45 hours, using mainly forum and chat in the Claroline platform withtechnical support of the Centro Nacional de Supercomputação da UFRGS. All thestudents attending the course were from Fundação Faculdade Federal deCiências Médicas de Porto Alegre. In this course the following topics wereexplored: (1 scientific knowledge x common sense, (2 different conceptions ofscience, (3 scientific method, (4 different categories of science publications, (5principles of Logic, (6 deduction x induction (7 paper analysis simulation.Scientific project writing was taught/learned through the following items: (1 choiceof a problem, (2 bibliography revision, (3 agencies for funding, (4 projectpresentation by videoconference and (5 analysis of results.The course was evaluated by Likert-type questionnaire and the results fromstudents and teachers indicate a very successful outcome.

  18. Stochastic numerical methods an introduction for students and scientists

    CERN Document Server

    Toral, Raul

    2014-01-01

    Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability ConceptsMonte Carlo IntegrationGeneration of Uniform and Non-uniformRandom Numbers: Non-correlated ValuesDynamical MethodsApplications to Statistical MechanicsIn...

  19. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    Science.gov (United States)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  20. Ciencias 3. (Science 3). Student Book.

    Science.gov (United States)

    Raposo, Lucilia

    This grade 3 textbook, the third in a series of elementary science textbooks written in Portuguese, consists of readings, activities, and review exercises on biological, physical, geological, and nutrition/health concepts. The book is organized into nine sections. Among the topic areas included in these sections are: (1) solar energy, electricity,…

  1. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  2. Facilitating Creativity in Science Students' through Teacher ...

    African Journals Online (AJOL)

    The study ascertained how teachers facilitate the creativity skills of the Pupils as an outcome of professional development. 450 primary school pupils and 50 Basic science teachers in the primary schools were sampled. The study adopted the Solomon four group design. The Torrance Test for Creative thinking (TTCT) and ...

  3. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  4. Qualitative Descriptive Methods in Health Science Research.

    Science.gov (United States)

    Colorafi, Karen Jiggins; Evans, Bronwynne

    2016-07-01

    The purpose of this methodology paper is to describe an approach to qualitative design known as qualitative descriptive that is well suited to junior health sciences researchers because it can be used with a variety of theoretical approaches, sampling techniques, and data collection strategies. It is often difficult for junior qualitative researchers to pull together the tools and resources they need to embark on a high-quality qualitative research study and to manage the volumes of data they collect during qualitative studies. This paper seeks to pull together much needed resources and provide an overview of methods. A step-by-step guide to planning a qualitative descriptive study and analyzing the data is provided, utilizing exemplars from the authors' research. This paper presents steps to conducting a qualitative descriptive study under the following headings: describing the qualitative descriptive approach, designing a qualitative descriptive study, steps to data analysis, and ensuring rigor of findings. The qualitative descriptive approach results in a summary in everyday, factual language that facilitates understanding of a selected phenomenon across disciplines of health science researchers. © The Author(s) 2016.

  5. Investigate the relation between the media literacy and information literacy of students of communication science and information science and knowledge

    Directory of Open Access Journals (Sweden)

    Elham Esmaeil Pounaki

    2017-03-01

    Full Text Available The new millennium is called Information Age, in which information and communication technologies have been developed. The transfer from industrial society to information society has changed the form and level of education and information from those of the past times. In the past, literacy meant the ability of reading and writing, but today the meaning of literacy has been changed through the time and such a type of literacy is not enough to meet people’s needs in the industrial society of the 21st century. Today’s life requires media and information literacy especially for the students, whose duty is to research and who have a significant role in the development of their country from any perspective. This research aims to study the relation between the media literacy and information literacy of the students of the fields of communication science and information science and knowledge. This is an applied research in terms of its objective and uses a survey-correlation method. The statistical population of this research consists of the postgraduate students studying in the fields of study of information science and knowledge and communication science at Tehran University and Allameh Tabatabai University. The data required for this research were collected by a researcher-made questionnaire. The reliability of the questionnaire has been evaluated by Cronbach’s Alpha, which was equal to 0.936. The data were analyzed using descriptive and inferential statistic methods. The results showed that the level of media literacy and information literacy of students is desirable. There is a significant relationship between the economic status of students and their media literacy. However, the social status of students was directly related to their "ability to communicate" variable of media literacy. Also the Pearson correlation test showed a significant relationship between the variables of media literacy and information literacy.

  6. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  7. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    Science.gov (United States)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  8. Engaging students in learning science through promoting creative reasoning

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan

    2017-10-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we particularly focus on the initial claim-building aspect of this reasoning as a crucial phase in student engagement. In reviewing the literature on student reasoning and argumentation, we note that the well-established frameworks for claim-judging are not matched by accounts of creative reasoning in claim-building. We develop an exploratory framework to characterise and enact this reasoning to enhance engagement. We then apply this framework to interpret two lessons by two science teachers where they aimed to develop students' reasoning capabilities to support learning.

  9. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    Science.gov (United States)

    Harris, Emily Mae

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science, one third grade, one fourth grade, and one high school Marine Biology classroom. Chapter 2 is a conceptual investigation of the opportunities for students to engage in scientific reasoning practices during CS data collection activities. Drawing on science education literature and vignettes from case studies, I argue that the teacher plays an important role in mediating opportunities for students to engage in investigative, explanatory, and argumentative practices of science through CS. Chapter 3 focuses on teacher framing of CS, how teachers perceive what is going on (Goffman, 1974) and how they communicate that to students as they launch CS tasks. Through analysis of videos and interviews of two upper elementary school teachers, I found that teachers frame CS for different purposes. These framings were influenced by teachers' goals, orientations towards science and CS, planning for instruction, and prior knowledge and experience. Chapter 4 examines how students demonstrate agency with environmental science as they explore their personal interests across their third grade classroom, school garden, and science lab contexts, through the lens of social practice theory (Holland, Lachicotte, Skinner, & Cain, 1998). Through analysis of classroom observations, student interviews, teacher interviews and important moments for three focal students, I found that student agency was enabled and constrained by the different cultures of the classroom, garden, and science lab. Despite affordances of the garden and science lab, the teachers' epistemic authority in the classroom permeated all three contexts, constraining student agency. In

  10. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  11. Science student teacher's perceptions of good teaching ...

    African Journals Online (AJOL)

    kofi.mereku

    process that makes the establishment of knowledge possible (Baysal, Arkan & Yildrim, 2010;. Nieman, 2004 .... Relate theory to the students everyday life experiences. 3.538 1.147. 5 .... must accept a dual responsibility for promoting a creative constructivist learning environment ... Educational psychology: a cognitive view.

  12. Veterinary Science Students, Center Changing a Reservation

    Science.gov (United States)

    Blackwater, Jasmine

    2011-01-01

    Kayenta is a rural community located in northeastern Arizona on a Navajo reservation. On the reservation, many families rely on their livestock for income, and as a result, many reservation high school students show a great interest in agricultural education. Having livestock on the reservation is not just a source of income, but also part of a…

  13. Student projects in medicine: a lesson in science and ethics.

    Science.gov (United States)

    Edwards, Sarah J L

    2009-11-01

    Regulation of biomedical research is the subject of considerable debate in the bioethics and health policy worlds. The ethics and governance of medical student projects is becoming an increasingly important topic in its own right, especially in the U.K., where there are periodic calls to change it. My main claim is that there seems to be no good reason for treating student projects differently from projects led by qualified and more experienced scientists and hence no good grounds for changing the current system of ethics review. I first suggest that the educational objectives cannot be met without laying down standards of good science, whatever they may be. Weak science is unnecessary for educational purposes, and it is, in any case, unlikely to produce good researchers in the future. Furthermore, it is curious to want to change the system of ethics review specifically for students when it is the science that is at stake, and when the science now falls largely outside the ethics remit. I further show that ethics review is nevertheless important since students carry a new potential conflict of interests that warrants independent oversight which supervisory support does not offer. This potential conflict may become more morally troublesome the greater the risks to the subjects of the research, and students may impose greater risks on their subjects (relative to professional researchers) by virtue of being inexperienced, whatever the nature of the project. Pragmatic concerns may finally be allayed by organizing the current system more efficiently at critical times of the university calendar.

  14. Research Microcultures as Socialization Contexts for Underrepresented Science Students.

    Science.gov (United States)

    Thoman, Dustin B; Muragishi, Gregg A; Smith, Jessi L

    2017-06-01

    How much does scientific research potentially help people? We tested whether prosocial-affordance beliefs (PABs) about science spread among group members and contribute to individual students' motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, focusing on students who belong to underrepresented minority (URM) groups. Longitudinal survey data were collected from 522 research assistants in 41 labs at six institutions. We used multilevel modeling, and results supported a socialization effect for URM students: The aggregate PABs of their lab mates predicted the students' own initial PABs, as well as their subsequent experiences of interest and their motivation to pursue a career in science, even after controlling for individual-level PABs. Results demonstrate that research labs serve as microcultures of information about the science norms and values that influence motivation. URM students are particularly sensitive to this information. Efforts to broaden participation should be informed by an understanding of the group processes that convey such prosocial values.

  15. The Effect of Metacognitive Instruction on Problem Solving Skills in Iranian Students of Health Sciences

    OpenAIRE

    Safari, Yahya; Meskini, Habibeh

    2015-01-01

    Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students? problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. T...

  16. Applying an information literacy rubric to first-year health sciences student research posters*

    OpenAIRE

    Goodman, Xan; Watts, John; Arenas, Rogelio; Weigel, Rachelle; Terrell, Tony

    2018-01-01

    Objective This article describes the collection and analysis of annotated bibliographies created by first-year health sciences students to support their final poster projects. The authors examined the students’ abilities to select relevant and authoritative sources, summarize the content of those sources, and correctly cite those sources. Methods We collected images of 1,253 posters, of which 120 were sampled for analysis, and scored the posters using a 4-point rubric to evaluate the students...

  17. Applying an information literacy rubric to first-year health sciences student research posters

    OpenAIRE

    Xan Goodman; John Watts; Rogelio Arenas; Rachelle Weigel; Tony Terrell

    2018-01-01

    Objective: This article describes the collection and analysis of annotated bibliographies created by first-year health sciences students to support their final poster projects. The authors examined the students’ abilities to select relevant and authoritative sources, summarize the content of those sources, and correctly cite those sources. Methods: We collected images of 1,253 posters, of which 120 were sampled for analysis, and scored the posters using a 4-point rubric to evaluate student...

  18. Achievement Motivation and Academic Motivation among Students of Kermanshah University of Medical Sciences in 2013

    OpenAIRE

    Firoozeh Khamoushi; Arash Parsa Moghaddam; Mahtab Sadeghi; Ali Akbar Parvizifard; Akram Ahmadzadeh

    2016-01-01

    Introduction: Students are often similar in terms of learning ability and talent. However, there are remarkable differences in their academic performance during their schooling, which can be due to the differences in their academic motivation and achievement motivation. The current study was carried out to compare achievement motivation and academic achievement among the students of Kermanshah University of Medical Sciences (KUMS) in 2013. Methods: In this descriptive Analytical cross-sec...

  19. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  20. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science

    Science.gov (United States)

    Holloway, A. E.

    2016-02-01

    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  1. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  2. Deciding on Science: An Analysis of Higher Education Science Student Major Choice Criteria

    Science.gov (United States)

    White, Stephen Wilson

    The number of college students choosing to major in science, technology, engineering, and math (STEM) in the United States affects the size and quality of the American workforce (Winters, 2009). The number of graduates in these academic fields has been on the decline in the United States since the 1960s, which, according to Lips and McNeil (2009), has resulted in a diminished ability of the United States to compete in science and engineering on the world stage. The purpose of this research was to learn why students chose a STEM major and determine what decision criteria influenced this decision. According to Ajzen's (1991) theory of planned behavior (TPB), the key components of decision-making can be quantified and used as predictors of behavior. In this study the STEM majors' decision criteria were compared between different institution types (two-year, public four-year, and private four-year), and between demographic groups (age and sex). Career, grade, intrinsic, self-efficacy, and self-determination were reported as motivational factors by a majority of science majors participating in this study. Few students reported being influenced by friends and family when deciding to major in science. Science students overwhelmingly attributed the desire to solve meaningful problems as central to their decision to major in science. A majority of students surveyed credited a teacher for influencing their desire to pursue science as a college major. This new information about the motivational construct of the studied group of science majors can be applied to the previously stated problem of not enough STEM majors in the American higher education system to provide workers required to fill the demand of a globally STEM-competitive United States (National Academy of Sciences, National Academy of Engineering, & Institute of Medicine, 2010).

  3. Increasing High School Student Interest in Science: An Action Research Study

    Science.gov (United States)

    Vartuli, Cindy A.

    2016-01-01

    An action research study was conducted to determine how to increase student interest in learning science and pursuing a STEM career. The study began by exploring 10th-grade student and teacher perceptions of student interest in science in order to design an instructional strategy for stimulating student interest in learning and pursuing science.…

  4. How to change students' images of science and technology

    Science.gov (United States)

    Scherz, Zahava; Oren, Miri

    2006-11-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, Investigation into Science and Technology (IST), designed to introduce students to science and technology in the real life. Students' images were delineated via questionnaires, drawing tasks, and interviews before and after their participation in the IST program. The sample consisted of 100 students from six classes (eighth or ninth grade) of three schools. We found that before the IST intervention students' images about the scientific or technological environments were superficial, unreal, and even incorrect. Their impressions of the characteristics of scientists and technologists were superficial, misleading, and sometimes reflected ignorance. The findings demonstrate that the IST program stimulated a positive effect on students' images. Their preconceptions were altered in several dimensions: in the cognitive dimension, from superficial and vague to precise and correct images; in the perceptive dimension, from stereotypic to rational and open-minded images; and in the affective dimension, from negative to positive attitudes.

  5. Teacher Tweets Improve Achievement for Eighth Grade Science Students

    Directory of Open Access Journals (Sweden)

    Carol Van Vooren

    2013-02-01

    Full Text Available In the Digital Age teachers have fallen far behind the technical skills of their "digital native" students. The implementation of technology as a tool for classroom communication is foreign for most teachers, but highly preferred by students. While teenagers are using Facebook, Twitter, and other social networks to communicate, teachers continue to respond through face-to-face conversations, telephone calls, and email messaging. Twitter, a platform for short message service text, is an online social network site that allows users to send and receive messages using 140 characters or less called Tweets. To analyze the relationship of the teacher's use of Twitter with student academic achievement, a correlation study conducted by Bess collected data from two matched samples of eighth grade science students: one utilizing Twitter and one not utilizing Twitter to reinforce classroom instruction. Two tests matching the science standards were given to both samples of students. The results of the tests were used as primary data. The findings suggested a positive correlation between the use of Twitter and student performance on the standardized tests. Implications for this study indicate that young teenagers may prefer Twitter as a mode of communication with their teacher, resulting in higher academic achievement in a middle school science class.

  6. Preservice elementary teachers' actual and designated identities as teachers of science and teachers of students

    Science.gov (United States)

    Canipe, Martha Murray

    Preservice elementary teachers often have concerns about teaching science that may stem from a lack of confidence as teachers or their own negative experiences as learners of science. These concerns may lead preservice teachers to avoid teaching science or to teach it in a way that focuses on facts and vocabulary rather than engaging students in the doing of science. Research on teacher identity has suggested that being able to envision oneself as a teacher of science is an important part of becoming a teacher of science. Elementary teachers are generalists and as such rather than identifying themselves as teachers of particular content areas, they may identify more generally as teachers of students. This study examines three preservice teachers' identities as teachers of science and teachers of students and how these identities are enacted in their student teaching classrooms. Using a narrated identity framework, I explore stories told by preservice teachers, mentor teachers, student teaching supervisors, and science methods course instructors about who preservice teachers are as teachers of science and teachers of students. Identities are the stories that are told about who someone is or will become in relation to a particular context. Identities that are enacted are performances of the stories that are an identity. Stories were collected through interviews with each storyteller and in an unmoderated focus group with the three preservice teachers. In addition to sorting stories as being about teachers of science or students, the stories were categorized as being about preservice teachers in the present (actual identities) or in the future (designated identities). The preservice teachers were also observed teaching science lessons in their student teaching placements. These enactments of identities were analyzed in order to identify which aspects of the identity stories were reflected in the way preservice teachers taught their science lessons. I also analyzed the

  7. An Ongoing Investigation of Science Literacy: Results of a 22-Year Study Probing Students' Knowledge and Attitude Towards Science

    Science.gov (United States)

    Impey, C.; Buxner, S.; Antonellis, J.; CATS

    2013-04-01

    This talk presents findings related to our ongoing work investigating students' knowledge and attitudes towards science and technology. We present an overview of research studies and findings including a comparison of the science literacy measures of University of Arizona students compared to national studies, conceptions related to astrology, views of radiation, and students' pseudoscience and religious beliefs. We discuss implications for instructors and researchers interested in improving students' science literacy scores and diagnosing alternative beliefs.

  8. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  9. Health status, physical activity, and orthorexia nervosa: A comparison between exercise science students and business students.

    Science.gov (United States)

    Malmborg, Julia; Bremander, Ann; Olsson, M Charlotte; Bergman, Stefan

    2017-02-01

    Orthorexia nervosa is described as an exaggerated fixation on healthy food. It is unclear whether students in health-oriented academic programs, highly focused on physical exercise, are more prone to develop orthorexia nervosa than students in other educational areas. The aim was to compare health status, physical activity, and frequency of orthorexia nervosa between university students enrolled in an exercise science program (n = 118) or a business program (n = 89). The students completed the Short Form-36 Health Survey (SF-36), the International Physical Activity Questionnaire (IPAQ), and ORTO-15, which defines orthorexia nervosa as a sensitive and obsessive behavior towards healthy nutrition. The SF-36 showed that exercise science students scored worse than business students regarding bodily pain (72.8 vs. 82.5; p = 0.001), but better regarding general health (83.1 vs. 77.1; p = 0.006). Of 188 students, 144 (76.6%) had an ORTO-15 score indicating orthorexia nervosa, with a higher proportion in exercise science students than in business students (84.5% vs. 65.4%; p = 0.002). Orthorexia nervosa in combination with a high level of physical activity was most often seen in men in exercise science studies and less often in women in business studies (45.1% vs. 8.3%; p orthorexia nervosa in exercise science students may cause problems in the future, since they are expected to coach others in healthy living. Our findings may be valuable in the development of health-oriented academic programs and within student healthcare services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The effects of contextual learning instruction on science achievement of male and female tenth-grade students

    Science.gov (United States)

    Ingram, Samantha Jones

    The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest

  11. Beyond the first "click:" Women graduate students in computer science

    Science.gov (United States)

    Sader, Jennifer L.

    This dissertation explored the ways that constructions of gender shaped the choices and expectations of women doctoral students in computer science. Women who do graduate work in computer science still operate in an environment where they are in the minority. How much of women's underrepresentation in computer science fields results from a problem of imagining women as computer scientists? As long as women in these fields are seen as exceptions, they are exceptions that prove the "rule" that computing is a man's domain. The following questions were the focus of this inquiry: What are the career aspirations of women doctoral students in computer science? How do they feel about their chances to succeed in their chosen career and field? How do women doctoral students in computer science construct womanhood? What are their constructions of what it means to be a computer scientist? In what ways, if any, do they believe their gender has affected their experience in their graduate programs? The goal was to examine how constructions of computer science and of gender---including participants' own understanding of what it meant to be a woman, as well as the messages they received from their environment---contributed to their success as graduate students in a field where women are still greatly outnumbered by men. Ten women from four different institutions of higher education were recruited to participate in this study. These women varied in demographic characteristics like age, race, and ethnicity. Still, there were many common threads in their experiences. For example, their construction of womanhood did not limit their career prospects to traditionally female jobs. They had grown up with the expectation that they would be able to succeed in whatever field they chose. Most also had very positive constructions of programming as something that was "fun," rewarding, and intellectually stimulating. Their biggest obstacles were feelings of isolation and a resulting loss of

  12. Using Space Science to Excite Hispanic Students in STEM

    Science.gov (United States)

    Reiff, P. H.; Galindo, C.; Garcia, J.; Morris, P. A.; Allen, J. S.

    2013-05-01

    Over the past ten years, NASA and its cosponsors have held an annual "NASA Space Science Day" at the University of Texas at Brownsville. The event is held over two days, with the Friday evening program featuring a space scientist or astronaut, this year Joe Acaba, giving a public lecture (plus a free planetarium show). The Saturday event starts with a keynote speech from the same speaker. Then the students circulate among six or seven hands-on workshops, plus a scheduled trip to the "Demo room" where NASA missions show their materials, and a planetarium show in the Discovery Dome. The students, 4th through 8th graders, are drawn from schools all across south Texas, and have included students coming as far as Zapata, with a four-hour bus ride each way. Over the ten years of the program, more than 5000 students have been reached. Most of the hands-on activities are led by undergraduate student mentors. The university students (42 in 2013) received science and engineering content and mentor training on the activities at Johnson Space Center before the January event. In addition, an additional 40 local high school students helped with activities and with escorting each group of students from one activity station to the next. The program has been so successful that students have "graduated" from participant, to volunteer, and now to University student mentor. Most of the mentors go on to complete a degree in a STEM discipline, and many have gone on to graduate school. Thus the mentors not only help with the program, they are beneficiaries as well. The program is being expanded to reach other underserved communities around the US, with its first "expansion" event held in Utah in 2011.; Puerto Rican Astronaut Joe Acaba and the Discovery Dome were two of the highlights for the students.

  13. Reading, Writing & Rings: Science Literacy for K-4 Students

    Science.gov (United States)

    McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.

    2007-12-01

    Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.

  14. Young Engineers and Sciences (YES) - Mentoring High School Students

    Science.gov (United States)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  15. Academic Satisfaction Level and Academic Achievement among Students at Kermanshah University of Medical Sciences: Academic Year 2015-2016

    OpenAIRE

    Khadijeh Jamshidi; Babak Mohammadi; Zahra Mohammadi; Mohammad Karimi Parviz; Roghayeh Poursaberi; Mohammad Mehdi Mohammadi

    2017-01-01

    Background: Academic satisfaction is considered one of the most important factors affecting academic achievement among students. The purpose of the present study was to determine the relationship between academic satisfaction and academic achievement among students at Kermanshah University of Medical Sciences in Iran. Methods: The present cross-sectional study was conducted with 346 student participants using stratified random sampling. The research instrument included the Student Academic Sa...

  16. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students

    Science.gov (United States)

    Young, Victoria Jewel

    2017-01-01

    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…

  17. From Log Files to Assessment Metrics: Measuring Students' Science Inquiry Skills Using Educational Data Mining

    Science.gov (United States)

    Gobert, Janice D.; Sao Pedro, Michael; Raziuddin, Juelaila; Baker, Ryan S.

    2013-01-01

    We present a method for assessing science inquiry performance, specifically for the inquiry skill of designing and conducting experiments, using educational data mining on students' log data from online microworlds in the Inq-ITS system (Inquiry Intelligent Tutoring System; www.inq-its.org). In our approach, we use a 2-step process: First we use…

  18. Perspectives on Peer-Mentoring from Taiwanese Science and Engineering Master's Students

    Science.gov (United States)

    Lin, Yii-nii

    2014-01-01

    The purpose of this study is to describe the peer-mentoring experience from the perspective of 16 master's students majoring in science or engineering at a research-oriented university in Taiwan. Utilizing a qualitative method of phenomenology, these mentees shared their views about their peer-mentors through in-depth interviews. Participants…

  19. Engaging Life-Sciences Students with Mathematical Models: Does Authenticity Help?

    Science.gov (United States)

    Poladian, Leon

    2013-01-01

    Compulsory mathematics service units for the life sciences present unique challenges: even students who learn some specific skills maintain a negative attitude to mathematics and do not see the relevance of the unit towards their degree. The focus on authentic content and the presentation and teaching of global or qualitative methods before…

  20. College Students Constructing Collective Knowledge of Natural Science History in a Collaborative Knowledge Building Community

    Science.gov (United States)

    Hong, Huang-Yao; Chai, Ching Sing; Tsai, Chin-Chung

    2015-01-01

    This study investigates whether engaging college students (n = 42) in a knowledge building environment would help them work as a community to construct their collective knowledge of history of science and, accordingly, develop a more informed scientific view. The study adopted mixed-method analyses and data mainly came from surveys and student…

  1. The Effect of Technology on Students' Opinions about Authentic Learning Activities in Science Courses

    Science.gov (United States)

    Coskun, Hilal; Dogan, Alev; Uluay, Gulsah

    2017-01-01

    Today, most of the researchers have agreed on the importance of classroom environment where students responsible of their own learning. It is important to use modern learning methods with technology to reach this aim in courses. The main purpose of this study is to investigate the effect of using Technology in science courses to investigate 7th…

  2. Responsible Conduct of Research in Communication Sciences and Disorders: Faculty and Student Perceptions

    Science.gov (United States)

    Minifie, Fred D.; Robey, Randall R.; Horner, Jennifer; Ingham, Janis C.; Lansing, Charissa; McCartney, James H.; Alldredge, Elham-Eid; Slater, Sarah C.; Moss, Sharon E.

    2011-01-01

    Purpose: Two Web-based surveys (Surveys I and II) were used to assess perceptions of faculty and students in Communication Sciences and Disorders (CSD) regarding the responsible conduct of research (RCR). Method: Survey questions addressed 9 RCR domains thought important to the responsible conduct of research: (a) human subjects protections; (b)…

  3. The Effect of Constructivist Science Teaching on 4th Grade Students' Understanding of Matter

    Science.gov (United States)

    Cakici, Yilmaz; Yavuz, Gulben

    2010-01-01

    In the last three decades, the constructivist approach has been the dominant ideology in the field of educational research. The aim of this study is to explore the effect of constructivist science teaching on the students' understanding about matter, and to compare the effectiveness of a constructivist approach over traditional teaching methods.…

  4. Understanding the experiences of a group of Yemeni students in an ESL science class

    Science.gov (United States)

    Fradi, Gihan

    , which resulted in isolation from their non EBL peers. The female participants experienced additional struggles due to their unique dress code that set them apart from the other female students (including those from less strict Arabic cultures), and strict cultural and religious norms that forbade them from interacting with males or with females from cultures other than their own. All these issues influenced each other in different ways, resulting in limited opportunities to interact with others and develop language and cultural competency skills. The results also revealed that even though the school had a large percentage of EBL students from Middle Eastern countries, and the teacher was aware of his EBL students' struggles and used effective science teaching methods, neither the school nor the teacher had put in place approaches that helped decrease cultural stereotypes among the various student groups and facilitate integration of their EBL students into the school community. As a result, it was difficult for the student participants to academically succeed when language and social and cultural barriers prevented them from feeling like they belonged. This lack of belonging caused the participants to develop a negative attitude towards the American culture, which helped shape their perception of their cultural identity as Arabs.

  5. Cases on Research-Based Teaching Methods in Science Education

    Science.gov (United States)

    de Silva, Eugene, Ed.

    2015-01-01

    While the great scientists of the past recognized a need for a multidisciplinary approach, today's schools often treat math and science as subjects separate from the rest. This not only creates a disinterest among students, but also a potential learning gap once students reach college and then graduate into the workforce. "Cases on…

  6. Embedding Quantitative Methods by Stealth in Political Science: Developing a Pedagogy for Psephology

    Science.gov (United States)

    Gunn, Andrew

    2017-01-01

    Student evaluations of quantitative methods courses in political science often reveal they are characterised by aversion, alienation and anxiety. As a solution to this problem, this paper describes a pedagogic research project with the aim of embedding quantitative methods by stealth into the first-year undergraduate curriculum. This paper…

  7. Teaching Science and Engineering-Related Topics Using Experiential Methods: An Action-Research Study

    Science.gov (United States)

    Aleong, Chandra; Aleong, John

    2007-01-01

    This article describes a portion of a long-term action-research project investigating the teaching of the science of transportation to high school students using the case study or experiential method. Other aspects integrated with the project-oriented study are the use of Constructivist theory, the Socratic Method, and the incorporation of…

  8. Student-Life Stress Level and its Related Factors among Medical Students of Hamadan University of Medical Sciences in 2015

    Directory of Open Access Journals (Sweden)

    Roya Nikanjam

    2016-03-01

    Full Text Available Background and Objectives: Student-life stress can lead to various negative consequences such as physical illness, mental disorders or exhaustion. The present study was conducted to evaluate the level of student life stress and its related factors among medical students of Hamadan University of Medical Sciences. Materials and Methods: This cross-sectional study applied multistage random sampling to select 500university students at Hamadan University of Medical Sciences during 2015. The data collection tool used in this study was a self-report questionnaire containing two parts: a section on subjects' demographic details and another section for Student-Life Stress Inventory (SLSI. Data were analyzed in SPSS20-using descriptive and inferential statistics, such as independent t-test, Pearson’s correlation test and one-way ANOVA. Results: This study revealed that %57of the students had moderate levels of stress. The most important stressors included self-impose and pressure, and also the most important reactions to stressors included cognitive appraisal and emotional reactions, respectively. There was a significant association between exam stressors and branch, educational level, and mother's and father's education level (P< 0.05. Conclusions: According to the high level of stress in students and the recognition of demographic factors, effective educational interventions can be conducted to reduce stress.

  9. Student perceptions of the clinical laboratory science profession.

    Science.gov (United States)

    McClure, Karen

    2009-01-01

    The purpose of this paper is to describe the attitudes and perceptions among college biology and CLS/CLT students. These students were on selected college campuses at Texas universities in Houston, Dallas and the Austin/San Antonio areas for the Spring 2007 semester. Specifically, students were questioned on factors that influence their choice of field of study, career expectations, legislative measures which might be used to attract individuals to the career, and factors that will be required to keep them in the field of practice. This study was part of a larger qualitative study which included exploratory discovery and inductive logic regarding the attitudes of four focus groups in Texas. Focus groups took place on college campuses or in hotel conference rooms. (1) junior/senior-level college biology students and (2) junior/senior-level students currently enrolled in CLS/CLT programs. Focus group discussions using a standard set of questions; group sessions lasted about 45 minutes. This study was a qualitative study which included exploratory discovery and inductive logic regarding the attitudes of two groups in Texas. College biology and CLS/CLT students find the clinical laboratory science profession to be interesting and exciting as a career prospect, however, many do not see themselves remaining in the profession and perceive it does not have good prospects for career advancement. The majority of students must work to support themselves through their college education and would welcome additional grants, scholarships and loan forgiveness programs as incentives to study the clinical laboratory sciences. Students believe that additional recruitment on high school and college campuses is needed to increase the visibility of the field as career choice. The majority of students who are entering the clinical laboratory science profession do not see the profession as their final career choice, but rather a stepping stone to another career field in healthcare or a

  10. The effect of classroom instruction, attitudes towards science and motivation on students' views of uncertainty in science

    Science.gov (United States)

    Schroeder, Meadow

    This study examined developmental and gender differences in Grade 5 and 9 students' views of uncertainty in science and the effect of classroom instruction on attitudes towards science, and motivation. Study 1 examined views of uncertainty in science when students were taught science using constructivist pedagogy. A total of 33 Grade 5 (n = 17, 12 boys, 5 girls) and Grade 9 (n = 16, 8 boys, 8 girls) students were interviewed about the ideas they had about uncertainty in their own experiments (i.e., practical science) and in professional science activities (i.e., formal science). Analysis found an interaction between grade and gender in the number of categories of uncertainty identified for both practical and formal science. Additionally, in formal science, there was a developmental shift from dualism (i.e., science is a collection of basic facts that are the result of straightforward procedures) to multiplism (i.e., there is more than one answer or perspective on scientific knowledge) from Grade 5 to Grade 9. Finally, there was a positive correlation between the understanding uncertainty in practical and formal science. Study 2 compared the attitudes and motivation towards science and motivation of students in constructivist and traditional classrooms. Scores on the measures were also compared to students' views of uncertainty for constructivist-taught students. A total of 28 students in Grade 5 (n = 13, 11 boys, 2 girls) and Grade 9 (n = 15, 6 boys, 9 girls), from traditional science classrooms and the 33 constructivist students from Study 1 participated. Regardless of classroom instruction, fifth graders reported more positive attitudes towards science than ninth graders. Students from the constructivist classrooms reported more intrinsic motivation than students from the traditional classrooms. Constructivist students' views of uncertainty in formal and practical science did not correlate with their attitudes towards science and motivation.

  11. Changes in Student Science Interest from Elementary to Middle School

    Science.gov (United States)

    Coutts, Trudi E.

    This study is a transcendental phenomenological study that described the experience of students’ interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change in interest seems to modulate student motivation, which ultimately leads to fewer children choosing not only science classes in the future but science careers. Research studies have identified numerous factors that affect student interest in science; however, this study incorporated the lived experience of the child and looked at this interest in science through the lens of the child. The study design was a collective cross-case study that was multi-site based. This study utilized a sample of children in fifth grade classes of three different elementary schools, two distinct seventh grade classes of different middle schools, and ninth grade children from one high school in the State of Illinois. The phenomenon was investigated through student interviews. The use of one-on-one semi-structured interviews limited to 45 minutes in length provided the researcher with data of each child’s description of science interest. All interviews were audio- recorded and transcribed verbatim. The data was collected and analyzed in order to identify themes, and finally checked for validity. The most significant findings of this study, and possible factors contributing to science interest in children as they progress from elementary to high school, were those findings relating to hands-on activities, the degree to which a student was challenged, the offering of new versus previously studied topics in the curriculum, the perceived relevance of the curricular materials to personal life, and the empowerment children felt when they were allowed to make choices related to their learning experiences. This study’s possible implications for

  12. The Nature of Science in Science Curricula: Methods and Concepts of Analysis

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2013-01-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically…

  13. Factors affecting student achievement in science: A study of teacher beliefs

    Science.gov (United States)

    Hayes, Jonathan

    This study employed a mixed methods and mixed model research design to explore secondary science teachers' beliefs. Specifically, this study focused on factors that secondary science teachers believe affect student achievement in science, and the extent to which teacher beliefs transfer to teacher practice. This study is significant because the outcomes may inform professional development and policy decisions at the school, district, and provincial level. Results from self-reporting data of 82 secondary science teachers indicate that teacher beliefs in each of the fourteen topics surveyed (Classroom Management, Learning Styles, Inclusion, Equity, Science-Technology-Society (STS), Formative Assessment, Summative Assessment, Constructivism, Thematic Approach, Hands-On/Minds-On Activities, The Nature of Science, Science Subject Matter, Electronic Learning and Cooperative Learning) are positive for most Prince Edward Island (P.E.I.) secondary science teachers. Furthermore, secondary science teachers reported having strong beliefs in their ability to affect student learning (self-efficacy beliefs). However, it is apparent from the survey and interview data that teachers believe there are other influential factors that are preventing some students from learning despite the teachers' best efforts and ability. Regarding implementation, this study indicates that beliefs and the enactment of beliefs in classroom practice are positively correlated. The data also shows that at least seventy percent of teachers reported that they implement practices consistent with all but two topics -- The Nature of Science and Electronic Learning -- at least once a week. The findings of this study are discussed in the context of the P.E.I. secondary science setting. Limitations and implications of this study are also addressed.

  14. Preparing clinical laboratory science students with teaching skills.

    Science.gov (United States)

    Isabel, Jeanne M

    2010-01-01

    Training clinical laboratory science (CLS) students in techniques of preparation and delivery of an instructional unit is an important component of all CLS education programs and required by the national accrediting agency. Participants of this study included students admitted to the CLS program at Northern Illinois University and enrolled in the teaching course offered once a year between the years of 1997 and 2009. Courses on the topic of "teaching" may be regarded by CLS students as unnecessary. However, entry level practitioners are being recruited to serve as clinical instructors soon after entering the workforce. Evaluation of the data collected indicates that students are better prepared to complete tasks related to instruction of a topic after having an opportunity to study and practice skills of teaching. Mentoring CLS students toward the career role of clinical instructor or professor is important to maintaining the workforce.

  15. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  16. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  17. Student Intern Lands Top Prize in National Science Competition | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Student intern Sam Pritt’s interest in improving geolocation led him to develop a project that won a top regional prize at the Siemens Competition in Math, Science, and Technology in November. Pritt was awarded a $3,000 college scholarship, and he competed in the national competition in early December.

  18. Beyond Polls: Using Science and Student Data to Stimulate Learning

    Science.gov (United States)

    Loepp, Eric D.

    2018-01-01

    In an effort to promote learning in classrooms, political science instructors are increasingly turning to interactive teaching strategies--experiments, simulations, etc.--that supplement traditional lecture formats. In this article, I advocate the use of student-generated data as a powerful teaching tool that can be used in a variety of ways to…

  19. Engaging Students in Learning Science through Promoting Creative Reasoning

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan

    2017-01-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we…

  20. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  1. Vocabulary Learning Strategies of Japanese Life Science Students

    Science.gov (United States)

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  2. Science 2.0: When Students Become Digital Citizens

    Science.gov (United States)

    Smith, Ben; Mader, Jared

    2016-01-01

    Modern science learning requires the use of digital tools and a shift in teaching philosophy and pedagogy. The backbone to this shift rests in a yet unaddressed skill: digital citizenship. The authors discuss the Digital Citizen standard where "students (will) recognize the rights, responsibilities, and opportunities of living, learning, and…

  3. Curriculum challenges faced by rural-origin health science students ...

    African Journals Online (AJOL)

    This article is one of a series of investigations into various aspects of university life and career choices of health science students. Data were collected at three South African universities by the Collaboration for Health Equity through Education and Research (CHEER) collaborators. Ethical permission was sought from each ...

  4. Effect of project work on secondary school students science process ...

    African Journals Online (AJOL)

    The study investigated the effect of students' project work on secondary school science process skills acquisition in Biology. The study was carried out in Owerri North Local Government Area of Imo State. Three research questions guided the study and three null hypotheses were postulated and tested at 0.05 level of ...

  5. Knowledge and Regulation of Cognition in College Science Students

    Science.gov (United States)

    Roshanaei, Mehrnaz

    2014-01-01

    The research focused on three issues in college science students: whether there was empirical support for the two factor (knowledge of cognition and regulation of cognition) view of metacognition, whether the two factors were related to each other, and whether either of the factors was related to empirical measures of cognitive and metacognitive…

  6. University Student Conceptions of Learning Science through Writing

    Science.gov (United States)

    Ellis, Robert A.; Taylor, Charlotte E.; Drury, Helen

    2006-01-01

    First-year undergraduate science students experienced a writing program as an important part of their assessment in a biology subject. The writing program was designed to help them develop both their scientific understanding as well as their written scientific expression. Open-ended questionnaires investigating the quality of the experience of…

  7. Personal and Contextual Factors Associated with Students' Cheating in Science

    Science.gov (United States)

    Tas, Yasemin; Tekkaya, Ceren

    2010-01-01

    The authors conducted a correlational study to investigate the relations among seventh-grade Turkish students' cheating behavior, academic self-efficacy beliefs, usage of self-handicapping strategies, personal goal orientations, and classroom goal structures specific to the science domain. The Patterns of Adaptive Learning Scales was administered…

  8. Predictors of Obesity Bias among Exercise Science Students

    Science.gov (United States)

    Langdon, Jody; Rukavina, Paul; Greenleaf, Christy

    2016-01-01

    The purpose of the present study was to investigate particular psychosocial predictors of obesity bias in prehealth professionals, which include the internalization of athletic and general body ideals, perceived media pressure and information, and achievement goal orientations. Exercise science undergraduate students (n = 242) filled out a survey…

  9. Student teachers' views: what is an interesting Life Sciences ...

    African Journals Online (AJOL)

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10–12 ...

  10. Computer Graphics for Student Engagement in Science Learning.

    Science.gov (United States)

    Cifuentes, Lauren; Hsieh, Yi-Chuan Jane

    2001-01-01

    Discusses student use of computer graphics software and presents documentation from a visualization workshop designed to help learners use computer graphics to construct meaning while they studied science concepts. Describes problems and benefits when delivering visualization workshops in the natural setting of a middle school. (Author/LRW)

  11. Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students

    Science.gov (United States)

    Lewis, Y.

    2006-05-01

    Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying

  12. Teacher-student interactions and domain-specific motivation: The relationship between students' perceptions of teacher interpersonal behavior and motivation in middle school science

    Science.gov (United States)

    Smart, Julie Brockman

    2009-11-01

    This study examined interactions between middle school science students' perceptions of teacher-student interactions and their motivation for learning science. Specifically, in order to better understand factors affecting middle school students' motivation for science, this study investigated the interactions between middle school students' perceptions of teacher interpersonal behavior in their science classroom and their efficacy, task value, mastery orientations, and goal orientation for learning science. This mixed methods study followed a sequential explanatory model (Cresswell & Plano-Clark, 2007). Quantitative and qualitative data were collected in two phases, with quantitative data in the first phase informing the selection of participants for the qualitative phase that followed. The qualitative phase also helped to clarify and explain results from the quantitative phase. Data mixing occurred between Phase One and Phase Two (participant selection) and at the interpretation level (explanatory) after quantitative and qualitative data were analyzed separately. Results from Phase One indicated that students' perceptions of teacher interpersonal behaviors were predictive of their efficacy for learning science, task value for learning science, mastery orientation, and performance orientation. These results were used to create motivation/perception composites, which were used in order to select students for the qualitative interviews. A total of 24 students with high motivation/high perceptions, low motivation/low perceptions, high motivation/low perceptions, and low motivation/high perceptions were selected in order to represent students whose profiles either supported or refuted the quantitative results. Results from Phase Two revealed themes relating to students' construction of their perceptions of teacher interpersonal behavior and dimensions of their efficacy and task value for science. Students who reported high motivation and high perceptions of teacher-student

  13. Parent Involvement Practices of High-Achieving Elementary Science Students

    Science.gov (United States)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  14. Science achievement of students in the Republic of Yemen and implications for improvement of science instruction

    Science.gov (United States)

    Ismail, Nageeb Kassem

    The purpose of this study was to establish a research base from which strategies could be developed for improving science education in Yemen. The study measured the achievement in general science of Yemeni students attending primary, preparatory, and secondary schools, and their counterparts attending three- or five-year education programs in primary teacher training institutions. A sample of 1,984 students from six major cities in Yemen was given the Second International Science Study test in May 1988. Achievement scores of these selected groups were compared. The mean achievement in general science was 11.93 for science track students, 9.21 for three-year teacher training institution students, and 8.49 for five-year teacher training institution students. These mean scores were based on a total of 35 items. This low level of achievement was further verified by making comparisons of the achievement of selected groups from Yemeni high schools in six cities with each other. The following factors were measured in this study: location, grade level, gender and type of science program studied. Selected groups from Yemeni high schools were also compared to their peers in other nations. The researcher compared students of the science track and teacher training institutions to their counterparts in 13 nations and students of the literature track to their counterparts in eight nations. Fifth and ninth grade students' scores were compared with the scores of their counterparts in 15 and 17 nations respectively. In every comparison, every Yemeni group ranked at the bottom of the achievement list. (Jacobson W., & Doran, R. 1988) The outcomes of this research indicate the profound need for improving science programs in all grade levels in Yemen. The research recommendations for improvement in science education in Yemen fall into four areas: a change in attitudes toward education, a change in teacher education, a change in classroom conditions, and a change in educational

  15. Aspects of Teaching and Learning Science: What students' diaries reveal about inquiry and traditional modes

    Science.gov (United States)

    Kawalkar, Aisha; Vijapurkar, Jyotsna

    2015-09-01

    We present an analysis of students' reflective writing (diaries) of two cohorts of Grade 8 students, one undergoing inquiry and the other traditional science teaching. Students' writing included a summary of what students had learned in class on that day and their opinions and feelings about the class. The entries were analysed qualitatively and quantitatively. This analysis of students' first-person accounts of their learning experience and their notes taken during class was useful in two ways. First, it brought out a spectrum of differences in outcomes of these two teaching modes-conceptual, affective and epistemic. Second, this analysis brought out the significance and meaning of the learning experience for students in their own words, thus adding another dimension to researchers' characterisation of the two teaching methods.

  16. Learning science through talk: A case study of middle school students engaged in collaborative group investigation

    Science.gov (United States)

    Zinicola, Debra Ann

    Reformers call for change in how science is taught in schools by shifting the focus towards conceptual understanding for all students. Constructivist learning is being promoted through the dissemination of National and State Science Standards that recommend group learning practices in science classrooms. This study examined the science learning and interactions, using case study methodology, of one collaborative group of 4 students in an urban middle school. Data on science talk and social interaction were collected over 9 weeks through 12 science problem solving sessions. To determine student learning through peer interaction, varied group structures were implemented, and students reflected on the group learning experience. Data included: field notes, cognitive and reflective journals, audiotapes and videotapes of student talk, and audiotapes of group interviews. Journal data were analyzed quantitatively and all other data was transcribed into The Ethnograph database for qualitative analysis. The data record was organized into social and cognitive domains and coded with respect to interaction patterns to show how group members experienced the social construction of science concepts. The most significant finding was that all students learned as a result of 12 talk sessions as evidenced by pre- and post-conceptual change scores. Interactions that promoted learning involved students connecting their thoughts, rephrasing, and challenging ideas. The role structure was only used by students about 15% of the time, but it started the talk with a science focus, created awareness of scientific methods, and created an awareness of equitable member participation. Students offered more spontaneous, explanatory talk when the role structure was relaxed, but did not engage in as much scientific writing. They said the role structure was important for helping them know what to do in the talk but they no longer needed it after a time. Gender bias, status, and early adolescent

  17. The role of Social Networks on Academic Achievement of Gonabad University of Medical Science\\' students

    Directory of Open Access Journals (Sweden)

    Meisam Dastani

    2016-11-01

    Full Text Available Introduction: Social networks are the most important means of communication in the societies as well as in the world, so the use of virtual social networks among students is important. The purpose of this study was to evaluate the use of virtual social networks among students in Gonabad University of Medical Sciences. Methods: In this descriptive study, 277 students were randomly selected from  Gonabad University of  Medical Sciences. They completed a questionnaire which its validity and reliability were obtained in earlier studies. Then the data were analyzed using SPSS software version 20. Results: The findings showed that 87 percent of the students were aware of virtual social networks, and 52 percent were members of these social networks. Students spend about an hour and eleven minutes (SD=2.20771 on the virtual networks. There was no significant difference between academic achievement of students in the groups. Conclusion: The results showed that more than half of the students were members of social networks. Students are not familiar with all of the effects of these social networks since they are recently emerged, so performing more research on other aspects of their impact on the life and health of students are necessary.

  18. Student Agency in Negotiating the Relationship Between Science and Religion

    Science.gov (United States)

    Tang, Kok-Sing; Yang, Xiangyu

    2017-08-01

    Research examining the relationship between science and religion has often painted a narrative of conflict for students with various religious beliefs. The purpose of this paper is to present a counter-narrative based on a study carried out in Singapore, which provides a unique multi-ethnic and multi-religious environment and geopolitical context to study the phenomenon. Informed by the theories of collateral learning, situated cognition and agency, the study examined how a group of high school biology students viewed and negotiated the relationship between biological evolution and their beliefs in Christianity. Case study methodology and semi-structured interviews were used to generate thick descriptions of their views. Findings from the study illustrate how the students exhibited agency in deliberately creating multiple resolution mechanisms as they recognised and negotiated the conceptual and social tensions between the worldviews of evolution and creationism. The findings suggest that the students exhibited more agency in resolving the perceived conflict between science and religion than we tend to ascribe based on previous interpretative accounts that emphasised confrontation, alienation and marginalisation. The implication is that students' agency in negotiating the differing worldviews between science and religion should be seen as a resource for the learning of evolution, rather than a hindrance.

  19. The Deep River Science Academy: a unique and innovative program for engaging students in science

    International Nuclear Information System (INIS)

    Turner, C.W.; Didsbury, R.; Ingram, M.

    2014-01-01

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  20. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)