WorldWideScience

Sample records for science matters header

  1. Header integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rotvel, F. [ELSAMPROJEKT, Fredericia (Denmark); Sampietri, C. [ENEL, Milano (Italy); Verelst, L. [LABORELEC, Linkebeek (Belgium); Wortel, H. van [TNO, Apeldoorn (Netherlands); Li Ying Zhi [KEMA, Arnhem (Netherlands)

    1998-12-31

    In the late eighties creep cracks in the nozzle-to-header welds of high temperature headers became internationally recognized as a problem in older steam power plants. To study the problem a 2 1/4Cr1Mo service-exposed header, which was scrapped due to creep damage, was made available for testing. A full-scale model was fabricated with partly repaired nozzle to header welds and then tested at increased temperature. Loads included internal pressure and system loads. Damage accumulation and creep crack initiation and growth were predicted and experimentally verified. Conclusions and the practical implications for power plant operation are described. (orig.) 7 refs.

  2. Header integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rotvel, F [ELSAMPROJEKT, Fredericia (Denmark); Sampietri, C [ENEL, Milano (Italy); Verelst, L [LABORELEC, Linkebeek (Belgium); Wortel, H van [TNO, Apeldoorn (Netherlands); Zhi, Li Ying [KEMA, Arnhem (Netherlands)

    1999-12-31

    In the late eighties creep cracks in the nozzle-to-header welds of high temperature headers became internationally recognized as a problem in older steam power plants. To study the problem a 2 1/4Cr1Mo service-exposed header, which was scrapped due to creep damage, was made available for testing. A full-scale model was fabricated with partly repaired nozzle to header welds and then tested at increased temperature. Loads included internal pressure and system loads. Damage accumulation and creep crack initiation and growth were predicted and experimentally verified. Conclusions and the practical implications for power plant operation are described. (orig.) 7 refs.

  3. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  4. Social science that matters

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2006-01-01

    Social science is headed down a dead end toward mere scientism, becoming a second-rate version of the hard sciences. We neeed to recognise and support a different kind of social science research - and so should those who demand accountability from researchers. This paper asks what kind of social...... science we - scholars, policy makers, administrators - should and should not promote in democratic societies, and how we may hold social scientists accountable to deliver what we ask them for....

  5. Science Matters Special Edition: Wildland Fire Science

    Science.gov (United States)

    EPA is applying its extensive expertise in air quality science to the study of wildland fires to help states and communities that are impacted. This issue of Science Matters newsletter highlights some of the research projects under way by EPA and partners.

  6. Does science matter?

    CERN Multimedia

    Broad, W J

    2003-01-01

    "...there are new troubles in the peculiar form of paradise that science has created, as well as new questions about whether it has the popular support to meet the future challenges of disease, pollution, security, energy, education, food, water and urban sprawl" (1 page).

  7. Conceptual design of a chickpea harvesting header

    Directory of Open Access Journals (Sweden)

    H. Golpira

    2013-07-01

    Full Text Available Interest in the development of stripper headers is growing owing to the excessive losses of combine harvesters and costs of manually harvesting for chickpeas. The design of a new concept can enhance the mechanized process for chickpea harvesting. A modified stripper platform was designed, in which passive fingers with V-shape slots removes the pods from the anchored plant. The floating platform was accompanied by a reel to complete the harvesting header. Black-box modeling was used to redesign the functional operators of the header followed by an investigation of the system behavior. Physical models of the platform and reel were modified to determine the crucial variables of the header arrangement during field trials. The slot width was fixed at 40 mm, finger length at 40 mm, keyhole diameter at 10 mm and entrance width at 6 mm; the batted reel at peripheral diameter of 700 mm and speed at 50 rpm. A tractor-mounted experimental harvester was built to evaluate the work quality of the stripper header. The performance of the prototype was tested with respect to losses and results confirmed the efficiency of the modified stripper header for chickpea harvesting. Furthermore, the header with a 1.4 m working width produced the spot work rates of 0.42 ha h-1.

  8. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  9. Multi-protocol header generation system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David A.; Ignatowski, Michael; Jayasena, Nuwan; Loh, Gabriel

    2017-09-05

    A communication device includes a data source that generates data for transmission over a bus, and a data encoder that receives and encodes outgoing data. An encoder system receives outgoing data from a data source and stores the outgoing data in a first queue. An encoder encodes outgoing data with a header type that is based upon a header type indication from a controller and stores the encoded data that may be a packet or a data word with at least one layered header in a second queue for transmission. The device is configured to receive at a payload extractor, a packet protocol change command from the controller and to remove the encoded data and to re-encode the data to create a re-encoded data packet and placing the re-encoded data packet in the second queue for transmission.

  10. Science Is A Laughing Matter

    Science.gov (United States)

    Weissman, P. R.

    2017-12-01

    Humor can be a powerful tool in communicating science to a professional or lay audience. Humor relaxes the audience and encourages them to pay better attention, lest they miss the next funny comment or slide (and be sure that you provide it for them). Humor sends the message that the speaker is so confident in his/her material that the speaker can joke about it; this tends to deter spurious or trivial questions after the talk. But humor is not for the faint of heart. It requires planning, practice, and especially, good timing. Good humorists are always on the lookout for new material that they can use in a talk, be it a funny image, a cartoon, or a quip from a movie or from a professional comedian. But the humorist must also be a strict self-censor. Politically incorrect material can be extremely dangerous and can backfire on the speaker. Don't ever use material that insults some faction in the audience, even if that faction is not present at the moment or too stupid to notice. Don't include so much humor that the science in your talk gets lost in the laughter. Lastly, speakers who are not funny, should never attempt humor. There is nothing so damaging to a talk as poor humor that falls flat on its face. But if you have a good sense of humor, go for it. Life should be fun and so should science.

  11. Testing Header Component of Electricity Power Industry Boiler

    International Nuclear Information System (INIS)

    Soedardjo, S.A; Andryansyah, B; Artahari, Dewi; Natsir, Muhammad; Triyadi, Ari; Farokhi

    2000-01-01

    Testing of header component of Suralaya Unit II electricity power by replication method has been carried out. That header component is cross over pipe which interconnection between Primary and Superheater Outlet Header Secondary Superheater Outlet Header with the operation time over 14 years. The main composition of cross over pipe is 2 1/4 Cr 1 Mo or frequently specified as ferritique steel. The replication testing shown that the damage classification on those cross over pipe in A class based on failure classification from Neubauer and Wedel. Simple calculation in favor of cross over pipe remaining lifetime is about 16.5 years moreover

  12. A proven twin header design for small PWRs

    International Nuclear Information System (INIS)

    Davidov, Maurice

    1987-01-01

    A unique design of PWR steam generator, developed by Foster Wheeler in Britain more than 30 years ago, avoids the problem of tubesheet sludge accumulation. The twin header steam generator uses a vertical, inverted U-tube bundle connected to cylindrical inlet and outlet headers. The advantages of the design and operating experience are outlined. (author)

  13. Threats and surprises behind IPv6 extension headers

    NARCIS (Netherlands)

    Hendriks, Luuk; Velan, Petr; de Oliveira Schmidt, Ricardo; De Boer, Pieter Tjerk; Pras, Aiko

    2017-01-01

    The concept of Extension Headers, newly introduced with IPv6, is elusive and enables new types of threats in the Internet. Simply dropping all traffic containing any Extension Header - a current practice by operators-seemingly is an effective solution, but at the cost of possibly dropping legitimate

  14. Prospective Science Teachers' Subject-Matter Knowledge about Overflow Container

    Science.gov (United States)

    Ültay, Eser

    2016-01-01

    The purpose of this study was to determine prospective science teachers' subject-matter knowledge (SMK) about overflow container. This study was carried out in the form of a case study in spring term of the academic year of 2013-2014 with seven sophomore prospective science teachers who were studying at Elementary Science Teaching Department in…

  15. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  16. Does the Truth Matter in Science?

    Science.gov (United States)

    Lipton, Peter

    2005-01-01

    Is science in the truth business, discovering ever more about an independent and largely unobservable world? Karl Popper and Thomas Kuhn, two of the most important figures in science studies in the 20th century, gave accounts of science that are in some tension with the truth view. Their central claims about science are considered here, along with…

  17. SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL ...

    Indian Academy of Sciences (India)

    SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL APPROACH TO EXPLORE UNTAPPED BACTERIAL DIVERSITY. MILIND WATVE; Dept of Microbiology, Abasaheb Garware College, Pune. www.culturematters.org; * Life Research Foundation, Pune; * Evolvus Biotech Pvt. Ltd.,Pune ...

  18. What's the matter with Antimatter? Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    Antimatter may be the stuff of science fiction, but to physicists it poses a serious question. Why is there not more of it around? At the Big Bang, matter and antimatter should have been created in equal amounts, yet today we seem to live in a Universe entirely made of matter. So where has all the antimatter gone?

  19. Packet Header Compression for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2016-01-01

    Full Text Available Due to the extensive growth of Internet of Things (IoT, the number of wireless devices connected to the Internet is forecasted to grow to 26 billion units installed in 2020. This will challenge both the energy efficiency of wireless battery powered devices and the bandwidth of wireless networks. One solution for both challenges could be to utilize packet header compression. This paper reviews different packet compression, and especially packet header compression, methods and studies the performance of Robust Header Compression (ROHC in low speed radio networks such as XBEE, and in high speed radio networks such as LTE and WLAN. In all networks, the compressing and decompressing processing causes extra delay and power consumption, but in low speed networks, energy can still be saved due to the shorter transmission time.

  20. SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL ...

    Indian Academy of Sciences (India)

    Table of contents. SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL APPROACH TO EXPLORE UNTAPPED BACTERIAL DIVERSITY · UNDER GRADUATE RESEARCH An alternative model of doing science · THE EXPANSE OF LIFE · HOW MANY SP. OF BACTERIA IN 1 g SOIL? TORSVIK ET AL 1990.

  1. The Particulate Nature of Matter in Science Education and in Science.

    Science.gov (United States)

    Vos, Wobbe de; Verdonk, Adri H.

    1996-01-01

    Discusses ideas about the particulate nature of matter and assesses the extent to which these represent a compromise between scientific and educational considerations. Analyzes relations between the particulate nature of matter in science and science education in an attempt to understand children's inclination to attribute all kinds of macroscopic…

  2. Citizen Science Terminology Matters: Exploring Key Terms

    NARCIS (Netherlands)

    Eitzel, M.V.; Cappadonna, Jessica L.; Santos-Lang, Chris; Duerr, Ruth Ellen; Virapongse, Arika; West, Sarah Elizabeth; Kyba, Christopher Conrad Maximillian; Bowser, Anne; Cooper, Caren Beth; Sforzi, Andrea; Metcalfe, Anya Nova; Harris, Edward S.; Thiel, Martin; Haklay, Mordechai; Ponciano, Lesandro; Roche, Joseph; Ceccaroni, Luigi; Shilling, Fraser Mark; Dörler, Daniel; Heigl, Florian; Kiessling, Tim; Davis, Brittany Y.; Jiang, Qijun

    2017-01-01

    Much can be at stake depending on the choice of words used to describe citizen science, because terminology impacts how knowledge is developed. Citizen science is a quickly evolving field that is mobilizing people’s involvement in information development, social action and justice, and large-scale

  3. Implanted muon studies in condensed matter science

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1986-12-01

    The paper reviews the broad range of applications of implanted muons in condensed matter. Muon spin rotation is discussed, along with the studies in magnetism, muonion, metals and organic radicals. A description of muon spin relaxation is also given, as well as techniques and applications appropriate to pulsed muon sources. (UK)

  4. A LOCA analysis for AHWR caused by ECCS header rupture

    International Nuclear Information System (INIS)

    Chatterjee, B.; Gawai, Amol; Gupta, S.K.; Kushwaha, H.S.

    2000-01-01

    Loss of coolant accident (LOCA) analyses for the proposed 750 MWth Advanced Heavy Water Reactor (AHWR), initiated by the rupture of 8 inch NB ECCS header has been carried out. This paper narrates the description of AHWR and associated ECCS, postulated scenario with which the analyses is carried out, results, discussion and conclusion

  5. Technology Corner: Analysing E-mail Headers For Forensic Investigation

    Directory of Open Access Journals (Sweden)

    M. Tariq Banday

    2011-06-01

    Full Text Available Electronic Mail (E-Mail, which is one of the most widely used applications of Internet, has become a global communication infrastructure service.  However, security loopholes in it enable cybercriminals to misuse it by forging its headers or by sending it anonymously for illegitimate purposes, leading to e-mail forgeries. E-mail messages include transit handling envelope and trace information in the form of structured fields which are not stripped after messages are delivered, leaving a detailed record of e-mail transactions.  A detailed header analysis can be used to map the networks traversed by messages, including information on the messaging software and patching policies of clients and gateways, etc. Cyber forensic e-mail analysis is employed to collect credible evidence to bring criminals to justice. This paper projects the need for e-mail forensic investigation and lists various methods and tools used for its realization. A detailed header analysis of a multiple tactic spoofed e-mail message is carried out in this paper. It also discusses various possibilities for detection of spoofed headers and identification of its originator. Further, difficulties that may be faced by investigators during forensic investigation of an e-mail message have been discussed along with their possible solutions.

  6. Research chief wants to make science matter

    CERN Multimedia

    König, R

    1999-01-01

    The new research chief of the European Union, Phillippe Busquin wants to move science into the heart of EU decision-taking. He would like to make European research more 'cohesive, focused, mobile and multilateral' (2 pages).

  7. Dose surveys in two digital mammography units using DICOM headers

    International Nuclear Information System (INIS)

    Tsalafoutas, I.; Michalaki, C.; Papagiannopoulou, C.; Efstathopoulos, E.

    2012-01-01

    Background and objective: Digital mammography units store images in DICOM format. Thus, data regarding the acquisition parameters are available within DICOM headers, including among others, the anode/filter combination, tube potential and tube current exposure time product, compressed breast thickness, entrance surface air kerma (ESAK) and mean glandular dose (MGD). However, manual extraction of these data for the verification of the displayed values' accuracy and for dose survey purposes is time consuming. Our objective was to develop a method that enables the automation of such procedures. Materials and methods: Two hundred mammographic examinations (800 mammograms) performed in two digital units (GE, Essential) were recorded on CD-roms. Using appropriate software (DICOM Info Extractor) all dose related DICOM headers were extracted into a Microsoft Excel based spreadsheet, containing embedded algorithms for the calculation of ESAK and MGD according to Dance et al (Phys. Med. Biol. 45, 2000) methodology. Results: The ESAK and MGD values stored in the DICOM headers were compared with those calculated and in most cases were within ±10%. The basic difference among the two mammographic units is that, the older one calculates MGD assuming a breast composition 50% glandular-50% adipose tissue, while the newer one calculates the actual breast glandularity and stores this value in a DICOM header. The average MGD values were 1.21 mGy and 1.38 mGy, respectively. Conclusion: For the units studied, the ESAK and MGD values stored in DICOM headers are reliable. Utilizing tools for their automatic extraction provides an easy way to perform dose surveys. (authors)

  8. What matters to women in science? Gender, power and bureaucracy

    Czech Academy of Sciences Publication Activity Database

    Linková, Marcela; Červinková, Alice

    2011-01-01

    Roč. 18, č. 3 (2011), s. 215-230 ISSN 1350-5068 R&D Projects: GA MŠk OK08007 Institutional research plan: CEZ:AV0Z70280505 Keywords : gender * science policy * modes of mattering Subject RIV: AO - Sociology, Demography Impact factor: 0.216, year: 2011

  9. Academic Training turns to matters of science and society

    CERN Multimedia

    2001-01-01

    Once again, CERN has opened its doors to matters of science and society. A recent academic training lecture series tackled the thorny issue of arms control. Although an issue far from normal training needs of CERN personnel, the series was well attended. Aseries of lectures about arms control at CERN? Surely some mistake! But there are many reasons why one of the world's most important physics laboratories should consider such weighty political and ethical matters - not least the concern for the issues felt by members of the CERN community. A large number of people followed the full series of lectures on arms control and disarmament by Francesco Calogero, Professor of theoretical physics at Rome's 'La Sapienza' University, demonstrating that CERN people are not only interested in purely scientific matters, but also in the implications for society. Professor Calogero, a former Secretary General of Pugwash1) and currently Chairman of the Pugwash Council, observed that, 'even if I dealt, albeit tersely, with the...

  10. Summary report on underground road header environmental control.

    CSIR Research Space (South Africa)

    Belle, BK

    2002-01-01

    Full Text Available and on monitoring should be reassessed to take into consideration the recent findings and current international trends. 5 6. No conclusive results were obtained with regard to the use of a wet cutter head in conjunction with the Bank 2000 Road Header Dust... this response time interval is lower than the T90 response time, a good indication of the methane gas trends can be obtained. To protect the methane sensors from the harsh environment around an active RH, the 22 Custodian sensors were placed in polycarbonate...

  11. Twin header bore welded steam generator for pressurized water reactors

    International Nuclear Information System (INIS)

    Davies, R.J.; Hirst, B.

    1979-01-01

    A description is given of a pressurized water reactor (PWR) steam generator concept, several examples of which have been in service for up to fourteen years. Details are given of the highly successful service record of this equipment and the features which have been incorporated to minimize corrosion and deposition pockets. The design employs a vertical U tube bundle carried off two horizontal headers to which the tubes are welded by the Foster Wheeler Power Products (FWPP) bore welding process. The factors to be considered in uprating the design to meet the current operating conditions for a 1000 MW unit are discussed. (author)

  12. 20% inlet header break analysis of Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Gupta, S.K.; Venkat Raj, V.; Singh, R.; Iyer, K.

    2001-01-01

    The proposed Advanced Heavy Water Reactor (AHWR) is a 750 MWt vertical pressure tube type boiling light water cooled and heavy water moderated reactor. A passive design feature of this reactor is that the heat removal is achieved through natural circulation of primary coolant at all power levels, with no primary coolant pumps. Loss of coolant due to failure of inlet header results in depressurization of primary heat transport (PHT) system and containment pressure rise. Depressurization activates various protective and engineered safety systems like reactor trip, isolation condenser and advanced accumulator, limiting the consequences of the event. This paper discusses the thermal hydraulic transient analysis for evaluating the safety of the reactor, following 20% inlet header break using RELAP5/MOD3.2. For the analysis, the system is discretized appropriately to simulate possible flow reversal in one of the core paths during the transient. Various modeling aspects are discussed in this paper and predictions are made for different parameters like pressure, temperature, steam quality and flow in different parts of the Primary Heat Transport (PHT) system. Flow and energy discharges into the containment are also estimated for use in containment analysis. (author)

  13. Remaining life assessment of carbon steel boiler headers by repeated creep testing

    Energy Technology Data Exchange (ETDEWEB)

    Drew, M. [ANSTO, Materials and Engineering Science, New Illawarra Road, Lucas Heights, PMB 1 Menai, NSW 2234 (Australia)]. E-mail: michael.drew@ansto.gov.au; Humphries, S. [ANSTO, Materials and Engineering Science, New Illawarra Road, Lucas Heights, PMB 1 Menai, NSW 2234 (Australia); Thorogood, K. [ANSTO, Materials and Engineering Science, New Illawarra Road, Lucas Heights, PMB 1 Menai, NSW 2234 (Australia); Barnett, N. [BlueScope Steel, P.O. Box 1854, Wollongong, NSW (Australia)

    2006-05-15

    The condition of carbon steel boiler headers that have been in service for over 25 years has been assessed periodically by NDT, dimensional measurements, replication and accelerated creep testing. Historical temperature records were limited, so estimates of effective header temperatures were made from replicas. These estimates were compared with header stub thermocouple readings. At about 280,000 service hours, samples were chain-drilled from the headers for accelerated creep testing. These test results indicated that the headers had satisfactory remaining life. Nine years after the original samples were taken, additional samples were removed from one header at 337,000 service hours. The creep rupture properties measured from the repeated tests were almost identical to the initial results. A mild degree of random, nodular graphite was found in the samples and its effect on creep properties is discussed.

  14. Dark Energy, Dark Matter and Science with Constellation-X

    Science.gov (United States)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  15. RObust header compression (ROHC) performance for multimedia transmission over 3G/4G wireless networks

    DEFF Research Database (Denmark)

    Fitzek, Frank; Rein, S.; Seeling, P.

    2005-01-01

    Robust Header Compression (ROHC) has recently been proposed to reduce the large protocol header overhead when transmitting voice and other continuous meadi over IP based control stacks in wireless networks. In this paper we evaluate the real-time transmission of GSM encoded voice and H. 26L encod...

  16. Phishtest: Measuring the Impact of Email Headers on the Predictive Accuracy of Machine Learning Techniques

    Science.gov (United States)

    Tout, Hicham

    2013-01-01

    The majority of documented phishing attacks have been carried by email, yet few studies have measured the impact of email headers on the predictive accuracy of machine learning techniques in detecting email phishing attacks. Research has shown that the inclusion of a limited subset of email headers as features in training machine learning…

  17. Researching of Covert Timing Channels Based on HTTP Cache Headers in Web API

    Directory of Open Access Journals (Sweden)

    Denis Nikolaevich Kolegov

    2015-12-01

    Full Text Available In this paper, it is shown how covert timing channels based on HTTP cache headers can be implemented using different Web API of Google Drive, Dropbox and Facebook  Internet services.

  18. Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link

    Science.gov (United States)

    Nguyen, Sam P.; Pang, Jackson; Clare, Loren P.; Cheng, Michael K.

    2010-01-01

    NASA is moving toward a networkcentric communications architecture and, in particular, is building toward use of Internet Protocol (IP) in space. The use of IP is motivated by its ubiquitous application in many communications networks and in available commercial off-the-shelf (COTS) technology. The Constellation Program intends to fit two or more voice (over IP) channels on both the forward link to, and the return link from, the Orion Crew Exploration Vehicle (CEV) during all mission phases. Efficient bandwidth utilization of the links is key for voice applications. In Voice over IP (VoIP), the IP packets are limited to small sizes to keep voice latency at a minimum. The common voice codec used in VoIP is G.729. This new algorithm produces voice audio at 8 kbps and in packets of 10-milliseconds duration. Constellation has designed the VoIP communications stack to use the combination of IP/UDP/RTP protocols where IP carries a 20-byte header, UDP (User Datagram Protocol) carries an 8-byte header, and RTP (Real Time Transport Protocol) carries a 12-byte header. The protocol headers total 40 bytes and are equal in length to a 40-byte G.729 payload, doubling the VoIP latency. Since much of the IP/UDP/RTP header information does not change from IP packet to IP packet, IP/UDP/RTP header compression can avoid transmission of much redundant data as well as reduce VoIP latency. The benefits of IP header compression are more pronounced at low data rate links such as the forward and return links during CEV launch. IP/UDP/RTP header compression codecs are well supported by many COTS routers. A common interface to the COTS routers is through frame relay. However, enabling IP header compression over frame relay, according to industry standard (Frame Relay IP Header Compression Agreement FRF.20), requires a duplex link and negotiations between the compressor router and the decompressor router. In Constellation, each forward to and return link from the CEV in space is treated

  19. Doing Science that Matters to Address India's Water Crisis.

    Science.gov (United States)

    Srinivasan, V.

    2017-12-01

    Addressing water security in developing regions involves predicting water availability under unprecedented rates of population and economic growth. India is one of the most water stressed countries in the world. Despite appreciable increases in funding for water research, high quality science that is usable by stakeholders remains elusive. The absence of usable research, has been driven by notions of what is publishable in the developed world. This can be attributed to the absence of problem driven research on questions that actually matter to stakeholders, unwillingness to transcend disciplinary boundaries and the demise of a field-work research culture in favour of computer simulation. Yet the combination of rapid change, inadequate data and human modifications to watersheds poses a challenge, as researchers face a poorly constrained water resources modelling problem. Instead, what India and indeed all developing regions need is to approach the problem from first principles, identifying the most critical knowledge gaps, then prioritizing data collection using novel sensing and modelling approaches to address them. This might also necessitate consideration of underlying social and governance drivers of hydrologic change. Using examples from research in the Cauvery Basin, a highly contentious inter-state river basin, I offer some insights into framing "use-inspired" research agenda and show how the research generates not just new scientific insights but may be translated into practice.

  20. 40 Gbit/s NRZ Packet-Length Insensitive Header Extraction for Optical Label Switching Networks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Kehayas, E; Avramopoulos, H.

    2006-01-01

    A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively......A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively...

  1. Orthogonal transformations for change detection, Matlab code (ENVI-like headers)

    DEFF Research Database (Denmark)

    2007-01-01

    Matlab code to do (iteratively reweighted) multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data; accommodates ENVI (like) header files.......Matlab code to do (iteratively reweighted) multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data; accommodates ENVI (like) header files....

  2. How can history of science matter to scientists?

    Science.gov (United States)

    Maienschein, Jane; Laubichler, Manfred; Loettgers, Andrea

    2008-06-01

    History of science has developed into a methodologically diverse discipline, adding greatly to our understanding of the interplay between science, society, and culture. Along the way, one original impetus for the then newly emerging discipline--what George Sarton called the perspective "from the point of view of the scientist"--dropped out of fashion. This essay shows, by means of several examples, that reclaiming this interaction between science and history of science yields interesting perspectives and new insights for both science and history of science. The authors consequently suggest that historians of science also adopt this perspective as part of their methodological repertoire.

  3. Creep-fatigue monitoring system for header ligaments of fossil power plants

    International Nuclear Information System (INIS)

    Chen, K.L.; Deardorf, A.F.; Copeland, J.F.; Pflasterer, R.; Beckerdite, G.

    1993-01-01

    The cracking of headers (primary and secondary superheater outlet, and reheater outlet headers) at ligament locations is an important issue for fossil power plants. A model for crack initiation and growth has been developed, based on creep-fatigue damage mechanisms. This cracking model is included in a creep-fatigue monitoring system to assess header structural integrity under high temperature operating conditions. The following principal activities are required to achieve this goal: (1) the development of transfer functions and (2) the development of a ligament cracking model. The first task is to develop stress transfer functions to convert measured (monitored) temperatures, pressures and flow rates into stresses to be used to compute damage. Elastic three-dimensional finite element analyses were performed to study transient thermal stress behavior. The sustained pressure stress redistribution due to high temperature creep was studied by nonlinear finite element analyses. The preceding results are used to derive Green's functions and pressure stress gradient transfer functions for monitoring at the juncture of the tube with the header inner surface, and for crack growth at the ligaments. The virtual crack closure method is applied to derive a stress intensity factor K solution for a corner crack at the tube/header juncture. Similarly, using the reference stress method, the steady state creep crack growth parameter C * is derived for a header corner crack. The C * solution for a small corner crack in a header can be inserted directed into the available C t solution, along with K to provide the complete transient creep solution

  4. Do Subject Matter Knowledge, and Pedagogical Content Knowledge Constitute the Ideal Gas Law of Science Teaching?

    Science.gov (United States)

    Lederman, Norman G.; Gess-Newsome, Julie

    1992-01-01

    Describes Pedagogical Content Knowledge and focuses on the empirical research directly concerned with the relationship between science teachers' subject matter knowledge or structures and actual classroom practice. Concludes there is little evidence that a relationship exists. (PR)

  5. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  6. Canada-United States Transboundary Particulate Matter Science Assessment 2013

    Science.gov (United States)

    This 2013 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  7. Canada-United States Transboundary Particulate Matter Science Assessment

    Science.gov (United States)

    This 2004 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  8. Disciplinary Identity as Analytic Construct and Design Goal: Making Learning Sciences Matter

    Science.gov (United States)

    Carlone, Heidi B.

    2017-01-01

    Bent Flyvbjerg (2001), in his book "Making Social Science Matter: Why Social Inquiry Fails and How It Can Succeed Again," argues that social science's aims and methods are currently, and perhaps always will be, ill suited to the type of cumulative and predictive theory that characterizes inquiry and knowledge generation in the natural…

  9. Design and Evaluation of IP Header Compression for Cellular-Controlled P2P Networks

    DEFF Research Database (Denmark)

    Madsen, T.K.; Zhang, Qi; Fitzek, F.H.P.

    2007-01-01

    In this paper we advocate to exploit terminal cooperation to stabilize IP communication using header compression. The terminal cooperation is based on direct communication between terminals using short range communication and simultaneously being connected to the cellular service access point....... The short range link is than used to provide first aid information to heal the decompressor state of the neighboring node in case of a packet loss on the cellular link. IP header compression schemes are used to increase the spectral and power efficiency loosing robustness of the communication compared...

  10. Doing Science That Matters to Address India's Water Crisis

    Indian Academy of Sciences (India)

    research, high quality science that is us- able by ... ising watersheds, I offer some methods and insights. 1. India's ... of training students to think critically about the broader ..... ecosystem service management, and sustainable de- velopment ...

  11. Is intelligent design science, and does it matter?

    Directory of Open Access Journals (Sweden)

    P W Bateman

    2007-09-01

    Full Text Available The debate between evolution and intelligent design is usually presented by evolutionary biologists as a clash between science and non-science (creationism and religion and therefore as a sterile argument which science wins by default. Countering this is intelligent design (ID and irreducible complexity (IC which posit that the diversity and complexity of life on earth indicates the hand of a designer, although the nature of that designer is not speculated on. In doing so, proponents of� ID and IC bring the argument squarely into the scientific camp and fulfil the requirements of being science, although this is difficult� to define. Here, we discuss the claims of ID and IC to provide an alternative to evolution and propose that science can adequately deal with and refute these claims. At the same time, ID and IC fulfil an important role as foils to �scientism�� � the belief that science is the best way of answering all questions. In the final analysis, however , despite their value in the debate, ID and IC are not found to be robust or reliable enough to replace evolution as the best way of explaining the diversity of life on earth.

  12. Qualifying the use of RIS data for patient dose by comparison with DICOM header data

    International Nuclear Information System (INIS)

    Wilde, R.; Charnock, P.; McDonald, S.; Moores, B. M.

    2011-01-01

    A system was developed in 2008 to calculate patient doses using Radiology Information System (RIS) data and presents these data as a patient dose audit. One of the issues with this system was the quality of user-entered data. It has been shown that Digital Imaging and Communication in Medicine (DICOM) header data can be used to perform dose audits with a high level of data accuracy. This study aims to show that using RIS data for dose audits is not only a viable alternative to using DICOM header data, but that it has advantages. A new system was developed to pull header data from DICOM images easily and was installed on a workstation within a hospital department. Data were recovered for a common set of examinations using both RIS and DICOM header data. The data were compared on a result-by-result basis to check for consistency of common fields between RIS and DICOM, as well as assessing the value of data fields uncommon to both systems. The study shows that whilst RIS is not as accurate as DICOM, it does provide enough accurate data and that it has other advantages over using a DICOM approach. These results suggest that a 'best of both worlds' may be achievable using Modality Performed Procedure Step (MPPS). (authors)

  13. Multiple-output all-optical header processing technique based on two-pulse correlation principle

    NARCIS (Netherlands)

    Calabretta, N.; Liu, Y.; Waardt, de H.; Hill, M.T.; Khoe, G.D.; Dorren, H.J.S.

    2001-01-01

    A serial all-optical header processing technique based on a two-pulse correlation principle in a semiconductor laser amplifier in a loop mirror (SLALOM) configuration that can have a large number of output ports is presented. The operation is demonstrated experimentally at a 10Gbit/s Manchester

  14. Novel Scheme for Packet Forwarding without Header Modifications in Optical Networks

    DEFF Research Database (Denmark)

    Wessing, Henrik; Christiansen, Henrik Lehrmann; Fjelde, Tina

    2002-01-01

    We present a novel scheme for packet forwarding in optical packet-switched networks and we further demonstrate its good scalability through simulations. The scheme requires neither header modification nor any label distribution protocol, thus reducing component cost while simplifying network...

  15. Mechanical design of the hot steam headers of the THTR-300 steam generators

    International Nuclear Information System (INIS)

    Blumer, U.; Stumpf, M.

    1988-01-01

    The high pressure steam headers of the THTR steam generators have been subject to special attention during the design phase due to the following reasons: these components are the pressure retaining parts with the heaviest wall thickness in the region of the steam generators; they therefore are sensitive to thermal transient conditions; they are operated in the elevated temperature regime, where creep effects cannot be neglected; there is almost no service experience from fossil steam generators with this type of material (Alloy 800). Safety consideration therefore have been rather extensive and have focussed on two main areas which will be treated in this paper: 1. Analytical investigations on the cyclic material behaviour under all specified operating conditions, taking into account the non-elastic response of the material. 2. Limitation of the consequences of a header rupture by installation of heavy whip restraints. Elastic-plastic-creep analyses: The analyses were performed in different stages and are explained in the corresponding order: Evaluation of the critical location on the header and establishment of a simplified model of a nozzle region for further analysis. Preliminary thermal analyses of all specified transient conditions on simplified procedures, in order to establish a severity ranking of the conditions. Establishment of representative loading blocks. Evaluation of the material properties for thermal and structural, especially non-elastic behaviour. Detailed thermal analyses. Detailed structural analyses of the non-elastic cyclic response. Extrapolation for all cycles and assessment of the results by design codes. Discussion of the results. Header whip restraint design: In addition to the above analysis efforts, heavy whip restraints were provided to assure limitation of the effects of a header failure. This pager shows the measures that were taken to restrain the movement in case of longitudinal and transverse breaks: The anti-whip designs are

  16. Simulation of neuro-fuzzy model for optimization of combine header setting

    Directory of Open Access Journals (Sweden)

    S Zareei

    2016-09-01

    Full Text Available Introduction The noticeable proportion of producing wheat losses occur during production and consumption steps and the loss due to harvesting with combine harvester is regarded as one of the main factors. A grain combines harvester consists of different sets of equipment and one of the most important parts is the header which comprises more than 50% of the entire harvesting losses. Some researchers have presented regression equation to estimate grain loss of combine harvester. The results of their study indicated that grain moisture content, reel index, cutter bar speed, service life of cutter bar, tine spacing, tine clearance over cutter bar, stem length were the major parameters affecting the losses. On the other hand, there are several researchswhich have used the variety of artificial intelligence methods in the different aspects of combine harvester. In neuro-fuzzy control systems, membership functions and if-then rules were defined through neural networks. Sugeno- type fuzzy inference model was applied to generate fuzzy rules from a given input-output data set due to its less time-consuming and mathematically tractable defuzzification operation for sample data-based fuzzy modeling. In this study, neuro-fuzzy model was applied to develop forecasting models which can predict the combine header loss for each set of the header parameter adjustments related to site-specific information and therefore can minimize the header loss. Materials and Methods The field experiment was conducted during the harvesting season of 2011 at the research station of the Faulty of Agriculture, Shiraz University, Shiraz, Iran. The wheat field (CV. Shiraz was harvested with a Claas Lexion-510 combine harvester. The factors which were selected as main factors influenced the header performance were three levels of reel index (RI (forward speed of combine harvester divided by peripheral speed of reel (1, 1.2, 1.5, three levels of cutting height (CH(25, 30, 35 cm, three

  17. Analysis of condensed matter physics records in databases. Science and technology indicators in condensed matter physics

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-05-01

    An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)

  18. Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-01-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…

  19. Why technology matters as much as science in improving healthcare

    Directory of Open Access Journals (Sweden)

    Szczerba Robert J

    2012-09-01

    Full Text Available Abstract Background More than half a million new items of biomedical research are generated every year and added to Medline. How successful are we at applying this steady accumulation of scientific knowledge and so improving the practice of medicine in the USA? Discussion The conventional wisdom is that the US healthcare system is plagued by serious cost, access, safety and quality weaknesses. A comprehensive solution must involve the better translation of an abundance of clinical research into improved clinical practice. Yet the application of knowledge (i.e. technology remains far less well funded and less visible than the generation, synthesis and accumulation of knowledge (i.e. science, and the two are only weakly integrated. Worse, technology is often seen merely as an adjunct to practice, e.g. electronic health records. Several key changes are in order. A helpful first step lies in better understanding the distinction between science and technology, and their complementary strengths and limitations. The absolute level of funding for technology development must be increased as well as being more integrated with traditional science-based clinical research. In such a mission-oriented federal funding strategy, the ties between basic science research and applied research would be better emphasized and strengthened. Summary It bears repeating that only by applying the wealth of existing and future scientific knowledge can healthcare delivery and patient care ever show significant improvement.

  20. Safety Matters! Safety for Primary Science and Technology

    Science.gov (United States)

    Education in Science, 2011

    2011-01-01

    This article discusses where teachers stand from a legal point of view when pupils, who have been told to wear eye protection, take it off during the practical lesson, and an accident happens. It also discusses the disposal of dissection and other waste from animal parts used in school science. (Contains 1 footnote.)

  1. Special issue on "Frontiers in Materials Science: Condensed matters"

    Science.gov (United States)

    Hoang, Nam-Nhat; Yamamoto, Tomoyuki; Pham, Duc-Thang

    2018-03-01

    This special issue includes the editor-invited and selected papers from 3rd International Symposium on Frontiers in Materials Science (FMS2016), held in Hanoi, Vietnam, from the 28th to 30th of September 2016, which coincided with the 65th anniversary of the Faculty of Physics, Hanoi University of Education. The FMS2016 is a continuation of a series of meetings starting from 2010. A first event was a bilateral Vietnamese-German meeting in Hanoi, Vietnam, in 2010, and the second one was held in Frankfurt, Germany, in 2011. The idea at that time was to initiate interactions between scientists from both countries and to further develop the field of materials science in Southeast Asia. After these successful bilateral meetings, a next step was taken by advancing the format of the symposium into an international event. In 2013, the 1st International Symposium on Frontiers in Materials Science (FMS2013) was successfully organized in Hanoi, which followed 2nd symposium, FMS2015, in Tokyo, in 2015. The FMS2016 continues this idea of providing an international forum for physicists, material scientists and chemists for discussing their latest results and the recent developments in the important field of materials science.

  2. EPA Science Matters Newsletter: Taking Action on Climate Change

    Science.gov (United States)

    The U.S. Global Change Research Program (USGCRP) emphasizes the foundational role of science in understanding global change and its impacts on the environment. The U.S. Environmental Protection Agency is an integral and important part of that effort

  3. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  4. The role of subject-matter analysis in science didactics

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    Cultural-historical theory is primarily a psychological theory about and human action and development within meaningful contexts. As a psychologically-oriented theory, it can be relevant to science education research, even if it was not been developed or elaborated specifically in relation...... to problems within science education. STEM education research can be reduced (roughly) to four major problem areas: curriculum, empirical evaluation of existing practices and conditions, didactics, and professional development, where each of these categories can be concretised further according to grade...... paper is primarily on the didactics category, and slightly on the professional development category. The purpose of this paper is to outline three significant points that have been developed within the cultural-historical tradition that have consequences for these two categories: (a) the relation...

  5. Why public dissemination of science matters: a manifesto.

    Science.gov (United States)

    Eagleman, David M

    2013-07-24

    Communicating science to the public takes time away from busy research careers. So why would you do it? I here offer six reasons. First, we owe that understanding to the people who fund our experiments, the taxpaying public. Second, we can leverage our skills as scientists to inspire critical thinking in public and political dialog. Third, researchers are optimally positioned to stem the flow of scientific misinformation in the media. Fourth, we can explain the ways and the means by which science can (and cannot) improve law and social policy. Fifth, it is incumbent upon us to explain what science is and is not: while it is a way of thinking that upgrades our intuitions, it also comes with a deep understanding of (and tolerance for) uncertainty. Finally, we find ourselves in the pleasurable position of being able to share the raw beauty of the world around us-and in the case of neuroscience, the world inside us. I suggest that scientists are optimally stationed to increase their presence in the public sphere: our training positions us to synthesize large bodies of data, weigh the evidence, and communicate with nuance, sincerity and exactitude.

  6. Detection and Repair of Ligament Cracks in a 109mm Thick Superheater Outlet Header

    International Nuclear Information System (INIS)

    Day, Peter

    2006-01-01

    Conventional thermal power station boilers are constructed of drums and a series of headers which are interconnected with many hundreds of tubes. Typically feed water enters the boiler at about 250 deg C at a pressure of around 250 bar with steam outlet temperatures of 540 deg C and a pressure of 170 bar. Superheater outlet headers may be subjected to quite arduous conditions during service. Not only are they exposed to high pressure stresses but also to high thermal stresses due to varying thermal gradients through the section thickness particularly at start up and during two shift operation. The area that is exposed to the greatest thermal gradients is the narrow ligament that exists between the tube hole penetrations in the header bore. In the mid the 1980's industry wide surveys found cracking in a large percentage (25-50%) of headers after 15 years of service. Detection and sizing of ligament cracking and estimates of the rate of growth are therefore a major consideration especially in plant that is two shifted. In order to manage the risk both remote visual and ultrasonic inspection are performed during each major unit overhaul. Conclusion: Ultrasonic techniques used for this inspection need to be carefully evaluated with respect to their effectiveness. Conventional pulse echo is capable of detection but using for example a technique such as AS2207 level 1 will not show the defect size. Time of flight diffraction has shown itself to be effective in accurately sizing ligament cracking. However the complex geometry of header ligaments appears to cause a narrowing of the beam with the effect that crack tip responses can be concentrated at the centre of the ligament. Therefore great care needs to be taken during data interrogation because errors in sizing can occur. Wherever possible both 'B' and 'D' scan data should be collected. It appears that the greatest accuracy is obtained with respect to defect growth from the B scan image. With respect to the welding a

  7. Scientific Literacy Matters: Using Literature to Meet Next Generation Science Standards and 21st Century Skills

    Directory of Open Access Journals (Sweden)

    Cynthia Tomovic

    2017-04-01

    Full Text Available Scientific literacy matters. It matters because it is vitally important to the education and development of America’s children, tomorrow's workforce, and the keepers of our future. If the future of American individual decision making, engagement in civic and cultural affairs, and valuable contributions to economic development is to be protected, it is critical that American students become more scientifically literate than they are today. Today, most Americans, including students, are considered scientifically illiterate. Recognizing the need to develop and enhance scientific literacy (also known as science literacy, science educators have worked diligently at developing new science standards, new approaches to science teaching, and new techniques aimed at engaging students in the practice of science. In this article, the use of literature is discussed as one method to augment or supplement the teaching of science. In the context of making a literature selection, a new conceptual approach is proposed that includes attention to meeting the Next Generation Science Standards while being responsive to the importance of 21st Century Skills. Additionally, a Literary Assessment Tool is shared that demonstrates how science educators can evaluate a literary selection in terms of how well it will help them to enhance scientific literacy.

  8. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2008-09-01

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  9. The Effect of Constructivist Science Teaching on 4th Grade Students' Understanding of Matter

    Science.gov (United States)

    Cakici, Yilmaz; Yavuz, Gulben

    2010-01-01

    In the last three decades, the constructivist approach has been the dominant ideology in the field of educational research. The aim of this study is to explore the effect of constructivist science teaching on the students' understanding about matter, and to compare the effectiveness of a constructivist approach over traditional teaching methods.…

  10. NASA’s Universe of Learning: Engaging Subject Matter Experts to Support Museum Alliance Science Briefings

    Science.gov (United States)

    Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this

  11. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    Science.gov (United States)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  12. Optimising residual stresses at a repair in a steam header to tubeplate weld

    International Nuclear Information System (INIS)

    Soanes, T.P.T.; Bell, W.; Vibert, A.J.

    2005-01-01

    Following the discovery of incorrect weld metal in the steam side shell to tubeplate weld in a type 316H stainless steel superheater steam header, a repair strategy had to be determined. The strategy adopted was to remove the incorrect weld material, which extended around the full circumference, by machining from the inside of the header, followed by rewelding from the inside using an automatic welding process and localised post-weld heat treatment. Due to concern over potential reheat cracking of the repair after return to service, a considerable amount of residual stress modelling was carried out to support the development and optimisation of a successful repair and heat treatment strategy and thus underwrite the safety case for return to service

  13. Why formal learning theory matters for cognitive science.

    Science.gov (United States)

    Fulop, Sean; Chater, Nick

    2013-01-01

    This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.

  14. Student Engagement with a Science Simulation: Aspects that Matter

    Directory of Open Access Journals (Sweden)

    Susan Rodrigues

    2011-01-01

    Full Text Available It is argued that multimedia technology affords an opportunity to better visualise complex relationships often seen in chemistry. This paper describes the influence of chemistry simulation design facets on user progress through a simulation. Three versions of an acid-base titration simulation were randomly allocated to 36 volunteers to examine their interactions with the simulation. The impact of design alterations on the total number of interactions and their patterns was analysed for the following factors: (a the place of a feature on the screen, (b alignment of the sequence of instructions, (c additional instruction before the simulation, (d interactivity of a feature. Additionally, interactions between individual factors, such as age, prior experience with science simulations and computer games, perception of the difficulty of science simulations, and general subject knowledge, on one hand, and the efficiency of using the simulation, on the other hand, were examined. The findings suggestthat: (a centrality of the position of an element significantly affects the number of interactions with the element, (b re-arranging the sequence of instructions on the screen in left-to-right order improves the following of instructions, (c providing users with additional written advice to follow numbered instructions does not have a significant impact on student behaviour, (d interactivity of a feature was found to have a strong positive correlation with the number of interactions with that feature, which warrants a caution about unnecessary interactivity that may hinder simulation efficiency. Surprisingly, neither prior knowledge of chemistry nor theage of the participants had a significant effect on either the number of interactions or the ability to follow on-screen instructions.

  15. Hot steam header of a high temperature reactor as a benchmark problem

    International Nuclear Information System (INIS)

    Demierre, J.

    1990-01-01

    The International Atomic Energy Agency (IAEA) initiated a Coordinated Research Programme (CRP) on ''Design Codes for Gas-Cooled Reactor Components''. The specialists proposed to start with a benchmark design of a hot steam header in order to get a better understanding of the methods in the participating countries. The contribution of Switzerland carried out by Sulzer. The following report summarized the detailed calculations of dimensioning procedure and analysis. (author). 5 refs, 2 figs, 2 tabs

  16. Directing Matter and Energy: Five Challenges for Science and the Imagination

    Energy Technology Data Exchange (ETDEWEB)

    Hemminger, J.; Fleming, G.; Ratner, M.

    2007-12-20

    The twin aspects of energy and control (or direction) are the underlying concepts. Matter and energy are closely linked, and their understanding and control will have overwhelming importance for our civilization, our planet, our science, and our technology. This importance ranges even beyond the large portfolio of BES, both because these truly significant Grand Challenges confront many other realms of science and because even partial solutions to these challenges will enrich scientists’ collective imagination and ability to solve problems with new ideas and new methods.

  17. Science in the everyday world: Why perspectives from the history of science matter.

    Science.gov (United States)

    Pandora, Katherine; Rader, Karen A

    2008-06-01

    The history of science is more than the history of scientists. This essay argues that various modem "publics" should be counted as belonging within an enlarged vision of who constitutes the "scientific community"--and describes how the history of science could be important for understanding their experiences. It gives three examples of how natural knowledge-making happens in vernacular contexts: Victorian Britain's publishing experiments in "popular science" as effective literary strategies for communicating to lay and specialist readers; twentieth-century American science museums as important and contested sites for conveying both scientific ideas and ideas about scientific practice; and contemporary mass-mediated images of the "ideal" scientist as providing counternarratives to received professional scientific norms. Finally, it suggests how humanistic knowledge might help both scientists and historians grapple more effectively with contemporary challenges presented by science in public spheres. By studying the making and elaboration of scientific knowledge within popular culture, historians of science can provide substantively grounded insights into the relations between the public and professionals.

  18. Kant and the nature of matter: Mechanics, chemistry, and the life sciences.

    Science.gov (United States)

    Gaukroger, Stephen

    2016-08-01

    Kant believed that the ultimate processes that regulate the behavior of material bodies can be characterized exclusively in terms of mechanics. In 1790, turning his attention to the life sciences, he raised a potential problem for his mechanically-based account, namely that many of the operations described in the life sciences seemed to operate teleologically. He argued that the life sciences do indeed require us to think in teleological terms, but that this is a fact about us, not about the processes themselves. Nevertheless, even were we to concede his account of the life sciences, this would not secure the credentials of mechanics as a general theory of matter. Hardly any material properties studied in the second half of the eighteenth century were, or could have been, conceived in mechanical terms. Kant's concern with teleology is tangential to the problems facing a general matter theory grounded in mechanics, for the most pressing issues have nothing to do with teleology. They derive rather from a lack of any connection between mechanical forces and material properties. This is evident in chemistry, which Kant dismisses as being unscientific on the grounds that it cannot be formulated in mechanical terms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students’ Science Pursuit

    Science.gov (United States)

    Jackson, Matthew C.; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B.

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life sciences across ethnic groups of freshman college students, as moderated by generational status. Results from a longitudinal survey (N = 249) demonstrated that freshman URM students who enter with a greater belief that science can be used to help their communities identified as scientists more strongly over time, but only among first-generation college students. Analysis of the survey data were consistent with content analysis of 11 transcripts from simultaneously conducted focus groups (N = 67); together, these studies reveal important differences in motivational characteristics both across and within ethnicity across educational generation status. First-generation URM students held the strongest prosocial values for pursuing a science major (e.g., giving back to the community). URM students broadly reported additional motivation to increase the status of their family (e.g., fulfilling aspirations for a better life). These findings demonstrate the importance of culturally connected career motives and for examining intersectional identities to understand science education choices and inform efforts to broaden participation. PMID:27543631

  20. Nanoscale control of energy and matter: challenges and opportunities for plasma science

    International Nuclear Information System (INIS)

    Ostrikov, Kostya

    2013-01-01

    Multidisciplinary challenges and opportunities in the ultimate ability to achieve nanoscale control of energy and matter are discussed using an example of the Plasma Nanoscience. This is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. The origin, progress and future perspectives of this research field driven by the global scientific and societal challenges, is examined. The future potential of the Plasma Nanoscience to remain as a highly topical area in the global research and technological agenda in the Age of Fundamental-Level Control for a Sustainable Future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to control energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for the Plasma Nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health

  1. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students' Science Pursuit

    Science.gov (United States)

    Jackson, Matthew C.; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B.

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life…

  2. Sustainability in Science Education? How the Next Generation Science Standards Approach Sustainability, and Why It Matters

    Science.gov (United States)

    Feinstein, Noah Weeth; Kirchgasler, Kathryn L.

    2015-01-01

    In this essay, we explore how sustainability is embodied in the Next Generation Science Standards (NGSS), analyzing how the NGSS explicitly define and implicitly characterize sustainability. We identify three themes (universalism, scientism, and technocentrism) that are common in scientific discourse around sustainability and show how they appear…

  3. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  4. Translational science matters: forging partnerships between biomedical and behavioral science to advance the public's health.

    Science.gov (United States)

    Mensah, George A; Czajkowski, Susan M

    2018-03-29

    The prevention and effective treatment of many chronic diseases such as cardiovascular disease, cancer and diabetes are dependent on behaviors such as not smoking, adopting a physically-active lifestyle, eating a healthy diet, and adhering to prescribed medical and behavioral regimens. Yet adoption and maintenance of these behaviors pose major challenges for individuals, their families and communities, as well as clinicians and health care systems. These challenges can best be met through the integration of the biomedical and behavioral sciences that is achieved by the formation of strategic partnerships between researchers and practitioners in these disciplines to address pressing clinical and public health problems. The National Institutes of Health has supported a number of clinical trials and research initiatives that demonstrate the value of biomedical and behavioral science partnerships in translating fundamental discoveries into significant improvements in health outcomes. We review several such examples of collaborations between biomedical and behavioral researchers, describe key initiatives focused on advancing a transdisciplinary translational perspective, and outline areas which require insights, tools and findings from both the biomedical and behavioral sciences to advance the public's health.

  5. Why the Difference Between Explanation and Argument Matters to Science Education

    Science.gov (United States)

    Brigandt, Ingo

    2016-05-01

    Contributing to the recent debate on whether or not explanations ought to be differentiated from arguments, this article argues that the distinction matters to science education. I articulate the distinction in terms of explanations and arguments having to meet different standards of adequacy. Standards of explanatory adequacy are important because they correspond to what counts as a good explanation in a science classroom, whereas a focus on evidence-based argumentation can obscure such standards of what makes an explanation explanatory. I provide further reasons for the relevance of not conflating explanations with arguments (and having standards of explanatory adequacy in view). First, what guides the adoption of the particular standards of explanatory adequacy that are relevant in a scientific case is the explanatory aim pursued in this context. Apart from explanatory aims being an important aspect of the nature of science, including explanatory aims in classroom instruction also promotes students seeing explanations as more than facts, and engages them in developing explanations as responses to interesting explanatory problems. Second, it is of relevance to science curricula that science aims at intervening in natural processes, not only for technological applications, but also as part of experimental discovery. Not any argument enables intervention in nature, as successful intervention specifically presupposes causal explanations. Students can fruitfully explore in the classroom how an explanatory account suggests different options for intervention.

  6. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  7. Hybrid Light-Matter States in a Molecular and Material Science Perspective.

    Science.gov (United States)

    Ebbesen, Thomas W

    2016-11-15

    The notion that light and matter states can be hybridized the way s and p orbitals are mixed is a concept that is not familiar to most chemists and material scientists. Yet it has much potential for molecular and material sciences that is just beginning to be explored. For instance, it has already been demonstrated that the rate and yield of chemical reactions can be modified and that the conductivity of organic semiconductors and nonradiative energy transfer can be enhanced through the hybridization of electronic transitions. The hybridization is not limited to electronic transitions; it can be applied for instance to vibrational transitions to selectively perturb a given bond, opening new possibilities to change the chemical reactivity landscape and to use it as a tool in (bio)molecular science and spectroscopy. Such results are not only the consequence of the new eigenstates and energies generated by the hybridization. The hybrid light-matter states also have unusual properties: they can be delocalized over a very large number of molecules (up to ca. 10 5 ), and they become dispersive or momentum-sensitive. Importantly, the hybridization occurs even in the absence of light because it is the zero-point energies of the molecular and optical transitions that generate the new light-matter states. The present work is not a review but rather an Account from the author's point of view that first introduces the reader to the underlying concepts and details of the features of hybrid light-matter states. It is shown that light-matter hybridization is quite easy to achieve: all that is needed is to place molecules or a material in a resonant optical cavity (e.g., between two parallel mirrors) under the right conditions. For vibrational strong coupling, microfluidic IR cells can be used to study the consequences for chemistry in the liquid phase. Examples of modified properties are given to demonstrate the full potential for the molecular and material sciences. Finally an

  8. Asynchronous broadcast for ordered delivery between compute nodes in a parallel computing system where packet header space is limited

    Science.gov (United States)

    Kumar, Sameer

    2010-06-15

    Disclosed is a mechanism on receiving processors in a parallel computing system for providing order to data packets received from a broadcast call and to distinguish data packets received at nodes from several incoming asynchronous broadcast messages where header space is limited. In the present invention, processors at lower leafs of a tree do not need to obtain a broadcast message by directly accessing the data in a root processor's buffer. Instead, each subsequent intermediate node's rank id information is squeezed into the software header of packet headers. In turn, the entire broadcast message is not transferred from the root processor to each processor in a communicator but instead is replicated on several intermediate nodes which then replicated the message to nodes in lower leafs. Hence, the intermediate compute nodes become "virtual root compute nodes" for the purpose of replicating the broadcast message to lower levels of a tree.

  9. Continuous monitoring of variations in the 235U enrichment of uranium in the header pipework of a centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.

    1991-01-01

    Non-destructive assay equipment, based on gamma-ray spectrometry and x-ray fluorescence analysis has previously been developed for confirming the presence of low enriched uranium in the header pipework of UF 6 gas centrifuge enrichment plants. However inspections can only be carried out occasionally on a limited number of pipes. With the development of centrifuge enrichment technology it has been suggested that more frequent, or ideally, continuous measurements should be made in order to improve safeguards assurance between inspections. For this purpose we have developed non-destructive assay equipment based on continuous gamma-ray spectrometry and x-ray transmission measurements. This equipment is suitable for detecting significant changes in the 235 U enrichment of uranium in the header pipework of new centrifuge enrichment plants. Results are given in this paper of continuous measurements made in the laboratory and also on header pipework of a centrifuge enrichment plant at Capenhurst

  10. Daily Press Headers as a Reinforcement to Brand Identity in Spanish Sport Newspapers both Print and Online

    Directory of Open Access Journals (Sweden)

    Belén PUEBLA MARTÍNEZ

    2015-06-01

    Full Text Available Press headers are to daily newspapers the same as brands are to products. Because a newspaper is an object itself which also participates in a double designing process: from information and from product design; and in both cases this serves the same purpose, that the reader feels attracted and comes back for more every day. On that trip, which takes place either to the newsstand or to the computer, to become visible and unique is of paramount importance and the header is the element that best identifies not only the publication but also the tone of the language that the reader expects to find in it. This study intends to dive into the Spanish sport daily press headers, both print and digital, to establish how newspapers achieve their pretended brand identity.

  11. Predicting the fidelity of JPEG2000 compressed CT images using DICOM header information

    International Nuclear Information System (INIS)

    Kim, Kil Joong; Kim, Bohyoung; Lee, Hyunna; Choi, Hosik; Jeon, Jong-June; Ahn, Jeong-Hwan; Lee, Kyoung Ho

    2011-01-01

    Purpose: To propose multiple logistic regression (MLR) and artificial neural network (ANN) models constructed using digital imaging and communications in medicine (DICOM) header information in predicting the fidelity of Joint Photographic Experts Group (JPEG) 2000 compressed abdomen computed tomography (CT) images. Methods: Our institutional review board approved this study and waived informed patient consent. Using a JPEG2000 algorithm, 360 abdomen CT images were compressed reversibly (n = 48, as negative control) or irreversibly (n = 312) to one of different compression ratios (CRs) ranging from 4:1 to 10:1. Five radiologists independently determined whether the original and compressed images were distinguishable or indistinguishable. The 312 irreversibly compressed images were divided randomly into training (n = 156) and testing (n = 156) sets. The MLR and ANN models were constructed regarding the DICOM header information as independent variables and the pooled radiologists' responses as dependent variable. As independent variables, we selected the CR (DICOM tag number: 0028, 2112), effective tube current-time product (0018, 9332), section thickness (0018, 0050), and field of view (0018, 0090) among the DICOM tags. Using the training set, an optimal subset of independent variables was determined by backward stepwise selection in a four-fold cross-validation scheme. The MLR and ANN models were constructed with the determined independent variables using the training set. The models were then evaluated on the testing set by using receiver-operating-characteristic (ROC) analysis regarding the radiologists' pooled responses as the reference standard and by measuring Spearman rank correlation between the model prediction and the number of radiologists who rated the two images as distinguishable. Results: The CR and section thickness were determined as the optimal independent variables. The areas under the ROC curve for the MLR and ANN predictions were 0.91 (95% CI; 0

  12. Voluntarist theology and early-modern science: The matter of the divine power, absolute and ordained.

    Science.gov (United States)

    Oakley, Francis

    2018-03-01

    This paper is an intervention in the debate inaugurated by Peter Harrison in 2002 when he called into question the validity of what has come to be called 'the voluntarism and early-modern science thesis'. Though it subsequently drew support from such historians of science as J. E. McGuire, Margaret Osler, and Betty-Joe Teeter Dobbs, the origins of the thesis are usually traced back to articles published in 1934 and 1961 respectively by the philosopher Michael Foster and the historian of ideas Francis Oakley. Central to Harrison's critique of the thesis are claims he made about the meaning of the scholastic distinction between the potentia dei absoluta et ordinata and the role it played in the thinking of early-modern theologians and natural philosophers. This paper calls directly into question the accuracy of Harrison's claims on that very matter.

  13. Life — As a Matter of Fat The Emerging Science of Lipidomics

    CERN Document Server

    Mouritsen, Ole G

    2005-01-01

    LIFE - as a Matter of Fat Lipidomics is the science of the fats called lipids. Lipids are as important for life as proteins, sugars, and genes. The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids and the lipid-bilayer component of cell membranes. The book is aimed at undergraduate students and young research workers within physics, chemistry, biochemistry, molecular biology, nutrition, as well as pharmaceutical and biomedical sciences. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assem...

  14. Science, technique, technology: passages between matter and knowledge in imperial Chinese agriculture.

    Science.gov (United States)

    Bray, Francesca

    2008-09-01

    Many historians today prefer to speak of knowledge and practice rather than science and technology. Here I argue for the value of reinstating the terms science, techniques and technology as tools for a more precise analysis of governmentality and the workings of power. My tactic is to use these three categories and their articulations to highlight flows between matter and ideas in the production and reproduction of knowledge. In any society, agriculture offers a wonderfully rich case of how ideas, material goods and social relations interweave. In China agronomy was a science of state, the basis of legitimate rule. I compare different genres of agronomic treatise to highlight what officials, landowners and peasants respectively contributed to, and expected from, this charged natural knowledge. I ask how new forms of textual and graphic inscription for encoding agronomic knowledge facilitated its dissemination and ask how successful this knowledge proved when rematerialized and tested as concrete artefacts or techniques. I highlight forms of innovation in response to crisis, and outline the overlapping interpretative frameworks within which the material applications of Chinese agricultural science confirmed and extended its truth across space and time.

  15. Power raise through improved reactor inlet header temperature measurement at Bruce A Nuclear Generation Station

    International Nuclear Information System (INIS)

    Basu, S.; Bruggemn, D.

    1997-01-01

    Reactor Inlet Header (RIH) temperature has become a factor limiting the performance of the Ontario Hydro Bruce A units. Specifically, the RIH temperature is one of several parameters that is preventing the Bruce A units from returning to 94% power operation. RIH temperature is one of several parameters which affect the critical heat flux in the reactor channel, and hence the integrity of the fuel. Ideally, RIH temperature should be lowered, but this cannot be done without improving the heat transfer performance of the boilers and feedwater pre-heaters. Unfortunately, the physical performance of the boilers and pre-heaters has decayed and continues to decay over time and as a result the RIH temperature has been rising and approaching its defined limit. With an understanding of the current RIH temperature measurement loop and methods available to improve it, a solution to reduce the measurement uncertainty is presented

  16. Air Emission Projections During Acid Cleaning of F-Canyon Waste Header No.2

    International Nuclear Information System (INIS)

    CHOI, ALEXANDER

    2004-01-01

    The purpose of this study was to develop the air emission projections for the maintenance operation to dissolve and flush out the scale material inside the F-Canyon Waste Header No.2. The chemical agent used for the dissolution is a concentrated nitric acid solution, so the pollutant of concern is the nitric acid vapor. Under the very conservative operating scenarios considered in this study, it was determined that the highest possible rate of nitric acid emission during the acid flush would be 0.048 lb. per hr. It turns out that this worst-case air emission projection is just below the current exemption limit of 0.05 lb. per hr. for permit applications

  17. Fabrication of an improved tube-to-pipe header heat exchanger for the Fuel Failure Mockup (FFM) Facility

    International Nuclear Information System (INIS)

    Prislinger, J.J.; Jones, R.H.

    1977-05-01

    The procedure used in fabricating an improved tube-to-pipe header heat exchanger for the Fuel Failure Mockup (FFM) Facility is described. Superior performance is accomplished at reduced cost with adherence to the ASME Boiler and Pressure Vessel Code. The techniques used and the method of fabrication are described in detail

  18. Novel scheme for efficient and cost-effective forwarding of packets in optical networks without header modification

    DEFF Research Database (Denmark)

    Wessing, Henrik; Fjelde, Tina; Christiansen, Henrik Lehrmann

    2001-01-01

    We present a novel scheme for addressing the outputs in optical packet switches and demonstrate its good scalability. The scheme requires neither header modification nor distribution of routing information to the packet switches, thus reducing optical component count while simplifying network...

  19. Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science

    Energy Technology Data Exchange (ETDEWEB)

    Hemminger, John C. [Univ. of California, Irvine, CA (United States); Sarrao, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); University of Illinois, Chicago; Flemming, Graham [Univ. of California, Berkeley, CA (United States); Ratner, Mark [Northwestern Univ., Evanston, IL (United States)

    2015-11-01

    FIVE TRANSFORMATIVE OPPORTUNITIES FOR DISCOVERY SCIENCE As a result of this effort, it has become clear that the progress made to date on the five Grand Challenges has created a springboard for seizing five new Transformative Opportunities that have the potential to further transform key technologies involving matter and energy. These five new Transformative Opportunities and the evidence supporting them are discussed in this new report, “Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science.” Mastering Hierarchical Architectures and Beyond-Equilibrium Matter Complex materials and chemical processes transmute matter and energy, for example from CO2 and water to chemical fuel in photosynthesis, from visible light to electricity in solar cells and from electricity to light in light emitting diodes (LEDs) Such functionality requires complex assemblies of heterogeneous materials in hierarchical architectures that display time-dependent away-from-equilibrium behaviors. Much of the foundation of our understanding of such transformations however, is based on monolithic single- phase materials operating at or near thermodynamic equilibrium. The emergent functionalities enabling next-generation disruptive energy technologies require mastering the design, synthesis, and control of complex hierarchical materials employing dynamic far-from-equilibrium behavior. A key guide in this pursuit is nature, for biological systems prove the power of hierarchical assembly and far- from-equilibrium behavior. The challenges here are many: a description of the functionality of hierarchical assemblies in terms of their constituent parts, a blueprint of atomic and molecular positions for each constituent part, and a synthesis strategy for (a) placing the atoms and molecules in the proper positions for the component parts and (b) arranging the component parts into the required hierarchical structure. Targeted functionality will open the door

  20. The effect of the flow direction inside the header on two-phase flow distribution in parallel vertical channels

    International Nuclear Information System (INIS)

    Marchitto, A.; Fossa, M.; Guglielmini, G.

    2012-01-01

    Uniform fluid distribution is essential for efficient operation of chemical-processing equipment such as contactors, reactors, mixers, burners and in most refrigeration equipment, where two phases are acting together. To obtain optimum distribution, proper consideration must be given to flow behaviour in the distributor, flow conditions upstream and downstream of the distributor, and the distribution requirements (fluid or phase) of the equipment. Even though the principles of single phase distribution have been well developed for more than three decades, they are frequently not taken in the right account by equipment designers when a mixture is present, and a significant fraction of process equipment consequently suffers from maldistribution. The experimental investigation presented in this paper is aimed at understanding the main mechanisms which drive the flow distribution inside a two-phase horizontal header in order to design improved distributors and to optimise the flow distribution inside compact heat exchanger. Experimentation was devoted to establish the influence of the inlet conditions and of the channel/distributor geometry on the phase/mass distribution into parallel vertical channels. The study is carried out with air–water mixtures and it is based on the measurement of component flow rates in individual channels and on pressure drops across the distributor. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2–1.2 and 1.5–16.5 m/s, respectively. In order to control the main flow direction inside the header, different fitting devices were tested; the insertion of a co-axial, multi-hole distributor inside the header has confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of

  1. Evaluation of intergranular cracks on the ring header cross at Grand Gulf Unit No. 1

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1987-01-01

    A metallurgical investigation was performed on a sample of cracked ring header cross material from the Grand Gulf Unit No. 1 Nuclear Power Station. The cracks were located in a 6-7 in (15-17.5 cm) width band running circumferentially below the cross to cap weld with a similar band above the cross to discharger pipe weld. The indications were up to 19 mm in length and 6.0 mm in depth. This particular sample was cut from a cross which had not seen actual service but which had been used to qualify the induction heating stress improvement (IHSI) technique for the Grand Gulf units. The base material was SA 182 material manufactured to SA 403-type WP 304 stainless steel. The investigation consisted of visual/dye penetrant examination, chemical analysis, hardness testing, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. The evaluated cracks were intergranular and initiated on the forging's exterior surface. The grain size of the material was larger than ASTM 00 and no definitive corrosive species were found by Energy Dispersive Spectroscopy (EDS). The cracking is considered to be the result of the forging having been overheated/burned during manufacture. (author)

  2. CFD simulation for thermal mixing of a SMART flow mixing header assembly

    International Nuclear Information System (INIS)

    Kim, Young In; Bae, Youngmin; Chung, Young Jong; Kim, Keung Koo

    2015-01-01

    Highlights: • Thermal mixing performance of a FMHA installed in SMART is investigated numerically. • Effects of operating condition and discharge hole configuration are examined. • FMHA performance satisfies the design requirements under various abnormal conditions. - Abstract: A flow mixing header assembly (FMHA) is installed in a system-integrated modular advanced reactor (SMART) to enhance the thermal mixing capability and create a uniform core flow distribution under both normal operation and accident conditions. In this study, the thermal mixing characteristics of the FMHA are investigated for various steam generator conditions using a commercial CFD code. Simulations include investigations for the effects of FMHA discharge flow rate differences, turbulence models, and steam generator conditions. The results of the analysis show that the FMHA works effectively for thermal mixing in various conditions and makes the temperature difference at the core inlet decrease noticeably. We verified that the mixing capability of the FMHA is excellent and satisfies the design requirement in all simulation cases tested here

  3. Design and analysis of reactor headers for Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Danak, M.R.

    1975-01-01

    Reactor header for Narora Atomic Power Reactor is a 400 mm O.D. 10 metres long pressure vessel in the primary coolant circuit connecting 153 feeders to PHT pumps or steam generators. The vessel dimensions are restricted are by containment philosophy. The outlet connections for pumps or steam generators are to be of the size of vessel diameter and DO/t ratio for the vessel is approximately 10. The design and stresses induced meet the code requirements except that at times it is difficult to get precise stress values in absence of certain data and lack of code or available literature giving practical approach to the problem. It can be seen that the 400 mm equal tees used as part of the vessel cannot be penetrated in the light of code reinforcement requirements. However if the tees have to penetrated to retain established feeder layout, it should be established experimentally or by some detailed stress analysis that it will meet the intent of code. (author)

  4. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on "de Broglie Matter Waves" Subject

    Science.gov (United States)

    Gorecek Baybars, Meryem; Kucukozer, Huseyin

    2018-01-01

    The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…

  5. Dissecting the Science of "Angels and Demons" or Antimatter and Other Matters (Vernon W. Hughes Memorial Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Howard

    2009-05-27

    Howard Gordon, a physicist from the U.S. Department of Energy’s Brookhaven National Laboratory, and local educators will separate the science facts from the science fiction of “Angels & Demons,” a major motion picture based on Dan Brown’s best-selling novel. The film, which opens nationally in theaters today, focuses on a plot to destroy the Vatican using antimatter stolen from the Large Hadron Collider (LHC) at the European particle physics laboratory CERN. Speakers will explain the real science of the LHC, including antimatter – oppositely charged cousins of ordinary matter with intriguing properties.

  6. Dissecting the Science of 'Angels and Demons' or Antimatter and Other Matters (Vernon W. Hughes Memorial Lecture)

    International Nuclear Information System (INIS)

    Gordon, Howard

    2009-01-01

    Howard Gordon, a physicist from the U.S. Department of Energy's Brookhaven National Laboratory, and local educators will separate the science facts from the science fiction of 'Angels and Demons,' a major motion picture based on Dan Brown's best-selling novel. The film, which opens nationally in theaters today, focuses on a plot to destroy the Vatican using antimatter stolen from the Large Hadron Collider (LHC) at the European particle physics laboratory CERN. Speakers will explain the real science of the LHC, including antimatter - oppositely charged cousins of ordinary matter with intriguing properties.

  7. Thermal-hydraulic analysis of Ignalina NPP compartments response to group distribution header rupture using RALOC4 code

    International Nuclear Information System (INIS)

    Urbonavicius, E.

    2000-01-01

    The Accident Localisation System (ALS) of Ignalina NPP is a containment of pressure suppression type designed to protect the environment from the dangerous impact of the radioactivity. The failure of ALS could lead to contamination of the environment and prescribed public radiation doses could be exceeded. The purpose of the presented analysis is to perform long term thermal-hydraulic analysis of compartments response to Group Distribution Header rupture and verify if design pressure values are not exceeded. (authors)

  8. Crowd science : it is not just a matter of time (or funding)

    NARCIS (Netherlands)

    Vasileiadou, E.

    2015-01-01

    Citizen science, or crowd science, or volunteer science, has increased in the last 4–5 years, with an accompanying increase in the literature. The main argument in such literature is that citizen science has many advantages, not only for scientists and the science that is produced, but also for the

  9. The development of guided inquiry-based learning devices on photosynthesis and respiration matter to train science literacy skills

    Science.gov (United States)

    Choirunnisak; Ibrahim, M.; Yuliani

    2018-01-01

    The purpose of this research was to develop a guided inquiry-based learning devices on photosynthesis and respiration matter that are feasible (valid, practical, and effective) to train students’ science literacy. This research used 4D development model and tested on 15 students of biology education 2016 the State University of Surabaya with using one group pretest-posttest design. Learning devices developed include (a) Semester Lesson Plan (b) Lecture Schedule, (c) Student Activity Sheet, (d) Student Textbook, and (e) testability of science literacy. Research data obtained through validation method, observation, test, and questionnaire. The results were analyzed descriptively quantitative and qualitative. The ability of science literacy was analyzed by n-gain. The results of this research showed that (a) learning devices that developed was categorically very valid, (b) learning activities performed very well, (c) student’s science literacy skills improved that was a category as moderate, and (d) students responses were very positively to the learning that already held. Based on the results of the analysis and discussion, it is concluded that the development of guided inquiry-based learning devices on photosynthesis and respiration matter was feasible to train students literacy science skills.

  10. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  11. Deep Underground Science and Engineering Lab: S1 Dark Matter Working Group

    International Nuclear Information System (INIS)

    Akerib, Daniel S.; Aprile, E.; Baltz, E.A.; Dragowsky, M.R.; Gaitskell, R.J.; Gondolo, P.; Hime, A.; Martoff, C.J.; Mei, D.-M.; Nelson, H.; Sadoulet, B.; Schnee, R.W.; Sonnenschein, A.H.; Strigari, L.E.

    2006-01-01

    The discovery of dark matter is of fundamental importance to cosmology, astrophysics, and elementary particle physics. A broad range of observations from the rotation speed of stars in ordinary galaxies to the gravitational lensing of superclusters tell us that 80-90% of the matter in the universe is in some new form, different from ordinary particles, that does not emit or absorb light. Cosmological observations, especially the Wilkinson Microwave Anisotropy Probe of the cosmic microwave background radiation, have provided spectacular confirmation of the astrophysical evidence. The resulting picture, the so-called ''Standard Cosmology'', finds that a quarter of the energy density of the universe is dark matter and most of the remainder is dark energy. A basic foundation of the model, Big Bang Nucleonsynthesis (BBN), tells us that at most about 5% is made of ordinary matter, or baryons. The solution to this ''dark matter problem'' may therefore lie in the existence of some new form of non-baryonic matter. With ideas on these new forms coming from elementary particle physics, the solution is likely to have broad and profound implications for cosmology, astrophysics, and fundamental interactions. While non-baryonic dark matter is a key component of the cosmos and the most abundant form of matter in the Universe, so far it has revealed itself only through gravitational effects--determining its nature is one of the greatest scientific issues of our time. Many potential new forms of matter that lie beyond the Standard Model of strong and electroweak interactions have been suggested as dark matter candidates, but none has yet been produced in the laboratory. One possibility is that the dark matter is comprised of Weakly Interacting Massive Particles, or WIMPs, that were produced moments after the Big Bang from collisions of ordinary matter. WIMPs refer to a general class of particles characterized primarily by a mass and annihilation cross section that would allow them

  12. Crowd science : it is not just a matter of time (or funding)

    NARCIS (Netherlands)

    Vasileiadou, E.

    2014-01-01

    The last years, citizen science, or crowd science, has increased tremendously, both in number of projects, and number of participants. Most literature on crowd science focuses on its advantages, for both scientists, and the participating citizens. The challenges of crowd science come mainly from

  13. Damage distribution and remnant life assessment of a super-heater outlet header used for long time

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki, Okamura [Science Univ. of Tokyo (Japan); Ryuichi, Ohotani [Kyoto Univ. (Japan); Kazuya, Fujii [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Masashi, Nakashiro; Fumio, Takemasa; Hideo, Umaki; Tomiyasu, Masumura [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-11-01

    This paper presents the results of investigation on evaluating damage distribution to base metals and welded joints in the thickness direction and evaluate damage on ligaments. Thick wall tested sample was the superheater outlet header component long term serviced in high pressure and temperature condition in thermal power plant. The simulate unused steel of component material was made from sample by suitable heat treatment, and the extent of damage was assessed based on a comparison of nondestructive and destructive test results between simulate unused and aged samples. Damage evaluation was also made by FEM structural stress analysis. (orig./MM)

  14. A computational fluid dynamics and effectiveness-NTU based co-simulation approach for flow mal-distribution analysis in microchannel heat exchanger headers

    International Nuclear Information System (INIS)

    Huang, Long; Lee, Moon Soo; Saleh, Khaled; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Refrigerant flow mal-distribution is a practical challenge in most microchannel heat exchangers (MCHXs) applications. Geometry design, uneven heat transfer and pressure drop in the different microchannel tubes are three main reasons leading to the flow mal-distribution. To efficiently and accurately account for these three effects, a new MCHX co-simulation approach is proposed in this paper. The proposed approach combines a detailed header simulation based on computational fluid dynamics (CFD) and a robust effectiveness-based finite volume tube-side heat transfer and refrigerant flow modeling tool. The co-simulation concept is demonstrated on a ten-tube MCHX case study. Gravity effect and uneven airflow effect were numerically analyzed using both water and condensing R134a as the working fluids. The approach was validated against experimental data for an automotive R134a condenser. The inlet header was cut open after the experimental data had been collected. The detailed header geometry was reproduced using the proposed CFD header model. Good prediction accuracy was achieved compared to the experimental data. The presented co-simulation approach is capable of predicting detailed refrigerant flow behavior while accurately predicts the overall heat exchanger performance. - Highlights: •MCHX header flow distribution is analyzed by a co-simulation approach. •The proposed method is capable of simulating both single-phase and two-phase flow. •An actual header geometry is reproduced in the CFD header model. •The modeling work is experimentally validated with good accuracy. •Gravity effect and air side mal-distribution are accounted for

  15. Making Science Matter: Collaborations between Informal Science Education Organizations and Schools. A CAISE Inquiry Group Report. Executive Summary

    Science.gov (United States)

    Center for Advancement of Informal Science Education, 2010

    2010-01-01

    Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities to expand their experiences and understanding of science. However, these collaborations have generally failed to institutionalize:…

  16. Why Understanding Science Matters: The IES Research Guidelines as a Case in Point

    Science.gov (United States)

    Rudolph, John L.

    2014-01-01

    The author outlines the rise of a hard-science model advocated by the Institute for Education Sciences, including the application of research and development approaches to education following the Second World War, and describes the attraction of these hard-science approaches for education policymakers. He notes that in the face of complex and…

  17. LHCb: Dynamically Adaptive Header Generator and Front-End Source Emulator for a 100 Gbps FPGA Based DAQ

    CERN Multimedia

    Srikanth, S

    2014-01-01

    The proposed upgrade for the LHCb experiment envisages a system of 500 Data sources each generating data at 100 Gbps, the acquisition and processing of which is a big challenge even for the current state of the art FPGAs. This requires an FPGA DAQ module that not only handles the data generated by the experiment but also is versatile enough to dynamically adapt to potential inadequacies of other components like the network and PCs. Such a module needs to maintain real time operation while at the same time maintaining system stability and overall data integrity. This also creates a need for a Front-end source Emulator capable of generating the various data patterns, that acts as a testbed to validate the functionality and performance of the Header Generator. The rest of the abstract briefly describes these modules and their implementation. The Header Generator is used to packetize the streaming data from the detectors before it is sent to the PCs for further processing. This is achieved by continuously scannin...

  18. Experimental use of road header (AM-50) as face cutting machine for extraction of coal in longwall panel

    Energy Technology Data Exchange (ETDEWEB)

    Passi, K.K.; Kumar, C.R.; Prasad, P. [DGMS, Dhanbad (India)

    2001-07-01

    The scope of this paper has been limited to the use of available machines and techniques for attaining higher and more efficient production in underground coal mines. Under certain conditions of strata and higher degree of gassiness, the longwall method with hydraulic sand stowing is the only appropriate method of work for extraction of thick seam. In Moonidih Jitpur Colliery of M/S IISCO, No. 14 seam, Degree III gassy seam, 9.07 m thick, is extracted in multilift system with hydraulic sand stowing. In general, the bottom lift is extracted by Single Ended Ranging Arm Shearer and the middle and top lift are extracted by conventional method. However, in one of the panels spare road header machine was used as face cutting machine in bottom lift, on an experimental basis. This paper presents a successful case study of extraction of bottom lift coal by the longwall method with hydraulic sand stowing using road header (AM 50) as the face cutting machines. 9 figs.

  19. University Programme Preferences of High School Science Students in Singapore and Reasons that Matter in their Preferences: A Rasch analysis

    Science.gov (United States)

    Oon, Pey-Tee; Subramaniam, R.

    2015-01-01

    This study explored an under-researched area in science education-the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of subjects, participated in this study. A survey method was adopted and the Rasch model was used to analyse the data. Overall, Business Studies was ranked as the predominant choice; nonetheless, scientific programmes such as Science, Engineering, and Mathematics are generally still well liked by the students. When gender differences were examined, we found that students largely followed gender-typical programme preferences, in which males tend to incline towards Engineering while females tend to incline towards Arts and Social Sciences. Students prefer a university programme based on their individual interest and ability, with career aspiration and remuneration coming next. Interestingly, females place greater emphasis on career aspiration than males. Some implications of the study are discussed.

  20. 76 FR 36951 - In the Matter of Animal Cloning Sciences, Inc. (n/k/a Bancorp Energy, Inc.): Order of Suspension...

    Science.gov (United States)

    2011-06-23

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of Animal Cloning Sciences, Inc. (n/k/a Bancorp Energy, Inc.): Order of Suspension of Trading June 21, 2011. It appears to the... securities of Animal Cloning Sciences, Inc. (n/k/a Bancorp Energy, Inc.) because it has not filed any...

  1. Energy matters: An investigation of drama pedagogy in the science classroom

    Science.gov (United States)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  2. Learning environments matter: Identifying influences on the motivation to learn science

    Directory of Open Access Journals (Sweden)

    Salomé Schulze

    2015-05-01

    Full Text Available In the light of the poor academic achievement in science by secondary school students in South Africa, students' motivation for science learning should be enhanced. It is argued that this can only be achieved with insight into which motivational factors to target, with due consideration of the diversity in schools. The study therefore explored the impact of six motivational factors for science learning in a sample of 380 Grade Nine boys and girls from three racial groups, in both public and independent schools. The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the significant role played by science teachers in motivating students for science in terms of the learning environments that they create. This has important implications for future research, aimed at a better understanding of these environments. Such insights are needed to promote scientific literacy among the school students, and so contribute to the improvement of science achievement in South Africa.

  3. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  4. The Union of Spirit and Matter: Science, Consciousness, and a Life Divine

    Directory of Open Access Journals (Sweden)

    Lynda Lester

    2011-06-01

    Full Text Available The once unbridgeable chasm between spirit and matter is closing. While the scientific method and scientific materialism have brought untold benefits to humanity, quantum physics has changed our view of matter as solid, objective, and obvious to a view that is more complex and which includes the possibility that consciousness has a part in manifesting reality. This shift mirrors Sri Aurobindo’s integral philosophy, which states that the universe is a manifestation of consciousness. This manifestation occurs through a process of involution followed by evolution, the next step of which is the emergence of a suprahumanity whose native state of consciousness will be supramental. Interestingly, some of Mother Mirra Alfassa’s experiences in bringing supramental consciousness into her body bear similarities to the discoveries of quantum physics. Unlike previous spiritual realizations, the supramental realization has the power to unify spirit and matter and usher in a life divine on earth.

  5. W. E. B. Du Bois at the center: from science, civil rights movement, to Black Lives Matter.

    Science.gov (United States)

    Morris, Aldon

    2017-03-01

    I am honoured to present the 2016 British Journal of Sociology Annual Lecture at the London School of Economics. My lecture is based on ideas derived from my new book, The Scholar Denied: W.E.B. Du Bois and the Birth of Modern Sociology. In this essay I make three arguments. First, W.E.B. Du Bois and his Atlanta School of Sociology pioneered scientific sociology in the United States. Second, Du Bois pioneered a public sociology that creatively combined sociology and activism. Finally, Du Bois pioneered a politically engaged social science relevant for contemporary political struggles including the contemporary Black Lives Matter movement. © London School of Economics and Political Science 2017.

  6. The CoRe of the Matter: Developing Primary Teachers' Professional Knowledge in Science

    Science.gov (United States)

    Hume, Anne

    2016-01-01

    In an educational landscape of primary teachers' underdeveloped professional knowledge and low feelings of self-efficacy around science teaching, the prospects for science losing status in the primary school curriculum seems grim. This paper reports positive findings from a New Zealand research project designed to support and enhance primary…

  7. Implementation Science: Why It Matters for the Future of Social Work

    Science.gov (United States)

    Cabassa, Leopoldo J.

    2016-01-01

    Bridging the gap between research and practice is a critical frontier for the future of social work. Integrating implementation science into social work can advance our profession's effort to bring research and practice closer together. Implementation science examines the factors, processes, and strategies that influence the uptake, use, and…

  8. Methods That Matter: Integrating Mixed Methods for More Effective Social Science Research

    Science.gov (United States)

    Hay, M. Cameron, Ed.

    2016-01-01

    To do research that really makes a difference--the authors of this book argue--social scientists need questions and methods that reflect the complexity of the world. Bringing together a consortium of voices across a variety of fields, "Methods that Matter" offers compelling and successful examples of mixed methods research that do just…

  9. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on 'de Broglie Matter Waves' Subject

    Directory of Open Access Journals (Sweden)

    Meryem Gorecek Baybars

    2018-04-01

    Full Text Available The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the Faculty of Education-Science Teaching students (2nd year / 48 individual in the academic year of 2010-2011. The study was planned as a single group pretest-posttest design. A two-step question was used in the study, prior to and after the instruction. Lessons were conducted using the 7E learning model in the instruction process. When all these results are evaluated, it can be said that the conceptual understanding of the prospective teachers regarding "de Broglie; matter waves" has been taken place. In general, when all the sections are examined, it has been observed that the prospective teachers have more alternative concepts prior to the instruction and more scientific concepts after the instruction. In this process, besides instruction, the prospective teachers have not taken any place in a different application regarding the basic concepts of quantum physics. Therefore, it has been determined that the 7E learning model used in the research and the activities included in the 7E learning model are effective in conceptual understanding.

  10. Relap5/Mod3.1 analysis of main steam header rupture in VVER- 440/213 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kral, P. [Nuclear Research Inst. Rez (Switzerland)

    1995-12-31

    The presentation is focused on two main topics. First the applied modelling of PGV-4 steam generator for RELAP5 code are described. The results of steady-state calculation under reference conditions are compared against measured data. The problem of longitudinal subdivision of SG tubes is analysed and evaluated. Secondly, a best-estimate analysis of main steam header (MSH) rupture accident in WWER-440/213 NPP is presented. The low reliability of initiation of ESFAS signal `MSH Rupture` leads in this accident to big loss of secondary coolant, full depressurization of main steam system, extremely fast cool-down of both secondary and primary system, opening of PRZ SV-bypass valve with later liquid outflow, potential reaching of secondary criticality by failure of HPIS. 7 refs.

  11. Relap5/Mod3.1 analysis of main steam header rupture in VVER- 440/213 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kral, P [Nuclear Research Inst. Rez (Switzerland)

    1996-12-31

    The presentation is focused on two main topics. First the applied modelling of PGV-4 steam generator for RELAP5 code are described. The results of steady-state calculation under reference conditions are compared against measured data. The problem of longitudinal subdivision of SG tubes is analysed and evaluated. Secondly, a best-estimate analysis of main steam header (MSH) rupture accident in WWER-440/213 NPP is presented. The low reliability of initiation of ESFAS signal `MSH Rupture` leads in this accident to big loss of secondary coolant, full depressurization of main steam system, extremely fast cool-down of both secondary and primary system, opening of PRZ SV-bypass valve with later liquid outflow, potential reaching of secondary criticality by failure of HPIS. 7 refs.

  12. Relap5/Mod3.1 analysis of main steam header rupture in VVER- 440/213 NPP

    International Nuclear Information System (INIS)

    Kral, P.

    1995-01-01

    The presentation is focused on two main topics. First the applied modelling of PGV-4 steam generator for RELAP5 code are described. The results of steady-state calculation under reference conditions are compared against measured data. The problem of longitudinal subdivision of SG tubes is analysed and evaluated. Secondly, a best-estimate analysis of main steam header (MSH) rupture accident in WWER-440/213 NPP is presented. The low reliability of initiation of ESFAS signal 'MSH Rupture' leads in this accident to big loss of secondary coolant, full depressurization of main steam system, extremely fast cool-down of both secondary and primary system, opening of PRZ SV-bypass valve with later liquid outflow, potential reaching of secondary criticality by failure of HPIS

  13. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  14. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  15. What are the constituents of matter? an essay concerning the ontological side of science

    CERN Document Server

    Kaufman, Alfred

    2016-01-01

    This essay seeks to understand just what it is that modern science tells us about nature. For the longest time the story told by science appeared to be fully reflective of our common experience: nature was discovered as a collection of reciprocally influencing objects governed by laws which were consistent with that experience. And then, about a hundred years ago, the story suddenly became obscure. Science introduced into nature quantum objects which were supposed to look nothing like anything we had ever seen before and the laws governing them no longer appeared to make much sense to us. Thereafter, what science told us about nature was no longer quite as clear. This shift in the story is conspicuous and bespeaks of an earlier moment in the development of science when the project might have inadvertently taken a step which would eventually make her strange. The essay suggests that the scientific community had in fact made a fateful decision which inevitably led it to the strangeness of quantum mechanics and ...

  16. Bodies, hearts, and minds: Why emotions matter to historians of science and medicine.

    Science.gov (United States)

    Alberti, Fay Bound

    2009-12-01

    The histories of emotion address many fundamental themes of science and medicine. These include the ways the body and its workings have been historically observed and measured, the rise of the mind sciences, and the anthropological analyses by which "ways of knowing" are culturally situated. Yet such histories bring their own challenges, not least in how historians of science and medicine view the relationship between bodies, minds, and emotions. This essay explores some of the methodological challenges of emotion history, using the sudden death of the surgeon John Hunter from cardiac disease as a case study. It argues that we need to let go of many of our modem assumptions about the origin of emotions, and "brainhood", that dominate discussions of identity, in order to explore the historical meanings of emotions as products of the body as well as the mind.

  17. Voice Matters: Buffering the Impact of a Negative Climate for Women in Science

    Science.gov (United States)

    Settles, Isis H.; Cortina, Lilia M.; Stewart, Abigail J.; Malley, Janet

    2007-01-01

    The current study examined whether women scientists' perceptions of voice moderate the impact of poor workplace climates on job satisfaction and whether effective leadership and mentoring promote women's voice. Survey data were collected from 135 faculty women in the natural sciences. The results from multiple regression analyses indicated that…

  18. Doing Science That Matters to Address India'sWater Crisis

    Indian Academy of Sciences (India)

    India is one of the most water stressedcountries in the world. However, despiteappreciable increase in funding for waterresearch, high quality science that is usableby stakeholders remains elusive. I arguethat this can be attributed to the absenceof research on questions that actuallymatter to stakeholders, unwillingnessto ...

  19. [A political matter: science and ideology in the 21st century].

    Science.gov (United States)

    Wahrig, Bettina

    2010-06-01

    In the last two decades, history of science and science studies have been quite reluctant to adopt the notion of ideology when analyzing the dynamics of science. This may be an effect of the decreasing popularity of neo-marxist approaches within this disciplinary field; but it is also due to the fact that alternative approaches have been developed, for example Michel Foucault's notion of problematization, Roland Barthes' semiotic mythology, Bruno Latour's re-interpretation of the ontological difference between fact and fetish in science, or Donna Haraway's semi-fictional re-narrations of the techno-scientific world. This contribution undertakes to sketch the impact of two strands of 19th century immanentism on the authors named above, and on their use of concepts related to the notion of ideology, namely fetish, fetishism, myth and mythology respectively. It is argued that in some respect, Marx' concept of commodity fetishism is worth being re-examined, since it articulates a dialectical relation of 'reality' and 'seeming', and its impact on Barthes' mythology is deeper than it might appear at first glance.

  20. Family Matters: Familial Support and Science Identity Formation for African American Female STEM Majors

    Science.gov (United States)

    Parker, Ashley Dawn

    2013-01-01

    This research seeks to understand the experiences of African American female undergraduates in STEM. It investigates how familial factors and science identity formation characteristics influence persistence in STEM while considering the duality of African American women's status in society. This phenomenological study was designed using critical…

  1. Pedagogy Matters: Engaging Diverse Students as Community Researchers in Three Computer Science Classrooms

    Science.gov (United States)

    Ryoo, Jean Jinsun

    2013-01-01

    Computing occupations are among the fastest growing in the U.S. and technological innovations are central to solving world problems. Yet only our most privileged students are learning to use technology for creative purposes through rigorous computer science education opportunities. In order to increase access for diverse students and females who…

  2. Academic Studies, Science, and Democracy: Conceptions of Subject Matter from Harris to Thorndike

    Science.gov (United States)

    Watras, Joseph

    2009-01-01

    When Ellen Condliffe Lagemann described what she called the troubling history of education research, she claimed that, in the early years of the twentieth century, Edward Lee Thorndike's narrow model of science replaced John Dewey's more open ideas. According to Lagemann, sexism was an important reason for Thorndike's triumph. In describing the…

  3. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W. [Stanford Univ., Stanford, CA (United States); U.S. Geological Survey, Menlo Park, CA (United States); Hugelius, Gustaf [Stanford Univ., Stanford, CA (United States); Stockholm Univ., Stockholm (Sweden); Ahlstrom, Anders [Stanford Univ., Stanford, CA (United States); Department of Physical Geography and Ecosystem Science, Lund (Sweden); Blankinship, Joseph C. [Univ. of Arizona, Tucson, AZ (United States); Bond-Lamberty, Ben [Univ. of Maryland, College Park, MD (United States); Lawrence, Corey R. [U.S. Geological Survey, Denver, CO (United States); Loisel, Julie [Texas A & M Univ., College Station, TX (United States); Malhotra, Avni [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Robert B. [Stanford Univ., Stanford, CA (United States); Ogle, Stephen [Colorado State Univ., Fort Collins, CO (United States); Phillips, Claire [USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR (United States); Ryals, Rebecca [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Todd-Brown, Katherine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vargas, Rodrigo [Univ. of Delaware, Newark, DE (United States); Vergara, Sintana E. [Univ. of California, Berkeley, CA (United States); Cotrufo, M. Francesca [Colorado State Univ., Fort Collins, CO (United States); Keiluweit, Marco [Univ. of Massachusetts, Amherst, MA (United States); Heckman, Katherine A. [USDA Forest Service, Houghton, MI (United States); Crow, Susan E. [Univ. of Hawai' i at Manoa, Honolulu, HI (United States); Silver, Whendee L. [Univ. of California, Berkeley, CA (United States); DeLonge, Marcia [Union of Concerned Scientists, Washington, D.C. (United States); Nave, Lucas E. [Univ. of Michigan, Pellston, MI (United States)

    2017-10-05

    Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.

  4. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  5. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    2010-09-01

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  6. Plutonium metallurgy: The materials science challenges bridging condensed-matter physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov

    2007-10-11

    Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.

  7. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders; Blankinship, Joseph; Bond-Lamberty, Benjamin; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, S.M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine EO; Vargas, Rodrigo; Vergara, Sintana; Cotrufo, Francesca; Keiluweit, M.; Heckman, Katherine; Crow, Susan; Silver, Whendee; Delonge, Marcia; Nave, Lucas

    2018-02-01

    Over 75% of soil organic carbon (C) in the upper meter of earth’s terrestrial surface has been subjected to cropping, grazing, forestry, or urbanization. As a result, terrestrial C cycling cannot be studied out of land use context. Meanwhile, amendments by soil organic matter demonstrate reliable methodologies to restore and improve soils to a more productive state, therefore soil health and productivity cannot be understood without reference to soil C. Measurements for detecting changes in soil C are needed to constrain and monitor best practices and must reflect processes of C stabilization and destabilization over various timescales, soil types, and spatial scales in order to quantify C sequestration at regional to global scales. We have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil carbon and its management for sustained production and climate regulation.

  8. PREFACE: SPECIAL SECTION OF THE JOURNAL OF AIR & WASTE MANAGEMENT ASSOCIATION FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    Science.gov (United States)

    This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...

  9. Exploring the Relationship between Secondary Science Teachers' Subject Matter Knowledge and Knowledge of Student Conceptions While Teaching Evolution by Natural Selection

    Science.gov (United States)

    Lucero, Margaret M.; Petrosino, Anthony J.; Delgado, Cesar

    2017-01-01

    The fundamental scientific concept of evolution occurring by natural selection is home to many deeply held alternative conceptions and considered difficult to teach. Science teachers' subject matter knowledge (SMK) and the pedagogical content knowledge (PCK) component of knowledge of students' conceptions (KOSC) can be valuable resources for…

  10. A Case Study of Beginning Science Teachers' Subject Matter (SMK) and Pedagogical Content Knowledge (PCK) of Teaching Chemical Reaction in Turkey

    Science.gov (United States)

    Usak, Muhammet; Ozden, Mustafa; Eilks, Ingo

    2011-01-01

    This paper describes a case study focusing on the subject matter knowledge, pedagogical content knowledge, and beliefs about science teaching of student teachers in Turkey at the start of their university education. The topic of interest was that of teaching chemical reactions in secondary chemistry education. A written test was developed which…

  11. Does Reality Matter? Social and Science Bases of Public Beliefs about Arctic Change

    Science.gov (United States)

    Walker, D. A.; Schaefer, K. M.; Schaeffer, K. P.; Schaefer, K. M.; Hamilton, L.

    2015-12-01

    Surveys of public perceptions about trends in Arctic sea ice find that over two-thirds are aware of the multi-decade decrease. This awareness differs sharply across ideological and educational subgroups, however. It does not appear to shift in response to scientific and media discussion following a September with unusually low (2012) or somewhat higher (2013) sea ice extent. Other perceptions about Arctic change, such as impacts on mid-latitude weather, follow similar patterns with sharp ideological difference and limited response to external events, including science reports. On the other hand, public accuracy on basic factual questions that do not by themselves imply directional change (such as location of the North Pole) may be very low, and among some subgroups accurate knowledge shows an oddly negative correlation with self-confidence about understanding of climate change. These results from 13 surveys over 2011-2015 suggest that biased assimilation filters the acceptance of information about Arctic change, with implications for science communication.

  12. Results from the first science run of the ZEPLIN-III dark matter search experiment

    International Nuclear Information System (INIS)

    Lebedenko, V. N.; Bewick, A.; Currie, A.; Davidge, D.; Dawson, J.; Horn, M.; Howard, A. S.; Jones, W. G.; Joshi, M.; Liubarsky, I.; Quenby, J. J.; Sumner, T. J.; Thorne, C.; Walker, R. J.; Araujo, H. M.; Edwards, B.; Barnes, E. J.; Ghag, C.; Murphy, A. St. J.; Scovell, P. R.

    2009-01-01

    The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12 kg two-phase xenon time-projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detector measures both scintillation and ionization produced by radiation interacting in the liquid to differentiate between the nuclear recoils expected from WIMPs and the electron-recoil background signals down to ∼10 keV nuclear-recoil energy. An analysis of 847 kg·days of data acquired between February 27, 2008, and May 20, 2008, has excluded a WIMP-nucleon elastic scattering spin-independent cross section above 8.1x10 -8 pb at 60 GeVc -2 with a 90% confidence limit. It has also demonstrated that the two-phase xenon technique is capable of better discrimination between electron and nuclear recoils at low-energy than previously achieved by other xenon-based experiments.

  13. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter

    Science.gov (United States)

    Harden, Jennifer W.; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C.; Bond-Lamberty, Ben; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, Stephen M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E.; Cotrufo, M. Francesca; Keiluweit, Marco; Heckman, Katherine; Crow, Susan E.; Silver, Whendee L.; DeLonge, Marcia; Nave, Lucas E.

    2018-01-01

    Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.

  14. Family matters: Familial support and science identity formation for African American female STEM majors

    Science.gov (United States)

    Parker, Ashley Dawn

    This research seeks to understand the experiences of African American female undergraduates in STEM. It investigates how familial factors and science identity formation characteristics influence persistence in STEM while considering the duality of African American women's status in society. This phenomenological study was designed using critical race feminism as the theoretical framework to answer the following questions: 1) What role does family play in the experiences of African American women undergraduate STEM majors who attended two universities in the UNC system? 2) What factors impact the formation of science identity for African American women undergraduate STEM majors who attended two universities in the UNC system? Purposive sampling was used to select the participants for this study. The researcher conducted in-depth interviews with 10 African American female undergraduate STEM major from a predominantly White and a historically Black institution with the state of North Carolina public university system. Findings suggest that African American families and science identity formation influence the STEM experiences of the African American females interviewed in this study. The following five themes emerged from the findings: (1) independence, (2) support, (3) pressure to succeed, (4) adaptations, and (5) race and gender. This study contributes to the literature on African American female students in STEM higher education. The findings of this study produced knowledge regarding policies and practices that can lead to greater academic success and persistence of African American females in higher education in general, and STEM majors in particular. Colleges and universities may benefit from the findings of this study in a way that allows them to develop and sustain programs and policies that attend to the particular concerns and needs of African American women on their campuses. Finally, this research informs both current and future African American female

  15. The Mesoscale Science of the Matter-Radiation Interactions in Extremes (MaRIE) project

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Donald Raymond [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-17

    The National Nuclear Security Administration (NNSA) requires the ability to understand and test how material structures, defects, and interfaces determine performance in extreme environments such as in nuclear weapons. To do this, MaRIE will be an x-ray source that is laser-like and brilliant with very fl exible and fast pulses to see at weapons-relevant time scales, and with high enough energy to study critical materials. The Department of Energy (DOE) has determined there is a mission need for MaRIE to deliver this capability. MaRIE can use some of the existing infrastructure of the Los Alamos Neutron Science Center (LANSCE) and its accelerator capability. MaRIE will be built as a strategic partnership of DOE national laboratories and university collaborators.

  16. Pacemaker syndrome with sub-acute left ventricular systolic dysfunction in a patient with a dual-chamber pacemaker: consequence of lead switch at the header.

    Science.gov (United States)

    Khurwolah, Mohammad Reeaze; Vezi, Brian Zwelethini

    In the daily practice of pacemaker insertion, the occurrence of atrial and ventricular lead switch at the pacemaker box header is a rare and unintentional phenomenon, with less than five cases reported in the literature. The lead switch may have dire consequences, depending on the indication for the pacemaker. One of these consequences is pacemaker syndrome, in which the normal sequence of atrial and ventricular activation is impaired, leading to sub-optimal ventricular filling and cardiac output. It is important for the attending physician to recognise any worsening of symptoms in a patient who has recently had a permanent pacemaker inserted. In the case of a dual-chamber pacemaker, switching of the atrial and ventricular leads at the pacemaker box header should be strongly suspected. We present an unusual case of pacemaker syndrome and right ventricular-only pacinginduced left ventricular systolic dysfunction in a patient with a dual-chamber pacemaker.

  17. A Document-Based EHR System That Controls the Disclosure of Clinical Documents Using an Access Control List File Based on the HL7 CDA Header.

    Science.gov (United States)

    Takeda, Toshihiro; Ueda, Kanayo; Nakagawa, Akito; Manabe, Shirou; Okada, Katsuki; Mihara, Naoki; Matsumura, Yasushi

    2017-01-01

    Electronic health record (EHR) systems are necessary for the sharing of medical information between care delivery organizations (CDOs). We developed a document-based EHR system in which all of the PDF documents that are stored in our electronic medical record system can be disclosed to selected target CDOs. An access control list (ACL) file was designed based on the HL7 CDA header to manage the information that is disclosed.

  18. Does print size matter for reading? A review of findings from vision science and typography.

    Science.gov (United States)

    Legge, Gordon E; Bigelow, Charles A

    2011-08-09

    The size and shape of printed symbols determine the legibility of text. In this paper, we focus on print size because of its crucial role in understanding reading performance and its significance in the history and contemporary practice of typography. We present evidence supporting the hypothesis that the distribution of print sizes in historical and contemporary publications falls within the psychophysically defined range of fluent print size--the range over which text can be read at maximum speed. The fluent range extends over a factor of 10 in angular print size (x-height) from approximately 0.2° to 2°. Assuming a standard reading distance of 40 cm (16 inches), the corresponding physical x-heights are 1.4 mm (4 points) and 14 mm (40 points). We provide new data on the distributions of print sizes in published books and newspapers and in typefounders' specimens, and consider factors influencing these distributions. We discuss theoretical concepts from vision science concerning visual size coding that help inform our understanding of historical and modern typographical practices. While economic, social, technological, and artistic factors influence type design and selection, we conclude that properties of human visual processing play a dominant role in constraining the distribution of print sizes in common use.

  19. Does mentoring matter: results from a survey of faculty mentees at a large health sciences university

    Science.gov (United States)

    Feldman, Mitchell D.; Arean, Patricia A.; Marshall, Sally J.; Lovett, Mark; O'Sullivan, Patricia

    2010-01-01

    Background To determine the characteristics associated with having a mentor, the association of mentoring with self-efficacy, and the content of mentor–mentee interactions at the University of California, San Francisco (UCSF), we conducted a baseline assessment prior to implementing a comprehensive faculty mentoring program. Method We surveyed all prospective junior faculty mentees at UCSF. Mentees completed a web-based, 38-item survey including an assessment of self-efficacy and a needs assessment. We used descriptive and inferential statistics to determine the association between having a mentor and gender, ethnicity, faculty series, and self-efficacy. Results Our respondents (n=464, 56%) were 53% female, 62% white, and 7% from underrepresented minority groups. More than half of respondents (n=319) reported having a mentor. There were no differences in having a mentor based on gender or ethnicity (p≥0.05). Clinician educator faculty with more teaching and patient care responsibilities were statistically significantly less likely to have a mentor compared with faculty in research intensive series (pmentor was associated with greater satisfaction with time allocation at work (pmentor, 5.33 (sd = 1.35, pmentors, but rated highest requiring mentoring assistance with issues of promotion and tenure. Conclusion Findings from the UCSF faculty mentoring program may assist other health science institutions plan similar programs. Mentoring needs for junior faculty with greater teaching and patient care responsibilities must be addressed. PMID:20431710

  20. Matters of Fact: Language, Science, and the Status of Truth in Late Colonial Korea

    Directory of Open Access Journals (Sweden)

    Christopher P. Hanscom

    2014-03-01

    Full Text Available This article addresses the status of the fact in literary and historical discourses in late colonial Korea, focusing on the elaboration of the relationship between scientific and literary truths primarily in the work of philosopher and critic Sŏ Insik (1906–?. It points to a growing tendency in late 1930s and early 1940s Korea to question the veracity of the fact (or of empiricism more broadly in an environment where the enunciation of the colonial subject had been rendered problematic and objective statements had arguably lost their connection with social reality. In a period when the relationship between signifier and referent had come into question, how did this major critic understand the relationship between science and literature, or between truth and subjectivity? Sŏ warns against a simplistic apprehension of the notion of truth as unilaterally equivalent with what he calls “scientific truth” (kwahakchŏk chilli—a nomological truth based on objective observation and confirmation by universal principles—and argues that a necessary complement to apparently objective truth is “literary truth” (munhakchŏk chinsil. Against the fixed, conceptual form of scientific thought, literary truth presents itself as an experiential truth that returns to the sensory world of the sociolinguistic subject (chuch’e as a source of credibility.

  1. Science and technology on the nanoscale with swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Reinhard, E-mail: r.neumann@gsi.de

    2013-11-01

    Swift heavy ions have stimulated developments of science and technology on the nanoscale due to the specific manner of transferring their kinetic energy in a solid successively in small portions along their trajectories. They thus create absolutely straight, almost cylindrical, and very narrow damage trails of diameter 5–10 nm. In various materials, such as polymers, a suitable etchant can transform these tracks into narrow channels of cylindrical, conical, or other desired shapes. These channels represent a starting point particularly for two major fields: they can be chemically modified to control small species and act, e.g., as sensors and transmitters of specific biomolecules. Irradiation of a sample with only one heavy ion allows the fabrication of single-nanochannel devices enabling measurements of enormous sensitivity. Filling nanochannels with a material provides nanowires. These objects of restricted dimensions exhibit finite-size and quantum behavior and give rise to a broad range of fundamental and applied research. This contribution briefly recollects microtechnological achievements with swift heavy ions that began already in the 1970s, preparing the ground for gradual size decrease down to the nanoscopic objects now under study. Various examples of material modifications on the nanoscale are presented, including recent results obtained with nanochannels and nanowires. Emerging developments are addressed, encompassing in situ recording of processes in biological cells stimulated by well-aimed ion irradiation, the fabrication of three-dimensional nanowire architectures, and plasmonic effects in nanowires.

  2. A Study on Thermal Performance of a Novel All-Glass Evacuated Tube Solar Collector Manifold Header with an Inserted Tube

    Directory of Open Access Journals (Sweden)

    Jichun Yang

    2015-01-01

    Full Text Available A novel all-glass evacuated tube collector manifold header with an inserted tube is proposed in this paper which makes water in all-glass evacuated solar collector tube be forced circulated to improve the performance of solar collector. And a dynamic numerical model was presented for the novel all-glass evacuated tube collector manifold header water heater system. Also, a test rig was built for model validation and comparison with traditional all-glass evacuated tube collector. The experiment results show that the efficiency of solar water heater with a novel collector manifold header is higher than traditional all-glass evacuated tube collector by about 5% and the heat transfer model of water heater system is valid. Based on the model, the relationship between the average temperature of water tank and inserted tube diameter (water mass flow has been studied. The results show that the optimized diameter of inserted tube is 32 mm for the inner glass with the diameter of 47 mm and the water flow mass should be less than 1.6 Kg/s.

  3. Does mentoring matter: results from a survey of faculty mentees at a large health sciences university

    Directory of Open Access Journals (Sweden)

    Mitchell D. Feldman

    2010-04-01

    Full Text Available Background: To determine the characteristics associated with having a mentor, the association of mentoring with self-efficacy, and the content of mentor–mentee interactions at the University of California, San Francisco (UCSF, we conducted a baseline assessment prior to implementing a comprehensive faculty mentoring program. Method: We surveyed all prospective junior faculty mentees at UCSF. Mentees completed a web-based, 38-item survey including an assessment of self-efficacy and a needs assessment. We used descriptive and inferential statistics to determine the association between having a mentor and gender, ethnicity, faculty series, and self-efficacy. Results: Our respondents (n=464, 56% were 53% female, 62% white, and 7% from underrepresented minority groups. More than half of respondents (n=319 reported having a mentor. There were no differences in having a mentor based on gender or ethnicity (p≥0.05. Clinician educator faculty with more teaching and patient care responsibilities were statistically significantly less likely to have a mentor compared with faculty in research intensive series (p<0.001. Having a mentor was associated with greater satisfaction with time allocation at work (p<0.05 and with higher academic self-efficacy scores, 6.07 (sd = 1.36 compared with those without a mentor, 5.33 (sd = 1.35, p<0.001. Mentees reported that they most often discussed funding with the mentors, but rated highest requiring mentoring assistance with issues of promotion and tenure. Conclusion: Findings from the UCSF faculty mentoring program may assist other health science institutions plan similar programs. Mentoring needs for junior faculty with greater teaching and patient care responsibilities must be addressed.

  4. A worked example using the SP249 advanced assessment route: the carregado unit 6 final superheater outlet header

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J.M.; Jarvis, P.; Jones, G.T. [ERA Technology (United Kingdom); Jovanovic, A.S.; Friemann, M.; Kluttig, B.; Ober, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Batista, A. [EDP-PROET (Portugal); Araujo, C.L. de; Pires, A. [ISQ (Portugal)

    1995-12-31

    As a key part of its information resource, the SP249 Project contains a number of case studies, drawn from the collective experience of the partners and from the literature. The user of the system may search this data-base by component type and material or by assessment method, to find a practical example close to his own current problem. He can thus draw upon past experience as well as state-of-the-art knowledge to obtain advice. To facilitate this, a set of key-words has been defined to create links between the case studies and the overall assessment methodology. These relate to damage and failure types and causes as well as to techniques of investigation and assessment. For demonstration, validation and didactic purposes, certain of these case studies - one per end-user utility in the project - have been chosen for full elaboration as `worked-examples`. These real component evaluations are worked through by an expert group from the project team so as to provide the utility staff with `hands-on` training in both the practical techniques of component life. The assessment and the use of the knowledge based system. The exercise also provides valuable opportunity for feedback, allowing refinement of the technology package and the software. Amongst these worked examples, an assessment of EDP`s Carregado Unit 6 Final Superheater Outlet Header has been chosen for special attention - as the operators have kindly allowed direct CSS to the component during two outages. This article summarises the Carregado Case Study. It is intended to serve as a demonstration and as to how the Advanced Assessment Route (AAR) is used in practice. The actions performed and results obtained are summarised

  5. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  6. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Header [nuclear battery

    International Nuclear Information System (INIS)

    Goslee, D.E.; Barr, H.N.

    1976-01-01

    The invention relates to a nuclear-powered microwatt thermoelectric generator, small in size, efficient in operation, and which will last for a considerable period of time. The generator is suitable for implanting within the human body for powering devices such as cardiac pacemakers

  8. 23 March 2015 - Tree planting ceremony Chemin Auguer, by His Holiness the XIIth Gyalwang Drukpa and CERN Director-General, on the occasion of the event Connecting Worlds: Science Meets Buddhism Great Minds, Great Matters.

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    23 March 2015 - Tree planting ceremony Chemin Auguer, by His Holiness the XIIth Gyalwang Drukpa and CERN Director-General, on the occasion of the event Connecting Worlds: Science Meets Buddhism Great Minds, Great Matters.

  9. Do Thinking Styles Matter for Science Achievement and Attitudes toward Science Class in Male and Female Elementary School Students in Taiwan?

    Science.gov (United States)

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2015-01-01

    The purposes of this study were to explore the effects of thinking styles on science achievement and attitudes toward science class among Taiwanese elementary school students and to explore the differences between male and female students in their modes of thinking. Participants included 756 sixth-grade students from 28 classes in four elementary…

  10. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  11. The validation of science virtual test to assess 7th grade students’ critical thinking on matter and heat topic (SVT-MH)

    Science.gov (United States)

    Sya’bandari, Y.; Firman, H.; Rusyati, L.

    2018-05-01

    The method used in this research was descriptive research for profiling the validation of SVT-MH to measure students’ critical thinking on matter and heat topic in junior high school. The subject is junior high school students of 7th grade (13 years old) while science teacher and expert as the validators. The instruments that used as a tool to obtain the data are rubric expert judgment (content, media, education) and rubric of readability test. There are four steps to validate SVT-MH in 7th grade Junior High School. These steps are analysis of core competence and basic competence based on Curriculum 2013, expert judgment (content, media, education), readability test and trial test (limited and larger trial test). The instrument validation resulted 30 items that represent 8 elements and 21 sub-elements to measure students’ critical thinking based on Inch in matter and heat topic. The alpha Cronbach (α) is 0.642 which means that the instrument is sufficient to measure students’ critical thinking matter and heat topic.

  12. First application of a partially automated road header at Prosper-Haniel colliery; Ersteinsatz einer teilautomatisierten Teilschnittmaschine auf dem Bergwerk Prosper-Haniel

    Energy Technology Data Exchange (ETDEWEB)

    Reinewardt, Klaus-Juergen [Bergwerk Prosper-Haniel, Bottrop (Germany). Betrieb Produktion; Achilles, Peter [RAG Deutsche Steinkohle AG, Herne (Germany). Abt. PPE-V Vorleistungstechnik

    2010-09-15

    Mechanical road heading in the RAG Deutsche Steinkohle mines makes use of AM 105 road headers. Within the scope of an EU-subsidised R and D project the machine has been subjected to an automation of its control features and an integration of sensors for seam position identification and for navigation. The focal points of the automation are: - the scheduled performance of automated cutting operations, - the adherence to a defined loading height due to seam position identification and - the incorporation of first auxiliary functions for navigation (position sensing). In addition, the machine is expected to determine its respective functional state and recognised potential functional faults by itself, and - subject to its present load condition - it is to deliver the basis for a maintenance scheme geared to its current condition. This paper describes above-mentioned development steps and reports on the experience gathered in the underground use of that machine in the Prosper-Haniel colliery. (orig.)

  13. A tale of three blind men on the proper subject matter of clinical science and practice: commentary on Plaud's behaviorism vs. Ilardi and Feldman's cognitive neuroscience.

    Science.gov (United States)

    Forsyth, J P; Kelly, M M

    2001-09-01

    Plaud (J Clin Psychol 57, 1089-1102, 1109-1111, 1119-1120) and Ilardi and Feldman (J Clin Psychol 57, 1067-1088, 1103-1107, 1113-1117, 1121-1124) argue for two very different approaches to clinical science and practice (i.e., behavior analysis and cognitive neuroscience, respectively). We comment on the assets and liabilities of both perspectives as presented and attempt to achieve some semblance of balance between the three protagonists embroiled in this current debate. The vision of clinical science we articulate is more ecumenical and evolutionary, rather than paradigmatic and revolutionary. As we see it, the problem clinical psychology faces is much larger than the authors let on; namely, how best to make clinical science meaningful and relevant to practitioners, consumers, the general public, and the behavioral health-care community. Clinical psychology's immediate internal problem is not pluralism with regard to subject matter, worldview, methodology, or school of thought, but pluralism in clinical psychologists' adherence to a scientific epistemology as the only legitimate form of clinical psychology. On this latter point, we still have a very long way to go. Copyright 2001 John Wiley & Sons, Inc.

  14. Sterile neutrino dark matter

    CERN Document Server

    Merle, Alexander

    2017-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  15. "Deep down Things": In What Ways Is Information Physical, and Why Does It Matter for Information Science?

    Science.gov (United States)

    Bawden, David; Robinson, Lyn

    2013-01-01

    Introduction: Rolf Landauer declared in 1991 that "information is physical". Since then, information has come to be seen by many physicists as a fundamental component of the physical world; indeed by some as the physical component. This idea is now gaining currency in popular science communication. However, it is often far from clear…

  16. The Effects of Visualizations on Linguistically Diverse Students' Understanding of Energy and Matter in Life Science

    Science.gov (United States)

    Ryoo, Kihyun; Bedell, Kristin

    2017-01-01

    Although extensive research has shown the educational value of different types of interactive visualizations on students' science learning in general, how such technologies can contribute to English learners' (ELs) understanding of complex scientific concepts has not been sufficiently explored to date. This mixed-methods study investigated how…

  17. Does Personality Matter? Applying Holland's Typology to Analyze Students' Self-Selection into Science, Technology, Engineering, and Mathematics Majors

    Science.gov (United States)

    Chen, P. Daniel; Simpson, Patricia A.

    2015-01-01

    This study utilized John Holland's personality typology and the Social Cognitive Career Theory (SCCT) to examine the factors that may affect students' self-selection into science, technology, engineering, and mathematics (STEM) majors. Results indicated that gender, race/ethnicity, high school achievement, and personality type were statistically…

  18. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    Science.gov (United States)

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  19. Does Structural Development Matter? The Third Mission through Teaching and R&D at Finnish Universities of Applied Sciences

    Science.gov (United States)

    Kohtamäki, Vuokko

    2015-01-01

    The latest policy trends of higher education institutions (HEIs) have increasingly highlighted the importance of external stakeholders' expertise and resources. This paper investigated how the third mission through teaching and research and development (R&D) at Finnish universities of applied sciences (UASs) is influenced by the structural…

  20. STEM Graduates and Secondary School Curriculum: Does Early Exposure to Science Matter? CEP Discussion Paper No. 1443

    Science.gov (United States)

    De Philippis, Marta

    2016-01-01

    Increasing the number of Science, Technology, Engineering and Math (STEM) university graduates is considered a key element for long-term productivity and competitiveness in the global economy. Still, little is known about what actually drives and shapes students' choices. This paper focusses on secondary school students at the very top of the…

  1. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  2. Explore the concept of “light” and its interaction with matter: an inquiry-based science education project in primary school

    Science.gov (United States)

    Varela, P.; Costa, M. F.

    2015-04-01

    The exploration process leading to the understanding of physical phenomena, such as light and its interaction with matter, raises great interest and curiosity in children. However, in most primary schools, children rarely have the opportunity to conduct science activities in which they can engage in an enquiry process even if by the action of the teacher. In this context, we have organised several in-service teacher training courses and carried out several pedagogic interventions in Portuguese primary schools, with the aim of promoting inquiry- based science education. This article describes one of those projects, developed with a class of the third grade, which explored the curricular topic “Light Experiments”. Various activities were planned and implemented, during a total of ten hours spread over five lessons. The specific objectives of this paper are: to illustrate and analyse the teaching and learning process promoted in the classroom during the exploration of one of these lessons, and to assess children's learning three weeks after the lessons. The results suggest that children made significant learning which persisted. We conclude discussing some processes that stimulated children’ learning, including the importance of teacher questioning in scaffolding children's learning and some didactic implications for teacher training.

  3. Quantifying Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Quantifying Matter explains how scientists learned to measure matter and quantify some of its most fascinating and useful properties. It presents many of the most important intellectual achievements and technical developments that led to the scientific interpretation of substance. Complete with full-color photographs, this exciting new volume describes the basic characteristics and properties of matter. Chapters include:. -Exploring the Nature of Matter. -The Origin of Matter. -The Search for Substance. -Quantifying Matter During the Scientific Revolution. -Understanding Matter's Electromagnet

  4. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    International Nuclear Information System (INIS)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-01-01

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for 'next-generation' x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop 'Science for a New Class of Soft X-Ray Light Sources' was held in Berkeley in October 2007. From an analysis of the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions

  5. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  6. The science of dynamic compression at the mesoscale and the Matter-Radiation Interactions in Extremes (MaRIE) project

    International Nuclear Information System (INIS)

    Barnes, Cris W; Funk, David J; Hockaday, Mary P; Sarrao, John L; Stevens, Michael F

    2014-01-01

    A scientific transition is underway from traditional observation and validation of materials properties to a new paradigm where scientists and engineers design and create materials with tailored properties for specified functionality. Of particular interest are the regimes of materials' response to thermo-mechanical extremes including materials deforming under imposed strain rates above the quasi-static range (i.e. > 10 −3 s −1 ), material subjected to imposed shocks, but also material response to static, high-pressures. There is a need for the study of materials at the 'mesoscale', the scale at which sub-granular physical processes and inter-granular organization couple to determine microstructure, crucially impacting constitutive response at the engineering macroscale. For these reasons Los Alamos is proposing the MaRIE facility as a National User Facility to meet this need. In particular, three key science challenges will be identified: Link material microstructure to macroscopic behavior under dynamic deformation conditions; Make the transition from observation and validation to prediction and control of dynamic processes; and Develop the next generation of diagnostics, dynamic drivers, and predictive models to enable the necessary, transformative research.

  7. Why Society is a Complex Matter Meeting Twenty-first Century Challenges with a New Kind of Science

    CERN Document Server

    Ball, Philip

    2012-01-01

    Society is complicated. But this book argues that this does not place it beyond the reach of a science that can help to explain and perhaps even to predict social behaviour. As a system made up of many interacting agents – people, groups, institutions and governments, as well as physical and technological structures such as roads and computer networks – society can be regarded as a complex system. In recent years, scientists have made great progress in understanding how such complex systems operate, ranging from animal populations to earthquakes and weather. These systems show behaviours that cannot be predicted or intuited by focusing on the individual components, but which emerge spontaneously as a consequence of their interactions: they are said to be ‘self-organized’. Attempts to direct or manage such emergent properties generally reveal that ‘top-down’ approaches, which try to dictate a particular outcome, are ineffectual, and that what is needed instead is a ‘bottom-up’ approach that aim...

  8. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  9. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  10. Uncertainty analysis of the 35% reactor inlet header break in a CANDU 6 reactor using RELAP/SCDAPSIM/MOD4.0 with integrated uncertainty analysis option

    Energy Technology Data Exchange (ETDEWEB)

    Dupleac, D., E-mail: danieldu@cne.pub.ro [Politehnica Univ. of Bucharest (Romania); Perez, M.; Reventos, F., E-mail: marina.perez@upc.edu, E-mail: francesc.reventos@upc.edu [Technical Univ. of Catalonia (Spain); Allison, C., E-mail: iss@cableone.net [Innovative Systems Software (United States)

    2011-07-01

    user-selected parameters including code embedded correlations and models such as the wall-to-fluid heat transfer package, executes the code runs to propagate the uncertainty through, and processes the output data to derive the tolerance interval defining the uncertainty region. This paper includes a: 1. Brief description of RELAP/SCDAPSIM/MOD4.0(IUA) and associated CANDU 6 base input model for the 35% reactor inlet header (RIH) break scenario, 2. Discussion of the safety criteria, relevant phenomena, and associated code parameters used in the uncertainty analysis, 3. Discussion and conclusions for the RIH transient and associated uncertainties. (author)

  11. Uncertainty analysis of the 35% reactor inlet header break in a CANDU 6 reactor using RELAP/SCDAPSIM/MOD4.0 with integrated uncertainty analysis option

    International Nuclear Information System (INIS)

    Dupleac, D.; Perez, M.; Reventos, F.; Allison, C.

    2011-01-01

    user-selected parameters including code embedded correlations and models such as the wall-to-fluid heat transfer package, executes the code runs to propagate the uncertainty through, and processes the output data to derive the tolerance interval defining the uncertainty region. This paper includes a: 1. Brief description of RELAP/SCDAPSIM/MOD4.0(IUA) and associated CANDU 6 base input model for the 35% reactor inlet header (RIH) break scenario, 2. Discussion of the safety criteria, relevant phenomena, and associated code parameters used in the uncertainty analysis, 3. Discussion and conclusions for the RIH transient and associated uncertainties. (author)

  12. From Matter to Life: Chemistry?!

    Indian Academy of Sciences (India)

    chemistry came along at milder temperatures; particles formed atoms; these ... Chemistry is the science of matter and of its transformations, and life is its highest ..... information. The progression from elementary particles to the nucleus, the.

  13. Speech Matters

    DEFF Research Database (Denmark)

    Hasse Jørgensen, Stina

    2011-01-01

    About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011.......About Speech Matters - Katarina Gregos, the Greek curator's exhibition at the Danish Pavillion, the Venice Biannual 2011....

  14. Memory Matters

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Memory Matters KidsHealth / For Kids / Memory Matters What's in ... of your complex and multitalented brain. What Is Memory? When an event happens, when you learn something, ...

  15. Matter: the fundamental particles

    CERN Multimedia

    Landua, Rolf

    2007-01-01

    "The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

  16. Why Philosophy Matters

    Science.gov (United States)

    Mason, Richard

    2005-01-01

    The motives of philosophers tend to be personal. Philosophy has mattered politically as part of continuing political debates. Its effects on politics, religion and the development of the sciences have been evident. Philosophy has been supposed to have special educational value, from its contents or from the benefits of its methods and arguments.…

  17. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  18. Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    Science.gov (United States)

    Grassl, H.; Doerffer, R.; Fischer, J.; Brockmann, C.; Stoessel, M.

    1987-01-01

    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes.

  19. Plataformas de colheita e colheita manual com trilha mecânica sobre a qualidade de sementes de arroz ( Oryza sativa, L. Harvest header and manual harvest with mechanical strip on rice ( Oryza sativa, L. seeds quality

    Directory of Open Access Journals (Sweden)

    Daniel Fernandez Franco

    1999-06-01

    Full Text Available Durante a colheita do arroz irrigado ocorrem perdas e danos físicos e fisiológicos às sementes. No final da década de oitenta, surgiram as plataformas recolhedoras, que retiram ou arrancam o grão ao invés de cortar a panícula, porém, pouco se conhece a respeito dos danos físicos e fisiológicos que este sistema de plataforma pode causar às sementes. Este trabalho teve por objetivo avaliar os danos mecânicos causados às sementes dos cultivares de arroz BR-IRGA 409 e BR-IRGA 410, por três formas de colheita: (a colheita manual e trilha mecânica; (b colheita com plataforma de corte; (c colheita com plataforma recolhedora. Quando a colheita foi mecânica, realizou-se a coleta das amostras diretamente no graneleiro. O delineamento experimental foi blocos ao acaso, com seis repetições. Os resultados demonstraram que as sementes de arroz irrigado dos cultivares estudados não apresentaram diferenças significativas em suas qualidades físicas e fisiológicas, quando colhidas com plataforma de corte e com a plataforma recolhedora. Estes dois métodos de colheita, porém, apresentaram danos significativamente maiores quando comparados à colheita manual e trilha mecânica.During irrigated rice harvesting occur losses and physical and phisiological seed damage. Late 80's, appeared the strippers headers that strip the grain, instead of cutting the spike. However, little is know about physical and phisiological seed damage by harvest header. The objective of this work was to evaluate the mechanical damage caused to BR-IRGA 409 and BR-IRGA 410 rice cultivars by three harvesting methods: (a manual harvesting and mechanical strip; (b cutterbar harvesting and; (c stripper header harvesting. Samples were collected directly in the grain tank when the harvest was mechanical. The experimental design was randomized blocks with six replications. Results demonstrated that the rice seeds of the studied variety didn't showed significant differences in

  20. In search of dark matter

    CERN Document Server

    Freeman, Kenneth C

    2006-01-01

    The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and our place in it. In Search of Dark Matter is the story of the emergence of the dark matter problem, from the initial erroneous ‘discovery’ of dark matter by Jan Oort to contemporary explanations for the nature of dark matter and its role in the origin and evolution of the Universe. Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.

  1. D matter

    International Nuclear Information System (INIS)

    Shiu, Gary; Wang Liantao

    2004-01-01

    We study the properties and phenomenology of particlelike states originating from D branes whose spatial dimensions are all compactified. They are nonperturbative states in string theory and we refer to them as D matter. In contrast to other nonperturbative objects such as 't Hooft-Polyakov monopoles, D-matter states could have perturbative couplings among themselves and with ordinary matter. The lightest D particle (LDP) could be stable because it is the lightest state carrying certain (integer or discrete) quantum numbers. Depending on the string scale, they could be cold dark matter candidates with properties similar to that of WIMPs or wimpzillas. The spectrum of excited states of D matter exhibits an interesting pattern which could be distinguished from that of Kaluza-Klein modes, winding states, and string resonances. We speculate about possible signatures of D matter from ultrahigh energy cosmic rays and colliders

  2. Dark Matter

    International Nuclear Information System (INIS)

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-01-01

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter

  3. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  4. Dirac matter

    CERN Document Server

    Rivasseau, Vincent; Fuchs, Jean-Nöel

    2017-01-01

    This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other mater...

  5. Quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Csernai, L.; Kampert, K. H.

    1994-10-15

    Precisely one decade ago the GSI (Darmstadt)/LBL (Berkeley) Collaboration at the Berkeley Bevalac reported clear evidence for collective sidewards flow in high energy heavy ion collisions. This milestone observation clearly displayed the compression and heating up of nuclear matter, providing new insights into how the behaviour of nuclear matter changes under very different conditions. This year, evidence for azimuthally asymmetric transverse flow at ten times higher projectile energy (11 GeV per nucleon gold on gold collisions) was presented by the Brookhaven E877 collaboration at the recent European Research Conference on ''Physics of High Energy Heavy Ion Collisions'', held in Helsinki from 17-22 June.

  6. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Small-angle Neutron Scattering in the Studies of Condensed Matter .... Address during Associateship: School of Technology & Computer, Science, TIFR, Homi Bhabha Road, .... Specialization: Elementary Particle Physics

  7. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Condensed Matter Theory, Biological Physics, Statistical Physics ..... Nanomechanics, Thin Films & Self-Organization, Colloid & Interface Science and .... Specialization: Specification & Verification, Real-Time Programs, Logic ...

  8. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Statistical Physics, Condensed Matter Physics and Computational Physics & their Applications to Social Sciences ..... Specialization: Robust & Nonparametric Statistics, Statistical Computing, Statistical Methods in Pattern ...

  9. Dark Matter

    Indian Academy of Sciences (India)

    As if this was not enough, it turns out that if our knowledge of ... are thought to contain dark matter, although the evidences from them are the .... protons, electrons, neutrons ... ratio of protons to neutrons was close to unity then as they were in ...

  10. Quantum matter

    International Nuclear Information System (INIS)

    Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin

    2008-01-01

    The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)

  11. Interstellar matter

    International Nuclear Information System (INIS)

    Mezger, P.G.

    1978-01-01

    An overview of the formation of our galaxy is presented followed by a summary of recent work in star formation and related topics. Selected discussions are given on interstellar matter including absorption characteristics of dust, the fully ionised component of the ISM and the energy density of lyc-photons in the solar neighbourhood and the diffuse galactic IR radiation

  12. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  13. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  14. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  15. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  16. Hybrids and glueballs: new forms of matter

    International Nuclear Information System (INIS)

    Close, F.

    1983-01-01

    Theories of the forces that bind together the atomic nucleus predict the existence of exotic forms of matter, dubbed ''glueballs'' and ''hybrids''. The underlying story illustrates progress in science through the agencies of analogy and paradox. (author)

  17. Brain science and illness beliefs: an unexpected explanation of the healing power of therapeutic conversations and the family interventions that matter.

    Science.gov (United States)

    Wright, Lorraine M

    2015-05-01

    Paradigm families and paradigm practice moments have shown me that therapeutic conversations between nurses and families can profoundly and positively change illness beliefs in family members and nurses and contribute to healing from serious illness. The integration of brain science into nursing practice offers further understanding of the importance of illness beliefs and the role they may play in helping individual and family healing. Brain science offers explanations that connect how certain family nursing interventions that soften suffering and challenge constraining illness beliefs may result in changes in brain structure and functioning. New illness beliefs may result in new neural pathways in the brain, and therefore, possibilities for a new way of being in relationship with illness and in relationship with others can also develop. Newly acquired practice skills and interventions that have emerged from an understanding of brain science plus the reemphasis of other interventions utilized in the Illness Beliefs Model are offered to enhance our care of families suffering with illness. © The Author(s) 2015.

  18. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  19. Mind, matter, and quantum mechanics

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1982-01-01

    A theory of psychophysical phenomena is proposed. It resolves simultaneously four basic problems of science, namely the problems of the connections between: (1) mind and matter, (2), quantum theory and reality, (3) relativity theory and ''becoming,'' and (4) relativity theory and Bell's theorem

  20. Physics matters

    CERN Document Server

    Natarajan, Vasant

    2017-01-01

    This is a collection of essays on physics topics. It is written as a textbook for non-physics science and arts students, at the undergraduate level. Topics covered include cellphone radiation, lasers, the twin paradox, and more.

  1. Quark matter

    International Nuclear Information System (INIS)

    Csernai, L.; Kampert, K.H.

    1994-01-01

    Precisely one decade ago the GSI (Darmstadt)/LBL (Berkeley) Collaboration at the Berkeley Bevalac reported clear evidence for collective sidewards flow in high energy heavy ion collisions. This milestone observation clearly displayed the compression and heating up of nuclear matter, providing new insights into how the behaviour of nuclear matter changes under very different conditions. This year, evidence for azimuthally asymmetric transverse flow at ten times higher projectile energy (11 GeV per nucleon gold on gold collisions) was presented by the Brookhaven E877 collaboration at the recent European Research Conference on ''Physics of High Energy Heavy Ion Collisions'', held in Helsinki from 17-22 June

  2. How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts

    Directory of Open Access Journals (Sweden)

    Laurel Smith-Doerr

    2017-04-01

    Full Text Available How the race and gender diversity of team members is related to innovative science and technology outcomes is debated in the scholarly literature. Some studies find diversity is linked to creativity and productivity, other studies find that diversity has no effect or even negative effects on team outcomes. Based on a critical review of the literature, this paper explains the seemingly contradictory findings through careful attention to the organizational contexts of team diversity. We distinguish between representational diversity and full integration of minority scientists. Representational diversity, where organizations have workforces that match the pool of degree recipients in relevant fields, is a necessary but not sufficient condition for diversity to yield benefits. Full integration of minority scientists (i.e., including women and people of color in an interaction context that allows for more level information exchange, unimpeded by the asymmetrical power relationships that are common across many scientific organizations, is when the full potential for diversity to have innovative outcomes is realized. Under conditions of equitable and integrated work environments, diversity leads to creativity, innovation, productivity, and positive reputational (status effects. Thus, effective policies for diversity in science and engineering must also address integration in the organizational contexts in which diverse teams are embedded.

  3. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  4. Proceedings of the 2nd international symposium on science at J-PARC. Unlocking the mysteries of life, matter and the universe

    International Nuclear Information System (INIS)

    2015-09-01

    It is really our pleasure to be able to issue the proceeding of the symposium with numerous high quality scientific papers encompassing areas of high intensity accelerators, particle and nuclear physics, materials and life sciences, in particular, with neutron and muon, and accelerator driven nuclear transmutation technology. I think this special paper assembly is a showcase of J-PARC as a multipurpose facility, which is a key demonstration of characteristics of J-PARC as the multipurpose facility. During the three-day discussion, we had an opportunity to focus on all these important issues in depth and consider the scientific outlook toward J-PARC for the subsequent decades and beyond, which will benefit all stakeholders and contribute to scientific evolution worldwide. This issue is the collection of 402 papers presented at the entitled meeting. The 215 of the presented papers are indexed individually. (J.P.N.)

  5. The cosmic cocktail three parts dark matter

    CERN Document Server

    Freese, Katherine

    2014-01-01

    The ordinary atoms that make up the known universe-from our bodies and the air we breathe to the planets and stars-constitute only 5 percent of all matter and energy in the cosmos. The rest is known as dark matter and dark energy, because their precise identities are unknown. The Cosmic Cocktail is the inside story of the epic quest to solve one of the most compelling enigmas of modern science - what is the universe made of? - told by one of today's foremost pioneers in the study of dark matter. Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the

  6. Media Matter

    Directory of Open Access Journals (Sweden)

    Holger Pötzsch

    2017-02-01

    Full Text Available The present contribution maps materialist advances in media studies. Based on the assumption that matter and materiality constitute significant aspects of communication processes and practices, I introduce four fields of inquiry - technology, political economy, ecology, and the body - and argue that these perspectives enable a more comprehensive understanding of the implications of contemporary technologically afforded forms of interaction. The article shows how each perspective can balance apologetic and apocalyptic approaches to the impact of in particular digital technologies, before it demonstrates the applicability of an integrated framework with reference to the techno-politics of NSA surveillance and the counter-practices of WikiLeaks.

  7. Play Matters

    DEFF Research Database (Denmark)

    Sicart (Vila), Miguel Angel

    ? In Play Matters, Miguel Sicart argues that to play is to be in the world; playing is a form of understanding what surrounds us and a way of engaging with others. Play goes beyond games; it is a mode of being human. We play games, but we also play with toys, on playgrounds, with technologies and design......, but not necessarily fun. Play can be dangerous, addictive, and destructive. Along the way, Sicart considers playfulness, the capacity to use play outside the context of play; toys, the materialization of play--instruments but also play pals; playgrounds, play spaces that enable all kinds of play; beauty...

  8. Precipitation Matters

    Science.gov (United States)

    McDuffie, Thomas

    2007-01-01

    Although weather, including its role in the water cycle, is included in most elementary science programs, any further examination of raindrops and snowflakes is rare. Together rain and snow make up most of the precipitation that replenishes Earth's life-sustaining fresh water supply. When viewed individually, raindrops and snowflakes are quite…

  9. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  10. REFLEXIONES ACERCA DEL OBJETO Y METAS DE LA PSICOLOGÍA COMO UNA CIENCIA NATURAL/ REFLECTIONS ABOUT THE SUBJET-MATTER AND GOALS OF PSYCHOLOGY AS A NATURAL SCIENCE

    Directory of Open Access Journals (Sweden)

    Roberto Bueno Cuadra*

    2010-11-01

    Full Text Available RESUMENSe define como objeto de conocimiento de la psicología el comportamiento individual entendido como las interaccionesdel individuo con objetos específicos en su medio. A partir de ahí, se establecen las diferencias entre los campos propios dela psicología y las ciencias sociales, por un lado, y frente a las ciencias biológicas, por el otro. A continuación se describenlas metas científicas que se derivan de tal caracterización del objeto de estudio. Estas metas son la descripción, la explicación,la predicción y el control. Las dos últimas no se asumen necesariamente en el sentido de predicción y control prácticos, perosí como criterios de validación de la explicación científica.ABSTRACTIt is defined as subject matter of psychology the individual behavior, being understood as such the interactionsbetween an individual with specific objects and events in his or her environment. From here, it is posed the differencesbetween the proper fields, on one hand, of psychology and social sciences, and, on the other, psychology and biology.Then, the scientific goals of psychology, derived from the characterization of its subject matter, are described. They aredescription, explanation, prediction and control. These two last are not to be necessarily assumed in the sense of practicalprediction and control, but are as criteria for validation of scientific explanation.

  11. Marginal Matter

    Science.gov (United States)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  12. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  13. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Science.gov (United States)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji

  14. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun

    1997-08-01

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  15. Confronting Ambiguity in Science

    Science.gov (United States)

    Emery, Katherine; Harlow, Danielle; Whitmer, Ali; Gaines, Steven

    2015-01-01

    People are regularly confronted with environmental and science-related issues presented to them in newspapers, on television, or even in their own doctor's office. Often the information they use to inform their decisions on matters of science may be ambiguous and contradictory. This article presents an activity that investigates how students deal…

  16. Baryonic matter and beyond

    OpenAIRE

    Fukushima, Kenji

    2014-01-01

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  17. Management does matter

    DEFF Research Database (Denmark)

    Kroustrup, Jonas

    studies approach the paper acknowledges that management and project management technologies does matter, but comes in many shapes, and is performed differently in various socio-technical settings. The field of STS offers a new ground for a participatory and practice oriented approach to the development......The positivist and managerialist approaches to project management research has historically defined practice as a ‘technical’ discipline. This has recently been challenged by critical project management studies, who advocates for an opening of the field research to also include the social...... and organizational dynamics of projects. Following the topic of the panel this paper will discuss how these two positions, although seemingly different, both places the project manager as an omnipotent subject of control. The consequences becomes either a priori explanations or ideological pitfalls. From a science...

  18. Reviews Book: Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Equipment: SEP Spectroscope Books: Quantum Gods / The Universe Places to visit: The Royal Institution of Great Britain Book: What is this Thing Called Science? Book: Don't be Such a Scientist: Talking Substance in the Age of Style Equipment: La Crosse Anemometer Book: Wonder and Delight Web Watch

    Science.gov (United States)

    2010-05-01

    WE RECOMMEND SEP Spectroscope Flatpacked classroom equipment for pupils aged 10 and over Quantum Gods Book attacks spiritualism and religion with physics The Universe Study of whether physics alone can explain origin of universe La Crosse Anemometer Handheld monitor is packed with useful features Wonder and Delight Essays in science education in honour of Eric Rogers WORTH A LOOK Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Pop-up book explains background to complex physics The Royal Institution of Great Britain RI museum proves interesting but not ideal for teaching What is this Thing Called Science? Theory and history of science in an opinionated study Don't be Such a Scientist: Talking Substance in the Age of Style Explanation of how science is best communicated to the public WEB WATCH Particle physics simulations vary in complexity, usefulness and how well they work

  19. Front Matter

    Directory of Open Access Journals (Sweden)

    HLRC Editor

    2016-08-01

    Full Text Available Higher Learning Research Communications (HLRC, ISSN: 2157-6254 [Online] is published collaboratively by Walden University (USA, Universidad Andrés Bello (Chile, Universidad Europea de Madrid (Spain and Istanbul Bilgi University (Turkey. Written communication to HLRC should be addressed to the office of the Executive Director at Laureate Education, Inc. 701 Brickell Ave Ste. 1700, Miami, FL 33131, USA. HLRC is designed for open access and online distribution through www.hlrcjournal.com. The views and statements expressed in this journal do not necessarily reflect the views of Laureate Education, Inc. or any of its affiliates (collectively “Laureate”. Laureate does not warrant the accuracy, reliability, currency or completeness of those views or statements and does not accept any legal liability arising from any reliance on the views, statements and subject matter of the journal. Acknowledgements The Guest Editors gratefully acknowledge the substantial contribution of the readers for the blind peer review of essays submitted for this special issue as exemplars of individuals from around the world who have come together in a collective endeavor for the common good: Robert Bringle (Indiana University Purdue University Indianapolis, US, Linda Buckley (University of the Pacific, US, Guillermo Calleja (Universidad Rey Juan Carlos, Spain, Eva Egron-Polak (International Association of Universities, France, Heather Friesen (Abu Dhabi University, UAE, Saran Gill (National University of Malaysia, Malaysia, Chester Haskell (higher education consultant, US, Kanokkarn Kaewnuch (National Institute for Development Administration, Thailand, Gil Latz (Indiana University Purdue University Indianapolis, US, Molly Lee (higher education consultant, Malaysia, Deane Neubauer (East-West Center at University of Hawaii, US, Susan Sutton (Bryn Mawr College, US, Francis Wambalaba (United States International University, Kenya, and Richard Winn (higher education

  20. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    International Nuclear Information System (INIS)

    2008-01-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons

  1. Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-01

    Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Bulletin of Materials Science. Editor. Giridhar U. Kulkarni, Centre for Nano and Soft Matter Science, Bengaluru. Associate Editors. Ayan Datta, Indian Association for the Cultivation of Science, Kolkata M. Eswaramoorthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru A.K. Ganguli ...

  3. Radiating matter

    International Nuclear Information System (INIS)

    Zimen, K.E.

    1987-01-01

    The author describes the history and uses of radioactivity. The narration is completed by bibliographic notes on Otto Hahn with a number of so far unpublished letters and documents and on Leo Szilard, the most far-sighted among the nuclear researchers actively engaged during the war. The first part deals with the discovery of radioactivity and the discovery of uranium fission in 1938 with its military consequences, up to the short-lived euphoria on the 'atomic age' (Geneva conference 1955). This is followed by an account of natural radioactivity in our environment, a brief of useful information on radiation effects and radiation protection, and of typical applications of radioactive beams in science, engineering, and medicine. The final part is concerned with the most important instances of insight into nature triggered by the discovery of radioactivity: From cosmological to chemical evolution, from Democrit's atom theory to modern nuclear physics' particle zoo, from the contest of ideas between acausalists and determinists on what is commonly termed 'coincidence' to the limits of graphic views on nature. (orig./HP) [de

  4. Radiating matter

    International Nuclear Information System (INIS)

    Zimen, K.E.

    1990-01-01

    The author describes the history and uses of radioactivity. The narration is completed by bibliographic notes on Otto Hahn with a number of so far unpublished letters and documents and on Leo Szilard, the most far-sighted among the nuclear researchers actively engaged during the war. The first part deals with the discovery of radioactivity and the discovery of uranium fission in 1938 with its military consequences, up to the short-lived euphoria on the 'atomic age' (Geneva conference 1955). This is followed by an account of natural radioactivity in our environment, a brief of useful information on radiation effects and radiation protection, and of typical applications of radioactive beams in science, engineering, and medicine. The final part is concerned with the most important instances of insight into nature triggered by the discovery of radioactivity: From cosmological to chemical evolution, from Democrit's atom theory to modern nuclear physics' particle zoo, from the contest of ideas between acausalists and determinists on what is commonly termed 'coincidence' to the limits of graphic views on nature. (orig.) With 40 figs [de

  5. Application of DRIFTS, 13 C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic Matter Composition in a Mollic Xerofluvent

    Energy Technology Data Exchange (ETDEWEB)

    Margenot, Andrew J.; Calderón, Francisco J.; Magrini, Kimberly A.; Evans, Robert J.

    2016-12-20

    Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treated soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 13C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm-1 (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil may

  6. PREFACE: Quark Matter 2008

    Science.gov (United States)

    Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak

    2008-10-01

    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  7. Conducting compositions of matter

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  8. Materials, matter and particles a brief history

    CERN Document Server

    Woolfson, Michael M

    2010-01-01

    This book traces the history of ideas about the nature of matter and also the way that mankind has used material resources that the world offers. Starting with the ideas of ancient civilizations that air, earth, fire and water were the basic ingredients of all matter, it traces the development of the science of chemistry beginning within the ranks of the alchemists. First, the idea of elements grew and then the atomic nature of matter was verified. Physicists had entered the scene, showing the nature of atoms in terms of fundamental particles and then introducing the concept of wave-particle d

  9. Our science matters - and is recognized

    Science.gov (United States)

    The Presidential Task Force on Agriculture and Rural Prosperity listed five key indicators of rural prosperity: e-Connectivity for Rural America, Improving Quality of Life, Supporting a Rural Workforce, Harnessing Technological Innovation, and Economic Development (https://www.usda.gov/sites/default...

  10. Science Matters Podcast: Climate Change Research

    Science.gov (United States)

    Listen to a podcast with Dr. Andy Miller, the Associate Director for Climate for the Agency's Air, Climate, and Energy Research Program, as he answers questions about climate change research, or read some of the highlights from the conversation here.

  11. Feminist philosophy of science : standpoint matters.

    OpenAIRE

    Wylie, Alison

    2012-01-01

    Feminist standpoint theory has a contentious history. It is an explicitly political as well as social epistemologa characterized by the thesis that those who are marginalized or oppressed under conditions of systemic inequity may, in fact, be better knowers, in a number of respects, than those who are socially or economically privileged. Their epistemic advantage arises from the kinds of experience they are likely to have, situated as they are, and the resources availa...

  12. Democratization of Science and Biotechnological Development ...

    African Journals Online (AJOL)

    sulaiman.adebowale

    Council for the Development of Social Science Research in Africa, 2008 ... tendant ideas of Science Communication and Public Understanding of Biotech- .... human development in the new South Africa – no matter how development.

  13. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  14. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 4 ... no matter how the upper channel adjusts, the main stream shows little change, providing ... drastic bank collapse and sandbar shrinking should be urgently controlled to ...

  16. Grade 6 Science Curriculum Specifications.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This material describes curriculum specifications for grade 6 science in Alberta. Emphases recommended are: (1) process skills (50%); (2) psychomotor skills (10%); (3) attitudes (10%); and (4) subject matter (30%). Priorities within each category are identified. (YP)

  17. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  18. PREFACE: Quark Matter 2006 Conference

    Science.gov (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  19. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  20. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  1. Empiricism Verses Rationalism: Matters Arising in Medical Practice ...

    African Journals Online (AJOL)

    Empiricism Verses Rationalism: Matters Arising in Medical Practice. ... AFRREV STECH: An International Journal of Science and Technology ... entirely antagonistic to one another, one favoring the senses and the other favoring the mind.

  2. students' perception of teacher's knowledge of subject matter

    African Journals Online (AJOL)

    ALEXANDER E. TIMOTHY

    COPYRIGHT© BACHUDO SCIENCE CO. ... students' perception of teachers' knowledge of subject matter as perceived by students on reading ... percent and above in English language (WAEC,. 2007). ... to the learners. ... mathematics.

  3. Molecule Matters-Dendritic Architecture-A Clever Route to ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Molecule Matters - Dendritic Architecture - A Clever Route to Monodispersed Macromolecules. N Jayaraman. Feature Article Volume 12 Issue 1 January 2007 pp 60-66 ...

  4. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    E ZELDOV2, A SOIBEL3, F de la CRUZ4,CJ van der BEEK5,. M KONCZYKOWSKI5, T ... 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot. 76100, Israel ..... heterogeneous nature of the vortex nanoliquid.

  5. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  6. Grammar of the matter

    International Nuclear Information System (INIS)

    Jacob, M.

    1992-01-01

    In this paper, the author describes the structure of the matter and presents the families of elementary particles (fermions) and the interaction messengers (bosons) with their properties. He presents the actual status and future trends of research on nuclear matter

  7. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  8. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  10. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  11. Proceedings of the 9. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1986-01-01

    The 9. National Meeting on Condensed Matter Physics presents works developed in the following fields: amorphous materials, atomic and molecular physics, biophysics, crystallography, defects, growth and critical phenomena, instrumentation, liquid crystals, magnetism, matter science/mechanical properties, metals and alloys, optic, magnetic resonance and semiconductors. (M.C.K.) [pt

  12. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  13. Nonthermal Supermassive Dark Matter

    International Nuclear Information System (INIS)

    Chung, D.J.; Chung, D.J.; Kolb, E.W.; Kolb, E.W.; Riotto, A.

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well. copyright 1998 The American Physical Society

  14. Nonthermal Supermassive Dark Matter

    OpenAIRE

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  15. Matter and Energy

    CERN Document Server

    Karam, P Andrew

    2011-01-01

    In Matter and Energy, readers will learn about the many forms of energy, the wide variety of particles in nature, and Albert Einstein's world-changing realization of how matter can be changed into pure energy. The book also examines the recent discoveries of dark matter and dark energy and the future of the universe.

  16. Physical Sciences 2007 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  17. Physical Sciences 2007 Science and Technology Highlights

    International Nuclear Information System (INIS)

    Hazi, A.U.

    2008-01-01

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007

  18. Caracterização das publicações periódicas em fonoaudiologia e neurociências: estudo sobre os tipos e temas de artigos e visibilidade na área de linguagem Periodicals' profile in speech-language and hearing pathology and neurosciences: study on types and headers of the language area articles, and their visibility

    Directory of Open Access Journals (Sweden)

    Sandrelli Virginio de Vasconcelos

    2009-03-01

    Full Text Available TEMA: caracterização das publicações periódicas em Fonoaudiologia e Neurociências: estudo sobre os tipos e temas de artigos e visibilidade na área de linguagem. OBJETIVO: caracterizar as publicações periódicas em Fonoaudiologia estudando os artigos da área de Linguagem relacionados às Neurociências no período de 2002 a 2006. CONCLUSÃO: ficou evidente um aumento crescente de publicações em Linguagem e em Neurociências nos últimos cinco anos. Contudo, o número de publicações em determinados temas como a Dislexia, a Doença de Alzheimer e o Transtorno do Déficit de Atenção / Hiperatividade ainda mostra-se resumido.BACKGROUND: periodicals' profile in speechlanguage and hearing pathology and neurosciences: study on types and headers of the language articles, and their visibility. PURPOSE: to characterize periodicals in SpeechLanguage Pathology and Hearing, studying the articles of the Language's area related to Neurosciences in the period from 2002 to 2006. CONCLUSION: increasing publication in Language and Neurosciences in the last five years has been evident. However, number of publications in certain headers, such as dyslexia, Alzheimer's disease and AttentionDeficit/Hyperactivity Disorder are still abridged.

  19. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  20. Dark Matter Caustics

    International Nuclear Information System (INIS)

    Natarajan, Aravind

    2010-01-01

    The continuous infall of dark matter with low velocity dispersion in galactic halos leads to the formation of high density structures called caustics. Dark matter caustics are of two kinds : outer and inner. Outer caustics are thin spherical shells surrounding galaxies while inner caustics have a more complicated structure that depends on the dark matter angular momentum distribution. The presence of a dark matter caustic in the plane of the galaxy modifies the gas density in its neighborhood which may lead to observable effects. Caustics are also relevant to direct and indirect dark matter searches.

  1. Dark Matter Searches

    International Nuclear Information System (INIS)

    Moriyama, Shigetaka

    2008-01-01

    Recent cosmological as well as historical observations of rotational curves of galaxies strongly suggest the existence of dark matter. It is also widely believed that dark matter consists of unknown elementary particles. However, astrophysical observations based on gravitational effects alone do not provide sufficient information on the properties of dark matter. In this study, the status of dark matter searches is investigated by observing high-energy neutrinos from the sun and the earth and by observing nuclear recoils in laboratory targets. The successful detection of dark matter by these methods facilitates systematic studies of its properties. Finally, the XMASS experiment, which is due to start at the Kamioka Observatory, is introduced

  2. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  3. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  4. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  5. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... These galaxies have very massive dark matter halos that also contribute to ... and conclude that both their isolation and their massive dark matter halos have led to the ... Articles are also visible in Web of Science immediately.

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Dark matter; axion; magnetar; SGRs; AXPs . ... Non-baryonic dark matter candidate axions are produced in the highly magnetized neutron star via Bremsstrahlung process in the highly ... Articles are also visible in Web of Science immediately.

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... ... multiple-imaging; individual systems: CLASS B1359 + 154; galaxy groups; dark matter. ... a larger scale mass component that resembles the extended dark matter ... Articles are also visible in Web of Science immediately.

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Interplay between Dark Matter and Galactic Structure in Disk and Oblate ... model with a spherical central nucleus, and a flat biaxial oblate dark matter halo component. ... Articles are also visible in Web of Science immediately.

  10. Popular Science Writing Bringing New Perspectives into Science Students' Theses

    Science.gov (United States)

    Pelger, Susanne

    2018-01-01

    This study analyses which perspectives occur in science students' texts at different points in time during the process of writing a popular science article. The intention is, thus, to explore how popular science writing can help students discover and discuss different perspectives on science matter. For this purpose, texts written by 12 bachelor…

  11. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  12. Science Outreach in Virtual Globes; Best Practices

    Science.gov (United States)

    Treves, R. W.

    2007-12-01

    The popularity of projects such as 'Crisis in Darfur' and the IPY (International Polar Year) network link show the potential of using the rich functionality of Virtual Globes for science outreach purposes. However, the structure of outreach projects in Virtual Globes varies widely. Consider an analogy: If you pick up a science journal you immediately know where to find the contents page and what the title and cover story are meant to communicate. That is because journals have a well defined set of norms that they follow in terms of layout and design. Currently, science projects presented in virtual globes have, at best, weakly defined norms, there are little common structural elements beyond those imposed by the constraints of the virtual globe system. This is not a criticism of the science community, it is to be expected since norms take time to develop for any new technology. An example of the development of norms are pages on the web: when they first started appearing structure was unguided but over the last few years structural elements such as a left hand side navigation system and a bread crumb trail near the header have become common. In this paper I shall describe the developing norms of structure I have observed in one area of virtual globe development; Google Earth science outreach projects. These norms include text introductions, video introductions, use of folders and overlay presentation. I shall go on to examine how best to use these norms to build a clear and engaging outreach project and describe some cartographic best practices that we should also consider adopting as norms. I also will briefly explain why I think norms in science outreach aid creativity rather than limiting it despite the counter intuitive nature of this concept.

  13. Science and data science.

    Science.gov (United States)

    Blei, David M; Smyth, Padhraic

    2017-08-07

    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  14. Strategies for dark matter detection

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The present status of alternative forms of dark matter, both baryonic and nonbaryonic, is reviewed. Alternative arguments are presented for the predominance of either cold dark matter (CDM) or of baryonic dark matter (BDM). Strategies are described for dark matter detection, both for dark matter that consists of weakly interacting relic particles and for dark matter that consists of dark stellar remnants

  15. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  16. The Origins of Science

    Indian Academy of Sciences (India)

    science of the 20th century, called this "the tradition of critical discussion". In all or almost ... says that he likes to imagine that Thales was the first teacher to tell his pupils: "This is how I see ... indestructible primary matter. Here, Anaximander is ...

  17. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  18. Stars of strange matter

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.; Cooperstein, J.

    1987-01-01

    We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρ tr > or approx.7ρ 0 , where ρ 0 is nuclear matter density. This is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρ tr and still find it to be ∝7ρ 0 , we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M sun , where M sun is the solar mass. For such masses, the central (maximum) density is ρ c 0 . Transition to quark matter is certainly excluded for these densities. (orig.)

  19. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  20. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  1. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  2. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  3. Diseases of white matter

    International Nuclear Information System (INIS)

    Holland, B.A.

    1987-01-01

    The diagnosis of white matter abnormalities was revolutionized by the advent of computed tomography (CT), which provided a noninvasive method of detection and assessment of progression of a variety of white matter processes. However, the inadequacies of CT were recognized early, including its relative insensitivity to small foci of abnormal myelin in the brain when correlated with autopsy findings and its inability to image directly white matter diseases of the spinal cord. Magnetic resonance imaging (MRI), on the other hand, sensitive to the slight difference in tissue composition of normal gray and white matter and to subtle increase in water content associated with myelin disorders, is uniquely suited for the examination of white matter pathology. Its clinical applications include the evaluation of the normal process of myelination in childhood and the various white matter diseases, including disorders of demyelination and dysmyelination

  4. Detecting dark matter

    International Nuclear Information System (INIS)

    Dixon, Roger L.

    2000-01-01

    Dark matter is one of the most pressing problems in modern cosmology and particle physic research. This talk will motivate the existence of dark matter by reviewing the main experimental evidence for its existence, the rotation curves of galaxies and the motions of galaxies about one another. It will then go on to review the corroborating theoretical motivations before combining all the supporting evidence to explore some of the possibilities for dark matter along with its expected properties. This will lay the ground work for dark matter detection. A number of differing techniques are being developed and used to detect dark matter. These will be briefly discussed before the focus turns to cryogenic detection techniques. Finally, some preliminary results and expectations will be given for the Cryogenic Dark Matter Search (CDMS) experiment

  5. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  6. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  7. The quark matter

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1980-04-01

    The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology

  8. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  9. Searching for dark matter

    Science.gov (United States)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  10. Science in Science Fiction.

    Science.gov (United States)

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  11. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  12. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  13. Superball dark matter

    CERN Document Server

    Kusenko, A

    1999-01-01

    Supersymmetric models predict a natural dark-matter candidate, stable baryonic Q-balls. They could be copiously produced in the early Universe as a by-product of the Affleck-Dine baryogenesis. I review the cosmological and astrophysical implications, methods of detection, and the present limits on this form of dark matter.

  14. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  15. Dark matter detection - II

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  16. Dark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed

  17. Matter in transition

    International Nuclear Information System (INIS)

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-01-01

    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  18. CONFERENCE: Quark matter 88

    International Nuclear Information System (INIS)

    Jacob, Maurice

    1988-01-01

    The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions

  19. Dark matter detection - I

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  20. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  1. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  2. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  3. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  4. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  5. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  6. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  7. Yes, research matters.

    Directory of Open Access Journals (Sweden)

    Mari L Shinohara

    2017-08-01

    3 inflammasome [2]. Another recent study from our laboratory demonstrated that a protein, termed osteopontin (OPN, skews the balance of population sizes between myeloid cells (i.e., innate immunity and lymphoid cells (i.e., adaptive immunity during infections and other biological insults [3]. An intracellular isoform of OPN (iOPN negatively regulates emergency myelopoiesis. Thus, OPN attenuates host resistance by limiting neutrophil supply at the early stage of systemic Candida infection. In contrast, a secreted OPN (sOPN isoform positively regulates the expansion of T lymphocytes and ends up triggering autoimmune colitis. I am an immunologist but obtained my PhD in mycology. Nevertheless, it took some time for me to appreciate that research enables us to connect the dots placed far apart. This is a truly exciting time to connect seemingly unrelated biological phenomena, because scientists are exponentially increasing our understanding of nature. This is particularly true in innate immunity, which is not only the central alarming system in host-microbe interactions but also relates to almost any human disease we can imagine. However, we are facing a dark age for science and research, in which certain interests wrongfully discredit some research fields. There are things that can be achieved only by research. I am always ready to tell anyone, "Yes, research matters!".

  8. Exothermic dark matter

    International Nuclear Information System (INIS)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-01-01

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ∼few GeV and splittings ∼5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  9. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  10. Where civics meets science: building science for the public good through Civic Science.

    Science.gov (United States)

    Garlick, J A; Levine, P

    2017-09-01

    Public understanding of science and civic engagement on science issues that impact contemporary life matter more today than ever. From the Planned Parenthood controversy, to the Flint water crisis and the fluoridation debate, societal polarization about science issues has reached dramatic levels that present significant obstacles to public discussion and problem solving. This is happening, in part, because systems built to support science do not often reward open-minded thinking, inclusive dialogue, and moral responsibility regarding science issues. As a result, public faith in science continues to erode. This review explores how the field of Civic Science can impact public work on science issues by building new understanding of the practices, influences, and cultures of science. Civic Science is defined as a discipline that considers science practice and knowledge as resources for civic engagement, democratic action, and political change. This review considers how Civic Science informs the roles that key participants-scientists, public citizens and institutions of higher education-play in our national science dialogue. Civic Science aspires to teach civic capacities, to inform the responsibilities of scientists engaged in public science issues and to inspire an open-minded, inclusive dialogue where all voices are heard and shared commitments are acknowledged. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Science, technology and engineering at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

    2011-01-06

    The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

  12. Light, Matter, and Geometry

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    Interaction of light and matter produces the appearance of materials. To deal with the immense complexity of nature, light and matter is modelled at a macroscopic level in computer graphics. This work is the first to provide the link between the microscopic physical theories of light and matter...... of a material and determine the contents of the material. The book is in four parts. Part I provides the link between microscopic and macroscopic theories of light. Part II describes how to use the properties of microscopic particles to compute the macroscopic properties of materials. Part III illustrates...

  13. QED coherence in matter

    CERN Document Server

    Preparata, Giuliano

    1995-01-01

    Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o

  14. Nuclear matter revisited

    International Nuclear Information System (INIS)

    Negele, J.W.; Zabolitzky, J.G.

    1978-01-01

    It is stated that at the Workshop on Nuclear and Dense Matter held at the University of Illinois in May 1977 significant progress was reported that largely resolves many of the questions raised in this journal Vol. 6, p.149, 1976. These include perturbative versus variational methods as applied to nuclear matter, exact solutions for bosons, what is known as the fermion 'homework problem', and various other considerations regarding nuclear matter, including the use of variational methods as opposed to perturbation theory. (15 references) (U.K.)

  15. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  16. A matter of quantum voltages

    Energy Technology Data Exchange (ETDEWEB)

    Sellner, Bernhard; Kathmann, Shawn M., E-mail: Shawn.Kathmann@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V{sub o}) – the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V{sub o} from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V{sub o} for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V{sub o} as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.

  17. Interdisciplinary Science in the Classroom

    Science.gov (United States)

    French, L. M.; Lopresti, V. C.; Papali, P.

    1993-05-01

    The practice of science is by its very nature interdisciplinary. Most school curricula, however, present science as a "layer cake" with one year each of biology, chemistry, earth science, and physics. Students are too often left with a fragmented, disjointed view of the sciences as separate and distinct bodies of information. The continuity of scientific thought and the importance of major ideas such as energy, rates of change, and the nature of matter are not seen. We describe two efforts to integrate the sciences in a middle school curriculum and in an introductory science course for prospective elementary teachers. Introductory physical science for eighth graders at the Park School has three major units: "Observing the Sky", "The Nature of Matter", and "The Nature of Light". The course moves from simple naked-eye observations of the Sun and Moon to an understanding of the apparent motions of the Sun and of the Earth's seasons. In "The Nature of Matter", students construct operational definitions of characteristic properties of matter such as density, boiling point, solubility, and flame color. They design and perform many experiments and conclude by separating a mixture of liquids and solids by techniques such as distillation and fractional crystallization. In studying flame tests, students learn that different materials have different color "signatures" and that the differences can be quantified with a spectroscope. They then observe solar absorption lines with their spectroscopes and discover which elements are present in the Sun. Teachers of young children are potentially some of the most powerful allies in increasing our country's scientific literacy, yet most remain at best uneasy about science. At Wheelock College we are designing a course to be called "Introduction to Natural Science" for elementary education majors. We will address special needs of many in this population, including science anxiety and poor preparation in mathematics. A broad conceptual

  18. Dark matter: the astrophysical case

    International Nuclear Information System (INIS)

    Silk, J.

    2012-01-01

    The identification of dark matter is one of the most urgent problems in cosmology. I describe the astrophysical case for dark matter, from both an observational and a theoretical perspective. This overview will therefore focus on the observational motivations rather than the particle physics aspects of dark matter constraints on specific dark matter candidates. First, however, I summarize the astronomical evidence for dark matter, then I highlight the weaknesses of the standard cold dark matter model (LCDM) to provide a robust explanation of some observations. The greatest weakness in the dark matter saga is that we have not yet identified the nature of dark matter itself

  19. La Materia. Nivel II. Basado en el curso de estudios de Ciencia de Montgomery County Public Schools. (Matter. Level II. Based on the Montgomery County Public Schools Science Studies Program).

    Science.gov (United States)

    Gerstman, M. Linda

    This curriculum unit is for use in an elementary school foreign language immersion program in Montgomery County, Maryland. The unit is geared toward the second grade science classroom. It includes instructional and performance objectives, vocabulary lists, optional language structure sections, illustrations, activities, evaluation suggestions, and…

  20. Search for pseudoscalar cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  1. Matter-antimatter and matter-matter interactions at intermediate energies

    International Nuclear Information System (INIS)

    Santos, Antonio Carlos Fontes dos

    2002-01-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed

  2. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  3. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  4. Dark matter search

    International Nuclear Information System (INIS)

    Bernabei, R.

    2003-01-01

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  5. Mind Over Matter: Methamphetamine

    Science.gov (United States)

    ... Teaching Guide and Series / Methamphetamine Mind Over Matter: Methamphetamine (Meth) Print Order Free Publication in: English Spanish ... paranoia, aggressiveness, and hallucinations. The Brain's Response to Methamphetamine Hi, my name's Sara Bellum. Welcome to my ...

  6. Matter Tracking Information System -

    Data.gov (United States)

    Department of Transportation — The Matter Tracking Information System (MTIS) principle function is to streamline and integrate the workload and work activity generated or addressed by our 300 plus...

  7. Lectures on dark matter

    International Nuclear Information System (INIS)

    Seljak, U.

    2001-01-01

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  8. Prevention Research Matters

    Centers for Disease Control (CDC) Podcasts

    Prevention Research Matters is a series of one-on-one interviews with researchers from 26 university prevention research centers across the country. Their work focuses on preventing and controlling chronic diseases like obesity, cancer, and heart disease.

  9. Dynamics of interstellar matter

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1975-01-01

    A review of the dynamics of interstellar matter is presented, considering the basic equations of fluid flow, plane waves, shock waves, spiral structure, thermal instabilities and early star cocoons. (B.R.H.)

  10. Lectures on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Seljak, U [Department of Physics, Princeton University, Princeton, NJ (United States)

    2001-11-15

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  11. Dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R [Dipto. di Fisica, Universita di Roma ' Tor Vergata' and INFN, sez. Roma2, Rome (Italy)

    2003-08-15

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  12. Soft Active Matter

    OpenAIRE

    Marchetti, M. C.; Joanny, J. -F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi

    2012-01-01

    In this review we summarize theoretical progress in the field of active matter, placing it in the context of recent experiments. Our approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of the review is to integrate the several approaches proposed in the literature, from semi-microscopic t...

  13. DARK MATTER: Optical shears

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Evidence for dark matter continues to build up. Last year (December 1993, page 4) excitement rose when the French EROS (Experience de Recherche d'Objets Sombres) and the US/Australia MACHO collaborations reported hints that small inert 'brown dwarf stars could provide some of the Universe's missing matter. In the 1930s, astronomers first began to suspect that there is a lot more to the Universe than meets the eye

  14. Charming dark matter

    Science.gov (United States)

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-12-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  15. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  16. Matter-antimatter Cosmology

    Science.gov (United States)

    Omnes, R.

    1973-01-01

    The possible existence of antimatter on a large scale in the universe is evaluated. As a starting point, an attempt was made to understand the origin of matter as being essentially analogous to the origin of backgound thermal radiation. Several theories and models are examined, with particular emphasis on nucleon-antinucleon interactions at intermediate energies. Data also cover annihilation interaction with the matter-antimatter boundary to produce the essential fluid motion known as coalesence.

  17. Matter and cosmology

    International Nuclear Information System (INIS)

    Effenberger, R.

    1974-09-01

    The author summarizes some of the many questions and answers which have been raised over the years regarding the nature of matter, the origin of its forms and the associated concept of cosmology including the formation of the universe, our place in it and its course of evolution. An examination of the development of the classical concept of matter and its subsequent transformations within the space-time fields of relativity and quantum theory is also presented

  18. Water policy: Science versus political realities

    Science.gov (United States)

    Ryan, Mark A.

    2017-11-01

    Debate rages over which water bodies in the US are protected under federal law by the Clean Water Act. Science shows that isolated wetlands and headwater systems provide essential downstream services, but convincing politicians is another matter.

  19. Hormesis in Regulatory risk assessment - Science and Science Policy.

    Science.gov (United States)

    Gray, George

    2011-01-01

    This brief commentary will argue that whether hormesis is considered in regulatory risk assessment is a matter less of science than of science policy. I will first discuss the distinction between science and science policy and their roles in regulatory risk assessment. Then I will focus on factors that influence science policy, especially as it relates to the conduct of risk assessments to inform regulatory decisions, with a focus on the U.S. Environmental Protection Agency (EPA). The key questions will then be how does hormesis interact with current concepts of science and science policy for risk assessment? Finally, I look ahead to factors that may increase, or decrease, the likelihood of hormesis being incorporated into regulatory risk assessment.

  20. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  1. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  2. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  3. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  4. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  5. Dewey's "Science as Method" a Century Later: Reviving Science Education for Civic Ends

    Science.gov (United States)

    Rudolph, John L.

    2014-01-01

    Over a hundred years ago, John Dewey delivered his now-well-known address "Science as Subject-Matter and as Method" to those assembled at the Boston meeting of the American Association for the Advancement of Science in which he lamented the nearly exclusive focus on content knowledge in early-20th-century school science classrooms. This…

  6. Pseudoscience and science fiction

    CERN Document Server

    May, Andrew

    2017-01-01

    Aliens, flying saucers, ESP, the Bermuda Triangle, antigravity … are we talking about science fiction or pseudoscience? Sometimes it is difficult to tell the difference. Both pseudoscience and science fiction (SF) are creative endeavours that have little in common with academic science, beyond the superficial trappings of jargon and subject matter. The most obvious difference between the two is that pseudoscience is presented as fact, not fiction. Yet like SF, and unlike real science, pseudoscience is driven by a desire to please an audience – in this case, people who “want to believe”. This has led to significant cross-fertilization between the two disciplines. SF authors often draw on “real” pseudoscientific theories to add verisimilitude to their stories, while on other occasions pseudoscience takes its cue from SF – the symbiotic relationship between ufology and Hollywood being a prime example of this. This engagingly written, well researched and richly illustrated text explores a wide range...

  7. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  8. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. How a Deweyan Science Education Further Enables Ethics Education

    Science.gov (United States)

    Webster, Scott

    2008-01-01

    This paper questions the perceived divide between "science" subject matter and "moral" or "ethical" subject matter. A difficulty that this assumed divide produces is that science teachers often feel that there needs to be "special treatment" given to certain issues which are of an ethical or moral nature and which are "brought into" the science…

  10. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  11. Science Smiles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Science Smiles. Articles in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 4-4 Science Smiles. Chief Editor's column / Science Smiles · R K Laxman · More Details Fulltext PDF. Volume 1 Issue 5 May 1996 pp 3-3 Science Smiles.

  12. Should we naturalize mind, or should we arithmetize matter?

    Directory of Open Access Journals (Sweden)

    Marchal Bruno

    2017-12-01

    Full Text Available We provide an argument showing that once we assume the mechanist hypothesis in the cognitive science then we have to explain physics from intensional number theory and/or mathematical computer science alone. The proof is constructive. It shows how to derive the physical laws from elementary arithmetic. It makes the computationalist thesis empirically refutable, by comparing the physics extracted from numbers and the inferred physics from observation. The proof shows that if mechanism is true, we cannot naturalize the mind, and we have to arithmetize matter, or beliefs in matter, instead.

  13. Science or Science Fiction?

    DEFF Research Database (Denmark)

    Lefsrud, Lianne M.; Meyer, Renate

    2012-01-01

    This paper examines the framings and identity work associated with professionals’ discursive construction of climate change science, their legitimation of themselves as experts on ‘the truth’, and their attitudes towards regulatory measures. Drawing from survey responses of 1077 professional......, legitimation strategies, and use of emotionality and metaphor. By linking notions of the science or science fiction of climate change to the assessment of the adequacy of global and local policies and of potential organizational responses, we contribute to the understanding of ‘defensive institutional work...

  14. Imperfect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Mirzagholi, Leila; Vikman, Alexander, E-mail: l.mirzagholi@physik.uni-muenchen.de, E-mail: alexander.vikman@lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University Munich, Theresienstr. 37, Munich, D-80333 Germany (Germany)

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  15. Entropy, matter, and cosmology.

    Science.gov (United States)

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  16. Imperfect Dark Matter

    International Nuclear Information System (INIS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-01-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models

  17. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  18. Imperfect Dark Matter

    Science.gov (United States)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  19. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Pawan Kumar Gupta. Articles written in Sadhana. Volume 32 Issue 3 June 2007 pp 253-275. TCP with header checksum option for wireless links: An analytical approach towards performance evaluation · Pawan Kumar Gupta Joy Kuri · More Details Abstract Fulltext PDF. TCP performs poorly in ...

  20. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Joy Kuri. Articles written in Sadhana. Volume 32 Issue 3 June 2007 pp 253-275. TCP with header checksum option for wireless links: An analytical approach towards performance evaluation · Pawan Kumar Gupta Joy Kuri · More Details Abstract Fulltext PDF. TCP performs poorly in wireless ...

  1. Astromaterial Science

    Science.gov (United States)

    Caplan, Matthew E.

    Recent work has used large scale molecular dynamics simulations to study the structures and phases of matter in the crusts of neutron stars, with an emphasis on applying techniques in material science to the study of astronomical objects. In the outer crust of an accreting neutron star, a mixture of heavy elements forms following an X-ray burst, which is buried and freezes. We will discuss the phase separation of this mixture, and the composition of the crust that forms. Additionally, calculations of the properties of the crust, such as diffusion coefficients and static structure factors, may be used to interpret observations. Deeper in the neutron star crust, at the base of the inner crust, nuclei are compressed until they touch and form structures which have come to be called 'nuclear pasta.' We study the phases of nuclear pasta with classical molecular dynamics simulations, and discuss how simulations at low density may be relevant to nucleosynthesis in neutron star mergers. Additionally, we discuss the structure factor of nuclear pasta and its impact on the properties of the crust, and use this to interpret observations of crust cooling in low mass X-ray binaries. Lastly, we discuss a correspondence between the structure of nuclear pasta and biophysics.

  2. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  3. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  4. Thermal Properties of Matter

    Science.gov (United States)

    Khachan, Joe

    2018-02-01

    The ancient Greeks believed that all matter was composed of four elements: earth, water, air, and fire. By a remarkable coincidence (or perhaps not), today we know that there are four states of matter: solids (e.g. earth), liquids (e.g. water), gasses (e.g. air) and plasma (e.g. ionized gas produced by fire). The plasma state is beyond the scope of this book and we will only look at the first three states. Although on the microscopic level all matter is made from atoms or molecules, everyday experience tells us that the three states have very different properties. The aim of this book is to examine some of these properties and the underlying physics.

  5. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  6. Cerebral white matter hypoplasia

    International Nuclear Information System (INIS)

    Dietrich, R.B.; Shields, W.D.; Sankar, R.

    1990-01-01

    This paper demonstrates the MR imaging findings in children with cerebral white matter hypoplasia (CWMH). The MR studies of four children, aged 3-7 y (mean age, 2.3 y) with a diagnosis of CWMH were reviewed. In all cases multiplanar T1-weighted and T2-weighted spin-echo images were obtained. All children had similar histories of severe developmental delay and nonprogressive neurologic deficits despite normal gestational and birth histories. In two cases there was a history of maternal cocaine abuse. Autopsy correlation was available in one child. The MR images of all four children demonstrated diffuse lack of white matter and enlarged ventricles but normal-appearing gray matter. The corpus callosum, although completely formed, was severely thinned. There was no evidence of gliosis or porencephaly, and the distribution of myelin deposition was normal for age in all cases. Autopsy finding in one child correlated exactly with the MR finding

  7. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  8. Matter and memory

    CERN Document Server

    Bergson, Henri

    1991-01-01

    Since the end of the last century," Walter Benjamin wrote, "philosophy has made a series of attempts to lay hold of the 'true' experience as opposed to the kind that manifests itself in the standardized, denatured life of the civilized masses. It is customary to classify these efforts under the heading of a philosophy of life. Towering above this literature is Henri Bergson's early monumental work, Matter and Memory."Along with Husserl's Ideas and Heidegger's Being and Time, Bergson's work represents one of the great twentieth-century investigations into perception and memory, movement and time, matter and mind. Arguably Bergson's most significant book, Matter and Memory is essential to an understanding of his philosophy and its legacy.This new edition includes an annotated bibliography prepared by Bruno Paradis.Henri Bergson (1859-1941) was awarded the Nobel Prize in 1927. His works include Time and Free Will, An Introduction to Metaphysics, Creative Evolution, and The Creative Mind.

  9. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  10. Nanomaterials science

    Directory of Open Access Journals (Sweden)

    Heinrich Rohrer

    2010-01-01

    Full Text Available The nanometer regime covers the transition from condensed matter behavior to atomic and molecular properties and thus is a very rich but also very demanding area in materials science. Close to the condensed matter side, properties and functions might still very well be scalable, whereas close to the atomic and molecular side, the scalability is mostly lost. Properties and functions change qualitatively or quantitatively by orders of magnitude when the dimensions become smaller than a critical size in the nanometer range. Examples are the ballistic regime for electron or spin transport at dimensions below the mean free path, near-field effects in scanning near-field optical microscopy and quantum wells when the dimensions are below an appropriate wavelength, novel electronic, mechanical, and chemical properties when the number of bulk atoms becomes smaller than that of surface atoms, quantum conduction, and Coulomb blockade. Thus, by going below a certain size, an abundance of novel properties and functions are at one's disposal, or, in other words, we can functionalize materials simply by reducing their size to the nanoscale.The key to the future lies in the functions that we give to materials, not just in finding 'novel functional materials'. This catch expression in many materials science programs and initiatives of the past two decades sounds great, but it is not what really counts. All materials are functional in one way or another and, therefore, all new materials are 'novel functional materials'. Certainly, finding new materials is always an important part of progress, but we should also focus on the much larger domain of novel functions that we can give to existing or modified materials. A good example is semiconductors: they are fifty or more years old and their properties are very well known, but they were not of widespread interest and use until the transistor changed their destiny into being the central material in the information

  11. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  12. Extreme state of matter physics at FAIR

    International Nuclear Information System (INIS)

    Boris Sharkov

    2010-01-01

    Complete text of publication follows. The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented.

  13. Fair for extreme state of matter physics

    International Nuclear Information System (INIS)

    Sharkov, B.

    2013-01-01

    The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented. (author)

  14. Science on stage

    CERN Multimedia

    2005-01-01

    During the opening ceremony, the audience was dazzled by a juggling show involving dramatic light effects. They also took away with them a teacher's sheet explaining some of the scientific concepts involved in juggling. Science teachers can sometimes be quite humorous when it comes to explaining serious matters, as those who took part in the 'Science on Stage' festival held at CERN from 21 to 25 November were able to see for themselves. The 500 or so participants from 27 different countries, mostly science teachers but also some university lecturers, science outreach specialists and students, had the opportunity to share their experience of the teaching of science. They also attended presentations and shows, took part in workshops and visited a fair with stands offering ideas on how to make school science lessons more appealing. The festival, organised by the EIROforum (a partnership between CERN, EFDA, ESA, ESO, EMBL, ESRF and ILL), marked the end of two years of projects for the promotion of science in vir...

  15. Neutrons for probing matter

    International Nuclear Information System (INIS)

    Torres, F. Ed.; Mazzucchetti, D.

    2008-01-01

    The authors tell the story of the French Orphee reactor located in Saclay from the decision to build it in the seventies, to its commissioning in 1980, to its upgrading in the nineties and to its today's operating life. As early as its feasibility studies Orphee has been designed as a dual-purpose reactor: scientific research for instance in crystallography and magnetism, and industrial uses like neutron radiography, silicon doping or radionuclide production. This book is divided into 4 parts: 1) the neutron: an explorer of the matter, 2) the Orphee reactor: a neutron source, 3) the adventurers of the matter: Leon Brillouin laboratory's staff, and 4) the perspectives for neutrons

  16. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. F G Pazzona1 B J Borah1 P Demontis2 G B Suffritti2 S Yashonath1 3. Solid State and Structural Chemistry Unit,; Dipartimento di Chimica, Università di Sassari, Via Vienna 2 I-07100 Sassari, Italy; Center for Condensed Matter Theory, Indian Institute of Science, Bangalore 560 012 ...

  18. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  19. FOREWORD Nanomaterials science Nanomaterials science

    Science.gov (United States)

    Rohrer, Heinrich

    2010-10-01

    The nanometer regime covers the transition from condensed matter behavior to atomic and molecular properties and thus is a very rich but also very demanding area in materials science. Close to the condensed matter side, properties and functions might still very well be scalable, whereas close to the atomic and molecular side, the scalability is mostly lost. Properties and functions change qualitatively or quantitatively by orders of magnitude when the dimensions become smaller than a critical size in the nanometer range. Examples are the ballistic regime for electron or spin transport at dimensions below the mean free path, near-field effects in scanning near-field optical microscopy and quantum wells when the dimensions are below an appropriate wavelength, novel electronic, mechanical, and chemical properties when the number of bulk atoms becomes smaller than that of surface atoms, quantum conduction, and Coulomb blockade. Thus, by going below a certain size, an abundance of novel properties and functions are at one's disposal, or, in other words, we can functionalize materials simply by reducing their size to the nanoscale. The key to the future lies in the functions that we give to materials, not just in finding 'novel functional materials'. This catch expression in many materials science programs and initiatives of the past two decades sounds great, but it is not what really counts. All materials are functional in one way or another and, therefore, all new materials are 'novel functional materials'. Certainly, finding new materials is always an important part of progress, but we should also focus on the much larger domain of novel functions that we can give to existing or modified materials. A good example is semiconductors: they are fifty or more years old and their properties are very well known, but they were not of widespread interest and use until the transistor changed their destiny into being the central material in the information technology revolution

  20. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  1. Proceedings 17. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Pudis, D.; Kubicova, I.; Bury, P.

    2011-01-01

    The 17. International Conference on Applied Physics of Condensed Matter was held on 22-24 June, 2011 in Spa Novy Smokovec, High Tatras, Slovakia. The specialists discussed various aspects of modern problems of nano-science and technology, thin films, MOS structures, optical phenomena, GaN-based heterostructures, simulation methods, heterostructures and devices, solid state characterization and analysis, materials and radiation, sensors and detection methods, and material sciences. Contributions relevant of INIS interest (55 contributions) has been inputted to INIS.

  2. Energy Matters, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, E.

    1999-07-09

    This issue of Energy Matters focuses on selling an energy-efficient project to management. There are also articles on combined heat and power systems, inspecting steam traps for efficient system, root cause failure analysis on AC induction motors, and performance optimization tips.

  3. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  4. with dark matter

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... November 2012 physics pp. 1271–1274. Radiative see-saw formula in ... on neutrino physics, dark matter and all fermion masses and mixings. ... as such, high-energy accelerators cannot directly test the underlying origin of ...

  5. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create 'cosmic music'. The fourth lecture in the series, entitled 'The Birth of Matter', will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Auditorium...

  6. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create "cosmic music". The fourth lecture in the series, entitled "The Birth of Matter", will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Audito...

  7. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  8. The origin of matter

    International Nuclear Information System (INIS)

    Cline, J.

    2004-01-01

    The author presents the issue of how matter triumphed over anti-matter in the formation of the universe. Theories focus on the nature of asymmetry that might have created an excess of matter over anti-matter. Sakharov and Kuzmin listed 3 conditions that must be met for baryogenesis to take place. First the baryon number must not be conserved: there must be some interactions that change the number of baryons, baryon-number violation can rise from an interaction between quarks and leptons. Secondly, 2 symmetries that relate particles to antiparticles must be violated. The CP violation in Kaon decay is too weak to create enough baryon asymmetry, so physicists believe that larger sources of CP violation await discovery. Thirdly, there must be the loss of thermal equilibrium of the universe. In thermal equilibrium, baryons are decaying but inverse processes are also taking place, quarks are fusing to form baryons, rates being equal no baryon asymmetry is generated. But if thermal equilibrium is broken, to say temperature is decreasing, at a certain temperature a pair of quarks will no longer have enough energy to produce a heavy particle which generates baryon asymmetry. (A.C.)

  9. Elliott on Mind Matters.

    Science.gov (United States)

    Maattanen, Pentti

    2000-01-01

    Argues that David Elliott's conception of the human mind presented in his book "Music Matters" is not coherent. Outlines three alternatives to Elliott's theory of mind. Suggests that the principles associated with the pragmatism of Charles Sanders Pierce would complement Elliott's ideas in his book. (CMK)

  10. Simplified Dark Matter Models

    OpenAIRE

    Morgante, Enrico

    2018-01-01

    I review the construction of Simplified Models for Dark Matter searches. After discussing the philosophy and some simple examples, I turn the attention to the aspect of the theoretical consistency and to the implications of the necessary extensions of these models.

  11. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  12. 6d Conformal matter

    International Nuclear Information System (INIS)

    Zotto, Michele Del; Heckman, Jonathan J.; Tomasiello, Alessandro; Vafa, Cumrun

    2015-01-01

    A single M5-brane probing G, an ADE-type singularity, leads to a system which has G×G global symmetry and can be viewed as “bifundamental” (G,G) matter. For the A N series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1,0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E 8 ×G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G,G ′ ) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1,0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.

  13. States of Matter

    Indian Academy of Sciences (India)

    Deepak Dhar. States of Matter. Deepak Dhar. Keywords. Solid, liquid, gas, glasses, powders. D Dhar is a theoretical physicist at the Tata. Institute of Funamental. Research, Mumbai. His research interests are mainly in the area of non- equilibrium statistical physics. All of us have read about solid, liquid and gaseous.

  14. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  15. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  16. Little composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Reuven; Weiler, Andreas [Technische Universitaet Muenchen, First Physik-Department, Garching (Germany); Perez, Gilad [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel)

    2018-02-15

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ{sub DM} ∝ O(1%), thus evading direct detection. (orig.)

  17. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  18. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  19. Matter and cosmology

    International Nuclear Information System (INIS)

    Effenberger, R.

    1975-07-01

    The author looks empirically at the processes by which the various forms of matter, the chemical elements, come into existence. In doing so he examines unification within relativity and quantum mechanics, atomic and nuclear structure, the quantum idea as a unifying concept, particle physics and finally nucleosynthesis and a viable nucleosynthetic theory

  20. Soft Matter Characterization

    CERN Document Server

    Borsali, Redouane

    2008-01-01

    Progress in basic soft matter research is driven largely by the experimental techniques available. Much of the work is concerned with understanding them at the microscopic level, especially at the nanometer length scales that give soft matter studies a wide overlap with nanotechnology. This 2 volume reference work, split into 4 parts, presents detailed discussions of many of the major techniques commonly used as well as some of those in current development for studying and manipulating soft matter. The articles are intended to be accessible to the interdisciplinary audience (at the graduate student level and above) that is or will be engaged in soft matter studies or those in other disciplines who wish to view some of the research methods in this fascinating field. Part 1 contains articles with a largely (but, in most cases, not exclusively) theoretical content and/or that cover material relevant to more than one of the techniques covered in subsequent volumes. It includes an introductory chapter on some of t...

  1. Dibaryons and nuclear matter

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, L.; Popa, V.

    1992-01-01

    We discuss some recent ideas concerning the structure and the properties of the dibaryonic resonances, with special emphasis on their behaviour when produced in dense nuclear matter. Some features of their de-excitation mechanism and consequent experimentally identifiable signatures are predicted. (Author)

  2. Science as theater, theater as science

    Science.gov (United States)

    Lustig, Harry

    2002-04-01

    Beginning with Bertold Brecht's "Galileo" in 1942 and Friedrich Dürrenmatt's "The Physicists" in 1962, physics and other sciences have served a number of dramatists as backdrops for the exposition of existential problems, as well as the provision of entertainment. Michael Frayn's 1998 play "Copenhagen" broke new ground by giving a central role to the presentation of scientific substance and ideas and to the examination of recent controversial and emotionally charged events in the history of science and of the "real world". A rash of "science plays" erupted. How should we physicists react to this development? Surely, it can be argued, any exposure of science to the public is better than none and will help break down the barriers between the "two cultures". But what if the science or the scientists are badly misrepresented or the play is a weapon to strip science of its legitimacy and its claims to reality and truth? After reviewing a half dozen of the new plays, I conclude that "Copenhagen", though flawed, is not only the best of show, but a positive, even admirable endeavor. The contributions of Bohr, Heisenberg, Born, Schrödinger, and other scientists and their interactions in the golden years of the creation of quantum mechanics are accurately and thrillingly rendered. There may be no better non-technical exposition of complementarity and the uncertainty principle than the one that Frayn puts into the mouths of Bohr and Heisenberg. The treatment of the history of the atomic bomb and Heisenberg's role in Germany's failure to achieve a bomb is another matter. Frayn can also be criticized for applying uncertainly and complementarity to the macroscopic world and, in particular, to human interactions, thereby giving some aid and comfort to the post-modernists. These reservations aside, Copenhagen is a beautiful contribution to the appreciation of science.

  3. Dark matter and its detection

    International Nuclear Information System (INIS)

    Bi Xiaojun; Qin Bo

    2011-01-01

    We first explain the concept of dark matter,then review the history of its discovery and the evidence of its existence. We describe our understanding of the nature of dark matter particles, the popular dark matter models,and why the weakly interacting massive particles (called WIMPs) are the most attractive candidates for dark matter. Then we introduce the three methods of dark matter detection: colliders, direct detection and indirect detection. Finally, we review the recent development of dark matter detection, including the new results from DAMA, CoGent, PAMELA, ATIC and Fermi. (authors)

  4. Introduction to topological quantum matter & quantum computation

    CERN Document Server

    Stanescu, Tudor D

    2017-01-01

    What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...

  5. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 26 June 1951. Specialization: Raman Spectroscopy, Time-resolved Ultrafast Spectroscopy, Nanosystems such as Graphene, Nanotubes, Physics of Soft Condensed Matter Address: Professor, Department of Physics, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact: Office: (080) 2360 2238, ...

  6. Primary Science Interview: Science Sparks

    Science.gov (United States)

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  7. Origin of heat-induced structural changes in dissolved organic matter

    Czech Academy of Sciences Publication Activity Database

    Drastík, M.; Novák, František; Kučerík, J.

    2013-01-01

    Roč. 90, č. 2 (2013), s. 789-795 ISSN 0045-6535 Institutional support: RVO:60077344 Keywords : dissolved organic matter * humic substances * hydration * hysteresis Subject RIV: DF - Soil Science Impact factor: 3.499, year: 2013

  8. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  9. Sun, Sky and Cloud: Where Light and Matter Meet

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 12. Sun, Sky and Cloud: Where Light and Matter Meet. Rajaram Nityananda. General Article Volume 20 Issue 12 December 2015 pp 1111-1127. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Proceedings of the 12. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The XII National Meeting on Condensed Matter Physics presented works in the areas: atomic and molecular physics; biophysics; crystallography; defects growth and characterization of crystals; instrumentation; liquid crystals; magnetism; science of materials, metals and alloys; magnetic resonance; semiconductors; superconductivity and; surfaces and thin films. (M.C.K.) [pt

  11. Mind, matter, and Pauli

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1992-01-01

    The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science

  12. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science Water A-Z Index Laws & Regulations By Business Sector By Topic Compliance Enforcement Laws and Executive ...

  13. Mind, matter, and Pauli

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1992-09-10

    The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science.

  14. Space, time, matter

    CERN Document Server

    Weyl, Hermann

    1922-01-01

    Excellent introduction probes deeply into Euclidean space, Riemann's space, Einstein's general relativity, gravitational waves and energy, and laws of conservation. "A classic of physics." - British Journal for Philosophy and Science.

  15. Is old organic matter simple organic matter?

    Science.gov (United States)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  16. Hot Strange Hadronic Matter in an Effective Model

    Science.gov (United States)

    Qian, Wei-Liang; Su, Ru-Keng; Song, Hong-Qiu

    2003-10-01

    An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given. The project supported in part by National Natural Science Foundation of China under Grant Nos. 10075071, 10047005, 19947001, 19975010, and 10235030, and the CAS Knowledge Innovation Project No. KJCX2-N11. Also supported by the State Key Basic Research Development Program under Grant No. G200077400 and the Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences

  17. Focus on modern frontiers of matter wave optics and interferometry

    International Nuclear Information System (INIS)

    Arndt, Markus; Ekers, Aigars; Klitzing, Wolf von; Ulbricht, Hendrik

    2012-01-01

    The level of experimental control and the detailed theoretical understanding of matter wave physics have led to a renaissance of experiments testing the very foundations of quantum mechanics and general relativity, as well as to applications in metrology. A variety of interferometric quantum sensors surpasses, or will surpass, the limits of their classical counterparts, for instance in the measurement of frequency and time or forces such as accelerations due to rotation and gravity with applications in basic science, navigation and the search for natural resources. The collection of original articles published in this focus issue of New Journal of Physics is intended as a snapshot of the current research pursued by a number of leading teams working on the development of new matter wave physics, devices and techniques. A number of contributions also stress the close relation between the historic roots of quantum mechanics and aspects of modern quantum information science which are relevant for matter wave physics. (editorial)

  18. Direct search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  19. Particle Dark Matter: An Overview

    International Nuclear Information System (INIS)

    Roszkowski, Leszek

    2009-01-01

    Dark matter in the Universe is likely to be made up of some new, hypothetical particle which would be a part of an extension of the Standard Model of particle physics. In this overview, I will first briefly review well motivated particle candidates for dark matter. Next I will focus my attention on the neutralino of supersymmetry which is the by far most popular dark matter candidate. I will discuss some recent progress and comment on prospects for dark matter detection.

  20. Diffusion in condensed matter methods, materials, models

    CERN Document Server

    Kärger, Jörg

    2005-01-01

    Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.

  1. Exchange of Information in Tax Matters

    OpenAIRE

    Szwajdler, Paweł

    2017-01-01

    Szwajdler Paweł. Exchange of Information in Tax Matters. Journal of Education, Health and Sport. 2017;7(1):556-570. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.893161 http://ojs.ukw.edu.pl/index.php/johs/article/view/4828 https://pbn.nauka.gov.pl/sedno-webapp/works/831606 The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 754 (09.12.2016). 754 Journal of Education, Health and Sport...

  2. Physics of condensed matter at extreme conditions

    International Nuclear Information System (INIS)

    Ross, M.

    1988-01-01

    The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied

  3. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  4. Simulation of nanotubular forms of matter

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    1999-01-01

    Data on the electronic and chemical structure of a new quasi-one-dimensional form of matter, viz., nanotubulenes, are generalised and systematised. Methods and approaches used in modern quantum chemistry for the simulation of the composition, structure, and properties of isolated tubulenes based on layered phases (graphite, boron nitride, boron carbide and boron carbonitride), nanotubular composites and nanotube crystals are described. The role of quantum theory in the development of the concepts of fundamental properties of substances in the nanotubular form and methods of their targeted modification is discussed. Prognostic potentials of theoretical models in solving material science problems are considered. The bibliography includes 197 references.

  5. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  6. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  7. Analyzing Learning about Conservation of Matter in Students while Adapting to the Needs of a School

    Science.gov (United States)

    Doucerain, Marina; Schwartz, Marc S.

    2010-01-01

    We probed the impact of two teaching strategies, "guided inquiry" and "argumentation," on students' conceptual understanding of the conservation of matter. Conservation of matter is a central concept in middle school science curriculum and a prerequisite upon which rests more complex constructs in chemistry. The results indicate that guided…

  8. Topological hierarchy matters — topological matters with superlattices of defects

    International Nuclear Information System (INIS)

    He Jing; Kou Su-Peng

    2016-01-01

    Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. (topical review)

  9. Flipped dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.; Olive, K.A.

    1988-08-04

    We study candidates for dark matter in a minimal flipped SU(5) x U(1) supersymmetric GUT. Since the model has no R-parity, spin-1/2 supersymmetric partners of conventional particles mix with other neutral fermions including neutrinos, and can decay into them. The lighest particle which is predominantly a gaugino/higgsino mixture decays with a lifetime tau/sub chi/ approx. = 1-10/sup 9/ s. The model contains a scalar 'flaton' field whose coherent oscillations decay before cosmological nucleosynthesis, and whose pseudoscalar partner contributes negligibly to ..cap omega.. if it is light enough to survive to the present epoch. The fermionic 'flatino' partner of the flaton has a lifetime tau/sub PHI/ approx. = 10/sup 28/-10/sup 34/ yr and is a viable candiate for metastable dark matter with ..cap omega.. < or approx. 1.

  10. Deuterium in organic matter

    International Nuclear Information System (INIS)

    Straaten, C.M. van der.

    1981-01-01

    In order to obtain an insight in the processes governing the macroclimate on earth, a knowledge is required of the behaviour of climates in the past. It is well known that D/H ratio of rain varies with temperature determined by latitude as well as by season. Because land plants use this water during the assimilation process, it is expected that the D/H variations are propagated in the organic plant matter. The D/H palaeoclimatic method has therefore been applied to peat to distinguish between the chemical constituents and trace the stable hydrogen fraction in the organic matter. The relation between the hydrogen isotopic composition of precipitation and climatic factors such as the temperature have also been studied. (Auth.)

  11. A matter of quarks

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Quarks are understood to interact through the 'colour' force, carried by gluons. Under normal conditions these quarks are confined - frozen together in 'colourless' states such as protons, neutrons and other strongly interacting particles. However if the quarks are compressed tightly together and/or are 'heated' by increasing their energy, they should eventually break loose from their colour bonds to form a new kind of matter – the so-called quark-gluon plasma. Although QGP has not yet been synthesized in the Laboratory, it was most likely the stuff of the Universe 10 -5 second after the Big Bang. Thus the search for this 'new' matter is attracting a growing number of physicists, theorists and experimenters from both the particle physics and nuclear physics fields

  12. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  13. Hyperons in dense matter

    International Nuclear Information System (INIS)

    Dapo, Haris

    2009-01-01

    The hyperon-nucleon YN low momentum effective interaction (V low k ) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V low k can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V low k one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V low k potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This

  14. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  15. Normal matter storage of antiprotons

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1987-01-01

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs

  16. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  17. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  18. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  19. Some relevant questions in science education from the perspective Science- Technology-Society

    Directory of Open Access Journals (Sweden)

    Prieto, Teresa;

    2012-01-01

    Full Text Available In this article, some of the answers given at this time to three classic questions related to science teaching: why teach science?, what kind of science to teach?, and how to teach it?, are analyzed from a Science-Technology- Society perspective (STS. It argues for the need to prepare future citizens to make responsible decisions on matters related to science and technology in the XXI century, and the convenience of using socio-scientific issues in the science classroom. Finally, the analysis is exemplified in two cases: food consumption and energy consumption.

  20. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  1. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  2. Matter in general relativity

    Science.gov (United States)

    Ray, J. R.

    1982-01-01

    Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.

  3. Nuclear matter theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1977-01-01

    Recent advances in variational and perturbative theories are surveyed which offer genuine promise that nuclear matter will soon become a viable tool for investigating nuclear interactions. The basic elements of the hypernetted chain expansion for Jastrow variational functions are briefly reviewed, and comparisons of variational and perturbative results for a series of increasingly complicated systems are presented. Prospects for investigating realistic forces are assessed and the unresolved, open problems are summarized

  4. Memetics and political science. Chosen problems

    OpenAIRE

    Donaj, Łukasz; Barańska, Marzena

    2013-01-01

    Interdisciplinarity has increasingly become a determinant of the quality of research. A particular challenge faces political science, which in itself is an interdisciplinary area of study. Or else what is interdisciplinary research including the methodologies of political science and, for example, neuroscience to depend on? In this article, the authors try to identify what political science can gain by using such fields as memetics. The subject matter of the publication is a brief description...

  5. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  6. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  7. From matter to life information and causality

    CERN Document Server

    Davies, Paul C W; Ellis, George F R

    2017-01-01

    Recent advances suggest that the concept of information might hold the key to unravelling the mystery of life's nature and origin. Fresh insights from a broad and authoritative range of articulate and respected experts focus on the transition from matter to life, and hence reconcile the deep conceptual schism between the way we describe physical and biological systems. A unique cross-disciplinary perspective, drawing on expertise from philosophy, biology, chemistry, physics, and cognitive and social sciences, provides a new way to look at the deepest questions of our existence. This book addresses the role of information in life, and how it can make a difference to what we know about the world. Students, researchers, and all those interested in what life is and how it began will gain insights into the nature of life and its origins that touch on nearly every domain of science.

  8. Dark matter in the universe

    International Nuclear Information System (INIS)

    Kormendy, J.; Knapp, G.R.

    1987-01-01

    Until recently little more was known than that dark matter appears to exist; there was little systematic information about its properties. Only in the past several years was progress made to the point where dark matter density distributions can be measured. For example, with accurate rotation curves extending over large ranges in radius, decomposing the effects of visible and dark matter to measure dark matter density profiles can be tried. Some regularities in dark matter behaviour have already turned up. This volume includes review and invited papers, poster papers, and the two general discussions. (Auth.)

  9. Dark Matter Detection: Current Status

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2011-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. This talk focuses on the status of current efforts to detect dark matter by testing the hypothesis that WIMPs exist in the galactic halo. WIMP searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates.

  10. Evaluation Science

    Science.gov (United States)

    Patton, Michael Quinn

    2018-01-01

    Culturally and politically science is under attack. The core consequence of perceiving and asserting evaluation as science is that it enhances our credibility and effectiveness in supporting the importance of science in our world and brings us together with other scientists to make common cause in supporting and advocating for science. Other…

  11. NASA Finds Direct Proof of Dark Matter

    Science.gov (United States)

    2006-08-01

    -million-degree gas. The X-ray image shows the bullet shape is due to a wind produced by the high-speed collision of a smaller cluster with a larger one. 4-Panel Illustrations of Cluster Collision 4-Panel Illustrations of Cluster Collision In addition to the Chandra observation, the Hubble Space Telescope, the European Southern Observatory's Very Large Telescope and the Magellan optical telescopes were used to determine the location of the mass in the clusters. This was done by measuring the effect of gravitational lensing, where gravity from the clusters distorts light from background galaxies as predicted by Einstein's theory of general relativity. The hot gas in this collision was slowed by a drag force, similar to air resistance. In contrast, the dark matter was not slowed by the impact, because it does not interact directly with itself or the gas except through gravity. This produced the separation of the dark and normal matter seen in the data. If hot gas was the most massive component in the clusters, as proposed by alternative gravity theories, such a separation would not have been seen. Instead, dark matter is required. Animation: Galaxy Cluster in Perspective Animation: Galaxy Cluster in Perspective "This is the type of result that future theories will have to take into account," said Sean Carroll, a cosmologist at the University of Chicago, who was not involved with the study. "As we move forward to understand the true nature of dark matter, this new result will be impossible to ignore." This result also gives scientists more confidence that the Newtonian gravity familiar on Earth and in the solar system also works on the huge scales of galaxy clusters. "We've closed this loophole about gravity, and we've come closer than ever to seeing this invisible matter," Clowe said. These results are being published in an upcoming issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science

  12. Science/s.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Tricoire

    2005-03-01

    Full Text Available Un forum a été organisé en mars par la Commission européenne. Il s’appelait « Science in Society ». Depuis 2000 la Commission a mis en place un Plan d’Action élaboré pour que soit promue « la science » au sein du public, afin que les citoyens prennent de bonnes décisions, des décisions informées. Il s’agit donc de développer la réflexivité au sein de la société, pour que cette dernière agisse avec discernement dans un monde qu’elle travaille à rendre durable. ...

  13. 75 FR 61779 - National Science Board: Sunshine Act Meetings; Notice

    Science.gov (United States)

    2010-10-06

    ... Science Board's Committee on Programs and Plans, pursuant to NSF regulations (45 CFR Part 614), the... National Science Board business and other matters specified, as follows: DATE AND TIME: October 13, 2010, 1... Performance Computing Award. STATUS: Closed. LOCATION: This meeting will be held at National Science...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Veena Srinivasan. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 303-313 Research News. Doing Science That Matters to Address India'sWater Crisis · Veena Srinivasan · More Details Abstract Fulltext PDF.

  15. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  16. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  17. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  18. Antiprotons are another matter

    International Nuclear Information System (INIS)

    Hynes, M.V.

    1987-01-01

    Theories of gravity abound, whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer these properties from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster, and that normal matter will fall with a small Baryon-number dependance in the earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to ∼4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H - ions which simulates the electromagnetic behavior of the antiproton, yet is a baryon to ∼0.1%. To extract the gravitational acceleration of the antiproton relative to the H - ion with a statistical precision of 1% will require the release of ∼10 6 to 10 7 particles

  19. Matter and antimatter

    International Nuclear Information System (INIS)

    Schopper, H.

    1989-01-01

    For many years the physicist Herwig Schopper has been contributing in leading positions - either as director of DESY in Hamburg or as general director of CERN in Geneva - to the development of a fascinating field of modern physics. His book is the first comprehensive presentation of experimental particle physics for non-physicists. The search for the smallest constituents of matter, i.e. the exploration of the microcosmos, apart from the advance of the man into space belongs to the most exciting scientific-technical adventures of our century. Contrarily to the stars, atoms, atomic nuclei, and quarks cannot be seen. How objects are studied which are by thousands smaller than the smallest atomic nucleus? Can matter be decomposed in ever smaller constituents, or does there exist a limit? What is matter, and what is of consequence for the mysterious antimatter. Do the laws of the infinitely small also determine the development of the universe since its origin? Such and other questions - expressions of human curiosity - Schopper wants to answer with his generally understandable book. Thereby the 'machines' and the experiments of high-energy physics play a decicive role in the presentation. The author describes the development of the accelerators - in Europe, as well as in the Soviet Union, Japan, or in the USA -, and he shows, why for the investigation of the smallest immense experimental facilities - the 1989 finished LEP storage ring at CERN has a circumference of 27 kilometers - are necessary. Schopper explains how the 'machines' work and how the single experiments run. His book satisfies the curiosity of all those, who want to know more about the world of the quarks. (orig.) With 96 figs [de

  20. Antiprotons are another matter

    International Nuclear Information System (INIS)

    Hynes, M.V.

    1988-01-01

    Theories of gravity abound whereas experiments in gravity are few in number. An important experiment in gravity that has not been performed is the measurement of the gravitational acceleration of antimatter. Although there have been attempts to infer this property from those of normal matter, none of these theoretical arguments are compelling. Modern theories of gravity that attempt to unify gravity with the other forces of nature predict that in principle antimatter can fall differently than normal matter in the Earth's field. Some of these supergravity theories predict that antimatter will fall faster and that normal matter will fall with a small Baryon-number dependence in the Earth's field. All of these predictions violate the Weak Equivalence Principle, a cornerstone of General Relativity, but are consistent with CPT conservation. In our approved experiment at LEAR (PS-200) we will test the Weak Equivalence Principle for antimatter by measuring the gravitational acceleration of the antiproton. Through a series of deceleration stages, antiprotons from LEAR will be lowered in energy to ≅ 4 Kelvin at which energy the gravitational effect will be measureable. The measurement will employ the time-of-flight technique wherein the antiprotons are released vertically in a drift tube. The spectrum of time-of-flight measurements can be used to extract the gravitational acceleration experienced by the particles. The system will be calibrated using H - ions which simulate the electromagnetic behavior of the antiproton yet are baryons to ≅ 0.1%. To extract the gravitational acceleration of the antiproton relative to the H - ion with a statistical precision of 1% will require the release of ≅ 10 6 -10 7 particles. (orig.)

  1. Land, Oil Spill, and Waste Management Research Publications in the Science Inventory

    Science.gov (United States)

    Resources from the Science Inventory database of EPA's Office of Research and Development, as well as EPA's Science Matters journal, include research on managing contaminated sites and ground water modeling and decontamination technologies.

  2. Interaction of the radiation with matter

    International Nuclear Information System (INIS)

    2013-01-01

    This third chapter presents the ionization, excitation, activation and radiation breaking; radiation directly and indirectly ionizing; interaction of the electromagnetic radiation with matter; interaction of neutrons with matter; interaction of radiation directly ionizing with matter; interaction of electrons with matter, interaction of alpha particle with matter; interaction of fission fragments with matter; travel time and integrated processes of interaction: energy dissipation

  3. Why international primacy matters

    International Nuclear Information System (INIS)

    Huntington, S.P.

    1993-01-01

    Does international primacy matter? The answer seems so obvious that one first wonders why someone as intelligent, perceptive, and knowledgeable as Robert Jervis raises the question. On further thought, however, one sees that while the answer may be obvious for most people, the reasons why it is obvious may not be all that clear and may have been forgotten or lost in the other concerns of political scientists and economists studying international relations. By posing this question at this time of change in world affairs Jervis has constructively forced us to rethink why primacy is of central importance. This issue involves several subordinate questions

  4. Kaons in nuclear matter

    International Nuclear Information System (INIS)

    Kolomeitsev, E.E.

    1997-02-01

    The subject of the doctoral thesis is examination of the properties of kaons in nuclear matter. A specific method is explained that has been developed for the scientific objectives of the thesis and permits description of the kaon-nucleon interactions and kaon-nucleon scattering in a vacuum. The main challenge involved was to find approaches that would enable application of the derived relations out of the kaon mass shell, connected with the second objective, namely to possibly find methods which are independent of models. The way chosen to achieve this goal relied on application of reduction formulas as well as current algebra relations and the PCAC hypothesis. (orig./CB) [de

  5. Discrete dark matter

    CERN Document Server

    Hirsch, M; Peinado, E; Valle, J W F

    2010-01-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.

  6. Matter and energy

    International Nuclear Information System (INIS)

    Rocha, A.F.G. da

    1976-01-01

    Rutherford's and Bhor's atomic models are presented, as well as the general configuration of the atom. In the study of energy, emphasis is given to its forms and unities, to equivalence between mass and energy and to the energy levels of the atom. Electrons and nuclear constituents, nuclear forces, stability and nuclear potential barrier are studied. The concepts of radioactive state, activity and nuclear decay are analysed, as well as nuclear reactions, fission, radioisotope production and cosmic rays. Interactions between radiation and matter are also analysed [pt

  7. Cool quark matter

    CERN Document Server

    Kurkela, Aleksi

    2016-07-20

    We generalize the state-of-the-art perturbative Equation of State of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to order g^5 in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated using a dimensionally reduced effective theory, while the soft non-zero modes are resummed using the Hard Thermal Loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  8. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  9. Light, Matter, and Geometry

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2008-01-01

    This thesis is about physically-based modelling of the appearance of materials. When a material is graphically rendered, its appearance is computed by considering the interaction of light and matter at a macroscopic level. In particular, the shape and the macroscopic optical properties of the mat......) a model which finds the appearance of ice given temperature, salinity, density, and mineral and algal contents of the ice; and (3) a model which finds the appearance of milk given fat and protein contents of the milk....

  10. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  11. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  12. Heterogeneous Active Matter

    Science.gov (United States)

    Kolb, Thomas; Klotsa, Daphne

    Active systems are composed of self-propelled (active) particles that locally convert energy into motion and exhibit emergent collective behaviors, such as fish schooling and bird flocking. Most works so far have focused on monodisperse, one-component active systems. However, real systems are heterogeneous, and consist of several active components. We perform molecular dynamics simulations of multi-component active matter systems and report on their emergent behavior. We discuss the phase diagram of dynamic states as well as parameters where we see mixing versus segregation.

  13. Span of control matters.

    Science.gov (United States)

    Cathcart, Deb; Jeska, Susan; Karnas, Joan; Miller, Sue E; Pechacek, Judy; Rheault, Lolita

    2004-09-01

    Prompted by manager concerns about span of control, a large, integrated health system set out to determine if span of control really mattered. Was there something to it, or was it just an excuse for poor performance? A team of middle managers studied the problem and ultimately demonstrated a strong relationship between span of control and employee engagement. Consequently, it was decided to add 4 management positions to note the effect. One year later, positive changes were observed in employee engagement scores in all 4 areas. This study suggests careful review of manager spans of control to address the untoward effects of large spans of control on employee engagement.

  14. Mirror matter as self-interacting dark matter

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Nussinov, S.; Teplitz, V.L.

    2002-01-01

    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and that alternative dark matter candidates which are self-interacting may explain observations better. One new class of self-interacting dark matter that has been proposed in the context of mirror universe models of particle physics is the mirror hydrogen atom, whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms has the right order of magnitude for solving the 'cuspy' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to a higher mirror mass scale prevents the mirror halo matter from collapsing into a disk, strengthening the argument for mirror matter as galactic dark matter

  15. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  16. Bone Marrow Matters

    Science.gov (United States)

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  17. Why Geography Matters.

    Science.gov (United States)

    McDougall, Walter A.

    2001-01-01

    It is important to learn geography, yet most Americans leave school functionally illiterate in geography. Geography is fundamental to student maturation, the process of true education, and it is a springboard to every other science and humanities subject. Knowledge of maps and geographical information is crucial to the examination of economic,…

  18. Causality in Science

    Directory of Open Access Journals (Sweden)

    Cristina Puente Águeda

    2011-10-01

    Full Text Available Causality is a fundamental notion in every field of science. Since the times of Aristotle, causal relationships have been a matter of study as a way to generate knowledge and provide for explanations. In this paper I review the notion of causality through different scientific areas such as physics, biology, engineering, etc. In the scientific area, causality is usually seen as a precise relation: the same cause provokes always the same effect. But in the everyday world, the links between cause and effect are frequently imprecise or imperfect in nature. Fuzzy logic offers an adequate framework for dealing with imperfect causality, so a few notions of fuzzy causality are introduced.

  19. The Science of Physics

    CERN Document Server

    Field, Andrea

    2012-01-01

    As the foundation for other natural sciences, physics helps us interpret both our most basic and complex observations of the natural world. Physics encompasses such topics as mechanics, relativity, thermodynamics, and electricity, among others, all of which elucidate the nature of matter, its motion, and its relationship to force and energy. This engaging volume surveys some of the major branches of physics, the laws, and theories significant to each. Also chronicled are some of the historical milestones in the field by such great minds as Galileo and Isaac Newton.

  20. Radiological sciences dictionary

    CERN Document Server

    Dowsett, David

    2009-01-01

    The Radiological Sciences Dictionary is a rapid reference guide for all hospital staff employed in diagnostic imaging, providing definitions of over 3000 keywords as applied to the technology of diagnostic radiology.Written in a concise and easy to digest form, the dictionary covers a wide variety of subject matter, including:· radiation legislation and measurement · computing and digital imaging terminology· nuclear medicine radionuclides and radiopharmaceuticals· radiographic contrast agents (x-ray, MRI and ultrasound)· definitions used in ultrasound and MRI technology· statistical exp