WorldWideScience

Sample records for science lab thin

  1. Digital Social Science Lab

    DEFF Research Database (Denmark)

    Svendsen, Michael; Lauersen, Christian Ulrich

    2015-01-01

    At the Faculty Library of Social Sciences (part of Copenhagen University Library) we are currently working intensely towards the establishment of a Digital Social Science Lab (DSSL). The purpose of the lab is to connect research, education and learning processes with the use of digital tools...... at the Faculty of Social Sciences. DSSL will host and facilitate an 80 m2 large mobile and intelligent study- and learning environment with a focus on academic events, teaching and collaboration. Besides the physical settings DSSL has two primary functions: 1. To implement relevant social scientific software...... and hardware at the disposal for students and staff at The Faculty of Social Sciences along with instruction and teaching in the different types of software, e.g. Stata, Nvivo, Atlas.ti, R Studio, Zotero and GIS-software. 2. To facilitate academic events focusing on use of digital tools and analytic software...

  2. Los Alamos National Lab: National Security Science

    Science.gov (United States)

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Museum New Hires Publications Research Library Mission Science & Innovation Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Lab Organizations Science Programs

  3. Encouraging Creativity in the Science Lab

    Science.gov (United States)

    Eyster, Linda

    2010-01-01

    Although science is a creative endeavor (NRC 1996, p. 46), many students think they are not encouraged--or even allowed--to be creative in the laboratory. When students think there is only one correct way to do a lab, their creativity is inhibited. Park and Seung (2008) argue for the importance of creativity in science classrooms and for the…

  4. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  5. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  6. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  7. Creative Science Teaching Labs: New Dimensions in CPD

    Science.gov (United States)

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  8. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  9. GeneLab: Open Science For Exploration

    Science.gov (United States)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  10. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  11. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  12. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  13. The History of Science and Technology at Bell Labs

    Science.gov (United States)

    Bishop, David

    2008-03-01

    Over the last 80 years, Bell Labs has been one of the most scientifically and technologically productive research labs in the world. Inventions such as the transistor, laser, cell phone, solar cell, negative feedback amplifier, communications satellite and many others were made there. Scientific breakthroughs such as discovery of the Big Bang, the wave nature of the electron, electron localization and the fractional quantum hall effect were also made there making Bell Labs almost unique in terms of large impacts in both science and technology. In my talk, I will discuss the history of the lab, talk about the present and give some suggestions for how I see it evolving into the future.

  14. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  15. Library-Labs-for-Science Literacy Courses.

    Science.gov (United States)

    Pestel, Beverly C.; Engeldinger, Eugene A.

    1992-01-01

    Describes two library-lab exercises the authors have incorporated into their college chemistry course. The first exercise introduces students to scientific information and familiarizes them with the tools for accessing it. The second provides a framework for evaluating the reliability of that information and addresses the criteria that should be…

  16. Computer-based Astronomy Labs for Non-science Majors

    Science.gov (United States)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  17. Research Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Multimedia Software Laboratory Computer Science Nanotechnology for Sustainable Energy and Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  18. Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

    Science.gov (United States)

    Fox, Jared

    This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education.

  19. Lab coats in Hollywood science, scientists, and cinema

    CERN Document Server

    Kirby, David A

    2013-01-01

    Stanley Kubrick’s 2001: A Space Odyssey, released in 1968, is perhaps the most scientifically accurate film ever produced. The film presented such a plausible, realistic vision of space flight that many moon hoax proponents believe that Kubrick staged the 1969 moon landing using the same studios and techniques. Kubrick’s scientific verisimilitude in 2001 came courtesy of his science consultants—including two former NASA scientists—and the more than sixty-five companies, research organizations, and government agencies that offered technical advice. Although most filmmakers don’t consult experts as extensively as Kubrick did, films ranging from A Beautiful Mind and Contact to Finding Nemo and The Hulk have achieved some degree of scientific credibility because of science consultants. In Lab Coats in Hollywood, David Kirby examines the interaction of science and cinema: how science consultants make movie science plausible, how filmmakers negotiate scientific accuracy within production constraints, and ...

  20. Thin film Ag superlens towards lab-on-a-chip integration

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Nielsen, Rasmus Bundgaard; Boltasseva, Alexandra

    2009-01-01

    A thin metal film near-field superlens, as originally suggested by Pendry and realized by Fang et al. and Melville et al., is investigated with emphasis on materials suitable for integration on a lab-on-a-chip platform. A chemically resistant cyclo-olefin copolymer (COC), mr-I-T85 from microresist...... technology, is applied as dielectric matrix/spacer for an Ag thin film superlens. The superlens successfully resolves 80 nm half-pitch gratings when illuminated with UV radiation at a free space wavelength of 365 nm. The superlens design, fabrication and characterization is discussed....

  1. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications

    OpenAIRE

    Fu, Yong Qing; Luo, Jack; Nguyen, Nam-Trung; Walton, Anthony; Flewitt, Andrew; Zu, Xiao-Tao; Li, Yifan; McHale, Glen; Matthews, Allan; Iborra, Enrique; Du, Hejun; Milne, William

    2017-01-01

    Recently, piezoelectric thin films including zinc oxide (ZnO) and aluminium nitride (AlN) have found a broad range of lab-on-chip applications such as biosensing, particle/cell concentrating, sorting/patterning, pumping, mixing, nebulisation and jetting. Integrated acoustic wave sensing/microfluidic devices have been fabricated by depositing these piezoelectric films onto a number of substrates such as silicon, ceramics, diamond, quartz, glass, and more recently also polymer, metallic foils a...

  2. Governing Methods: Policy Innovation Labs, Design and Data Science in the Digital Governance of Education

    Science.gov (United States)

    Williamson, Ben

    2015-01-01

    Policy innovation labs are emerging knowledge actors and technical experts in the governing of education. The article offers a historical and conceptual account of the organisational form of the policy innovation lab. Policy innovation labs are characterised by specific methods and techniques of design, data science, and digitisation in public…

  3. Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2014-01-01

    Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…

  4. Bringing Science out of the Lab into the Classroom

    Science.gov (United States)

    2006-03-01

    activities," says Bill Stirling, Director General of the European Synchrotron Radiation Facility (ESRF), representing EIROforum at the launch event. "Scientists across Europe, including those in EIROforum labs, are continually making discoveries that they would be willing and able to explain to young people, but there's no central mechanism to help do so - we think that this new journal can help fulfil that function." "Motivating more young people to take an interest in understanding and learning science at school is important not only because science careers are exciting and rewarding, but also because young people need to know about how science and technology is changing our world - their world!," says Stephen Parker, Head of Education and Science of the European Commission. "Science in School is just one of the initiatives being supported by the Commission to take this forward." EIROforum sustains many other education activities including the Science on Stage festival, a sort of European teaching Olympics where teachers present their most inventive methods. The best projects from last year's Science on Stage festival will be featured in Science in School.

  5. Awakening interest in the natural sciences - BASF's Kids' Labs.

    Science.gov (United States)

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  6. Magnetically engineered smart thin films: toward lab-on-chip ultra-sensitive molecular imaging.

    Science.gov (United States)

    Hassan, Muhammad A; Saqib, Mudassara; Shaikh, Haseeb; Ahmad, Nasir M; Elaissari, Abdelhamid

    2013-03-01

    Magnetically responsive engineered smart thin films of nanoferrites as contrast agent are employed to develop surface based magnetic resonance imaging to acquire simple yet fast molecular imaging. The work presented here can be of significant potential for future lab-on-chip point-of-care diagnostics from the whole blood pool on almost any substrates to reduce or even prevent clinical studies involve a living organism to enhance the non-invasive imaging to advance the '3Rs' of work in animals-replacement, refinement and reduction.

  7. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    Science.gov (United States)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  8. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  9. Lab-on-a-Chip: Frontier Science in the Classroom

    Science.gov (United States)

    Wietsma, Jan Jaap; van der Veen, Jan T.; Buesink, Wilfred; van den Berg, Albert; Odijk, Mathieu

    2018-01-01

    Lab-on-a-chip technology is brought into the classroom through development of a lesson series with hands-on practicals. Students can discover the principles of microfluidics with different practicals covering laminar flow, micromixing, and droplet generation, as well as trapping and counting beads. A quite affordable novel production technique…

  10. Fermentation art and science at the Nordic Food Lab

    DEFF Research Database (Denmark)

    Reade, Benedict; de Valicourt, Justine; Evans, Joshua David

    2015-01-01

    The Nordic Food Lab (NFL) is a self-governed foundation based in Copenhagen, Denmark. The aim of NFL is to investigate food diversity and deliciousness and to share the results in an open-source format. We combine scientific and cultural approaches with culinary techniques from around the world...

  11. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    Science.gov (United States)

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  12. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    Science.gov (United States)

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  13. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    Science.gov (United States)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  14. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    Science.gov (United States)

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  15. Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2012-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  16. Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2011-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  17. CaTs Lab (CHAOS and Thermal Sciences Laboratory)

    Science.gov (United States)

    Teate, Anthony A.

    2002-01-01

    The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.

  18. The effects of different gender groupings on middle school students' performance in science lab

    Science.gov (United States)

    Drab, Deborah D.

    Grouping students for labs in science classes is a common practice. This mixed methods quasi-experimental action research study examines homogeneous and heterogeneous gender grouping strategies to determine what gender grouping strategy is the most effective in a coeducational science classroom setting. Sixth grade students were grouped in same-gender and mixed-gender groups, alternating each quarter. Over the course of an academic year, data were collected from four sources. The teacher-researcher observed groups working during hands-on activities to collect data on student behaviors. Students completed post-lab questionnaires and an end-of-course questionnaire about their preferences and experiences in the different grouping strategies. Student scores on written lab assignments were also utilized. Data analysis focused on four areas: active engagement, student achievement, student perceptions of success and cooperative teamwork. Findings suggest that teachers may consider grouping students of different ability levels according to different gender grouping strategies to optimize learning.

  19. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  20. French environmental labs may get 'big science' funds

    CERN Multimedia

    2000-01-01

    France is considering expanding its network of enviromental laboratories to study the long term impacts of environmental change. It has been suggested that this could be funded using the 'big science' budget usually used for facilities such as particle accelerators (2 para).

  1. Lab-oriented radical innovations as drivers of paradigm shifts in science

    NARCIS (Netherlands)

    Coccia, M.

    2014-01-01

    An interesting problem in the economics of innovation and strategic management of labs is to explain the drivers of breakthroughs and paradigm shifts in science. This study confronts the issue by analysing a main case study: the technological determinant of the discovery of quasi-periodic materials

  2. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  3. Faculty Perceptions of Students in Life and Physical Science Research Labs

    Science.gov (United States)

    Gonyo, Claire P.; Cantwell, Brendan

    2015-01-01

    This qualitative study involved interviews of 32 faculty principle investigators at three research institutions and explored how they view the role of students within physical and life science labs. We used socialization theory and student engagement literature to analyze faculty views, which can contribute to student investment in STEM fields.…

  4. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    Science.gov (United States)

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  5. Connecting Lab-Based Attosecond Science with FEL research

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is perfo...

  6. FameLab provides competition and coaching on science communication

    Science.gov (United States)

    Scalice, Daniella; Weiss, Peter

    2012-10-01

    In today's media-intensive environment, the ability to convey science can reshape the face of scientific exploration and discovery. Many early-career scientists could benefit from training on how to communicate their work effectively to all stakeholders along their career paths, from deans and political representatives to neighbors and students, and perhaps even to public audiences through the lens of a camera or the voice of a blog.

  7. Science Lab Restructuring of a Public School Elementary and High School

    Directory of Open Access Journals (Sweden)

    Elisiane da Costa Moro

    2016-02-01

    Full Text Available This paper presents the process of restructuring the science lab of a state school in Caxias do Sul, whose main objective was to create a space where teachers could develop practical and experimental activities with their students. The restructuring of the science lab this school, was only possible through the project "More and Better Students and Teachers in Science, Mathematics, Engineering and Technologies" Initiation Program in Science and Mathematics, Engineering, Creative Technologies and Letters - PICMEL sponsored jointly by the University of Caxias do Sul, the SEDUC-RS, FAPERGS and CAPES. The project was developed at school by a teacher of physics and three high school students. Through the restructuring of the science lab, practical activities were developed and workshops where students had the opportunity to be more active in the process of teaching and learning. With the development of such activities was observed that the students were more willing to learn Science and Mathematics and could relate scientific knowledge to their daily lives, giving greater meaning to their learning.

  8. ESIP Lab: Supporting Development of Earth Sciences Cyberinfrastructure through Innovation Commons

    Science.gov (United States)

    Burgess, A. B.; Robinson, E.

    2017-12-01

    The Earth Science Information Partners (ESIP) is an open, networked community that brings together science, data and information technology practitioners from across sectors. Participation in ESIP is beneficial because it provides an intellectual commons to expose, gather and enhance in-house capabilities in support of an organization's own mandate. Recently, ESIP has begun to explore piloting activities that have worked in the U.S. in other countries as a way to facilitate international collaboration and cross-pollination. The newly formed ESIP Lab realizes the commons concept by providing a virtual place to come up with with new solutions through facilitated ideation, take that idea to a low stakes development environment and potentially fail, but if successful, expose developing technology to domain experts through a technology evaluation process. The Lab does this by supporting and funding solution-oriented projects that have discrete development periods and associated budgets across organizations and agencies. In addition, the Lab provides access to AWS cloud computing resources, travel support, virtual and in-person collaborative platform for distributed groups and exposure to the ESIP community as an expert pool. This cycle of ideation to incubation to evaluation and ultimately adoption or infusion of Earth sciences cyberinfrastructure empowers the scientific community and has spawned a variety of developments like community-led ontology portals, ideas for W3C prov standard improvement and an evaluation framework that pushes technology forward and aides in infusion. The Lab is one of these concepts that could be implemented in other countries and the outputs of the Lab would be shared as a commons and available across traditional borders. This presentation will share the methods and the outcomes of the Lab and seed ideas for adoption internationally.

  9. Creating a lab to facilitate high school student engagement in authentic paleoclimate science practices

    Science.gov (United States)

    Maloney, A.; Walsh, E.

    2012-12-01

    A solid understanding of timescales is crucial for any climate change discussion. This hands-on lab was designed as part of a dual-credit climate change course in which high school students can receive college credit. Using homemade ice cores, students have the opportunity to participate in scientific practices associated with collecting, processing, and interpreting temperature and CO2 data. Exploring millennial-scale cycles in ice core data and extending the CO2 record to the present allows students to discover timescales from an investigators perspective. The Ice Core Lab has been piloted in two high school classrooms and student engagement, and epistemological and conceptual understanding was evaluated using quantitative pre and post assessment surveys. The process of creating this lab involved a partnership between an education assessment professional, high school teachers, and University of Washington professors and graduate students in Oceanography, Earth and Space Sciences, Atmospheric Sciences and the Learning Sciences as part of the NASA Global Climate Change University of Washington in the High School program. This interdisciplinary collaboration led to the inception of the lab and was necessary to ensure that the lesson plan was pedagogically appropriate and scientifically accurate. The lab fits into a unit about natural variability and is paired with additional hands-on activities created by other graduate students that explore short-timescale temperature variations, Milankovitch cycles, isotopes, and other proxies. While the Ice Core Lab is intended to follow units that review the scientific process, global energy budget, and transport, it can be modified to fit any teaching platform.

  10. Hybrid Perovskite Thin Film Formation: From Lab Scale Spin Coating to Large Area Blade Coating

    KAUST Repository

    Munir, Rahim

    2017-11-22

    Our reliance on semiconductors is on the rise with the ever growing use of electronics in our daily life. Organic-inorganic hybrid lead halide perovskites have emerged as a prime alternative to current standard and expensive semiconductors because of its use of abundant elements and the ease of solution processing. This thesis has shed light on the ink-to-solid conversion during the one-step solution process of hybrid perovskite formulations from DMF. We utilize a suite of in situ diagnostic probes including high speed optical microscopy, optical reflectance and absorbance, and grazing incidence wide angle x-ray scattering (GIWAXS), all performed during spin coating, to monitor the solution thinning behavior, changes in optical absorbance, and nucleation and growth of crystalline phases of the precursor and perovskite. The starting formulation experiences solvent-solute interactions within seconds of casting, leading to the formation of a wet gel with nanoscale features visible by in situ GIWAXS. The wet gel subsequently gives way to the formation of ordered precursor solvates (equimolar iodide and chloride solutions) or disordered precursor solvates (equimolar bromide or 3:1 chloride), depending upon the halide and MAI content. The ordered precursor solute phases are stable and retain the solvent for long durations, resulting in consistent conversion behavior to the perovskite phase and solar-cell performance. In this thesis, we develop a firm understanding of the solvent engineering process in which an anti-solvent is used during the coating process through the solvent mixture of GBL and DMSO in different ratios. It has been shown that solvent engineering produce pin hole-free films, justifying its wide adoption across the field. We then translate our learnings from the lab scale spin coating process to the industrial friendly blade coating process. Here we compare the ink solidification and film formation mechanisms of CH3NH3PbI3 in solutions we used to

  11. Expanding the Role of an Earth Science Data System: The GHRC Innovations Lab

    Science.gov (United States)

    Conover, H.; Ramachandran, R.; Smith, T.; Kulkarni, A.; Maskey, M.; He, M.; Keiser, K.; Graves, S. J.

    2013-12-01

    The Global Hydrology Resource Center is a NASA Earth Science Distributed Active Archive Center (DAAC), managed in partnership by the Earth Science Department at NASA's Marshall Space Flight Center and the University of Alabama in Huntsville's Information Technology and Systems Center. Established in 1991, the GHRC processes, archives and distributes global lightning data from space, airborne and ground based observations from hurricane science field campaigns and Global Precipitation Mission (GPM) ground validation experiments, and satellite passive microwave products. GHRC's close association with the University provides a path for technology infusion from the research center into the data center. The ITSC has a long history of designing and operating science data and information systems. In addition to the GHRC and related data management projects, the ITSC also conducts multidisciplinary research in many facets of information technology. The coupling of ITSC research with the operational GHRC Data Center has enabled the development of new technologies that directly impact the ability of researchers worldwide to apply Earth science data to their specific domains of interest. The GHRC Innovations Lab will provide a showcase for emerging geoinformatics technologies resulting from NASA-sponsored research at the ITSC. Research products to be deployed in the Innovations Lab include: * Data Albums - curated collections of information related to a specific science topic or event with links to relevant data files from different sources. * Data Prospecting - combines automated data mining techniques with user interaction to provide for quick exploration of large volumes of data. * Provenance Browser - provides for graphical exploration of data lineage and related contextual information. In the Innovations Lab, these technologies can be targeted to GHRC data sets, and tuned to address GHRC user interests. As technologies are tested and matured in the Innovations Lab, the

  12. Learning in the Science Lab: a New Approach

    Directory of Open Access Journals (Sweden)

    Julie Dunne

    2013-04-01

    Full Text Available This project aimed to improve the laboratory learning experience for undergraduate science students, focusing initially on first and third year cohorts, through specific objectives. Firstly, to incorporate novel teaching and assessment methods, including student led laboratories, in-house produced instructional videos, „Clickers‟ audience response devices, and pre-practical on-line MCQ assessments. Secondly, to develop timely feedback mechanisms, including peer review, tutor face to face and audio feedback, online automatic feedback, and report checklists. Finally, to imbed transferable skills into the laboratory including group work, communication skills (written and oral, organisation & project planning, health & safety, and preparedness for laboratories, final year projects & placement. Pedagogical evaluation was through anonymous multiple choice questionnaires and independent academic facilitated discussion forums. The main benefits are students who are better prepared, both for basic undergraduate laboratories and for independent research-based final year projects; continuity in the development of transferable skills; improved assessment quality though constructive alignment and appropriate feedback; and improved student satisfaction through engagement and feedback. The key recommendations arising from this study are; to encourage preparedness for practical sessions, harnessing technology to engage students through interesting pre-practical activities; to encourage an improved culture of feedback, including mechanisms such as podcasts, which also "feed-forward‟; and to encourage a culture where value is added to modules by actively incorporating transferable skills into all student activities and assessments, rather than a "bolt on" approach

  13. Using a Science Centre as a School Lab ? a Case Story

    DEFF Research Database (Denmark)

    Sørensen, Helene

    2004-01-01

    responsibility for their own learning committed themselves to learn the scientific language. The study shows that in school science there has to be scaffolding around a project to insure that all students gain experience with science as a learning process in an environment with self-motivated, self......The study has the overall goal of finding suggestions for improving school visits to Science Centres and similar places. One such centre (Experimentarium) has established a partnership with a nearby school to investigate possibilities for cooperation. This case story tells about a project where...... tenth graders were trained to become museum ?explainers? as part of their science education. The objectives were to investigate if it was possible to obtain a quality out-of?school experience using the Experimentarium as a science lab. The intention of the study was to look at science learning...

  14. The efficiency of metacognitive development embedded within a motivating lab regarding pre-service science teachers’ learning outcomes

    OpenAIRE

    Deniz Sarıbaş; Hale Bayram

    2010-01-01

    The aim of this study was to improve pre-service science teachers’ science process skills and attitude towards chemistry by developing their metacognitive skills embedded within a motivating chemistry laboratory. The sample of the study was 54 pre-service science teachers who took the first year chemistry lab course at Marmara University. Both the control (n=27) and the experimental group (n=27) carried out 11 experiments, each of which was performed over a lab course. The students comp...

  15. Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; Manoli, Constantinos; Xenofontos, Nikoletta; de Jong, Anthonius J.M.; Pedaste, Margus; van Riesen, Siswa; Kamp, E.T.; Kamp, Ellen T.; Mäeots, Mario; Siiman, Leo; Tsourlidaki, Eleftheria

    2015-01-01

    The aim of this review is to identify specific types of guidance for supporting student use of online labs, that is, virtual and remote labs, in an inquiry context. To do so, we reviewed the literature on providing guidance within computer supported inquiry learning (CoSIL) environments in science

  16. Enter FameLab and become the new face of science in Switzerland

    CERN Multimedia

    Paola Catapano, FameLab@Cern Project coordinator, Communication Group

    2011-01-01

    Are you 18 to 35 years old and studying or working in science in Switzerland? Are you passionate about your job and keen on exciting public imagination with a vision of the 21st century of science? Then this competition is for you!   FameLab is an international science communication competition for young researchers. It aims to find the new voices of science and engineering across the world. CERN has been chosen as the venue of the regional semi-finals for Switzerland. To compete, all you have to do is prepare a 3-minute talk that is scientifically accurate but also engaging to a non-scientific audience and impress your jury and your audience on Saturday 4 Februrary, 2012 at the Globe of Science and Innovation. Famelab aims to provide new opportunities for scientists to develop their skills as communicators. FameLab was set up in 2005 by Cheltenham Festivals, one of the UK’s premier cultural organisations, in partnership with NESTA (Nat...

  17. 2014 FameLab heat: CERN welcomes 11 new stars of science communication!

    CERN Multimedia

    2014-01-01

    The 2014 Swiss heat of the popular FameLab competition took place Thursday, 27 March at CERN. 11 young researchers from CERN, the Universities of Geneva, Lausanne and Neuchâtel, and the EPFL competed for the sought-after title of FameLab finalist. The winner and the four runners-up will participate in the Masterclass and the Swiss final, and just one will go on to represent Switzerland at the international Cheltenham Science Festival in the UK. Some of the participants share their feedback with us.   The FameLab 2014 contestants after their talks, at the Globe of Science and Innovation on 27 March. Miquel Oliu Barton (Swiss finalist): Amazed by the other contestants' performances, I almost forgot the stage fright! But then I was given the hands-free microphone and knew the time had come to talk about my research to a large audience and to the cameras.... Both with fear and excitement, I played that three-minute game and, though it felt really short, I enjoyed it very much. Th...

  18. Towards a Metadata Schema for Characterizing Lesson Plans Supported by Virtual and Remote Labs in School Science Education

    Science.gov (United States)

    Zervas, Panagiotis; Tsourlidaki, Eleftheria; Sotiriou, Sofoklis; Sampson, Demetrios G.

    2015-01-01

    Technological advancements in the field of World Wide Web have led to a plethora of remote and virtual labs (RVLs) that are currently available online and they are offered with or without cost. However, using a RVL to teach a specific science subject might not be a straightforward task for a science teacher. As a result, science teachers need to…

  19. LIB LAB the Library Laboratory: hands-on multimedia science communication

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  20. Data-Oriented Astrophysics at NOAO: The Science Archive & The Data Lab

    Science.gov (United States)

    Juneau, Stephanie; NOAO Data Lab, NOAO Science Archive

    2018-06-01

    As we keep progressing into an era of increasingly large astronomy datasets, NOAO’s data-oriented mission is growing in prominence. The NOAO Science Archive, which captures and processes the pixel data from mountaintops in Chile and Arizona, now contains holdings at Petabyte scales. Working at the intersection of astronomy and data science, the main goal of the NOAO Data Lab is to provide users with a suite of tools to work close to this data, the catalogs derived from them, as well as externally provided datasets, and thus optimize the scientific productivity of the astronomy community. These tools and services include databases, query tools, virtual storage space, workflows through our Jupyter Notebook server, and scripted analysis. We currently host datasets from NOAO facilities such as the Dark Energy Survey (DES), the DESI imaging Legacy Surveys (LS), the Dark Energy Camera Plane Survey (DECaPS), and the nearly all-sky NOAO Source Catalog (NSC). We are further preparing for large spectroscopy datasets such as DESI. After a brief overview of the Science Archive, the Data Lab and datasets, I will briefly showcase scientific applications showing use of our data holdings. Lastly, I will describe our vision for future developments as we tackle the next technical and scientific challenges.

  1. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    Science.gov (United States)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p virtual reality platforms and digital animations. Future research is encouraged to investigate possible correlations between socio-demographic attributes and academic success of students enrolled in online science programs in reference to lab completion.

  2. Using Evernote as an electronic lab notebook in a translational science laboratory.

    Science.gov (United States)

    Walsh, Emily; Cho, Ilseung

    2013-06-01

    Electronic laboratory notebooks (ELNs) offer significant advantages over traditional paper laboratory notebooks (PLNs), yet most research labs today continue to use paper documentation. While biopharmaceutical companies represent the largest portion of ELN users, government and academic labs trail far behind in their usage. Our lab, a translational science laboratory at New York University School of Medicine (NYUSoM), wanted to determine if an ELN could effectively replace PLNs in an academic research setting. Over 6 months, we used the program Evernote to record all routine experimental information. We also surveyed students working in research laboratories at NYUSoM on the relative advantages and limitations of ELNs and PLNs and discovered that electronic and paper notebook users alike reported the inability to freehand into a notebook as a limitation when using electronic methods. Using Evernote, we found that the numerous advantages of ELNs greatly outweighed the inability to freehand directly into a notebook. We also used imported snapshots and drawing program add-ons to obviate the need for freehanding. Thus, we found that using Evernote as an ELN not only effectively replaces PLNs in an academic research setting but also provides users with a wealth of other advantages over traditional paper notebooks.

  3. 13 scientists aced their science communication test at the FameLab final

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    On 8 May, the joint CERN and Swiss FameLab final took place in CERN’s Restaurant 1, which was transformed into a cosy setting for the special occasion. The jury selected Oskari Vinko, a Master’s student in synthetic biology at ETH Zurich, as the winner of the Swiss final while Lillian Smestad, a physicist in the Aegis collaboration, will be the first CERN finalist to go to the international final at the Cheltenham Science Festival. In addition, CMS physicist Christos Lazaridis was awarded the audience prize.   

  4. Loop-Mediated Isothermal Amplification Using a Lab-on-a-Disc Device with Thin-film Phase Change Material.

    Science.gov (United States)

    Ko, Junguk; Yoo, Jae-Chern

    2018-03-05

    The design and fabrication of temperature measurement systems that facilitate successful realization of DNA amplification using a lab-on-a-disc (LOD) device are a highly challenging task. The major challenge lies in the fact that such a system must be directly attached to a heating chamber in a way that enables the accurate measurement of temperature of the chamber while allowing the LOD to rotate. This paper presents a temperature control system for implementing isothermal amplification of DNA samples using an LOD device. The proposed system utilizes a thin-film phase change material and non-contact heating system to remotely measure the actual temperature of the chamber and, if required, rapidly heat it to the desired temperature. The results of the experiments performed in this study demonstrate that the proposed system provides an automated platform for molecular amplification and exhibits an operational performance comparable to that of traditional microcentrifuge tube-based isothermal amplification systems.

  5. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  6. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  7. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  8. Beyond the lab: observations on the process by which science successfully informs management and policy decisions

    Science.gov (United States)

    Flores, S.

    2012-12-01

    Scientific findings inform management decisions and policy products through various ways, these include: synthesis reports, white papers, in-person and web-based seminars (webinars), communication from specialized staff, and seminal peer-reviewed journal articles. Scientists are often told that if they want their science to inform management decisions and policy products that they must: clearly and simply articulate discreet pieces of scientific information and avoid attaching advocacy messages to the science; however, solely relying on these tenants does not ensure that scientific products will infuse the realms of management and policy. The process by which science successfully informs management decisions and policy products rarely begins at the time the results come out of the lab, but rather, before the research is carried out. Having an understanding of the political climate, management needs, agency research agendas, and funding limitations, as well as developing a working relationship with the intended managers and policy makers are key elements to developing the kind of science results and products that often make an impact in the management and policy world. In my presentation I will provide case-studies from California (USA) to highlight the type of coastal, ocean and climate science that has been successful in informing management decisions and policy documents, as well as provide a state-level agency perspective on the process by which this occurs.

  9. A composite thin vacuum window for the CLAS photon tagger at Jefferson lab

    International Nuclear Information System (INIS)

    Matthews, S.K.; Crannell, Hall; O'Brien, J.T.; Sober, D.I.

    1999-01-01

    The construction of a thin vacuum window, currently in use on the CLAS photon tagging system at the Thomas Jefferson National Accelerator Facility, is described. A layer of woven Kevlar cloth supports a much thinner membrane of aluminized Mylar. Notable features of this particular window include its overall length (9.6 m), and the fact that the entire load is supported by the epoxy seal with no mechanical clamping around the edges. Results from a diverse program of materials testing, including a clear dependence of leak rate on relative humidity, are also reported

  10. A composite thin vacuum window for the CLAS photon tagger at Jefferson lab

    CERN Document Server

    Matthews, S K; O'Brien, J T; Sober, D I

    1999-01-01

    The construction of a thin vacuum window, currently in use on the CLAS photon tagging system at the Thomas Jefferson National Accelerator Facility, is described. A layer of woven Kevlar cloth supports a much thinner membrane of aluminized Mylar. Notable features of this particular window include its overall length (9.6 m), and the fact that the entire load is supported by the epoxy seal with no mechanical clamping around the edges. Results from a diverse program of materials testing, including a clear dependence of leak rate on relative humidity, are also reported.

  11. Neue Aufgaben für wissenschaftliche Bibliotheken: Das Beispiel Open Science Lab

    Directory of Open Access Journals (Sweden)

    Lambert Heller

    2015-10-01

    Full Text Available Vor dem Hintergrund des Aufkommens vieler neuer digitaler Werkzeuge und Methoden zur Unterstützung des wissenschaftlichen Arbeitens wird seit etwa fünf Jahren unter wissenschaftlichen Bibliothekaren in Deutschland immer häufiger über Innovationsmanagement diskutiert. Wie lassen sich relevante Trends und Herausforderungen rechtzeitig erkennen und mit den begrenzten Ressourcen einer Einrichtung des öffentlichen Dienstes adäquat aufgreifen, bis hin zu einer Veränderung der Bibliotheksstrategie? Der Beitrag behandelt das Modell des an der Technischen Informationsbibliothek Hannover (TIB 2013 ins Leben gerufenen Open Science Lab. Unter Leitung des Autors werden Trends beobachtet und aufgegriffen, um in enger Zusammenarbeit mit Wissenschaftlern und Wissenschaftlerinnen neue digitale Werkzeuge und Methoden zu erproben, eine neue Informationspraxis zu kultivieren und daraus Innovationen für das Dienste-Spektrum der Bibliothek abzuleiten. Dies wird beispielhaft anhand der beiden Schwerpunktthemen kollaboratives Schreiben sowie linked-data-basierte Forschungsinformationssysteme (FIS geschildert und diskutiert. Given the rise of many new digital tools and methods for supporting scientific work, the last five years have seen a lot of discussion amongst German academic librarians about innovation management. How can we discover relevant trends and challenges in time and respond to them adequately up to the point of changing whole library strategies, despite the limited resources of a public sector institution? The paper presents the model of the Open Science Lab which was set up at the German National Library of Science and Technology (TIB Hannover in 2013. Under the direction of the author and in close collaboration with scientific communities, the lab group keeps track of trends and selects some of them in order to try out new tools and methods. The ultimate aim is to cultivate new information practices and develop new, innovative

  12. Ocean Filmmaking Camp @ Duke Marine Lab: Building Community with Ocean Science for a Better World

    Science.gov (United States)

    De Oca, M.; Noll, S.

    2016-02-01

    A democratic society requires that its citizens are informed of everyday's global issues. Out of all issues those related to ocean conservation can be hard to grasp for the general public and especially so for disadvantaged racial and ethnic groups. Opportunity-scarce communities generally have more limited access to the ocean and to science literacy programs. The Ocean Filmmaking Camp @ Duke Marine Lab (OFC@DUML) is an effort to address this gap at the level of high school students in a small coastal town. We designed a six-week summer program to nurture the talents of high school students from under-represented communities in North Carolina with training in filmmaking, marine science and conservation. Our science curriculum is especially designed to present the science in a locally and globally-relevant context. Class discussions, field trips and site visits develop the students' cognitive abilities while they learn the value of the natural environment they live in. Through filmmaking students develop their voice and their media literacy, while connecting with their local community, crossing class and racial barriers. By the end of the summer this program succeeds in encouraging students to engage in the democratic process on ocean conservation, climate change and other everyday affairs affecting their local communities. This presentation will cover the guiding principles followed in the design of the program, and how this high impact-low cost program is implemented. In its first year the program was co-directed by a graduate student and a local high school teacher, who managed more than 20 volunteers with a total budget of $1,500. The program's success was featured in the local newspaper and Duke University's Environment Magazine. This program is an example of how ocean science can play a part in building a better world, knitting diverse communities into the fabric of the larger society with engaged and science-literate citizens living rewarding lives.

  13. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    Science.gov (United States)

    Brinson, James R.

    2017-10-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.

  14. Investigation of Science Inquiry Items for Use on an Alternate Assessment Based on Modified Achievement Standards Using Cognitive Lab Methodology

    Science.gov (United States)

    Dickenson, Tammiee S.; Gilmore, Joanna A.; Price, Karen J.; Bennett, Heather L.

    2013-01-01

    This study evaluated the benefits of item enhancements applied to science-inquiry items for incorporation into an alternate assessment based on modified achievement standards for high school students. Six items were included in the cognitive lab sessions involving both students with and without disabilities. The enhancements (e.g., use of visuals,…

  15. Virtual Labs (Science Gateways) as platforms for Free and Open Source Science

    Science.gov (United States)

    Lescinsky, David; Car, Nicholas; Fraser, Ryan; Friedrich, Carsten; Kemp, Carina; Squire, Geoffrey

    2016-04-01

    The Free and Open Source Software (FOSS) movement promotes community engagement in software development, as well as provides access to a range of sophisticated technologies that would be prohibitively expensive if obtained commercially. However, as geoinformatics and eResearch tools and services become more dispersed, it becomes more complicated to identify and interface between the many required components. Virtual Laboratories (VLs, also known as Science Gateways) simplify the management and coordination of these components by providing a platform linking many, if not all, of the steps in particular scientific processes. These enable scientists to focus on their science, rather than the underlying supporting technologies. We describe a modular, open source, VL infrastructure that can be reconfigured to create VLs for a wide range of disciplines. Development of this infrastructure has been led by CSIRO in collaboration with Geoscience Australia and the National Computational Infrastructure (NCI) with support from the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service (ANDS). Initially, the infrastructure was developed to support the Virtual Geophysical Laboratory (VGL), and has subsequently been repurposed to create the Virtual Hazards Impact and Risk Laboratory (VHIRL) and the reconfigured Australian National Virtual Geophysics Laboratory (ANVGL). During each step of development, new capabilities and services have been added and/or enhanced. We plan on continuing to follow this model using a shared, community code base. The VL platform facilitates transparent and reproducible science by providing access to both the data and methodologies used during scientific investigations. This is further enhanced by the ability to set up and run investigations using computational resources accessed through the VL. Data is accessed using registries pointing to catalogues within public data repositories (notably including the

  16. How Big Science Came to Long Island: the Birth of Brookhaven Lab (429th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Crease, Robert P.

    2007-01-01

    Robert P. Crease, historian for the U.S. Department of Energy's Brookhaven National Laboratory and Chair of the Philosophy Department at Stony Brook University, will give two talks on the Laboratory's history on October 31 and December 12. Crease's October 31 talk, titled 'How Big Science Came to Long Island: The Birth of Brookhaven Lab,' will cover the founding of the Laboratory soon after World War II as a peacetime facility to construct and maintain basic research facilities, such as nuclear reactors and particle accelerators, that were too large for single institutions to build and operate. He will discuss the key figures involved in starting the Laboratory, including Nobel laureates I.I. Rabi and Norman Ramsey, as well as Donald Dexter Van Slyke, one of the most renowned medical researchers in American history. Crease also will focus on the many problems that had to be overcome in creating the Laboratory and designing its first big machines, as well as the evolving relations of the Laboratory with the surrounding Long Island community and news media. Throughout his talk, Crease will tell fascinating stories about Brookhaven's scientists and their research.

  17. Using Infiniscope Exploratory Activities in an Online Astronomy Lab Course for Non-Science Majors

    Science.gov (United States)

    Knierman, Karen; Anbar, Ariel; Tamer, A. Joseph; Hunsley, Diana; Young, Patrick A.; Center for Education Through eXploration

    2018-01-01

    With the growth of online astronomy courses, it has become necessary to design different strategies for students to engage meaningfully with astronomy content. In contrast to some of the previously designed “cookbook”-style lab exercises, the strategy of these Infiniscope activities is to provide an experience where the students explore and discover the content for themselves. The Infiniscope project was created by ASU’s School of Earth and Space Exploration and NASA’s Science Mission Directorate as part of the NASA Exploration Connection project. As part of this project, online activities on topics such as asteroids and Kuiper Belt objects, eclipses, and Kepler’s Laws were designed and created for middle school (grades 6-8) and informal education settings. This poster discusses adapting these activities to the undergraduate non-science major setting. In fall 2017, the Infiniscope activities, such as Small Worlds and Kepler’s Laws, will be incorporated into an Arizona State University online astronomy course, AST 113, which is the laboratory component for the Introduction to Solar System Astronomy course sequence. This course typically enrolls about 800-900 students per semester with a combination of students who are online only as well as those who also take in person classes. In this type of class, we cannot have any in-person required sessions and all content must be delivered online asynchronously. The use of the Infiniscope exploratory exercises will provide students with the ability to use NASA data in a hands-on manner to discover the solar system for themselves.

  18. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  19. Incorporating inquiry and the process of science into introductory astronomy labs at the George Washington University

    Science.gov (United States)

    Cobb, Bethany E.

    2018-01-01

    Since 2013, the Physics Department at GWU has used student-centered active learning in the introductory astronomy course “Introduction to the Cosmos.” Class time is spent in groups on questions, math problems, and hands-on activities, with multiple instructors circulating to answer questions and engage with the students. The students have responded positively to this active-learning. Unfortunately, in transitioning to active-learning there was no time to rewrite the labs. Very quickly, the contrast between the dynamic classroom and the traditional labs became apparent. The labs were almost uniformly “cookie-cutter” in that the procedure and analysis were specified step-by-step and there was just one right answer. Students rightly criticized the labs for lacking a clear purpose and including busy-work. Furthermore, this class fulfills the GWU scientific reasoning general education requirement and thus includes learning objectives related to understanding the scientific method, testing hypotheses with data, and considering uncertainty – but the traditional labs did not require these skills. I set out to rejuvenate the lab sequence by writing new inquiry labs based on both topic-specific and scientific reasoning learning objectives. While inquiry labs can be challenging for the students, as they require active thinking and creativity, these labs engage the students more thoroughly in the scientific process. In these new labs, whenever possible, I include real astronomical data and ask the students to use digital tools (SDSS SkyServer, SOHO archive) as if they are real astronomers. To allow students to easily plot, manipulate and analyze data, I built “smart” Excel files using formulas, dropdown menus and macros. The labs are now much more authentic and thought-provoking. Whenever possible, students independently develop questions, hypotheses, and procedures and the scientific method is “scaffolded” over the semester by providing more guidance in the

  20. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  1. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    Science.gov (United States)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  2. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  3. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  4. Real Science: MIT Reality Show Tracks Experiences, Frustrations of Chemistry Lab Students

    Science.gov (United States)

    Cooper, Kenneth J.

    2012-01-01

    A reality show about a college course--a chemistry class no less? That's what "ChemLab Boot Camp" is. The 14-part series of short videos is being released one episode at a time on the online learning site of the Massachusetts Institute of Technology. The novel show follows a diverse group of 14 freshmen as they struggle to master the…

  5. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  6. An investigation of communication patterns and strategies between international teaching assistants and undergraduate students in university-level science labs

    Science.gov (United States)

    Gourlay, Barbara Elas

    This research project investigates communication between international teaching assistants and their undergraduate students in university-level chemistry labs. During the fall semester, introductory-level chemistry lab sections of three experienced non-native speaking teaching assistants and their undergraduate students were observed. Digital audio and video recordings documented fifteen hours of lab communication, focusing on the activities and interactions in the first hour of the chemistry laboratory sessions. In follow-up one-on-one semi-structured interviews, the participants (undergraduates, teaching assistants, and faculty member) reviewed interactions and responded to a 10-item, 7-point Likert-scaled interview. Interactions were classified into success categories based on participants' opinions. Quantitative and qualitative data from the observations and interviews guided the analysis of the laboratory interactions, which examined patterns of conversational listening. Analysis of laboratory communication reveals that undergraduates initiated nearly two-thirds of laboratory communication, with three-fourths of interactions less than 30 seconds in duration. Issues of gender and topics of interaction activity were also explored. Interview data identified that successful undergraduate-teaching assistant communication in interactive science labs depends on teaching assistant listening comprehension skills to interpret and respond successfully to undergraduate questions. Successful communication in the chemistry lab depended on the coordination of visual and verbal sources of information. Teaching assistant responses that included explanations and elaborations were also seen as positive features in the communicative exchanges. Interaction analysis focusing on the listening comprehension demands placed on international teaching assistants revealed that undergraduate-initiated questions often employ deixis (exophoric reference), requiring teaching assistants to

  7. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    Science.gov (United States)

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Transparent conducting amorphous p-type CuFeO 2 (CFO) thin film was ... Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China ...

  9. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  10. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    Directory of Open Access Journals (Sweden)

    Marco Matteucci

    2016-10-01

    Full Text Available We compare ultrasonic welding (UW and thermal bonding (TB for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW, as well as pressure and temperature (for TB, were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

  11. Ultra-Sensitive Lab-on-a-Chip Detection of Sudan I in Food using Plasmonics-Enhanced Diatomaceous Thin Film.

    Science.gov (United States)

    Kong, Xianming; Squire, Kenny; Chong, Xinyuan; Wang, Alan X

    2017-09-01

    Sudan I is a carcinogenic compound containing an azo group that has been illegally utilized as an adulterant in food products to impart a bright red color to foods. In this paper, we develop a facile lab-on-a-chip device for instant, ultra-sensitive detection of Sudan I from real food samples using plasmonics-enhanced diatomaceous thin film, which can simultaneously perform on-chip separation using thin layer chromatography (TLC) and highly specific sensing using surface-enhanced Raman scattering (SERS) spectroscopy. Diatomite is a kind of nature-created photonic crystal biosilica with periodic pores and was used both as the stationary phase of the TLC plate and photonic crystals to enhance the SERS sensitivity. The on-chip chromatography capability of the TLC plate was verified by isolating Sudan I in a mixture solution containing Rhodamine 6G, while SERS sensing was achieved by spraying gold colloidal nanoparticles into the sensing spot. Such plasmonics-enhanced diatomaceous film can effectively detect Sudan I with more than 10 times improvement of the Raman signal intensity than commercial silica gel TLC plates. We applied this lab-on-a-chip device for real food samples and successfully detected Sudan I in chili sauce and chili oil down to 1 ppm, or 0.5 ng/spot. This on-chip TLC-SERS biosensor based on diatomite biosilica can function as a cost-effective, ultra-sensitive, and reliable technology for screening Sudan I and many other illicit ingredients to enhance food safety.

  12. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  13. Analytical techniques for thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1988-01-01

    Treatise on Materials Science and Technology, Volume 27: Analytical Techniques for Thin Films covers a set of analytical techniques developed for thin films and interfaces, all based on scattering and excitation phenomena and theories. The book discusses photon beam and X-ray techniques; electron beam techniques; and ion beam techniques. Materials scientists, materials engineers, chemical engineers, and physicists will find the book invaluable.

  14. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  15. INSA Virtual Labs: a new R+D framework for innovative space science and technology

    Science.gov (United States)

    Cardesin Moinelo, Alejandro; Sanchez Portal, Miguel

    2012-10-01

    The company INSA (Ingeniería y Servicios Aeroespaciales) has given support to ESA Scientific missions for more than 20 years and is one of the main companies present in the European Space Astronomy Centre (ESAC) in Madrid since its creation. INSA personnel at ESAC provide high level technical and scientific support to ESA for all Astronomy and Solar System missions. In order to improve and maintain the scientific and technical competences among the employees, a research group has been created with the name "INSA Virtual Labs". This group coordinates all the R+D activities carried out by INSA personnel at ESAC and aims to establish collaborations and improve synergies with other research groups, institutes and universities. This represents a great means to improve the visibility of these activities towards the scientific community and serves as breeding ground for new innovative ideas and future commercial products.

  16. Probing the Underground Science beyond the Standard Model with Ultra-Low Background Experiments at Sanford Lab/DUSEL

    International Nuclear Information System (INIS)

    Mei, D.-M.

    2010-01-01

    We show that an improved sensitivity on effective neutrino mass to the atmospheric neutrino mass scale with the next generation germanium-based double-beta decay experiment together with results from cosmology survey, θ 13 measurements and neutrino oscillation experiments may be able to determine the absolute mass scale of the neutrino, and answer the question of the neutrino nature. To achieve such a sensitivity of 45 meV, the next generation germanium experiment must reduce background by a factor of 440 comparing to the existing results. The planned germanium experiment at the Deep Underground Science and Engineering Laboratory (DUSEL) in western South Dakota aims at achieving such a sensitivity. Sanford Lab supported by the state of South Dakota and a private donor, Mr. T. Denny Sanford, will be up and running within the next year to pave the way for the creation of DUSEL in five years.

  17. A Lab of Her Own? Portrayals of Female Characters on Children's Educational Science Programs.

    Science.gov (United States)

    Steinke, Jocelyn; Long, Marilee

    1996-01-01

    Describes a study that examined the portrayals of female characters on four educational science television series for children and discusses those portrayals in the light of other research on television and socialization. Topics include children's perceptions of occupational sex roles; theories of sex-role development; and implications for future…

  18. Measurement of Solar Spectra Relating to Photosynthesis and Solar Cells: An Inquiry Lab for Secondary Science

    Science.gov (United States)

    Ruggirello, Rachel M.; Balcerzak, Phyllis; May, Victoria L.; Blankenship, Robert E.

    2012-01-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar…

  19. Promoting 21st-Century Skills in the Science Classroom by Adapting Cookbook Lab Activities: The Case of DNA Extraction of Wheat Germ

    Science.gov (United States)

    Alozie, Nonye M.; Grueber, David J.; Dereski, Mary O.

    2012-01-01

    How can science instruction engage students in 21st-century skills and inquiry-based learning, even when doing simple labs in the classroom? We collaborated with teachers in professional development workshops to transform "cookbook" activities into engaging laboratory experiences. We show how to change the common classroom activity of DNA…

  20. Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing-Intensive, Lab-Based Biology Class for Nonmajors

    Science.gov (United States)

    Firooznia, Fardad

    2006-01-01

    This writing-intensive, lab-based, nonmajor biology course explores scientific inquiry and biological concepts through specific topics illustrated or inaccurately depicted in works of science fiction. The laboratory emphasizes the scientific method and introduces several techniques used in biological research related to the works we study.…

  1. In Defense of the National Labs and Big-Budget Science

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, J R

    2008-07-29

    The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tapped in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider

  2. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  3. Adding immersive virtual reality to a science lab simulation causes more presence but less learning

    DEFF Research Database (Denmark)

    Makransky, Guido; Terkildsen, Thomas S.; Mayer, Richard E.

    2017-01-01

    significantly higher cognitive load based on the EEG measure (d = 0.59). In spite of its motivating properties (as reflected in presence ratings), learning science in VR may overload and distract the learner (as reflected in EEG measures of cognitive load), resulting in less opportunity to build learning...... whether the principles of multimedia learning generalize to immersive VR. Furthermore, electroencephalogram (EEG) was used to obtain a direct measure of cognitive processing during learning. A sample of 52 university students participated in a 2 × 2 experimental cross-panel design wherein students learned...

  4. Quantitative colorimetry of atherosclerotic plaque using the L*a*b* color space during angioscopy for the detection of lipid cores underneath thin fibrous caps.

    Science.gov (United States)

    Ishibashi, Fumiyuki; Yokoyama, Shinya; Miyahara, Kengo; Dabreo, Alexandra; Weiss, Eric R; Iafrati, Mark; Takano, Masamichi; Okamatsu, Kentaro; Mizuno, Kyoichi; Waxman, Sergio

    2007-12-01

    Yellow plaques seen during angioscopy are thought to represent lipid cores underneath thin fibrous caps (LCTCs) and may be indicative of vulnerable sites. However, plaque color assessment during angioscopy has been criticized because of its qualitative nature. The purpose of the present study was to test the ability of a quantitative colorimetric system to measure yellow color intensity of atherosclerotic plaques during angioscopy and to characterize the color of LCTCs. Using angioscopy and a quantitative colorimetry system based on the L*a*b* color space [L* describes brightness (-100 to +100), b* describes blue to yellow (-100 to +100)], the optimal conditions for measuring plaque color were determined in three flat standard color samples and five artificial plaque models in cylinder porcine carotid arteries. In 88 human tissue samples, the colorimetric characteristics of LCTCs were then evaluated. In in-vitro samples and ex-vivo plaque models, brightness L* between 40 and 80 was determined to be optimal for acquiring b* values, and the variables unique to angioscopy in color perception did not impact b* values after adjusting for brightness L* by manipulating light or distance. In ex-vivo human tissue samples, b* value >/=23 (35.91 +/- 8.13) with L* between 40 and 80 was associated with LCTCs (fibrous caps colorimetry. High yellow color intensity, determined by this system, was associated with LCTCs. Quantitative colorimetry during angioscopy may be used for detection of LCTCs, which may be markers of vulnerability.

  5. Lab Manual & Resources for Materials Science, Engineering and Technology on CD-Rom

    Science.gov (United States)

    Jacobs, James A.; McKenney, Alfred E.

    2001-01-01

    The National Educators' Workshop (NEW:Update) series of workshops has been in existence since 1986. These annual workshops focus on technical updates and laboratory experiments for materials science, engineering and technology, involving new and traditional content in the field. Scores of educators and industrial and national laboratory personnel have contributed many useful experiments and demonstrations which were then published as NASA Conference Proceedings. This "out poring of riches" creates an ever-expanding shelf of valuable teaching tools for college, university, community college and advanced high school instruction. Now, more than 400 experiments and demonstrations, representing the first thirteen years of NEW:Updates have been selected and published on a CD-ROM, through the collaboration of this national network of materials educators, engineers, and scientists. The CD-ROM examined in this document utilizes the popular Adobe Acrobat Reader format and operates on most popular computer platforms. This presentation provides an overview of the second edition of Experiments in Materials Science, Engineering and Technology (EMSET2) CD-ROM, ISBN 0-13-030534-0.

  6. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Science.gov (United States)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  7. Measurement of solar spectra relating to photosynthesis and solar cells: an inquiry lab for secondary science.

    Science.gov (United States)

    Ruggirello, Rachel M; Balcerzak, Phyllis; May, Victoria L; Blankenship, Robert E

    2012-07-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar cells. This laboratory was used with high-school science teachers who then took this experience back to their classrooms. During this exercise, teachers used an economical spectroradiometer to measure the solar spectrum and relate this to photosynthetic light absorption by determining the quality of light beneath trees. Following this investigation, teachers learned about the plant-inspired dye-sensitized solar cells and constructed one. To connect their light quality investigation to the efficiency of photosynthesis and solar cells, teachers then collected data at locations with varying quality and intensity of light. In sum, this investigation provides a crucial connection between photosynthesis and cutting edge research on solar energy technologies. Our learning experience provides a new instructional model for understanding a little investigated aspect of photosynthesis and connects to authentic scientific research. Copyright © 2012 Wiley Periodicals, Inc.

  8. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  9. Henderson Deep Underground Science and Engineering Lab: Unearthing the secrets of the Universe, underground

    International Nuclear Information System (INIS)

    Jung, C.K.

    2011-01-01

    The Henderson Mine near Empire, Colorado is proposed to be the site to host a Deep Underground Science and Engineering Laboratory (DUSEL), which will have a rich program for forefront research in physics, biology, geosciences, and mining engineering. The mine is owned by the Climax Molybdenum Company (CMC). It is located about 50 miles west of Denver and is easily accessible via major highways. The mine is modern and has extensive infrastructure with reserve capacity well-suited to the demands of DUSEL. CMC owns all land required for DUSEL, including the tailings site. It also has all environmental and mining permits required for DUSEL excavation, core drilling, and rock disposal. The mine owners are enthusiastic supporters of this initiative. In support of the Henderson DUSEL project, the State of Colorado has pledged substantial funding for surface construction.

  10. Development of the Science Data System for the International Space Station Cold Atom Lab

    Science.gov (United States)

    van Harmelen, Chris; Soriano, Melissa A.

    2015-01-01

    Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.

  11. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  12. A Big Bang Lab

    Science.gov (United States)

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  13. The Role of Hands-On Science Labs in Engaging the Next Generation of Space Explorers

    Science.gov (United States)

    Williams, Teresa A. J.

    2002-01-01

    Each country participating on the International Space Station (ISS) recognizes the importance of educating the coming generation about space and its opportunities. In 2001 the St. James School in downtown Houston, Texas was approached with a proposal to renovate an unused classroom and become involved with the "GLOBE" Program and other Internet based international learning resources. This inner-city school willingly agreed to the program based on "hands-on" learning. One month after room conversion and ten computer terminals donated by area businesses connectivity established to the internet the students immediately began using the "Global Learning and Observations to Benefit the Environment (GLOBE)" program and the International Space Station (ISS) Program educational resources. The "GLOBE" program involves numerous scientific and technical agencies studying the Earth, who make it their goal to provide educational resources to an international community of K-12 scientist. This project was conceived as a successor to the "Interactive Elementary Space Museum for the New Millennium" a space museum in a school corridor without the same type of budget. The laboratory is a collaboration, which involved area businesses, volunteers from the NASA/Johnson Space Center ISS Outreach Program, and students. This paper will outline planning and operation of the school science laboratory project from the point of view of the schools interest and involvement and assess its success to date. It will consider the lessons learned by the participating school administrations in the management of the process and discuss some of the issues that can both promote and discourage school participation in such projects.

  14. Report from the banding lab

    Science.gov (United States)

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  15. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  16. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  17. 7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

  18. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  19. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  20. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  1. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    International Nuclear Information System (INIS)

    Gebhardt, Thomas; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-01-01

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition–structure–property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  2. PD Lab

    Directory of Open Access Journals (Sweden)

    Marcel Bilow

    2015-08-01

    Full Text Available PD Lab explores the applications of building sector related product development.  PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  3. A Science Lab by Any Other Name Would Smell as Sweet--But Would It Be as Safe?

    Science.gov (United States)

    Roy, Ken

    2011-01-01

    In building projects or renovations, architects and administrators tend to label the science instructional space as a "science classroom," as opposed to a "science laboratory." What exactly is a science classroom, and what is a science laboratory? According to OSHA's Laboratory Standard (OSHA #29 CFR part 1910.1450), "laboratory" means a facility…

  4. Teaching and Learning Coastal Processes through Research in a Non-Lab Science Course and Having Fun at the Same Time

    Science.gov (United States)

    Thissen, J.

    2014-12-01

    At Nassau Community College students are required to take one lab science and one non-lab science. These two science courses will probably be the only sciences courses they'll take in their college career. What are they looking for in a science course? "Is it easy?" "Will we have fun?" I can try for "fun" but "easy" and "science" seem to be oxymorons. I've found that they don't notice the difficulty when they're having fun. With this is mind I set out to create a course that would fulfill this requirement but also challenge them to learn science through hands-on, real-life, placed based activities and projects. Beaches and Coasts is essentially a coastal processes course that requires a full term research project along with other hands-on activities. We live on an island (Long Island, NY). The state of our shoreline impacts all of us - something we saw during Superstorm Sandy. Long Island's shorelines vary tremendously. Our north shore is glacially controlled and irregular with many harbors and bays; our south shore is an Atlantic Ocean coastline with many barrier islands and lagoons that contain many inlets and marshes. Many municipalities have small natural beaches along this coastline. For their project students choose a shoreline, with input from the instructor, and take "ownership" of it for at least one moon cycle. They collect data on tides, currents, waves, offshore sediment transport and anthropogenic structures and then study the impact of these factors on their section of shoreline. They also collect sediment from their beach to analyze later in the lab. They are given a rubric with the specific requirements and then make a PowerPoint presentation that includes all their data, charts and graphs as well as their photos that they took while doing their research. Students love doing this project. They can't believe they get credits for going to the beach - something they do anyway (the "fun" factor). They all say that they'll never go to the beach the same

  5. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  6. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  7. Moving the Lab into the Field: The Making of Pathologized (Non)Citizens in US Science Education

    Science.gov (United States)

    Kirchgasler, Kathryn L.

    2018-01-01

    This article examines how notions of health and citizenship have become entangled in US science education reforms targeting particular populations. Current science education policy assumes that marginalized groups have been historically ignored, and that new research is required to "make diversity visible" in order to adapt instruction…

  8. Perceptions of Critical Thinking, Task Value, Autonomy and Science Lab Self-Efficacy: A Longitudinal Examination of Students' CASE Experience

    Science.gov (United States)

    Velez, Jonathan J.; Lambert, Misty D.; Elliott, Kristopher M.

    2015-01-01

    The purpose of this study was to begin examining the impact of the Curriculum for Agricultural Science Education (CASE). Under development since 2008, the curriculum is intended to integrate core academics and Science, Technology, Engineering, and Math (STEM) into agricultural education programs. This longitudinal descriptive correlational study…

  9. Investigating the Role of an Inquiry-Based Biology Lab Course on Student Attitudes and Views toward Science

    Science.gov (United States)

    Jeffery, Erica; Nomme, Kathy; Deane, Thomas; Pollock, Carol; Birol, Gülnur

    2016-01-01

    Students' academic experiences can influence their conceptualization of science. In contrast experts hold particular beliefs, perceptions, opinions, and attitudes about science that are often absent in first-year undergraduate students. Shifts toward more expert-like attitudes and views have been linked to improved student engagement,…

  10. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    DEFF Research Database (Denmark)

    Matteucci, Marco; Heiskanen, Arto; Zor, Kinga

    2016-01-01

    We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones ...

  11. The Design:Lab as platform in participatory design research

    DEFF Research Database (Denmark)

    Binder, Thomas; Brandt, Eva

    2008-01-01

    The notion of laboratory or simply 'lab' has become popular in recent years in areas outside science and technology development. Learning Labs, Innovation Labs, Usability Labs, Media and Communication Labs and even Art Labs designate institutions or fora dedicated to change and experimentation...... as others have frequently used other metaphors like workshop, studio or atelier in design research. In this article we will argue that the laboratory metaphor is particularly suitable and useful for the design:lab, and we will give examples of how we have worked with the design:lab as a platform...

  12. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    Science.gov (United States)

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  13. The lab of fame

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    For a third time, CERN is organising the Swiss heat of Famelab, the world’s leading science communication competition that has already gathered over 5,000 young and talented scientists and engineers from all across the planet.   Besides their degrees, the scientists who participate in Famelab have another thing in common: their passion for communicating science. Coming from a variety of scientific fields, from medicine to particle physics and microbiology, the contestants have three minutes to present a science, technology, mathematics or engineering-based talk using only the props he or she can carry onto the stage; PowerPoint presentations are not permitted. The contestants are then judged by a panel of three judges who evaluate the content, clarity and charisma of their talks. What's unique about FameLab is the fact that content is an important aspect of the performance. At the end of their presentation, contestants are often questioned about the scientific relevance of...

  14. Lab Aliens, Legendary Fossils, and Deadly Science Potions: Views of Science and Scientists from Fifth Graders in a Free-Choice Creative Writing Program

    Science.gov (United States)

    Hellman, Leslie G.

    This qualitative study uses children's writing to explore the divide between a conception of Science as a humanistic discipline reliant on creativity, ingenuity and out of the box thinking and a persistent public perception of science and scientists as rigid and methodical. Artifacts reviewed were 506 scripts written during 2014 and 2016 by 5th graders participating in an out-of classroom, mentor supported, free-choice 10-week arts and literacy initiative. 47% (237) of these scripts were found to contain content relating to Science, Scientists, Science Education and the Nature of Science. These 237 scripts were coded for themes; characteristics of named scientist characters were tracked and analyzed. Findings included NOS understandings being expressed by representation of Science and Engineering Practices; Ingenuity being primarily linked to Engineering tasks; common portrayals of science as magical or scientists as villains; and a persistence in negative stereotypes of scientists, including a lack of gender equity amongst the named scientist characters. Findings suggest that representations of scientists in popular culture highly influence the portrayals of scientists constructed by the students. Recommendations to teachers include encouraging explicit consideration of big-picture NOS concepts such as ethics during elementary school and encouraging the replacement of documentary or educational shows with more engaging fictional media.

  15. Doing, talking and writing science: A discourse analysis of the process of resemiotization in a middle school lab-based science class

    Science.gov (United States)

    Wright, Laura J.

    This study examines students' sense making practices in a middle school science class from a discourse analytic perspective. Using Mediated Discourse Analysis (MDA) (Scollon 1998, 2001) and interactional sociolinguistics (Gumperz 1999, 2001, Schiffrin 1994), my research seeks to enrich findings from recent sociocultural studies of science classrooms that focus on doing, talking and writing science (Roth 2005, Kress, et al. 2002, Halliday & Martin 1993, Lemke 1990). Within a middle school science classroom, these fundamental activities form a nexus of practice (Scollon 1998, 2001) basic to science literacy (AAAS 1989) and reflective of the work of practicing scientists. Moreover, students' engagement in these practices provides insight into the cultural production and reproduction of science and scientist. I first examine how the students' curriculum text encourages these three scientific practices and then trace students' uptake; that is, how they subsequently do, talk, and write science throughout the course of the unit. I argue that learning science with this curriculum unit requires students to resemiotize (Iedema 2001, 2003) first hand experience so they can represent their knowledge cohesively and coherently in evaluable forms. Ultimately, students must transform language from the curriculum text and their teacher into action in their laboratory activities and action in their laboratory activities into language. In addition, I show how students are apprenticed to the conventionalized practices and voices (Bakhtin 1986) of science (i.e. the scientific register), and how their figures of personhood (Agha 2005) reflect the development of their scientific identities. Overall, I argue that the microanalytic methods I use illuminate how students draw upon curricular resources to become scientifically literate and develop scientific identities.

  16. Directed self-assembly of block copolymer thin films: From fundamentals science to applications

    Science.gov (United States)

    Teel, George Lewis

    A modern approach to satellite based experimentation has evolved from large, multi-instrumented satellites, to cheaper, smaller, almost disposable yet still reliable small spacecrafts. These small satellites are either sent to the International Space Station (ISS) to be dropped out into low earth orbit (LEO), or dropped off as a secondary payload into various orbits. While it is cheap to have small spacecraft accomplishing these missions, the lifetime expectancy is very short. Currently there are no commercialized propulsion systems that exist to keep them flying for prolonged periods of time. Recently researched at the Micro Propulsion and Nanotechnology Lab (MPNL), at the George Washington University (GWU), have been developments of a variety of Vacuum Arc Thrusters (VAT's) dubbed Micro-Cathode Vacuum Arc Thrusters (muCATs). muCAT's provide an inert electric means of propulsion for small spacecraft. The issue with these muCATs has been their efficiency levels and low amounts of thrust that they provide. The muCATs can provide muN levels of thrust per pulse. While being proficient for small spacecrafts, an increase in thrust is highly sought for, but the improvements must retain a small footprint and low power consumption. The topic of this thesis is the development and characterization of a new type of muCAT. The interest in this new design has been conceptualized based on experiments for plasma coating techniques. By utilizing the physics of evaporation, which has been used to decrease macroparticles (MP's) for thin film deposition, it has been theorized to also be applied to VAT technology. The concept is to increase levels of thrust with the muCAT, and provide higher levels of efficiency. This effect can be created without many additional components nor multiple additional loads to the thruster subsystem. Development of this new mechanic for thruster technology has been investigated through a variety of tests for fundamental proofs of concept. Running in two

  17. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    Science.gov (United States)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers

  18. Fifteen years experience: Egyptian metabolic lab

    Directory of Open Access Journals (Sweden)

    Ekram M. Fateen

    2014-10-01

    Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder screening by using simple diagnostic techniques like thin layer chromatography and colored tests in urine which by time updated and upgraded the methods to diagnose a wide range of disorders. This study shows the most common diagnosed inherited inborn errors of metabolism among the Egyptian population.

  19. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  20. National Lab Science Day | News

    Science.gov (United States)

    Financial Officer Finance Section Office of the Chief Operating Officer Facilities Engineering Services Accelerator Division Accelerator Physics Center Office of the Chief Safety Officer Environment, Safety, Health and Quality Section Office of the Chief Project Officer Office of Project Support Services Office of

  1. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    culture and policies at MSD MSD0010: Integrated Safety Management: Principles and Case Studies Calendar ? Click Here! Resources for MSD Safety MSD Safety MSD's Integrated Safety Management Plan [PDF] Safety for MSD classes on Integrated Safety Management MSD0015 Handout - Waste Briefing Document [PDF] Waste

  2. Capabilities: Science Pillars

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  3. Faces of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  4. Bradbury Science Museum

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  5. Office of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  6. Development of a thinned back-illuminated CMOS active pixel sensor for extreme ultraviolet spectroscopy and imaging in space science

    International Nuclear Information System (INIS)

    Waltham, N.R.; Prydderch, M.; Mapson-Menard, H.; Pool, P.; Harris, A.

    2007-01-01

    We describe our programme to develop a large-format, science-grade, monolithic CMOS active pixel sensor for future space science missions, and in particular an extreme ultraviolet (EUV) spectrograph for solar physics studies on ESA's Solar Orbiter. Our route to EUV sensitivity relies on adapting the back-thinning and rear-illumination techniques first developed for CCD sensors. Our first large-format sensor consists of 4kx3k 5 μm pixels fabricated on a 0.25 μm CMOS imager process. Wafer samples of these sensors have been thinned by e2v technologies with the aim of obtaining good sensitivity at EUV wavelengths. We present results from both front- and back-illuminated versions of this sensor. We also present our plans to develop a new sensor of 2kx2k 10 μm pixels, which will be fabricated on a 0.35 μm CMOS process. In progress towards this goal, we have designed a test-structure consisting of six arrays of 512x512 10 μm pixels. Each of the arrays has been given a different pixel design to allow verification of our models, and our progress towards optimizing a design for minimal system readout noise and maximum dynamic range. These sensors will also be back-thinned for characterization at EUV wavelengths

  7. Causes of The occurrence of Obstacles in The Implementation of “Normal Labor Attendance” Skills Lab for Midwifery Students at Institute of Health Science "Surya Mitra Husada Kediri"

    Directory of Open Access Journals (Sweden)

    Retno Palupi Yonni Siwi

    2017-11-01

    Full Text Available This study aimed to analyze the factors that influence the occurrence of obstacles in the skills lab about Normal Labor Attendance for the students in midwifery school of Institute of Health Sciences "Surya Mitra Husada" Kediri, with cross sectional design. The subjects were 37 students of Semester IV, selected using total sampling technique. Factors studied were mentor roles, interest in learning, and tool limitations. Data were collected through questionnaires and observation sheets, then analyzed using ordinal regression test. The p-value of the ordinal regression test was 0.000; so it was concluded that the mentor roles, interest in learning and tool limitations affected the occurrence of obstacles in the skills lab.

  8. "Did You Say 50% of My Grade?"--Teaching Introductory Physics to Non-Science Majors through a Haunted Physics Lab

    Science.gov (United States)

    Donaldson, Nancy

    2010-01-01

    Several years ago I attended an AAPT Haunted Physics Workshop taught by Dr. Tom Zepf from Creighton University. Dr. Zepf's highly successful Haunted Physics Lab at Creighton was put on every October by his physics majors. I found the concept of exhibiting physics projects in a "fun" way to students, faculty, and the public very exciting, so an…

  9. Folding Inquiry into Cookbook Lab Activities

    Science.gov (United States)

    Gooding, Julia; Metz, Bill

    2012-01-01

    Cookbook labs have been a part of science programs for years, even though they serve little purpose other than to verify phenomena that have been previously presented by means other than through investigations. Cookbook science activities follow a linear path to a known outcome, telling students what procedures to follow, which materials to use,…

  10. Thin Versus Thick Description: Analyzing Representations of People and Their Life Worlds in the Literature of Communication Sciences and Disorders.

    Science.gov (United States)

    Hengst, Julie A; Devanga, Suma; Mosier, Hillary

    2015-11-01

    Evidence-based practice relies on clinicians to translate research evidence for individual clients. This study, the initial phase of a broader research project, examines the textual resources of such translations by analyzing how people with acquired cognitive-communication disorders (ACCD) and their life worlds have been represented in Communication Sciences and Disorders (CSD) research articles. Using textual analysis, we completed a categorical analysis of 6,059 articles published between 1936 and 2012, coding for genre, population, and any evidence of thick representations of people and their life worlds, and a discourse analysis of representations used in 56 ACCD research articles, identifying thin and thick representations in 4 domains (derived from the International Classification of Functioning, Disability, and Health) and across article sections. The categorical analysis identified a higher percentage of ACCD articles with some evidence of thick representation (30%) compared with all CSD articles (12%) sampled. However, discourse analysis of ACCD research articles found that thick representations were quite limited; 34/56 articles had thin representational profiles, 19/56 had mixed profiles, and 3/56 had thick profiles. These findings document the dominance of thin representations in the CSD literature, which we suggest makes translational work more difficult. How clinicians translate such evidence will be addressed in the next research phase, an interview study of speech-language pathologists.

  11. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    Science.gov (United States)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  12. Magnetic Media Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This lab specializes in tape certification and performance characterization of high density digital tape and isprepared to support the certification of standard size...

  13. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  14. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  15. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  16. Reforming Cookbook Labs

    Science.gov (United States)

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  17. Payments to the Lab

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management the Lab Make payments for event registrations, sponsorships, insurance, travel, other fees. Contact Treasury Team (505) 667-4090 Email If you need to make a payment to the Lab for an event registration

  18. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    urban lab initiatives from five different European cities: Antwerp (B), Graz and Leoben (A), Maastricht (NL) and Malmö (S). We do not pretend that these guidelines touch upon all possible challenges an urban lab may be confronted with, but we have incorporated all those we encountered in our...

  19. Innovative Educational Practice: Using Virtual Labs in the Secondary Classroom

    Directory of Open Access Journals (Sweden)

    Marcel Satsky Kerr, PhD

    2004-07-01

    Full Text Available Two studies investigated the effectiveness of teaching science labs online to secondary students. Study 1 compared achievement among students instructed using hands-on Chemistry labs versus those instructed using virtual Chemistry labs (eLabs. Study 2 compared the same groups of students again while both teachers instructed using hands-on Chemistry labs to determine whether teacher or student characteristics may have affected Study 1’s findings. Participants were high school Chemistry students from a Central Texas Independent School District. Results indicated that: students learn science effectively online, schools may experience cost savings from delivering labs online, and students gain valuable technology skills needed later in college and in the workplace.

  20. Kinematic Labs with Mobile Devices

    Science.gov (United States)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  1. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  2. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  3. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  4. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  5. The Udall Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Udall lab is interested in genome evolution and cotton genomics.The cotton genus ( Gossypium) is an extraordinarily diverse group with approximately 50 species...

  6. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management......, thus making Open-Lab Framework more attractive for laboratories that seek to increase productivity through electronic data management....

  7. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  8. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.

  9. FameLab - Swiss Semi Finals

    CERN Multimedia

    Corinne Pralavorio

    2012-01-01

    Twenty-two young scientists participated in the FameLab semi-final at CERN's Globe of Science and Innovation on 4 February, supported by a large audience and by more than 100 fans following via webcast. A panel of judges chose Lemmer and four other candidates to join five other semi-finalists at the national finals in Zurich on 30 March.

  10. The Multisensory Sound Lab: Sounds You Can See and Feel.

    Science.gov (United States)

    Lederman, Norman; Hendricks, Paula

    1994-01-01

    A multisensory sound lab has been developed at the Model Secondary School for the Deaf (District of Columbia). A special floor allows vibrations to be felt, and a spectrum analyzer displays frequencies and harmonics visually. The lab is used for science education, auditory training, speech therapy, music and dance instruction, and relaxation…

  11. Dancing on Thinning Ice: Choreography and Science in the Chukchi Sea

    Science.gov (United States)

    Sperling, J.

    2016-12-01

    In 2014, Jody Sperling was the first-ever choreographer in residence to participate in a polar science mission, thanks to an invitation from Dr. Robert Pickart (Woods Hole Oceanographic Institution). This 43-day mission (SUBICE) aboard the USCGC Healy traveled to the Chukchi Sea with Sperling serving as part of an outreach team on climate science communication. Since the mission, Sperling has shared her Arctic experience with more than 4,200 people through dozens of live performances, lectures and workshops, plus press coverage across the US. Her film "Ice Floe," created during SUBICE, won a Creative Climate Award and has been aired on Alaska Public Television reaching thousands more. While Arctic sea ice is vitally important to the global climate system, the public knows little about its function (other than as a habitat for polar bears) or its precipitous decline. Sperling's research during the mission focused on sea ice and had three components: 1) As a contributor to SUBICE's Ice Watch Survey, she learned the descriptive nomenclature for sea ice and its processes of formation to transport its dynamics and aesthetics to the stage. This information served as critical inspiration for the creation of her dance work "Ice Cycle" (2015); 2) Sperling collected media samples of sea ice that were subsequently used in performances of "Ice Cycle" as well as her frequent public lectures; 3) Sperling danced on sea ice at a dozen ice stations. In collaboration with the WHOI outreach team, the SUBICE science party and the Healy crew, she created the dance film short "Ice Floe". Sperling's dance company, Time Lapse Dance, has performed "Ice Cycle" as part of the larger program "Bringing the Arctic Home" at many venues nationally and the work has been mounted on students at Brenau University in Georgia. Wherever she performs, Sperling programs talkbacks, lectures and panels with scientists, artists and climate educators, with the aim of increasing awareness of sea ice, the rapid

  12. Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities

    Science.gov (United States)

    Baztan, Juan; Cordier, Mateo; Huctin, Jean-Michel; Zhu, Zhiwei; Vanderlinden, Jean-Paul

    2017-09-01

    What are the links between mainstream climate science and local community knowledge? This study takes the example of Greenland, considered one of the regions most impacted by climate change, and Inuit people, characterized as being highly adaptive to environmental change, to explore this question. The study is based on 10 years of anthropological participatory research in Uummannaq, Northwest Greenland, along with two fieldwork periods in October 2014 and April 2015, and a quantitative bibliometric analysis of the international literature on sea ice - a central subject of concern identified by Uummannaq community members during the fieldwork periods. Community members' perceptions of currently available scientific climate knowledge were also collected during the fieldwork. This was done to determine if community members consider available scientific knowledge salient and if it covers issues they consider relevant. The bibliometric analysis of the sea ice literature provided additional insight into the degree to which scientific knowledge about climate change provides information relevant for the community. Our results contribute to the ongoing debate on the missing connections between community worldviews, cultural values, livelihood needs, interests and climate science. Our results show that more scientific research efforts should consider local-level needs in order to produce local-scale knowledge that is more salient, credible and legitimate for communities experiencing climate change. In Uummannaq, as in many Inuit communities with similar conditions, more research should be done on sea ice thickness in winter and in areas through which local populations travel. This paper supports the growing evidence that whenever possible, climate change research should focus on environmental features that matter to communities, at temporal and spatial scales relevant to them, in order to foster community adaptations to change. We recommend such research be connected to and

  13. The Impact of Instructor Grouping Strategies on Student Efficacy in Inquiry Science Labs: A Phenomenological Case Study of Grouping Perceptions and Strategies

    Science.gov (United States)

    Miller, Nathaniel J.

    2015-01-01

    Abundant educational research has integrated Albert Bandura's concepts of self-efficacy and collective efficacy within educational settings. In this phenomenological case study, the investigation sought to capture the manifestation of self-efficacy and collective efficacy within inquiry-based science laboratory courses. Qualitative data was…

  14. The impact of instructor grouping strategies on student efficacy in inquiry science labs: A phenomenological case study of grouping perceptions and strategies

    Science.gov (United States)

    Miller, Nathaniel J.

    Abundant educational research has integrated Albert Bandura's concepts of self-efficacy and collective efficacy within educational settings. In this phenomenological case study, the investigation sought to capture the manifestation of self-efficacy and collective efficacy within inquiry-based science laboratory courses. Qualitative data was derived from student efficacy surveys, direct classroom observations, and three-tiered interviews with teacher participants. Four high school science instructors and their students from two school districts in Northern Illinois were selected to participate in the study. This study sought to identify instructor strategies or criteria used to formulate student laboratory groups and the impact of such groupings on student self-efficacy and collective efficacy. Open coding of interview transcripts, observation logs, and student surveys led to the development of eight emerging themes. These themes included the purpose of science laboratory activities, instructor grouping strategies, instructor roles, instructor's perceptions, science laboratory assessment, student interactions, learner self-perceptions, and grouping preferences. Results from the study suggest that some students were innately inclined to assume leadership roles, smaller groupings had greater participation from all group members, students had a strong preference for working collaboratively in groups, and students desired to maintain stable laboratory groups in lieu of periodically changing laboratory partners. As with all case study methodologies, the findings of the study were limited to the individual participants at research sites and were not generalizable to all science classrooms. Additional research in the realms of group size, group autonomy, and student interviews would provide even greater insights into the observed phenomena.

  15. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    2015-02-02

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.  Created: 2/2/2015 by Office of the Associate Director for Communication (OADC).   Date Released: 2/2/2015.

  16. Science and Innovation at Los Alamos

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  17. RoboLab and virtual environments

    Science.gov (United States)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  18. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  19. Modifying Cookbook Labs.

    Science.gov (United States)

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  20. Science from the inside

    Science.gov (United States)

    Toumey, Chris

    2009-09-01

    Most scientists think of science as completely objective, but lab studies by social scientists - including several carried out in nanotechnology labs - suggest that it is more subjective than many scientists realize. Chris Toumey looks at the results of these studies.

  1. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  2. Results of a strategic science study to inform policies targeting extreme thinness standards in the fashion industry.

    Science.gov (United States)

    Rodgers, Rachel F; Ziff, Sara; Lowy, Alice S; Yu, Kimberly; Austin, S Bryn

    2017-03-01

    The appearance pressures experienced by fashion models have been criticized as harmful to their health, as well as increasing eating disorder risk among youth by promoting ideals of extreme thinness. Given recent legislation to protect models, we undertook a strategic science study to assess professional fashion models' perceptions of the potential impact and feasibility of seven policy proposals. A sample of 85 female fashion models, mean age = 22.7 years (SD 3.7) completed an online survey assessing unhealthy weight control behaviors (UWCB), perceived pressure from agencies to lose weight, as well as the perceived impact and feasibility of seven potential policy actions. Chi-squared analyses and multivariable logistic regressions compared UWCB among models who were asked to lose weight and those who were not. Friedman and Kendall's W tests were conducted to examine differences in impact and feasibility ratings across the seven policy proposals. Models reported high levels of pressure to lose weight, which was associated with higher odds of engaging in UWCB. The policy approaches rated as most impactful were those to increase worker protections, though they were rated as only moderately feasible. Requiring employers to provide food and a 30-min break for jobs longer than 6 h was rated as both impactful and feasible. Imposing restrictions on minimum BMI was rated as the least impactful. Approaches providing employment protections and healthier working conditions are most supported by professional models. These findings help to illuminate viable policy approaches from the perspective of key stakeholders. © 2017 Wiley Periodicals, Inc.

  3. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    These guidelines are intended for team members and managers of urban labs and, more generally, for civil servants and facilitators in cities working with experimental processes to tackle complex challenges. They aim to support the everyday practice of collaboratively experimenting and learning ho...... the result is inspiring and instructive for all those who want to wrap their minds around experimental co-creative approaches to urban governance and city development....

  4. UniSchooLabs Toolkit: Tools and Methodologies to Support the Adoption of Universities’ Remote and Virtual Labs in Schools

    Directory of Open Access Journals (Sweden)

    Augusto Chioccariello

    2012-11-01

    Full Text Available The UniSchooLabs project aims at creating an infrastructure supporting web access to remote/virtual labs and associated educational resources to engage learners with hands-on and minds-on activities in science, technology and math in schools. The UniSchooLabs tool-kit supports the teacher in selecting a remote or virtual lab and developing a lab activity based on an inquiry model template. While working with the toolkit the teacher has access to three main features: a a catalogue of available online laboratories; b an archive of activities created by other users; c a tool for creating new activities or reusing existing ones.

  5. Safety and shielding management for pulse power lab at IPR

    International Nuclear Information System (INIS)

    Upadhyay, Shweta; Faldu, Akash; Koshti, Rahul; Kumar, Rajesh

    2016-01-01

    Experiments in pulsed power lab works with very high voltage and high current regime for the nanosecond to microsecond time scale. This produces lot of electromagnetic noise, which can cause interference or malfunctioning of equipment. Laboratory Safety and protection are a very important aspect of science and engineering. Without it, practical performance could result in very serious injury, if not death. To reduce its effect electromagnetic shielding and grounding has to be enforced effectively. Pulse power lab deals with many safety issues like Radiation safety (shielding), High voltage safety, electrical and mechanical safety, etc. In this paper radiation all the safety aspects in pulse power lab is described. (author)

  6. A Case Study of a High School Fab Lab

    Science.gov (United States)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  7. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    Science.gov (United States)

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  8. Tele-Lab IT-Security: an Architecture for an online virtual IT Security Lab

    Directory of Open Access Journals (Sweden)

    Christoph Meinel

    2008-05-01

    Full Text Available Recently, Awareness Creation in terms of IT security has become a big thing – not only for enterprises. Campaigns for pupils try to highlight the importance of IT security even in the user’s early years. Common practices in security education – as seen in computer science courses at universities – mainly consist of literature and lecturing. In the best case, the teaching facility offers practical courses in a dedicated isolated computer lab. Additionally, there are some more or less interactive e-learning applications around. Most existing offers can do nothing more than impart theoretical knowledge or basic information. They all lack of possibilities to provide practical experience with security software or even hacker tools in a realistic environment. The only exceptions are the expensive and hard-to-maintain dedicated computer security labs. Those can only be provided by very few organizations. Tele-Lab IT-Security was designed to offer hands-on experience exercises in IT security without the need of additional hardware or maintenance expenses. The existing implementation of Tele-Lab even provides access to the learning environment over the Internet – and thus can be used anytime and anywhere. The present paper describes the extended architecture on which the current version of the Tele-Lab server is built.

  9. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  10. ERLN Technical Support for Labs

    Science.gov (United States)

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  11. Aircraft Lighting and Transparency Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Lighting and Transparencies with Night Combat Lab performs radiometric and photometric measurements of cockpit lighting and displays. Evaluates the day,...

  12. Lab at Home: Hardware Kits for a Digital Design Lab

    Science.gov (United States)

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  13. RemoteLabs Platform

    Directory of Open Access Journals (Sweden)

    Nils Crabeel

    2012-03-01

    Full Text Available This paper reports on a first step towards the implementation of a framework for remote experimentation of electric machines – the RemoteLabs platform. This project was focused on the development of two main modules: the user Web-based and the electric machines interfaces. The Web application provides the user with a front-end and interacts with the back-end – the user and experiment persistent data. The electric machines interface is implemented as a distributed client server application where the clients, launched by the Web application, interact with the server modules located in platforms physically connected the electric machines drives. Users can register and authenticate, schedule, specify and run experiments and obtain results in the form of CSV, XML and PDF files. These functionalities were successfully tested with real data, but still without including the electric machines. This inclusion is part of another project scheduled to start soon.

  14. Beyond Classroom, Lab, Studio and Field

    Science.gov (United States)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  15. Entomology: Promoting Creativity in the Science Lab

    Science.gov (United States)

    Akcay, Behiye B.

    2013-01-01

    A class activity has been designed to help fourth grade students to identify basic insect features as a means of promoting student creativity while making an imaginary insect model. The 5Es (Engage, Explore, Explain, Extend [or Elaborate], and Evaluate) learning cycle teaching model is used. The 5Es approach allows students to work in small…

  16. Growing Our Own Outdoor Science Lab.

    Science.gov (United States)

    Dungey, Joan M.

    1997-01-01

    Describes a partnership project between a school and the local community that aimed at transforming the school campus into a beautiful multipurpose area that serves the entire community. Provides students with an in-depth integrated study of plants and gardening and increases awareness of ecological conservation and environmental interactions.…

  17. GitLab repository management

    CERN Document Server

    Hethey, Jonathan

    2013-01-01

    A simple, easy to understand tutorial guide on how to build teams and efficiently use version control, using GitLab.If you are a system administrator in a company that writes software or are in charge of an infrastructure, this book will show you the most important features of GitLab, including how to speed up the overall process

  18. Ntal/Lab/Lat2

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Jensen, Bettina M; Gilfillan, Alasdair M

    2007-01-01

    T cells. As demonstrated in monocytes and B cells, phosphorylated NTAL/LAB/LAT2 recruits signaling molecules such as Grb2, Gab1 and c-Cbl into receptor-signaling complexes. Although gene knock out and knock down studies have indicated that NTAL/LAB/LAT2 may function as both a positive and negative...

  19. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    Science.gov (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  20. DOSAR/CalLab Operations Manual

    International Nuclear Information System (INIS)

    Bogard, J.S.

    2000-01-01

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Dosimetry Applications Research (DOSAR) Program Calibration Laboratory (CalLab), referred to formerly as the Radiation Calibration Laboratory. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments

  1. Jefferson Lab: A Long Decade of Physics

    International Nuclear Information System (INIS)

    Montgomery, Hugh

    2011-01-01

    , associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics.

  2. Plasma Levels of Uric Acid, Urea and Creatinine in Diabetics Who Visit the Clinical Analysis Laboratory (CAn-Lab) at Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

    Science.gov (United States)

    Amartey, N A A; Nsiah, K; Mensah, F O

    2015-02-01

    Diabetes mellitus is one of the most common metabolic diseases worldwide. This metabolic disorder contributes greatly to the significant proportion of the burden of renal damage and dysfunction. The aim of the study was to investigate the renal function of the diabetic patients who visit the Clinical Analysis Laboratory (CAn-Lab) at the Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Demographic data as well as medical history were obtained through the administration of a questionnaire. Anthro-pometric measurements were taken and blood samples were analysed for glucose, uric acid, urea and creatinine. Data collected were analysed using SPSS version 16.0. A total of 34 diabetic patients, aged from 40-77 y were recruited, 22 (64.7%) of them were males with mean age of 57.40 ± 11.8 y (±SD), while 12 (35.3%) were females with mean age of 58.17 ± 7.47 y. There was a statistically significant difference between the mean duration of the disease, as the females had longer duration, 12.50 ± 6.95 y, as compared to 7.32 ± 4.48 y in males (p=0.033). The mean plasma creatinine level in the females was 84.17 ± 54.73 μmol/l. In the diabetic population, there was a positive correlation between age and plasma creatinine level, (r=0.375, p=0.029). In the female diabetics, there was a positive correlation between fasting blood sugar (FBS) and the measured metabolic end products (r>0.5, p<0.05), a positive correlation between body mass index (BMI) and uric acid (r=0.576, p=0.005) and a positive correlation between BMI and FBS (r= 0.625, p= 0.030). Our results on the parameters measured; show that the diabetic population was experiencing mild kidney dysfunction, compared to non-diabetic controls.

  3. The Jefferson Lab Frozen Spin Target

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Keith, James Brock, Christopher Carlin, Sara Comer, David Kashy, Josephine McAndrew, David Meekins, Eugene Pasyuk, Joshua Pierce, Mikell Seely

    2012-08-01

    A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

  4. Plant Biotech Lab Manual.

    Science.gov (United States)

    Tant, Carl

    This book provides laboratory experiments to enhance any food science/botany curriculum. Chapter 1, "Introduction," presents a survey of the techniques used in plant biotechnology laboratory procedures. Chapter 2, "Micronutrition," discusses media and nutritional requirements for tissue culture studies. Chapter 3, "Sterile Seeds," focuses on the…

  5. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    OpenAIRE

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discoura...

  6. Reviews Book: Marie Curie: A Biography Book: Fast Car Physics Book: Beautiful Invisible Equipment: Fun Fly Stick Science Kit Book: Quantum Theory Cannot Hurt You Book: Chaos: The Science of Predictable Random Motion Book: Seven Wonders of the Universe Book: Special Relativity Equipment: LabVIEWTM 2009 Education Edition Places to Visit: Edison and Ford Winter Estates Places to Visit: The Computer History Museum Web Watch

    Science.gov (United States)

    2011-07-01

    WE RECOMMEND Fun Fly Stick Science Kit Fun fly stick introduces electrostatics to youngsters Special Relativity Text makes a useful addition to the study of relativity as an undergraduate LabVIEWTM 2009 Education Edition LabVIEW sets industry standard for gathering and analysing data, signal processing, instrumentation design and control, and automation and robotics Edison and Ford Winter Estates Thomas Edison's home is open to the public The Computer History Museum Take a walk through technology history at this computer museum WORTH A LOOK Fast Car Physics Book races through physics Beautiful Invisible The main subject of this book is theoretical physics Quantum Theory Cannot Hurt You A guide to physics on the large and small scale Chaos: The Science of Predictable Random Motion Book explores the mathematics behind chaotic behaviour Seven Wonders of the Universe A textual trip through the wonderful universe HANDLE WITH CARE Marie Curie: A Biography Book fails to capture Curie's science WEB WATCH Web clips to liven up science lessons

  7. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    International Nuclear Information System (INIS)

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Loesche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2006-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 A -1 . A detailed description of this flexible instrument and its performance characteristics in various operating modes are given

  8. Application of thin-layer chromatography of fat and oil, fatty acid and mineral oil for science education. Yushi, shibosan, koyu no hakuso chromatography to sono kyozaiteki katsuyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawabuchi, K [Ehime Univ., Ehime (Japan); Takechi, Y; Morimoto, M [Ehime (Japan)

    1990-08-20

    In this article, with regard to application of thin-layer chromatography of fat and oil, fatty acid and mineral oil for science education, a study was made mainly on quality finding of n-hexane extracts provided in the law of prevention of water pollution, and separation of hydrolysis products of fat and oil. As a result, the existance of fat and oil, fatty acid and mineral oil in the enviromental water and the hydrolysis process of fat and oil could experimentally be confirmed. This is considered to be useful for studying teaching material on fat and oil. This report deals with the reagents and device, and specifies standard solution, thin-layer plate, spread solvent, spread tank and thermostat, and states, for its operation, the method using enzyme for hydrolysis of fat and oil and the method using potassium hydroxide. It also contemplates on R {sub f} values of fat and oil, fatty acid and mineral oil, etc., as well as spread of fat and oil, oils contained in n-hexane extracts and hydrolysis products of fat and oil. 6 refs., 4 figs., 1 tab.

  9. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  10. An Annotated Math Lab Inventory.

    Science.gov (United States)

    Schussheim, Joan Yares

    1980-01-01

    A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)

  11. Pollution hazard closes neutrino lab

    CERN Multimedia

    Jones, Nicola

    2003-01-01

    "A leading astrophysics laboratory in Italy has closed down all but one of its experiments over concerns that toxic polluants could leak form the underground lab into the local water supply" (0.5 page)

  12. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  13. Reviews Equipment: Data logger Book: Imagined Worlds Equipment: Mini data loggers Equipment: PICAXE-18M2 data logger Books: Engineering: A Very Short Introduction and To Engineer Is Human Book: Soap, Science, & Flat-Screen TVs Equipment: uLog and SensorLab Web Watch

    Science.gov (United States)

    2012-07-01

    WE RECOMMEND Data logger Fourier NOVA LINK: data logging and analysis To Engineer is Human Engineering: essays and insights Soap, Science, & Flat-Screen TVs People, politics, business and science overlap uLog sensors and sensor adapter A new addition to the LogIT range offers simplicity and ease of use WORTH A LOOK Imagined Worlds Socio-scientific predictions for the future Mini light data logger and mini temperature data logger Small-scale equipment for schools SensorLab Plus LogIT's supporting software, with extra features HANDLE WITH CARE CAXE110P PICAXE-18M2 data logger Data logger 'on view' but disappoints Engineering: A Very Short Introduction A broad-brush treatment fails to satisfy WEB WATCH Two very different websites for students: advanced physics questions answered and a more general BBC science resource

  14. A Simple Inquiry-Based Lab for Teaching Osmosis

    Science.gov (United States)

    Taylor, John R.

    2014-01-01

    This simple inquiry-based lab was designed to teach the principle of osmosis while also providing an experience for students to use the skills and practices commonly found in science. Students first design their own experiment using very basic equipment and supplies, which generally results in mixed, but mostly poor, outcomes. Classroom "talk…

  15. Guidelines for Affective Signal Processing (ASP): From lab to life

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Westerink, Joyce H.D.M.; Cohn, J.; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    This article presents the rationale behind ACII2009’s special session: Guidelines for Affective Signal Processing (ASP): From lab to life. Although affect is embraced by both science and engineering, its recognition has not reached a satisfying level. Through a concise overview of ASP and the

  16. Germany plans 60m euro physics and medicine lab

    Science.gov (United States)

    Stafford, Ned

    2017-09-01

    A new €60m medical-physics research lab is to be built in Erlangen, Germany, by the Max Planck Institute for the Science of Light (MPL) together with the Friedrich Alexander University Erlangen-Nürnberg and the University Hospital Erlangen.

  17. Applying living lab methodology to enhance skills in innovation

    CSIR Research Space (South Africa)

    Herselman, M

    2010-07-01

    Full Text Available and which is also inline with the South African medium term strategic framework and the millennium goals of the Department of Science and Technology. Evidence of how the living lab methodology can enhance innovation skills was made clear during various...

  18. Faraday's Principle and Air Travel in the Introductory Labs

    Science.gov (United States)

    Abdul-Razzaq, Wathiq; Thakur, Saikat Chakraborty

    2017-01-01

    We all know that we must improve the quality of teaching in science at all levels. Not only physicists but also many students from other areas of study take the introductory physics courses in college. Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that…

  19. Overview of the Fire Lab at Missoula Experiments (FLAME)

    Science.gov (United States)

    S. M. Kreidenweis; J. L. Collett; H. Moosmuller; W. P. Arnott; WeiMin Hao; W. C. Malm

    2010-01-01

    The Fire Lab at Missoula Experiments (FLAME) used a series of open biomass burns, conducted in 2006 and 2007 at the Forest Service Fire Science Laboratory in Missoula, MT, to characterize the physical, chemical and optical properties of biomass combustion emissions. Fuels were selected primarily based on their projected importance for emissions from prescribed and wild...

  20. Optimizing electrical conductivity and optical transparency of IZO thin film deposited by radio frequency (RF) magnetron sputtering

    Science.gov (United States)

    Zhang, Lei

    Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.

  1. Lab-on-a-Robot Platform for in-situ Planetary Compositional Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. and the University of Texas at San Antonio propose a joint venture to demonstrate the feasibility of a mobile "lab-on-a-robot"...

  2. Geobiology in the Lab

    Science.gov (United States)

    José López-Galindo, María

    2017-04-01

    Geobiology is, nowadays, one of the most important lines of research of USGS. It is the interdisciplinary study of the interactions of microorganisms and earth materials (including soil, sediment, the atmosphere, the hydrosphere, minerals, and rocks) (U.S. Geological Survey, 2007). A study about geobiolgical interactions between microorganisms and felsic rock surfaces was carried out in San Blas Secondary School with students, aged 16-17, as an enforcement of a part of this abstract author's thesis work, and developed in the Coruña University. The activity took place in the school laboratory as a complement of the theoretical Spanish curriculum about living things. After visiting a granitic area, near the famous Rio Tinto mining district, students collected different rock samples. They learned about bioweathering on igneous rocks, and how microorganisms can play an essential double role on rock surface: dissolution and mineral deposition. These organisms, living in hard and basic environments, are considered extremophiles (López-Galindo, 2013) which is an important translatable concept to the life beyond the Earth. Afterwards, students had the opportunity to grow these microorganisms under different conditions and examine them through a scholar microscope, comparing these images with SEM ones, taken in Central Services of Research Building in the Coruña University, to determine genus and species, when it was possible. An opportunity to study rare living things, an introduction to geobiology, hostile environments and different physical and chemical conditions out of Earth is hereafter offered, through these simple experiences, to other secondary teachers in the world. U.S. Geological Survey, 2007, Facing tomorrow's challenges—U.S. Geological Survey science in the decade 2007-2017: U.S. Geological Survey Circular 1309, x + 70 p. López-Galindo, M.J. 2013, Bioweathering in Igneous Rocks. Siliceous Speleothems from a Geobiological Viewpoint. Doctoral Dissertation

  3. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    Directory of Open Access Journals (Sweden)

    William C DeFraine

    Full Text Available The demand for employees trained in science, technology, engineering, and mathematics (STEM fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49 and desire to participate in (d = 1.33 the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these

  4. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    Science.gov (United States)

    DeFraine, William C; Williams, Wendy M; Ceci, Stephen J

    2014-01-01

    The demand for employees trained in science, technology, engineering, and mathematics (STEM) fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49) and desire to participate in (d = 1.33) the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these findings for STEM

  5. A Simple, Successful Capacitor Lab

    Science.gov (United States)

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  6. The Telecom Lab is moving

    CERN Multimedia

    IT Department

    2009-01-01

    As of 2nd March 2009, the Telecom Lab will move to Building 58 R-017. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged: New location: Building 58 R-017 Opening hours: Every week day, from 11 a.m. to 12 a.m. Phone number: 72480 Email address: labo.telecom@cern.ch This change has no impact on support requests for mobile services. Users can still submit their requests concerning mobile phone subscriptions using the usual EDH form (https://edh.cern.ch/Document/GSM). The automatic message sent to inform users of their SIM card availability will be updated to indicate the new Telecom Lab location. You can find all information related to CERN mobile phone services at the following link: http://cern.ch/gsm CS Section - IT/CS group

  7. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The 4th Generation Light Source at Jefferson Lab

    International Nuclear Information System (INIS)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-01-01

    A number of 'Grand Challenges' in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources

  9. Making the Case for Jefferson Lab

    International Nuclear Information System (INIS)

    Gross, Franz

    2011-01-01

    This chapter is a personal account of the initial planning and competition for a new laboratory, which eventually became known as the Thomas Jefferson National Accelerator Facility, with the official nickname 'Jefferson Lab'. The period covered starts as far back as 1964, with the introduction of quarks, and extends up to the late 1980s after the initial team was assembled, the superconducting design was in place, and construction was well underway. I describe some of the major experiments that were proposed to justify the laboratory, reflect on the present status of those initially proposed experiments, and very briefly outline some of the new ideas that emerged after the laboratory was constructed. The science is presented in a simple manner intended for a lay audience, with some of the ideas illustrated by cartoons that were often used in popular lectures given during this period.

  10. Replacing textbook problems with lab experiences

    Science.gov (United States)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  11. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  12. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  13. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  14. Safety Protocols at MAT Lab

    International Nuclear Information System (INIS)

    Wadawale, A.; Chopade, S.; Chaudhury, K.; Pal, M.K.; Kushwah, N.; Shah, A.Y.; Kedarnath, G.; Priyadarsini, K.I.; Jain, V.K.

    2017-01-01

    MAT Lab of Chemistry Division, BARC (A Class 10000 Clean room laboratory) has been in operation since 2004 for process development of ultra-purification of several strategically important materials (Ga, As, Sb, In, CsI and Ge) and synthesis of their organometallic compounds. Of these, work related to purification of As, Sb, and In, has been discontinued. Due to high toxicity and pyrophoric nature of some of the compounds, stringent safety regulations were formulated and subsequently implemented by the division

  15. First results on GlioLab/GlioSat Precursors Missions

    Science.gov (United States)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  16. The Senior Living Lab: an example of nursing leadership

    Directory of Open Access Journals (Sweden)

    Riva-Mossman S

    2016-02-01

    Full Text Available Susie Riva-Mossman, Thomas Kampel, Christine Cohen, Henk Verloo School of Nursing Sciences, La Source, University of Applied Sciences and Arts of Western Switzerland, Lausanne, Switzerland Abstract: The Senior Living Lab (SLL is dedicated to the care of older adults and exemplifies how nursing leadership can influence clinical practice by designing research models capable of configuring interdisciplinary partnerships with the potential of generating innovative practices and better older patient outcomes. Demographic change resulting in growing numbers of older adults requires a societal approach, uniting stakeholders in social innovation processes. The LL approach is an innovative research method that values user perceptions and participation in the cocreation of new products and services. The SLL is crafting a platform responsive to change. It is a learning organization facilitating community-based participatory research methods in the field. Advanced nurse practitioners are well positioned to lead the way forward, fostering interdisciplinary academic collaborations dedicated to healthy aging at home. The SLL demonstrates how nursing science is taking the lead in the field of social innovation. Keywords: community-based participatory approach, Living Lab, nursing leadership, nursing practice, Senior Living Lab, social innovation

  17. User recruitment, training, and support at NOAO Data Lab

    Science.gov (United States)

    Nikutta, Robert; Fitzpatrick, Michael J.; NOAO Data Lab

    2018-06-01

    The NOAO Data Lab (datalab.noao.edu) is a fully-fledged science data & analysis platform. However, simply building a science platform is notenough to declare it a success. Like any such system built for users, it needs actual users who see enough value in it to be willing toovercome the inertia of registering an account, studying the documentation, working through examples, and ultimately attempting tosolve their own science problems using the platform. The NOAO Data Lab has been open to users since June 2016. In this past year we haveregistered hundreds of users and improved the system, not least through the interaction with and feedback from our users. The posterwill delineate our efforts to recruit new users through conference presentations, platform demos and user workshops, and what we do toassure that users experience their first steps and their learning process with Data Lab as easy, competent, and inspiring. It will alsopresent our efforts in user retention and user support, from a human-staffed helpdesk, to one-on-one sessions, to regular"bring-your-own-problem (BYOP)" in-house sessions with interested users.

  18. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  19. The science case and data processing strategy for the Thinned Aperture Light Collector (TALC): a project for a 20 m far-infrared space telescope

    International Nuclear Information System (INIS)

    Sauvage, Marc; Durand, Gilles A.; Rodriguez, Louis R.; Starck, Jean-Luc; Ronayette, Samuel; Aussel, Herve; Minier, Vincent; Motte, Frederique; Pantin, Eric J.; Sureau, Florent

    2014-01-01

    The future of far-infrared observations rests on our capacity to reach sub-arc-second angular resolution around 100 μm, in order to achieve a significant advance with respect to our current capabilities. Furthermore, by reaching this angular resolution we can bridge the gap between capacities offered by the JWST in the near infrared and those allowed by ALMA in the submillimeter, and thus benefit from similar resolving capacities over the whole wavelength range where interstellar dust radiates and where key atomic and molecular transitions are found. In an accompanying paper, we present a concept of a deployable annular telescope, named TALC for Thinned Aperture Light Collector, reaching 20 m in diameter. Being annular, this telescope features a main beam width equivalent to that of a 27 m telescope, i.e. an angular resolution of 0.92'' at 100 μm. In this paper we focus on the science case of such a telescope as well on the aspects of unconventional data processing that come with this unconventional optical configuration. The principal science cases of TALC revolve around its imaging capacities, that allow resolving the Kuiper belt in extra-solar planetary systems, or the filamentary scale in star forming clouds all the way to the Galactic Center, or the Narrow Line Region in Active Galactic Nuclei of the Local Group, or breaking the confusion limit to resolve the Cosmic Infrared Background. Equipping this telescope with detectors capable of imaging polarimetry offers as well the extremely interesting perspective to study the influence of the magnetic field in structuring the interstellar medium. We will then present simulations of the optical performance of such a telescope. The main feature of an annular telescope is the small amount of energy contained in the main beam, around 30% for the studied configuration, and the presence of bright diffraction rings. Using simulated point spread functions for realistic broad-band filters, we study the observing

  20. Laboratory Notebooks in the Science Classroom

    Science.gov (United States)

    Roberson, Christine; Lankford, Deanna

    2010-01-01

    Lab notebooks provide students with authentic science experiences as they become active, practicing scientists. Teachers gain insight into students' understanding of science content and processes, while students create a lasting personal resource. This article provides high school science teachers with guidelines for implementing lab notebooks in…

  1. California State University, Bakersfield Fab Lab: "Making" a Difference in Middle School Students' STEM Attitudes

    Science.gov (United States)

    Medina, Andrea Lee

    2017-01-01

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on…

  2. Implementation of a Research-Based Lab Module in a High School Chemistry Curriculum: A Study of Classroom Dynamics

    Science.gov (United States)

    Pilarz, Matthew

    2013-01-01

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…

  3. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    Science.gov (United States)

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  4. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    Science.gov (United States)

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270

  5. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Science.gov (United States)

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  6. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Directory of Open Access Journals (Sweden)

    Michael Roach

    Full Text Available This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  7. Lab, Field, Gallery and Beyond

    DEFF Research Database (Denmark)

    Binder, Thomas; Koskinen, Ilpo; Redström, Johan

    2009-01-01

    Over the last ten years we have seen a growing number of researchers integrating design experiments in their research inquiries. Initially, this work borrowed heavily from neighboring fields, employing a dual strategy in which design experiments and their evaluation were largely treated as separate...... processes that were often carried out by different people. More recently, design researchers have developed several approaches that integrate design-specific work methods to research. This paper takes a methodological look at three such established approaches that we call Lab, Field, and Gallery. We...

  8. Double success for neutrino lab

    CERN Multimedia

    2010-01-01

    "The Gran Sasso National Laboratory in Italy is celebrating two key developments in the field of neutrino physics. Number one is the first ever detection, by the OPERA experiement, of possible tau neutrino that has switched its identity from a muon neutrino as it travelled form its origins at CERN in Switzerland to the Italian lab. Number two is the successful start-up of the ICARUS detector, which, like OPERA, is designed to study neutrinos that "oscillate" between types" (0.5 pages)

  9. A green chemistry lab course

    International Nuclear Information System (INIS)

    Rank, J.; Lenoir, D.; Bahadir, M.; Koning, B.

    2006-01-01

    The traditional course content of chemistry classes must change to achieve better awareness of the important issues of sustainability in chemistry within the next generation of professional chemists. To provide the necessary material for the organic chemistry teaching lab course, which is part of almost all study programs in chemistry, material was developed and collected (http://www.oc-praktikum.de/en) that allows students and teachers to assess reactions beyond the experimental set up, reaction mechanism and chemical yield. Additional parameters like atom economy of chemical transformations, energy efficiency, and questions of waste, renewable feed stocks, toxicity and ecotoxicity, as well as the safety measures for the chemicals used are discussed. (author)

  10. Laser safety in the lab

    CERN Document Server

    Barat, Ken L

    2012-01-01

    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  11. Remote Lab for Robotics Applications

    Directory of Open Access Journals (Sweden)

    Robinson Jiménez

    2018-01-01

    Full Text Available This article describes the development of a remote lab environment used to test and training sessions for robotics tasks. This environment is made up of the components and devices based on two robotic arms, a network link, Arduino card and Arduino shield for Ethernet, as well as an IP camera. The remote laboratory is implemented to perform remote control of the robotic arms with visual feedback by camera, of the robots actions, where, with a group of test users, it was possible to obtain performance ranges in tasks of telecontrol of up to 92%.

  12. Digital media labs in libraries

    CERN Document Server

    Goodman, Amanda L

    2014-01-01

    Families share stories with each other and veterans reconnect with their comrades, while teens edit music videos and then upload them to the web: all this and more can happen in the digital media lab (DML), a gathering of equipment with which people create digital content or convert content that is in analog formats. Enabling community members to create digital content was identified by The Edge Initiative, a national coalition of leading library and local government organizations, as a library technology benchmark. Surveying academic and public libraries in a variety of settings and sharing a

  13. Tanzania Journal of Science: Editorial Policies

    African Journals Online (AJOL)

    Tanzania Journal of Science (TJS), is professional, peer reviewed journal, published in ... Optics, Thin films, Zoography, Military sciences, Biological sciences, Biodiversity, ... animal and veterinary sciences, Geology, Agricultural Sciences, Cytology, ... available to the public supports a greater global exchange of knowledge.

  14. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  15. From e-manufacturing to Internet Product Process Development (IPPD) through remote – labs

    International Nuclear Information System (INIS)

    Nieto, Ernesto Córdoba; Parra, Paulo Andres Cifuentes; Díaz, Juan Camilo Parra

    2014-01-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as L aboratorio Fabrica Experimental ) . This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A

  16. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    Science.gov (United States)

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  17. ASTRO 101 Labs and the Invasion of the Cognitive Scientists

    Science.gov (United States)

    Slater, Stephanie J.

    2015-04-01

    Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.

  18. Lab-on-a-chip devices and micro-total analysis systems a practical guide

    CERN Document Server

    Svendsen, Winnie

    2015-01-01

    This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided.

  19. Jefferson Lab, a status report

    International Nuclear Information System (INIS)

    Dunham, B.M.

    1996-01-01

    Thomas Jefferson National Accelerator Facility (Jefferson Lab; formerly known as CEBAF), operates a 4 GeV, 200 microA continuous wave (CW) electron accelerator that re-circulates the beam five times through two superconducting 400 MeV linacs. Electrons can be extracted from any of the five recirculation passes and beam can be simultaneously delivered to the three experimental halls. As the commissioning stage nears completion, the accelerator is becoming a fully operational machine. Experiments in Hall C have been underway since November 1995 with beam powers of over 300 kW at various energies. Hall A has received beam for spectrometer commissioning, while Hall B is expected to receive its first beam in the fall of 1996. Accelerator availability of greater than 70% during physics runs and excellent beam quality have contributed to making Jefferson Lab a world class laboratory for accelerator-based electromagnetic nuclear physics. With the high performance of the superconducting RF cavities, machine upgrades to 6 GeV, and eventually 8 to 10 GeV are now in the planning stages. Operational and commissioning details concerning all aspects of the machine will be discussed

  20. Jefferson Lab, a status report

    International Nuclear Information System (INIS)

    Dunham, B.M.

    1996-01-01

    Thomas Jefferson National Accelerator Facility (Jefferson Lab; formerly known as CEBAF), operates a 4 GeV, 200 μA continuous wave (CW) electron accelerator that re-circulates the beam five times through two superconducting 400 MeV linacs. Electrons can be extracted from any of the five recirculation passes and beam can be simultaneously delivered to the three experimental halls. As the commissioning stage nears completion, the accelerator is becoming a fully operational machine. Experiments in Hall C have been underway since November 1995 with beam powers of over 300 kW at various energies. Hall A has received beam for spectrometer commissioning, while Hall B is expected to receive its first beam in the fall of 1996. Accelerator availability of greater than 70% during physics runs and excellent beam quality have contributed to making Jefferson Lab a world class laboratory for accelerator-based electromagnetic nuclear physics. With the high performance of the superconducting RF cavities, machine upgrades to 6 GeV, and eventually 8 to 10 GeV are now in the planning stages. Operational and commissioning details concerning all aspects of the machine will be discussed. (author)

  1. Tough Times Ahead for Government Labs

    International Nuclear Information System (INIS)

    Ban, Stephen; Buchanan, Michelle V.; Cheeks, Nona; Funsten, Herbert; Hawsey, Robert; Lane, Monya; Whitlow, Woodrow Jr.; Studt, Tim

    2008-01-01

    Many government R and D laboratory executives face a tough couple of months ahead. These anxieties are fueled by (1) possible management, technical direction, and budgetary changes in their agencies due to changes in the federal administration; (2) frozen operating budgets until March 2009 due to the Continuing Resolution (CR) attachment to the recent banking bailout bill; and (3) the financial fallout from the economic downturn. These and other pertinent questions regarding their R and D operations were addressed in R and D Magazine's 9th Annual Government R and D Executive Roundtable held on Oct. 16, 2008, in conjunction with the 46th Annual R and D 100 Awards at Chicago's Navy Pier. Most members of this year's government executive panel were hesitant to speculate on the changes that might occur in their labs as a result of the new administration. The exception to this stand was the National Renewable Energy Laboratory's (NREL's) Robert Hawsey. ''No matter who wins (the Roundtable was held before the Nov. 4th Presidential election), we expect to see continued support,'' says Hawsey. ''All of our cooperative research facilities are over-subscribed and we're looking at how we can expand them.'' Obviously, renewable energy is a hot button in the administration and likely to get increased financial backing to help meet our country's energy independence goals. When pressed, the panel was mostly optimistic about their future support, stating that external threats to the U.S. have not changed, and research work associated with homeland security and national defense is unlikely to see drastic change. ''We have a strong portfolio in life science and don't expect any changes,'' says Oak Ridge National Laboratory's (ORNL's) Michelle Buchanan. Ongoing federally funded work at the national labs that was started before the Oct. 1st start of the FY2009 fiscal year will continue without any changes - those funds are unaffected by the CR action. This applies as well to any

  2. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  3. SuperFormLab: showing SuperFormLab

    DEFF Research Database (Denmark)

    2013-01-01

    bachelor program, followed by two years of master studies. The courses are offered equally to students from other design disciplines, e.g. industrial design. Teaching is mainly in English as the program is attended by a relatively large group of non-Danish students, who seek exactly this combination......3D-printing in clay and ceramic objects shaped by your own sounds and movements! Digital form transferred via CNC-milling to ornamental ceramic wall-cladding. Brave New World… Students and their teacher at SuperFormLab, the new ceramic workshop of the School of Design at the Royal Danish Academy...... of Fine Arts in Copenhagen, will be showing results of their investigations into the potential of combining digital technologies with ceramic materials. It is now possible to shape the most complex mathematical, virtual 3D objects through the use of advanced software-programs. And more than that – you can...

  4. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  5. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  6. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  7. FOREWORD: Jefferson Lab: A Long Decade of Physics

    Science.gov (United States)

    Montgomery, Hugh

    2011-04-01

    scientists, associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics. Hugh Montgomery, Director Hugh Montgomery signature

  8. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    Science.gov (United States)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and

  9. A Festival of Contemporary Science for Science Teachers

    Science.gov (United States)

    Harrison, Tim; Berry, Bryan; Shallcross, Dudley

    2010-01-01

    In this article, the authors describe the first Festival of Contemporary Science for Science Teachers which was held in January 2010. Focusing on a number of leading-edge science topics, this new festival was organised by Bristol ChemLabS, in collaboration with the Science Learning Centre South West, and involved academics from several departments…

  10. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  11. Work flows in life science

    NARCIS (Netherlands)

    Wassink, I.

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  12. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  13. Hydrogel Beads: The New Slime Lab?

    Science.gov (United States)

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  14. Innovation - A view from the Lab

    Science.gov (United States)

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  15. mQoL smart lab

    DEFF Research Database (Denmark)

    De Masi, Alexandre; Ciman, Matteo; Gustarini, Mattia

    2016-01-01

    serve quality research in all of them. In this paper, we present own "mQoL Smart Lab" for interdisciplinary research efforts on individuals' "Quality of Life" improvement. We present an evolution of our current in-house living lab platform enabling continuous, pervasive data collection from individuals...

  16. Programming Arduino with LabVIEW

    CERN Document Server

    Schwartz, Marco

    2015-01-01

    If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

  17. Diversity, Equity, & Inclusion at Berkeley Lab

    Science.gov (United States)

    Berkeley Lab A-Z Index Directory Search Diversity, Equity, & Inclusion at Berkeley Lab Home Diversity & Inclusion Council Women Scientists & Engineers Council Employee Resource Groups -and culture of inclusion are key to attracting and engaging the brightest minds and furthering our

  18. The community FabLab platform: applications and implications in biomedical engineering.

    Science.gov (United States)

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  19. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    Science.gov (United States)

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  20. Learning by Viewing - Nobel Labs 360

    Science.gov (United States)

    Mather, John C.

    2013-01-01

    First of all, my thanks to the Nobel Lindau Foundation for their inspiration and leadership in sharing the excitement of scientific discovery with the public and with future scientists! I have had the pleasure of participating twice in the Lindau meetings, and recently worked with the Nobel Labs 360 project to show how we are building the world's greatest telescope yet, the James Webb Space Telescope (JWST). For the future, I see the greatest challenges for all the sciences in continued public outreach and inspiration. Outreach, so the public knows why we are doing what we are doing, and what difference it makes for them today and in the long-term future. Who knows what our destiny may be? It could be glorious, or not, depending on how we all behave. Inspiration, so that the most creative and inquisitive minds can pursue the scientific and engineering discoveries that are at the heart of so much of human prosperity, health, and progress. And, of course, national and local security depend on those discoveries too; scientists have been working with "the government" throughout recorded history. For the Lindau Nobel experiment, we have a truly abundant supply of knowledge and excitement, through the interactions of young scientists with the Nobelists, and through the lectures and the video recordings we can now share with the whole world across the Internet. But the challenge is always to draw attention! With 7 billion inhabitants on Earth, trying to earn a living and have some fun, there are plenty of competing opportunities and demands on us all. So what will draw attention to our efforts at Lindau? These days, word of mouth has become word of (computer) mouse, and ideas propagate as viruses ( or memes) across the Internet according to the interests of the participants. So our challenge is to find and match those interests, so that the efforts of our scientists, photographers, moviemakers, and writers are rewarded by our public. The world changes every day, so there

  1. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    Science.gov (United States)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  2. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  3. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  4. Congress moves to reorganize Department of Energy labs

    International Nuclear Information System (INIS)

    Hanson, D.J.

    1993-01-01

    Two bills that would transform the missions and practices of the Department of Energy's research laboratories are moving forward in both branches of Congress. Each of the two is crafted to improve cooperative research between DOE and private industry, but the House bill goes further by making fundamental changes in lab administration. H.R. 1432 provides a clear statement of purpose for the labs. The eight missions outlined in the bill are as follows: Enhance the nation's understanding of energy production and use, with a goal of reducing reliance on imported sources of fuels; Advance nuclear science and technology for national security purposes; Assist with dismantlement of nuclear weapons and work to curb nuclear arms proliferation; Conduct fundamental research in energy-related science and technology; Assist in development of technologies for disposal of hazardous wastes, particularly nuclear waste; Work with private industry to develop generic green technologies; Conduct technology-transfer activities; and Work to improve the quality of science, math, and engineering education in the U.S

  5. Jefferson Lab's Distributed Data Acquisition

    International Nuclear Information System (INIS)

    Trent Allison; Thomas Powers

    2006-01-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) occasionally experiences fast intermittent beam instabilities that are difficult to isolate and result in downtime. The Distributed Data Acquisition (Dist DAQ) system is being developed to detect and quickly locate such instabilities. It will consist of multiple Ethernet based data acquisition chassis distributed throughout the seven-eights of a mile CEBAF site. Each chassis will monitor various control system signals that are only available locally and/or monitored by systems with small bandwidths that cannot identify fast transients. The chassis will collect data at rates up to 40 Msps in circular buffers that can be frozen and unrolled after an event trigger. These triggers will be derived from signals such as periodic timers or accelerator faults and be distributed via a custom fiber optic event trigger network. This triggering scheme will allow all the data acquisition chassis to be triggered simultaneously and provide a snapshot of relevant CEBAF control signals. The data will then be automatically analyzed for frequency content and transients to determine if and where instabilities exist

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  7. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  8. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    Science.gov (United States)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  9. The Kitchen as a Lab

    Science.gov (United States)

    Adria, Ferran; Andres, Jose; Brenner, Michael P.

    2012-02-01

    Provocative world-famous Chef Ferran Adria, often associated with originating the modernist cuisine movement, and Washington DC chef Jose Andres, credited with bring the ``small plates" movement to North America, will discuss their views on the creative preparation of food with unexpected contrasts of flavor, temperature, and texture. Their discussion will be followed by a talk by Michael P. Brenner, a professor of applied mathematics, who (along with physics professor David A. Weitz) teaches a course at Harvard University on science and cooking. Come learn about the science and the art of food preparation!

  10. Designing Viable Business Models for Living Labs

    Directory of Open Access Journals (Sweden)

    Bernhard R. Katzy

    2012-09-01

    Full Text Available Over 300 regions have integrated the concept of living labs into their economic development strategy since 2006, when the former Finnish Prime Minister Esko Aho launched the living lab innovation policy initiative during his term of European presidency. Despite motivating initial results, however, success cases of turning research into usable new products and services remain few and uncertainty remains on what living labs actually do and contribute. This practitioner-oriented article presents a business excellence model that shows processes of idea creation and team mobilization, new product development, user involvement, and entrepreneurship through which living labs deliver high-potential investment opportunities. Customers of living labs are identified as investors such as venture capitalists or industrial firms because living labs can generate revenue from them to create their own sustainable business model. The article concludes that living labs provide extensive support “lab” infrastructure and that it remains a formidable challenge to finance it, which calls for a more intensive debate.

  11. What is a halal lab?

    DEFF Research Database (Denmark)

    Fischer, Johan

    2017-01-01

    but part of a huge and expanding globalized market, the scientific aspects of halal have not been subjected to much anthropological attention. I argue that modern halal in Malaysia should be explored in the interfaces between Islamic science and localized forms of secularism. This tension is a driving...

  12. Baseball Physics: A New Mechanics Lab

    Science.gov (United States)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  13. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  14. RiskLab - a joint Teaching Lab on Hazard and Risk Management

    Science.gov (United States)

    Baruffini, Mi.; Baruffini, Mo.; Thuering, M.

    2009-04-01

    In the future natural disasters are expected to increase due to climatic changes that strongly affect environmental, social and economical systems. For this reason and because of the limited resources, governments require analytical risk analysis for a better mitigation planning. Risk analysis is a process to determine the nature and extent of risk by estimating potential hazards and evaluating existing conditions of vulnerability that could pose a potential threat or harm to people, property, livelihoods and environment. This process has become a generally accepted approach for the assessment of cost-benefit scenarios; originating from technical risks it is being applied to natural hazards for several years now in Switzerland. Starting from these premises "Risk Lab", a joint collaboration between the Institute of Earth Sciences of the University of Applied Sciences of Southern Switzerland and the Institute for Economic Research of the University of Lugano, has been started in 2006, aiming to become a competence centre about Risk Analysis and Evaluation. The main issue studied by the lab concerns the topic "What security at what price?" and the activities follow the philosophy of the integral risk management as proposed by PLANAT, that defines the process as a cycle that contains different and interrelated phases. The final aim is to change the population and technician idea about risk from "defending against danger" to "being aware of risks" through a proper academic course specially addressed to young people. In fact the most important activity of the laboratory consists in a degree course, offered both to Engineering and Architecture students of the University of Applied Sciences of Southern Switzerland and Economy Students of the University of Lugano. The course is structured in two main parts: an introductive, theoretical part, composed by class lessons, where the main aspects of natural hazards, risk perception and evaluation and risk management are presented

  15. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Period: 1983–1986. Mehra, Prof. N K . Date of birth: 4 November 1949. Specialization: Clinical Immunology Address during Associateship: Officer-in-charge, Histocompati-, bility Lab., Dept. of Anotomy, All India Institute of Medical, Sciences, Ansari ...

  16. Microspectroscopy At Beamline 73 MAX-lab

    International Nuclear Information System (INIS)

    Engdahl, Anders

    2010-01-01

    Presentation of some projects at the infrared microspectroscopy experimental station at beamline 73 MAX-lab. Among the subjects are found identification of organic residues in fossil material and examination of the chemistry in an old oak wood wreck.

  17. LAB building a home for scientists

    CERN Document Server

    Fishman, Mark C

    2017-01-01

    Laboratories are both monasteries and space stations, redolent of the great ideas of generations past and of technologies to propel the future. Yet standard lab design has changed only little over recent years. Here Mark Fishman describes how to build labs as homes for scientists, to accommodate not just their fancy tools, but also their personalities. This richly illustrated book explores the roles of labs through history, from the alchemists of the Middle Ages to the chemists of the 19th and 20th centuries, and to the geneticists and structural biologists of today, and then turns to the special features of the laboratories Fishman helped to design in Cambridge, Shanghai, and Basel. Anyone who works in, or plans to build a lab, will enjoy this book, which will encourage them to think about how this special environment drives or impedes their important work.

  18. Airborne Low-Frequency Sonar (ALFS) Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The ALFS lab is dedicated to support acoustic data analysis and processing software support to the AN/AQS-22 dipping sonar system. It includes stand-alone Software...

  19. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  20. Cockle Temperature Exposure Lab Experiment (2016)

    Data.gov (United States)

    U.S. Environmental Protection Agency — We carried out a lab experiment in which we exposed cockles to a range of air temperatures to simulate the physiological rigors of exposure to sunlight and air at...

  1. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Ed Jastrzembsi; David Abbott; Graham Heyes; R.W. MacLeod; Carl Timmer; Elliott Wolin

    2000-01-01

    We discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. We also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  2. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Jastrzembski, E.; Abbott, D.J.; Heyes, W.G.; MacLeod, R.W.; Timmer, C.; Wolin, E.

    1999-01-01

    The authors discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. They also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  3. Generator Inspection Report: Bio - Lab, Inc.

    Science.gov (United States)

    Contains report from Georgia Department of Natural Resources of July 21, 1999 inspection of the Bio - Lab Incorporated Plant 4 in Conyers, Rockdale County, Georgia, reporting that no violations were observed.

  4. Online labs and the MARVEL experience

    Directory of Open Access Journals (Sweden)

    Dieter Mueller

    2005-06-01

    Full Text Available MARVEL is a Leonardo da Vinci project that provides a framework to analyse the pedagogic effectiveness of online labs in various heterogeneous areas that include solar energy, robotics, electronics and electro-pneumatics. It is also used as a test bench to compare the implementation of purely remote labs, where all devices are real, versus mixed-reality environments, where real devices work together with simulation models. This paper describes the basic concepts underlying the implementation of such online labs and presents two case studies (which are openly available to the public. A final section discusses the main pedagogical implications of online labs and presents the research directions that are being considered as a follow-up from this project.

  5. Virtual labs in Leonardo da Vinci

    Directory of Open Access Journals (Sweden)

    Stanislaw Nagy

    2006-10-01

    Full Text Available This paper discusses the problem of virtual lab capabilities in the e-learning. Using combination of web conferencing and "virtual labs" capabilities, a new quality distance learning teaching is now in preparation and will be included in the course teaching to produce interactive, online simulations for the natural gas engineering studies. The activities are designed to enhance the existing curriculum and to include online assessments. A special care is devoted to the security problem between a server and a client computer. Several examples of the virtual labs related to the PVT thermodynamics, fluid flow, the natural gas well-testing, and thev gas network flow are prepared and tested. A major challenge for the 'CELGAS' system is in managing the delicate balance between the student collaboration and the isolation. Students may be encouraged to collaborate and work with each other, simulating their exploration of the lab material.

  6. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  7. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  8. Technology Roadmap: Lab-on-a-Chip

    OpenAIRE

    Pattharaporn Suntharasaj; Tugrul U Daim

    2010-01-01

    With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC) devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. Th...

  9. German lab wins linear collider contest

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    Particle physicists have chosen to base the proposed International Linear Collider on superconducting technology developed by an international collaboration centred on the DESY lab in Germany. The superconducting approach was chosen by an internatinal panel ahead of a rival technology developed at Stanford in the US and the KEK lab in Japan. The eagerly-awaited decision was announced at the International Conference on High Energy Physics in Beijing today (½ page)

  10. Evaluation of oral microbiology lab curriculum reform.

    Science.gov (United States)

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  11. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  12. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  13. Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education

    Science.gov (United States)

    Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.

    2016-01-01

    Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…

  14. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    Science.gov (United States)

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  15. Personalised learning spaces and federated online labs for STEM Education at School

    NARCIS (Netherlands)

    Gillet, Dennis; de Jong, Anthonius J.M.; Sotirou, Sofoklis; Salzmann, Christophe

    2013-01-01

    The European Commission is funding a large-scale research project on federated online laboratories (Labs) for education in Science, Technology, Engineering, and Mathematics (STEM) at School. The main educational focus is on inquiry learning and the main technological one is on personalized learning

  16. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  17. Now You're Cooking! Heat Transfer Labs: From Basic Recipes to Full Inquiry

    Science.gov (United States)

    Hazzard, Edmund

    2012-01-01

    A recipe is a great way to learn about the procedure and the variables (or "ingredients") involved. Cookbooks are comforting and valuable: They're easy to follow, and people know what they'll get. The problem is that cookbook labs end just when things get interesting. The excitement of science is in understanding the discovery and pursuing the…

  18. Cloud ecosystem for supporting inquiry learning with online labs : Creation, personalization, and exploitation

    NARCIS (Netherlands)

    Gillet, Denis; Rodríguez-Triana, María Jesús; De Jong, Ton; Bollen, Lars; Dikke, Diana

    2017-01-01

    To effectively and efficiently implement blended science and technology education, teachers should be able to find educational resources that suit their need, fit with their curricula, and that can be easily exploited in their classroom. The European Union has supported the FP7 Go-Lab Integrated

  19. Effect of the Level of Inquiry of Lab Experiments on General Chemistry Students' Written Reflections

    Science.gov (United States)

    Xu, Haozhi; Talanquer, Vincente

    2013-01-01

    The central goal of this exploratory study was to characterize the effects of experiments involving different levels of inquiry on the nature of college students' written reflections about laboratory work. Data were collected in the form of individual lab reports written using a science writing heuristic template by a subset of the students…

  20. Single cells as experimentation units in lab-on-a-chip devices

    NARCIS (Netherlands)

    le Gac, Severine; van den Berg, Albert

    'Lab-on-a-chip' technology (LOC) has now reached a mature state and is employed commonly in research in the life sciences. LOC devices make novel experimentation possible while providing a sophisticated environment for cellular investigation. As a next step, we introduce here the concept of a

  1. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Science.gov (United States)

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  2. Demise of Texas collider has made Europe's lab a magnet for scientists

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    Had U.S. politics and science meshed more favorably, physicists from around the world would now be flocking to Waxahachie. The defunct Superconducting Super Collider (SSC) should by now have been smashing atoms, but now Europe's top nuclear research lab offers a more picturesque world capital of physics that the prairie south of Dallas

  3. Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs

    Science.gov (United States)

    Hake, Richard

    2012-01-01

    Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…

  4. Towards an Online Lab Portal for Inquiry-Based STEM Learning at School

    NARCIS (Netherlands)

    Govaerts, Sten; Cao, Yiwei; Vozniuk, Andrii; Holzer, Adrian; Zutin, Danilo Garbi; San Cristobal Ruiz, Elio; Bollen, Lars; Manske, Sven; Faltin, Nils; Salzmann, Christophe; Wang, Jhing-Fa; Rynson, Lau

    2013-01-01

    Nowadays, the knowledge economy is growing rapidly. To sustain future growth, more well educated people in STEM (science, technology, engineering and mathematics) are needed. In the Go-Lab project we aim to motivate and orient students from an early age on to study STEM fields in their future

  5. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    Science.gov (United States)

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  6. Radiological and Nuclear Detection Material Science: Novel Rare-Earth Semiconductors for Solid-State Neutron Detectors and Thin High-k Dielectrics

    Science.gov (United States)

    2017-11-01

    6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-15-82 Radiological and Nuclear Detection Material Science : Novel...P.A. Dowben, “Surface Charging at the (100) Surface of Cu doped and undoped Li2B4O7”, Applied Surface Science 257 (2011) 3399-3403 27. S.R...V.T. Adamiv, Ya.V. Burak, P.A. Dowben, “The local structure of Mn doped Li2B4O7(001)”, in preparation for Materials Science and Engineering B 40. C

  7. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    Science.gov (United States)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  8. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    Science.gov (United States)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low

  9. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    International Nuclear Information System (INIS)

    Fan, W.; Kabius, B.; Hiller, J.M.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 deg. C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlO x , while the oxide layer at the TiAl/Cu interface is an Al 2 O 3 -rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlO x interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 deg. C followed by a rapid thermal annealing at 700 deg. C. This process significantly reduced the thickness of the TiAlO x layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high

  10. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Condensed Matter Theory, Biological Physics, Statistical Physics ..... Nanomechanics, Thin Films & Self-Organization, Colloid & Interface Science and .... Specialization: Specification & Verification, Real-Time Programs, Logic ...

  11. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    Science.gov (United States)

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  12. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  13. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  14. Hybrid Reality Lab Capabilities - Video 2

    Science.gov (United States)

    Delgado, Francisco J.; Noyes, Matthew

    2016-01-01

    Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created

  15. THE STORY OF THE BC FAMILY JUSTICE INNOVATION LAB

    Directory of Open Access Journals (Sweden)

    Jane Morley

    2017-12-01

    Full Text Available Many in the justice system know that fundamental change is needed but few know the best way to do it.  Previous attempts using strategic planning approaches have not achieved meaningful change.  Something different is needed.  The BC Family Justice Innovation Lab (the Lab is experimenting with a different approach drawing on complexity science, the experience of other jurisdictions and disciplines and incorporating human-centred design as a way of focusing on the well-being of families going through the transition of separation and divorce.  This article is the story of the first few years of the Lab’s life.  It has been a fascinating and challenging path so far, and it remains to be seen whether it will ultimately succeed. The story is offered so that others with similar ambitions can learn from the Lab’s experience – its successes and its failures.  It is the nature and strength of stories that the reader will take from them what they will. For the authors, one overriding theme that emerges from this story is that transforming a complex social system, such as the family justice system in British Columbia, requires embracing the complexity of paradox and refusing to be defeated by the tension of opposites and a multitude of wicked, unanswerable questions.    Bon nombre d’intervenants du système de justice savent qu’un changement fondamental s’impose, mais peu connaissent la meilleure façon de le réaliser. Dans le passé, l’utilisation d’approches de planification stratégique n’a pas donné les résultats escomptés. Une approche différente est nécessaire. S’inspirant de l’expérience vécue dans d’autres ressorts et d’autres disciplines, le BC Family Justice Innovation Lab (le Lab expérimente actuellement une approche différente fondée sur la science de la complexité, et s’efforce d’intégrer une conception axée sur la personne afin de mettre de l’avant le bien-être des familles

  16. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  17. A Moodle extension to book online labs

    Directory of Open Access Journals (Sweden)

    Antonio C. Cardoso

    2005-11-01

    Full Text Available The social constructivist philosophy of Moodle makes it an excellent choice to deliver e-learning contents that require collaborative activities, such as those that are associated with online labs. In the case of online labs that enable web access to real devices (remote workbenches, access time should be reserved beforehand. A booking tool will avoid access conflicts and at the same time will help the students to organise their time and activities. This paper presents a Moodle extension that was developed within the Leonardo da Vinci MARVEL project, with the objective of meeting this requirement. The booking tool presented enables resource sharing in general and may be used to organise access to any type of scarce resources, such as to online labs and to the videoconferencing rooms that are needed to support collaborative activities.

  18. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  19. Environment monitoring using LabVIEW

    International Nuclear Information System (INIS)

    Hawtree, J.

    1995-01-01

    A system has been developed for electronically recording and monitoring temperature, humidity, and other environmental variables at the Silicon Detector Facility located in Lab D. The data is collected by LabVIEW software, which runs in the background on an Apple Macintosh. The software is completely portable between Macintosh, MS Windows, and Sun platforms. The hardware includes a Macintosh with 8 MB of RAM; an external ADC-1 analog-to-digital converter that uses a serial port; LabVIEW software; temperature sensors; humidity sensors; and other voltage/current sensing devices. ADC values are converted to ASCII strings and entered into files which are read over Ethernet. Advantages include automatic logging, automatic recovery after power interruptions, and the availability of stand-alone applications for other locations with inexpensive software and hardware

  20. Assessing High School Student Learning on Science Outreach Lab Activities

    Science.gov (United States)

    Thomas, Courtney L.

    2012-01-01

    The effect of hands-on laboratory activities on secondary student learning was examined. Assessment was conducted over a two-year period, with 262 students participating the first year and 264 students the second year. Students took a prequiz, performed a laboratory activity (gas chromatography of alcohols, or photosynthesis and respiration), and…

  1. Teaching Science Writing in an Introductory Lab Course

    Science.gov (United States)

    Holstein, Sarah E.; Mickley Steinmetz, Katherine R.; Miles, John D.

    2015-01-01

    One challenge that many neuroscience instructors face is how to teach students to communicate within the field. The goal of this project was to improve students’ scientific writing in an introductory psychology laboratory course that serves as a feeder course into the neuroscience curriculum. This course included a scaffolded approach - breaking assignments into different sections that build upon each other to allow for more direction and feedback on each section. Students were also provided with examples of scientific writing, given direction on finding and reading journal articles, and were taught how to effectively peer review a paper. Research papers were assessed before (Year 1) and after (Year 2) this scaffolded approach was instituted. The assessment included measures of “Genre Knowledge” for each section of a research paper (abstract, introduction, method, results, discussion) as well as measures of “Writing Elements” (grammar, formatting, clarity, transitions, building to the hypothesis, using evidence). The results indicated that there was an improvement for Genre Knowledge scores when comparing Year 1 to Year 2. However, there was no systematic improvement in Writing Elements. This suggests that this teaching technique was most effective in improving students’ ability to write within the scientific genre. The logistics of implementing such an approach are discussed. PMID:25838801

  2. France cuts its 'big science' spend to bolster lab research

    CERN Document Server

    McCabe, H

    1999-01-01

    French research agencies have been told by minister Allegre to cut FF200 million from their budgets for large scientific facilities to provide additi onal funds for laboratory research. The space agency CNES will absorb half of the cuts but the CNRS, LHC and Ganil will also be affected (1 page).

  3. Study Labs Kortlægningsrapport UCSJ

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Hestbech, Astrid Margrethe; Gynther, Karsten

    2015-01-01

    Rapporten er en delleverance i det regionale forprojekt S​tudy Labs,​der udføres som et samarbejde mellem Holbæk, Odsherred og Kalundborg kommune og University College Sjælland (UCSJ). Samarbejdet er delvist medfinansieret af Region Sjælland. Rapporten behandler projektets etableringsfase...... for at nå de kommunale målsætninger. De potentielle målgrupper er blevet kortlagt. Samtidig er undersøgelser i brugergrupperne blevet gjort håndgribelige i form af Personaer. Kommunerne har, faciliteret af Educationlab, gennemført designworkshops og er fremkommet med designs for Study Labs, der som...

  4. Digital Design with KP-Lab

    Directory of Open Access Journals (Sweden)

    D. Ponta

    2007-08-01

    Full Text Available KP-Lab is an EU Integrated Project envisioning a learning system that facilitates innovative practices of sharing, creating and working with knowledge in education and workplaces. The project exploits a novel pedagogical view, the knowledge-creation metaphor of learning. According to such “trialogical” approach, cognition arises through collaborative work in systematically developing shared “knowledge artefacts”, such as concepts, plans, material products, or social practices. The paper presents the plan of a pilot course to test the KP-Lab methodologies and tools in the field of Digital Design.

  5. Fossil Groups as Cosmological Labs

    Science.gov (United States)

    D'Onghia, Elena

    Optical and X-ray measurements of fossil groups (FGs) suggest that they are old and relaxed systems. If FGs are assembled at higher redshift, there is enough time for intermediate-luminosity galaxies to merge, resulting in the formation of the brightest group galaxy (BGG). We carry out the first, systematic study of a large sample of FGs, the "FOssil Group Origins'' (FOGO) based on an International Time Project at the Roque de los Muchachos Observatory. For ten FOGO FGs we have been awarded time at SUZAKU Telescope to measure the temperature of the hot intragroup gas (IGM). For these systems we plan to evaluate and correlate their X-ray luminosity and X-ray temperature, Lx-Tx, optical luminosity and X-ray temperature, Lopt-Tx, and group velocity dispersion with their X-ray temperature, sigma V-Tx, as compared to the non fossil systems. By combining these observations with state-of-art cosmological hydrodynamical simulations we will open a new window into the study of the IGM and the nature of fossil systems. Our proposed work will be of direct relevance for the understanding and interpretation of data from several NASA science missions. Specifically, the scaling relations obtained from these data combined with our predictions obtained using state-of-the-art hydrodynamical simulation numerical adopting a new hydrodynamical scheme will motivate new proposal on CHANDRA X-ray telescope for fossil groups and clusters. We will additionally create a public Online Planetarium Show. This will be an educational site, containing an interactive program called: "A Voyage to our Universe''. In the show we will provide observed images of fossil groups and similar images and movies obtained from the numerical simulations showing their evolution. The online planetarium show will be a useful reference and an interactive educational tool for both students and the public.

  6. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development

    Directory of Open Access Journals (Sweden)

    Ellen B. Van Oosten

    2017-12-01

    Full Text Available Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women’s leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  7. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  8. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.

    Science.gov (United States)

    Gorjikhah, Fatemeh; Davaran, Soodabeh; Salehi, Roya; Bakhtiari, Mohsen; Hasanzadeh, Arash; Panahi, Yunes; Emamverdy, Masumeh; Akbarzadeh, Abolfazl

    2016-11-01

    Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.

  9. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development.

    Science.gov (United States)

    Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  10. The Portuguese Contribution for lab2go - pt.lab2go

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2013-01-01

    Full Text Available Online experimentation provides innovative and valuable tools for use in academy, in high schools, in industry and in medical areas. It has also become a precious tool for educational and training purposes in any of those areas. Looking at online experimentation as a pure distance learning tool it represents a very efficient way of sharing hands-on capabilities, for example with developing countries. In Portugal a new consortium of online experimentation was created for fostering the national potential, using the Portuguese version of lab2go web platform, pt.lab2go. The authors pretend to demonstrate some of capabilities of the consortium in sharing online labs.

  11. Special Report: Hazardous Wastes in Academic Labs.

    Science.gov (United States)

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  12. Design Lab 2005 : pilk steriilsesse elektrotulevikku

    Index Scriptorium Estoniae

    2005-01-01

    Design Lab kutsub disainereid ja üliõpilasi üle terve maailma tegelema kaugemale tulevikku suunatud visioonidega. 2005. a. konkurss otsis nutikaid ja säästlikke lahendusi, mis võiksid 2020. a. kodudes olla juba juurdunud, keskenduti kodutehnikale

  13. Map Your Way to a Better Lab.

    Science.gov (United States)

    Roth, Wolff-Michael

    1990-01-01

    The use of concept maps, Vee diagrams, flow charts, and productive questions to increase student understanding of laboratory exercises and to improve student attitudes toward lab classes is discussed. Examples of each are provided. Student responses to these teaching methods are described. (CW)

  14. A New Twist on Torque Labs

    Science.gov (United States)

    Lane, W. Brian

    2014-01-01

    The traditional introductory-level meterstick-balancing lab assumes that students already know what torque is and that they readily identify it as a physical quantity of interest. We propose a modified version of this activity in which students qualitatively and quantitatively measure the amount of force required to keep the meterstick level. The…

  15. Laboratory Accreditation Bureau (L-A-B)

    Science.gov (United States)

    2011-03-28

    to all Technical Advisors. Must agree with code of conduct, confidentiality and our mission DoD ELAP Program  ISO / IEC 17025 :2005 and DoD QSM...Additional DoD QSM requirements fit well in current 17025 process … just much, much more. Sector Specific. Outcome (L-A-B case)  83

  16. Information at a Cost: A Lab Experiment

    NARCIS (Netherlands)

    P. Robalo (Pedro); R.S. Sayag (Rei)

    2012-01-01

    textabstractThe supposed irrelevance of historical costs for rational decision making has been the subject of much interest in the economic literature. In this paper we explore whether individual decision making under risk is affected by the cost of the supplied information. Outside of the lab, it

  17. Baseball Physics: A New Mechanics Lab

    Science.gov (United States)

    Wagoner, Kasey; Flanagan, Daniel

    2018-01-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in "The Physics Teacher," available on Professor Alan Nathan's website, and discussed in "Physics of Baseball & Softball"). We have developed a lab, for an introductory-level physics course, that…

  18. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  19. Displacing Media: LCD LAB Artistic Residency

    Directory of Open Access Journals (Sweden)

    Filipe Pais

    2012-12-01

    Full Text Available This review refers to an artistic residency which took place at LCD LAB -  CAAA at Guimarães, in March, exploring a strategy for media art called Media Displacement. The text introduces the strategy very briefly and describes the residency's organization, structure, processses and the results produced.

  20. A "Language Lab" for Architectural Design.

    Science.gov (United States)

    Mackenzie, Arch; And Others

    This paper discusses a "language lab" strategy in which traditional studio learning may be supplemented by language lessons using computer graphics techniques to teach architectural grammar, a body of elements and principles that govern the design of buildings belonging to a particular architectural theory or style. Two methods of…

  1. Carleton to oversee $40 million lab grant

    CERN Multimedia

    Singer, Zev

    2003-01-01

    "Carleton University got a major gift yesterday, as the federal government announced the university will oversee a $40-million grant to run the world's deepest underground lab at the Sudbury Neutrino Observatory. Five other universities are partners in the project" (1/2 page).

  2. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  3. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-04-13

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  4. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    Science.gov (United States)

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  5. Boosting Big National Lab Data

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-21

    tissue sample and the gradual effect is observed as more of the substance is injected, providing better insights into the natural processes that are occurring, as well as result driven sampling adjustment to capture particularly interesting features --- as they emerge. The Department of Energy’s Pacific Northwest National Laboratory (PNNL) is recognized for it’s expertise in the development of new measurement techniques and their application to challenges of national importance. So it was obvious to us to address the need for in-situ analysis of large scale experimental data. We have a wide range of experimental instruments on site, in facilities such as DOE’s national scientific user facility, the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). Commonly, scientists would create an individual analysis pipeline for each of those instruments; but even the same type of instrument would not necessarily share the same analysis tools. With the rapid increase of data volumes and rates we were facing two key challenges: how to bring a wider set of capabilities to bear to achieve in-situ analysis, and how to do so across a wide range of heterogeneous instruments at affordable costs and in a reasonable timeframe. We decided to take an unconventional approach to the problem, rather than developing customized, one-off solutions for specific instruments we wanted to explore if a more common solution could be found that would go beyond shared, basic infrastructures such as data movement and workflow engines.

  6. LabVIEW A Developer's Guide to Real World Integration

    CERN Document Server

    Fairweather, Ian

    2011-01-01

    LabVIEW(t) has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEW(t): A Developer's Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies c

  7. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ganesh Sanjeev. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 191-196 Thin Films and Nanomatter. Dielectric properties of electron irradiated PbZrO3 thin films · Shetty Aparna V M Jali Ganesh Sanjeev Jayanta Parui S B Krupanidhi.

  8. Hybrid scheme of positron source at SPARC-LAB LNF facility

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, S.V., E-mail: abdsv@tpu.ru [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Ave 36, 634050 Tomsk (Russian Federation); Bogdanov, O.V. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); Dabagov, S.B. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, RM (Italy); RAS PN Lebedev Physical Institute, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU MEPhI, Kashirskoe Highway 31, 115409 Moscow (Russian Federation); Pivovarov, Yu.L.; Tukhfatullin, T.A. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation)

    2015-07-15

    The hybrid scheme of the positron source for SPARC-LAB LNF facility (Frascati, Italy) is proposed. The comparison of the positron yield in a thin amorphous W converter of 0.1 mm thickness produced by bremsstrahlung, by axial 〈1 0 0〉 and planar (1 1 0) channeling radiations in a W crystal is performed for the positron energy range of 1 ÷ 3 MeV. It is shown that the radiation from 200 MeV electrons (parameters of SPARC-LAB LNF Frascati) in a 10 μm W crystal can produce positrons in the radiator of 0.1 mm thickness with the rate of 10–10{sup 2} s{sup −1} at planar channeling, of 10{sup 2}–10{sup 3} s{sup −1} at bremsstrahlung and of 10{sup 3}–10{sup 4} s{sup −1} at axial channeling.

  9. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  10. Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives

    Science.gov (United States)

    Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni

    2018-03-01

    This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.

  11. KNMI DataLab experiences in serving data-driven innovations

    Science.gov (United States)

    Noteboom, Jan Willem; Sluiter, Raymond

    2016-04-01

    Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.

  12. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  13. Living Lab voor Informatiemanagement in Agri-Food

    NARCIS (Netherlands)

    Wolfert, J.

    2010-01-01

    Het Living Lab is een specifieke open innovatie aanpak waarbij in feite het laboratorium naar de praktijk wordt gebracht. het Agri-Food Living lab is een informatiemanagementsysteem specifiek voor de agri-food sector.

  14. CELSTEC Learning Labs: Mobile App Development for Education and Training

    NARCIS (Netherlands)

    Specht, Marcus

    2011-01-01

    Specht, M. (2011). CELSTEC Learning Labs: Mobile App Development for Education and Training. Presentation given in Workshop at CELSTEC Learning Lab for Bluetea. February, 21, 2011, Heerlen, The Netherlands.

  15. Writing and Science Literacy

    Science.gov (United States)

    Weiss-Magasic, Coleen

    2012-01-01

    Writing activities are a sure way to assess and enhance students' science literacy. Sometimes the author's students use technical writing to communicate their lab experiences, just as practicing scientists do. Other times, they use creative writing to make connections to the topics they're learning. This article describes both types of writing…

  16. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Directory of Open Access Journals (Sweden)

    Chris N Bayer

    Full Text Available Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  17. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Science.gov (United States)

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  18. Towards a Manifesto for Living Lab Co-creation

    Science.gov (United States)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  19. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    Science.gov (United States)

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  20. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Reflectivity simulation is an essential tool for the design and optimization of optical thin films. We have developed a reflectivity simulator for non-absorbing dielectric multilayer optical thin films using LabVIEW. The name of the substrate material as well as the material and thickness of each layer of the multilayer stack are fed ...

  1. What Is Heat? Inquiry regarding the Science of Heat

    Science.gov (United States)

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  2. Cassandra - WP400 - final report of living lab 2

    NARCIS (Netherlands)

    Engler, M.; Klievink, A.J.

    2014-01-01

    This CASSANDRA LL2 final deliverable contains all information regarding the CASSANDRA Living Lab Europe – USA via Bremerhaven including information from two intermediate reports (CASSANDRA D4.21 and D4.22) about the very same Living Lab handed in during runtime of the Living Lab. CASSANDRA Living

  3. Constructing the Components of a Lab Report Using Peer Review

    Science.gov (United States)

    Berry, David E.; Fawkes, Kelli L.

    2010-01-01

    A protocol that emphasizes lab report writing using a piecemeal approach coupled with peer review is described. As the lab course progresses, the focus of the report writing changes sequentially through the abstract and introduction, the discussion, and the procedure. Two styles of lab programs are presented. One style rotates the students through…

  4. Experiential Learning of Digital Communication Using LabVIEW

    Science.gov (United States)

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  5. The Dynamics and Facilitation of a Living Lab Construct

    DEFF Research Database (Denmark)

    Brønnum, Louise; Nielsen, Louise Møller

    2013-01-01

    During the last decade Living Labs have established itself as an attractive innovation approach. Living Labs are an interesting construction because it offers a collaboration platform for dynamic interaction with users in all the project phases. Living Labs frame knowledge about actors in their o...

  6. Introduction to Computing: Lab Manual. Faculty Guide [and] Student Guide.

    Science.gov (United States)

    Frasca, Joseph W.

    This lab manual is designed to accompany a college course introducing students to computing. The exercises are designed to be completed by the average student in a supervised 2-hour block of time at a computer lab over 15 weeks. The intent of each lab session is to introduce a topic and have the student feel comfortable with the use of the machine…

  7. Implementation of a Mobile Accessible Remote Lab

    Directory of Open Access Journals (Sweden)

    Danilo Garbi Zutin

    2008-07-01

    Full Text Available The purpose of the proposed research is to designand implement a LabVIEW-based remote lab client to runon a TCP/IP enabled PDA (Personal Digital Assistantdevice, thus teaching using this wireless m-learning systemwill not be limited by time and location. In addition,resources and equipments can be integrated and shared tothe extent that critically events can be monitored andhandled in time. An environment will be created to trainstudents to handle factory automation, data acquisition,data management, and manufacturing processes usingmobile devices. Furthermore, the integration and sharing oflab equipments via the Internet is a kind of teachingenvironment which promotes learning interests andefficiency using mobile devices.

  8. Jefferson Lab Data Acquisition Run Control System

    International Nuclear Information System (INIS)

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-01-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes

  9. The vacuum tribology model (VTM) of TriboLAB

    Science.gov (United States)

    Garmendia, I.; Landaberea, A.; Anglada, E.; Fernández-Sanz, R.; Santiago, R.; Herrada, F.; Encinas, J. M.

    2003-09-01

    TriboLAB is a tribology instrument that is planned for installation in the EuteF Flight Segment Platform, along with several other European scientific instruments. EuteF will be fixed onto an Express Pallet Adapter (ExPA), which provides standard structural, mechanical, electrical and communications interfaces to the Columbus External Payload Facility of the International Space Station (ISS). As a part of the model philosophy, a vacuum tribological model (VTM) has been developed to generate "on ground" tribological data of selected lubricants. The idea is to compare the results obtained "on ground" with those that will be produced in the space, in order to investigate the different behaviors of same tribological films and to be able to compare the performance of specific lubricants in Low Earth Orbit (LEO) conditions. The VTM is composed of six double experiment cells that perform respectively ball bearing (BB) experiments (with liquid and solid lubrication) and pin-on-disk (PoD) tests of solid lubricants. Thin films of alloyed MoS2 are being tested in the VTM under controlled vacuum conditions. In this work, the two sections of the VTM are described.

  10. Meta-tips for lab-on-fiber optrodes

    Science.gov (United States)

    Principe, M.; Consales, M.; Micco, A.; Crescitelli, A.; Castaldi, G.; Esposito, E.; La Ferrara, V.; Cutolo, A.; Galdi, V.; Cusano, A.

    2016-05-01

    We realize the first optical-fiber "meta-tip" that integrates a metasurface on the tip of an optical fiber. In our proposed configuration a Babinet-inverted plasmonic metasurface is fabricated by patterning (via focused-ion-beam) an array of rectangular aperture nanoantennas in a thin gold film. Via spatial modulation of the nanoantennas size, we properly tune their resonances so as to impress abrupt arbitrary phase variations in the transmitted field wavefront. As a proof-of-principle, we fabricate and characterize several prototypes implementing in the near-infrared the beam-steering with various angles. We also explore the limit case where surface waves are excited, and its capability to work as refractive index sensors. Notably, its sensitivity overwhelms that of the corresponding gradient-free plasmonic array, thus paving the way to the use of metasurfaces for label-free chemical and biological sensing. Our experimental results, in fairly good agreement with numerical predictions, demonstrate the practical feasibility of the meta-tip concept, and set the stage for the integration of metasurfaces, and their exceptional capabilities to manipulate light, in fiber-optics technological platforms, within the emerging "lab-on-fiber" paradigm.

  11. Bringing optics to Fab Labs in Europe

    Science.gov (United States)

    Adam, Aurèle; Zuidwijk, Thim; Urbach, Paul

    2017-08-01

    The Optics Group of Delft University of Technology plays a major role in teaching optics to bachelor and master students. In addition, the group has a long record of introducing, demonstrating and teaching optics to quite diverse groups of people from outside of the university. We will describe some of these activities and focus on a recently started project funded by the European Commission called Phablabs 4.0, which aims to bring photonics to European Fab labs.

  12. Chemical engineering and thermodynamics using Mat lab

    International Nuclear Information System (INIS)

    Kim Heon; Kim, Moon Gap; Lee, Hak Yeong; Yeo, Yeong Gu; Ham, Seong Won

    2002-02-01

    This book consists of twelve chapters and four appendixes about chemical engineering and thermodynamics using Mat lab, which deals with introduction, energy budget, entropy, thermodynamics process, generalization on any fluid, engineering equation of state for PVT properties, deviation of the function, phase equilibrium of pure fluid, basic of multicomponent, phase equilibrium of compound by state equation, activity model and reaction system. The appendixes is about summary of computer program, related mathematical formula and material property of pure component.

  13. Electronics lab instructors' approaches to troubleshooting instruction

    Science.gov (United States)

    Dounas-Frazer, Dimitri R.; Lewandowski, H. J.

    2017-06-01

    In this exploratory qualitative study, we describe instructors' self-reported practices for teaching and assessing students' ability to troubleshoot in electronics lab courses. We collected audio data from interviews with 20 electronics instructors from 18 institutions that varied by size, selectivity, and other factors. In addition to describing participants' instructional practices, we characterize their perceptions about the role of troubleshooting in electronics, the importance of the ability to troubleshoot more generally, and what it means for students to be competent troubleshooters. One major finding of this work is that, while almost all instructors in our study said that troubleshooting is an important learning outcome for students in electronics lab courses, only half of instructors said they directly assessed students' ability to troubleshoot. Based on our findings, we argue that there is a need for research-based instructional materials that attend to both cognitive and noncognitive aspects of troubleshooting proficiency. We also identify several areas for future investigation related to troubleshooting instruction in electronics lab courses.

  14. Science at the interface

    International Nuclear Information System (INIS)

    Knorr Cetina, K.

    2004-01-01

    Laboratories have advantages One of these is that a laboratory science does not have to put up with its objects of investigation as they occur in nature. First, it does not need to accommodate a natural object where it is, anchored in a natural environment; laboratory sciences bring objects inside and manipulate them on their own terms in the lab. Second, a laboratory science need not accommodate an event when it happens; it can dispense with natural cycles of occurrence and make events happen frequently enough for continuous study. Third, a laboratory science does not have to put up with an object as it is; it can substitute transformed and partial versions. Dissociating natural objects from their environment and re-configuring them in the lab is not simple, but it has epistemic advantages when it can be accomplished. For example, the objects of interest tend to become miniaturized (cell cultures rather than whole plants, image measurements rather than cosmological objects), they tend to become continually available in laboratories world-wide for inquiry, and planetary and stellar time scales are replaced by the time scales of the social order. Laboratories also impose conditions, for example sharp boundaries between the internal and the external world. Most laboratories in the natural sciences have procedures (and walls) to fend off unwanted transgressions of objects from the natural and human environment which they see as potential contaminants. A wild-type mouse in a molecular biology lab is not, for example, an animal caught in the wild. It is a special mouse strain inbred over many generations in breeding labs to serve as a control in relevant experiments. Animals that live in the wild (or in the buildings where labs are located) are strictly prohibited from entering a lab facility as potential disease carriers and pollutants. Laboratories, then, are not only specialized places, they are places that set up barriers against the environment and attempt to raise

  15. The watershed years of 1958-1962 in the Harvard Pigeon Lab.

    OpenAIRE

    Catania, A Charles

    2002-01-01

    During the years 1958-1962, the final years of support by the National Science Foundation for B. F. Skinner's Pigeon Lab in Memorial Hall at Harvard University, 20 or so pigeon experiments (plus some with other organisms) ran concurrently 7 days a week. The research style emphasized experimental analyses, exploratory procedures, and the parametric exploration of variables. This reminiscence describes some features of the laboratory, the context within which it operated, and the activities of ...

  16. Discovering Science through Art-Based Activities

    Science.gov (United States)

    Alberts, Rebecca

    2010-01-01

    Art and science are intrinsically linked; the essence of art and science is discovery. Both artists and scientists work in a systematic but creative way--knowledge and understanding are built up through pieces of art or a series of labs. In the classroom, integrating science and visual art can provide students with the latitude to think, discover,…

  17. The Advanced Labs Website: resources for upper-level laboratories

    Science.gov (United States)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  18. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  19. Efektivitas virtual lab berbasis STEM dalam meningkatkan literasi sains siswa dengan perbedaan gender

    Directory of Open Access Journals (Sweden)

    Ismail Ismail

    2016-10-01

    This study aimed to know theeffectiveness of STEM-based virtual lab in improving the scientific literacy of students by gender differences.The design of this research one group pretest-posttest consisting of class 7B by the number of students 29 women and 7D class by the number of students 30 men.The data Ade collected through questionnaires, observations, and tests. The effectiveness of STEM-based virtual lab was analyzed through Independent-samples t test then calculated the value of effect size. the results showed that there are differences the resulting increase inscientific literacy class students women (7B of 0.46 and a class of men (7D of 0.29 with both of them in the medium category.The value of effect size using STEM-based virtual lab on the science content domain and competencies of 0.39 with the moderate category and attitude domain of 0.75 to a high category. Keywords: virtual lab, STEM, Scientific literacy, gender

  20. FameLab Switzerland: a CERN PhD student triumphs

    CERN Multimedia

    Alexander Brown

    2013-01-01

    Would you be able to explain your work to a non-specialist in just three minutes? On Friday 24 May, the Swiss national final of FameLab saw six young researchers from CERN attempt just that. FameLab is an international competition in the style of a TV talent show, seeking out the next generation of talent in science communication.   Participants in the Swiss national final of FameLab alongside Deni Subasic, presenter of the event (far left), on Friday 24 May. Having qualified from the Geneva heat held in the Globe in March, the six CERN representatives took to the stage in Moods bar in Zurich. As well as particle physics, from the fundamental building blocks (literally) of the Standard Model to medical applications, the line-up featured immunology, neurology and genetics. Although slideshows are strictly banned from FameLab, other visual props are strongly encouraged. For instance, Piotr Traczyk (CMS) represented the apparent chaos of particle collisions by throwing together two decks of ca...

  1. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills.

    Directory of Open Access Journals (Sweden)

    Guido Makransky

    Full Text Available To investigate if a virtual laboratory simulation (vLAB could be used to replace a face to face tutorial (demonstration to prepare students for a laboratory exercise in microbiology.A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment.The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology.Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.

  2. E-Labs - Learning with Authentic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G. [Fermilab; Wayne, Mitchell [Notre Dame U.

    2016-01-01

    the success teachers have had providing an opportunity for students to: • Organize and conduct authentic research. • Experience the environment of scientific collaborations. • Possibly make real contributions to a burgeoning scientific field. We've created projects that are problem-based, student driven and technology dependent. Students reach beyond classroom walls to explore data with other students and experts and share results, publishing original work to a worldwide audience. Students can discover and extend the research of other students, modeling the processes of modern, large-scale research projects. From start to finish e-Labs are student-led, teacher-guided projects. Students need only a Web browser to access computing techniques employed by professional researchers. A Project Map with milestones allows students to set the research plan rather than follow a step-by-step process common in other online projects. Most importantly, e-Labs build the learning experience around the students' own questions and let them use the very tools that scientists use. Students contribute to and access shared data, most derived from professional research databases. They use common analysis tools, store their work and use metadata to discover, replicate and confirm the research of others. This is where real scientific collaboration begins. Using online tools, students correspond with other research groups, post comments and questions, prepare summary reports, and in general participate in the part of scientific research that is often left out of classroom experiments. Teaching tools such as student and teacher logbooks, pre- and post-tests and an assessment rubric aligned with learner outcomes help teachers guide student work. Constraints on interface designs and administrative tools such as registration databases give teachers the "one-stop-shopping" they seek for multiple e-Labs. Teaching and administrative tools also allow us to track usage and assess the

  3. Charpy V, an application in Mat lab

    International Nuclear Information System (INIS)

    Castillo M, J.A.; Torres V, M.

    2003-01-01

    The obtained results with the system Charpy V V 1 designed in Mat lab for the estimate of parameters of three mathematical models are shown. The adjustment of data is used to determine the fracture energy, the lateral expansion and the percentage of ductility of steels coming from the reactor vessels of Laguna Verde, Veracruz. The data come from test tubes type Charpy V of irradiated material and not irradiated. To verify our results they were compared with those obtained by General Electric of data coming from the Laguna Verde nuclear power plant. (Author)

  4. Future Scientific Opportunities At Jefferson Lab

    International Nuclear Information System (INIS)

    Thomas, Anthony

    2007-01-01

    Nuclear physics requires at least one major facility world-wide which is capable of fully exploiting the properties of the electro-weak force to investigate precisely the structure of strongly interacting systems. At its current maximum energy of 6 GeV Jefferson Lab has provided a wealth of important information on the structure of nucleons and nuclei. However, the plans to double the energy over the next seven years promise to open new frontiers in nuclear and particle physics. We briefly describe the plans for the 12 GeV Upgrade and the associated physics opportunities.

  5. Recent skyshine calculations at Jefferson Lab

    International Nuclear Information System (INIS)

    Degtyarenko, P.

    1997-01-01

    New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshine dose maps

  6. CompTIA Network+ Lab Manual

    CERN Document Server

    Skandier, Toby

    2012-01-01

    Gain street-smart skills in network administration Think of the most common and challenging tasks that network administrators face, then read this book and find out how to perform those tasks, step by step. CompTIA Network + Lab Manual provides an inside look into the field of network administration as though you were actually on the job. You'll find a variety of scenarios and potential roadblocks, as well as clearly mapped sections to help you prepare for the CompTIA Network+ Exam N10-005. Learn how to design, implement, configure, maintain, secure, and troubleshoot a network with this street

  7. Comparative genomics of Lactobacillus and other LAB

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M.; Lukjancenko, Oksana

    2014-01-01

    that of the others, with the two Streptococcus species having the shortest genomes. The widest distribution in genome content was observed for Lactobacillus. The number of tRNA and rRNA gene copies varied considerably, with exceptional high numbers observed for Lb. delbrueckii, while these numbers were relatively......The genomes of 66 LABs, belonging to five different genera, were compared for genome size and gene content. The analyzed genomes included 37 Lactobacillus genomes of 17 species, six Lactococcus lactis genomes, four Leuconostoc genomes of three species, six Streptococcus genomes of two species...

  8. Lab RTVE. Transmedia Storytelling in fiction series

    OpenAIRE

    Ivars-Nicolás, Begoña; Zaragoza-Fuster, Teresa

    2017-01-01

    El creciente consumo multipantalla de contenidos de ficción es clave en la transformación de los medios audiovisuales. La búsqueda de estrategias de comunicación no lineal para captar la audiencia a través de múltiples plataformas fomenta el mensaje transmedia. La transmedialidad no se limita a la forma de narrar, sino también al modo de producir y difundir una historia. El Laboratorio de Radio Televisión Española, Lab RTVE, destaca en España por su impulso innovador en la producción de conte...

  9. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  10. ScalaLab and GroovyLab: Comparing Scala and Groovy for Scientific Computing

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2015-01-01

    Full Text Available ScalaLab and GroovyLab are both MATLAB-like environments for the Java Virtual Machine. ScalaLab is based on the Scala programming language and GroovyLab is based on the Groovy programming language. They present similar user interfaces and functionality to the user. They also share the same set of Java scientific libraries and of native code libraries. From the programmer's point of view though, they have significant differences. This paper compares some aspects of the two environments and highlights some of the strengths and weaknesses of Scala versus Groovy for scientific computing. The discussion also examines some aspects of the dilemma of using dynamic typing versus static typing for scientific programming. The performance of the Java platform is continuously improved at a fast pace. Today Java can effectively support demanding high-performance computing and scales well on multicore platforms. Thus, both systems can challenge the performance of the traditional C/C++/Fortran scientific code with an easier to use and more productive programming environment.

  11. OpenLabNotes – An Electronic Laboratory Notebook Extension for OpenLabFramework

    Directory of Open Access Journals (Sweden)

    List Markus

    2015-09-01

    Full Text Available Electronic laboratory notebooks (ELNs are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  12. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    Science.gov (United States)

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  13. The Design of NetSecLab: A Small Competition-Based Network Security Lab

    Science.gov (United States)

    Lee, C. P.; Uluagac, A. S.; Fairbanks, K. D.; Copeland, J. A.

    2011-01-01

    This paper describes a competition-style of exercise to teach system and network security and to reinforce themes taught in class. The exercise, called NetSecLab, is conducted on a closed network with student-formed teams, each with their own Linux system to defend and from which to launch attacks. Students are expected to learn how to: 1) install…

  14. OpenLabNotes--An Electronic Laboratory Notebook Extension for OpenLabFramework.

    Science.gov (United States)

    List, Markus; Franz, Michael; Tan, Qihua; Mollenhauer, Jan; Baumbach, Jan

    2015-10-06

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open-LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  15. OpenLabNotes - An Electronic Laboratory Notebook Extension for OpenLabFramework.

    Science.gov (United States)

    List, Markus; Franz, Michael; Tan, Qihua; Mollenhauer, Jan; Baumbach, Jan

    2015-09-01

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  16. PC/104 Embedded IOCs at Jefferson Lab

    International Nuclear Information System (INIS)

    Yan, Jianxun; Allison, Trent; Witherspoon, Sue; Cuffe, Anthony

    2009-01-01

    Jefferson Lab has developed embedded IOCs based on PC/104 single board computers (SBC) for low level control systems. The PC/104 IOCs run EPICS on top of the RTEMS operating system. Two types of control system configurations are used in different applications, PC/104 SBC with commercial PC/104 I/O cards and PC/104 SBC with custom designed FPGA-based boards. RTEMS was built with CEXP shell to run on the PC/104 SBC. CEXP shell provides the function of dynamic object loading, which is similar to the widely used VxWorks operating system. Standard software configurations were setup for PC/104 IOC application development to provide a familiar format for new projects as well as ease the conversion of applications from VME based IOCs to PC/104 IOCs. Many new projects at Jefferson Lab are going to employ PC/104 SBCs as IOCs and some applications have already been running them for accelerator operations. The PC/104 - RTEMS IOC provides a free open source Real-Time Operating System (RTOS), low cost/maintenance, easily installed/ configured, flexible, and reliable solution for accelerator control and 12GeV Upgrade projects.

  17. New GPIB Control Software at Jefferson Lab

    International Nuclear Information System (INIS)

    Matthew Bickley; Pavel Chevtsov

    2005-01-01

    The control of GPIB devices at Jefferson Lab is based on the GPIB device/driver library. The library is a part of the device/driver development framework. It is activated with the use of the device configuration files that define all hardware components used in the control system to communicate with GPIB devices. As soon as the software is activated, it is ready to handle any device connected to these components and only needs to know the set of commands that the device can understand. The old GPIB control software at Jefferson Lab requires the definition of these commands in the form of a device control software module written in C for each device. Though such modules are relatively simple, they have to be created, successfully compiled, and supported for all control computer platforms. In the new version of GPIB control software all device communication commands are defined in device protocol (ASCII text) files. This makes the support of GPIB devices in the control system much easier

  18. The evolution of Jefferson Lab's control system

    International Nuclear Information System (INIS)

    K. S. White; M. Bickley; W. Watson

    1999-01-01

    Thomas Jefferson National Accelerator Facility's (Jefferson Lab) accelerator controls were initially implemented as a proprietary in-house system. During machine commissioning, problems were encountered leading to a decision to migrate to the Experimental Physics and Industrial Controls System (EPICS). Since then, the accelerator and all other laboratory controls have been successfully converted. In addition to implementing Jefferson Lab's controls using EPICS, new data visualization tools have been developed and existing programs have been enhanced with new capabilities. In order to provide a more generic interface for high level applications development, a device abstraction layer, called Common DEVice (CDEV), was implemented. These additions have been made available to other laboratories and are in use at many sites, including some that do not use EPICS. Control System development is not limited to computer scientists; operators, engineers and physicists frequently add capabilities using EPICS, CDEV, Tel/tk, and other tools. These contributions have tailored the control system for many different types of customers. For the future, the authors envision more intelligent processing and more capable tools for data storage, retrieval and visualization

  19. Temperature quenching in LAB based liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, A.; Zuber, K. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Hans, S.; Yeh, M. [Brookhaven National Laboratory, Chemistry Devision, Upton, NY (United States); Junghans, A.R.; Koegler, T.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krosigk, B. v. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); University of British Columbia, Department of Physics and Astronomy, Vancouver, BC (Canada); Lozza, V. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal)

    2018-01-15

    The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from -5 to 30 C with α-particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The α-emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration γ-ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of (-0.29 ± 0.01)%/ C is found. Considering hints for a particle type dependency, electrons show (-0.17 ± 0.02)%/ C, whereas the temperature dependency seems stronger for α-particles, with (-0.35 ± 0.03)%/ C. Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations. (orig.)

  20. On my association with Bell Labs

    Science.gov (United States)

    Sondhi, M. Mohan

    2004-05-01

    I joined the Acoustics Research department at Bell Labs in 1962, just eight days before AT&T launched the first communications satellite, Telstar. During the 39 years between 1962 and my retirement in 2001, I worked on several problems related in one way or another to the processing of speech signals. Schroeder and Flanagan are presenting talks from a broad perspective in this session, so I will confine this talk to just my own contributions and collaborations for some of the topics on which I worked, e.g., echo cancellation, inverse problems in acoustics, speech analysis, synthesis, and recognition. I will tell you about one of these contributions that fortunately turned out to yield considerable profits to AT&T. To give you a flavor of the spirit of free inquiry at Bell Labs during that period, I will tell you about the contribution that I am most proud of (which was supported for several years even though it had no monetary value). And I will also mention the contribution that is most often cited of all my papers (which was in collaboration with two mathematicians, and had nothing at all to do with acoustics).

  1. Control system reliability at Jefferson Lab

    International Nuclear Information System (INIS)

    White, K.S.; Areti, H.; Garza, O.

    1997-01-01

    At Thomas Jefferson National Accelerator Facility (Jefferson Lab), the availability of the control system is crucial to the operation of the accelerator for experimental programs. Jefferson Lab's control system, uses 68040 based microprocessors running VxWorks, Unix workstations, and a variety of VME, CAMAC. GPIB, and serial devices. The software consists of control system toolkit software, commercial packages, and over 200 custom and generic applications, some of which are highly complex. The challenge is to keep this highly diverse and still growing system, with over 162,000 control points, operating reliably, while managing changes and upgrades to both the hardware and software. Downtime attributable to the control system includes the time to troubleshoot and repair problems and the time to restore the machine to operation of the scheduled program. This paper describes the availability of the control system during the last year, the heaviest contributors to downtime and the response to problems. Strategies for improving the robustness of the control system am detailed and include changes in hardware, software, procedures and processes. The improvements range from the routine preventive hardware maintenance, to improving their ability to detect, predict and prevent problems. This paper also describes the software tools used to assist in control system troubleshooting, maintenance and failure recovery processes

  2. Quality of Lab Appliances in Orthodontic Offices.

    Science.gov (United States)

    Pruzansky, D P; Park, J H

    Lab appliances are an integral part of orthodontics, from active treatment to retention. The quality and fit of an appliance can affect the treatment result and stability. This study aims to determine common points of failure in orthodontic appliances, and suggest methods to reduce this rate. A survey consisting of 23 questions was distributed to active members of the American Association of Orthodontists (AAO) via Survey Monkey. The most common appliance to need an adjustment was the wrap-around retainer, with the Hawley retainer as a close second. The least common appliance needing adjustment was the Essix/clear retainer. Respondents were asked which component of each appliance was most commonly responsible for an ill-fit. For Hawley and wrap-around retainers, clasps were the most common problem at 50%, whereas spring aligners had two components - clasps and labial bows, both at 38%. Ill-fitting Essix/clear retainers had gingival impingement (52%) closely followed by poor posterior seating (43%). Communication between the orthodontist and lab technician can be improved by establishing a quality assurance protocol for outgoing and incoming cases. The labial bow of Hawley's, wrap-arounds and spring aligners should be clearly demarcated on the casts. Impressions should be free of distortion and casts should be inspected for accuracy. Clear retainers and positioner should be trimmed to avoid gingival impingement. The type of clasp should be selected based on the anatomy of the teeth, and bands should be checked for accuracy of fit.

  3. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  4. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  5. Think Tek Learning Lab, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Steven Winter Associates, Inc. (SWA) proposes to develop a nation-wide informal technology education program that integrates math, science, engineering and...

  6. Coping with Science

    DEFF Research Database (Denmark)

    Ricard, Lykke Margot

    2003-01-01

    Life of Science, edited by Lykke Margot Ricard and Robin Engelhardt. Learning Lab Denmark, Copenhagen, pages 39-45. 2003 Short description: What makes children think about scientific inventions? In this case it was watching the news and listing to parents conversation that made a 12-year old...... schoolboy write an essay on the theme: ?The world would be a better place to live in if?!? Abstract: Science has a long tradition for emphasizing objectivity, but it is the emotional impact of science that makes children interested. Metaphors and personal experiences of the scientist can be a useful...

  7. Life of Science

    DEFF Research Database (Denmark)

    Engelhardt, Robin; Margot Ricard, Lykke

    Learning Lab Denmark, København. 2003 Short description: In connection to the conference Changes and Challenges the White Book "Life of Science" was published. Member states of the European Union as well as applying countries were invited to contribute to the book with texts in order to present...... inspiring cases of concrete educational strategies for improving learning, teaching and recruitment in the fields of science and technology. Abstract: The aim of this white book is to present some of the most inspiring examples of Science and Technology Education in Europe. In creating the white book, we...

  8. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  9. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  10. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Wind, Jan; Peinemann, Klaus Viktor

    2010-01-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform

  11. Respecifying lab ethnography an ethnomethodological study of experimental physics

    CERN Document Server

    Sormani, Philippe

    2014-01-01

    Respecifying Lab Ethnography delivers the first ethnomethodological study of current experimental physics in action, describing the disciplinary orientation of lab work and exploring the discipline in its social order, formal stringency and skilful performance - in situ and in vivo. In bringing together two major strands of ethnomethodological inquiry, reflexive ethnography and video analysis, which have hitherto existed in parallel, Respecifying Lab Ethnography introduces a practice-based video analysis. In doing so, the book recasts conventional distinctions to shed fresh light on methodolog

  12. Thin Mirror Shaping Technology for High-Throughput X-ray Telescopes

    Science.gov (United States)

    Schattenburg, Mark

    This proposal is submitted to the NASA Research Opportunities in Space and Earth Sciences program (ROSES-2012) in response to NASA Research Announcement NNH12ZDA001N- APRA. It is targeted to the Astronomy and Astrophysics Research and Analysis (APRA) program element under the Supporting Technology category. Powerful x-ray telescope mirrors are critical components of a raft of small-to-large mission concepts under consideration by NASA. The science questions addressed by these missions have certainly never been more compelling and the need to fulfill NASA s core missions of exploring the universe and strengthening our nation s technology base has never been greater. Unfortunately, budgetary constraints are driving NASA to consider the cost/benefit and risk factors of new missions more carefully than ever. New technology for producing x-ray telescopes with increased resolution and collecting area, while holding down cost, are key to meeting these goals and sustaining a thriving high-energy astrophysics enterprise in the US. We propose to develop advanced technology which will lead to thin-shell x-ray telescope mirrors rivaling the Chandra x-ray telescope in spatial resolution but with 10-100X larger area all at significantly reduced weight, risk and cost. The proposed effort builds on previous research at MIT and complements NASA-supported research at other institutions. We are currently pursuing two thin-mirror technology development tracks which we propose to extend and accelerate with NASA support. The first research track utilizes rapidly-maturing thermal glass slumping technology which uses porous ceramic air-bearing mandrels to shape glass mirrors without touching, thus avoiding surface-induced mid-range spatial frequency ripples. A second research track seeks to remove any remaining mid- to long-range errors in mirrors by using scanning ion-beam implant to impart small, highly deterministic and very stable amounts of stress into thin glass, utilizing local

  13. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  14. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  15. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  16. ALT Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Alanine Aminotransferase (ALT); p. 31. Lab ...

  17. Blood in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Hemoglobin, Urine; p. 325. Lab Tests ...

  18. Ferritin Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Ferritin, Serum; 296 p. Lab Tests ...

  19. FameLab: A Communication Skills-Building Program Disguised as an International Competition

    Science.gov (United States)

    Scalice, D.

    2015-12-01

    One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.

  20. Successes and Challenges in Transitioning to Large Enrollment NEXUS/Physics IPLS Labs

    Science.gov (United States)

    Moore, Kimberly

    2017-01-01

    UMd-PERG's NEXUS/Physics for Life Sciences laboratory curriculum, piloted in 2012-2013 in small test classes, has been implemented in large-enrollment environments at UMD from 2013-present. These labs address physical issues at biological scales using microscopy, image and video analysis, electrophoresis, and spectroscopy in an open, non-protocol-driven environment. We have collected a wealth of data (surveys, video analysis, etc.) that enables us to get a sense of the students' responses to this curriculum in a large-enrollment environment and with teaching assistants both `new to' and `experienced in' the labs. In this talk, we will provide a brief overview of what we have learned, including the challenges of transitioning to large N, student perception then and now, and comparisons of our large-enrollment results to the results from our pilot study. We will close with a discussion of the acculturation of teaching assistants to this novel environment and suggestions for sustainability.

  1. NASA's GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain V.; Tran, Peter B.

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate 'open science' biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics ('omics') data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  2. NASAs GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain; Tran, Peter

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate open science biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics (omics) data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  3. Behind the scenes at FameLab, the international competition for young scientists

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    FameLab is an international science communication competition for young researchers and science teachers aged 18 to 35. At CERN, preparations are under way to recruit participants, advertise the event to the public and organise the regional semi-finals for Suisse Romande, which will take place on Saturday, 4 February 2012 in the Globe of Science and Innovation. The Bulletin looks ahead to the forthcoming event…   As you might have read in the 5 December 2011 issue of the Bulletin, Switzerland is one of the 20 countries participating in the FameLab 2012 competition, and the regional finals for French-speaking Switzerland will take place at CERN in the Globe of Science and Innovation on Saturday, 4 February 2012. “At the moment we’re still recruiting participants through various channels (registration is open till 31 January) and organising the one-day programme of events in the Globe,” says project coordinator Paola Catapano of the CERN Communication ...

  4. The StratusLab cloud distribution: Use-cases and support for scientific applications

    Science.gov (United States)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take

  5. The SPARC-LAB Thomson source

    International Nuclear Information System (INIS)

    Vaccarezza, C.; Alesini, D.; Anania, M.P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.

    2016-01-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  6. RICH Detector for Jefferson Labs CLAS12

    Science.gov (United States)

    Trotta, Richard; Torisky, Ben; Benmokhtar, Fatiha

    2015-10-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to its Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beams. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new hybrid Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 8 GeV/c momentum range. This detector will be used for a variety of Semi-Inclusive Deep Inelastic Scattering experiments. Cherenkov light can be accurately detected by a large array of sophisticated Multi-Anode Photomultiplier Tubes (MA-PMT) and heavier particles, like kaons, will span the inner radii. We are presenting our work on the creation of the RICH's geometry within the CLAS12 java framework. This development is crucial for future calibration, reconstructions and analysis of the detector.

  7. Peers at work: Evidence from the lab

    Science.gov (United States)

    Oosterbeek, Hessel; Sonnemans, Joep

    2018-01-01

    This paper reports the results of a lab experiment designed to study the role of observability for peer effects in the setting of a simple production task. In our experiment, participants in the role of workers engage in a team real-effort task. We vary whether they can observe, or be observed by, one of their co-workers. In contrast to earlier findings from the field, we find no evidence that low-productivity workers perform better when they are observed by high-productivity co-workers. Instead, our results imply that peer effects in our experiment are heterogeneous, with some workers reciprocating a high-productivity co-worker but others taking the opportunity to free ride. PMID:29408863

  8. Innovation Incubator: Whisker Labs Technical Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frank, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, Lieko [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scheib, Jennifer G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-01

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need to open the panel and install current transducers (CTs) on the circuit wiring.

  9. Flow lab.: flow visualization and simulation

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Cho, Won Jin; Hahn, Pil Soo

    2005-01-01

    The experimental setups for flow visualization and processes identification in laboratory scale (so called Flow Lab.) has developed to get ideas and answer fundamental questions of flow and migration in geologic media. The setup was made of a granite block of 50x50cm scale and a transparent acrylate plate. The tracers used in this experiments were tritiated water, anions, and sorbing cations as well as an organic dye, eosine, to visualize migration paths. The migration plumes were taken with a digital camera as a function of time and stored as digital images. A migration model was also developed to describe and identify the transport processes. Computer simulation was carried out not only for the hydraulic behavior such as distributions of pressure and flow vectors in the fracture but also for the migration plume and the elution curves

  10. The SPARC-LAB Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C., E-mail: cristina.vaccarezza@lnf.infn.it [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Alesini, D.; Anania, M.P. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Bacci, A. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Biagioni, A.; Bisesto, F.; Bellaveglia, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Cardarelli, P. [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Cardelli, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); Cianchi, A. [University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Chiadroni, E.; Croia, M.; Curcio, A. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Delogu, P. [University of Pisa and INFN-PI, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giovenale, D. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Domenico, G. Di [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Pirro, G. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Drebot, I. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Ferrario, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Filippi, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); and others

    2016-09-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  11. Peers at work: Evidence from the lab.

    Directory of Open Access Journals (Sweden)

    Roel van Veldhuizen

    Full Text Available This paper reports the results of a lab experiment designed to study the role of observability for peer effects in the setting of a simple production task. In our experiment, participants in the role of workers engage in a team real-effort task. We vary whether they can observe, or be observed by, one of their co-workers. In contrast to earlier findings from the field, we find no evidence that low-productivity workers perform better when they are observed by high-productivity co-workers. Instead, our results imply that peer effects in our experiment are heterogeneous, with some workers reciprocating a high-productivity co-worker but others taking the opportunity to free ride.

  12. VPPD Lab - The Chemical Product Simulator

    DEFF Research Database (Denmark)

    Kalakul, Sawitree; Hussain, Rehan; Elbashir, Nimir

    2015-01-01

    , detergent, etc.). It has interface to identify workflow/data-flow for the inter-related activities between knowledge-based system and model-based calculation procedures to systematically, efficiently and robustly solve various types of product design-analysis problems. The application of the software......In this paper, the development of a systematic model-based framework for product design, implemented in the new product design software called VPPD-Lab is presented. This framework employs its in-house knowledge-based system to design and evaluate chemical products. The built-in libraries...... of product performance models and product-chemical property models are used to evaluate different classes of product. The product classes are single molecular structure chemicals (lipids, solvents, aroma, etc.), blended products (gasoline, jet-fuels, lubricants, etc.), and emulsified product (hand wash...

  13. Gender Writ Small: Gender Enactments and Gendered Narratives about Lab Organization and Knowledge Transmission in a Biomedical Engineering Research Setting

    Science.gov (United States)

    Malone, Kareen Ror; Nersessian, Nancy J.; Newstetter, Wendy

    This article presents qualitative data and offers some innovative theoretical approaches to frame the analysis of gender in science, technology, engineering, and mathematics (STEM) settings. It begins with a theoretical discussion of a discursive approach to gender that captures how gender is lived "on the ground." The authors argue for a less individualistic approach to gender. Data for this research project was gathered from intensive interviews with lab members and ethnographic observations in a biomedical engineering lab. Data analysis relied on a mixed methodology involving qualitative approaches and dialogues with findings from other research traditions. Three themes are highlighted: lab dynamics in relation to issues of critical mass, the division of labor, and knowledge transmission. The data illustrate how gender is created in interactions and is inflected through forms of social organization.

  14. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M. [iThemba LABS, P.O Box 722, Somerset West 7130 (South Africa); Hitz, D. [CEA/DRFMC, 17 Av. Des Martyrs, 38054, Grenoble Cedex 9 (France); Kuechler, D. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2012-02-15

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  15. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    International Nuclear Information System (INIS)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M.; Hitz, D.; Kuechler, D.

    2012-01-01

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  16. Lab-on a-Chip

    Science.gov (United States)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  17. LAB bacteriocin applications in the last decade

    Directory of Open Access Journals (Sweden)

    Ma. del Rocío López-Cuellar

    2016-11-01

    Full Text Available In the early 2000s, the expectations about bacteriocins produced by lactic acid bacteria (LABs were aimed at food applications. However, the effectiveness of bacteriocins against undesirable micro-organisms opened endless possibilities for innovative research. In the present review, we collected a database including 429 published papers and 245 granted patents (from 2004 to 2015. Based on bibliometric analysis, the progress of bacteriocin research in the last 11 years was discussed in detail. It was found that 164 patents were granted in 2010–2015, which is equivalent to 60% in comparison with previous years (i.e. only 81 patents were granted in 2004–2009. Currently, the research on bacteriocins is still gaining importance. In the realm of therapeutic strategies, about a 37% of the published research was focused on biomedical applications in the last decade. This vein of research is currently seeking for alternative solutions to problems such as cancer, systemic infections, oral-care, vaginal infections, contraception and skincare. On the other hand, food preservation, bio-nanomaterial and veterinary applications represent 29%, 25% and 9%, respectively. All this technology is being applied and will surely grow in the future, since about 31% of the patents granted since 2004 are focused on the biomedical area, 29% on food preservation, 5% on veterinary use; whereas 13% and 16% correspond to patents granted on production–purification systems and recombinant proteins or molecular modifications in the producer strains. This review contributes to the analysis of recent LAB bacteriocin applications and their role in safety, quality and improvement of human health.

  18. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film ... amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive -phase spots surrounded by amorphous regions. Scanning ...

  20. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    Science.gov (United States)

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future

  1. Reducing unnecessary lab testing in the ICU with artificial intelligence

    Science.gov (United States)

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the

  2. Tunable field emission characteristics of ZnO nanowires coated with varied thickness of lanthanum boride thin films

    International Nuclear Information System (INIS)

    Zhao, C.X.; Li, Y.F.; Chen, Jun; Deng, S.Z.; Xu, N.S.

    2013-01-01

    Lanthanum boride (LaB x ) thin films with various thicknesses were deposited on ZnO nanowire arrays by electron beam evaporation. Field emission characteristics of ZnO nanowires show close dependence on LaB x coating thickness. The turn-on field increases with increasing LaB x coating thickness from 10 nm to 50 nm. The observed phenomena were explained by a model that the tunneling at ZnO/LaB x interface dominates the emission process. - Highlights: ► Coating thickness dependence of field emission characteristics of ZnO nanowires was observed from LaB x coated ZnO nanowires. ► More stable field emission was observed from ZnO nanowires with LaB x coating. ► A model was proposed that the tunneling at ZnO/LaB x interface dominates the emission process

  3. Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 4. Issue front cover thumbnail. Volume 32, Issue 4. August 2009, pages 369-463. pp 369-373 Thin Films. Mobility activation in thermally deposited CdSe thin films · Kangkan Sarmah Ranjan Sarma · More Details Abstract Fulltext PDF. Effect of illumination on ...

  5. New Dimensions in Teaching Digital Electronics: A Multimode Laboratory Utilizing NI ELVIS IITM, LabVIEW and NI Multisim

    Directory of Open Access Journals (Sweden)

    Andrew Katumba

    2010-11-01

    Full Text Available Over the years, conventional Laboratories in African Universities have been hampered by inadequate resources in terms of the required hardware, space and skilled personnel to administer them. This paper describes a multi-dimensional approach to experimentation, developed by the Makerere University iLabs Project Team, hereafter referred to as iLABS@MAK. The two dimensional approach involves both Virtual Labs and Online Laboratories designed to address laboratory deficiencies in Digital Electronics, encompassing five courses in the curricula of the Bachelor of Science (B.Sc in Computer, Electrical and Telecommunication Engineering Programs. A digital Online Laboratory, the Makerere University Digital iLab (MDEi supporting experiments in the fields of combinational logic circuits and asynchronous sequential logic circuits has been developed. The laboratory utilizes the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS II™ platform, the Laboratory Virtual Instrument Engineering Workbench (LabVIEW graphical programming environment and NI Multisim. Typical experiment setups supported by the MDEi are presented

  6. Ontology: A Support Structure for a V-Labs Network: Euronet-Lab

    Directory of Open Access Journals (Sweden)

    Raul Cordeiro Correia

    2012-11-01

    Full Text Available Our propose is to build a network of virtual laboratories, based in a Virtual Closet that will contain all the elements and parts that are needed to build the various experiences available in a v-labs network (that we call Euronet-Lab. To build this complex network we need to find a system that supports effectively this structure. This probably will be a enormous database of v-labs and independent elements, where will be possible sometimes to “recycle” some of the elements. This means “re-use” the same element several times in many experiences. To do this is necessary to have a structure that allows us to have several instances of the same element. It’s important that in our structure and virtual environment we can create several “images” of the same reality and this images can be used simultaneously in different circuits/experiments. This means that we can create several instances of the same element, to be used in different experiences and exercises.

  7. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, H.; Augustson; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel,m spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the U. S./Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC ampersand A) program, VNIINM is providing evaluation, certification, and implementation of measurement methods for such materials. In 1966, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and heir storage facility. This paper describes the status of this work and anticipated progress in 1996

  8. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials. Revision 1

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, Hiroshi; Augustson, R.; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel, spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the US/Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC and A) program, VNIINM is providing support for measurements of nuclear materials in bulk forms by developing specifications, test and evaluation, certification, and implementation of measurement methods for such materials. In 1996, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and their storage facility. The paper will describe the status of this work and anticipated progress in 1996

  9. Talking About Defense: Leathernecks in Lab Coats

    National Research Council Canada - National Science Library

    Wilson, George

    2002-01-01

    .... Anderson is not the typical bunker-charging, poster-boy Marine. An internationally known authority on new kinds of warfare, Anderson more resembles a militarized Thomas Edison, an experimenter in the science of war...

  10. Living Labs as boundary-spanners between Triple Helix actors

    NARCIS (Netherlands)

    van Geenhuizen, M.S.

    2016-01-01

    Living labs are an increasingly popular methodology to enhance innovation. Living labs aim to span boundaries between different organizations, among others Triple helix actors, by acting as a network organization typically in a real-life environment to foster co-creation by user-groups. This paper

  11. European labs brace for German cuts: international collaboration

    CERN Multimedia

    Clery, D

    1996-01-01

    Germany, the largest contributor to international European research labs, announced plans to reduce its contributions an average of 8% in the nation's latest budget. CERN and other labs are worried that the cuts will endanger ongoing projects and that other countries may follow Germany's lead.

  12. Living Labs als een Vehikel voor (Onderwijs)innovatie

    NARCIS (Netherlands)

    Ellen Sjoer

    2014-01-01

    Wereldwijd schieten ze als paddenstoelen uit de grond: living labs. Deze ‘levende laboratoria’ zijn er in alle soorten en maten. Meestal wordt het lab gezien als een onderzoeks- en ontwikkelomgeving om een probleem met verschillende partijen op een innovatieve manier op te lossen. De thema’s van de

  13. Time Trials--An AP Physics Challenge Lab

    Science.gov (United States)

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  14. What Is LAB and Why Was It Renormed?

    Science.gov (United States)

    Abbott, Muriel

    A report on the Language Assessment Battery (LAB) explains, in question-and-answer form, the causes and results of some changes made in the test norms. The LAB is a test of communicative language competence, written in English and Spanish versions and used for student placement in the New York City Public Schools. The report describes the test…

  15. Aerial view of the water reservoirs for Lab II

    CERN Multimedia

    1974-01-01

    Two large reservoirs (5000 m3 each) were built on the Swiss part of the site (Lab I is on the left). The water was drawn from the pumping station at Le Vengeron on Lac Léman, through a 10 km long pipe to be distributed over all Lab II.

  16. Fifteen years experience: Egyptian metabolic lab | Fateen | Egyptian ...

    African Journals Online (AJOL)

    Those patients were classified as: 722 patients (69.4%) with lysosomal storage disorders, 302 patients (29%) with amino acid disorders and 17 patients (1.6%) with galactosemia. Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder ...

  17. Hybrid Perovskite Thin Film Formation: From Lab Scale Spin Coating to Large Area Blade Coating

    KAUST Repository

    Munir, Rahim

    2017-01-01

    in which an anti-solvent is used during the coating process through the solvent mixture of GBL and DMSO in different ratios. It has been shown that solvent engineering produce pin hole-free films, justifying its wide adoption across the field. We

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wang Juan1 Li Yajiang1 Wu Huiqiang1 Ren Jiangwei1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P.R. China ...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Key Lab for Green Processing and Functionalization of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, P.R. China; State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; Zhuxi ...

  20. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  1. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  2. California State University, Bakersfield Fab Lab: "Making" A Difference in Middle School Students' STEM Attitudes

    Science.gov (United States)

    Medina, Andrea Lee

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on Papert’s (1980) theory of constructionism and Bandura’s (1977) self-efficacy theory. Papert’s interest in how learners engaged in discussions with the items they made, and how these interactions increased self-guided learning, promoted the development of new knowledge. Self-efficacy, or one’s belief in his or her ability to perform behaviors necessary to produce specific achievements, increases as a result of the self-guided learning. These beliefs are proposed to influence future aspirations and the commitment to them. Results of the paired t-tests show a marked difference between 2016 participants (n= 49) and 2017 participants (n=31). Of the 2016 participants, no overall significance was found on attitudes towards math or science, but male attitudes within the math subset did show significance. The results of the 2017 program do show statistical significance in the area of science for females. It is hypothesized that the difference in results were due to the delivery of the program between the 2 years. Further research is necessary to confirm this hypothesis.

  3. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  4. Public Lab: Community-Based Approaches to Urban and Environmental Health and Justice.

    Science.gov (United States)

    Rey-Mazón, Pablo; Keysar, Hagit; Dosemagen, Shannon; D'Ignazio, Catherine; Blair, Don

    2018-05-03

    This paper explores three cases of Do-It-Yourself, open-source technologies developed within the diverse array of topics and themes in the communities around the Public Laboratory for Open Technology and Science (Public Lab). These cases focus on aerial mapping, water quality monitoring and civic science practices. The techniques discussed have in common the use of accessible, community-built technologies for acquiring data. They are also concerned with embedding collaborative and open source principles into the objects, tools, social formations and data sharing practices that emerge from these inquiries. The focus is on developing processes of collaborative design and experimentation through material engagement with technology and issues of concern. Problem-solving, here, is a tactic, while the strategy is an ongoing engagement with the problem of participation in its technological, social and political dimensions especially considering the increasing centralization and specialization of scientific and technological expertise. The authors also discuss and reflect on the Public Lab's approach to civic science in light of ideas and practices of citizen/civic veillance, or "sousveillance", by emphasizing people before data, and by investigating the new ways of seeing and doing that this shift in perspective might provide.

  5. The NOAO Data Lab virtual storage system

    Science.gov (United States)

    Graham, Matthew J.; Fitzpatrick, Michael J.; Norris, Patrick; Mighell, Kenneth J.; Olsen, Knut; Stobie, Elizabeth B.; Ridgway, Stephen T.; Bolton, Adam S.; Saha, Abhijit; Huang, Lijuan W.

    2016-07-01

    Collaborative research/computing environments are essential for working with the next generations of large astronomical data sets. A key component of them is a distributed storage system to enable data hosting, sharing, and publication. VOSpace1 is a lightweight interface providing network access to arbitrary backend storage solutions and endorsed by the International Virtual Observatory Alliance (IVOA). Although similar APIs exist, such as Amazon S3, WebDav, and Dropbox, VOSpace is designed to be protocol agnostic, focusing on data control operations, and supports asynchronous and third-party data transfers, thereby minimizing unnecessary data transfers. It also allows arbitrary computations to be triggered as a result of a transfer operation: for example, a file can be automatically ingested into a database when put into an active directory or a data reduction task, such as Sextractor, can be run on it. In this paper, we shall describe the VOSpace implementations that we have developed for the NOAO Data Lab. These offer both dedicated remote storage, accessible as a local file system via FUSE, and a local VOSpace service to easily enable data synchronization.

  6. Featured Image: Making Dust in the Lab

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  7. Electronic lab notebooks: can they replace paper?

    Science.gov (United States)

    Kanza, Samantha; Willoughby, Cerys; Gibbins, Nicholas; Whitby, Richard; Frey, Jeremy Graham; Erjavec, Jana; Zupančič, Klemen; Hren, Matjaž; Kovač, Katarina

    2017-05-24

    Despite the increasingly digital nature of society there are some areas of research that remain firmly rooted in the past; in this case the laboratory notebook, the last remaining paper component of an experiment. Countless electronic laboratory notebooks (ELNs) have been created in an attempt to digitise record keeping processes in the lab, but none of them have become a 'key player' in the ELN market, due to the many adoption barriers that have been identified in previous research and further explored in the user studies presented here. The main issues identified are the cost of the current available ELNs, their ease of use (or lack of it) and their accessibility issues across different devices and operating systems. Evidence suggests that whilst scientists willingly make use of generic notebooking software, spreadsheets and other general office and scientific tools to aid their work, current ELNs are lacking in the required functionality to meet the needs of the researchers. In this paper we present our extensive research and user study results to propose an ELN built upon a pre-existing cloud notebook platform that makes use of accessible popular scientific software and semantic web technologies to help overcome the identified barriers to adoption.

  8. Atmospheric spatial atomic-layer-deposition of Zn(O, S) buffer layer for flexible Cu(In, Ga)Se2 solar cells: From lab-scale to large area roll to roll processing

    NARCIS (Netherlands)

    Frijters, C.H.; Bolt, P.J.; Poodt, P.W.G.; Knaapen, R.; Brink, J. van den; Ruth, M.; Bremaud, D.; Illiberi, A.

    2016-01-01

    In this manuscript we present the first successful application of a spatial atomic-layer-deposition process to thin film solar cells. Zn(O,S) has been grown by spatial atomic layer deposition (S-ALD) at atmospheric pressure and applied as buffer layer in rigid and flexible CIGS cells by a lab-scale

  9. A new LabVIEW interface for MDSplus

    International Nuclear Information System (INIS)

    Manduchi, G.; De Marchi, E.; Mandelli, A.

    2013-01-01

    Highlights: ► Integration object oriented data access layer in LabVIEW. ► A new component of the MDSplus data acquisition package. ► A new approach in the graphical presentation of data acquisition systems. -- Abstract: The paper presents a new interface providing full integration of MDSplus in LabVIEW, based on the recent features of MDSplus, in particular, data streaming, multithreading and Object Oriented interface. Data streaming support fits into the data driven concept of LabVIEW and multithreading is a native concept in LabVIEW. The object oriented interface of MDSplus defines a set of classes which map specific functionality, such as Tree and TreeNode to represent pulse files and data items, respectively, and fits naturally into the LabVIEW Object Oriented programming interface (LVOOP) introduced in version 8.2. MDSplus objects have been mapped onto LabVIEW objects, which act as wrappers to the underlying MDSplus object instance. This approach allows exporting the full MDSplus functionality into LabVIEW retaining the language-independent system view provided by the MDSplus object oriented interface

  10. A new LabVIEW interface for MDSplus

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Padova (Italy); De Marchi, E. [Department of Information Engineering, Padova University (Italy); Mandelli, A. [National Instruments (Italy)

    2013-10-15

    Highlights: ► Integration object oriented data access layer in LabVIEW. ► A new component of the MDSplus data acquisition package. ► A new approach in the graphical presentation of data acquisition systems. -- Abstract: The paper presents a new interface providing full integration of MDSplus in LabVIEW, based on the recent features of MDSplus, in particular, data streaming, multithreading and Object Oriented interface. Data streaming support fits into the data driven concept of LabVIEW and multithreading is a native concept in LabVIEW. The object oriented interface of MDSplus defines a set of classes which map specific functionality, such as Tree and TreeNode to represent pulse files and data items, respectively, and fits naturally into the LabVIEW Object Oriented programming interface (LVOOP) introduced in version 8.2. MDSplus objects have been mapped onto LabVIEW objects, which act as wrappers to the underlying MDSplus object instance. This approach allows exporting the full MDSplus functionality into LabVIEW retaining the language-independent system view provided by the MDSplus object oriented interface.

  11. GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data

    Science.gov (United States)

    Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.; hide

    2016-01-01

    The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system

  12. Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits

    Science.gov (United States)

    Ainla, Alar; Gözen, Irep; Hakonen, Bodil; Jesorka, Aldo

    2013-01-01

    Lipid bilayer membranes are among the most ubiquitous structures in the living world, with intricate structural features and a multitude of biological functions. It is attractive to recreate these structures in the laboratory, as this allows mimicking and studying the properties of biomembranes and their constituents, and to specifically exploit the intrinsic two-dimensional fluidity. Even though diverse strategies for membrane fabrication have been reported, the development of related applications and technologies has been hindered by the unavailability of both versatile and simple methods. Here we report a rapid prototyping technology for two-dimensional fluidic devices, based on in-situ generated circuits of phospholipid films. In this “lab on a molecularly thin membrane”, various chemical and physical operations, such as writing, erasing, functionalization, and molecular transport, can be applied to user-defined regions of a membrane circuit. This concept is an enabling technology for research on molecular membranes and their technological use. PMID:24067786

  13. In the Lab with the Dalai Lama

    Science.gov (United States)

    Schmidt, Leigh E.

    2005-01-01

    The Dalai Lama, the exiled Tibetan Buddhist leader was invited to speak at the Society for Neuroscience meeting in November 2005 to promote the idea that through meditation, an emerging meeting point for science and religion in contemporary culture can be reached. However, some members of the association were offended at the implied endorsement…

  14. An update on Lab Rover: A hospital material transporter

    Science.gov (United States)

    Mattaboni, Paul

    1994-01-01

    The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.

  15. A mobile design lab for user-driven innovation

    DEFF Research Database (Denmark)

    Christiansen, Ellen; Kanstrup, Anne Marie

    2007-01-01

    The paper presents the history and conceptual foundation for the Mobile Design Lab, ment to support both designers and users in the acts of user-driven innovation. The Mobile Design Lab is based on Vygotsky's theory of tool- and language-mediation, and was created in 2004 to support research...... and teaching of user driven innovation. Being itself an example of user-driven innovation it has taken shape of HCI design research projekcts, in which we have been involved since 2004. The first challenge was to get 'out of the lab', the next to get 'out of the head', and finally we are currently working...

  16. Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs

    Science.gov (United States)

    Hollenhorst, James

    2014-03-01

    Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.

  17. TXESS Revolution: Utilizing TERC's EarthLabs Cryosphere Module to Support Professional Development of Texas Teachers

    Science.gov (United States)

    Odell, M.; Ellins, K. K.; Polito, E. J.; Castillo Comer, C. A.; Stocks, E.; Manganella, K.; Ledley, T. S.

    2010-12-01

    TERC’s EarthLabs project provides rigorous and engaging Earth and environmental science labs. Four existing modules illustrate sequences for learning science concepts through data analysis activities and hands-on experiments. A fifth module, developed with NSF, comprises a series of linked inquiry based activities focused on the cryosphere to help students understand concepts around change over time on multiple and embedded time scales. Teachers recruited from the NSF-OEDG-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program conducted a pedagogical review of the Cryosphere EarthLabs module and provided feedback on how well the materials matched high school needs in Texas and were aligned with state and national standards. Five TXESS Revolution teachers field tested the materials in their classrooms and then trained other TXESS Revolution teachers on their implementation during spring and summer 2010. Here we report on the results of PD delivery during the summer 2010 TXESS Revolution summer institute as determined by (1) a set of evaluation instruments that included a pre-post concept map activity to assess changes in workshop teachers’ understanding of the concepts presented, a pre-post test content knowledge test, and a pre-post survey of teachers’ comfort in teaching the Texas Earth and Space Science standards addressed by the module; (2) teacher reflections; and (3) focus group responses. The findings reveal that the teachers liked the module activities and felt they could use them to teach Environmental and Earth Science. They appreciated that the sequence of activities contributed to a deeper understanding and observed that the variety of methods used to present the information accommodates different learning styles. Information about the cryosphere was new to all the teachers. The content knowledge tests reveal that although teachers made appreciable gains, their understanding of cryosphere, how it changes

  18. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Science Olympiad did not translate into informed understandings of NOS. There were implications that labs with a set procedure and given data tables did not contribute to informed NOS understandings, while explicit instruction may have contributed to more informed understandings. Exploring these high achieving, Science Olympiad students' understandings of NOS was a crucial step to understanding what experiences formed these students' understandings so that teachers may better their practices and help more students succeed in becoming scientifically literate citizens.

  19. The Earth is our lab: Ten years of geoscience school lab in Potsdam

    Science.gov (United States)

    Nikolaus Küppers, Andreas

    2016-04-01

    Starting in 2004, a geoscientific school lab for senior high school students was developed in the historical "Großer Refraktor" premises on the Telegraphenberg in Potsdam. Based on a one-day course architecture, laboratory days were developed covering singular themes: - Magnetic field of the Earth - Geographical Information Systems and geodata - Gravity field of the Earth - Geodynamics: seismology and seismics - Geoscience math - Geodata Brandenburg (Geological mapping with aerophotographs, remote sensing, underground data processing) With a focus on geophysical methodologies, course days generally focused on the field work around the Telegraphenberg site while introducing into the art of handling original professional equipment. Field data were afterwards compiled, analysed and interpreted in the group. Single days could be combined as clusters of up to one week and were bookable for national and international groups of max. 25 students. The courses were taught by active scientists with the assistance of student guides as the larger groups had to be split up. The paper gives an overview over the development history of the school lab and explains the course contents, the teaching methods and several employed escorting measures. Possible impact on the professional career decisions of the students is discussed.

  20. Energy conservation attitudes, knowledge, and behaviors in science laboratories

    International Nuclear Information System (INIS)

    Kaplowitz, Michael D.; Thorp, Laurie; Coleman, Kayla; Kwame Yeboah, Felix

    2012-01-01

    Energy use per square foot from science research labs is disproportionately higher than that of other rooms in buildings on campuses across the nation. This is partly due to labs’ use of energy intensive equipment. However, laboratory management and personnel behavior may be significant contributing factors to energy consumption. Despite an apparent increasing need for energy conservation in science labs, a systematic investigation of avenues promoting energy conservation behavior in such labs appears absent in scholarly literature. This paper reports the findings of a recent study into the energy conservation knowledge, attitude and behavior of principle investigators, laboratory managers, and student lab workers at a tier 1 research university. The study investigates potential barriers as well as promising avenues to reducing energy consumption in science laboratories. The findings revealed: (1) an apparent lack of information about options for energy conservation in science labs, (2) existing operational barriers, (3) economic issues as barriers/motivators of energy conservation and (4) a widespread notion that cutting edge science may be compromised by energy conservation initiatives. - Highlights: ► Effective energy conservation and efficiency depend on social systems and human behaviors. ► Science laboratories use more energy per square foot than any other academic and research spaces. ► Time, money, quality control, and convenience overshadow personnel’s desire to save energy. ► Ignorance of conservation practices is a barrier to energy conservation in labs.