WorldWideScience

Sample records for science learning standards

  1. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  2. Brain-Based Learning and Standards-Based Elementary Science.

    Science.gov (United States)

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  3. Describing students of the African Diaspora: Understanding micro and meso level science learning as gateways to standards based discourse

    Science.gov (United States)

    Lehner, Ed

    2007-04-01

    In much of the educational literature, researchers make little distinction between African-American students and students of the African Diaspora who immigrated to the United States. Failing to describe these salient student differences serves to perpetuate an inaccurate view of African-American school life. In today's large cities, students of the African Diaspora are frequently learning science in settings that are devoid of the resources and tools to fully support their success. While much of the scholarship unites these disparate groups, this article details the distinctive learning culture created when students from several groups of the African Diaspora learn biology together in a Brooklyn Suspension Center. Specifically this work explains how one student, Gabriel, functions in a biology class. A self-described black-Panamanian, Gabriel had tacitly resigned to not learning science, which then, in effect, precluded him from any further associated courses of study in science, and may have excluded him from the possibility of a science related career. This ethnography follows Gabriel's science learning as he engaged in cogenerative dialogue with teachers to create aligned learning and teaching practices. During the 5 months of this research, Gabriel drew upon his unique lifeworld and the depth of his hybridized cultural identity to produce limited, but nonetheless important demonstrations of science. Coexistent with his involvement in cogenerative dialogue, Gabriel helped to construct many classroom practices that supported a dynamic learning environment which produced small yet concrete examples of standards based biology. This study supports further investigation by the science education community to consider ways that students' lifeworld experiences can serve to structure and transform the urban science classroom.

  4. Analysis of chemistry textbook content and national science education standards in terms of air quality-related learning goals

    Science.gov (United States)

    Naughton, Wendy

    In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.

  5. Next Generation Science Standards: All Standards, All Students

    Science.gov (United States)

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  6. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  7. Exploration of problem-based learning combined with standardized patient in the teaching of basic science of ophthalmology

    Directory of Open Access Journals (Sweden)

    Jin Yan

    2015-08-01

    Full Text Available AIM:To investigate the effect of problem-based learning(PBLcombined with standardized patient(SPin the teaching of basic science of ophthalmology. METHODS: Sixty-four students of Optometry in grade 2012 were randomly divided into experimental group(n=32and control group(n=32. Traditional teaching method was implemented in control group while PBL combined with SP was applied in experimental group. At the end of term students were interviewed using self-administered questionnaire to obtain their evaluation for teaching effect. Measurement data were expressed as (-overx±s and analyzed by independent samples t test. Enumeration data were analyzed by χ2 test, and PRESULTS:The mean scores of theory test(83.22±3.75and experimental test(94.28±2.20in experimental group were significantly higher than theory test(70.72±3.95and experimental test(85.44±3.52in control group(all PPPCONCLUSION:Using PBL combined with SP teaching mode in basic science of ophthalmology can highly improve learning enthusiasm of students and cultivate self-learning ability of students, practice ability and ability of clinical analysis.

  8. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  9. The Effect of Design Modifications to the Typographical Layout of the New York State Elementary Science Learning Standards on User Preference and Process Time

    Science.gov (United States)

    Arnold, Jeffery E.

    2010-01-01

    The purpose of this study was to determine the effect of four different design layouts of the New York State elementary science learning standards on user processing time and preference. Three newly developed layouts contained the same information as the standards core curriculum. In this study, the layout of the core guide is referred to as Book.…

  10. Failure, The Next Generation: Why Rigorous Standards are not Sufficient to Improve Science Learning

    Directory of Open Access Journals (Sweden)

    Mary Antony Bair

    2014-11-01

    Full Text Available Although many states in the United States are adopting policies that require all students to complete college-preparatory science classes to graduate from high school, such policies have not always led to improved student outcomes. There is much speculation about the cause of the dismal results, but there is scant research on the processes by which the policies are being implemented at the school level, especially in schools that enroll large numbers of historically non-college-bound students. To address this gap in the literature, we conducted a four-year ethnographic case study of policy implementation at one racially and socioeconomically diverse high school in Michigan. Guided by the structuration theory of Anthony Giddens (1984, we gathered and analyzed information from interviews with administrators and science teachers, observations of science classes, and relevant curriculum and policy documents. Our findings reveal the processes and rationales by which a state policy mandating three years of college-preparatory science for all students was implemented at the school. Four years after the policy was implemented, there was little improvement in science outcomes. The main reason for this, we found, was the lack of correspondence between the state policy and local policies developed in response to that state policy.

  11. Next generation science standards available for comment

    Science.gov (United States)

    Asher, Pranoti

    2012-05-01

    The first public draft of the Next Generation Science Standards (NGSS) is now available for public comment. Feedback on the standards is sought from people who have a stake in science education, including individuals in the K-12, higher education, business, and research communities. Development of NGSS is a state-led effort to define the content and practices students need to learn from kindergarten through high school. NGSS will be based on the U.S. National Research Council's reportFramework for K-12 Science Education.

  12. Learning progressions from a sociocultural perspective: response to "co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action"

    Science.gov (United States)

    Tytler, Russell

    2016-10-01

    This article discusses a case for a different, socio-cultural way of looking at learning progressions as treated in the next generation science standards (NGSS) as described by Ralph Cordova and Phyllis Balcerzak's paper "Co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action". The paper is interesting for a number of reasons, and in this response I will identify different aspects of the paper and link the points made to my own research, and that of colleagues, as complementary perspectives. First, the way that the science curriculum is conceived as an expanding experience that moves from the classroom into the community, across subjects, and across time, links to theoretical positions on disciplinary literacies and notions of learning as apprenticeship into the discursive tools, or `habits of mind' as the authors put it, that underpin disciplinary practice. Second, the formulation of progression through widening communities of practice is a strong feature of the paper, and shows how children take on the role of scientists through this expanding exposure. I will link this approach to some of our own work with school—community science partnerships, drawing on the construct of boundary crossing to tease out relations between school science and professional practice. Third, the demonstration of the expansion of the children's view of what scientists do is well documented in the paper, illustrated by Figure 13 for instance. However I will, in this response, try to draw out and respond to what the paper is saying about the nature of progression; what the progression consists of, over what temporal or spatial dimensions it progresses, and how it can productively frame curriculum processes.

  13. Developing a yearlong Next Generation Science Standard (NGSS) learning sequence focused on climate solutions: opportunities, challenges and reflections

    Science.gov (United States)

    Cordero, E.; Centeno, D.

    2015-12-01

    Over the last four years, the Green Ninja Project (GNP) has been developing educational media (e.g., videos, games and online lessons) to help motivate student interest and engagement around climate science and solutions. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, the GNP is developing a technology focused, integrative, and yearlong science curriculum focused around solutions to climate change. Recognizing the importance of teacher training on the successful implementation of NGSS, we have also integrated teacher professional development into our curriculum. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that are piloting the curriculum during Fall 2015. We will also share our perspectives on how data, media creation and engineering can be used to create educational experiences that model the type of 'three-dimensional learning' encouraged by NGSS.

  14. The Next Generation Science Standards

    Science.gov (United States)

    Pruitt, Stephen L.

    2015-01-01

    The Next Generation Science Standards (NGSS Lead States 2013) were released almost two years ago. Work tied to the NGSS, their adoption, and implementation continues to move forward around the country. Stephen L. Pruitt, senior vice president, science, at Achieve, an independent, nonpartisan, nonprofit education reform organization that was a lead…

  15. Using science soundly: The Yucca Mountain standard

    International Nuclear Information System (INIS)

    Fri, R.W.

    1995-01-01

    Using sound science to shape government regulation is one of the most hotly argued topics in the ongoing debate about regulatory reform. Even though no one advaocates using unsound science, the belief that even the best science will sweep away regulatory controversy is equally foolish. As chair of a National Research Council (NRC) committee that studied the scientific basis for regulating high-level nuclear waste disposal, the author learned that science alone could resolve few of the key regulatory questions. Developing a standard that specifies a socially acceptable limit on the human health effects of nuclear waste releases involves many decisions. As the NRC committee learned in evaluating the scientific basis for the Yucca Mountain standard, a scientifically best decision rarely exists. More often, science can only offer a useful framework and starting point for policy debates. And sometimes, science's most helpful contribution is to admit that it has nothing to say. The Yucca mountain study clearly illustrates that excessive faith in the power of science is more likely to produce messy frustration than crisp decisions. A better goal for regulatory reform is the sound use of science to clarify and contain the inevitable policy controversy

  16. Implementing Elementary School Next Generation Science Standards

    Science.gov (United States)

    Kennedy, Katheryn B.

    Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.

  17. World-Class Ambitions, Weak Standards: An Excerpt from "The State of State Science Standards 2012"

    Science.gov (United States)

    American Educator, 2012

    2012-01-01

    A solid science education program begins by clearly establishing what well-educated youngsters need to learn about this multifaceted domain of human knowledge. The first crucial step is setting clear academic standards for the schools--standards that not only articulate the critical science content students need to learn, but that also properly…

  18. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  19. Creating a Learning Continuum: A Critical Look at the Intersection of Prior Knowledge, Outdoor Education, and Next Generation Science Standards Disciplinary Core Ideas and Practices

    Science.gov (United States)

    Schlobohm, Trisha Leigh

    Outdoor School is a cherished educational tradition in the Portland, OR region. This program's success is attributed to its presumed ability to positively impact affective and cognitive student outcomes. Residential programs such as Outdoor School are considered to be an important supplement to the classroom model of learning because they offer an authentic, contextually rich learning environment. References to relevant literature support the idea that student gains in affective and cognitive domains occur as a result of the multi-sensory, enjoyable, hands-on nature of outdoor learning. The sample population for this study was 115 sixth graders from a demographically diverse Portland, OR school district. This study used an instrument developed by the Common Measures System that was administered to students as part of Outdoor School's professional and program development project. The affective student outcome data measured by the Common Measures instrument was complemented by a formative assessment probe ascertaining prior knowledge of the definition of plants and field notes detailing Field Study instructor lesson content. This first part of this study examined the changes that take place in students' attitudes toward science as a result of attending Outdoor School. The second part took a look at how Outdoor School instruction in the Plants field study aligned with NGSS MS-LS Disciplinary Core Ideas and Practices. The third section of the study compared how Outdoor School instruction in the Plants Field Study and students' prior knowledge of what defines a plant aligned with NGSS MS-LS DCIs. The intent of the research was to arrive at a more nuanced understanding of how students' attitudes toward science are influenced by participating in an outdoor education program and contribute to the development of a continuum between classroom and outdoor school learning using Next Generation Science Standards Disciplinary Core Ideas and Practices as a framework. Results of

  20. Learning Science Through Visualization

    Science.gov (United States)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  1. Answers to Teachers' Questions about the Next Generation Science Standards

    Science.gov (United States)

    Workosky, Cindy; Willard, Ted

    2015-01-01

    K-12 teachers of science have been digging into the "Next Generation Science Standards" ("NGSS") (NGSS Lead States 2013) to begin creating plans and processes for translating them for classroom instruction. As teachers learn about the NGSS, they have asked about the general structure of the standards document and how to read…

  2. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  3. The role of differentiation and standards-based grading in the science learning of struggling and advanced learners in a detracked high school honors biology classroom

    Science.gov (United States)

    MacDonald, Michelina Ruth Carter

    and advanced learners. My fourth finding reflects what I learned about heterogeneous grouping: (4) Heterogeneously grouping students for argumentation through engagement in science inquiry serves both to reinforce proficiency of learning goals for struggling learners and simultaneously push all learners towards advanced proficiency. These findings indicate how planning for and implementing a differentiated, standards-based instructional unit can support the learning needs of both struggling and advanced learners in a detracked, honors biology classroom.

  4. Mālama I Ka `Āina, Sustainability: learning from Hawai`i's displaced place and culture-based science standard

    Science.gov (United States)

    Chinn, Pauline W. U.

    2011-03-01

    This response to Mitchell and Mueller's "A philosophical analysis of David Orr's theory of ecological literacy" comments on their critique of Orr's use of the phrase "ecological crisis" and what I perceive as their conflicting views of "crisis." I present my views on ecological crisis informed by standpoint theory and the definition of crisis as turning point. I connect the concept of turning point to tipping point as used in ecology to describe potentially irreversible changes in coupled social-ecological systems. I suggest that sustainable societies may provide models of adaptive learning in which monitoring of ecological phenomena is coupled to human behavior to mitigate threats to sustainability before a crisis/tipping point is reached. Finally, I discuss the Hawai`i State Department of Education's removal of its Indigenous science content standard Mālama I Ka `Āina, Sustainability and its continued use in community-based projects.

  5. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  6. The "Next Generation Science Standards" and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  7. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  8. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  9. Evolution: Its Treatment in K-12 State Science Curriculum Standards

    Science.gov (United States)

    Lerner, L. S.

    2001-12-01

    State standards are the basis upon which states and local schools build curricula. Usually taking the form of lists of what students are expected to learn at specified grades or clusters of grades, they influence statewide examinations, textbooks, teacher education and credentialing, and other areas in which states typically exercise control over local curriculum development. State science standards vary very widely in overall quality.1,2 This is especially true in their treatment of evolution, both in the life sciences and to a somewhat lesser extent in geology and astronomy. Not surprisingly, a detailed evaluation of the treatment of evolution in state science standards3 has evoked considerably more public interest than the preceding studies of overall quality. We here consider the following questions: What constitutes a good treatment of evolution in science standards and how does one evaluate the standards? Which states have done well, and which less well? What nonscientific influences have been brought to bear on standards, for what reasons, and by whom? What strategies have been used to obscure or distort the role of evolution as the central organizing principle of the historical sciences? What are the effects of such distortions on students' overall understanding of science? What can the scientific community do to assure the publication of good science standards and to counteract attacks on good science teaching? 1. Lerner, L. S., State Science Standards: An Appraisal of Science Standards in 36 States, The Thomas B. Fordham Foundation, Washington, D.C., March 1998. 2. Lerner, L. S. et al ., The State of State Standards 2000, ibid., January 2000. 3. Lerner, L. S., Good Science, Bad Science: Teaching Evolution In the States, ibid., September 2000.

  10. Science Standards, Science Achievement, and Attitudes about Evolution

    Science.gov (United States)

    Belin, Charlie M.; Kisida, Brian

    2015-01-01

    This article explores the relationships between (a) the quality of state science standards and student science achievement, (b) the public's belief in teaching evolution and the quality of state standards, and (c) the public's belief in teaching evolution and student science achievement. Using multiple measures, we find no evidence of a…

  11. The Next Generation Science Standards and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Using the life sciences, this article first reviews essential features of the "NRC Framework for K-12 Science Education" that provided a foundation for the new standards. Second, the article describes the important features of life science standards for elementary, middle, and high school levels. Special attention is paid to the teaching…

  12. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  13. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  14. Implementing the Next Generation Science Standards

    Science.gov (United States)

    Penuel, William R.; Harris, Christopher J.; DeBarger, Angela Haydel

    2015-01-01

    The Next Generation Science Standards embody a new vision for science education grounded in the idea that science is both a body of knowledge and a set of linked practices for developing knowledge. The authors describe strategies that they suggest school and district leaders consider when designing strategies to support NGSS implementation.

  15. Standards for vision science libraries: 2014 revision.

    Science.gov (United States)

    Motte, Kristin; Caldwell, C Brooke; Lamson, Karen S; Ferimer, Suzanne; Nims, J Chris

    2014-10-01

    This Association of Vision Science Librarians revision of the "Standards for Vision Science Libraries" aspires to provide benchmarks to address the needs for the services and resources of modern vision science libraries (academic, medical or hospital, pharmaceutical, and so on), which share a core mission, are varied by type, and are located throughout the world. Through multiple meeting discussions, member surveys, and a collaborative revision process, the standards have been updated for the first time in over a decade. While the range of types of libraries supporting vision science services, education, and research is wide, all libraries, regardless of type, share core attributes, which the standards address. The current standards can and should be used to help develop new vision science libraries or to expand the growth of existing libraries, as well as to support vision science librarians in their work to better provide services and resources to their respective users.

  16. Perception of Science Standards' Effectiveness and Their Implementation by Science Teachers

    Science.gov (United States)

    Klieger, Aviva; Yakobovitch, Anat

    2011-06-01

    The introduction of standards into the education system poses numerous challenges and difficulties. As with any change, plans should be made for teachers to understand and implement the standards. This study examined science teachers' perceptions of the effectiveness of the standards for teaching and learning, and the extent and ease/difficulty of implementing science standards in different grades. The research used a mixed methods approach, combining qualitative and quantitative research methods. The research tools were questionnaires that were administered to elementary school science teachers. The majority of the teachers perceived the standards in science as effective for teaching and learning and only a small minority viewed them as restricting their pedagogical autonomy. Differences were found in the extent of implementation of the different standards and between different grades. The teachers perceived a different degree of difficulty in the implementation of the different standards. The standards experienced as easiest to implement were in the field of biology and materials, whereas the standards in earth sciences and the universe and technology were most difficult to implement, and are also those evaluated by the teachers as being implemented to the least extent. Exposure of teachers' perceptions on the effectiveness of standards and the implementation of the standards may aid policymakers in future planning of teachers' professional development for the implementation of standards.

  17. Science Learning Centres Roundup

    Science.gov (United States)

    Baker, Yvonne

    2013-01-01

    A recent YouGov poll indicated that almost half of eight to 18-year-olds aspire to a career in science. The latest Association of Colleges enrolment survey indicates a large increase in uptake of science, technology, engineering and mathematics (STEM) at further education (FE) colleges. These reports, along with other findings that suggest an…

  18. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  19. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  20. The Science of Learning. 2nd Edition

    Science.gov (United States)

    Pear, Joseph J.

    2016-01-01

    For over a century and a quarter, the science of learning has expanded at an increasing rate and has achieved the status of a mature science. It has developed powerful methodologies and applications. The rise of this science has been so swift that other learning texts often overlook the fact that, like other mature sciences, the science of…

  1. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  2. Early Learning Foundations. Indiana's Early Learning Development Framework Aligned to the Indiana Academic Standards, 2014

    Science.gov (United States)

    Indiana Department of Education, 2015

    2015-01-01

    The "Foundations" (English/language arts, mathematics, social emotional skills, approaches to play and learning, science, social studies, creative arts, and physical health and growth) are Indiana's early learning development framework and are aligned to the 2014 Indiana Academic Standards. This framework provides core elements that…

  3. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  4. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  5. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    Science.gov (United States)

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  6. Learning Lunar Science Through the Selene Videogame

    Science.gov (United States)

    Reese, D. D.; Wood, C. A.

    2010-03-01

    Selene is a videogame to promote and assess learning of lunar science concepts. As players build and modify a Moon, Selene measures learning as it occurs. Selene is a model for 21st century learning and embedded assessment.

  7. Building Standards based Science Information Systems: A Survey of ISO and other standards

    Science.gov (United States)

    King, Todd; Walker, Raymond

    Science Information systems began with individual researchers maintaining personal collec-tions of data and managing them by using ad hoc, specialized approaches. Today information systems are an enterprise consisting of federated systems that manage and distribute both historical and contemporary data from distributed sources. Information systems have many components. Among these are metadata models, metadata registries, controlled vocabularies and ontologies which are used to describe entities and resources. Other components include services to exchange information and data; tools to populate the system and tools to utilize available resources. When constructing information systems today a variety of standards can be useful. The benefit of adopting standards is clear; it can shorten the design cycle, enhance software reuse and enable interoperability. We look at standards from the International Stan-dards Organization (ISO), International Telecommunication Union (ITU), Organization for the Advancement of Structured Information Standards (OASIS), Internet Engineering Task Force (IETF), American National Standards Institute (ANSI) which have influenced the develop-ment of information systems in the Heliophysics and Planetary sciences. No standard can solve the needs of every community. Individual disciplines often must fill the gap between general purpose standards and the unique needs of the discipline. To this end individual science dis-ciplines are developing standards, Examples include the International Virtual Observatory Al-liance (IVOA), Planetary Data System (PDS)/ International Planetary Data Alliance (IPDA), Dublin-Core Science, and the Space Physics Archive Search and Extract (SPASE) consortium. This broad survey of ISO and other standards provides some guidance for the development information systems. The development of the SPASE data model is reviewed and provides some insights into the value of applying appropriate standards and is used to illustrate

  8. Teaching the science of learning.

    Science.gov (United States)

    Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A

    2018-01-01

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

  9. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    Science.gov (United States)

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  10. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  11. Developing Practical Knowledge of the Next Generation Science Standards in Elementary Science Teacher Education

    Science.gov (United States)

    Hanuscin, Deborah L.; Zangori, Laura

    2016-12-01

    Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers' practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.

  12. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  13. The Nature of Science and the Next Generation Science Standards: Analysis and Critique

    Science.gov (United States)

    McComas, William F.; Nouri, Noushin

    2016-08-01

    This paper provides a detailed analysis of the inclusion of aspects of nature of science (NOS) in the Next Generation Science Standards (NGSS). In this new standards document, NOS elements in eight categories are discussed in Appendix H along with illustrative statements (called exemplars). Many, but not all, of these exemplars are linked to the standards by their association with either the "practices of science" or "crosscutting concepts," but curiously not with the recommendations for science content. The study investigated all aspects of NOS in NGSS including the accuracy and inclusion of the supporting exemplar statements and the relationship of NOS in NGSS to other aspects of NOS to support teaching and learning science. We found that while 92 % of these exemplars are acceptable, only 78 % of those written actually appear with the standards. "Science as a way of knowing" is a recommended NOS category in NGSS but is not included with the standards. Also, several other NOS elements fail to be included at all grade levels thus limiting their impact. Finally, NGSS fails to include or insufficiently emphasize several frequently recommended NOS elements such as creativity and subjectivity. The paper concludes with a list of concerns and solutions to the challenges of NOS in NGSS.

  14. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  15. Taking Stock: Existing Resources for Assessing a New Vision of Science Learning

    Science.gov (United States)

    Alonzo, Alicia C.; Ke, Li

    2016-01-01

    A new vision of science learning described in the "Next Generation Science Standards"--particularly the science and engineering practices and their integration with content--pose significant challenges for large-scale assessment. This article explores what might be learned from advances in large-scale science assessment and…

  16. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  17. The Next Generation Science Standards: The Features and Challenges

    Science.gov (United States)

    Pruitt, Stephen L.

    2014-01-01

    Beginning in January of 2010, the Carnegie Corporation of New York funded a two-step process to develop a new set of state developed science standards intended to prepare students for college and career readiness in science. These new internationally benchmarked science standards, the Next Generation Science Standards (NGSS) were completed in…

  18. Taking Stock: Implications of a New Vision of Science Learning for State Science Assessment

    Science.gov (United States)

    Wertheim, Jill

    2016-01-01

    This article presents the author's response to the article "Taking Stock: Existing Resources for Assessing a New Vision of Science Learning" by Alonzo and Ke (this issue), which identifies numerous challenges that the Next Generation Science Standards (NGSS) pose for large-scale assessment. Jill Werthem comments that among those…

  19. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    Science.gov (United States)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  20. Standardized quality in MOOC based learning

    Directory of Open Access Journals (Sweden)

    Maiorescu Irina

    2015-04-01

    Full Text Available Quality in the field of e-learning and, particularly, in the field of MOOC( Massive Open Online Courses, is a topic of growing importance in both academic institutions and in the private sector as it has generally been proved that quality management can contribute to improving the performance of organizations, regardless of their object of activity. Despite the fact that there are standards relating to quality management in a general manner, professionals, academic staff, specialists and bodies felt the need for having a standardized approach of the quality in the sector of e-learning. Therefore, in the last years, in different countries quality guidelines have been developed and used for e-Learning or distance education (for example the ASTD criteria for e- Learning, the BLA Quality Mark, Quality Platform Learning by D-ELAN etc.. The current paper aims to give insights to this new form of online education provided by MOOC platforms using the specific quality standard approach.

  1. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  2. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  3. Science and Sandy: Lessons Learned

    Science.gov (United States)

    Werner, K.

    2013-12-01

    Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.

  4. Leading Learning: Science Departments and the Chair

    Science.gov (United States)

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  5. Teacher Learning from Girls' Informal Science Experiences

    Science.gov (United States)

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  6. Energy Transformation: Teaching Youth about Energy Efficiency while Meeting Science Essential Standards

    Science.gov (United States)

    Kirby, Sarah D.; Chilcote, Amy G.

    2014-01-01

    This article describes the Energy Transformation 4-H school enrichment curriculum. The curriculum addresses energy efficiency and conservation while meeting sixth-grade science essential standards requirements. Through experiential learning, including building and testing a model home, youth learn the relationship between various technologies and…

  7. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    Science.gov (United States)

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  8. Implementation of standards within eLearning information systems

    OpenAIRE

    Roman Malo

    2007-01-01

    Nowadays, eLearning standards' support within eLearning systems is much discussed problem. In this problem domain especially the reference model SCORM must be considered. This de-facto standard is a package of common standards and specifications used for the standardization of eLearning activities as eLearning content preparation, using e-course, communication etc. Implementation of standards itself is a process with great difficulty and time requests. Interesting and considerable approach to...

  9. The Next Generation of Science Standards: Implications for Biology Education

    Science.gov (United States)

    Bybee, Rodger W.

    2012-01-01

    The release of A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) provides the basis for the next generation of science standards. This article first describes that foundation for the life sciences; it then presents a draft standard for natural selection and evolution. Finally, there is a…

  10. Surrounded by Science: Learning Science in Informal Environments

    Science.gov (United States)

    Fenichel, Marilyn; Schweingruber, Heidi A.

    2010-01-01

    Practitioners in informal science settings--museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens--are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures,…

  11. Science Hobbyists: Active Users of the Science-Learning Ecosystem

    Science.gov (United States)

    Corin, Elysa N.; Jones, M. Gail; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    Science hobbyists engage in self-directed, free-choice science learning and many have considerable expertise in their hobby area. This study focused on astronomy and birding hobbyists and examined how they used organizations to support their hobby engagement. Interviews were conducted with 58 amateur astronomers and 49 birders from the midwestern…

  12. Foundations for a new science of learning.

    Science.gov (United States)

    Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J

    2009-07-17

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.

  13. Enhancing Use of Learning Sciences Research in Planning for and Supporting Educational Change: Leveraging and Building Social Networks

    Science.gov (United States)

    Penuel, William R.; Bell, Philip; Bevan, Bronwyn; Buffington, Pam; Falk, Joni

    2016-01-01

    This paper explores practical ways to engage two areas of educational scholarship--research on science learning and research on social networks--to inform efforts to plan and support implementation of new standards. The standards, the "Next Generation Science Standards" (NGSS; NGSS Lead States in Next generation science standards: For…

  14. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  15. New Standards Put the Spotlight on Professional Learning

    Science.gov (United States)

    Mizell, Hayes; Hord, Shirley; Killion, Joellen; Hirsh, Stephanie

    2011-01-01

    Learning Forward introduces new Standards for Professional Learning. This is the third iteration of standards outlining the characteristics of professional learning that lead to effective teaching practices, supportive leadership, and improved student results. The standards are not a prescription for how education leaders and public officials…

  16. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  17. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  18. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  19. Strategic Game Moves Mediate Implicit Science Learning

    Science.gov (United States)

    Rowe, Elizabeth; Baker, Ryan S.; Asbell-Clarke, Jodi

    2015-01-01

    Educational games have the potential to be innovative forms of learning assessment, by allowing us to not just study their knowledge but the process that takes students to that knowledge. This paper examines the mediating role of players' moves in digital games on changes in their pre-post classroom measures of implicit science learning. We…

  20. SPORT SCIENCE STUDENTS‟ BELIEFS ABOUT LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Suvi Akhiriyah

    2017-04-01

    Full Text Available There are many reasons for students of Sport Science to use English. Yet, knowing the importance of learning English is sometimes not enough to encourage them to learn English well. Based on the experience in teaching them, erroneous belief seems to be held by many of them. It arouses curiosity about the beliefs which might be revealed to help the students to be successful in language learning. By investigating sport science students‘ beliefs about language learning, it is expected that types of the beliefs which they hold can be revealed. Understanding students‘ beliefs about language learning is essential because these beliefs can have possible consequences for second language learning and instruction. This study is expected to provide empirical evidence. The subjects of this study were 1st semester students majoring in Sport Science of Sport Science Faculty. There were 4 classes with 38 students in each class. There were approximately 152 students as the population of the study. The sample was taken by using random sampling. All members of the population received the questionnaire. The questionnaire which was later handed back to the researcher is considered as the sample. The instrument in this study is the newest version of Beliefs About Language Learning Inventory (BALLI, version 2.0, developed by Horwitz to asses the beliefs about learning a foreign language.

  1. Psychological Implications of Discovery Learning in Science

    Science.gov (United States)

    Kaufman, Barry A

    1971-01-01

    Describes five aspects of learning as applied to science instruction. Learning readiness, meaningfulness of material, activity and passivity, motivation, and transfer of training are presented in relation to psychological views stated by Ausubel, Bruner, Gagne, Hendrix, Karplus, Piaget, and Suchman. Views given by Gagne and Karplus are considered…

  2. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  3. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  4. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  5. Designing for expansive science learning and identification across settings

    Science.gov (United States)

    Stromholt, Shelley; Bell, Philip

    2017-10-01

    In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.

  6. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    Science.gov (United States)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  7. MODIS Science Algorithms and Data Systems Lessons Learned

    Science.gov (United States)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  8. The Standard Model in the history of the Natural Sciences, Econometrics, and the social sciences

    Science.gov (United States)

    Fisher, W. P., Jr.

    2010-07-01

    In the late 18th and early 19th centuries, scientists appropriated Newton's laws of motion as a model for the conduct of any other field of investigation that would purport to be a science. This early form of a Standard Model eventually informed the basis of analogies for the mathematical expression of phenomena previously studied qualitatively, such as cohesion, affinity, heat, light, electricity, and magnetism. James Clerk Maxwell is known for his repeated use of a formalized version of this method of analogy in lectures, teaching, and the design of experiments. Economists transferring skills learned in physics made use of the Standard Model, especially after Maxwell demonstrated the value of conceiving it in abstract mathematics instead of as a concrete and literal mechanical analogy. Haavelmo's probability approach in econometrics and R. Fisher's Statistical Methods for Research Workers brought a statistical approach to bear on the Standard Model, quietly reversing the perspective of economics and the social sciences relative to that of physics. Where physicists, and Maxwell in particular, intuited scientific method as imposing stringent demands on the quality and interrelations of data, instruments, and theory in the name of inferential and comparative stability, statistical models and methods disconnected theory from data by removing the instrument as an essential component. New possibilities for reconnecting economics and the social sciences to Maxwell's sense of the method of analogy are found in Rasch's probabilistic models for measurement.

  9. The Standard Model in the history of the Natural Sciences, Econometrics, and the social sciences

    International Nuclear Information System (INIS)

    Fisher, W P Jr

    2010-01-01

    In the late 18th and early 19th centuries, scientists appropriated Newton's laws of motion as a model for the conduct of any other field of investigation that would purport to be a science. This early form of a Standard Model eventually informed the basis of analogies for the mathematical expression of phenomena previously studied qualitatively, such as cohesion, affinity, heat, light, electricity, and magnetism. James Clerk Maxwell is known for his repeated use of a formalized version of this method of analogy in lectures, teaching, and the design of experiments. Economists transferring skills learned in physics made use of the Standard Model, especially after Maxwell demonstrated the value of conceiving it in abstract mathematics instead of as a concrete and literal mechanical analogy. Haavelmo's probability approach in econometrics and R. Fisher's Statistical Methods for Research Workers brought a statistical approach to bear on the Standard Model, quietly reversing the perspective of economics and the social sciences relative to that of physics. Where physicists, and Maxwell in particular, intuited scientific method as imposing stringent demands on the quality and interrelations of data, instruments, and theory in the name of inferential and comparative stability, statistical models and methods disconnected theory from data by removing the instrument as an essential component. New possibilities for reconnecting economics and the social sciences to Maxwell's sense of the method of analogy are found in Rasch's probabilistic models for measurement.

  10. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  11. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  12. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  13. Engaging Karen Refugee Students in Science Learning through a Cross-Cultural Learning Community

    Science.gov (United States)

    Harper, Susan G.

    2017-01-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as…

  14. Assessing the Genetics Content in the Next Generation Science Standards.

    Directory of Open Access Journals (Sweden)

    Katherine S Lontok

    Full Text Available Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM. Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS using a consensus list of American Society of Human Genetics (ASHG core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.

  15. Assessing the Genetics Content in the Next Generation Science Standards.

    Science.gov (United States)

    Lontok, Katherine S; Zhang, Hubert; Dougherty, Michael J

    2015-01-01

    Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM). Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS) using a consensus list of American Society of Human Genetics (ASHG) core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs) included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.

  16. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  17. Standardization in library and information science in selected European countries

    Science.gov (United States)

    Matysek, Anna

    2015-02-01

    Standardization plays an important role in library and information science (LIS), because it gives rules to identify, classify, access, select, exploit, communicate, exchange and preserve information. Standards are developed by national, European and international organizations. The objective of the study is to present the situation of standardization in library and information science in the countries that joined the European Union in 2004. The research covered Technical Committees that take the problems of LIS, their cooperation with European Committee for Standardization (CEN) and International Organization for Standardization (ISO). The second part of the study is an analysis of LIS standards published in the last 10 years. Data on published documents were gathered from online standards directories. The documents were searched using International Classification for Standards. Retrieved standards were analyzed for their origin and status. The research illustrates the changes in the national standardization, most popular topics and the growing importance of international cooperation in standardization.

  18. Next Generation Science Standards: Adoption and Implementation Workbook

    Science.gov (United States)

    Peltzman, Alissa; Rodriguez, Nick

    2013-01-01

    The Next Generation Science Standards (NGSS) represent the culmination of years of collaboration and effort by states, science educators and experts from across the United States. Based on the National Research Council's "A Framework for K-12 Science Education" and developed in partnership with 26 lead states, the NGSS, when…

  19. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  20. The international development of forensic science standards - A review.

    Science.gov (United States)

    Wilson-Wilde, Linzi

    2018-04-16

    Standards establish specifications and procedures designed to ensure products, services and systems are safe, reliable and consistently perform as intended. Standards can be used in the accreditation of forensic laboratories or facilities and in the certification of products and services. In recent years there have been various international activities aiming at developing forensic science standards and guidelines. The most significant initiative currently underway within the global forensic community is the development of International Organization for Standardization (ISO) standards. This paper reviews the main bodies working on standards for forensic science, the processes used and the implications for accreditation. This paper specifically discusses the work of ISO Technical Committee TC272, the future TC272 work program for the development of forensic science standards and associated timelines. Also discussed, are the lessons learnt to date in navigating the complex environment of multi-country stakeholder deliberations in standards development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  1. Lateral Learning for Science Reporters

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    with social, religious, philosophical, ethical, and political ... they may even feel disconnected from the science carried out in their own ... “networking” is an effective tool in fostering communication for .... less-developed places. And mentors ...

  2. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  3. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  4. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  5. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  6. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  7. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  8. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-04-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.

  9. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    Science.gov (United States)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other

  10. Rethinking Game Based Learning: applying pedagogical standards to educational games

    NARCIS (Netherlands)

    Schmitz, Birgit; Kelle, Sebastian

    2010-01-01

    Schmitz, B., & Kelle, S. (2010, 1-6 February). Rethinking Game Based Learning: applying pedagogical standards to educational games. Presentation at JTEL Winter School 2010 on Advanced Learning Technologies, Innsbruck, Austria.

  11. The "Next Generation Science Standards" and the Earth and Space Sciences

    Science.gov (United States)

    Wysession, Michael E.

    2013-01-01

    The "Next Generation Science Standards" ("NGSS"), due to be released this spring, represents a revolutionary step toward establishing modern, national K-12 science education standards. Based on the recommendations of the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting…

  12. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  13. States Move toward Computer Science Standards. Policy Update. Vol. 23, No. 17

    Science.gov (United States)

    Tilley-Coulson, Eve

    2016-01-01

    While educators and parents recognize computer science as a key skill for career readiness, only five states have adopted learning standards in this area. Tides are changing, however, as the Every Student Succeeds Act (ESSA) recognizes with its call on states to provide a "well-rounded education" for students, to include computer science…

  14. RAFTing with Raptors: Connecting Science, English Language Arts, and the Common Core State Standards

    Science.gov (United States)

    Senn, Gary J.; McMurtrie, Deborah H.; Coleman, Bridget K.

    2013-01-01

    This article explores using the RAFT strategy (Role, Audience, Format, Topic) for writing in science classes. The framework of the RAFT strategy will be explained, and connections with Common Core State Standards (CCSS) for ELA/Literacy will be discussed. Finally, there will be a discussion of a professional learning experience for teachers in…

  15. The Science Standards and Students of Color

    Science.gov (United States)

    Strachan, Samantha L.

    2017-01-01

    In a 2014 report, the National Center for Education Statistics (NCES) projected that by the year 2022, minority students will outnumber non-Hispanic white students enrolled in public schools. As the diversity of the student population in the United States increases, concerns arise about student performance in science classes, especially among…

  16. Preparing medical students for future learning using basic science instruction.

    Science.gov (United States)

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment

  17. Next Generation Science Standards and edTPA: Evidence of Science and Engineering Practices

    Science.gov (United States)

    Brownstein, Erica M.; Horvath, Larry

    2016-01-01

    Science teacher educators in the United States are currently preparing future science teachers to effectively implement the "Next Generation Science Standards" (NGSS) and, in thirteen states, to successfully pass a content-specific high stakes teacher performance assessment, the edTPA. Science education and teacher performance assessment…

  18. NASA's Earth Science Data Systems Standards Process Experiences

    Science.gov (United States)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  19. Engaging Karen refugee students in science learning through a cross-cultural learning community

    Science.gov (United States)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  20. Science of Learning Is Learning of Science: Why We Need a Dialectical Approach to Science Education Research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-01-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed…

  1. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  2. Science + Writing = Super Learning. Writing Workshop.

    Science.gov (United States)

    Bower, Paula Rogovin

    1993-01-01

    Article presents suggestions for motivating elementary students to learn by combining science and writing. The strategies include planning the right environment; teaching the scientific method; establishing a link to literature; and making time for students to observe, experiment, and write. (SM)

  3. Using Amphibians and Reptiles to Learn the Process of Science

    Science.gov (United States)

    Greene, Janice Schnake; Greene, Brian D.

    2005-01-01

    Although every student must take some science courses to graduate, understanding the process of science is important, and some students never seem to really grasp science. The National Science Education Standards stress process as a major component in science instruction. The standards state that scientific inquiry is basic to science education…

  4. Improving together: collaborative learning in science communication

    Science.gov (United States)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  5. Addressing Three Common Myths about the Next Generation Science Standards

    Science.gov (United States)

    Huff, Kenneth L.

    2016-01-01

    Although the "Next Generation Science Standards" (NGSS Lead States 2013) were released over two years ago, misconceptions about what they are--and are not--persist. The "NGSS" provide for consistent science education opportunities for all students--regardless of demographics--with a level of rigor expected in every location and…

  6. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  7. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  8. Portable Tablets in Science Museum Learning

    DEFF Research Database (Denmark)

    Gronemann, Sigurd Trolle

    2016-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people...... is identified. It is argued that, paradoxically, museums’ decisions to innovate by introducing new technologies, such as portable tablets, and new pedagogies to support them conflict with many young people’s traditional ideas of museums and learning. The assessment of the implications of museums’ integration...... of portable tablets indicates that in making pedagogical transformations to accommodate new technologies, museums risk opposing didactic intention if pedagogies do not sufficiently attend to young learners’ systemic expectations to learning and to their expectations to the digital experience influenced...

  9. Implementation of standards within eLearning information systems

    Directory of Open Access Journals (Sweden)

    Roman Malo

    2007-01-01

    Full Text Available Nowadays, eLearning standards' support within eLearning systems is much discussed problem. In this problem domain especially the reference model SCORM must be considered. This de-facto standard is a package of common standards and specifications used for the standardization of eLearning activities as eLearning content preparation, using e-course, communication etc. Implementation of standards itself is a process with great difficulty and time requests. Interesting and considerable approach to this problem is dividing all the process into several standalone and isolated steps focused on the individual segments of standards. This concept, in the paper described as 4-tier model of eLearning standards’ implementation, principally based upon the SCORM model enables sequential implementation of support for standards of eLearning metadata, eLearning content and also communication and navigation in e-courses. This possibility leads to portability and independence of result e-content. Discuss concept is a framework for standardization within eLearning subsystem of University Information System at Mendel University in Brno.

  10. Learning Disabilities and Achieving High-Quality Education Standards

    Science.gov (United States)

    Gartland, Debi; Strosnider, Roberta

    2017-01-01

    This is an official document of the National Joint Committee on Learning Disabilities (NJCLD), of which Council for Learning Disabilities is a long-standing, active member. With this position paper, NJCLD advocates for the implementation of high-quality education standards (HQES) for students with learning disabilities (LD) and outlines the…

  11. IMPROVING THE VIRTUAL LEARNING DEVELOPMENT PROCESSES USING XML STANDARDS

    Directory of Open Access Journals (Sweden)

    Kurt Suss

    2002-06-01

    Full Text Available Distributed Icarning environments and content often lack a common basis for the cxchange of learning materials. This delays, or even hinders, both innovation and delivery of learning tecnology. Standards for platforms and authoring may provide a way to improve interoperability and cooperative development. This article provides an XML-based approach to this problem creaied by the IMS Global Learning Consortium.

  12. Improving the Virtual Learning Development Processes Using XML Standards.

    Science.gov (United States)

    Suss, Kurt; Oberhofer, Thomas

    2002-01-01

    Suggests that distributed learning environments and content often lack a common basis for the exchange of learning materials, which can hinder or even delay innovation and delivery of learning technology. Standards for platforms and authoring may provide a way to improve interoperability and cooperative development. Provides an XML-based approach…

  13. Science and trans-science in standard setting

    International Nuclear Information System (INIS)

    Majone, G.

    1984-01-01

    Standard-setting is a blending of scientific, trans-scientific, and political elements which result in a number of consequences. Health standards, for example, are influenced by biological and philosophical assumptions and scientific traditions, with the dose-response function treated as a trans-scientific question because of scientific uncertainties. Costs and benefits and other values besides health, safety, or environment also enter into the balancing of regulatory decisions and keep regulations from a purely scientific knowledge is desirable. Recommendations that industry be self-regulatory reflect a shift in emphasis from legal enforcement to information-based compliance

  14. Children's learning of science through literature

    Science.gov (United States)

    O'Kelly, James B.

    This study examined the effects of picture books belonging to different literary genres on the learning of science by primary grade students. These genres included modern fantasy, fiction, and nonfiction. The students were exposed to two topics through books, butterflies and snails. The study focused on the effects of those books on children's expressions of (a) knowledge, (b) erroneous information, (c) creative ideas, and (d) the support required to elicit information and ideas from the children. Sixty-one children from three kindergarten and three second grade participated. Children were designated by their teachers as being high or low with respect to academic achievement. These categories allowed measurement of interactions between literary genres, grade levels, and academic achievement levels. Children first learned about butterflies, and then about snails. For each topic, children were interviewed about their knowledge and questions of the topic. Teachers engaged their classes with a book about the topic. The children were re-interviewed about their knowledge and questions about the topic. No class encountered the same genre of book twice. Comparisons of the children's prior knowledge of butterflies and snails indicated that the children possessed significantly more knowledge about butterflies than about snails. Literary genre had one significant effect on children's learning about snails. Contrary to expectations, children who encountered nonfiction produced significantly more creative expressions about snails than children who encountered faction or modern fantasy. No significant effects for literary genre were demonstrated with respect to children's learning about butterflies. The outcomes of the study indicated that nonfiction had its strongest impact on the learning of science when children have a relatively small fund of knowledge about a topic. This study has implications for future research. The inclusion of a larger number of students, classes, and

  15. Risk Analysis as Regulatory Science: Toward The Establishment of Standards.

    Science.gov (United States)

    Murakami, Michio

    2016-09-01

    Understanding how to establish standards is essential for risk communication and also provides perspectives for further study. In this paper, the concept of risk analysis as regulatory science for the establishment of standards is demonstrated through examples of standards for evacuation and provisional regulation values in foods and drinking water. Moreover, academic needs for further studies related to standards are extracted. The concepts of the traditional 'Standard I', which has a paternalistic orientation, and 'Standard II', established through stakeholder consensus, are then systemized by introducing the current status of the new standards-related movement that developed after the Fukushima nuclear power plant accident, and the perspectives of the standards are discussed. Preparation of standards on the basis of stakeholder consensus through intensive risk dialogue before a potential nuclear power plant accident is suggested to be a promising approach to ensure a safe society and enhance subjective well-being. © The Author 2016. Published by Oxford University Press.

  16. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  17. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  18. Business Students Should Learn More about Science

    Science.gov (United States)

    Laprise, Shari L.; Winrich, Charles; Sharpe, Norean Radke

    2008-01-01

    Educators have been giving much-needed attention recently to innovations in the standard M.B.A. and the undergraduate business curriculum. Most notable has been the integration of fundamental courses in the core curriculum--finance, marketing, accounting--to emphasize a more-realistic team approach to learning, and to reflect that managers do not…

  19. Impact of interactive online units on learning science among students with learning disabilities and English learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-03-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71 teachers across 13 schools in two states indicated that online units effectively deepened science knowledge across all three student groups. Comparing all treatment and control students on pretest-to-posttest improvement on standards-based content-specific assessments, there were statistically significant mean differences (17% improvement treatment vs. 6% control; p English learner status, indicating that these two groups performed similarly to their peers; students with learning disabilities had significantly lower assessment scores overall. Teachers and students were moderately satisfied with the units.

  20. Questioning the Fidelity of the "Next Generation Science Standards" for Astronomy and Space Sciences Education

    Science.gov (United States)

    Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Although the Next Generation Science Standards (NGSS) are not federally mandated national standards or performance expectations for K-12 schools in the United States, they stand poised to become a de facto national science and education policy, as state governments, publishers of curriculum materials, and assessment providers across the country…

  1. The Nature of Science and the "Next Generation Science Standards": Analysis and Critique

    Science.gov (United States)

    McComas, William F.; Nouri, Noushin

    2016-01-01

    This paper provides a detailed analysis of the inclusion of aspects of nature of science (NOS) in the "Next Generation Science Standards" (NGSS). In this new standards document, NOS elements in eight categories are discussed in Appendix H along with illustrative statements (called exemplars). Many, but not all, of these exemplars are…

  2. The "Next Generation Science Standards" and the Earth and Space Sciences

    Science.gov (United States)

    Wysession, Michael E.

    2013-01-01

    In this article, Michael E. Wysession comments on the "Next Generation Science Standards" (NGSS), which are based on the recommendations of the National Research Council and represent a revolutionary step toward establishing modern, national K-12 science education standards. The NGSS involves significant changes from traditional…

  3. MAP Science for Use with Next Generation Science Standards. NWEA External FAQ

    Science.gov (United States)

    Northwest Evaluation Association, 2016

    2016-01-01

    Measures of Academic Progress® (MAP®) Science for use with Next Generation Science Standards (NGSS) assessments are available for the 2016-17 school year. These new assessments measure student growth toward understanding of the multidimensional NGSS performance expectations. This report presents MAP Science for use with NGSS by presenting and…

  4. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  5. Embedding spiritual value through science learning

    Science.gov (United States)

    Johan, H.; Suhandi, A.; Wulan, A. R.; Widiasih; Ruyani, A.; Karyadi, B.; Sipriyadi

    2018-05-01

    The purpose of this study was to embed spiritual value through science learning program especially earth planet. Various phenomena in earth planet describe a divinity of super power. This study used quasi experimental method with one group pre-test-post-test design. Convenience sampling was conducted in this study. 23 pre-service physics teacher was involved. Pre-test and post-test used a questionnaire had been conducted to collected data of spiritual attitude. Open ended question had been utilized at post-test to collected data. A fourth indicators of spiritual value related to divinity of God was used to embed spiritual value. The results show a shifted of students’ awareness to divinity of God. Before implementing the earth planet learning, 85.8% of total students strongly agree that learning activity embed spiritual value while after learning process, it increased be 93.4%. After learning earth planet, it known that students’ spiritual value was influenced by character of earth planet concept which unobservable and media visual which display each incredible phenomena process in our earth planet. It can be concluded that spiritual value can be embedded through unobservable phenomena of during learning earth planet process.

  6. Implications of the Next Generation Science Standards for Earth and Space Sciences

    Science.gov (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  7. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    Science.gov (United States)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  8. Council for the Advancement of Standards Learning and Developmental Outcomes

    Science.gov (United States)

    Council for the Advancement of Standards in Higher Education, 2008

    2008-01-01

    The Council for the Advancement of Standards in Higher Education (CAS) promotes standards to enhance opportunities for student learning and development from higher education programs and services. Responding to the increased shift in attention being paid by educators and their stakeholders from higher education inputs (i.e., standards and…

  9. Virtual language learning environments: the standardization of evaluation

    Directory of Open Access Journals (Sweden)

    Francesca Romero Forteza

    2014-03-01

    Full Text Available Nowadays there are many approaches aimed at helping learners acquire knowledge through the Internet. Virtual Learning Environments (VLE facilitate the acquisition and practice of skills, but some of these learning platforms are not evaluated or do not follow a standard that guarantees the quality of the tasks involved. In this paper, we set out a proposal for the standardization of the evaluation of VLEs available on the World Wide Web. Thus, the main objective of this study is to establish an evaluation template with which to test whether a VLE is appropriate for computer-assisted language learning (CALL. In the methodology section, a learning platform is analysed and tested to establish the characteristics learning platforms must have. Having established the design of the template for language learning environments, we concluded that a VLE must be versatile enough for application with different language learning and teaching approaches.

  10. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  11. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    Science.gov (United States)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  12. Representation and Analysis of Chemistry Core Ideas in Science Education Standards between China and the United States

    Science.gov (United States)

    Wan, Yanlan; Bi, Hualin

    2016-01-01

    Chemistry core ideas play an important role in students' chemistry learning. On the basis of the representations of chemistry core ideas about "substances" and "processes" in the Chinese Chemistry Curriculum Standards (CCCS) and the U.S. Next Generation Science Standards (NGSS), we conduct a critical comparison of chemistry…

  13. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  14. Developing Deep Learning Applications for Life Science and Pharma Industry.

    Science.gov (United States)

    Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan

    2018-06-01

    Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.

  15. ESO science data product standard for 1D spectral products

    Science.gov (United States)

    Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg

    2016-07-01

    The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.

  16. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  17. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  18. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  19. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  20. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  1. Learning science and science education in a new era.

    Science.gov (United States)

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  2. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  3. The Learning Behaviors Scale: National Standardization in Trinidad and Tobago

    Science.gov (United States)

    Chao, Jessica L.; McDermott, Paul A.; Watkins, Marley W.; Drogalis, Anna Rhoad; Worrell, Frank C.; Hall, Tracey E.

    2018-01-01

    This study reports on the national standardization and validation of the Learning Behaviors Scale (LBS) for use in Trinidad and Tobago. The LBS is a teacher rating scale centering on observable behaviors relevant to identifying childhood approaches to classroom learning. Teachers observed a stratified sample of 900 students across the islands'…

  4. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  5. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  6. Political Science: Witchcraft or Craftsmanship? Standards for Good Research

    DEFF Research Database (Denmark)

    Nørgaard, Asbjørn Sonne

    2008-01-01

    Scientific debate requires a common understanding of what constitutes good research. The purpose of this article is to establish such an understanding. The purpose of political science is to uncover, understand and explain the conformist aspect of social behavior, well aware that not all behavior...... is systematically determined by society. Good political science ought to be grounded in two questions: What do we know, and what are we going to learn? Research question and theory are decisive, while all discussion about methodology and design is about subjecting our prejudices and expectations to the most...

  7. Constructivist Learning Theory and Climate Science Communication

    Science.gov (United States)

    Somerville, R. C.

    2012-12-01

    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate

  8. Framework for Leading Next Generation Science Standards Implementation

    Science.gov (United States)

    Stiles, Katherine; Mundry, Susan; DiRanna, Kathy

    2017-01-01

    In response to the need to develop leaders to guide the implementation of the Next Generation Science Standards (NGSS), the Carnegie Corporation of New York provided funding to WestEd to develop a framework that defines the leadership knowledge and actions needed to effectively implement the NGSS. The development of the framework entailed…

  9. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  10. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    Science.gov (United States)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  11. Rethinking Early Learning and Development Standards in the Ugandan Context

    Science.gov (United States)

    Ejuu, Godfrey

    2013-01-01

    Concerns that the African child is being tailored to be a "global child," alongside other homogenizing and dominating projections, such as early learning and development standards (ELDS), have increased. African communities need to be assured that global standards and global indicators will not further homogenize nations and thereby risk…

  12. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  13. From Standards to Standard Practice: A Critical Look at the Perceptions and Process of Integrating the Next Generation Science Standards in the Nation's Schools

    Science.gov (United States)

    Mercadante, Katie Lynn

    The Next Generation Science Standards (NGSS) are the culmination of reform efforts spanning more than three decades and are the first major reform movement in science education since Sputnik. When implementing these new standards, teachers are faced with many barriers. NGSS requires critical thinking, cross-curricular learning, and key changes in teaching, learning, and assessment. Implementation nationwide has been slow, due to sweeping changes, and controversial content within the standards. Resistance to implementation occurs in nearly all levels for these reasons. The purpose of this descriptive study was to determine the perceptions of in-service teachers of the NGSS Framework, to identify barriers that inhibit implementation, and to identify commonalities among teachers who have successfully implemented the Framework, as well as assist others who may do the same in the future. Teachers from public, private, and charter schools from across the United States participated in the study. Based upon teacher response, a three-stage action plan and series of necessary recommendations were developed to assist teachers and administrators in K-12 schools to develop plans to implement the NGSS.

  14. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  15. Science learning motivation as correlate of students’ academic performances

    OpenAIRE

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P.; Dupa, Maria Elena D.; Bautista, Romiro Gordo

    2016-01-01

    This study was designed to analyze the relationship of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, e...

  16. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  17. Blended learning as an effective pedagogical paradigm for biomedical science

    Directory of Open Access Journals (Sweden)

    Perry Hartfield

    2013-11-01

    Full Text Available Blended learning combines face-to-face class based and online teaching and learning delivery in order to increase flexibility in how, when, and where students study and learn. The development, integration, and promotion of blended learning in frameworks of curriculum design can optimize the opportunities afforded by information and communication technologies and, concomitantly, accommodate a broad range of student learning styles. This study critically reviews the potential benefits of blended learning as a progressive educative paradigm for the teaching of biomedical science and evaluates the opportunities that blended learning offers for the delivery of accessible, flexible and sustainable teaching and learning experiences. A central tenet of biomedical science education at the tertiary level is the development of comprehensive hands-on practical competencies and technical skills (many of which require laboratory-based learning environments, and it is advanced that a blended learning model, which combines face-to-face synchronous teaching and learning activities with asynchronous online teaching and learning activities, effectively creates an authentic, enriching, and student-centred learning environment for biomedical science. Lastly, a blending learning design for introductory biochemistry will be described as an effective example of integrating face-to-face and online teaching, learning and assessment activities within the teaching domain of biomedical science.   DOI: 10.18870/hlrc.v3i4.169

  18. LEARNING TOOLS INTEROPERABILITY – A NEW STANDARD FOR INTEGRATION OF DISTANCE LEARNING PLATFORMS

    Directory of Open Access Journals (Sweden)

    Oleksandr A. Shcherbyna

    2015-06-01

    Full Text Available For information technology in education there is always an issue of re-usage of electronic educational resources, their transferring possibility from one virtual learning environment to another. Previously, standardized sets of files were used to serve this purpose, for example, SCORM-packages. In this article the new standard Learning Tools Interoperability (LTI is reviewed, which allows users from one environment to access resources from another environment. This makes it possible to integrate them into a single distributed learning environment that is created and shared. The article gives examples of the practical use of standard LTI in Moodle learning management system using External tool and LTI provider plugins.

  19. Best practices for measuring students' attitudes toward learning science.

    Science.gov (United States)

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  20. Informal Science learning in PIBID: identifying and interpreting the strands

    Directory of Open Access Journals (Sweden)

    Thomas Barbosa Fejolo

    2013-10-01

    Full Text Available This paper presents a research on informal Science learning in the context of the Institutional Scholarship Program Initiation to Teaching (PIBID. We take as reference the strands of informal Science learning (FAC, representing six dimensions of learning, they are: 1 Development of interest in Science; 2 Understanding of scientific knowledge; 3 Engaging in scientific reasoning; 4 Reflection on Science; 5 Engagement in scientific practice; 6 Identification with Science. For the lifting data, it was used the filming record of the interactions and dialogues of undergraduate students while performing activities of Optical Spectroscopy in the laboratory. Based on the procedures of content analysis and interpretations through communication, we investigate which of the six strands were present during the action of the students in activities. As a result we have drawn a learning profile for each student by distributing communications in different strands of informal Science learning.

  1. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  2. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  3. Planning Instruction to Meet the Intent of the Next Generation Science Standards

    Science.gov (United States)

    Krajcik, Joseph; Codere, Susan; Dahsah, Chanyah; Bayer, Renee; Mun, Kongju

    2014-03-01

    The National Research Council's Framework for K- 12 Science Education and the Next Generation Science Standards (NGSS Lead States in Next Generation Science Standards: For states, by states. The National Academies Press, Washington, 2013) move teaching away from covering many isolated facts to a focus on a smaller number of disciplinary core ideas (DCIs) and crosscutting concepts that can be used to explain phenomena and solve problems by engaging in science and engineering practices. The NGSS present standards as knowledge-in-use by expressing them as performance expectations (PEs) that integrate all three dimensions from the Framework for K- 12 Science Education. This integration of core ideas, practices, and crosscutting concepts is referred to as three-dimensional learning (NRC in Division of Behavioral and Social Sciences and Education. The National Academies Press, Washington, 2014). PEs state what students can be assessed on at the end of grade level for K-5 and at the end of grade band for 6-8 and 9-12. PEs do not specify how instruction should be developed nor do they serve as objectives for individual lessons. To support students in developing proficiency in the PEs, the elements of the DCIs will need to be blended with various practices and crosscutting concepts. In this paper, we examine how to design instruction to support students in meeting a cluster or "bundle" of PEs and how to blend the three dimensions to develop lesson level PEs that can be used for guiding instruction. We provide a ten-step process and an example of that process that teachers and curriculum designers can use to design lessons that meet the intent of the Next Generation of Science Standards.

  4. Learning about the Nature of Science Using Algae

    Science.gov (United States)

    Edelmann, Hans G.; Martius, Thilo; Hahn, Achim; Schlüter, Kirsten; Nessler, Stefan H.

    2016-01-01

    Enquiry learning and teaching about the nature of science (NoS) is a key element of science education. We have designed an experimental setting for students aged 12-14 years to exercise enquiry-learning skills and to introduce students to the NoS aspects of creativity and imagination. It also illustrates the impact of carbon dioxide on the growth…

  5. A Pedagogical Model for Science Education through Blended Learning

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2015-01-01

    This paper proposes a framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The study constitutes a work in progress and started as a response to complex

  6. Data science, learning, and applications to biomedical and health sciences.

    Science.gov (United States)

    Adam, Nabil R; Wieder, Robert; Ghosh, Debopriya

    2017-01-01

    The last decade has seen an unprecedented increase in the volume and variety of electronic data related to research and development, health records, and patient self-tracking, collectively referred to as Big Data. Properly harnessed, Big Data can provide insights and drive discovery that will accelerate biomedical advances, improve patient outcomes, and reduce costs. However, the considerable potential of Big Data remains unrealized owing to obstacles including a limited ability to standardize and consolidate data and challenges in sharing data, among a variety of sources, providers, and facilities. Here, we discuss some of these challenges and potential solutions, as well as initiatives that are already underway to take advantage of Big Data. © 2017 New York Academy of Sciences.

  7. Lessons learned from planetary science archiving

    Science.gov (United States)

    Zender, J.; Grayzeck, E.

    2006-01-01

    The need for scientific archiving of past, current, and future planetary scientific missions, laboratory data, and modeling efforts is indisputable. To quote from a message by G. Santayama carved over the entrance of the US Archive in Washington DC “Those who can not remember the past are doomed to repeat it.” The design, implementation, maintenance, and validation of planetary science archives are however disputed by the involved parties. The inclusion of the archives into the scientific heritage is problematic. For example, there is the imbalance between space agency requirements and institutional and national interests. The disparity of long-term archive requirements and immediate data analysis requests are significant. The discrepancy between the space missions archive budget and the effort required to design and build the data archive is large. An imbalance exists between new instrument development and existing, well-proven archive standards. The authors present their view on the problems and risk areas in the archiving concepts based on their experience acquired within NASA’s Planetary Data System (PDS) and ESA’s Planetary Science Archive (PSA). Individual risks and potential problem areas are discussed based on a model derived from a system analysis done upfront. The major risk for a planetary mission science archive is seen in the combination of minimal involvement by Mission Scientists and inadequate funding. The authors outline how the risks can be reduced. The paper ends with the authors view on future planetary archive implementations including the archive interoperability aspect.

  8. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  9. Deep learning for single-molecule science

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  10. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    Science.gov (United States)

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  11. Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    The experience acquired through development, implementation and operation of the KeplerK2 science pipelines can provide lessons learned for the development of science pipelines for other missions such as NASA's Transiting Exoplanet Survey Satellite, and ESA's PLATO mission.

  12. Children's science learning: A core skills approach.

    Science.gov (United States)

    Tolmie, Andrew K; Ghazali, Zayba; Morris, Suzanne

    2016-09-01

    Research has identified the core skills that predict success during primary school in reading and arithmetic, and this knowledge increasingly informs teaching. However, there has been no comparable work that pinpoints the core skills that underlie success in science. The present paper attempts to redress this by examining candidate skills and considering what is known about the way in which they emerge, how they relate to each other and to other abilities, how they change with age, and how their growth may vary between topic areas. There is growing evidence that early-emerging tacit awareness of causal associations is initially separated from language-based causal knowledge, which is acquired in part from everyday conversation and shows inaccuracies not evident in tacit knowledge. Mapping of descriptive and explanatory language onto causal awareness appears therefore to be a key development, which promotes unified conceptual and procedural understanding. This account suggests that the core components of initial science learning are (1) accurate observation, (2) the ability to extract and reason explicitly about causal connections, and (3) knowledge of mechanisms that explain these connections. Observational ability is educationally inaccessible until integrated with verbal description and explanation, for instance, via collaborative group work tasks that require explicit reasoning with respect to joint observations. Descriptive ability and explanatory ability are further promoted by managed exposure to scientific vocabulary and use of scientific language. Scientific reasoning and hypothesis testing are later acquisitions that depend on this integration of systems and improved executive control. © 2016 The British Psychological Society.

  13. How Climate Science got to be in the Next Generation Science Standards (Invited)

    Science.gov (United States)

    Wysession, M. E.

    2013-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science

  14. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  15. Portable Tablets in Science Museum Learning: Options and Obstacles

    Science.gov (United States)

    Gronemann, Sigurd Trolle

    2017-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people's learning with portable tablets matches the…

  16. The Use of Mobile Learning in Science: A Systematic Review

    Science.gov (United States)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-01-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from…

  17. Career-Related Learning and Science Education: The Changing Landscape

    Science.gov (United States)

    Hutchinson, Jo

    2012-01-01

    Pupils ask STEM subject teachers about jobs and careers in science, but where else do they learn about work? This article outlines career-related learning within schools in England alongside other factors that influence pupils' career decisions. The effect of the Education Act 2011 will be to change career learning in schools. The impact on…

  18. Original Science-Based Music and Student Learning

    Science.gov (United States)

    Smolinski, Keith

    2010-01-01

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework…

  19. Data Science and Optimal Learning for Material Discovery and Design

    Science.gov (United States)

    ; Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material inference and optimization methods that can constrain predictions using insights and results from theory directions in the application of information theoretic tools to materials problems related to learning from

  20. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  1. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.

  2. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  3. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    Science.gov (United States)

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  4. Factors Contributing to Lifelong Science Learning: Amateur Astronomers and Birders

    Science.gov (United States)

    Jones, M. Gail; Corin, Elysa Nicole; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    This research examined lifelong science learning reported by amateur astronomers and birders. One hundred seven adults who reported engaging in an informal (out-of-school) science interest were interviewed as part of an ongoing series of studies of lifelong science learners. The goal of the study was to gain insight into how and why amateur…

  5. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  6. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  7. Family Concepts in Early Learning and Development Standards

    Science.gov (United States)

    Walsh, Bridget A.; Sanchez, Claudia; Lee, Angela M.; Casillas, Nicole; Hansen, Caitlynn

    2016-01-01

    This exploratory study investigated the use of concepts related to families, parents, and the home in 51 state-level early learning and development standards documents. Guidelines from six national family involvement, engagement, and school-partnership models were used to create the Family Involvement Models Analysis Chart (FIMAC), which served as…

  8. Lessons Learned from Becoming an Independent Standards Board.

    Science.gov (United States)

    Board, John C.

    This paper discusses lessons learned from becoming an independent standards board. It begins by explaining that teachers lacked adequate academic preparation during the two World Wars and shortly thereafter. At the end of World War II, public education had to deal with poor pay, little job security, inadequate pensions, and inadequate and…

  9. Fine Arts Standards of Learning for Virginia Public Schools

    Science.gov (United States)

    Virginia Department of Education, 2006

    2006-01-01

    The Fine Arts Standards of Learning in this publication represent a major development in public education in Virginia, emphasizing the importance of instruction in the fine arts (dance arts, music, theatre arts, and visual arts) as an important part of Virginia's efforts to provide challenging educational programs in the public schools. Knowledge…

  10. Unified programs nationally? Strengths and weaknesses of the learning standards

    Directory of Open Access Journals (Sweden)

    Ignacio Polo Martínez

    2014-06-01

    Full Text Available The inclusion of measurable learning standards as an element of the curriculum has definitely opened the door to the connection between the curriculum and external assessments. Since its origin, the potential impact of that element in improving our educational system has been defended and criticized. The truth is that in our country, though all regions are based on the same Royal Decree of core curriculum, and therefore the same reference for the evaluation, curriculum that ultimately applies to students ( teaching-learning- assessment from the different regions can have significant differences . This article proposes, from the analysis of various research , training programs, the plan of action for inspection and the author's own experience in processes of curriculum specifications , assess the potential strengths and weaknesses of the learning standards.

  11. The effect of instructional methodology on high school students natural sciences standardized tests scores

    Science.gov (United States)

    Powell, P. E.

    Educators have recently come to consider inquiry based instruction as a more effective method of instruction than didactic instruction. Experience based learning theory suggests that student performance is linked to teaching method. However, research is limited on inquiry teaching and its effectiveness on preparing students to perform well on standardized tests. The purpose of the study to investigate whether one of these two teaching methodologies was more effective in increasing student performance on standardized science tests. The quasi experimental quantitative study was comprised of two stages. Stage 1 used a survey to identify teaching methods of a convenience sample of 57 teacher participants and determined level of inquiry used in instruction to place participants into instructional groups (the independent variable). Stage 2 used analysis of covariance (ANCOVA) to compare posttest scores on a standardized exam by teaching method. Additional analyses were conducted to examine the differences in science achievement by ethnicity, gender, and socioeconomic status by teaching methodology. Results demonstrated a statistically significant gain in test scores when taught using inquiry based instruction. Subpopulation analyses indicated all groups showed improved mean standardized test scores except African American students. The findings benefit teachers and students by presenting data supporting a method of content delivery that increases teacher efficacy and produces students with a greater cognition of science content that meets the school's mission and goals.

  12. Design for learning - a case study of blended learning in a science unit.

    Science.gov (United States)

    Gleadow, Roslyn; Macfarlan, Barbara; Honeydew, Melissa

    2015-01-01

    Making material available through learning management systems is standard practice in most universities, but this is generally seen as an adjunct to the 'real' teaching, that takes place in face-to-face classes. Lecture attendance is poor, and it is becoming increasingly difficult to engage students, both in the material being taught and campus life. This paper describes the redevelopment of a large course in scientific practice and communication that is compulsory for all science students studying at our Melbourne and Malaysian campuses, or by distance education. Working with an educational designer, a blended learning methodology was developed, converting the environment provided by the learning management system into a teaching space, rather than a filing system. To ensure focus, topics are clustered into themes with a 'question of the week', a pre-class stimulus and follow up activities. The content of the course did not change, but by restructuring the delivery using educationally relevant design techniques, the content was contextualised resulting in an integrated learning experience. Students are more engaged intellectually, and lecture attendance has improved. The approach we describe here is a simple and effective approach to bringing this university's teaching and learning into the 21 (st) century.

  13. Design for learning – a case study of blended learning in a science unit

    Science.gov (United States)

    Gleadow, Roslyn; Macfarlan, Barbara; Honeydew, Melissa

    2015-01-01

    Making material available through learning management systems is standard practice in most universities, but this is generally seen as an adjunct to the ‘real’ teaching, that takes place in face-to-face classes. Lecture attendance is poor, and it is becoming increasingly difficult to engage students, both in the material being taught and campus life. This paper describes the redevelopment of a large course in scientific practice and communication that is compulsory for all science students studying at our Melbourne and Malaysian campuses, or by distance education. Working with an educational designer, a blended learning methodology was developed, converting the environment provided by the learning management system into a teaching space, rather than a filing system. To ensure focus, topics are clustered into themes with a ‘question of the week’, a pre-class stimulus and follow up activities. The content of the course did not change, but by restructuring the delivery using educationally relevant design techniques, the content was contextualised resulting in an integrated learning experience. Students are more engaged intellectually, and lecture attendance has improved. The approach we describe here is a simple and effective approach to bringing this university’s teaching and learning into the 21 st century. PMID:26594348

  14. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    OpenAIRE

    Hilman .

    2015-01-01

    Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on...

  15. Cooperative Learning and Learning Achievement in Social Science Subjects for Sociable Students

    Science.gov (United States)

    Herpratiwi; Darsono; Sasmiati; Pujiyatli

    2018-01-01

    Purpose: The research objective was to compare students' learning achievement for sociable learning motivation students in social science (IPS) using cooperative learning. Research Methods: This research used a quasi-experimental method with a pre-test/post-test design involving 35 fifth-grade students. The learning process was conducted four…

  16. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  17. National standards in science education: Teacher perceptions regarding utilization

    Science.gov (United States)

    Fletcher, Carol Louise Parsons

    The purpose of this naturalistic study was to determine what factors most influence middle school science teachers' intentions to utilize or ignore national standards, as a toot for reform in their classrooms, schools, or districts. Results indicate. that teachers with. minimal training were unlikely to use national standards documents due to their perceptions of a lack of support from peers, administrators and a high-stakes state accountability system. Teachers with more extensive training were more inclined to use national standards documents as philosophical guides for reform because they believed in the validity of the recommendations. Implications are discussed, chief among them that short-term professional development may actually do more harm than good if teachers retain or develop unexamined misconceptions about national standards recommendations as a result. In addition, due to the concerns expressed by teachers regarding state curriculum mandates and standardized testing, this study indicates that changes in these external factors must be instituted before teachers will commit themselves to standards-based reforms. It is suggested that staff development focus on opportunities for reflection and application which will promote conceptual change in teachers. A model predicated on the notion that the process of implementing reform is essentially an issue of promoting conceptual change in teachers is proposed. This model, termed the Reform Implementation as Conceptual Change, or RICC, focuses specifically on the cognitive processes teachers may go through when they are exposed to an innovation such as national standards. Stages such as integrated application, accommodation, assimilation, disconnection, and false accommodation, are described. The impact that professional development and training may have on the likelihood that teachers will experience these various stages is also discussed. This model serves as a theoretical framework for explaining why some

  18. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    Science.gov (United States)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  19. Applying the Science of Learning to the Learning of Science: Newton's Second Law of Motion

    Science.gov (United States)

    Lemmer, Miriam

    2018-01-01

    Science teaching and learning require knowledge about how learning takes place (cognition) and how learners interact with their surroundings (affective and sociocultural factors). The study reported on focussed on learning for understanding of Newton's second law of motion from a cognitive perspective that takes social factors into account. A…

  20. Science Professional Learning Communities: Beyond a singular view of teacher professional development

    Science.gov (United States)

    Jones, M. Gail; Gardner, Grant E.; Robertson, Laura; Robert, Sarah

    2013-07-01

    Professional Learning Communities (PLCs) are frequently being used as a vehicle to transform science education. This study explored elementary teachers' perceptions about the impact of participating in a science PLC on their own professional development. With the use of The Science Professional Learning Communities Survey and a semi-structured interview protocol, elementary teachers' perceptions of the goals of science PLCs, the constraints and benefits of participation in PLCs, and reported differences in the impact of PLC participation on novice and experienced teachers were examined. Sixty-five elementary teachers who participated in a science PLC were surveyed about their experiences, and a subsample of 16 teachers was interviewed. Results showed that most of the teachers reported their science PLC emphasized sharing ideas with other teachers as well as working to improve students' science standardized test scores. Teachers noted that the PLCs had impacted their science assessment practices as well as their lesson planning. However, a majority of the participants reported a differential impact of PLCs depending on a teacher's level of experience. PLCs were reported as being more beneficial to new teachers than experienced teachers. The interview results demonstrated that there were often competing goals and in some cases a loss of autonomy in planning science lessons. A significant concern was the impact of problematic interpersonal relationships and communication styles on the group functioning. The role of the PLC in addressing issues related to obtaining science resources and enhancing science content knowledge for elementary science teachers is discussed.

  1. ME science as mobile learning based on virtual reality

    Science.gov (United States)

    Fradika, H. D.; Surjono, H. D.

    2018-04-01

    The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.

  2. Learning and coping strategies versus standard education in cardiac rehabilitation

    DEFF Research Database (Denmark)

    Tayyari Dehbarez, Nasrin; Lynggaard, Vibeke; May, Ole

    2015-01-01

    Background Learning and coping education strategies (LC) was implemented to enhance patient attendance in the cardiac rehabilitation programme. This study assessed the cost-utility of LC compared to standard education (standard) as part of a rehabilitation programme for patients with ischemic heart...... disease and heart failure. Methods The study was conducted alongside a randomised controlled trial with 825 patients who were allocated to LC or standard rehabilitation and followed for 5 months. The LC approach was identical to the standard approach in terms of physical training and education...... to estimate the net benefit of the LC and to illustrate cost effectiveness acceptability curves. The statistical analysis was based on means and bootstrapped standard errors. Results An additional cost of DKK 6,043 (95 % CI −5,697; 17,783) and a QALY gain of 0.005 (95 % CI −0.001; 0.012) was estimated for LC...

  3. Experiential learning for education on Earth Sciences

    Science.gov (United States)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  4. The impact of Next Generation Science Standards (NGSS) professional development on the self-efficacy of science teachers

    Science.gov (United States)

    Akella, Somi Devi M.

    In 2012, the National Research Council introduced the Next Generation Science Standards (NGSS), which were created to improve the K-12 education in the U.S. and stress the importance of providing professional development (PD) to acquire the knowledge, skills, and self-efficacy to design lessons to meet high standards of teaching and learning. Bandura's (1977) theory of self-efficacy posits that people are motivated to perform an action if they are confident that they can perform the action successfully. The purpose of this survey research was to investigate the impact of professional development on the self-efficacy of science teachers with regard to the NGSS practice of Analyzing and Interpreting Data as well as to probe teachers' perceptions of barriers to their self-efficacy in applying this practice. The study found that focused and targeted PD helped improve participants' self-efficacy in incorporating the NGSS practices and addressed several barriers to teacher self-efficacy. In response to findings, Akella's Science Teaching Efficacy Professional Development (ASTEPD) model is proposed as a tool to guide PD practice and, thus, helps improve teacher self-efficacy.

  5. Learning style preferences of Australian health science students.

    Science.gov (United States)

    Zoghi, Maryam; Brown, Ted; Williams, Brett; Roller, Louis; Jaberzadeh, Shapour; Palermo, Claire; McKenna, Lisa; Wright, Caroline; Baird, Marilyn; Schneider-Kolsky, Michal; Hewitt, Lesley; Sim, Jenny; Holt, Tangerine-Ann

    2010-01-01

    It has been identified that health science student groups may have distinctive learning needs. By university educators' and professional fieldwork supervisors' being aware of the unique learning style preferences of health science students, they have the capacity to adjust their teaching approaches to best fit with their students' learning preferences. The purpose of this study was to investigate the learning style preferences of a group of Australian health science students enrolled in 10 different disciplines. The Kolb Learning Style Inventory was distributed to 2,885 students enrolled in dietetics and nutrition, midwifery, nursing, occupational therapy, paramedics, pharmacy, physiotherapy, radiation therapy, radiography, and social work at one Australian university. A total of 752 usable survey forms were returned (response rate 26%). The results indicated the converger learning style to be most frequently preferred by health science students and that the diverger and accommodator learning styles were the least preferred. It is recommended that educators take learning style preferences of health science students into consideration when planning, implementing, and evaluating teaching activities, such as including more problem-solving activities that fit within the converger learning style.

  6. Sustainability in Science Education? How the Next Generation Science Standards Approach Sustainability, and Why It Matters

    Science.gov (United States)

    Feinstein, Noah Weeth; Kirchgasler, Kathryn L.

    2015-01-01

    In this essay, we explore how sustainability is embodied in the Next Generation Science Standards (NGSS), analyzing how the NGSS explicitly define and implicitly characterize sustainability. We identify three themes (universalism, scientism, and technocentrism) that are common in scientific discourse around sustainability and show how they appear…

  7. Confirmatory factors analysis of science teacher leadership in the Thailand world-class standard schools

    Science.gov (United States)

    Thawinkarn, Dawruwan

    2018-01-01

    This research aims to analyze factors of science teacher leadership in the Thailand World-Class Standard Schools. The research instrument was a five scale rating questionnaire with reliability 0.986. The sample group included 500 science teachers from World-Class Standard Schools who had been selected by using the stratified random sampling technique. Factor analysis of science teacher leadership in the Thailand World-Class Standard Schools was conducted by using M plus for Windows. The results are as follows: The results of confirmatory factor analysis on science teacher leadership in the Thailand World-Class Standard Schools revealed that the model significantly correlated with the empirical data. The consistency index value was x2 = 105.655, df = 88, P-Value = 0.086, TLI = 0.997, CFI = 0.999, RMSEA = 0.022, and SRMR = 0.019. The value of factor loading of science teacher leadership was positive, with statistical significance at the level of 0.01. The value of six factors was between 0.880-0.996. The highest factor loading was the professional learning community, followed by child-centered instruction, participation in development, the role model in teaching, transformational leaders, and self-development with factor loading at 0.996, 0.928, 0.911, 0.907, 0.901, and 0.871, respectively. The reliability of each factor was 99.1%, 86.0%, 83.0%, 82.2%, 81.0%, and 75.8%, respectively.

  8. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  9. Accomplishing PETE Learning Standards and Program Accreditation through Teacher Candidates' Technology-Based Service Learning Projects

    Science.gov (United States)

    Gibbone, Anne; Mercier, Kevin

    2014-01-01

    Teacher candidates' use of technology is a component of physical education teacher education (PETE) program learning goals and accreditation standards. The methods presented in this article can help teacher candidates to learn about and apply technology as an instructional tool prior to and during field or clinical experiences. The goal in…

  10. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    Science.gov (United States)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  11. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  12. A New Dimension for Earth Science Learning

    Science.gov (United States)

    Bland, G.; Henry, A.; Bydlowski, D.

    2017-12-01

    NASA Science Objectives include capturing the global view of Earth from space. This unique perspective is often augmented by instrumented research aircraft, to provide in-situ and remote sensing observations in support of the world picture. Our "Advancing Earth Research Observations with Kites and Atmospheric /Terrestrial Sensors" (AEROKATS) project aims to bring this novel and exciting perspective into the hands of learners young and old. The practice of using instrumented kites as surrogate satellites and aircraft is gaining momentum, as our team undertakes the technical, operational, and scientific challenges in preparations to bring new and easy-to-field tools to broad audiences. The third dimension in spatial perception ("up") has previously been difficult to effectively incorporate in learning and local-scale research activities. AEROKATS brings simple to use instrumented aerial systems into the hands of students, educators, and scientists, with the tangible benefits of detailed, high resolution measurements and observations directly applicable to real-world studies of the environments around us.

  13. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  14. What if Learning Analytics Were Based on Learning Science?

    Science.gov (United States)

    Marzouk, Zahia; Rakovic, Mladen; Liaqat, Amna; Vytasek, Jovita; Samadi, Donya; Stewart-Alonso, Jason; Ram, Ilana; Woloshen, Sonya; Winne, Philip H.; Nesbit, John C.

    2016-01-01

    Learning analytics are often formatted as visualisations developed from traced data collected as students study in online learning environments. Optimal analytics inform and motivate students' decisions about adaptations that improve their learning. We observe that designs for learning often neglect theories and empirical findings in learning…

  15. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  16. Teaching the "Geo" in Geography with the Next Generation Science Standards

    Science.gov (United States)

    Wysession, Michael E.

    2016-01-01

    The Next Generation Science Standards (NGSS; Achieve 2014, 532; Figure 1A) represent a new approach to K-12 science education that involves the interweaving of three educational dimensions: Science and Engineering Practices (SEPs), Disciplinary Core Ideas (DCIs), and Crosscutting Concepts (CCCs). Unlike most preexisting state science standards for…

  17. Mainstream web standards now support science data too

    Science.gov (United States)

    Richard, S. M.; Cox, S. J. D.; Janowicz, K.; Fox, P. A.

    2017-12-01

    The science community has developed many models and ontologies for representation of scientific data and knowledge. In some cases these have been built as part of coordinated frameworks. For example, the biomedical communities OBO Foundry federates applications covering various aspects of life sciences, which are united through reference to a common foundational ontology (BFO). The SWEET ontology, originally developed at NASA and now governed through ESIP, is a single large unified ontology for earth and environmental sciences. On a smaller scale, GeoSciML provides a UML and corresponding XML representation of geological mapping and observation data. Some of the key concepts related to scientific data and observations have recently been incorporated into domain-neutral mainstream ontologies developed by the World Wide Web consortium through their Spatial Data on the Web working group (SDWWG). OWL-Time has been enhanced to support temporal reference systems needed for science, and has been deployed in a linked data representation of the International Chronostratigraphic Chart. The Semantic Sensor Network ontology has been extended to cover samples and sampling, including relationships between samples. Gridded data and time-series is supported by applications of the statistical data-cube ontology (QB) for earth observations (the EO-QB profile) and spatio-temporal data (QB4ST). These standard ontologies and encodings can be used directly for science data, or can provide a bridge to specialized domain ontologies. There are a number of advantages in alignment with the W3C standards. The W3C vocabularies use discipline-neutral language and thus support cross-disciplinary applications directly without complex mappings. The W3C vocabularies are already aligned with the core ontologies that are the building blocks of the semantic web. The W3C vocabularies are each tightly scoped thus encouraging good practices in the combination of complementary small ontologies. The W3C

  18. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  19. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  20. The Use of Mobile Learning in Science: A Systematic Review

    Science.gov (United States)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-04-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from the year 2000 onward. Major findings include that most of the studies focused on designing systems for mobile learning, followed by a combination of evaluating the effects of mobile learning and investigating the affective domain during mobile learning. The majority of the studies were conducted in the area of life sciences in informal, elementary (5-11 years) settings. Mobile devices were used in this strand of science easily within informal environments with real-world connections. A variety of research methods were employed, providing a rich research perspective. As the use of mobile learning continues to grow, further research regarding the use of mobile technologies in all areas and levels of science learning will help science educators to expand their ability to embrace these technologies.

  1. Family Experiences, the Motivation for Science Learning and Science Achievement of Different Learner Groups

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2017-01-01

    Science education is particularly important for both developed and developing countries to promote technological development, global economic competition and economic growth. This study explored the relationship between family experiences, the motivation for science learning, and the science achievement of a group of Grade Nine learners in South…

  2. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  3. Memorization techniques: Using mnemonics to learn fifth grade science terms

    Science.gov (United States)

    Garcia, Juan O.

    The purpose of this study was to determine whether mnemonic instruction could assist students in learning fifth-grade science terminology more effectively than traditional-study methods of recall currently in practice The task was to examine if fifth-grade students were able to learn a mnemonic and then use it to understand science vocabulary; subsequently, to determine if students were able to remember the science terms after a period of time. The problem is that in general, elementary school students are not being successful in science achievement at the fifth grade level. In view of this problem, if science performance is increased at the elementary level, then it is likely that students will be successful when tested at the 8th and 10th grade in science with the Texas Assessment of Knowledge and Skills (TAKS) in the future. Two research questions were posited: (1) Is there a difference in recall achievement when a mnemonic such as method of loci, pegword method, or keyword method is used in learning fifth-grade science vocabulary as compared to the traditional-study method? (2) If using a mnemonic in learning fifth-grade science vocabulary was effective on recall achievement, would this achievement be maintained over a span of time? The need for this study was to assist students in learning science terms and concepts for state accountability purposes. The first assumption was that memorization techniques are not commonly applied in fifth-grade science classes in elementary schools. A second assumption was that mnemonic devices could be used successfully in learning science terms and increase long term retention. The first limitation was that the study was conducted on one campus in one school district in South Texas which limited the generalization of the study. The second limitation was that it included random assigned intact groups as opposed to random student assignment to fifth-grade classroom groups.

  4. Architecting Learning Continuities for Families Across Informal Science Experiences

    Science.gov (United States)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit

  5. Science learning motivation as correlate of students’ academic performances

    Directory of Open Access Journals (Sweden)

    Nhorvien Jay P. Libao

    2016-09-01

    Full Text Available This study was designed to analyze the relationship  of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, extrinsic motivation was found to be related with their academic performances among the indicators of motivations in learning science.

  6. Providing pervasive Learning eXperiences by Combining Internet of Things and e-Learning standards

    Directory of Open Access Journals (Sweden)

    Aroua TAAMALLAH

    2015-12-01

    Full Text Available Nowadays, learning is more and more taking place anywhere and anytime. This implies that e-learning environments are expanded from only virtual learning environments to both virtual and physical ones. Thanks to the evolution of Internet, ICT (Information and Communication Technology and Internet of Things, new learning scenarios could be experienced by learners either individually or collaboratively. These learning scenarios are Pervasive in such a way that they allow to mix virtual and physical learning environments as well. They are therefore characterized by possible interactions of the learner with the physical environment, the Learner's contextual data detection as well as the adaptation of pedagogical strategies and services according to this context. This paper aims to take advantage of this trend and keep up also with existing e-Learning standards such as IMS LD and LOM. The solution proposed is therefore to extend these standards models with that of Internet of Things and to provide an adaptation approach of learning activities based on learner's context and her/his track using the eXperience API. In this context and in order to allow both reasoning capabilities and interoperability between the proposed models Ontological representations and implementation are therefore proposed. Moreover a technical architecture highlighting the required software components and their interactions is provided. And finally, a relevant pervasive learning scenario is implemented and experimented.

  7. Original science-based music and student learning

    Science.gov (United States)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  8. Agriscience Teachers' Implementation of Digital Game-based Learning in an Introductory Animal Science Course

    Science.gov (United States)

    Webb, Angela W.; Bunch, J. C.; Wallace, Maria F. G.

    2015-12-01

    In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based learning in an introductory animal science course. From interviews with agriscience teachers on their experiences with the game, three themes emerged: (1) the constraints of inadequate and inappropriate technologies, and time to game implementation; (2) the shift in teacher and student roles necessitated by implementing the game; and (3) the inherent competitive nature of learning through the game. Based on these findings, we recommend that pre-service and in-service professional development opportunities be developed for teachers to learn how to implement digital game-based learning effectively. Additionally, with the potential for simulations that address cross-cutting concepts in the next generation science standards, digital game-based learning should be explored in various science teaching and learning contexts.

  9. Learning Science through Computer Games and Simulations

    Science.gov (United States)

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  10. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  11. Merlin C. Wittrock's Enduring Contributions to the Science of Learning

    Science.gov (United States)

    Mayer, Richard E.

    2010-01-01

    Among his many accomplishments in educational psychology, Merlin C. Wittrock is perhaps best remembered for his enduring contributions to the science of learning. His vision of how learning works is best explicated in articles published in "Educational Psychologist" (Wittrock, 1974, 1978, 1989, 1991, 1992), beginning with his classic 1974 article,…

  12. Learning of science concepts within a traditional socio-cultural ...

    African Journals Online (AJOL)

    The learning of science concepts within a traditional socio-cultural environment were investigated by looking at: 1) the nature of \\"cognitive border crossing\\" exhibited by the students from the traditional to the scientific worldview, and 2) whether or not three learning theories / hypotheses: border crossing, collaterality, and ...

  13. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  14. Using Wikis and Collaborative Learning for Science Teachers' Professional Development

    Science.gov (United States)

    Chen, Y-H.; Jang, S-J.; Chen, P-J.

    2015-01-01

    Wiki bears great potential to transform learning and instruction by scaffolding personal and social constructivism. Past studies have shown that proper application of wiki benefits both students and teachers; however, few studies have integrated wiki and collaborative learning to examine the growth of science teachers' "Technological,…

  15. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-01-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…

  16. Formal, Non-Formal and Informal Learning in the Sciences

    Science.gov (United States)

    Ainsworth, Heather L.; Eaton, Sarah Elaine

    2010-01-01

    This research report investigates the links between formal, non-formal and informal learning and the differences between them. In particular, the report aims to link these notions of learning to the field of sciences and engineering in Canada and the United States, including professional development of adults working in these fields. It offers…

  17. Globalising Service-Learning in the Social Sciences

    Science.gov (United States)

    Limoncelli, Stephanie A.

    2017-01-01

    The increasing internationalisation of social science curricula in undergraduate education along with the growth of service-learning has provided new opportunities to join the two. This article offers a refection and discussion of service-learning with placements in international nongovernmental organisations (INGOs), drawing from its application…

  18. Investigating Science Interest in a Game-Based Learning Project

    Science.gov (United States)

    Annetta, Leonard; Vallett, David; Fusarelli, Bonnie; Lamb, Richard; Cheng, Meng-Tzu; Holmes, Shawn; Folta, Elizabeth; Thurmond, Brandi

    2014-01-01

    The purpose of this study was to examine the effect Serious Educational Games (SEGs) had on student interest in science in a federally funded game-based learning project. It can be argued that today's students are more likely to engage in video games than they are to interact in live, face-to-face learning environments. With a keen eye on…

  19. An Argument for Formative Assessment with Science Learning Progressions

    Science.gov (United States)

    Alonzo, Alicia C.

    2018-01-01

    Learning progressions--particularly as defined and operationalized in science education--have significant potential to inform teachers' formative assessment practices. In this overview article, I lay out an argument for this potential, starting from definitions for "formative assessment practices" and "learning progressions"…

  20. Blended learning in K-12 mathematics and science instruction -- An exploratory study

    Science.gov (United States)

    Schmidt, Jason

    Blended learning has developed into a hot topic in education over the past several years. Flipped classrooms, online learning environments, and the use of technology to deliver educational content using rich media continue to garner national attention. While generally well accepted and researched in post-secondary education, not much research has focused on blended learning in elementary, middle, and high schools. This thesis is an exploratory study to begin to determine if students and teachers like blended learning and whether or not it affects the amount of time they spend in math and science. Standardized achievement test data were also analyzed to determine if blended learning had any effect on test scores. Based on student and teacher surveys, this population seems to like blended learning and to work more efficiently in this environment. There is no evidence from this study to support any effect on student achievement.

  1. Open Science: Trends in the Development of Science Learning

    Science.gov (United States)

    Scanlon, Eileen

    2011-01-01

    This article comments on some trends in the evolution of science teaching at a distance using the Open University UK (OU UK) experience as a benchmark. Even from the first years of the university there was an understanding of the potential role for media in developing methods for teaching science at a distance, in particular the potential for…

  2. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    Science.gov (United States)

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  3. Learning Science in Informal Environments: People, Places, and Pursuits

    Science.gov (United States)

    Bell, Philip, Ed.; Lewenstein, Bruce, Ed.; Shouse, Andrew W., Ed.; Feder, Michael A., Ed.

    2009-01-01

    Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and…

  4. Science Learning in Rural Australia: Not Necessarily the Poor Cousin

    Science.gov (United States)

    Tytler, Russell; Symington, David

    2015-01-01

    There is considerable evidence suggesting that students in rural schools lag behind their city counterparts in measures of science literacy and attitude to science learning. If we are to address this situation we need to build as full a picture as we can of the key features of what is a complex and varied rural schooling context. In this article…

  5. Science Achievement in TIMSS Cognitive Domains Based on Learning Styles

    Science.gov (United States)

    Kablan, Zeynel; Kaya, Sibel

    2013-01-01

    Problem Statement: The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects. Understanding how different learning styles might influence science achievement may guide educators in their efforts to raise achievement. This study is an attempt to examine…

  6. Science Learning via Multimedia Portal Resources: The Scottish Case

    Science.gov (United States)

    Elliot, Dely; Wilson, Delia; Boyle, Stephen

    2014-01-01

    Scotland's rich heritage in the field of science and engineering and recent curricular developments led to major investment in education to equip pupils with improved scientific knowledge and skills. However, due to its abstract and conceptual nature, learning science can be challenging. Literature supports the role of multimedia technology in…

  7. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  8. Internet-Based Science Learning: A Review of Journal Publications

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Tsai, Chin-Chung; Wu, Ying-Tien; Tsai, Meng-Jung; Liu, Tzu-Chien; Hwang, Fu-Kwun; Lai, Chih-Hung; Liang, Jyh-Chong; Wu, Huang-Ching; Chang, Chun-Yen

    2011-01-01

    Internet-based science learning has been advocated by many science educators for more than a decade. This review examines relevant research on this topic. Sixty-five papers are included in the review. The review consists of the following two major categories: (1) the role of demographics and learners' characteristics in Internet-based science…

  9. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  10. Exploring a Century of Advancements in the Science of Learning

    Science.gov (United States)

    Murphy, P. Karen; Knight, Stephanie L.

    2016-01-01

    The past century has yielded a plethora of advancements in the science of learning, from expansions in the theoretical frames that undergird education research to cultural and contextual considerations in educational practice. The overarching purpose of this chapter is to explore and document the growth and development of the science of learning…

  11. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    Science.gov (United States)

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  12. How A Flipped Learning Environment Affects Learning In A Course On Theoretical Computer Science

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Hüttel, Hans

    2014-01-01

    This paper reports initial experiences with flipping the classroom in an undergraduate computer science course as part of an overall attempt to enhance the pedagogical support for student learning. Our findings indicate that, just as the flipped classroom implies, a shift of focus in the learning...... context influences the way students engage with the course and their learning strategies....

  13. Science writing heurisitc: A writing-to-learn strategy and its effect on student's science achievement, science self-efficacy, and scientific epistemological view

    Science.gov (United States)

    Caukin, Nancy S.

    The purpose of this mixed-methods study was to determine if employing the writing-to-learn strategy known as a "Science Writing Heuristic" would positively effect students' science achievement, science self-efficacy, and scientific epistemological view. The publications Science for All American, Blueprints for Reform: Project 2061 (AAAS, 1990; 1998) and National Science Education Standards (NRC 1996) strongly encourage science education that is student-centered, inquiry-based, active rather than passive, increases students' science literacy, and moves students towards a constructivist view of science. The capacity to learn, reason, problem solve, think critically and construct new knowledge can potentially be experienced through writing (Irmscher, 1979; Klein, 1999; Applebee, 1984). Science Writing Heuristic (SWH) is a tool for designing science experiences that move away from "cookbook" experiences and allows students to design experiences based on their own ideas and questions. This non-traditional classroom strategy focuses on claims that students make based on evidence, compares those claims with their peers and compares those claims with the established science community. Students engage in reflection, meaning making based on their experiences, and demonstrate those understandings in multiple ways (Hand, 2004; Keys et al, 1999, Poock, nd.). This study involved secondary honors chemistry students in a rural prek-12 school in Middle Tennessee. There were n = 23 students in the group and n = 8 in the control group. Both groups participated in a five-week study of gases. The treatment group received the instructional strategy known as Science Writing Heuristic and the control group received traditional teacher-centered science instruction. The quantitative results showed that females in the treatment group outscored their male counterparts by 11% on the science achievement portion of the study and the males in the control group had a more constructivist scientific

  14. Using Science to Take a Stand: Action-Oriented Learning in an Afterschool Science Club

    Science.gov (United States)

    Hagenah, Sara

    This dissertation study investigates what happens when students participate in an afterschool science club designed around action-oriented science instruction, a set of curriculum design principles based on social justice pedagogy. Comprised of three manuscripts written for journal publication, the dissertation includes 1) Negotiating community-based action-oriented science teaching and learning: Articulating curriculum design principles, 2) Middle school girls' socio-scientific participation pathways in an afterschool science club, and 3) Laughing and learning together: Productive science learning spaces for middle school girls. By investigating how action-oriented science design principles get negotiated, female identity development in and with science, and the role of everyday social interactions as students do productive science, this research fills gaps in the understanding of how social justice pedagogy gets enacted and negotiated among multiple stakeholders including students, teachers, and community members along what identity development looks like across social and scientific activity. This study will be of interest to educators thinking about how to enact social justice pedagogy in science learning spaces and those interested in identity development in science.

  15. System 80+{trademark} standard design incorporates radiation protection lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Crom, T.D.; Naugle, C.L. [Duke Engineering & Services, Inc., Charlotte, NC (United States); Turk, R.S. [ABB Combustion Engineering Nuclear Power, Windsor, CT (United States)

    1995-03-01

    Many lessons have been learned from the current generation of nuclear plants in the area of radiation protection. The following paper will outline how the lessons learned have been incorporated into the design and operational philosophy of the System 80+{trademark} Standard Design currently under development by ABB Combustion Engineering (ABB-CE) with support from Duke Engineering and Services, Inc. and Stone and Webster Engineering Corporation in the Balance-of-Plant design. The System 80+{trademark} Standard Design is a complete nuclear power plant for national and international markets, designed in direct response to utility needs for the 1990`s, and scheduled for Nuclear Regulatory Commission (NRC) Design Certification under the new standardization rule (10 CFR Part 52). System 80+{trademark} is a natural extension of System 80{sup R} technology, an evolutionary change based on proven Nuclear Steam Supply System (NSSS) in operation at Palo Verde in Arizona and under construction at Yonggwang in the Republic of Korea. The System 80+{trademark} Containment and much of the Balance of Plant design is based upon Duke Power Company`s Cherokee Plant, which was partially constructed in the late 1970`s, but, was later canceled (due to rapid declined in electrical load growth). The System 80+{trademark} Standard Design meets the requirements given in the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Requirements Document. One of these requirements is to limit the occupational exposure to 100 person-rem/yr. This paper illustrates how this goal can be achieved through the incorporation of lessons learned, innovative design, and the implementation of a common sense approach to operation and maintenances practices.

  16. Exploring Social Learning through Upstream Engagement in Science and Technology

    DEFF Research Database (Denmark)

    Mortensen, Jonas Egmose

    This discussion paper deliberates on how the concept of social learning can be used for evaluating upstream engagement initiatives in science and technology.  The paper briefly introduces to the concept of upstream engagement and a concrete case, the UK Citizen Science for Sustainability project...... (SuScit), as an outset for discussing how the concept of social learning can be used for analysing and understanding relations between citizen participation, Science and research, and sustainability. A number of relevant research questions and methodological considerations are distilled...

  17. Do Science Teachers Distinguish Between Their own Learning and the Learning of Their Students?

    Science.gov (United States)

    Brauer, Heike; Wilde, Matthias

    2018-02-01

    Learning beliefs influence learning and teaching. For this reason, teachers and teacher educators need to be aware of them. To support students' knowledge construction, teachers must develop appropriate learning and teaching beliefs. Teachers appear to have difficulties when analysing students' learning. This seems to be due to the inability to differentiate the beliefs about their students' learning from those about their own learning. Both types of beliefs seem to be intertwined. This study focuses on whether pre-service teachers' beliefs about their own learning are identical to those about their students' learning. Using a sample of pre-service teachers, we measured general beliefs about "constructivist" and "transmissive" learning and science-specific beliefs about "connectivity" and "taking pre-concepts into account". We also analysed the development of these four beliefs during teacher professionalisation by comparing beginning and advanced pre-service teachers. Our results show that although pre-service teachers make the distinction between their own learning and the learning of their students for the general tenets of constructivist and transmissive learning, there is no significant difference for science-specific beliefs. The beliefs pre-service teachers hold about their students' science learning remain closely tied to their own.

  18. Learning design for science teacher training and educational development

    DEFF Research Database (Denmark)

    Bjælde, Ole Eggers; Caspersen, Michael E.; Godsk, Mikkel

    This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing and tran......This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing...... and transforming modules. Both DiLD and the STREAM model have proven to be effective and scalable approaches to encourage educators across all career steps to embrace the potentials of educational technology in science higher education. Moreover, the transformed modules have resulted in higher student satisfaction...

  19. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  20. Citizen science on a smartphone: Participants' motivations and learning.

    Science.gov (United States)

    Land-Zandstra, Anne M; Devilee, Jeroen L A; Snik, Frans; Buurmeijer, Franka; van den Broek, Jos M

    2016-01-01

    Citizen science provides researchers means to gather or analyse large datasets. At the same time, citizen science projects offer an opportunity for non-scientists to be part of and learn from the scientific process. In the Dutch iSPEX project, a large number of citizens turned their smartphones into actual measurement devices to measure aerosols. This study examined participants' motivation and perceived learning impacts of this unique project. Most respondents joined iSPEX because they wanted to contribute to the scientific goals of the project or because they were interested in the project topics (health and environmental impact of aerosols). In terms of learning impact, respondents reported a gain in knowledge about citizen science and the topics of the project. However, many respondents had an incomplete understanding of the science behind the project, possibly caused by the complexity of the measurements. © The Author(s) 2015.

  1. Preschool children's Collaborative Science Learning Scaffolded by Tablets

    Science.gov (United States)

    Fridberg, Marie; Thulin, Susanne; Redfors, Andreas

    2017-06-01

    This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.

  2. Opportunity to learn: Investigating possible predictors for pre-course Test Of Astronomy STandards TOAST scores

    Science.gov (United States)

    Berryhill, Katie J.

    As astronomy education researchers become more interested in experimentally testing innovative teaching strategies to enhance learning in introductory astronomy survey courses ("ASTRO 101"), scholars are placing increased attention toward better understanding factors impacting student gain scores on the widely used Test Of Astronomy STandards (TOAST). Usually used in a pre-test and post-test research design, one might naturally assume that the pre-course differences observed between high- and low-scoring college students might be due in large part to their pre-existing motivation, interest, experience in science, and attitudes about astronomy. To explore this notion, 11 non-science majoring undergraduates taking ASTRO 101 at west coast community colleges were interviewed in the first few weeks of the course to better understand students' pre-existing affect toward learning astronomy with an eye toward predicting student success. In answering this question, we hope to contribute to our understanding of the incoming knowledge of students taking undergraduate introductory astronomy classes, but also gain insight into how faculty can best meet those students' needs and assist them in achieving success. Perhaps surprisingly, there was only weak correlation between students' motivation toward learning astronomy and their pre-test scores. Instead, the most fruitful predictor of TOAST pre-test scores was the quantity of pre-existing, informal, self-directed astronomy learning experiences.

  3. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  4. How the Environment Is Positioned in the "Next Generation Science Standards": A Critical Discourse Analysis

    Science.gov (United States)

    Hufnagel, Elizabeth; Kelly, Gregory J.; Henderson, Joseph A.

    2018-01-01

    The purpose of this paper is to describe how the environment and environmental issues are conceptualized and positioned in the Next Generation Science Standards (NGSS) to examine underlying assumptions about the environment. The NGSS are a recent set of science standards in the USA, organized and led by Achieve Inc., that propose science education…

  5. Chemistry in Past and New Science Frameworks and Standards: Gains, Losses, and Missed Opportunities

    Science.gov (United States)

    Talanquer, Vicente; Sevian, Hannah

    2014-01-01

    Science education frameworks and standards play a central role in the development of curricula and assessments, as well as in guiding teaching practices in grades K-12. Recently, the National Research Council published a new Framework for K-12 Science Education that has guided the development of the Next Generation Science Standards. In this…

  6. Why formal learning theory matters for cognitive science.

    Science.gov (United States)

    Fulop, Sean; Chater, Nick

    2013-01-01

    This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.

  7. Lessons learned in streamlining the preparation of SNM standard solutions

    International Nuclear Information System (INIS)

    Clark, J.P.; Johnson, S.R.

    1986-01-01

    Improved safeguard measurements have produced a demand for greater quantities of reliable SNM solution standards. At the Savannah River Plant (SRP), the demand for these standards has been met by several innovations to improve the productivity and reliability of standards preparations. With the use of computer controlled balance, large batches of SNM stock solutions are prepared on a gravimetric basis. Accurately dispensed quantities of the stock solution are weighed and stored in bottles. When needed, they are quantitatively transferred to tared containers, matrix adjusted to target concentrations, weighed, and measured for density at 25 0 C. Concentrations of SNM are calculated both gravimetrically and volumetrically. Calculated values are confirmed analytically before the standards are used in measurement control program (MCP) activities. The lessons learned include: MCP goals include error identification and management. Strategy modifications are required to improve error management. Administrative controls can minimize certain types of errors. Automation can eliminate redundancy and streamline preparations. Prudence and simplicity enhance automation success. The effort expended to increase productivity has increased the reliability of standards and provided better documentation for quality assurance

  8. Learning and the transformative potential of citizen science.

    Science.gov (United States)

    Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta

    2016-10-01

    The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  9. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    Science.gov (United States)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic

  10. Seventy Years of Radio Science, Technology, Standards, and Measurement at the National Bureau of Standards

    Science.gov (United States)

    Gillmor, C. Stewart

    This large volume describes all the forms of radio research done at the National Bureau of Standards (now, National Institute of Standards and Technology) from its founding in 1901 until about 1980. The volume truly reflects its subtitle; it describes in great detail research in radio propagation and all its connections with geophysics and geospace, but also radio as instrument for discovery and application in meteorology, navigation, and in standards of measurement and testing in electronics.The book is a bit unwieldy and some of its chapters will be of most interest to former NBS employees. For example, there is a lengthy chapter on the transfer of radio research work from Washington, D.C, to Boulder, Colo., in the early 1950s, complete with photostat of the quit claim deed to NBS from the Boulder Chamber of Commerce. On the other hand, radio research developed and flourished in this country in the early days at industrial (Bell Telephone, General Electric, Westinghouse) and government (NBS, Naval Research Laboratory) labs more than in academia, and it is very interesting to learn how the labs interacted and to read details of the organizational structure. I can attest personally to the great difficulties in locating materials concerning radio history. While we have numerous volumes devoted to certain popular radio heroes, little is available concerning government radio pioneers such as L. W. Austin, who directed the U.S. Navy's radio research for many years while situated physically at the Bureau of Standards, or J. H. Dellinger, long-time chief of the Radio Section and head spokesman on radio for the U.S. government until the 1930s.

  11. Learning environments matter: Identifying influences on the motivation to learn science

    Directory of Open Access Journals (Sweden)

    Salomé Schulze

    2015-05-01

    Full Text Available In the light of the poor academic achievement in science by secondary school students in South Africa, students' motivation for science learning should be enhanced. It is argued that this can only be achieved with insight into which motivational factors to target, with due consideration of the diversity in schools. The study therefore explored the impact of six motivational factors for science learning in a sample of 380 Grade Nine boys and girls from three racial groups, in both public and independent schools. The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the significant role played by science teachers in motivating students for science in terms of the learning environments that they create. This has important implications for future research, aimed at a better understanding of these environments. Such insights are needed to promote scientific literacy among the school students, and so contribute to the improvement of science achievement in South Africa.

  12. Problem-based learning in a health sciences librarianship course.

    Science.gov (United States)

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  13. Learning correlation and regression within authentic sciences

    NARCIS (Netherlands)

    Dierdorp, A.

    2013-01-01

    One of the key challenges in mathematics and science education in secondary schools is to establish coherence between these school subjects. According to this PhD thesis statistical modelling can be a way to let students experience the connections between mathematics and science. The purpose of this

  14. Lateral learning for science reporters | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-31

    Jan 31, 2011 ... In poor countries, science journalists frequently lack training, ... Federation of Science Journalists (WFSJ) is making a good start on ... and may offer little chance for instructors to give close attention to individual students .... In some districts, basic research resources like cheap and reliable telephone service, ...

  15. Flexible Expectations of Learning Outcomes in Science

    Science.gov (United States)

    Binstead, Ayla; Campbell, Kirsty; Guasch, Susana Fraile; Sullivan, Claire; Williams, Lydia

    2014-01-01

    In this article five trainee teachers specialising in science at the University of Winchester describe their experience teaching science for three consecutive Fridays within a 2 year class (ages 6-7). They were given the task of teaching food and nutrition through the class topic of "turrets and tiaras," a medieval history focus. Their…

  16. Newly qualified teachers' visions of science learning and teaching

    Science.gov (United States)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  17. Improving the quality of learning in science through optimization of lesson study for learning community

    Science.gov (United States)

    Setyaningsih, S.

    2018-03-01

    Lesson Study for Learning Community is one of lecturer profession building system through collaborative and continuous learning study based on the principles of openness, collegiality, and mutual learning to build learning community in order to form professional learning community. To achieve the above, we need a strategy and learning method with specific subscription technique. This paper provides a description of how the quality of learning in the field of science can be improved by implementing strategies and methods accordingly, namely by applying lesson study for learning community optimally. Initially this research was focused on the study of instructional techniques. Learning method used is learning model Contextual teaching and Learning (CTL) and model of Problem Based Learning (PBL). The results showed that there was a significant increase in competence, attitudes, and psychomotor in the four study programs that were modelled. Therefore, it can be concluded that the implementation of learning strategies in Lesson study for Learning Community is needed to be used to improve the competence, attitude and psychomotor of science students.

  18. Science and art of setting performance standards and cutoff scores in kinesiology.

    Science.gov (United States)

    Zhu, Weimo

    2013-12-01

    Setting standards and cutoff scores is essential to any measurement and evaluation practice. Two evaluation frameworks, norm-referenced (NR) and criterion-referenced (CR), have often been used for setting standards. Although setting fitness standards based on the NR evaluation is relatively easy as long as a nationally representative sample can be obtained and regularly updated, it has several limitations-namely, time dependency, population dependence, discouraging low-level performers, and favoring advantaged or punishing disadvantaged individuals. Fortunately, these limitations can be significantly eliminated by employing the CR evaluation, which was introduced to kinesiology by Safrit and colleagues in the 1980s and has been successfully applied to some practical problems (e.g., set health-related fitness standards for FITNESSGRAM). Yet, the CR evaluation has its own challenges, e.g., selecting an appropriate measure for a criterion behavior, when the expected relationship between the criterion behavior and a predictive measure is not clear, and when standards are not consistent among multiple field measures. Some of these challenges can be addressed by employing the latest statistical methods (e.g., test equating). This article provides a comprehensive review of the science and art of setting standards and cutoff scores in kinesiology. After a brief historical overview of the standard-setting practice in kinesiology is presented, a case analysis of a successful CR evaluation, along with related challenges, is described. Lessons learned from past and current practice as well as how to develop a defendable standard are described. Finally, future research needs and directions are outlined.

  19. Exhibitions as learning environments: a review of empirical research on students’ science learning at Natural History Museums, Science Museums and Science Centres

    Directory of Open Access Journals (Sweden)

    Nils Petter Hauan

    2014-04-01

    Full Text Available One aim for many natural history museums, science museums and science centres is to contribute to school-related learning in science. In this article we review published empirical studies of this challenging area. The review indicates that the effectiveness of educational activities at different types of science-communication venues (SCV in supporting students’ science learning varies. There is also evidence of interesting differences between activities, depending on how these activities are designed. Firstly, these activities can stimulate interest and conceptual focus through a well-designed combination of structure and openness. Secondly, they can stimulate talks and explorations related to the presented topics. We have identified two possible areas which might prove fruitful in guiding further research: an exploration of the effects of different designs for guided exploratory learning, and an evaluation of the effectiveness of educational activities by studying the presence and quality of the learning processes visitors are engaged in. 

  20. Longitudinal analysis of standardized test scores of students in the Science Writing Heuristic approach

    Science.gov (United States)

    Chanlen, Niphon

    The purpose of this study was to examine the longitudinal impacts of the Science Writing Heuristic (SWH) approach on student science achievement measured by the Iowa Test of Basic Skills (ITBS). A number of studies have reported positive impact of an inquiry-based instruction on student achievement, critical thinking skills, reasoning skills, attitude toward science, etc. So far, studies have focused on exploring how an intervention affects student achievement using teacher/researcher-generated measurement. Only a few studies have attempted to explore the long-term impacts of an intervention on student science achievement measured by standardized tests. The students' science and reading ITBS data was collected from 2000 to 2011 from a school district which had adopted the SWH approach as the main approach in science classrooms since 2002. The data consisted of 12,350 data points from 3,039 students. The multilevel model for change with discontinuity in elevation and slope technique was used to analyze changes in student science achievement growth trajectories prior and after adopting the SWH approach. The results showed that the SWH approach positively impacted students by initially raising science achievement scores. The initial impact was maintained and gradually increased when students were continuously exposed to the SWH approach. Disadvantaged students who were at risk of having low science achievement had bigger benefits from experience with the SWH approach. As a result, existing problematic achievement gaps were narrowed down. Moreover, students who started experience with the SWH approach as early as elementary school seemed to have better science achievement growth compared to students who started experiencing with the SWH approach only in high school. The results found in this study not only confirmed the positive impacts of the SWH approach on student achievement, but also demonstrated additive impacts found when students had longitudinal experiences

  1. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    Science.gov (United States)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  2. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  3. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  4. A brief review of augmented reality science learning

    Science.gov (United States)

    Gopalan, Valarmathie; Bakar, Juliana Aida Abu; Zulkifli, Abdul Nasir

    2017-10-01

    This paper reviews several literatures concerning the theories and model that could be applied for science motivation for upper secondary school learners (16-17 years old) in order to make the learning experience more amazing and useful. The embedment of AR in science could bring an awe-inspiring transformation on learners' viewpoint towards the respective subject matters. Augmented Reality is able to present the real and virtual learning experience with the addition of multiple media without replacing the real environment. Due to the unique feature of AR, it attracts the mass attention of researchers to implement AR in science learning. This impressive technology offers learners with the ultimate visualization and provides an astonishing and transparent learning experience by bringing to light the unseen perspective of the learning content. This paper will attract the attention of researchers in the related field as well as academicians in the related discipline. This paper aims to propose several related theoretical guidance that could be applied in science motivation to transform the learning in an effective way.

  5. High school students' implicit theories of what facilitates science learning

    Science.gov (United States)

    Carlton Parsons, Eileen; Miles, Rhea; Petersen, Michael

    2011-11-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high school students' implicit theories of what facilitates their learning of science?; (2) With respect to students' self-classifications as African American or European American and female or male, do differences exist in the students' implicit theories? Sample, design and methods: Students in an urban high school located in south-eastern United States were surveyed in 2006 about their thoughts on what helps them learn science. To confirm or disconfirm any differences, data from two different samples were analyzed. Responses of 112 African American and 118 European American students and responses from 297 European American students comprised the data for sample one and two, respectively. Results: Seven categories emerged from the deductive and inductive analyses of data: personal responsibility, learning arrangements, interest and knowledge, communication, student mastery, environmental responsiveness, and instructional strategies. Instructional strategies captured 82% and 80% of the data from sample one and two, respectively; consequently, this category was further subjected to Mann-Whitney statistical analysis at p ethnic differences. Significant differences did not exist for ethnicity but differences between females and males in sample one and sample two emerged. Conclusions: African American and European American students' implicit theories about instructional strategies that facilitated their science learning did not significantly differ but female and male students' implicit theories about instructional strategies that helped them learn science significantly differed. Because students attend and respond to what they think

  6. Recommendations for Implementing the New Illinois Early Learning and Development Standards to Affect Classroom Practices for Social and Emotional Learning

    Science.gov (United States)

    Zinsser, Katherine M.; Dusenbury, Linda

    2015-01-01

    The state of Illinois in the central United States has long been a trendsetter both in the development of learning standards and in addressing social and emotional learning in education settings. With a recent revision to the state's early learning standards, published in 2013, the Illinois State Board of Education (ISBE) fully aligned its…

  7. Teaching of anatomical sciences: A blended learning approach.

    Science.gov (United States)

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Science Spots AR: A Platform for Science Learning Games with Augmented Reality

    Science.gov (United States)

    Laine, Teemu H.; Nygren, Eeva; Dirin, Amir; Suk, Hae-Jung

    2016-01-01

    Lack of motivation and of real-world relevance have been identified as reasons for low interest in science among children. Game-based learning and storytelling are prominent methods for generating intrinsic motivation in learning. Real-world relevance requires connecting abstract scientific concepts with the real world. This can be done by…

  9. PROJECT-BASED LEARNING IN CONSUMER SCIENCES ...

    African Journals Online (AJOL)

    user

    One of the teaching-learning strategies that may .... together in small groups, while sharing ideas ... lecturer and learner when scaffolding pedagogy, .... their roles, interaction and access to resources. ... When using the measure of practical.

  10. Learning Science through Talking Science in Elementary Classroom

    Science.gov (United States)

    Tank, Kristina Maruyama; Coffino, Kara

    2014-01-01

    Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students' know about human body and various systems,…

  11. Cooperative Learning about Nature of Science with a Case from the History of Science

    Science.gov (United States)

    Wolfensberger, Balz; Canella, Claudia

    2015-01-01

    This paper reports a predominantly qualitative classroom study on cooperative learning about nature of science (NOS) using a case from the history of science. The purpose of the research was to gain insight into how students worked with the historical case study during cooperative group work, how students and teachers assessed the teaching unit,…

  12. Models in Science Education: Applications of Models in Learning and Teaching Science

    Science.gov (United States)

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  13. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  14. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16)

  15. Cultivating Collaborations: Site Specific Design for Embodied Science Learning.

    Science.gov (United States)

    Gill, Katherine; Glazier, Jocelyn; Towns, Betsy

    2018-05-21

    Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.

  16. Elementary school children's science learning from school field trips

    Science.gov (United States)

    Glick, Marilyn Petty

    This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.

  17. Connecting Students and Policymakers through Science and Service-Learning

    Science.gov (United States)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present

  18. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    Science.gov (United States)

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  19. Reframing Science Learning and Teaching: A Communities of Practice Approach

    Science.gov (United States)

    Sansone, Anna

    2018-01-01

    Next Generation Science Standards encourage science instruction that offers not only opportunities for inquiry but also the diverse social and cognitive processes involved in scientific thinking and communication. This article gives an introduction to Lave and Wenger's (1991) communities of practice framework as a potential way of viewing…

  20. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  1. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    Science.gov (United States)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  2. Mammogram retrieval through machine learning within BI-RADS standards.

    Science.gov (United States)

    Wei, Chia-Hung; Li, Yue; Huang, Pai Jung

    2011-08-01

    A content-based mammogram retrieval system can support usual comparisons made on images by physicians, answering similarity queries over images stored in the database. The importance of searching for similar mammograms lies in the fact that physicians usually try to recall similar cases by seeking images that are pathologically similar to a given image. This paper presents a content-based mammogram retrieval system, which employs a query example to search for similar mammograms in the database. In this system the mammographic lesions are interpreted based on their medical characteristics specified in the Breast Imaging Reporting and Data System (BI-RADS) standards. A hierarchical similarity measurement scheme based on a distance weighting function is proposed to model user's perception and maximizes the effectiveness of each feature in a mammographic descriptor. A machine learning approach based on support vector machines and user's relevance feedback is also proposed to analyze the user's information need in order to retrieve target images more accurately. Experimental results demonstrate that the proposed machine learning approach with Radial Basis Function (RBF) kernel function achieves the best performance among all tested ones. Furthermore, the results also show that the proposed learning approach can improve retrieval performance when applied to retrieve mammograms with similar mass and calcification lesions, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  4. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  5. Relationships among constructivist learning environment perceptions, motivational beliefs, self-regulation and science achievement

    Science.gov (United States)

    Kingir, Sevgi; Tas, Yasemin; Gok, Gulsum; Sungur Vural, Semra

    2013-11-01

    Background. There are attempts to integrate learning environment research with motivation and self-regulation research that considers social context influences an individual's motivation, self-regulation and, in turn, academic performance. Purpose. This study explored the relationships among constructivist learning environment perception variables (personal relevance, uncertainty, shared control, critical voice, student negotiation), motivational beliefs (self-efficacy, intrinsic interest, goal orientation), self-regulation, and science achievement. Sample. The sample for this study comprised 802 Grade 8 students from 14 public middle schools in a district of Ankara in Turkey. Design and methods. Students were administered 4 instruments: Constructivist Learning Environment Survey, Goal Achievement Questionnaire, Motivated Strategies for Learning Questionnaire, and Science Achievement Test. LISREL 8.7 program with SIMPLIS programming language was used to test the conceptual model. Providing appropriate fit indices for the proposed model, the standardized path coefficients for direct effects were examined. Results. At least one dimension of the constructivist learning environment was associated with students' intrinsic interest, goal orientation, self-efficacy, self-regulation, and science achievement. Self-efficacy emerged as the strongest predictor of both mastery and performance avoidance goals rather than the approach goals. Intrinsic value was found to be significantly linked to science achievement through its effect on self-regulation. The relationships between self-efficacy and self-regulation and between goal orientation and science achievement were not significant. Conclusion. In a classroom environment supporting student autonomy and control, students tend to develop higher interest in tasks, use more self-regulatory strategies, and demonstrate higher academic performance. Science teachers are highly recommended to consider these findings when designing

  6. Academic integrity in the online learning environment for health sciences students.

    Science.gov (United States)

    Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana

    2014-10-01

    The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (pacademic integrity in the online environment. Emphasis should be made about the importance of academic integrity in the online learning environment in preparation for professional behavior in the technologically advancing health sciences arena. Copyright © 2013 Elsevier Ltd. All

  7. Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning

    Science.gov (United States)

    Novak, Joseph D.

    2005-03-01

    This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.

  8. Learning to teach science for social justice in urban schools

    Science.gov (United States)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  9. The science of learning: breaking news.

    Science.gov (United States)

    Straumanis, Joan

    2011-03-01

    We begin with a paradox. On one hand, not nearly enough is known about exactly how learning takes place in the brain, although exciting new results are emerging thanks to improved brain imaging and a greater focus on neuroscience by government and universities. But this research is just beginning, and a much larger effort and investment are needed to answer even the most basic questions. On the other hand, more than enough is already known about what best promotes learning to motivate and drive educational reform for years to come. This is a report from the front lines of both research and educational implementation. This information should prove of use to anyone--teachers, students, parents, patients, and health practitioners--who is concerned about how best to improve formal or informal teaching and learning, to help people remember complex instructions, or to change unhealthy habits and practices. © 2011 Diabetes Technology Society.

  10. Cooperative learning in science: intervention in the secondary school

    Science.gov (United States)

    Topping, K. J.; Thurston, A.; Tolmie, A.; Christie, D.; Murray, P.; Karagiannidou, E.

    2011-04-01

    The use of cooperative learning in secondary school is reported - an area of considerable concern given attempts to make secondary schools more interactive and gain higher recruitment to university science courses. In this study the intervention group was 259 pupils aged 12-14 years in nine secondary schools, taught by 12 self-selected teachers. Comparison pupils came from both intervention and comparison schools (n = 385). Intervention teachers attended three continuing professional development days, in which they received information, engaged with resource packs and involved themselves in cooperative learning. Measures included both general and specific tests of science, attitudes to science, sociometry, self-esteem, attitudes to cooperative learning and transferable skills (all for pupils) and observation of implementation fidelity. There were increases during cooperative learning in pupil formulation of propositions, explanations and disagreements. Intervened pupils gained in attainment, but comparison pupils gained even more. Pupils who had experienced cooperative learning in primary school had higher pre-test scores in secondary education irrespective of being in the intervention or comparison group. On sociometry, comparison pupils showed greater affiliation to science work groups for work, but intervention pupils greater affiliation to these groups at break and out of school. Other measures were not significant. The results are discussed in relation to practice and policy implications.

  11. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    Science.gov (United States)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  12. Signs of learning in kinaesthetic science activities

    DEFF Research Database (Denmark)

    Bruun, Jesper; Johannsen, Bjørn Friis

    that students use bodily explorations to construct meaning and understanding from kinaesthetic learning that is relevant to school physics? To answer the question, we employ a semiotics perspective to analyse data from a 1-hour lesson for 8-9th graders which introduced students to kinaesthetic activities, where......?”). The analysis is conducted by searching the data to find episodes that illustrate student activity which can serve as a sign of the object that the ‘experiential gestalt of causation’ is employed in the construction of the intended learning outcome. In essence, we study a chaotic but authentic teaching...

  13. Using technology to support science inquiry learning

    Directory of Open Access Journals (Sweden)

    P John Williams

    2017-03-01

    Full Text Available This paper presents a case study of a teacher’s experience in implementing an inquiry approach to his teaching over a period of two years with two different classes. His focus was on using a range of information technologies to support student inquiry learning. The study demonstrates the need to consider the characteristics of students when implementing an inquiry approach, and also the influence of the teachers level of understanding and related confidence in such an approach. The case also indicated that a range of technologies can be effective in supporting student inquiry learning.

  14. Augmented Reality in science education – affordances for student learning

    OpenAIRE

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Håkon

    2016-01-01

    Most extant studies examining augmented reality (AR) have focused on the technology itself. This paper presents findings addressing the issue of AR for educational purposes based on a sequential survey distributed to 35 expert science teachers, ICT designers and science education researchers from four countries. There was consensus among experts in relation to a focus on ‘learning before technology’, and they in particular supplemented affordances identified in literature with perspectives re...

  15. Factors of Engagement: Professional Standards and the Library Science Internship

    Science.gov (United States)

    Dotson, Kaye B.; Dotson-Blake, Kylie P.

    2015-01-01

    In today's technological world, school librarians planning to be leaders should be ready to keep up with advances in standards significant to the profession. The professional standards, specifically American Association of School Librarians (AASL) Standards and International Society for Technology in Education (ISTE) Standards for Coaches offer…

  16. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-02-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.

  17. Cultural Communication Learning Environment in Science Classes

    Science.gov (United States)

    Dhindsa, Harkirat S.; Abdul-Latif, Salwana

    2012-01-01

    Classroom communication often involves interactions between students and teachers from dissimilar cultures, which influence classroom learning because of their dissimilar communication styles influenced by their cultures. It is therefore important to study the influence of culture on classroom communication that influences the classroom verbal and…

  18. Learning Outcomes and Affective Factors of Blended Learning of English for Library Science

    Science.gov (United States)

    Wentao, Chen; Jinyu, Zhang; Zhonggen, Yu

    2016-01-01

    English for Library Science is an essential course for students to command comprehensive scope of library knowledge. This study aims to compare the learning outcomes, gender differences and affective factors in the environments of blended and traditional learning. Around one thousand participants from one university were randomly selected to…

  19. Leaders Who Learn: The Intersection of Behavioral Science, Adult Learning and Leadership

    Science.gov (United States)

    Sabga, Natalya I.

    2017-01-01

    This study examines if a relationship exists among three rich research streams, specifically the behavioral science of motivation, adult learning and leadership. What motivates adult professionals to continue learning and how is that connected to their style and efficacy as leaders? An extension of literature to connect Andragogy,…

  20. Sociocultural Perspective of Science in Online Learning Environments. Communities of Practice in Online Learning Environments

    Science.gov (United States)

    Erdogan, Niyazi

    2016-01-01

    Present study reviews empirical research studies related to learning science in online learning environments as a community. Studies published between 1995 and 2015 were searched by using ERIC and EBSCOhost databases. As a result, fifteen studies were selected for review. Identified studies were analyzed with a qualitative content analysis method…

  1. Impact of Interactive Online Units on Learning Science among Students with Learning Disabilities and English Learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-01-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71…

  2. Contemporary machine learning: techniques for practitioners in the physical sciences

    Science.gov (United States)

    Spears, Brian

    2017-10-01

    Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Using the Learning Together Strategy to Affect Student Achievement in Physical Science

    Science.gov (United States)

    Campbell, Manda D.

    Despite efforts mandated by national legislation, the state of Georgia has made little progress in improving Grade 5 students' standardized test scores in science, spurring the need for social change. The purpose of this quantitative causal-comparative study was to determine whether there was a significant difference in the student achievement in the conceptual understanding of science concepts in a classroom where the teacher applied the cooperative learning strategy, Learning Together, as compared to the classroom in which teacher-directed instruction was applied. The theories of positive social interdependence and social development, which posit that social interaction promotes cognitive gains, provided a framework for the study. A convenience sample of 38 students in Grade 5 participated in the 6-week study. Nineteen students received the cooperative learning strategy treatment, while 19 students did not. Pre- and post-tests were administered to students in both groups, and an analysis of variance was performed to examine differences between the 2 sample means. Results indicated that the group receiving the cooperative learning strategy scored significantly higher than did the control group receiving direct instruction. The experimental group also scored higher in vocabulary acquisition. Using the cooperative learning strategy of Learning Together could guide teachers' efforts to help students achieve excellent state-mandated test scores. Learning Together may be employed as a powerful teaching tool across grade levels and content areas, thus promoting positive gains in other state-mandated testing areas such as math, language arts, and social studies.

  4. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  5. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  6. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-01-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These "futures" are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of…

  7. Measurement uncertainties for vacuum standards at Korea Research Institute of Standards and Science

    International Nuclear Information System (INIS)

    Hong, S. S.; Shin, Y. H.; Chung, K. H.

    2006-01-01

    The Korea Research Institute of Standards and Science has three major vacuum systems: an ultrasonic interferometer manometer (UIM) (Sec. II, Figs. 1 and 2) for low vacuum, a static expansion system (SES) (Sec. III, Figs. 3 and 4) for medium vacuum, and an orifice-type dynamic expansion system (DES) (Sec. IV, Figs. 5 and 6) for high and ultrahigh vacuum. For each system explicit measurement model equations with multiple variables are, respectively, given. According to ISO standards, all these system variable errors were used to calculate the expanded uncertainty (U). For each system the expanded uncertainties (k=1, confidence level=95%) and relative expanded uncertainty (expanded uncertainty/generated pressure) are summarized in Table IV and are estimated to be as follows. For UIM, at 2.5-300 Pa generated pressure, the expanded uncertainty is -2 Pa and the relative expanded uncertainty is -2 ; at 1-100 kPa generated pressure, the expanded uncertainty is -5 . For SES, at 3-100 Pa generated pressure, the expanded uncertainty is -1 Pa and the relative expanded uncertainty is -3 . For DES, at 4.6x10 -3 -1.3x10 -2 Pa generated pressure, the expanded uncertainty is -4 Pa and the relative expanded uncertainty is -3 ; at 3.0x10 -6 -9.0x10 -4 Pa generated pressure, the expanded uncertainty is -6 Pa and the relative expanded uncertainty is -2 . Within uncertainty limits our bilateral and key comparisons [CCM.P-K4 (10 Pa-1 kPa)] are extensive and in good agreement with those of other nations (Fig. 8 and Table V)

  8. A Meta-Analytic Review of Graphic Organizers and Science Instruction for Adolescents with Learning Disabilities: Implications for the Intermediate and Secondary Science Classroom

    Science.gov (United States)

    Dexter, Douglas D.; Park, Youn J.; Hughes, Charles A.

    2011-01-01

    This article presents a meta-analysis of experimental and quasi-experimental studies in which intermediate and secondary students with learning disabilities were taught science content through the use of graphic organizers (GOs). Following an exhaustive search for studies meeting specified selection criteria, 23 standardized mean effect sizes were…

  9. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  10. Supporting Three-Dimensional Science Learning: The Role of Curiosity-Driven Classroom Discourse

    Science.gov (United States)

    Johnson, Wendy Renae

    2017-01-01

    The National Research Council's "Framework for K-12 Science Education" (2011) presents a new vision for science education that calls for the integration of the three dimensions of science learning: science and engineering practices, crosscutting concepts, and disciplinary core ideas. Unlike previous conceptions of science learning that…

  11. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    Directory of Open Access Journals (Sweden)

    Hilman .

    2015-04-01

    Full Text Available Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on science process skills and cognitive learning outcomes. This experimental quasi studey used pretest-posttest control group design and consisted eighth grade students of SMP Negeri 1 Papalang Mamuju of West Sulawesi. The results showed there where significant positive effect of guided inquiry learning with mind map on process science skills and cognitive learning outcomes. Key Words: guided inquiry, mind map, science process skills, cognitive learning outcomes   Abstrak: Pembelajaran Ilmu Pengetahuan Alam (IPA di SMP bertujuan agar siswa dapat melakukan inkuiri ilmiah, meningkatkan pengetahuan, konsep, dan keterampilan IPA. Dalam pembelajaran, organisasi materi berperan penting dalam memudahkan anak belajar sehingga perlu ditelaah teknik yang memudahkan siswa membuat organisasi materi. Penelitian ini bertujuan mengetahui pengaruh pembelajaran inkuiri terbimbing dengan mind map terhadap keterampilan proses sains dan hasil belajar kognitif. Penelitian kuasi eksperimen ini menggunakan rancangan pre test-post test control group design dengan subjek penelitian siswa kelas VIII SMP Negeri 1 Papalang. Hasil penelitian menunjukkan ada pengaruh positif yang signifikan pembelajaran inkuiri terbimbing dengan mind map terhadap kemampuan keterampilan proses sains dan hasil belajar kognitif siswa. Kata kunci:  inkuiri terbimbing, mind map, keterampilan proses sains,  hasil belajar kognitif

  12. Learning science through talk: A case study of middle school students engaged in collaborative group investigation

    Science.gov (United States)

    Zinicola, Debra Ann

    Reformers call for change in how science is taught in schools by shifting the focus towards conceptual understanding for all students. Constructivist learning is being promoted through the dissemination of National and State Science Standards that recommend group learning practices in science classrooms. This study examined the science learning and interactions, using case study methodology, of one collaborative group of 4 students in an urban middle school. Data on science talk and social interaction were collected over 9 weeks through 12 science problem solving sessions. To determine student learning through peer interaction, varied group structures were implemented, and students reflected on the group learning experience. Data included: field notes, cognitive and reflective journals, audiotapes and videotapes of student talk, and audiotapes of group interviews. Journal data were analyzed quantitatively and all other data was transcribed into The Ethnograph database for qualitative analysis. The data record was organized into social and cognitive domains and coded with respect to interaction patterns to show how group members experienced the social construction of science concepts. The most significant finding was that all students learned as a result of 12 talk sessions as evidenced by pre- and post-conceptual change scores. Interactions that promoted learning involved students connecting their thoughts, rephrasing, and challenging ideas. The role structure was only used by students about 15% of the time, but it started the talk with a science focus, created awareness of scientific methods, and created an awareness of equitable member participation. Students offered more spontaneous, explanatory talk when the role structure was relaxed, but did not engage in as much scientific writing. They said the role structure was important for helping them know what to do in the talk but they no longer needed it after a time. Gender bias, status, and early adolescent

  13. Augmented Reality in science education – affordances for student learning

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    2016-01-01

    Most extant studies examining augmented reality (AR) have focused on the technology itself. This paper presents findings addressing the issue of AR for educational purposes based on a sequential survey distributed to 35 expert science teachers, ICT designers and science education researchers from...... four countries. There was consensus among experts in relation to a focus on ‘learning before technology’, and they in particular supplemented affordances identified in literature with perspectives related to interactivity, a creator perspective and inquiry based science. Expert reflections were...

  14. How Should Students Learn in the School Science Laboratory? The Benefits of Cooperative Learning

    Science.gov (United States)

    Raviv, Ayala; Cohen, Sarit; Aflalo, Ester

    2017-07-01

    Despite the inherent potential of cooperative learning, there has been very little research into its effectiveness in middle school laboratory classes. This study focuses on an empirical comparison between cooperative learning and individual learning in the school science laboratory, evaluating the quality of learning and the students' attitudes. The research included 67 seventh-grade students who undertook four laboratory experiments on the subject of "volume measuring skills." Each student engaged both in individual and cooperative learning in the laboratory, and the students wrote individual or group reports, accordingly. A total of 133 experiment reports were evaluated, 108 of which also underwent textual analysis. The findings show that the group reports were superior, both in terms of understanding the concept of "volume" and in terms of acquiring skills for measuring volume. The students' attitudes results were statistically significant and demonstrated that they preferred cooperative learning in the laboratory. These findings demonstrate that science teachers should be encouraged to implement cooperative learning in the laboratory. This will enable them to improve the quality and efficiency of laboratory learning while using a smaller number of experimental kits. Saving these expenditures, together with the possibility to teach a larger number of students simultaneously in the laboratory, will enable greater exposure to learning in the school science laboratory.

  15. Alignment of Custom Standards by Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Adela Sirbu

    2010-09-01

    Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.

  16. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  17. Instructional leadership in elementary science: How are school leaders positioned to lead in a next generation science standards era?

    Science.gov (United States)

    Winn, Kathleen Mary

    The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.

  18. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    Science.gov (United States)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning

  19. Unpacking the Paradox of Chinese Science Learners: Insights from Research into Asian Chinese School Students' Attitudes towards Learning Science, Science Learning Strategies, and Scientific Epistemological Views

    Science.gov (United States)

    Cheng, May Hung May; Wan, Zhi Hong

    2016-01-01

    Chinese students' excellent science performance in large-scale international comparisons contradicts the stereotype of the Chinese non-productive classroom learning environment and learners. Most of the existing explanations of this paradox are provided from the perspective of teaching and learning in a general sense, but little work can be found…

  20. Effects of color in the learning of science

    Science.gov (United States)

    Sánchez Juárez, A.; Granda, César W.; Castillo, D.; Jaramillo, Johanna E.; Melgar, Guissella K.

    2017-09-01

    The teaching of science is a global problem, general studies have been carried out which take into account the effects of color in the educational environment and have had revealing results, however a study has not been made to measure the effects of color in the learning of the sciences, in this specific case of Physics and mathematics. A study of the effects of color on science teaching was conducted, controlling color of various materials such as slides used in class, markers on blackboard, pens, paper sheets, laboratory materials and teacher's clothing color. In this paper we present results of student academic performance, opinion about the subject, development of logical abilities and a comparison with the teaching of science in a free way, that is to say, without control of color. There is also a study of color effects in science education distinguishing between genders and finally comparing the general results in the educational field with those obtained in this work.

  1. Effectiveness of various innovative learning methods in health science classrooms: a meta-analysis.

    Science.gov (United States)

    Kalaian, Sema A; Kasim, Rafa M

    2017-12-01

    This study reports the results of a meta-analysis of the available literature on the effectiveness of various forms of innovative small-group learning methods on student achievement in undergraduate college health science classrooms. The results of the analysis revealed that most of the primary studies supported the effectiveness of the small-group learning methods in improving students' academic achievement with an overall weighted average effect-size of 0.59 in standard deviation units favoring small-group learning methods. The subgroup analysis showed that the various forms of innovative and reform-based small-group learning interventions appeared to be significantly more effective for students in higher levels of college classes (sophomore, junior, and senior levels), students in other countries (non-U.S.) worldwide, students in groups of four or less, and students who choose their own group. The random-effects meta-regression results revealed that the effect sizes were influenced significantly by the instructional duration of the primary studies. This means that studies with longer hours of instruction yielded higher effect sizes and on average every 1 h increase in instruction, the predicted increase in effect size was 0.009 standard deviation units, which is considered as a small effect. These results may help health science and nursing educators by providing guidance in identifying the conditions under which various forms of innovative small-group learning pedagogies are collectively more effective than the traditional lecture-based teaching instruction.

  2. Learning computer science by watching video games

    OpenAIRE

    Nagataki, Hiroyuki

    2014-01-01

    This paper proposes a teaching method that utilizes video games in computer science education. The primary characteristic of this approach is that it utilizes video games as observational materials. The underlying idea is that by observing the computational behavior of a wide variety of video games, learners will easily grasp the fundamental architecture, theory, and technology of computers. The results of a case study conducted indicate that the method enhances the motivation of students for...

  3. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    Science.gov (United States)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  4. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  5. Quantitative Reasoning in Environmental Science: A Learning Progression

    Science.gov (United States)

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  6. Learning Political Science with Prediction Markets: An Experimental Study

    Science.gov (United States)

    Ellis, Cali Mortenson; Sami, Rahul

    2012-01-01

    Prediction markets are designed to aggregate the information of many individuals to forecast future events. These markets provide participants with an incentive to seek information and a forum for interaction, making markets a promising tool to motivate student learning. We carried out a quasi-experiment in an introductory political science class…

  7. Can Questions Facilitate Learning from Illustrated Science Texts?

    Science.gov (United States)

    Iding, Marie K.

    1997-01-01

    Examines the effectiveness of using questions to facilitate processing of diagrams in science texts. Investigates three different elements in experiments on college students. Finds that questions about illustrations do not facilitate learning. Discusses findings with reference to cognitive load theory, the dual coding perspective, and the…

  8. Mobile Phone Images and Video in Science Teaching and Learning

    Science.gov (United States)

    Ekanayake, Sakunthala Yatigammana; Wishart, Jocelyn

    2014-01-01

    This article reports a study into how mobile phones could be used to enhance teaching and learning in secondary school science. It describes four lessons devised by groups of Sri Lankan teachers all of which centred on the use of the mobile phone cameras rather than their communication functions. A qualitative methodological approach was used to…

  9. Superstitious Beliefs as Constraints in The Learning of Science ...

    African Journals Online (AJOL)

    This paper examines the nature, prevalence and effect of superstitious beliefs as constraints to the appropriate learning of science in our schools. Studies done on identification and analysis of types and degrees of superstitious beliefs have been reported as well as to how these beliefs inhibit the individual learner\\'s ...

  10. Geology Museum-Based Learning in Soil Science Education

    Science.gov (United States)

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…

  11. Beyond Polls: Using Science and Student Data to Stimulate Learning

    Science.gov (United States)

    Loepp, Eric D.

    2018-01-01

    In an effort to promote learning in classrooms, political science instructors are increasingly turning to interactive teaching strategies--experiments, simulations, etc.--that supplement traditional lecture formats. In this article, I advocate the use of student-generated data as a powerful teaching tool that can be used in a variety of ways to…

  12. Engaging Students in Learning Science through Promoting Creative Reasoning

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan

    2017-01-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we…

  13. Crossword Puzzles as Learning Tools in Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  14. Vocabulary Learning Strategies of Japanese Life Science Students

    Science.gov (United States)

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  15. Exploring the Intersections of Science and History Learning

    Science.gov (United States)

    Hughes, Catherine; Cosbey, Allison

    2016-01-01

    How can history museums incorporate Science, Technology, Engineering and Math (STEM) activities while preserving their missions and identities? How do interdisciplinary experiences lead to learning? A cross-institutional exhibit development and evaluation team wrestled with these ideas as they developed "Create.Connect," an National…

  16. Learning about Yeast through Science, Art and Poetry

    Science.gov (United States)

    Kelly, Lois; Brade, Alison

    2013-01-01

    In this article, the authors describe a cross-curricular project designed to enhance learning about micro-organisms. This project includes studies in art and poetry, not subjects that teachers would think of linking with science, however research notes that scientists and poets share the ability to pay close attention to things, a key skill also…

  17. Continuing Professional Development and Learning in Primary Science Classrooms

    Science.gov (United States)

    Fraser, Christine A.

    2010-01-01

    This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…

  18. Stories, Proverbs, and Anecdotes as Scaffolds for Learning Science Concepts

    Science.gov (United States)

    Mutonyi, Harriet

    2016-01-01

    Few research studies in science education have looked at how stories, proverbs, and anecdotes can be used as scaffolds for learning. Stories, proverbs, and anecdotes are cultural tools used in indigenous communities to teach children about their environment. The study draws on Bruner's work and the theory of border crossing to argue that stories,…

  19. Effects of Different Student Response Modes on Science Learning

    Science.gov (United States)

    Kho, Lee Sze; Chen, Chwen Jen

    2017-01-01

    Student response systems (SRSs) are wireless answering devices that enable students to provide simple real-time feedback to instructors. This study aims to evaluate the effects of different SRS interaction modes on elementary school students' science learning. Three interaction modes which include SRS Individual, SRS Collaborative, and Classroom…

  20. Investigating Science Collaboratively: A Case Study of Group Learning

    Science.gov (United States)

    Zinicola, Debra A.

    2009-01-01

    Discussions of one urban middle school group of students who were investigating scientific phenomena were analyzed; this study was conducted to discern if and how peer interaction contributes to learning. Through a social constructivist lens, case study methodology, we examined conceptual change among group members. Data about science talk was…

  1. Teaching the TEMI way how using mysteries supports science learning

    CERN Document Server

    Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  2. International workshop on learning by modelling in science education

    NARCIS (Netherlands)

    Bredeweg, B.; Salles, P.; Biswas, G.; Bull, S.; Kay, J.; Mitrovic, A.

    2011-01-01

    Modelling is nowadays a well-established methodology in the sciences, supporting the inquiry and understanding of complex phenomena and systems in the natural, social and artificial worlds. Hence its strong potential as pedagogical approach fostering students' learning of scientific concepts and

  3. The science teacher as the organic link in science learning: Identity, motives, and capital transfer

    Science.gov (United States)

    Alexakos, Konstantinos

    This life history study is based on in-depth interviews of five science teachers and explores themes of science teachers' experiences as science learners and how these experiences frame what I have come to call "the subjective aspects of teaching." These themes seem to imply that through such individual experiences individuals develop a personally unique lens through which they view and interpret science, science meanings, and science teaching and learning. Emerging themes created new questions to pursue and they in turn produced new themes. These were further investigated in an attempt to connect science learning and science teachers to broader issues in society. These themes include that of a dynamic, dialectical learning and understanding of science by the participants, developed and influenced through a combination of their families, their schools, and their professional experiences, and in which morals and passion play major roles. The theme of the "organic link" is also introduced and developed in this research. It includes these individuals' views of science and the scientific enterprise, their path to learning, their morals, passions, and choices, and their way of constructing knowledge and the transmission of such a process. As organic links, they are seen as a direct and necessary social connection between science and the science learner, and they foster educational experiences grounded in the social lives of their students. Not only are they seen as "transmitters" of science knowledge and the process of constructing knowledge, but they are also seen as correcting and adjusting perceived diversions of the students' thinking from that of their own. It is in this context that the concept of capital (human and cultural capital, as well as capital exchange) is also explored. These themes are seen as having immense impact on how these science teachers teach, where they teach, what is communicated to their students, and whether they become or remain science

  4. Machine learning and data science in soft materials engineering.

    Science.gov (United States)

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  5. Machine learning and data science in soft materials engineering

    Science.gov (United States)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  6. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  7. Finding Alignment: The Perceptions and Integration of the Next Generation Science Standards Practices by Elementary Teachers

    Science.gov (United States)

    Smith, Janette; Nadelson, Louis

    2017-01-01

    Preparing elementary-level teachers to teach in alignment with the eight Next Generation Science Standards (NGSS) practices could prove to be a daunting endeavor. However, the process may be catalyzed by leveraging elements of teacher science instruction that inherently attend to the practice standards. In this study, we investigated the science…

  8. Science in Sync: Integrating Science with Literacy Provides Rewarding Learning Opportunities in Both Subjects

    Science.gov (United States)

    Wallace, Carolyn S.; Coffey, Debra

    2016-01-01

    The "Next Generation Science Standards'" ("NGSS") eight scientific and engineering practices invite teachers to develop key investigative skills while addressing important disciplinary science ideas (NGSS Lead States 2013). The "NGSS" can also provide direct links to "Common Core English Language Arts…

  9. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  10. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    Science.gov (United States)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-01-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of…

  11. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  12. Values Underpinning STEM Education in the USA: An Analysis of the Next Generation Science Standards

    Science.gov (United States)

    Hoeg, Darren G.; Bencze, John Lawrence

    2017-01-01

    The Next Generation Science Standards (NGSS) were designed to address poor science and math performance in United States schools by inculcating globally competitive science, technology, engineering, and mathematics literacies relevant to participation in future society. Considering the complex network of influences involved in the development of…

  13. Next Generation Science Standards: A National Mixed-Methods Study on Teacher Readiness

    Science.gov (United States)

    Haag, Susan; Megowan, Colleen

    2015-01-01

    Next Generation Science Standards (NGSS) science and engineering practices are ways of eliciting the reasoning and applying foundational ideas in science. As research has revealed barriers to states and schools adopting the NGSS, this mixed-methods study attempts to identify characteristics of professional development (PD) that will support NGSS…

  14. Science learning based on local potential: Overview of the nature of science (NoS) achieved

    Science.gov (United States)

    Wilujeng, Insih; Zuhdan Kun, P.; Suryadarma, IGP.

    2017-08-01

    The research concerned here examined the effectiveness of science learning conducted with local potential as basis from the point of a review of the NoS (nature of science) achieved. It used the non equivalent control group design and took place in the regions of Magelang and Pati, Province of Central Java, and the regions of Bantul and Sleman, Province of the Special Region of Yogyakarta. The research population consisted of students of the first and second grades at each junior high school chosen with research subjects sampled by means of cluster sampling. The instruments used included: a) an observation sheet, b) a written test, and c) a questionnaire. The learning and research instruments had been declared valid and reliable according to previous developmental research. In conclusion, the science learning based on local potential was effective in terms of all the NoS aspects.

  15. Cognitive Language and Content Standards: Language Inventory of the Common Core State Standards in Mathematics and the Next Generation Science Standards

    Science.gov (United States)

    Winn, Kathleen M.; Mi Choi, Kyong; Hand, Brian

    2016-01-01

    STEM education is a current focus of many educators and policymakers and the Next Generation Science Standards (NGSS) with the Common Core State Standards in Mathematics (CCSSM) are foundational documents driving curricular and instructional decision making for teachers and students in K-8 classrooms across the United States. Thus, practitioners…

  16. DEVELOPMENT OF SCIENCE PROCESS SKILLS STUDENTS WITH PROJECT BASED LEARNING MODEL- BASED TRAINING IN LEARNING PHYSICS

    Directory of Open Access Journals (Sweden)

    Ratna Malawati

    2016-06-01

    Full Text Available This study aims to improve the physics Science Process Skills Students on cognitive and psychomotor aspects by using model based Project Based Learning training.The object of this study is the Project Based Learning model used in the learning process of Computationa Physics.The method used is classroom action research through two learning cycles, each cycle consisting of the stages of planning, implementation, observation and reflection. In the first cycle of treatment with their emphasis given training in the first phase up to third in the model Project Based Learning, while the second cycle is given additional treatment with emphasis discussion is collaboration in achieving the best results for each group of products. The results of data analysis showed increased ability to think Students on cognitive and Science Process Skills in the psychomotor.

  17. Assessing the Life Science Knowledge of Students and Teachers Represented by the K-8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Cook Smith, Nancy; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test…

  18. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  19. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  20. A Didactical User Guide for E-Learning in Science

    Science.gov (United States)

    Schuepbach, E.

    2002-12-01

    Development of e-learning courseware differs in many ways from conventional teaching, for example in terms of the role of tutors and students. Not all contents are suitable for e-learning; the construction of interactive graphs and complex animations is time-consuming and should be efficient and advantageous over an in-class lectures. Learning goals and tests are more important in e-learning than in conventional teaching; tests may be conditional, i.e. progression may be made dependent on successful completion of a test. Prior to production of an e-learning course, it is advised to develop a didactical concept, especially if e-learning strategies are missing in an organisation. The expectations on readily available pedagogical guidelines and didactic concepts from the point of view of science content providers are high. Here, concepts of e-pedagogy are introduced, and the highlights of a Didactical User Guide for E-Learning produced by Berne University, Switzerland and published by h.e.p. Publ. Switzerland in fall 2002 are presented. Selected didactic elements such as interactivity, communication, role of tutor and student are illustrated with an e-learning course on tropospheric ozone.

  1. NASA's Earth Science Data Systems Standards Endorsement Process

    National Research Council Canada - National Science Library

    Ullman, Richard E; Enloe, Yonsook

    2005-01-01

    Starting in January 2004, NASA instituted a set of internal working groups to develop ongoing recommendations for the continuing broad evolution of Earth Science Data Systems development and management within NASA...

  2. Sampling in Developmental Science: Situations, Shortcomings, Solutions, and Standards

    OpenAIRE

    Bornstein, Marc H.; Jager, Justin; Putnick, Diane L.

    2013-01-01

    Sampling is a key feature of every study in developmental science. Although sampling has far-reaching implications, too little attention is paid to sampling. Here, we describe, discuss, and evaluate four prominent sampling strategies in developmental science: population-based probability sampling, convenience sampling, quota sampling, and homogeneous sampling. We then judge these sampling strategies by five criteria: whether they yield representative and generalizable estimates of a study’s t...

  3. Aligning Science Achievement and STEM Expectations for College Success: A Comparative Study of Curricular Standardization

    Directory of Open Access Journals (Sweden)

    Siqi Han

    2016-04-01

    Full Text Available Lack of preparation in science leads to high rates of attrition among science, technology, engineering, and mathematics (STEM majors, even among students who are highly oriented toward STEM. Using data for twenty-seven countries from the 2006 Program for International Student Assessment, we compare the United States with other industrialized countries in terms of fifteen-year-olds’ science achievement and their expectations to focus on STEM in the future. The United States trails most countries in the mean science achievement of the general student population and among students expecting to pursue STEM majors or careers. Lack of curricular standardization in the United States is related to this lower science achievement. Countries with higher curricular standardization exhibit higher average science achievement scores; science achievement and students’ future orientation toward science are also better aligned in these countries. We discuss the implications of these findings for American colleges and universities as they seek to reduce student attrition in STEM fields.

  4. Challenges of E-learning in Medical Sciences: A Review Article

    Directory of Open Access Journals (Sweden)

    mahim naderifar

    2017-06-01

    Full Text Available Background and objective: Extension of knowledge and information is given a new meaning to the concept of education. One of The most important reasons for the use of e-learning in medical education is that learning is learned by the learners themselves. This method facilitates their individualized education programs. This study introduced the challenges and solutions for the achievement of e-learning in medical education. Materials and Methods: This is a review article that was implemented a comprehensive review using the World Wide Web. The databases such as Medline, Ovid, ProQuest, and PubMed as well as key words “e-learning, educational challenges and medical education” in Persian and English languages were used. Of the 80 articles fund, 30 articles which were related to the research objective were chosen. Results: The research showed that e-learning, despite its advantages and wide applications, has drawbacks including the lack of implementation by lecturer due to lack of knowledge of its functioning, the fading role of lecturer, lack of expertise in its application, fear of its application, special cultural beliefs and insufficient resources. Conclusion: It is necessary to consider establishing standards and substructures for achieving the implementation of e-learning in medical education. Because of inexperience of universities of medical sciences in Iran compared with other universities around the world, we suggest using the experience of universities in other countries. Also holding workshops based on e-learning can be effective.

  5. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    OpenAIRE

    Nadi SUPRAPTO; Ali MURSID

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward (teaching) science’ (ATS) instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descrip...

  6. Getting The Picture: Our Changing Climate- A new learning tool for climate science

    Science.gov (United States)

    Yager, K.; Balog, J. D.

    2014-12-01

    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.

  7. Developing a constructivist learning environment in online postsecondary science courses

    Science.gov (United States)

    Hackworth, Sylvester N.

    This Delphi study addressed the concerns of postsecondary educators regarding the quality of education received by postsecondary science students who receive their instruction online. This study was framed with the constructivist learning theory and Piaget's and Dewey's cognitive development theories. The overarching question addressed a gap in research literature surrounding the pedagogical practices that could be successfully applied to future postsecondary online science education. The panel consisted of 30 experts in the area of online postsecondary education. Qualitative data from the initial seed questions were used to create a Likert-type survey to seek consensus of the themes derived from participant responses. Participants reached agreement on six items: apply constructivism to science curricula, identify strengths and challenges of online collegiate students, explicate students' consequences due to lack of participation in discussion forums, ensure that online course content is relevant to students' lives, reinforce academic integrity, and identify qualities face-to-face collegiate science instructors need when transitioning to online science instructors. The majority of participants agreed that gender is not an important factor in determining the success of an online collegiate science student. There was no consensus on the efficacy of virtual labs in an online science classroom. This study contributes to positive social change by providing information to new and struggling postsecondary science teachers to help them successfully align their instruction with students' needs and, as a result, increase students' success.

  8. Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students

    Science.gov (United States)

    Lewis, Y.

    2006-05-01

    Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying

  9. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    Science.gov (United States)

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  10. The Influence of Extracurricular Activities on Middle School Students' Science Learning in China

    Science.gov (United States)

    Zhang, Danhui; Tang, Xing

    2017-01-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science…

  11. Applying the Science of Learning: Evidence-Based Principles for the Design of Multimedia Instruction

    Science.gov (United States)

    Mayer, Richard E.

    2008-01-01

    During the last 100 years, a major accomplishment of psychology has been the development of a science of learning aimed at understanding how people learn. In attempting to apply the science of learning, a central challenge of psychology and education is the development of a science of instruction aimed at understanding how to present material in…

  12. Influence of Career Motivation on Science Learning in Korean High-School Students

    Science.gov (United States)

    Shin, Sein; Lee, Jun-Ki; Ha, Minsu

    2017-01-01

    Motivation to learn is an essential element in science learning. In this study, the role of career motivation in science learning was examined. In particular, first, a science motivation model that focused on career motivation was tested. Second, the role of career motivation as a predictor of STEM track choice was examined. Third, the effect of…

  13. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    Science.gov (United States)

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  14. Student explanations of their science teachers' assessments, grading practices and how they learn science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  15. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    Science.gov (United States)

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  16. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    Science.gov (United States)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  17. 2017 Hans O. Mauksch Address: Using the Science of Learning to Improve Student Learning in Sociology Classes

    Science.gov (United States)

    Messineo, Melinda

    2018-01-01

    The 2017 Mauksch Address invites readers to consider how the field of sociology might benefit from greater inclusion of the science of learning into its pedagogy. Results from a survey of 92 teaching and learning experts in sociology reveal the degree to which the discipline's understanding of teaching and learning is informed by the science of…

  18. The science behind the proposed maturity standard change

    Science.gov (United States)

    The current maturity standard for navel oranges in California has been in place for nearly 100 years yet does not always do a good job of ensuring that consumers obtain good-tasting fruit during the early season. Early work that was performed which supported adoption of the standard may have been ad...

  19. Regiomontanus or learning how to play with science

    Science.gov (United States)

    Marian, Anca-Catalina

    2016-04-01

    Although at the international school competitions, Romanian students are in the top, but few students decide to learn science in school. The major problem is "how to motivate students to study science?" In cooperation with Meridian Zero Astroclub, Oradea, we provide students non-formal space where non-formal activities can approach them to the work of a researcher. Five days in September, ten to fifteen students are invited in a journey through the science world. • Formation of the Moon's craters • Solar radiation • Solar cycles • Constellations • Solar System • Eratosthenes experiment These topics are examples from our activities. Working with students from 4 years old to 18 years old, all activities are developed in the form of games, combining mathematical skills with physics or astronomy. Older students are put in the position of teachers for younger students. Results: A better understanding of physical processes, a higher interest in science, a better application of mathematical concepts in class.

  20. Designing learning spaces for interprofessional education in the anatomical sciences.

    Science.gov (United States)

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.

  1. Preservation Study for Ultra-Dilute VX Standards | Science ...

    Science.gov (United States)

    Report Lawrence Livermore National Laboratory (LLNL) supplies ultra-dilute (10 µg/mL) chemical warfare agent (CWA) standards to the Environmental Response Laboratory Network (ERLN) laboratories to allow the use of authentic standards to assist in analyses required for a remediation event involving CWAs. For this reason, it is important to collect data regarding the shelf-lives of these standards. The instability has the potential to impact quality control in regional ERLN laboratories, resulting in data that are difficult to interpret. Thus, this study investigated the use of chemical stabilizers to increase the shelf-life of VX standards. VX standards with long shelf-lives are desirable, as long shelf-life would significantly reduce the costs associated with synthesizing and resupplying the ERLN laboratories with VX.

  2. Teacher Perceptions of Their Curricular and Pedagogical Shifts: Outcomes of a Project-Based Model of Teacher Professional Development in the Next Generation Science Standards

    OpenAIRE

    David J. Shernoff; David J. Shernoff; Suparna Sinha; Denise M. Bressler; Dawna Schultz

    2017-01-01

    In this study, we conducted a model of teacher professional development (PD) on the alignment of middle and high school curricula and instruction to the Next Generation Science Standards (NGSSs), and evaluated the impact of the PD on teacher participants’ development. The PD model included a 4-day summer academy emphasizing project-based learning (PBL) in the designing of NGSS-aligned curricula and instruction, as well as monthly follow-up Professional Learning Community meetings throughout t...

  3. Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation

    Science.gov (United States)

    Levy, S. T.; Lahav, O.

    2012-01-01

    This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…

  4. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  5. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  6. Portable Tablets in Science Museum Learning: Options and Obstacles

    Science.gov (United States)

    Gronemann, Sigurd Trolle

    2017-06-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people's learning with portable tablets matches the intentions of the museums. By applying media and information literacy (MIL) components as analytical dimensions, a pattern of discrepancies between young people's expectations, their actual learning and the museums' approaches to framing such learning is identified. It is argued that, paradoxically, museums' decisions to innovate by introducing new technologies, such as portable tablets, and new pedagogies to support them conflict with many young people's traditional ideas of museums and learning. The assessment of the implications of museums' integration of portable tablets indicates that in making pedagogical transformations to accommodate new technologies, museums risk opposing didactic intention if pedagogies do not sufficiently attend to young learners' systemic expectations to learning and to their expectations to the digital experience influenced by their leisure use.

  7. Space: the final frontier in the learning of science?

    Science.gov (United States)

    Milne, Catherine

    2014-03-01

    In Space, relations, and the learning of science, Wolff-Michael Roth and Pei-Ling Hsu use ethnomethodology to explore high school interns learning shopwork and shoptalk in a research lab that is located in a world class facility for water quality analysis. Using interaction analysis they identify how spaces, like a research laboratory, can be structured as smart spaces to create a workflow (learning flow) so that shoptalk and shopwork can projectively organize the actions of interns even in new and unfamiliar settings. Using these findings they explore implications for the design of curriculum and learning spaces more broadly. The Forum papers of Erica Blatt and Cassie Quigley complement this analysis. Blatt expands the discussion on space as an active component of learning with an examination of teaching settings, beyond laboratory spaces, as active participants of education. Quigley examines smart spaces as authentic learning spaces while acknowledging how internship experiences all empirical elements of authentic learning including open-ended inquiry and empowerment. In this paper I synthesize these ideas and propose that a narrative structure might better support workflow, student agency and democratic decision making.

  8. Authentic school science knowing and learning in open-inquiry science laboratories

    CERN Document Server

    Roth, Wolff-Michael

    1995-01-01

    According to John Dewey, Seymour Papert, Donald Schon, and Allan Collins, school activities, to be authentic, need to share key features with those worlds about which they teach. This book documents learning and teaching in open-inquiry learning environments, designed with the precepts of these educational thinkers in mind. The book is thus a first-hand report of knowing and learning by individuals and groups in complex open-inquiry learning environments in science. As such, it contributes to the emerging literature in this field. Secondly, it exemplifies research methods for studying such complex learning environments. The reader is thus encouraged not only to take the research findings as such, but to reflect on the process of arriving at these findings. Finally, the book is also an example of knowledge constructed by a teacher-researcher, and thus a model for teacher-researcher activity.

  9. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    Science.gov (United States)

    Van Horne, Katie

    This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the

  10. Next Generation Science Standards: Considerations for Curricula, Assessments, Preparation, and Implementation

    Science.gov (United States)

    Best, Jane; Dunlap, Allison

    2014-01-01

    This policy brief provides an overview of the Next Generation Science Standards (NGSS), discusses policy considerations for adopting or adapting the new standards, and presents examples from states considering or implementing the NGSS. Changing academic standards is a complex process that requires significant investments of time, money, and human…

  11. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-01-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered…

  12. Scaling up Three-Dimensional Science Learning through Teacher-Led Study Groups across a State

    Science.gov (United States)

    Reiser, Brian J.; Michaels, Sarah; Moon, Jean; Bell, Tara; Dyer, Elizabeth; Edwards, Kelsey D.; McGill, Tara A. W.; Novak, Michael; Park, Aimee

    2017-01-01

    The vision for science teaching in the Framework for K-12 Science Education and the Next Generation Science Standards requires a radical departure from traditional science teaching. Science literacy is defined as three-dimensional (3D), in which students engage in science and engineering practices to develop and apply science disciplinary ideas…

  13. Deep Learning and its Applications in the Natural Sciences

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Starting from a brief historical perspective on scientific discovery, this talk will review some of the theory and open problems of deep learning and describe how to design efficient feedforward and recursive deep learning architectures for applications in the natural sciences. In particular, the focus will be on multiple particle problems at different scales: in biology (e.g. prediction of protein structures), chemistry (e.g. prediction of molecular properties and reactions), and high-energy physics (e.g. detection of exotic particles, jet substructure and tagging, "dark matter and dark knowledge")

  14. Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms

    Science.gov (United States)

    Tighe, Lisa

    The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.

  15. Special ways of knowing in science: expansive learning opportunities with bilingual children with learning disabilities

    Science.gov (United States)

    Martínez-Álvarez, Patricia

    2017-09-01

    The field of bilingual special education is currently plagued with contradictions resulting in a serious underrepresentation of emergent bilinguals with learning disabilities in professional science fields. This underrepresentation is due in large part to the fact that educational systems around the world are inadequately prepared to address the educational needs of these children; this inadequacy is rooted in a lack of understanding of the linguistic and cultural factors impacting learning. Accepting such a premise and assuming that children learn in unexpected ways when instructional practices attend to culture and language, this study documents a place-based learning experience integrating geoscience and literacy in a fourth-grade dual language classroom. Data sources include transcribed audio-taped conversations from learning experience sessions and interviews that took place as six focus children, who had been identified as having specific learning disabilities, read published science texts (i.e. texts unaltered linguistically or conceptually to meet the needs of the readers). My analysis revealed that participants generated responses that were often unexpected if solely analyzed from those Western scientific perspectives traditionally valued in school contexts. However, these responses were also full of purposeful and rich understandings that revealed opportunities for expansive learning. Adopting a cultural historical activity theory perspective, instructional tools such as texts, visuals, and questions were found to act as mediators impacting the learning in both activity systems: (a) teacher- researcher learning from children, and (b) children learning from teachers. I conclude by suggesting that there is a need to understand students' ways of knowing to their full complexity, and to deliberately recognize teachers as learners, researchers, and means to expansive learning patterns that span beyond traditional learning boundaries.

  16. An exploratory study of the influence of national and state standards on middle school science teachers' classroom assessment practices

    Science.gov (United States)

    McWaters, Kathy Jean

    2001-07-01

    Classroom assessment practices of middle school science teachers were identified and the influence of national and state science standards on these practices was examined. In Phase I of this study a mail questionnaire was sent to 450 middle school (grades 5,6,7 and 8) science teachers in 17 parishes in Louisiana to obtain information about their classroom assessment practices. In Phase II, nine middle school teachers in eight departmentalized classrooms, two classes at each grade, participated in a qualitative study. Data were collected through questionnaires, classroom observations, interviews and document analysis. Data analysis revealed three major categories of classroom assessment targets: (a) student achievement, (b) student attitudes and, (c) student products. Results indicated that most teachers are using different assessment methods when assessing different achievement targets, as recommended by science reform documents. It was also determined that many teachers are using appropriate methods to assess student learning. While teachers reported that students spend an inordinate amount of time engaged in assessment activities, classroom observations suggested that the activities were not always written tests or graded activities. Another key finding is that there is a disconnect between the quality of teaching and the quality of assessment. Teachers who teach the material recommended by science reform documents and use recommended instructional strategies were observed to stop teaching and engage students in a "test rehearsal" geared towards rote memorization of factual information. Data suggest that the national and state science content standards are influencing the content and the format of teacher-made tests. Teachers' reported using the standards during assessment construction or selection in a wide variety of ways. The most direct use of the standards reported was to select content, format and cognitive level for test items. A more circumspect approach

  17. Popper's Fact-Standard Dualism Contra "Value Free" Social Science.

    Science.gov (United States)

    Eidlin, Fred H.

    1983-01-01

    Noncognitivism, the belief that normative statements (unlike empirical statements) do not convey objective knowledge is contrasted to Karl Popper's "critical dualism," which maintains that science is imbued with values and value judgments. Noncognitivism impedes the development of a social scientific method which would integrate…

  18. Improving Software Sustainability: Lessons Learned from Profiles in Science.

    Science.gov (United States)

    Gallagher, Marie E

    2013-01-01

    The Profiles in Science® digital library features digitized surrogates of historical items selected from the archival collections of the U.S. National Library of Medicine as well as collaborating institutions. In addition, it contains a database of descriptive, technical and administrative metadata. It also contains various software components that allow creation of the metadata, management of the digital items, and access to the items and metadata through the Profiles in Science Web site [1]. The choices made building the digital library were designed to maximize the sustainability and long-term survival of all of the components of the digital library [2]. For example, selecting standard and open digital file formats rather than proprietary formats increases the sustainability of the digital files [3]. Correspondingly, using non-proprietary software may improve the sustainability of the software--either through in-house expertise or through the open source community. Limiting our digital library software exclusively to open source software or to software developed in-house has not been feasible. For example, we have used proprietary operating systems, scanning software, a search engine, and office productivity software. We did this when either lack of essential capabilities or the cost-benefit trade-off favored using proprietary software. We also did so knowing that in the future we would need to replace or upgrade some of our proprietary software, analogous to migrating from an obsolete digital file format to a new format as the technological landscape changes. Since our digital library's start in 1998, all of its software has been upgraded or replaced, but the digitized items have not yet required migration to other formats. Technological changes that compelled us to replace proprietary software included the cost of product licensing, product support, incompatibility with other software, prohibited use due to evolving security policies, and product abandonment

  19. Frames for Learning Science: Analyzing Learner Positioning in a Technology-Enhanced Science Project

    Science.gov (United States)

    Silseth, K.; Arnseth, H. C.

    2016-01-01

    In this article, we examine the relationship between how students are positioned in social encounters and how this influences learning in a technology-supported science project. We pursue this topic by focusing on the participation trajectory of one particular learner. The analysis shows that the student cannot be interpreted as one type of…

  20. The book of science mysteries classroom science activities to support student enquiry-based learning

    CERN Document Server

    McOwan, Peter; Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  1. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    Science.gov (United States)

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  2. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  3. Classroom Preschool Science Learning: The Learner, Instructional Tools, and Peer-Learning Assignments

    Science.gov (United States)

    Reuter, Jamie M.

    The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to

  4. Archiving InSight Lander Science Data Using PDS4 Standards

    Science.gov (United States)

    Stein, T.; Guinness, E. A.; Slavney, S.

    2017-12-01

    The InSight Mars Lander is scheduled for launch in 2018, and science data from the mission will be archived in the NASA Planetary Data System (PDS) using the new PDS4 standards. InSight is a geophysical lander with a science payload that includes a seismometer, a probe to measure subsurface temperatures and heat flow, a suite of meteorology instruments, a magnetometer, an experiment using radio tracking, and a robotic arm that will provide soil physical property information based on interactions with the surface. InSight is not the first science mission to archive its data using PDS4. However, PDS4 archives do not currently contain examples of the kinds of data that several of the InSight instruments will produce. Whereas the existing common PDS4 standards were sufficient for most of archiving requirements of InSight, the data generated by a few instruments required development of several extensions to the PDS4 information model. For example, the seismometer will deliver a version of its data in SEED format, which is standard for the terrestrial seismology community. This format required the design of a new product type in the PDS4 information model. A local data dictionary has also been developed for InSight that contains attributes that are not part of the common PDS4 dictionary. The local dictionary provides metadata relevant to all InSight data sets, and attributes specific to several of the instruments. Additional classes and attributes were designed for the existing PDS4 geometry dictionary that will capture metadata for the lander position and orientation, along with camera models for stereo image processing. Much of the InSight archive planning and design work has been done by a Data Archiving Working Group (DAWG), which has members from the InSight project and the PDS. The group coordinates archive design, schedules and peer review of the archive documentation and test products. The InSight DAWG archiving effort for PDS is being led by the PDS Geosciences

  5. The Effect of a Reading Accommodation on Standardized Test Scores of Learning Disabled and Non Learning Disabled Students.

    Science.gov (United States)

    Meloy, Linda L.; Deville, Craig; Frisbie, David

    The effect of the Read Aloud accommodation on the performances of learning disabled in reading (LD-R) and non-learning disabled (non LD) middle school students was studied using selected texts from the Iowa Tests of Basic Skills (ITBS) achievement battery. Science, Usage and Expression, Math Problem Solving and Data Interpretation, and Reading…

  6. Are Learning Assistants Better K-12 Science Teachers?

    Science.gov (United States)

    Gray, Kara E.; Webb, David C.; Otero, Valerie K.

    2010-10-01

    This study investigates how the undergraduate Learning Assistant (LA) experience affects teachers' first year of teaching. The LA Program provides interested science majors with the opportunity to explore teaching through weekly teaching responsibilities, an introduction to physics education research, and a learning community within the university. Some of these LAs are recruited to secondary science teacher certification programs. We hypothesized that the LA experience would enhance the teaching practices of the LAs who ultimately become teachers. To test this hypothesis, LAs were compared to a matched sample of teachers who completed the same teacher certification program as the LAs but did not have the LA "treatment." LAs and "non-LAs" were compared through interviews, classroom observations, artifact packages, and observations made with Reformed Teacher Observation Protocol (RTOP) collected within the first year of teaching. Some differences were found; these findings and their implications are discussed.

  7. Engaging students in learning science through promoting creative reasoning

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan

    2017-10-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we particularly focus on the initial claim-building aspect of this reasoning as a crucial phase in student engagement. In reviewing the literature on student reasoning and argumentation, we note that the well-established frameworks for claim-judging are not matched by accounts of creative reasoning in claim-building. We develop an exploratory framework to characterise and enact this reasoning to enhance engagement. We then apply this framework to interpret two lessons by two science teachers where they aimed to develop students' reasoning capabilities to support learning.

  8. Gender, Complexity, and Science for All: Systemizing and Its Impact on Motivation to Learn Science for Different Science Subjects

    Science.gov (United States)

    Zeyer, Albert

    2018-01-01

    The present study is based on a large cross-cultural study, which showed that a systemizing cognition type has a high impact on motivation to learn science, while the impact of gender is only indirect thorough systemizing. The present study uses the same structural equation model as in the cross-cultural study and separately tests it for physics,…

  9. Learning Robotics in a Science Museum Theatre Play: Investigation of Learning Outcomes, Contexts and Experiences

    Science.gov (United States)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2017-12-01

    Theatre is often introduced into science museums to enhance visitor experience. While learning in museums exhibitions received considerable research attention, learning from museum theatre has not. The goal of this exploratory study was to investigate the potential educational role of a science museum theatre play. The study aimed to investigate (1) cognitive learning outcomes of the play, (2) how these outcomes interact with different viewing contexts and (3) experiential learning outcomes through the theatrical experience. The play `Robot and I', addressing principles in robotics, was commissioned by a science museum. Data consisted of 391 questionnaires and interviews with 47 children and 20 parents. Findings indicate that explicit but not implicit learning goals were decoded successfully. There was little synergy between learning outcomes of the play and an exhibition on robotics, demonstrating the effect of two different physical contexts. Interview data revealed that prior knowledge, experience and interest played a major role in children's understanding of the play. Analysis of the theatrical experience showed that despite strong identification with the child protagonist, children often doubted the protagonist's knowledge jeopardizing integration of scientific content. The study extends the empirical knowledge and theoretical thinking on museum theatre to better support claims of its virtues and respond to their criticism.

  10. PENGEMBANGAN SCIENCE MOBILE LEARNING BERWAWASAN KONSERVASI BERBASIS ANDROID APP INVENTOR 2

    Directory of Open Access Journals (Sweden)

    Muhamad Taufiq

    2017-02-01

    Full Text Available Abstrak Penelitian ini bertujuan untuk mengembangkan science mobile learning berwawasan konservasi berbasis android app inventor yang teruji baik dan mengetahui respon pengguna terhadap aplikasi science mobile learning sebagai suplemen materi pembelajaran berbasis mobile. Metodologi yang digunakan dalam pembuatan aplikasi ini ialah metodologi waterfall. Aplikasi science mobile leraning berwawasan konservasi ini diharapkan dapat membantu siswa secara khusus dan masyarakat ilmiah secara umum untuk mendapatkan kemudahan belajar konsep sains menggunakan perangkat smartphone tanpa harus mencetak mengunakan kertas (paperless. Aplikasi science mobile learning dilengkapi dengan fitur pendukung yaitu gambar, video dan quiz. Simpulan dalam penelitian ini yaitu telah dihasilkan aplikasi science mobile learning berwawasan konservasi layak digunakan untuk belajar konsep sains dan upaya pengurangan penggunaan kertas (paperless, aplikasi science mobile learning mendapatkan respon baik dari masyarakat pengguna terkait kemudahan akses, kesesuaian fitur dan konten sains, serta pemanfaatannya yang mendukung pengurangan penggunaan kertas. Abstract The purpose of this research was to develop science mobile learning conservation vission based on android app inventor well tested and find out the user response to the application of mobile learning science as a supplement materials of learning mobile based. The methodology used in the making of this application is the waterfall methodology. Science mobile learning applications conservation vission is expected to help the students in particular and the scientific community in general to get the ease of learning science concepts using a Smartphone device without having to print using paper (paperless. Applications of science mobile learning include by supporting features of images, videos and quizzes. The conclusions in this research that has generated the application of science mobile learning conservation vision

  11. The Analysis of Learning Styles and Their Relationship to Academic Achievement in Medical Students of Basic Sciences Program

    Directory of Open Access Journals (Sweden)

    Reza Ghaffari

    2013-10-01

    Full Text Available Introduction: Learning style is an individual’s preferred method of encountering information in specific situations in order to acquire knowledge, skills and attitudes through study or experience. Students and Planers’ awareness of learning styles facilitate the teaching process, increases satisfaction and makes the future choices easier. This study aimed to examine different learning styles and their relation to academic achievement in medical students of basic sciences program at Tabriz University of Medical Sciences. Methods: In this descriptive – analytical study, the sample consisted of all medical students of basic sciences program at Tabriz University of Medical Sciences in 2011-2012. The data was collected through a questionnaire which included respondents’ demographic information and overall grade point average (GPA as well as Kolb standard questions on learning styles. Results: 4.3%, 47.8%, 44.9% and 2.9% of students preferred diverger, assimilator, converger and accommodator learning styles, respectively. Mean overall GPA of students who preferred diverger learning styles was 14.990.39±. Students who prefer assimilator, converger and accommodator learning styles had mean overall GPAs of 14.940.56±, 15.080.58± and 14.830.29± respectively. The findings showed no significant relationship between students’ learning academic achievement and their learning styles (p = 0.689. Conclusion: There was no significant relationship between Students’ academic achievement and their learning styles. Furthermore, the majorit of the students preferred accommodator and converger learning styles. Consequently, adopting interactive teaching methods, using tutorials, running simulation programs, launching laboratory activities and encouraging students to think and analyze problems and issues can be greatly effective in prolonging their learning lifecycle.

  12. Uncovering Black/African American and Latina/o students' motivation to learn science: Affordances to science identity development

    Science.gov (United States)

    Mahfood, Denise Marcia

    The following dissertation reports on a qualitative exploration that serves two main goals: (1) to qualitatively define and highlight science motivation development of Black/African American and Latina/o students as they learn science in middle school, high school, and in college and (2) to reveal through personal narratives how successful entry and persistence in science by this particular group is linked to the development of their science identities. The targeted population for this study is undergraduate students of color in science fields at a college or university. The theoretical frameworks for this study are constructivist theory, motivation theory, critical theory, and identity theories. The methodological approach is narrative which includes students' science learning experiences throughout the course of their academic lives. I use The Science Motivation Questionnaire II to obtain baseline data to quantitatively assess for motivation to learn science. Data from semi-structured interviews from selected participants were collected, coded, and configured into a story, and emergent themes reveal the important role of science learning in both informal and formal settings, but especially in informal settings that contribute to better understandings of science and the development of science identities for these undergraduate students of color. The findings have implications for science teaching in schools and teacher professional development in science learning.

  13. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  14. Describing the on-line graduate science student: An examination of learning style, learning strategy, and motivation

    Science.gov (United States)

    Spevak, Arlene J.

    Research in science education has presented investigations and findings related to the significance of particular learning variables. For example, the factors of learning style, learning strategy and motivational orientation have been shown to have considerable impact upon learning in a traditional classroom setting. Although these data have been somewhat generous for the face-to-face learning situation, this does not appear to be the case for distance education, particularly the Internet-based environment. The purpose of this study was to describe the on-line graduate science student, regarding the variables of learning style, learning strategy and motivational orientation. It was believed that by understanding the characteristics of adult science learners and by identifying their learning needs, Web course designers and science educators could create on-line learning programs that best utilized students' strengths in learning science. A case study method using a questionnaire, inventories, telephone interviews and documents was applied to nine graduate science students who participated for ten weeks in an asynchronous, exclusively Internet mediated graduate science course at a large, Northeastern university. Within-case and cross-case analysis indicated that these learners displayed several categories of learning styles as well as learning strategies. The students also demonstrated high levels of both intrinsic and extrinsic motivation, and this, together with varying strategy use, may have compensated for any mismatch between their preferred learning styles and their learning environment. Recommendations include replicating this study in other online graduate science courses, administration of learning style and learning strategy inventories to perspective online graduate science students, incorporation of synchronous communication into on-line science courses, and implementation of appropriate technology that supports visual and kinesthetic learners. Although

  15. U.S. initiatives to strengthen forensic science & international standards in forensic DNA

    Science.gov (United States)

    Butler, John M.

    2015-01-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236

  16. U.S. initiatives to strengthen forensic science & international standards in forensic DNA.

    Science.gov (United States)

    Butler, John M

    2015-09-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.

  17. Professional learning communities (PLCs) for early childhood science education

    Science.gov (United States)

    Eum, Jungwon

    This study explored the content, processes, and dynamics of Professional Learning Community (PLC) sessions. This study also investigated changes in preschool teachers' attitudes and beliefs toward science teaching after they participated in two different forms of PLCs including workshop and face-to-face PLC as well as workshop and online PLC. Multiple sources of data were collected for this study including participant artifacts and facilitator field notes during the PLC sessions. The participants in this study were eight teachers from NAEYC-accredited child care centers serving 3- to 5-year-old children in an urban Midwest city. All teachers participated in a workshop entitled, "Ramps and Pathways." Following the workshop, the first group engaged in face-to-face PLC sessions and the other group engaged in online PLC sessions. Qualitative data were collected through audio recordings, online archives, and open-ended surveys. The teachers' dialogue during the face-to-face PLC sessions was audiotaped, transcribed, and analyzed for emerging themes. Online archives during the online PLC sessions were collected and analyzed for emerging themes. Four main themes and 13 subthemes emanated from the face-to-face sessions, and 3 main themes and 7 subthemes emanated from the online sessions. During the face-to-face sessions, the teachers worked collaboratively by sharing their practices, supporting each other, and planning a lesson together. They also engaged in inquiry and reflection about their science teaching and child learning in a positive climate. During the online sessions, the teachers shared their thoughts and documentation and revisited their science teaching and child learning. Five themes and 15 subthemes emanated from the open-ended survey responses of face-to-face group teachers, and 3 themes and 7 subthemes emanated from the open-ended survey responses of online group teachers. Quantitative data collected in this study showed changes in teachers' attitudes and

  18. Sampling in Developmental Science: Situations, Shortcomings, Solutions, and Standards.

    Science.gov (United States)

    Bornstein, Marc H; Jager, Justin; Putnick, Diane L

    2013-12-01

    Sampling is a key feature of every study in developmental science. Although sampling has far-reaching implications, too little attention is paid to sampling. Here, we describe, discuss, and evaluate four prominent sampling strategies in developmental science: population-based probability sampling, convenience sampling, quota sampling, and homogeneous sampling. We then judge these sampling strategies by five criteria: whether they yield representative and generalizable estimates of a study's target population, whether they yield representative and generalizable estimates of subsamples within a study's target population, the recruitment efforts and costs they entail, whether they yield sufficient power to detect subsample differences, and whether they introduce "noise" related to variation in subsamples and whether that "noise" can be accounted for statistically. We use sample composition of gender, ethnicity, and socioeconomic status to illustrate and assess the four sampling strategies. Finally, we tally the use of the four sampling strategies in five prominent developmental science journals and make recommendations about best practices for sample selection and reporting.

  19. Sampling in Developmental Science: Situations, Shortcomings, Solutions, and Standards

    Science.gov (United States)

    Bornstein, Marc H.; Jager, Justin; Putnick, Diane L.

    2014-01-01

    Sampling is a key feature of every study in developmental science. Although sampling has far-reaching implications, too little attention is paid to sampling. Here, we describe, discuss, and evaluate four prominent sampling strategies in developmental science: population-based probability sampling, convenience sampling, quota sampling, and homogeneous sampling. We then judge these sampling strategies by five criteria: whether they yield representative and generalizable estimates of a study’s target population, whether they yield representative and generalizable estimates of subsamples within a study’s target population, the recruitment efforts and costs they entail, whether they yield sufficient power to detect subsample differences, and whether they introduce “noise” related to variation in subsamples and whether that “noise” can be accounted for statistically. We use sample composition of gender, ethnicity, and socioeconomic status to illustrate and assess the four sampling strategies. Finally, we tally the use of the four sampling strategies in five prominent developmental science journals and make recommendations about best practices for sample selection and reporting. PMID:25580049

  20. Developing a Mobile Learning Management System for Outdoors Nature Science Activities Based on 5E Learning Cycle

    Science.gov (United States)

    Lai, Ah-Fur; Lai, Horng-Yih; Chuang, Wei-Hsiang; Wu, Zih-Heng

    2015-01-01

    Traditional outdoor learning activities such as inquiry-based learning in nature science encounter many dilemmas. Due to prompt development of mobile computing and widespread of mobile devices, mobile learning becomes a big trend on education. The main purpose of this study is to develop a mobile-learning management system for overcoming the…

  1. Principal Leadership for Technology-enhanced Learning in Science

    Science.gov (United States)

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2008-02-01

    Reforms such as technology-enhanced instruction require principal leadership. Yet, many principals report that they need help to guide implementation of science and technology reforms. We identify strategies for helping principals provide this leadership. A two-phase design is employed. In the first phase we elicit principals' varied ideas about the Technology-enhanced Learning in Science (TELS) curriculum materials being implemented by teachers in their schools, and in the second phase we engage principals in a leadership workshop designed based on the ideas they generated. Analysis uses an emergent coding scheme to categorize principals' ideas, and a knowledge integration framework to capture the development of these ideas. The analysis suggests that principals frame their thinking about the implementation of TELS in terms of: principal leadership, curriculum, educational policy, teacher learning, student outcomes and financial resources. They seek to improve their own knowledge to support this reform. The principals organize their ideas around individual school goals and current political issues. Principals prefer professional development activities that engage them in reviewing curricula and student work with other principals. Based on the analysis, this study offers guidelines for creating learning opportunities that enhance principals' leadership abilities in technology and science reform.

  2. The Earth2Class Model for Professional Development to Implement the Next Generation Science Standards

    Science.gov (United States)

    Passow, M. J.; Assumpcao, C. M.; Baggio, F. D.; Hemming, S. R.; Goodwillie, A. M.; Brenner, C.

    2014-12-01

    Professional development for teachers involved in the implementation of the Next Generation Science Standards (NGSS) will require a multifaceted approach combining curriculum development, understanding the nature of science, applications of engineering and technology, integrating reading and writing, and other pedagogical components. The Earth2Class Workshops (E2C) at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) provides one model for creating effective training to meet the NGSS challenges. E2C has provided more than 135 workshops since 1998 that have brought together LDEO research scientists with classroom teachers and students from the New York metropolitan area and elsewhere. Each session provides teachers with the chance to learn first-hand about the wide range of investigations conducted at LDEO. This approach aligns strongly with the NGSS goals: mastery of the disciplinary core ideas, science and engineering practices, understanding the nature of science, and cross-cutting relationships. During workshops, participating teachers interact with scientists to gain understanding of what stimulated research questions, how scientists put together all the components of investigations, and ways in which results are disseminated. Networking among teachers often leads to developing lesson plans based on the science, as well as support for professional growth not always possible within the school setting. Through the E2C website www.earth2class.org, teachers and students not able to attend the live workshops can access archival versions of the sessions. The website also provides a wide variety of educational resources. These have proved to be valuable on a national basis, as evidenced by an average of more than 300,000 hits per month from thousands of site visitors. Participating researchers have found E2C to be an effective approach to provide broader outreach of their results. During the next couple of years, the E2C program will expand to provide

  3. Development of Learning Models Based on Problem Solving and Meaningful Learning Standards by Expert Validity for Animal Development Course

    Science.gov (United States)

    Lufri, L.; Fitri, R.; Yogica, R.

    2018-04-01

    The purpose of this study is to produce a learning model based on problem solving and meaningful learning standards by expert assessment or validation for the course of Animal Development. This research is a development research that produce the product in the form of learning model, which consist of sub product, namely: the syntax of learning model and student worksheets. All of these products are standardized through expert validation. The research data is the level of validity of all sub products obtained using questionnaire, filled by validators from various field of expertise (field of study, learning strategy, Bahasa). Data were analysed using descriptive statistics. The result of the research shows that the problem solving and meaningful learning model has been produced. Sub products declared appropriate by expert include the syntax of learning model and student worksheet.

  4. Interdisciplinary and inter-institutional differences in learning preferences among Malaysian medical and health sciences students

    Directory of Open Access Journals (Sweden)

    REBECCA S.Y. WONG

    2017-10-01

    Full Text Available Introduction: The learner-centred approach in medical and health sciences education makes the study of learning preferences relevant and important. This study aimed to investigate the interdisciplinary, interinstitutional, gender and racial differences in the preferred learning styles among Malaysian medical and health sciences students in three Malaysian universities, namely SEGi University (SEGi, University of Malaya (UM and Universiti Tunku Abdul Rahman (UTAR. It also investigated the differences in the preferred learning styles of these students between high achievers and non-high achievers. Methods: This cross-sectional study was carried out on medical and health sciences students from three Malaysian universities following the approval of the Research and Ethics Committee, SEGi University. Purposive sampling was used and the preferred learning styles were assessed using the VARK questionnaire. The questionnaire was validated prior to its use. Three disciplines (medicine, pharmacy and dentistry were chosen based on their entry criteria and some similarities in their course structure. The three participating universities were Malaysian universities with a home-grown undergraduate entry medical program and students from a diverse cultural and socioeconomic background. The data were analysed using the Statistical Package for the Social Sciences (SPSS software, version 22. VARK subscale scores were expressed as mean±standard deviation. Comparisons of the means were carried out using t-test or ANOVA. A p value of 0.05. Conclusion: This study gives an insight into the learner characteristics of more than one medical school in Malaysia. Such multi-institutional studies are lacking in the published literature and this study gives a better representation of the current situation in the learning preferences among medical students in Malaysia.

  5. Interdisciplinary and inter-institutional differences in learning preferences among Malaysian medical and health sciences students.

    Science.gov (United States)

    Wong, Rebecca S Y; Siow, Heng Loke; Kumarasamy, Vinoth; Shaherah Fadhlullah Suhaimi, Nazrila

    2017-10-01

    The learner-centred approach in medical and health sciences education makes the study of learning preferences relevant and important. This study aimed to investigate the interdisciplinary, inter-institutional, gender and racial differences in the preferred learning styles among Malaysian medical and health sciences students in three Malaysian universities, namely SEGi University (SEGi), University of Malaya (UM) and Universiti Tunku Abdul Rahman (UTAR). It also investigated the differences in the preferred learning styles of these students between high achievers and non-high achievers. This cross-sectional study was carried out on medical and health sciences students from three Malaysian universities following the approval of the Research and Ethics Committee, SEGi University. Purposive sampling was used and the preferred learning styles were assessed using the VARK questionnaire. The questionnaire was validated prior to its use. Three disciplines (medicine, pharmacy and dentistry) were chosen based on their entry criteria and some similarities in their course structure. The three participating universities were Malaysian universities with a home-grown undergraduate entry medical program and students from a diverse cultural and socioeconomic background. The data were analysed using the Statistical Package for the Social Sciences (SPSS) software, version 22. VARK subscale scores were expressed as mean+standard deviation. Comparisons of the means were carried out using t-test or ANOVA. A p value of 0.05). This study gives an insight into the learner characteristics of more than one medical school in Malaysia. Such multi-institutional studies are lacking in the published literature and this study gives a better representation of the current situation in the learning preferences among medical students in Malaysia.

  6. Students’ perceptions of the academic learning environment in seven medical sciences courses based on DREEM

    Science.gov (United States)

    Bakhshialiabad, Hamid; Bakhshi, Mohammadhosien; Hassanshahi, Gholamhossein

    2015-01-01

    Objective Learning environment has a significant role in determining students’ academic achievement and learning. The aim of this study is to investigate the viewpoints of undergraduate medical sciences students on the learning environment using the Dundee Ready Education Environment Measure (DREEM) at Rafsanjan University of Medical Sciences (RUMS). Methods The descriptive cross-sectional study was performed on 493 medical sciences students in the following majors: nursing, midwifery, radiology, operating room nursing, laboratory sciences, medical emergency, and anesthesia. The DREEM questionnaire was used as a standard tool. Data were analyzed using SPSS (v17) software. Student’s t-tests and analysis of variance (ANOVA) statistical tests were used. Results The mean of the achieved scores in the five domains was 113.5 out of 200 (56.74%), which was considered to be more positive than negative. The total mean scores for perception of learning, teaching, and atmosphere were 27.4/48 (57.24%), 24.60/44 (55.91%), and 26.8/48 (55.89%), respectively. Academic and social self-perceptions were 20.5/32 (64.11%) and 15.7/28 (56.36%), respectively. The total DREEM scores varied significantly between courses (Penvironment. The differences between courses and their study pathway should be further investigated by analysis of specific items. Our results showed that it is essential for faculty members and course managers to make more efforts toward observing principles of instructional designs, to create an appropriate educational environment, and to reduce deficits in order to provide a better learning environment with more facilities and supportive systems for the students. PMID:25848331

  7. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  8. Assessment for Learning in Inquiry Based Science Education

    DEFF Research Database (Denmark)

    Fornaguera, Cristina Carulla

    The study looks at assessment for learning and Inquiry Based Science Education —IBSE— as concepts established in a diversity of geographical areas, where the traditional summative assessment shapes what most individuals share as being experienced as assessment. Based on Leontiev and Radford...... the analytical process. The main contribution was the analysis and the results of researcher movement from a view of assessment considering learning as a psychological process in the mind, independent of the everyday life of individuals, towards one considering the inseparability of collective and individual...... as identifying and differentiating forms of researching assessment, changing the researcher’s perspective on research, and imagining a new theoretical approach to assessment for learning....

  9. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    Science.gov (United States)

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  10. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    Science.gov (United States)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  11. Standards guide for space and earth sciences computer software

    Science.gov (United States)

    Mason, G.; Chapman, R.; Klinglesmith, D.; Linnekin, J.; Putney, W.; Shaffer, F.; Dapice, R.

    1972-01-01

    Guidelines for the preparation of systems analysis and programming work statements are presented. The data is geared toward the efficient administration of available monetary and equipment resources. Language standards and the application of good management techniques to software development are emphasized.

  12. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  13. Constructing New World Views: Learning Science in a Historical Context

    Science.gov (United States)

    Becker, B. J.

    1994-12-01

    Recent research has shown that children, like scientists, can tolerate a wide range of observations that do not match their expectations, or that even directly conflict with them, without abandoning their personally constructed system of beliefs about the natural world. Traditional approaches -- even laboratory experiences that support textbook presentations of theories -- do not guarantee students will alter their convictions concerning how things "ought" to work. In contrast, a history-grounded approach to presenting scientific concepts has the potential for doing precisely that. In this paper, the author argues that embedding science learning in a historical context engages students in thinking about science in a way that complements and enriches a "hands-on" approach to inquiry learning. It conveys the creative and very human character of scientific explanation -- its tentative, probabilistic, and serendipitous nature. By integrating well-chosen historical images and ideas into traditional content-centered science units, educators can stimulate productive classroom discussion and establish a classroom atmosphere that nurtures students to think critically about the meaning of scientific activity in different cultures and times More importantly, the use of historic episodes in teaching science opens up opportunities for students to identify their own untutored beliefs about the workings of the natural world, to examine them critically in the light of considered historical debate, and to confront these beliefs in a way that results in positive, long-lasting conceptual change.

  14. Blended learning – integrating E-learning with traditional learning methods in teaching basic medical science

    OpenAIRE

    J.G. Bagi; N.K. Hashilkar

    2014-01-01

    Background: Blended learning includes an integration of face to face classroom learning with technology enhanced online material. It provides the convenience, speed and cost effectiveness of e-learning with the personal touch of traditional learning. Objective: The objective of the present study was to assess the effectiveness of a combination of e-learning module and traditional teaching (Blended learning) as compared to traditional teaching alone to teach acid base homeostasis to Phase I MB...

  15. Using Innovative Resources and Programs to Prepare Pre- and In-Service Teachers for New Science Standards

    Science.gov (United States)

    Kinzler, R. J.; Short, J.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Kravitz, D.; Randle, D.; Trowbridge, C.

    2014-12-01

    Leveraging the Rose Center for Earth and Space and active research departments in Earth and Planetary Science, Astrophysics, and Paleontology, the Education Department at the American Museum of Natural History (AMNH) offers an MAT program to prepare new Earth Science teachers (~100 new teachers by 2018) as well as a range of professional development (PD) opportunities for over 3,000 K-12 teachers annually, providing opportunities to learn with scientists; inquiry-based experiences; and standards-aligned resources. The AMNH produces innovative geoscience and other STEM resources supporting teacher and student science investigations with data visualizations and analysis tools, teaching case materials and other resources that provide rich nonfiction reading and writing opportunities for use in Earth and space science curricula that are integrated in the MAT and PD programs. Museum resources and the MAT and PD programs are aligned to support the recently released Next Generation Science Standards (NGSS) and the Common Core State Standards. The NGSS is a set of science and engineering practices, crosscutting concepts and disciplinary core ideas to help cultivate teachers' and K-12 students' scientific habits of mind, develop their knowledge and abilities to engage in scientific investigations, and teach them how to reason in context; goals that closely align with those of the AMNH's teacher preparation and professional development programs. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) is a required text for the MAT program, and this text as well as the NGSS Performance Expectations guide the PD programs as well. Researchers working with Museum scientists and educators find it is not enough for programs for pre- and in-service teachers to provide access to resources. Research suggests that these programs need to engage pre- and in-service teachers in using and reflecting on these types of resources, as well as take

  16. VA State Profile. Virginia: Standards of Learning (SOL) End-of-Course Exams

    Science.gov (United States)

    Center on Education Policy, 2010

    2010-01-01

    This paper provides information about Virginia's Standards of Learning (SOL) End-of-Course Exams. The purpose of the end-of-course assessments is to measure the achievement of students on the Standards of Learning adopted by the Virginia Board of Education for specific high school courses, and to ensure that students graduating from Virginia…

  17. Assessing MBA Student Teamwork under the AACSB Assurance of Learning Standards

    Science.gov (United States)

    Procino, Matthew C.

    2012-01-01

    Since the 2003 release of the AACSB's Assurance of Learning standards, outcomes assessment has been a required practice for business schools wishing to receive their endorsement. While most accredited institutions had been dabbling with the measurement of student learning, the new standards raised the bar considerably. It is now necessary to…

  18. Issues of E-Learning Standards and Identity Management for Mobility and Collaboration in Higher Education

    Science.gov (United States)

    Alves, Paulo; Uhomoibhi, James

    2010-01-01

    Purpose: This paper seeks to investigate and report on the status of identity management systems and e-learning standards across Europe for promoting mobility, collaboration and the sharing of contents and services in higher education institutions. Design/methodology/approach: The present research work examines existing e-learning standards and…

  19. The learning of sciences: a gradual change in the way of learning. The case of vision

    Directory of Open Access Journals (Sweden)

    Bettina M. Bravo

    2009-11-01

    Full Text Available Learning the scientific way of knowledge implies a change in the most implicit principles that guide comprehension, interpretation and explanation of scientific phenomena as well as a change in the type of associated reasoning. With the aim of favouring this type of learning, a teaching programme was developed in relation to vision and implemented with a group of secondary school students. The way of learning of these students was observed at different teaching stages. Findings suggest that during the learning process the way students learn seems to change gradually and that students construct “intermediate” models (right but incomplete that become the basis for the construction of a systemic model proposed by school science.

  20. The equivalence of learning paths in early science instruction: effect of direct instruction and discovery learning.

    Science.gov (United States)

    Klahr, David; Nigam, Milena

    2004-10-01

    In a study with 112 third- and fourth-grade children, we measured the relative effectiveness of discovery learning and direct instruction at two points in the learning process: (a) during the initial acquisition of the basic cognitive objective (a procedure for designing and interpreting simple, unconfounded experiments) and (b) during the subsequent transfer and application of this basic skill to more diffuse and authentic reasoning associated with the evaluation of science-fair posters. We found not only that many more children learned from direct instruction than from discovery learning, but also that when asked to make broader, richer scientific judgments, the many children who learned about experimental design from direct instruction performed as well as those few children who discovered the method on their own. These results challenge predictions derived from the presumed superiority of discovery approaches in teaching young children basic procedures for early scientific investigations.

  1. Building Accessible Educational Web Sites: The Law, Standards, Guidelines, Tools, and Lessons Learned

    Science.gov (United States)

    Liu, Ye; Palmer, Bart; Recker, Mimi

    2004-01-01

    Professional education is increasingly facing accessibility challenges with the emergence of webbased learning. This paper summarizes related U.S. legislation, standards, guidelines, and validation tools to make web-based learning accessible for all potential learners. We also present lessons learned during the implementation of web accessibility…

  2. Active learning increases student performance in science, engineering, and mathematics.

    Science.gov (United States)

    Freeman, Scott; Eddy, Sarah L; McDonough, Miles; Smith, Michelle K; Okoroafor, Nnadozie; Jordt, Hannah; Wenderoth, Mary Pat

    2014-06-10

    To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes--although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias. The results also appear robust to variation in the methodological rigor of the included studies, based on the quality of controls over student quality and instructor identity. This is the largest and most comprehensive metaanalysis of undergraduate STEM education published to date. The results raise questions about the continued use of traditional lecturing as a control in research studies, and support active learning as the preferred, empirically validated teaching practice in regular classrooms.

  3. A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives

    Science.gov (United States)

    Tytler, Russell; Prain, Vaughan

    2010-10-01

    Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.

  4. Comparing learning styles among students of Para medicine and Health faculties in Golestan University of medical sciences

    Directory of Open Access Journals (Sweden)

    Ghorban Mohammad Koochaki

    2016-06-01

    Full Text Available Background and Objectives: The validity of an educational system is dependent on students' learning. Learning is a complex variable which is affected by multiple factors. One of the most important factors is learning styles. Knowledge of learning styles of students to educational programs is very important. Therefore, this study aimed to determine students' learning styles among students of Para medicine and Health faculties in Golestan University of medical sciences. Methods: In this cross-sectional study, 401 students of the faculty of Para medicine and Health in Golestan University of Medical Sciences since 1391 till 1392 were selected and filled out the Standard Kolb Learning Style Inventory (LSI which was previously tested for reliability (8.0. Data was analyzed with SPSS version 18.0 using Chi-square and Fisher's exact test. Results: The mean age of students was 20.57 and 71.8 percent of them were female students. Learning styles of students included a convergent (63.4 %, absorber (25.4 %, accommodating (7.5% and divergent (3.7 %. Learning style of study had no statistically significant difference in comparison to sex, school, age, GPA, credits, semester and education levels (P>0.05. Conclusion: Converging and absorbing learning styles were more dominant among students. Therefore, it is recommended to use training methods which fit this style such as showing hand-writings and presentations with self-study materials, simulations, laboratory assignments and problem-based learning.

  5. Commentary on "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning"

    Science.gov (United States)

    Hewitt, Jim

    2015-01-01

    The article, "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning" is an interesting study that operates at the intersection of learning theory and learning analytics. The authors observe that the relationship between learning theory and research in the learning analytics field is constrained by several…

  6. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    Science.gov (United States)

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  7. Choosing Learning Methods Suitable for Teaching and Learning in Computer Science

    Science.gov (United States)

    Taylor, Estelle; Breed, Marnus; Hauman, Ilette; Homann, Armando

    2013-01-01

    Our aim is to determine which teaching methods students in Computer Science and Information Systems prefer. There are in total 5 different paradigms (behaviorism, cognitivism, constructivism, design-based and humanism) with 32 models between them. Each model is unique and states different learning methods. Recommendations are made on methods that…

  8. Animated Pedagogical Agents Effects on Enhancing Student Motivation and Learning in a Science Inquiry Learning Environment

    Science.gov (United States)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    2015-01-01

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students' perceptions of task relevance and self-efficacy. Given the under-representation of girls in science classrooms, special attention was given to…

  9. Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment

    NARCIS (Netherlands)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    2015-01-01

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students’ perceptions of task relevance and self-efficacy. Given the under-representation of girls in science

  10. Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment

    NARCIS (Netherlands)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students’ perceptions of task relevance and selfefficacy. Given the under-representation of girls in science

  11. Contextual Markup and Mining in Digital Games for Science Learning: Connecting Player Behaviors to Learning Goals

    Science.gov (United States)

    Kinnebrew John S.; Killingsworth, Stephen S.; Clark, Douglas B.; Biswas, Gautam; Sengupta, Pratim; Minstrell, James; Martinez-Garza, Mario; Krinks, Kara

    2017-01-01

    Digital games can make unique and powerful contributions to K-12 science education, but much of that potential remains unrealized. Research evaluating games for learning still relies primarily on pre- and post-test data, which limits possible insights into more complex interactions between game design features, gameplay, and formal assessment.…

  12. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    Science.gov (United States)

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  13. Sustainability, the Next Generation Science Standards, and the Education of Future Teachers

    Science.gov (United States)

    Egger, Anne E.; Kastens, Kim A.; Turrin, Margaret K.

    2017-01-01

    The Next Generation Science Standards (NGSS) emphasize how human activities affect the Earth and how Earth processes impact humans, placing the concept of sustainability within the Earth and Space Sciences. We ask: how prepared are future teachers to address sustainability and systems thinking as encoded in the NGSS? And how can geoscientists…

  14. Research on Educational Standards in German Science Education--Towards a Model of Student Competences

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2014-01-01

    This paper gives an overview of research on modelling science competence in German science education. Since the first national German educational standards for physics, chemistry and biology education were released in 2004 research projects dealing with competences have become prominent strands. Most of this research is about the structure of…

  15. Is There a Relationship between Brain Type, Sex and Motivation to Learn Science?

    Science.gov (United States)

    Zeyer, Albert; Wolf, Sarah

    2010-01-01

    Whilst sex is considered to be one of the most significant factors influencing attitudes towards science, previous research seems to suggest that, at least in non-science classes, there is no correlation between sex and motivation to learn science. The present study investigates a mixed group of science and non-science students of upper secondary…

  16. Science learning and teaching in a Creole-speaking environment

    Science.gov (United States)

    Lodge, Wilton

    2017-09-01

    The focus of this response to Charity Hudley and Christine Mallinson's article, `"Its worth our time": A model of culturally and linguistically responsive professional development for K-12 STEM educators', is to underpin a pedagogy that encourages and provides opportunities for the use of non-standard language in the description and practice of science. I discuss this within the context of Jamaica and provide an alternative way of science teaching, one which promotes Jamaican Creole as a mode of instruction for classroom talk and printed material.

  17. Cross-Cultural Comparisons of University Students' Science Learning Self-Efficacy: Structural Relationships among Factors within Science Learning Self-Efficacy

    Science.gov (United States)

    Wang, Ya-Ling; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-01-01

    Science learning self-efficacy could be regarded as a multi-factor belief which comprises different aspects such as cognitive skills, practical work, and everyday application. However, few studies have investigated the relationships among these factors that compose science learning self-efficacy. Also, culture may play an important role in…

  18. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    Science.gov (United States)

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  19. The Impact of the Next Generation Science Standards on Future Professional Development and Astronomy Education Research

    Science.gov (United States)

    Buxner, Sanlyn

    2013-06-01

    The Next Generation Science Standards will have a profound impact on the future science education of students and professional development for teachers. The science and engineering practices, crosscutting concepts, and disciplinary core ideas laid out in the Framework for K-12 Science Education (NRC, 2011) will change the focus and methods of how we prepare teachers to meet these new standards. Extending beyond just the use of inquiry in the classroom, teachers will need support designing and implementing integrated experiences for students that require them to apply knowledge of content and practices. Integrating the three dimensions central to the new standards will pose curricular challenges and create opportunities for innovative space science projects and instruction. The science research and technology community will have an important role in supporting authentic classroom practices as well as training and support of teachers in these new ways of presenting science and technology. These changes will require a new focus for teacher professional development and new ways to research impacts of teacher training and changes in classroom practice. In addition, new and innovative tools will be needed to assess mastery of students’ knowledge of practices and the ways teachers effectively help students achieve these new goals. The astronomy education community has much to offer as K-12 and undergraduate level science educators rethink and redefine what it means to be scientifically literate and figure out how to truly measure the success of these new ways of teaching science.

  20. Problem-based scenarios with laptops: an effective combination for cross-curricular learning in mathematics, science and language

    Directory of Open Access Journals (Sweden)

    Viktor Freiman

    2011-12-01

    Full Text Available Many educational systems consider using one-to-one access to the laptop as a way to improve teaching and learning. A two-year action research project on the use of laptop computers by New Brunswick (Canada grade 7 and 8 Francophone students aimed to better understand the impact of laptops on learning. Two problem-based learning (PBL interdisciplinary scenarios (math, science, language arts were implemented in eight experimental classes to measure and document students’ actual learning process, particularly in terms of their ability to scientifically investigate authentic problems, to reason mathematically, and to communicate. On-site observations, video-recording, journals, samples of students’ work, and interviews were used to collect qualitative data. Based on our findings, we argue that laptops in and of themselves may not automatically lead to better results on standardized tests, but rather create opportunities to enrich learning with more open-ended, constructive, collaborative, reflective, and cognitively complex learning tasks.