WorldWideScience

Sample records for science instruments conceptual

  1. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  2. INSTRUMENTAL CONCEPTUALIZATION SUBJECT AREA SOCIOLOGY: SOME POSSIBLE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Maslennikov

    2016-01-01

    Full Text Available The article outlines some of the possible ways of integrating the deployment tool conceptualizing domains of sociology on the basis of the machine sets of steps3. Substantiates the urgency of the problem of application of structural constructs of mathematics as a structure-formalism domain of sociology as a combination of theoretical knowledge. Formulated understanding of the sociological dimension in a broad sense of the concept of research as a measurement based on the use of instrumental in conceptualizing the methodology of sociological research. Under instrumental conceptualization refers to the construction of complex conceptual (conceptual schema structurally interconnected relationships between their individual elements, which are the units of the consideration related conceptual integrity, derived from interpretation of the properties “Set” construct. The paper proposes a definition based on the properties set in the scale set by the structure of N. Bourbaki4 relations systems in the data sets under the structural dimension of social phenomena to understand the interpretation of the investigated properties of social phenomena in terms of a construct that lies at the basis of the theoretical model that reflects the diversity of these qualities with the help of conceptual schemes that determine the quality of each as a structure of relations systems (ie, property in these qualities. In conclusion, the article lists presented in a number of publications, some preliminary results of the application of the methodology of conceptualizing instrumental in related disciplines from sociology. These works can perform suggestive role in the knowledge and understanding of methods of problem fields and objectives of the work on the conceptualization of theoretical sociology, using the mathematical theory of forms. 

  3. Measuring and Comparing Academic Language Development and Conceptual Understanding via Science Notebooks

    Science.gov (United States)

    Huerta, Margarita; Tong, Fuhui; Irby, Beverly J.; Lara-Alecio, Rafael

    2016-01-01

    The authors of this quantitative study measured and compared the academic language development and conceptual understanding of fifth-grade economically disadvantaged English language learners (ELL), former ELLs, and native English-speaking (ES) students as reflected in their science notebook scores. Using an instrument they developed, the authors…

  4. Conceptual design of safety instrumentation for PFBR

    International Nuclear Information System (INIS)

    Muralikrishna, G.; Seshadri, U.; Raghavan, K.

    1996-01-01

    Instrumentation systems enable monitoring of the process which in turn enables control and shutdown of the process as per the requirements. Safety Instrumentation due to its vital importance has a stringent role and this needs to be designed methodically. This paper presents the details of the conceptual design for PFBR. (author). 4 figs, 3 tabs

  5. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  6. Texas Science Teacher Characteristics and Conceptual Understanding of Newton's Laws of Motion

    Science.gov (United States)

    Busby, Karin Burk

    Misconceptions of Newtonian mechanics and other physical science concepts are well documented in primary and pre-service teacher populations (Burgoon, Heddle, & Duran, 2009; Allen & Coole, 2012; Kruger, Summers, & Palacio, 1990; Ginns & Watters, 1995; Trumper, 1999; Asikainen & Hirovonen, 2014). These misconceptions match the misconceptions held by students, leaving teachers ill-equipped to rectify these concepts in the classroom (Kind, 2014; Kruger et al., 1990; Cochran & Jones, 1998). Little research has been devoted to misconceptions held by in-service secondary teachers, the population responsible for teaching Newtonian mechanics. This study focuses on Texas in-service science teachers in middle school and high school science, specifically sixth grade science, seventh grade science, eighth grade science, integrated physics and chemistry, and physics teachers. This study utilizes two instruments to gauge conceptual understanding of Newton's laws of motion: the Force Concept Inventory [FCI] (Hestenes, Wells, & Swackhamer, 1992) and a custom instrument developed for the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching (Urquhart, M., e-mail, April 4, 2017). Use of each instrument had its strengths and limitations. In the initial work of this study, the FCI was given to middle and high school teacher volunteers in two urban school districts in the Dallas- Fort Worth area to assess current conceptual understanding of Newtonian mechanics. Along with the FCI, each participant was asked to complete a demographic survey. Demographic data collected included participant's sex, years of service in teaching position, current teaching position, degrees, certification type, and current certifications for science education. Correlations between variables and overall average on the FCI were determined by t-tests and ANOVA tests with a post-hoc Holm-Bonferroni correction test. Test questions pertaining to each of Newton's three laws of motion were

  7. Kuhn and conceptual change: on the analogy between conceptual changes in science and children

    Science.gov (United States)

    Greiffenhagen, Christian; Sherman, Wendy

    2008-01-01

    This article argues that the analogy between conceptual changes in the history of science and conceptual changes in the development of young children is problematic. We show that the notions of ‘conceptual change’ in Kuhn and Piaget’s projects, the two thinkers whose work is most commonly drawn upon to support this analogy, are not compatible in the sense usually claimed. We contend that Kuhn’s work pertains not so much to the psychology of individual scientists, but to the way philosophers and historians should describe developments in communities of scientists. Furthermore, we argue that the analogy is based on a misunderstanding of the nature of science and the relation between science and common sense. The distinctiveness of the two notions of conceptual change has implications for science education research, since it raises serious questions about the relevance of Kuhn’s remarks for the study of pedagogical issues.

  8. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  9. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    International Nuclear Information System (INIS)

    Hofmann, D; Dittrich, P-G; Duentsch, E

    2010-01-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  10. Matter in Extreme Conditions Instrument - Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  11. Study on a conceptual design of a data acquisition and instrument control system for experimental suites at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Nakatani, Takeshi; Torii, Shuki; Higemoto, Wataru; Otomo, Toshiya

    2006-02-01

    The JAEA (Japan Atomic Energy Agency)-KEK (High Energy Accelerator Research Organization) joint project, Japan Proton Accelerator Research Complex (J-PARC), is now under construction. Materials and Life Science Facility (MLF) is one of planned facilities in this research complex. The neutron and muon sources will be installed at MLF and world's highest class intensive beam, which is utilized for variety of scientific research subject, will be delivered. To discuss the necessary computing environments for neutron and muon instruments at J-PARC, the MLF computing environment group (MLF-CEG) has been organized. We, members of the DAQ subgroup (DAQ-SG) are responsible for considering data acquisition and instrument control systems for the experimental suites at MLF. In the framework of the MLF-CEG, we are surveying the computer resources which is required for data acquisition and instrument control at future instruments, current situation of existing facilities and possible solutions those we can achieve. We are discussing the most suitable system that can bring out full performance of our instruments. This is the first interim report of the DAQ-SG, in which our activity of 2003-2004 is summarized. In this report, a conceptual design of the software, the related a data acquisition and instrument control system for experimental instruments at MLF are proposed. (author)

  12. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    Science.gov (United States)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  13. Validation of an Instrument for Assessing Conceptual Change with Respect to the Theory of Evolution by Secondary Biology Students

    Science.gov (United States)

    Goff, Kevin David

    This pilot study evaluated the validity of a new quantitative, closed-response instrument for assessing student conceptual change regarding the theory of evolution. The instrument has two distinguishing design features. First, it is designed not only to gauge student mastery of the scientific model of evolution, but also to elicit a trio of deeply intuitive tendencies that are known to compromise many students' understanding: the projection of intentional agency, teleological directionality, and immutable essences onto biological phenomena. Second, in addition to a section of conventional multiple choice questions, the instrument contains a series of items where students may simultaneously endorse both scientifically normative propositions and intuitively appealing yet unscientific propositions, without having to choose between them. These features allow for the hypothesized possibility that the three intuitions are partly innate, themselves products of cognitive evolution in our hominin ancestors, and thus may continue to inform students' thinking even after instruction and conceptual change. The test was piloted with 340 high school students from diverse schools and communities. Confirmatory factor analysis and other statistical methods provided evidence that the instrument already has strong potential for validly distinguishing students who hold a correct scientific understanding from those who do not, but that revision and retesting are needed to render it valid for gauging students' adherence to intuitive misconceptions. Ultimately the instrument holds promise as a tool for classroom intervention studies by conceptual change researchers, for diagnostic testing and data gathering by instructional leaders, and for provoking classroom dialogue and debate by science teachers.

  14. The Conceptualization and Development of the Practical Epistemology in Science Survey (PESS)

    Science.gov (United States)

    Villanueva, Mary Grace; Hand, Brian; Shelley, Mack; Therrien, William

    2017-08-01

    Various inquiry approaches have been promoted in science classrooms as a way for students to engage in, and have a deeper understanding of scientific discourse. However, there is a paucity of empirical evidence to suggest how children's actions and engagement in these approaches, or practical epistemologies (Sandoval, Science Education 89(4): 634-656, 2005), may contribute to the development of their personal epistemologies, or their views about the nature of knowledge and knowing and the nature of learning. This paper puts forth the conceptualization and development of the Practical Epistemology in Science Survey (PESS) instrument, a 26-item Likert-scale self-assessment which measures how students view their individual and social participation in the classroom scientific community. Data were collected from 4th-6th-grade students (n = 1019) in the USA and a psychometric evaluation of the reliability, validity, and dimensionality of the instrument was conducted. The Cronbach's alpha value indices for all subsets of items of the PESS suggest a strong reliability of the instrument (α ≥ .80). The development of the PESS may be useful in science education research to (a) detect changes to students' beliefs about knowledge and knowledge development; (b) identify dispositions and beliefs which may or may not be in line with the aims and values of various pedagogical approaches; (c) monitor the process of change, e.g., time it takes for students to change their approaches and beliefs with respect to teacher practice; and, (d) overall, to provide an understanding of how students' formal epistemologies are developed and informed by the affordances in science classrooms.

  15. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  16. A bridge between conceptual frameworks sciences, society and technology studies

    CERN Document Server

    2015-01-01

    This book analyzes scientific problems within the history of physics, engineering, chemistry, astronomy and medicine, correlated with technological applications in the social context. When and how is tension between disciplines explicitly practised? What is the conceptual bridge between science researches and the organization of technological researches in the development of  industrial applications?  The authors explain various ways in which the sciences allowed advanced modelling on the one hand, and the development of new technological ideas on the other hand. An emphasis on the role played by mechanisms, production methods and instruments bestows a benefit on historical and scientific discourse: theories, institutions, universities, schools for engineers, social implications as well.  Scholars from different traditions discuss the emerging style of thinking in methodology and, in theoretical perspective, aim to gather and re-evaluate the current thinking on this subject. It brings together contribution...

  17. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  18. Conceptual Demand of Practical Work in Science Curricula. A Methodological Approach

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2014-02-01

    This article addresses the issue of the level of complexity of practical work in science curricula and is focused on the discipline of Biology and Geology at high school. The level of complexity is seen in terms of the emphasis on and types of practical work and, most importantly, in terms of its level of conceptual demand as given by the complexity of scientific knowledge, the degree of inter-relation between knowledges, and the complexity of cognitive skills. The study also analyzes recontextualizing processes that may occur within the official recontextualizing field. The study is psychologically and sociologically grounded, particularly on Bernstein's theory of pedagogic discourse. It uses a mixed methodology. The results show that practical work is poorly represented in the curriculum, particularly in the case of laboratory work. The level of conceptual demand of practical work varies according to the text under analysis, between the two subjects Biology and Geology, and, within each of them, between general and specific guidelines. Aspects studied are not clearly explicated to curriculum receivers (teachers and textbooks authors). The meaning of these findings is discussed in the article. In methodological terms, the study explores assumptions used in the analysis of the level of conceptual demand and presents innovative instruments constructed for developing this analysis.

  19. A concept taxonomy and an instrument hierarchy: tools for establishing and evaluating the conceptual framework of a patient-reported outcome (PRO) instrument as applied to product labeling claims.

    Science.gov (United States)

    Erickson, Pennifer; Willke, Richard; Burke, Laurie

    2009-01-01

    To facilitate development and evaluation of a PRO instrument conceptual framework, we propose two tools--a PRO concept taxonomy and a PRO instrument hierarchy. FDA's draft guidance on patient reported outcome (PRO) measures states that a clear description of the conceptual framework of an instrument is useful for evaluating its adequacy to support a treatment benefit claim for use in product labeling the draft guidance, however does not propose tools for establishing or evaluating a PRO instrument's conceptual framework. We draw from our review of PRO concepts and instruments that appear in prescription drug labeling approved in the United States from 1997 to 2007. We propose taxonomy terms that define relationships between PRO concepts, including "family,"compound concept," and "singular concept." Based on the range of complexity represented by the concepts, as defined by the taxonomy, we propose nine instrument orders for PRO measurement. The nine orders range from individual event counts to multi-item, multiscale instruments. This analysis of PRO concepts and instruments illustrates that the taxonomy and hierarchy are applicable to PRO concepts across a wide range of therapeutic areas and provide a basis for defining the instrument conceptual framework complexity. Although the utility of these tools in the drug development, review, and approval processes has not yet been demonstrated, these tools could be useful to improve communication and enhance efficiency in the instrument development and review process.

  20. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  1. A Study of Novice Science Teachers' Conceptualizations of Culturally Relevant Pedagogy

    Science.gov (United States)

    Redman, Elizabeth Horst

    This qualitative study examined new science teachers' conceptualization of culturally relevant pedagogy (CRP). The study followed six novice science teachers from their preservice teaching placements into their first jobs as instructors of record, observing in their classrooms and interviewing them about their use of CRP. The study sought to understand (1) how the participating teachers conceptualize CRP in science, and (2) what challenges the teachers faced in trying to implement CRP. Findings suggest that the teachers conceptualized CRP in ways that were consistent with Enyedy, Danish and Fields' (2011) interpretations of relevance: relevance of authentic purpose, relevance of content and/or context, and relevance of practices. The teachers, however, translated those interpretations of relevance into their conceptualizations and classroom practice in a variety of ways. While they encountered difficulties in conceptualizing and practicing CRP, they also made productive moves in their practice and evidenced positive elements in their conceptualizations of CRP. In order to address the challenges these teachers faced in implementing CRP, I suggest an approach to teacher preparation in CRP that builds upon the understandings and productive moves the teachers evidenced in this study.

  2. Emphasizing the process of science using demonstrations in conceptual chemistry

    Science.gov (United States)

    Lutz, Courtney A.

    The purpose of this project was to teach students a method for employing the process of science in a conceptual chemistry classroom when observing a demonstration of a discrepant event. Students observed six demonstrations throughout a trimester study of chemistry and responded to each demonstration by asking as many questions as they could think of, choosing one testable question to answer by making as many hypotheses as possible, and choosing one hypothesis to make predictions about observed results of this hypothesis when tested. Students were evaluated on their curiosity, confidence, knowledge of the process of science, and knowledge of the nature of science before and after the six demonstrations. Many students showed improvement in using or mastery of the process of science within the context of conceptual chemistry after six intensive experiences with it. Results of the study also showed students gained confidence in their scientific abilities after completing one trimester of conceptual chemistry. Curiosity and knowledge of the nature of science did not show statistically significant improvement according to the assessment tool. This may have been due to the scope of the demonstration and response activities, which focused on the process of science methodology instead of knowledge of the nature of science or the constraints of the assessment tool.

  3. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  4. Astrbiology Science and Technology for Instrument Development (ASTID)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Astrobiology Science and Technology for Instrument Development (ASTID) develops instrumentation capabilities to help meet Astrobiology science requirements on...

  5. A conceptual framework for designing micro electrical connectors for hearing aid instruments

    DEFF Research Database (Denmark)

    Doagou Rad, Saeed; Islam, Aminul; Fuglsang-Philip, M.

    2016-01-01

    technological advancements have urged them to incorporate increased number of electrical contacts. The current paper presents a conceptual framework for designing and manufacturing novel plug and socket systems for hearing aid instruments by using the state of art manufacturing technologies for micro components...

  6. Conceptual Demand of Science Curricula: A Study at the Middle School Level

    Science.gov (United States)

    Calado, Sílvia; Neves, Isabel P.; Morais, Ana M.

    2013-01-01

    This article addresses the issue of the level of conceptual demand of science curricula by analysing the case of the current Portuguese Natural Sciences curriculum for middle school. Conceptual demand is seen in terms of the complexity of cognitive skills, the complexity of scientific knowledge and the intra-disciplinary relations between distinct…

  7. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    Science.gov (United States)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  8. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  9. A conceptual change analysis of nature of science conceptions: The deep roots and entangled vines of a conceptual ecology

    Science.gov (United States)

    Johnston, Adam Thomas

    This research used theories of conceptual change to analyze learners' understandings of the nature of science (NOS). Ideas regarding the NOS have been advocated as vital aspects of science literacy, yet learners at many levels (students and teachers) have difficulty in understanding these aspects in the way that science literacy reforms advocate. Although previous research has shown the inadequacies in learners' NOS understandings and have documented ways by which to improve some of these understandings, little has been done to show how these ideas develop and why learners' preexisting conceptions of NOS are so resistant to conceptual change. The premise of this study, then, was to describe the nature of NOS conceptions and of the conceptual change process itself by deeply analyzing the conceptions of individual learners. Toward this end, 4 individuals enrolled in a physical science course designed for preservice elementary teachers were selected to participate in a qualitative research study. These individuals answered questionnaires, surveys, direct interview questions, and a variety of interview probes (e.g., critical incidents, responses to readings/videos, reflections on coursework, card sorting tasks, etc.) which were administered throughout the duration of a semester. By utilizing these in-depth, qualitative probes, learners' conceptions were not only assessed but also described in great detail, revealing the source of their conceptions as well as identifying many instances in which a learner's directly stated conception was contradictory to that which was reflected by more indirect probes. As a result of this research, implications regarding NOS conceptions and their development have been described. In addition, various descriptions of conceptual change have been further refined and informed. Especially notable, the influence of a learner's conceptual ecology and its extrarational influences on conceptual change have been highlighted. It is argued that

  10. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  11. Bright THz Instrument and Nonlinear THz Science

    Science.gov (United States)

    2017-10-30

    Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the

  12. Figures of speech, signs of knowing: Towards a semiotic view of science conceptualization

    Science.gov (United States)

    Wizinowich, Janice Ingrid

    Models for science education, rather than paralleling the process of scientific discovery, have traditionally involved the dissemination of information through texts and controlled lab experiences. These have had limited effect in the development of science concepts. Therefore, the focus of this study was to investigate alternative avenues, such as the use of narrative, for science conceptualization. Despite the potential for narrative as an avenue for science conceptualization, for the most part studies involving literature have not explored this relationship. The purpose of this study was to investigate the process of science conceptualization, with a specific focus on narrative. This was done through a fifth grade classroom based study where learning experiences were created, focused on the concept of interdependence in relationship to water. These experiences included open-ended, hands-on science experiences, literature discussion groups, self-selected research projects and the creation of narrative pieces based on those research projects. Data sources included: (a) audio and videotaped literature discussion group sessions; (b) audio and videotaped study group interviews and curricular sessions; (c) individual interviews; (d) learning log entries and reflections; and (e) student narratives. Data analysis was conducted within a semiotic theoretical framework and involved the process of retroduction. Retroduction entails a kind of spiraling dialectic between theoretical considerations and data incidences, from which are generated possible explanations. These possible explanations or abductions, provide direction for further forays into the data. The process of retroduction lends itself to the creation of data analysis chapters that highlight theoretical issues in relationship to the data or "theoretical memos". Three theoretical memos emerged from this process. Theoretical memo one explores the role of experience in conceptualization; theoretical memo two focuses

  13. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    Science.gov (United States)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  14. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    Science.gov (United States)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  15. An Aesthetics of Negativity: On the Instrumental Evaluation of Conceptual Art in Eastern Europe

    Directory of Open Access Journals (Sweden)

    Cristian Nae

    2014-12-01

    Full Text Available The contextual interpretation of conceptual art under politically oppressive regimes as a politicized art practice seems dominant in the current revisionist discourse of art history. At a closer inspection, this discourse seems to illustrate Rainer Rochlitz’s comments on the use of political criteria for instrumentally evaluating contemporary art, favoring political engagement as a relational artistic value instead of a set of (inherent aesthetic values. Using art historical analysis of the context of artistic production and reception as well as case studies, I intend to show that what we may praise as being critically efficient conceptual artworks are also aesthetically relevant in a particular sense. The political character they may acquire and the instrumental value attached to it depends on the production of artistic autonomy as a field of semiotic experiments with language and social communication. It is the aesthetic function of that part of conceptual art engaged in useless artistic labor and pointless communication, criticizing the inherent rationality of the modernist project, which obliquely acquires political overtones in times of straightforward ideological engagement of art.

  16. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  17. Conceptual design for the NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    Bashore, D.; Oliaro, G.; Roney, P.; Sichta, P.; Tindall, K.

    1997-01-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device

  18. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  19. Instrumentation between science, state and industry

    CERN Document Server

    Shinn, Terry

    2001-01-01

    these. In this book, we appropriate their conception of research-technology, and ex­ tend it to many other phenomena which are less stable and less localized in time and space than the Zeeman/Cotton situation. In the following pages, we use the concept for instances where research activities are orientated primarily toward technologies which facilitate both the production of scientific knowledge and the production of other goods. In particular, we use the tenn for instances where instruments and meth­ ods· traverse numerous geographic and institutional boundaries; that is, fields dis­ tinctly different and distant from the instruments' and methods' initial focus. We suggest that instruments such as the ultra-centrifuge, and the trajectories of the men who devise such artefacts, diverge in an interesting way from other fonns of artefacts and careers in science, metrology and engineering with which students of science and technology are more familiar. The instrument systems developed by re­ search-technolo...

  20. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  1. Advanced Instrumentation for Ultrafast Science at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  2. Remote Instrumentation for eScience and Related Aspects

    CERN Document Server

    Lawenda, Marcin; Meyer, Norbert; Pugliese, Roberto; Węglarz, Jan; Zappatore, Sandro

    2012-01-01

    Making scientific instruments a manageable resource over distributed computing infrastructures such as the grid has been a key focal point of e-science research in recent years. It is now known by the generic term ‘remote instrumentation’, and is the subject of this useful volume that covers a range of perspectives on the topic reflected by the contributions to the 2010 workshop on remote instrumentation held in Poznań, Poland. E-science itself is a complex set of disciplines requiring computationally intensive distributed operations, high-speed networking, and collaborative working tools. As such, it is most often (and correctly) associated with grid- and cloud-computing infrastructures and middleware. The contributions to this publication consider broader aspects of the theme of remote instrumentation applied to e-science, as well as exploring related technologies that enable the implementation of truly distributed and coordinated laboratories. Among the topics discussed are remote instrumentation and ...

  3. Development of a Symptom-Based Patient-Reported Outcome Instrument for Functional Dyspepsia: A Preliminary Conceptual Model and an Evaluation of the Adequacy of Existing Instruments.

    Science.gov (United States)

    Taylor, Fiona; Reasner, David S; Carson, Robyn T; Deal, Linda S; Foley, Catherine; Iovin, Ramon; Lundy, J Jason; Pompilus, Farrah; Shields, Alan L; Silberg, Debra G

    2016-10-01

    The aim was to document, from the perspective of the empirical literature, the primary symptoms of functional dyspepsia (FD), evaluate the extent to which existing questionnaires target those symptoms, and, finally, identify any missing evidence that would impact the questionnaires' use in regulated clinical trials to assess treatment efficacy claims intended for product labeling. A literature review was conducted to identify the primary symptoms of FD and existing symptom-based FD patient-reported outcome (PRO) instruments. Following a database search, abstracts were screened and articles were retrieved for review. The primary symptoms of FD were organized into a conceptual model and the PRO instruments were evaluated for conceptual coverage as well as compared against evidentiary requirements presented in the FDA's PRO Guidance for Industry. Fifty-six articles and 16 instruments assessing FD symptoms were reviewed. Concepts listed in the Rome III criteria for FD (n = 7), those assessed by existing FD instruments (n = 34), and symptoms reported by patients in published qualitative research (n = 6) were summarized in the FD conceptual model. Except for vomiting, all of the identified symptoms from the published qualitative research reports were also specified in the Rome III criteria. Only three of the 16 instruments, the Dyspepsia Symptom Severity Index (DSSI), Nepean Dyspepsia Index (NDI), and Short-Form Nepean Dyspepsia Index (SF-NDI), measure all seven FD symptoms defined by the Rome III criteria. Among these three, each utilizes a 2-week recall period and 5-point Likert-type scale, and had evidence of patient involvement in development. Despite their coverage, when these instruments were evaluated in light of regulatory expectations, several issues jeopardized their potential qualification for substantiation of a labeling claim. No existing PRO instruments that measured all seven symptoms adhered to the regulatory principles necessary to support product

  4. A conceptual framework for designing micro electrical connectors for hearing aid instruments

    OpenAIRE

    Doagou Rad, Saeed; Islam, Aminul; Fuglsang-Philip, M.

    2016-01-01

    Electrical connectors play vital roles in modern electronic instruments. Hearing aid devices as advanced combinations of micro mechanics and electronics comprise various electrical connectors for different purposes. However, the current trend in the miniaturization along with the sharp technological advancements have urged them to incorporate increased number of electrical contacts. The current paper presents a conceptual framework for designing and manufacturing novel plug and socket systems...

  5. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    Science.gov (United States)

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  6. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  7. Development and validation of an instrument to evaluate science teachers' assessment beliefs and practices

    Science.gov (United States)

    Genc, Evrim

    The primary purpose of this study was to develop a valid and reliable instrument to examine science teachers' assessment beliefs and practices in science classrooms. The present study also investigated the relationship between teachers' beliefs and practices in terms of assessment issues in science, their perceptions of the factors that influenced their assessment practices and their feelings towards high-stakes testing. The participants of the study were 408 science teachers teaching at middle and high school levels in the State of Florida. Data were collected through two modes of administration of the instrument as a paper-and-pencil and a web-based form. The response rate for paper-and-pencil administration was estimated as 68% whereas the response for the web administration was found to be 27%. Results from the various dimensions of validity and reliability analyses revealed that the 24 item-four-factor belief and practice measures were psychometrically sound and conceptually anchored measures of science teachers' assessment beliefs and self-reported practices. Reliability estimates for the belief measure ranged from .83 to .91 whereas alpha values for the practice measure ranged from .56 to .90. Results from the multigroup analysis supported that the instrument has the same theoretical structure across both administration groups. Therefore, future researchers may use either a paper-and-pencil or web-based format of the instrument. This study underscored a discrepancy between what teachers believe and how they act in classroom settings. It was emphasized that certain factors were mediating the dynamics between the belief and the practice. The majority of teachers reported that instruction time, class size, professional development activities, availability of school funding, and state testing mandates impact their assessment routines. Teachers reported that both the preparation process and the results of the test created unbelievable tension both on students and

  8. Conceptual Metaphor and Embodied Cognition in Science Learning: Introduction to Special Issue

    Science.gov (United States)

    Amin, Tamer G.; Jeppsson, Fredrik; Haglund, Jesper

    2015-01-01

    This special issue of "International Journal of Science Education" is based on the theme "Conceptual Metaphor and Embodied Cognition in Science Learning." The idea for this issue grew out of a symposium organized on this topic at the conference of the European Science Education Research Association (ESERA) in September 2013.…

  9. With hiccups and bumps: the development of a Rasch-based instrument to measure elementary students' understanding of the nature of science.

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M; Shields, Katherine A; Wang, Yang

    2013-01-01

    This research describes the development process, psychometric analyses and part validation study of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). Evidence is provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. A future article will examine the structural and external validity aspects. Rasch modeling proved especially productive in scale improvement efforts. The instrument, designed for large-scale assessment use, is conceptualized using five construct domains. Data from 741 elementary students were used to pilot the Rasch scale, with continuous improvements made over three successive administrations. The psychometric properties of the NOSI-E instrument are consistent with the basic assumptions of Rasch measurement, namely that the items are well-fitting and invariant. Items from each of the five domains (Empirical, Theory-Laden, Certainty, Inventive, and Socially and Culturally Embedded) are spread along the scale's continuum and appear to overlap well. Most importantly, the scale seems appropriately calibrated and responsive for elementary school-aged children, the target age group. As a result, the NOSI-E should prove beneficial for science education research. As the United States' science education reform efforts move toward students' learning science through engaging in authentic scientific practices (NRC, 2011), it will be important to assess whether this new approach to teaching science is effective. The NOSI-E can be used as one measure of whether this reform effort has an impact.

  10. High school student's motivation to engage in conceptual change-learning in science

    Science.gov (United States)

    Barlia, Lily

    1999-11-01

    This study investigated motivational factors that are related to engaging in conceptual change learning. While previous studies have recognized the resistance of students' scientific conception to change, few have investigated the role that non-cognitive factors might play when students are exposed to conceptual change instruction. Three research questions were examined: (a) What instructional strategies did the teacher use to both promote students' learning for conceptual change and increase their motivation in learning science? (b) What are the patterns of students' motivation to engage in conceptual change learning? And (c) what individual profiles can be constructed from the four motivational factors (i.e., goals, values, self-efficacy, and control beliefs) and how are these profiles linked to engagement (i.e., behavioral and cognitive engagement) in conceptual change learning of science? Eleven twelfth grade students (senior students) and the teacher in which conceptual change approach to teaching was used in daily activities were selected. Data collection for this study included student's self-reported responses to the Motivated Strategies for Learning Questionnaire (MSLQ), classroom observation of students and the teacher, and structured interviews. Analysis of these data resulted in a motivational factor profile for each student and cross case analysis for entire group. Results from this study indicate that each student has different motivation factors that are mostly influenced individual student to learn science. Among these motivation factors, task value and control beliefs were most important for students. The implication of these findings are that teachers need to encourage students to find learning for conceptual change a valuable task, and that students need to find applications for their new conceptions within their everyday lives. In addition, teachers need to encourage students to develop learning strategies for conceptual understanding

  11. CONCEPTUAL AND DESIGN ISSUES IN INSTRUMENT DEVELOPMENT FOR RESEARCH WITH BEREAVED PARENTS*

    Science.gov (United States)

    Briller, Sherylyn H.; Schim, Stephanie Myers; Thurston, Celia S.; Meert, Kathleen L.

    2013-01-01

    Many childhood deaths in the United States occur in pediatric intensive care units (PICUs) and parents have special needs in this death context. As an interdisciplinary research team, we discuss conceptual and design issues encountered in creating a new instrument, the Bereaved Parent Needs Assessment–PICU, for assessing parents’ needs in this setting. Using a qualitative approach, our team previously explored how the culture and related ways of providing care in one urban Midwestern children’s hospital PICU affected parents’ bereavement needs and experiences. We describe using this qualitative foundation in the development of a new quantitative instrument to more widely validate and measure bereaved parents’ needs around the time of a child’s death across multiple PICUs. We highlight a series of issues that warrant consideration in designing a research instrument for this vulnerable population including setting and context, format and content, temporality, recruitment, and content expertise. PMID:22953511

  12. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model.

    Science.gov (United States)

    Morgan, R M

    2017-11-01

    There has been a call for forensic science to actively return to the approach of scientific endeavour. The importance of incorporating an awareness of the requirements of the law in its broadest sense, and embedding research into both practice and policy within forensic science, is arguably critical to achieving such an endeavour. This paper presents a conceptual model (FoRTE) that outlines the holistic nature of trace evidence in the 'endeavour' of forensic reconstruction. This model offers insights into the different components intrinsic to transparent, reproducible and robust reconstructions in forensic science. The importance of situating evidence within the whole forensic science process (from crime scene to court), of developing evidence bases to underpin each stage, of frameworks that offer insights to the interaction of different lines of evidence, and the role of expertise in decision making are presented and their interactions identified. It is argued that such a conceptual model has value in identifying the future steps for harnessing the value of trace evidence in forensic reconstruction. It also highlights that there is a need to develop a nuanced approach to reconstructions that incorporates both empirical evidence bases and expertise. A conceptual understanding has the potential to ensure that the endeavour of forensic reconstruction has its roots in 'problem-solving' science, and can offer transparency and clarity in the conclusions and inferences drawn from trace evidence, thereby enabling the value of trace evidence to be realised in investigations and the courts. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  13. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    Science.gov (United States)

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  14. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    Science.gov (United States)

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  16. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  17. Conceptual Spaces of the Immune System.

    Science.gov (United States)

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  18. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  19. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  20. Research on conceptual design of simplified nuclear safety instrument and control system

    International Nuclear Information System (INIS)

    Huang Jie

    2015-01-01

    The Nuclear safety instrument and control system is directly related to the safety of the reactor. So redundant and diversity design is used to ensure the system's security and reliability. This make the traditional safety system large, more cabinets and wiring complexity. To solve these problem, we can adopt new technology to make the design more simple. The simplify conceptual design can make the system less cabinets, less wiring, but high security, strong reliability. (author)

  1. Conceptual thermal design and analysis of a far-infrared/mid-infrared remote sensing instrument

    Science.gov (United States)

    Roettker, William A.

    1992-07-01

    This paper presents the conceptual thermal design and analysis results for the Spectroscopy of the Atmosphere using Far-Infrared Emission (SAFIRE) instrument. SAFIRE has been proposed for Mission to Planet Earth to study ozone chemistry in the middle atmosphere using remote sensing of the atmosphere in the far-infrared (21-87 microns) and mid-infrared (9-16 microns) spectra. SAFIRE requires that far-IR detectors be cooled to 3-4 K and mid-IR detectors to 80 K for the expected mission lifetime of five years. A superfluid helium dewar and Stirling-cycle cryocoolers provide the cryogenic temperatures required by the infrared detectors. The proposed instrument thermal design uses passive thermal control techniques to reject 465 watts of waste heat from the instrument.

  2. Quality Teaching in Science: an Emergent Conceptual Framework

    Science.gov (United States)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  3. INSTRUMENTALISM IN SCIENCE: COMMENTS AND CRITICISMS

    African Journals Online (AJOL)

    Admin

    that guide the scientist in making his decisions or a perceived system of procedural rules. ... to science, information and theories than an ... instrumentalists try to provide the foundation of ..... instrumentalism, which are practical rather than.

  4. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    Science.gov (United States)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  5. Measuring primary teachers' attitudes toward teaching science: development of the dimensions of attitude toward science (DAS) instrument

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is

  6. 7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report

    International Nuclear Information System (INIS)

    1992-12-01

    In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R ampersand D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R ampersand D

  7. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  8. Measuring Primary Teachers' Attitudes toward Teaching Science: Development of the Dimensions of Attitude toward Science (DAS) Instrument

    Science.gov (United States)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…

  9. Person-centred care in nurse-led outpatient rheumatology clinics: Conceptualization and initial development of a measurement instrument.

    Science.gov (United States)

    Bala, Sidona-Valentina; Forslind, Kristina; Fridlund, Bengt; Samuelson, Karin; Svensson, Björn; Hagell, Peter

    2018-06-01

    Person-centred care (PCC) is considered a key component of effective illness management and high-quality care. However, the PCC concept is underdeveloped in outpatient care. In rheumatology, PCC is considered an unmet need and its further development and evaluation is of high priority. The aim of the present study was to conceptualize and operationalize PCC, in order to develop an instrument for measuring patient-perceived PCC in nurse-led outpatient rheumatology clinics. A conceptual outpatient PCC framework was developed, based on the experiences of people with rheumatoid arthritis (RA), person-centredness principles and existing PCC frameworks. The resulting framework was operationalized into the PCC instrument for outpatient care in rheumatology (PCCoc/rheum), which was tested for acceptability and content validity among 50 individuals with RA attending a nurse-led outpatient clinic. The conceptual framework focuses on the meeting between the person with RA and the nurse, and comprises five interrelated domains: social environment, personalization, shared decision-making, empowerment and communication. Operationalization of the domains into a pool of items generated a preliminary PCCoc/rheum version, which was completed in a mean (standard deviation) of 5.3 (2.5) min. Respondents found items easy to understand (77%) and relevant (93%). The Content Validity Index of the PCCoc/rheum was 0.94 (item level range, 0.87-1.0). About 80% of respondents considered some items redundant. Based on these results, the PCCoc/rheum was revised into a 24-item questionnaire. A conceptual outpatient PCC framework and a 24-item questionnaire intended to measure PCC in nurse-led outpatient rheumatology clinics were developed. The extent to which the questionnaire represents a measurement instrument remains to be tested. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    Science.gov (United States)

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  11. A view of the tip of the iceberg: revisiting conceptual continuities and their implications for science learning

    Science.gov (United States)

    Brown, Bryan A.; Kloser, Matt

    2009-12-01

    We respond to Hwang and Kim and Yeo's critiques of the conceptual continuity framework in science education. First, we address the criticism that their analysis fails to recognize the situated perspective of learning by denying the dichotomy of the formal and informal knowledge as a starting point in the learning process. Second, we address the critique that students' descriptions fail to meet the "gold standard" of science education—alignment with an authoritative source and generalizability—by highlighting some student-expert congruence that could serve as the foundation for future learning. Third, we address the critique that a conceptual continuity framework could lead to less rigorous science education goals by arguing that the ultimate goals do not change, but rather that if the pathways that lead to the goals' achievement could recognize existing lexical continuities' science teaching may become more efficient. In sum, we argue that a conceptual continuities framework provides an asset, not deficit lexical perspective from which science teacher educators and science educators can begin to address and build complete science understandings.

  12. Using Theory of Mind to Promote Conceptual Change in Science

    Science.gov (United States)

    Kyriakopoulou, Natassa; Vosniadou, Stella

    2014-01-01

    We argue that learning science requires children to move from perceptually based representations to more abstract conceptual representations and to understand that appearance may sometimes deceive us and that the same phenomenon in the world can have more than one representation when seen from different perspectives. We also argue that the…

  13. Investigation of students’ intermediate conceptual understanding levels: the case of direct current electricity concepts

    International Nuclear Information System (INIS)

    Aktan, D Cobanoglu

    2013-01-01

    Conceptual understanding is one of the main topics in science and physics education research. In the majority of conceptual understanding studies, students’ understanding levels were categorized dichotomously, either as alternative or scientific understanding. Although they are invaluable in many ways, namely developing new instructional materials and assessment instruments, students’ alternative understandings alone are not sufficient to describe students’ conceptual understanding in detail. This paper introduces an example of a study in which a method was developed to assess and describe students’ conceptual understanding beyond alternative and scientific understanding levels. In this study, six undergraduate students’ conceptual understanding levels of direct current electricity concepts were assessed and described in detail by using their answers to qualitative problems. In order to do this, conceptual understanding indicators are described based on science and mathematics education literature. The students’ understanding levels were analysed by assertion analysis based on the conceptual understanding indicators. The results indicated that the participants demonstrated three intermediate understanding levels in addition to alternative and scientific understanding. This paper presents the method and its application to direct current electricity concepts. (paper)

  14. The Taskforce on Conceptual Foundations of Earth System Governance: Sustainability Science

    Directory of Open Access Journals (Sweden)

    Barry Ness

    2017-02-01

    Full Text Available We are pleased to introduce the second special issue from Challenges in Sustainability, this time as a part of the Taskforce on Conceptual Foundations of Earth System Governance, an initiative by the Earth System Governance Project (ESG (http://www.earthsystemgovernance.net/conceptual-foundations/. The ESG Project is a global research alliance. It is the largest social science research network in the field of governance and global environmental change. ESG is primarily a scientific effort but is also designed to assist policy responses to pressing problems of earth system transformation.

  15. Building a Science Software Institute: Synthesizing the Lessons Learned from the ISEES and WSSI Software Institute Conceptualization Efforts

    Science.gov (United States)

    Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.

    2014-12-01

    The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.

  16. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  17. Conceptual Blending Monitoring Students' Use of Metaphorical Concepts to Further the Learning of Science

    Science.gov (United States)

    Fredriksson, Alexandra; Pelger, Susanne

    2018-03-01

    The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.

  18. Influence of Nature and History of Science Courses on Value Perceptions of Elementary Science Teacher Candidates in Conceptual Dimension in Turkey

    Science.gov (United States)

    Aktamis, Hilal; Higde, Emrah

    2018-01-01

    This study aimed to determine the changes in understanding about the nature of science (NOS) and conceptual values of 28 elementary science teacher candidates who engaged in the instruction of the nature and history of science (NHOS). A values scale was used to determine the values of science teacher candidates in six areas of the conceptual…

  19. Conceptual framework for behavioral and social science in HIV vaccine clinical research.

    Science.gov (United States)

    Lau, Chuen-Yen; Swann, Edith M; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I; Stansbury, James P

    2011-10-13

    HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. Published by Elsevier Ltd.

  20. Upward Transfer in STEM Fields of Study: A New Conceptual Framework and Survey Instrument for Institutional Research

    Science.gov (United States)

    Wang, Xueli

    2016-01-01

    This chapter describes a new conceptual framework that informs research on factors influencing transfer in STEM fields of study from 2-year to 4-year institutions, presents a new survey instrument based on the framework, and offers directions for future research in this area.

  1. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  2. Conceptual aspects of multidisciplinarity and interdisciplinarity and research in information science

    Directory of Open Access Journals (Sweden)

    Lucinéia Maria Bicalho

    2011-10-01

    Full Text Available This article presents the conceptual evolution of the terms of multidisciplinarity and interdisciplinarity, as well as basic ideas that identify the transdisciplinary approach, from broad theoretical framework. The text is part of PhD research whose main objective was to analyze the scientific research being done in the context of information science which involved the participation of more than one discipline. For this, the concepts presented here were used. So contemporary authors from different fields were studied to compose the conceptual framework in which the analysis was based. The survey results allowed us to draw a complete profile of research in the area regarding the use of the mentioned approaches, concluding that different forms and levels of interactions are found in research in information science and multidisciplinarity is the most common. It concluded also, in relation to aspects presented here, that the concepts have changed and that brought about significant changes in their meanings. These changes lead to the necessity of doing a review and update, within the science of information on the implications of being an interdisciplinary area, according to the meaning acquired by the term nowadays.

  3. Astro 101 Students' Perceptions of Science: Results from the "Thinking about Science Survey Instrument"

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.

    2013-01-01

    What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…

  4. Investigating and Promoting Trainee Science Teachers' Conceptual Change of the Nature of Science with Digital Dialogue Games `InterLoc'

    Science.gov (United States)

    Mansour, Nasser; Wegerif, Rupert; Skinner, Nigel; Postlethwaite, Keith; Hetherington, Lindsay

    2016-10-01

    The purpose of this study is to explore how an online-structured dialogue environment supported (OSDE) collaborative learning about the nature of science among a group of trainee science teachers in the UK. The software used (InterLoc) is a linear text-based tool, designed to support structured argumentation with openers and `dialogue moves'. A design-based research approach was used to investigate multiple sessions using InterLoc with 65 trainee science teachers. Five participants who showed differential conceptual change in terms of their Nature of Science (NOS) views were purposively selected and closely followed throughout the study by using key event recall interviews. Initially, the majority of participants held naïve views of NOS. Substantial and favourable changes in these views were evident as a result of the OSDE. An examination of the development of the five participants' NOS views indicated that the effectiveness of the InterLoc discussions was mediated by cultural, cognitive, and experiential factors. The findings suggest that InterLoc can be effective in promoting reflection and conceptual change.

  5. Mapa conceitual: seu potencial como instrumento avaliativo Conceptual map: its potential as an assessment instrument

    Directory of Open Access Journals (Sweden)

    Nadia Aparecida de Souza

    2010-12-01

    Full Text Available Os instrumentos avaliativos são numerosos; dentre eles, o mapa conceitual é uma das alternativas. Entretanto, cumpre questionar: quais as vantagens e as limitações do mapa conceitual como instrumento avaliativo? Assim, o presente trabalho objetivou delinear e analisar as vantagens e as limitações inerentes ao uso do mapa conceitual como instrumento avaliativo. A pesquisa privilegiou a abordagem qualitativa, na forma do estudo de caso. Desenvolvido durante o primeiro semestre de 2006 com 32 alunas do 3º ano de um curso de Pedagogia de uma universidade pública paranaense, o estudo utilizou questionário, entrevista e observação para a coleta de dados. A análise de conteúdo clássica facultou determinar as aprendizagens decorrentes da vivência, bem como a incidência de diferentes aspectos enunciados como facilitadores ou limitadores na utilização do mapa conceitual como instrumento avaliativo. Estes foram analisados não como antagônicos, mas como facetas de um mesmo fenômeno e, por isso, complementares e interdependentes.There is a great variety of instruments to assess learning. Conceptual maps are questioned in this text, as one of these possibilities. The objectives of this study are to identify and analyze the advantages and limitations inherent to the use of conceptual maps as assessment instruments. In the study, especially the qualitative approach is used in a case study. It was carried out during the first semester of 2006, involving 32 3rd-year students of a pedagogy course at a public university in the state of Paraná. The research was based on a questionnaire, an interview and observation for data collection. The analysis of the material allowed us to determine the actual learning emerging from the experience, as well as the incidence of different aspects which might have facilitated or hindered the use of conceptual maps as assessment instruments. These aspects were analyzed, not as opposites, but as complementary

  6. Purging sensitive science instruments with nitrogen in the STS environment

    Science.gov (United States)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  7. Writing-to-learn in undergraduate science education: a community-based, conceptually driven approach.

    Science.gov (United States)

    Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.

  8. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    Science.gov (United States)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  9. The OCO-3 Mission: Science Objectives and Instrument Performance

    Science.gov (United States)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2017-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing

  10. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A Multiple Comparative Case Study

    Science.gov (United States)

    Tao, Ying; Oliver, Mary Colette; Venville, Grady Jane

    2012-01-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high,…

  11. The Effect of Using the History of Sciences on Conceptual Understanding and Intrinsic Motivation

    Science.gov (United States)

    Blizak, Djanette

    2017-01-01

    This study investigates the effect of using the history of science in teaching geometrical optics on the motivation and conceptual understanding of first year university students. For this purpose, 54 students were randomly selected, then divided into two groups: the experimental group was taught by using history of science before traditional…

  12. Low-T, Low-Q Cryocoolers for Science Instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the planned research is to advance the current space science instruments through the development of light weight and low power cryocoolers. Currently,...

  13. Science and Human Behavior, dualism, and conceptual modification.

    Science.gov (United States)

    Zuriff, G E

    2003-11-01

    Skinner's Science and Human Behavior is in part an attempt to solve psychology's problem with mind-body dualism by revising our everyday mentalistic conceptual scheme. In the case of descriptive mentalism (the use of mentalistic terms to describe behavior), Skinner offers behavioral "translations." In contrast, Skinner rejects explanatory mentalism (the use of mental concepts to explain behavior) and suggests how to replace it with a behaviorist explanatory framework. For experiential mentalism, Skinner presents a theory of verbal behavior that integrates the use of mentalistic language in first-person reports of phenomenal experience into a scientific framework.

  14. A Functional Conceptualization of Understanding Science in the News

    Science.gov (United States)

    Anderson, Megan M.

    The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it mean to understand science in the news? Surprisingly few have asked this question, or considered the significance of its answer. This dissertation steps away from issues of science teaching and learning to examine the nature of understanding science in the news itself. My work consolidates past scholarship from the multiple fields concerned with the relationship between science and society to produce a theoretical model of understanding science in the news as a complex, multidimensional process that involves an understanding of science as well as journalism. This thesis begins by exploring the relationship between the understanding implicit in understanding science in the news and understanding science. Many assume these two ways of knowing are one in the same. To rebut this assumption, I examine the types of knowledge necessary for understanding science and understanding science in the news. I then use the literature devoted to scientific literacy to show how past research has imagined the knowledge necessary to understand science in the news. Next, I argue that one of the principle difficulties with these conceptualizations is that they define science in the news in essentially the same terms as science. They also, I suggest, oversimplify how and why public interacts with science in the news. This dissertation concludes with a proposal for one way we might think about understanding science in the news on its own terms rather than those of understanding science. This dissertation attempts to connect two fields of research that rarely intersect, despite their multiple common interests: science education and mass communication. It considers the notion of

  15. Transformation of conceptual basis of political science under cultural and historical context

    Directory of Open Access Journals (Sweden)

    O. S. Tokovenko

    2017-07-01

    Full Text Available The paper is submitted to a scientific discussion the possibility of considering the idea of political science, based on the criteria of intellectual integrity and disciplinary unity. In this context, generally accepted among professionals and political scientists idea that political science as a scientific discipline occurs in the early twentieth century and its conceptual framework is still in a state of development, and a long preceding period should be characterized as a period of political thought is being challenged. The main idea that is being proved is recognition the existence of such scientific discipline as political science requires recognition of the existence of specific inherent ideals of science, cognitive standards, rules, procedures, explanations, etc. They allow political thinkers from the ancient world as well as modern researchers to combine it into a single, unique, different from others in their methodological principles and heuristic potential Science. It is convinced that the existence of intellectual integrity and disciplinary unity in Political Science is possible due to the existence of the ideals of scholarship, which are closely related to the cultural and historical context in which Political Science is being developed. The possibility of applying such disciplinary and integrated approach is considered as an example of the impact that was made by changes of the Great French Revolution and its consequences on transformation of the conceptual framework of Political Science.  It is concluded that the consideration of the peculiarities of political thought development in the social and cultural contexts related to the events of the Great French Revolution and its consequences argues that political science is responsive to changing the social context, makes changes in categorical apparatus, introduces the new field of scientific inquiry, actualized subject field. These actions are due to the specific disciplinary unity

  16. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    Science.gov (United States)

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  17. The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks

    Science.gov (United States)

    Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson

    2017-01-01

    The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…

  18. THE CONSTRUCTIVIST INSTRUCTION THROUGH CONCEPTUAL MAPS – A REVIEW OF THE LITERATURE

    Directory of Open Access Journals (Sweden)

    Oana DRĂGAN

    2016-07-01

    Full Text Available The constructivism, seen as a postmodern paradigm, discusses education based on classical and modern practices. Constructivist methods highlighted as a tool, the conceptual maps, an innovative learning method that captures the manner in which an individual perceives the relationships between things, ideas or people, solving problems they face with and how they use their memory. In the past 10 years, conceptual maps were used as a tool to support meaningful learning in science teaching and to help the students and experts to represent and to visualize knowledge in a structured manner. The study " The constructivist instruction through conceptual maps – A Review of the Literature" presents literature review of the maps conceptual and follows the presentation of conceptual maps taking into account their history, advantages and disadvantages shows, the way of drawing such an instrument and also the existing limits of the method.

  19. Remote Access to Instrumental Analysis for Distance Education in Science

    Directory of Open Access Journals (Sweden)

    Dietmar Kennepohl

    2005-11-01

    Full Text Available Remote access to experiments offers distance educators another tool to integrate a strong laboratory component within a science course. Since virtually all modern chemical instrumental analysis in industry now use devices operated by a computer interface, remote control of instrumentation is not only relatively facile, it enhances students’ opportunity to learn the subject matter and be exposed to “real world” contents. Northern Alberta Institute of Technology (NAIT and Athabasca University are developing teaching laboratories based on the control of analytical instruments in real-time via an Internet connection. Students perform real-time analysis using equipment, methods, and skills that are common to modern analytical laboratories (or sophisticated teaching laboratories. Students obtain real results using real substances to arrive at real conclusions, just as they would if they were in a physical laboratory with the equipment; this approach allows students to access to conduct instrumental science experiments, thus providing them with an advantageous route to upgrade their laboratory skills while learning at a distance.

  20. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  1. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  2. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  3. [Conceptual Development in Cognitive Science. Part II].

    Science.gov (United States)

    Fierro, Marco

    2012-03-01

    Cognitive science has become the most influential paradigm on mental health in the late 20(th) and the early 21(st) centuries. In few years, the concepts, problem approaches and solutions proper to this science have significantly changed. Introduction and discussion of the fundamental concepts of cognitive science divided in four stages: Start, Classic Cognitivism, Connectionism, and Embodying / Enacting. The 2(nd) Part of the paper discusses the above mentioned fourth stage and explores the clinical setting, especially in terms of cognitive psychotherapy. The embodying/enacting stage highlights the role of the body including a set of determined evolutionary movements which provide a way of thinking and exploring the world. The performance of cognitive tasks is considered as a process that uses environmental resources that enhances mental skills and deploys them beyond the domestic sphere of the brain. On the other hand, body and mind are embedded in the world, thus giving rise to cognition when interacting, a process known as enacting. There is a close connection between perception and action, hence the interest in real-time interactions with the world rather than abstract reasoning. Regarding clinics, specifically the cognitive therapy, there is little conceptual discussion maybe due to good results from practice that may led us to consider that theoretical foundations are firm and not problem-raising. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. The global politics of science and technology

    CERN Document Server

    Carpes, Mariana; Knoblich, Ruth

    2014-01-01

    An increasing number of scholars have begun to see science and technology as relevant issues in International Relations (IR), acknowledging the impact of material elements, technical instruments, and scientific practices on international security, statehood, and global governance. This two-volume collection brings the debate about science and technology to the center of International Relations. It shows how integrating science and technology translates into novel analytical frameworks, conceptual approaches and empirical puzzles, and thereby offers a state-of-the-art review of various methodological and theoretical ways in which sciences and technologies matter for the study of international affairs and world politics. The authors not only offer a set of practical examples of research frameworks for experts and students alike, but also propose a conceptual space for interdisciplinary learning in order to improve our understanding of the global politics of science and technology.

  5. Data, instruments, and theory a dialectical approach to understanding science

    CERN Document Server

    Ackermann, Robert John

    1985-01-01

    Robert John Ackermann deals decisively with the problem of relativism that has plagued post-empiricist philosophy of science. Recognizing that theory and data are mediated by data domains (bordered data sets produced by scientific instruments), he argues that the use of instruments breaks the dependency of observation on theory and thus creates a reasoned basis for scientific objectivity.

  6. Metaconceptually-Enhanced Simulation-Based Inquiry: Effects on Eighth Grade Students' Conceptual Change and Science Epistemic Beliefs

    Science.gov (United States)

    Huang, Kun; Ge, Xun; Eseryel, Deniz

    2017-01-01

    This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…

  7. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    Science.gov (United States)

    Wang, Tzu-Ling; Berlin, Donna

    2010-12-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.

  8. Instrumentation and quantitative methods of evaluation

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1991-01-01

    This report summarizes goals and accomplishments of the research program entitled Instrumentation and Quantitative Methods of Evaluation, during the period January 15, 1989 through July 15, 1991. This program is very closely integrated with the radiopharmaceutical program entitled Quantitative Studies in Radiopharmaceutical Science. Together, they constitute the PROGRAM OF NUCLEAR MEDICINE AND QUANTITATIVE IMAGING RESEARCH within The Franklin McLean Memorial Research Institute (FMI). The program addresses problems involving the basic science and technology that underlie the physical and conceptual tools of radiotracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 234 refs., 11 figs., 2 tabs

  9. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  10. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  11. Online Discussion as a Mechanism of Conceptual Change among Mathematics and Science Teachers

    Science.gov (United States)

    Luebeck, Jennifer L.; Bice, Lawrence R.

    2005-01-01

    This study examines the extent to which conceptual change is stimulated and achieved through online discussion in the context of an online graduate course. Transcripts of discussions among 15 graduate students studying assessment issues in mathematics and science education were analyzed using an interaction analysis model developed to assess…

  12. Argumentation in elementary science education: addressing methodological issues and conceptual understanding

    Science.gov (United States)

    Kaya, Ebru

    2017-11-01

    In this review essay I respond to issues raised in Mijung Kim and Wolff-Michael Roth's paper titled "Dialogical argumentation in elementary science classrooms", which presents a study dealing with dialogical argumentation in early elementary school classrooms. Since there is very limited research on lower primary school students' argumentation in school science, their paper makes a contribution to research on children's argumentation skills. In this response, I focus on two main issues to extend the discussion in Kim and Roth's paper: (a) methodological issues including conducting a quantitative study on children's argumentation levels and focusing on children's written argumentation in addition to their dialogical argumentation, and (b) investigating children's conceptual understanding along with their argumentation levels. Kim and Roth emphasize the difficulty in determining the level of children's argumentation through the Toulmin's Argument Pattern and lack of high level arguments by children due to their difficulties in writing texts. Regarding these methodological issues, I suggest designing quantitative research on coding children's argument levels because such research could potentially provide important findings on children's argumentation. Furthermore, I discuss alternative written products including posters, figures, or pictures generated by children in order to trace children's arguments, and finally articulating argumentation and conceptual understanding of children.

  13. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  14. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  15. Conceptual design of wearpack with physiology detector feature based on wearable instrumentation

    Science.gov (United States)

    Sukirman, Melani; Laksono, Pringgo Widyo; Priadythama, Ilham; Susmartini, Susy; Suhardi, Bambang

    2017-11-01

    Every company in Indonesia is responsible for their worker health and safety condition as mentioned in UU No I year 1970. In manufacturing industries, there are many manual tasks dealing with high work load and risk, so that they require excellent concentration and physical condition. There is no ideal way to guarantee worker safety without a real time physiological monitoring. This paper reports our ongoing study in conceptual design development of worker's clothing which is equipped with a wearable instrumentation system. The system is designed to detect and measure body temperature and pulse in real time. Some electrical components such as, LCD (liquid crystal display), LEDs (light emitting diode), batteries, and physiological sensors were assembled. All components are controlled by a wearable on board controller. LEDs is used as alert which can indicate abnormal physical conditions. The LCD was added to provide more detail information. TMP 36 and XD-58C were selected as the physiological sensors. Finally, an Arduino Lilypad was chosen for the controller. This instrumentation system was verified by accurately detected and inform physiological condition of 3 subjects. Further we are going to attach the system to a worker's clothing which was specifically designed to simplify and comfortable usage.

  16. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  17. Advanced Technologies and Instrumentation at the National Science Foundation

    Science.gov (United States)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  18. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    Science.gov (United States)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex

  19. Student Engagement: Developing a Conceptual Framework and Survey Instrument

    Science.gov (United States)

    Burch, Gerald F.; Heller, Nathan A.; Burch, Jana J.; Freed, Rusty; Steed, Steve A.

    2015-01-01

    Student engagement is considered to be among the better predictors of learning, yet there is growing concern that there is no consensus on the conceptual foundation. The authors propose a conceptualization of student engagement grounded in A. W. Astin's (1984) Student Involvement Theory and W. A. Kahn's (1990) employee engagement research where…

  20. Evaluating Secondary Students' Scientific Reasoning in Genetics Using a Two-Tier Diagnostic Instrument

    Science.gov (United States)

    Tsui, Chi-Yan; Treagust, David

    2010-01-01

    While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10…

  1. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  2. Agriculture vs. social sciences: subject classification and sociological conceptualization of rural tourism in Scopus and Web of Science

    Directory of Open Access Journals (Sweden)

    Marjan HOČEVAR

    2016-12-01

    Full Text Available Agriculture and consumptive function of countryside (rural areas are connected which should be reflected in scientific research. In order to test relationships, we selected the topic of rural tourism (also agritourism, agrotourism, agricultural tourism considering sociological conceptualization (social sciences, sociology and methodological approaches of information sciences (bibliometrics, scientometrics in describing fields of science or scientific disciplines. We ascertained scatter of information in citation databases (Web of Science, Scopus, Google Scholar. Functionalities were evaluated, affecting search precision and recall in information retrieval. We mapped documents to Scopus subject areas as well as Web of Science (WOS research areas and subject categories, and related publications (journals. Databases do not differ substantially in mapping this topic. Social sciences (including economics or business occupy by far the most important place. The strongest concentration was found in tourism-related journals (consistent with power laws. Agriculture-related publications are rare, accounting for some 10 % of documents. Interdisciplinarity seems to be weak. Results point to poor inclusion of emerging social topics in agricultural research whereby agriculture may lose out in possible venues of future research.

  3. Investigating Relationships among Pre-Service Science Teachers' Conceptual Knowledge of Electric Current, Motivational Beliefs and Self-Regulation

    Science.gov (United States)

    Inaltun, Hüseyin; Ates, Salih

    2015-01-01

    The purpose of this study is to examine relationships among pre-service science teachers' conceptual knowledge of electric current, motivational beliefs, and self-regulation. One hundred and twenty-seven students (female = 107, male = 20) enrolled in the science education program of a public university in Ankara participated the study. A concept…

  4. Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education

    Science.gov (United States)

    Lai, Oiki Sylvia

    2013-01-01

    The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via…

  5. What Are They Thinking? The Development and Use of an Instrument that Identifies Common Science Misconceptions

    Science.gov (United States)

    Stein, Mary; Barman, Charles R.; Larrabee, Timothy

    2007-01-01

    This article describes the rationale for, and development of, an online instrument that helps identify commonly held science misconceptions. Science Beliefs is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. It utilizes a true or false, along with a written-explanation, format. The true or…

  6. Validity of instruments to measure physical activity may be questionable due to a lack of conceptual frameworks: a systematic review

    Science.gov (United States)

    2011-01-01

    Background Guidance documents for the development and validation of patient-reported outcomes (PROs) advise the use of conceptual frameworks, which outline the structure of the concept that a PRO aims to measure. It is unknown whether currently available PROs are based on conceptual frameworks. This study, which was limited to a specific case, had the following aims: (i) to identify conceptual frameworks of physical activity in chronic respiratory patients or similar populations (chronic heart disease patients or the elderly) and (ii) to assess whether the development and validation of PROs to measure physical activity in these populations were based on a conceptual framework of physical activity. Methods Two systematic reviews were conducted through searches of the Medline, Embase, PsycINFO, and Cinahl databases prior to January 2010. Results In the first review, only 2 out of 581 references pertaining to physical activity in the defined populations provided a conceptual framework of physical activity in COPD patients. In the second review, out of 103 studies developing PROs to measure physical activity or related constructs, none were based on a conceptual framework of physical activity. Conclusions These findings raise concerns about how the large body of evidence from studies that use physical activity PRO instruments should be evaluated by health care providers, guideline developers, and regulatory agencies. PMID:21967887

  7. View of Nature of Science (VNOS Form B: An Instrument for Assessing Preservice Teachers View of Nature of Science at Borneo University Tarakan

    Directory of Open Access Journals (Sweden)

    Listiani Listiani

    2017-03-01

    Full Text Available NOS form B is an instrument that has been developed and revised to assess the view of nature of science of preservice science teachers through nature of science aspects.Indeed, students and teachers have to have the view of nature of science to avoid misconceptions of science concepts. Unfortunately, research on the view of Nature of Science is less conducted in Indonesia. This is a qualitative research that was conducted in Borneo University Tarakan. Respondents are preservice biology teachers in the sixth semester. The first step of this research is translating and adapting the VNOS form B into Bahasa Indonesia to make sure that the instrument is culturally fit to Indonesian and the transadapted instrument then given to the respondents. The result shows that the VNOS form B can be applied to assess the view of nature of science of preservice biology teachers. However, the result also shows that most of preservice biology teachers have few understanding on aspects of nature of scince.

  8. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  9. Development of a Conceptual Model and Survey Instrument to Measure Conscientious Objection to Abortion Provision.

    Directory of Open Access Journals (Sweden)

    Laura Florence Harris

    Full Text Available Conscientious objection to abortion, clinicians' refusal to perform legal abortions because of their religious or moral beliefs, has been the subject of increasing debate among bioethicists, policymakers, and public health advocates in recent years. Conscientious objection policies are intended to balance reproductive rights and clinicians' beliefs. However, in practice, clinician objection can act as a barrier to abortion access-impinging on reproductive rights, and increasing unsafe abortion and related morbidity and mortality. There is little information about conscientious objection from a medical or public health perspective. A quantitative instrument is needed to assess prevalence of conscientious objection and to provide insight on its practice. This paper describes the development of a survey instrument to measure conscientious objection to abortion provision.A literature review, and in-depth formative interviews with stakeholders in Colombia were used to develop a conceptual model of conscientious objection. This model led to the development of a survey, which was piloted, and then administered, in Ghana.The model posits three domains of conscientious objection that form the basis for the survey instrument: 1 beliefs about abortion and conscientious objection; 2 actions related to conscientious objection and abortion; and 3 self-identification as a conscientious objector.The instrument is intended to be used to assess prevalence among clinicians trained to provide abortions, and to gain insight on how conscientious objection is practiced in a variety of settings. Its results can inform more effective and appropriate strategies to regulate conscientious objection.

  10. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  11. Developing and Validating a Science Notebook Rubric for Fifth-Grade Non-Mainstream Students

    Science.gov (United States)

    Huerta, Margarita; Lara-Alecio, Rafael; Tong, Fuhui; Irby, Beverly J.

    2014-07-01

    We present the development and validation of a science notebook rubric intended to measure the academic language and conceptual understanding of non-mainstream students, specifically fifth-grade male and female economically disadvantaged Hispanic English language learner (ELL) and African-American or Hispanic native English-speaking students. The science notebook rubric is based on two main constructs: academic language and conceptual understanding. The constructs are grounded in second-language acquisition theory and theories of writing and conceptual understanding. We established content validity and calculated reliability measures using G theory and percent agreement (for comparison) with a sample of approximately 144 unique science notebook entries and 432 data points. Results reveal sufficient reliability estimates, indicating that the instrument is promising for use in future research studies including science notebooks in classrooms with populations of economically disadvantaged Hispanic ELL and African-American or Hispanic native English-speaking students.

  12. Middle school teachers' familiarity with, interest in, performance on, and conceptual and pedagogical knowledge of light

    Science.gov (United States)

    Mbewe, Simeon

    The purpose of this study was threefold: Examine middle school teachers' familiarity with, interest in, conceptual knowledge of and performance on light; Examine their ability to identify misconceptions on light and their suggested pedagogical ideas to address the identified misconceptions; and Establish the relationship between the middle school teachers' interest, familiarity, conceptual understanding, performance, misconception identification, and pedagogical ideas for light. Sixty six (66) middle school science teachers enrolled in three math and science teacher professional development projects at Southern Illinois University Carbondale participated in this study. This study used mixed-methods approach to collect and analyze data. The participants responded in writing to four different instruments: Familiarity and Interest Questionnaire, Conceptual Knowledge Test, Two-tier Performance Test, and Misconceptions Identification Questionnaire. Data was analyzed quantitatively by conducting non-parametric (Wilcoxon, Mann-Whitney U, and Kruskal-Wallis) and parametric (paired samples, independent samples, and One-Way ANOVA) tests. Qualitative data was analyzed using thematic analysis and open coding to identify emerging themes and categories. The results showed that the teachers reported high levels of familiarity with and interest in learning more about light concepts. However, they had low conceptual knowledge and performance on light concepts. As such, middle school teachers' perceived knowledge of light concepts was not consistent with their actual knowledge of light. To some extent, the teachers identified students' misconceptions expressed in some scenarios on light and also suggested pedagogical ideas for addressing such misconceptions in middle school science classrooms. However, most teachers did not provide details on their pedagogical ideas for light. Correlations among the four constructs (familiarity, interest, conceptual understanding, and performance

  13. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    Science.gov (United States)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-04-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach's alpha reliability of 0.88. The findings showed that the teachers' conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers' understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.

  14. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on "de Broglie Matter Waves" Subject

    Science.gov (United States)

    Gorecek Baybars, Meryem; Kucukozer, Huseyin

    2018-01-01

    The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…

  15. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  16. The Instrumental Value of Conceptual Frameworks in Educational Technology Research

    Science.gov (United States)

    Antonenko, Pavlo D.

    2015-01-01

    Scholars from diverse fields and research traditions agree that the conceptual framework is a critically important component of disciplined inquiry. Yet, there is a pronounced lack of shared understanding regarding the definition and functions of conceptual frameworks, which impedes our ability to design effective research and mentor novice…

  17. A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components

    Science.gov (United States)

    Wutchana, Umporn; Emarat, Narumon

    2017-09-01

    With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.

  18. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  19. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-10-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.

  20. An analysis of science conceptual knowledge in journals of students with disabilities and normally achieving students

    Science.gov (United States)

    Grigg, Gail S.

    Science education reforms of the last two decades have focused on raising the bar for ALL students which includes students with mild to moderate disabilities. Formative assessment can be used to assess the progress of these students to inquire, understand scientific concepts, reason scientifically, make decisions, and communicate effectively in science. The purpose of this study is to examine the use of science journals as a formative assessment in a guided inquiry unit of study for students with learning disabilities. Two normally achieving students (NA) and five students with learning disabilities (SLD) participated in a study of mammals that utilized journals to record the development of student knowledge through the course of study. Students were interviewed after the lessons were complete using the same prompts required in the journals. Themes were developed from the student writings and their verbal discourse using Grounded Theory. Journals and verbal discourse were rated following the themes of Knowledge Telling (KT) and Knowledge Transformation (KTR). Concept maps were developed for the Pre and Post test lessons (written and verbal discourses) by the raters in an attempt to further explain the knowledge that the students conveyed. The results of this study suggest that SLD are able to demonstrate knowledge about mammals better through verbal discourse than written discourse. While the NA students wrote more and used more technical discourse than did their SLD peers, the conceptual understanding of the topic by the SLD was no less inclusive than their NA peers when accessed verbally. The journals demonstrated limited conceptual growth for the SLD. Further, while lexical density is important to the development of knowledge in science, this study suggests the "conceptual density" may be another important indicator to examine.

  1. Using a Conceptual-Change Approach to Help Preservice Science Teachers Reorganize Their Knowledge Structures for Constructivist Teaching

    Science.gov (United States)

    Dhindsa, H. S.; Anderson, O. R.

    2004-02-01

    This study, based on constructivist learning theory, examined how effectively preservice chemistry teachers (N = 43) can be educated to think flexibly and to reorganize their thinking in a way that may complement diverse ways students approach the subject domain. The teacher's cognitive structure was assessed prior to and after a conceptual change intervention using flow-map narrative analyses. There was a significant change in the organization of the preservice teacher's narrative after the conceptual change intervention, including greater networking of ideas and more thematic development of the content. Hence, a conceptual change approach may be a useful way to educate teachers to be more responsive to student individual differences when planning and delivering science lessons.

  2. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  3. Effects of Computer-Assisted Instruction with Conceptual Change Texts on Removing the Misconceptions of Radioactivity

    Directory of Open Access Journals (Sweden)

    Ahmet YUMUŞAK

    2016-12-01

    Full Text Available Training young scientists, enabling conceptual understanding in science education is quite important. Misconception is one of the important indications for whether the concepts are understood or not. The most important educational tools to remove misconceptions are conceptual change texts. In addition, one of the important methods to remove misconceptions is computer-assisted instruction. The goal of this study is to research the effects of the use of computer-assisted instruction (CAI, conceptual change texts (CCT, computer-assisted instruction with conceptual change texts (CAI+CCT, and use of traditional teaching method (TTM on removing the misconceptions of science teacher candidates on the subject of radioactivity. Research sample was made of totally 92 students studying at four different groups of senior students in Celal Bayar University, Faculty of Education, Department of Science Education in 2011-2012 academic year. A different teaching method was used in each group. Experimental groups were randomly determined; in the first experimental group, computer-assisted instruction was used (23 students; in the second experimental group, conceptual change texts were used (23 students; in the third experimental group, computer-assisted instruction with conceptual change texts were used (23 students; and the fourth group, on which traditional education method was used, was called control group (23 students. Two-tier misconception diagnostic instrument, which was developed by the researcher, was used as data collection tool of the research. “Nonequivalent Control Groups Experimental Design” was used in this research in order to determine the efficiency of different teaching methods. Obtained data were analyzed by using SPSS 21.0. As a result of the research, it was determined that methods used on experimental groups were more successful than traditional teaching method practiced on control group in terms of removing misconceptions on

  4. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    International Nuclear Information System (INIS)

    Boutet, Sebastien

    2011-01-01

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  5. A conceptual framework for competence development in higher education

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    The paper presents a conceptual framework for competence development in management education, and higher education in general, which includes not only instrumental, but also practical, analytical and critical competencies. One consequence of the customization and marketization of higher education...... that competence development could and should be something more and something else than instrumental competence development. Based on a pragmatic reading of Batesons logical categories of learning, the paper develops a conceptual framework for competence development in higher education, which highlight...... contextually is blind, whereas contextual competence without instrumentality is empty. Based on a pragmatic reading and further development of Bateson´s logical categories of learning, the paper develops a conceptual framework for competence development in management education, and higher education in general...

  6. Learners' strategies for reconstructing cognitive frameworks and navigating conceptual change from prior conception to consensual genetics knowledge

    Science.gov (United States)

    Parrott, Annette M.

    Problem. Science teachers are charged with preparing students to become scientifically literate individuals. Teachers are given curriculum that specifies the knowledge that students should come away with; however, they are not necessarily aware of the knowledge with which the student arrives or how best to help them navigate between the two knowledge states. Educators must be aware, not only of where their students are conceptually, but how their students move from their prior knowledge and naive theories, to scientifically acceptable theories. The understanding of how students navigate this course has the potential to revolutionize educational practices. Methods. This study explored how five 9th grade biology students reconstructed their cognitive frameworks and navigated conceptual change from prior conception to consensual genetics knowledge. The research questions investigated were: (1) how do students in the process of changing their naive science theories to accepted science theories describe their journey from prior knowledge to current conception, and (2) what are the methods that students utilize to bridge the gap between alternate and consensual science conceptions to effect conceptual change. Qualitative and quantitative methods were employed to gather and analyze the data. In depth, semi-structured interviews formed the primary data for probing the context and details of students' conceptual change experience. Primary interview data was coded by thematic analysis. Results and discussion. This study revealed information about students' perceived roles in learning, the role of articulation in the conceptual change process, and ways in which a community of learners aids conceptual change. It was ascertained that students see their role in learning primarily as repeating information until they could add that information to their knowledge. Students are more likely to consider challenges to their conceptual frameworks and be more motivated to become active

  7. Development and Large-Scale Validation of an Instrument to Assess Arabic-Speaking Students' Attitudes Toward Science

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael

    2015-11-01

    This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.

  8. Overlooking the Conceptual Framework

    Science.gov (United States)

    Leshem, Shosh; Trafford, Vernon

    2007-01-01

    The conceptual framework is alluded to in most serious texts on research, described in some and fully explained in few. However, examiners of doctoral theses devote considerable attention to exploring its function within social science doctoral vivas. A literature survey explores how the conceptual framework is itself conceptualised and explained.…

  9. Development of a men's Preference for Testosterone Replacement Therapy (P-TRT instrument

    Directory of Open Access Journals (Sweden)

    Szeinbach SL

    2012-08-01

    Full Text Available Sheryl L Szeinbach,1 Enrique Seoane-Vazquez,2 Kent H Summers31Ohio State University, College of Pharmacy, Columbus, OH, USA; 2International Center for Pharmaceutical Economics and Policy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, 3Endo Health Solutions, Chadds Ford, PA, USABackground: This study used a standard research approach to create a final conceptual model and the Preference for the Testosterone Replacement Therapy (P-TRT instrument.Methods: A discussion guide was developed from a literature review and expert opinion to direct one-on-one interviews with participants who used testosterone replacement therapy and consented to participate in the study. Data from telephone interviews were transcribed for theme analysis using NVivo 9 qualitative analysis software, analyzed descriptively from a saturation grid, and used to evaluate men's P-TRT. Data from cognitive debriefing for five participants were used to evaluate the final conceptual model and validate the initial P-TRT instrument.Results: Item saturation and theme exhaustion was achieved by 58 male participants of mean age 55.0 ± 10.0 (22–69 years who had used testosterone replacement therapy for a mean of 175.0 ± 299.2 days. The conceptual model was developed from items and themes obtained from the participant interviews and saturation grid. Items comprising eight dimensions were used for instrument development, ie, ease of use, effect on libido, product characteristics, physiological impact, psychological impact, side effects, treatment experience, and preference. Results from the testosterone replacement therapy preference evaluation provide a detailed insight into why most men preferred a topical gel product over an injection or patch.Conclusion: Items and themes relating to use of testosterone replacement therapy were in concordance with the final conceptual model and 29-item P-TRT instrument. The standard research approach used in this study produced the

  10. Exploring the Impact of Argumentation on Pre-Service Science Teachers' Conceptual Understanding of Chemical Equilibrium

    Science.gov (United States)

    Aydeniz, Mehmet; Dogan, Alev

    2016-01-01

    This study examines the impact of argumentation on pre-service science teachers' (PST) conceptual understanding of chemical equilibrium. The sample consisted of 57 first-year PSTs enrolled in a teacher education program in Turkey. Thirty two of the 57 PSTs who participated in this study were in the experimental group and 25 in the control group.…

  11. Learning science in small groups: The relationship of conversation to conceptual understanding

    Science.gov (United States)

    McDonald, James Tarleton

    The purpose of this study was to investigate the relationship between conversation and conceptual understanding of erosion. The objective of this study was to investigate how fifth grade students' conceptions of erosion changed while they used stream tables and worked in groups of four within an inquiry-based curriculum. This study used symbolic interactionism and sociocognitive frameworks to interpret science learning in the elementary classroom. The research focused on the conceptual understanding of the focal group students, their use of classroom discourse to talk about their understandings of erosion, and the expertise that emerged while using stream tables. This study took place over a one-semester long study on erosion. Key informants were eight fifth graders. The data sources consisted of children's journals; transcripts of audiotaped interviews with the key informants before, during, and after the erosion unit; transcripts of videotapes of the students using the stream tables; and field notes recording children's discourse and activity. Individual and group cases were constructed during the study. The knowledge of the eight focal group children was placed on a hierarchy of conceptual understanding that contained 8 components of the erosion process. All four of the students whose ideas were examined in depth gained in their conceptual understanding of erosion. Students' individual expertise enhanced their own conceptual understanding. The contribution of classroom discourse and expertise to conceptual understanding differed between the two focal groups. Group 1 used essential expertise to sustain generative conversations, maximizing their learning opportunities. Students in Group 1 got along with one another, rotated assigned roles and jobs, and were able to start their own generative conversations. Members of Group 1 asked generative questions, connected stream table events to real life situations, and involved everyone in the group. Group 2 engaged in a

  12. Building the BIKE: Development and Testing of the Biotechnology Instrument for Knowledge Elicitation (BIKE)

    Science.gov (United States)

    Witzig, Stephen B.; Rebello, Carina M.; Siegel, Marcelle A.; Freyermuth, Sharyn K.; Izci, Kemal; McClure, Bruce

    2014-10-01

    Identifying students' conceptual scientific understanding is difficult if the appropriate tools are not available for educators. Concept inventories have become a popular tool to assess student understanding; however, traditionally, they are multiple choice tests. International science education standard documents advocate that assessments should be reform based, contain diverse question types, and should align with instructional approaches. To date, no instrument of this type targeting student conceptions in biotechnology has been developed. We report here the development, testing, and validation of a 35-item Biotechnology Instrument for Knowledge Elicitation (BIKE) that includes a mix of question types. The BIKE was designed to elicit student thinking and a variety of conceptual understandings, as opposed to testing closed-ended responses. The design phase contained nine steps including a literature search for content, student interviews, a pilot test, as well as expert review. Data from 175 students over two semesters, including 16 student interviews and six expert reviewers (professors from six different institutions), were used to validate the instrument. Cronbach's alpha on the pre/posttest was 0.664 and 0.668, respectively, indicating the BIKE has internal consistency. Cohen's kappa for inter-rater reliability among the 6,525 total items was 0.684 indicating substantial agreement among scorers. Item analysis demonstrated that the items were challenging, there was discrimination among the individual items, and there was alignment with research-based design principles for construct validity. This study provides a reliable and valid conceptual understanding instrument in the understudied area of biotechnology.

  13. Evaluating Secondary Students' Scientific Reasoning in Genetics Using a Two-Tier Diagnostic Instrument

    Science.gov (United States)

    Tsui, Chi-Yan; Treagust, David

    2010-05-01

    While genetics has remained as one key topic in school science, it continues to be conceptually and linguistically difficult for students with the concomitant debates as to what should be taught in the age of biotechnology. This article documents the development and implementation of a two-tier multiple-choice instrument for diagnosing grades 10 and 12 students' understanding of genetics in terms of reasoning. The pretest and posttest forms of the diagnostic instrument were used alongside other methods in evaluating students' understanding of genetics in a case-based qualitative study on teaching and learning with multiple representations in three Western Australian secondary schools. Previous studies have shown that a two-tier diagnostic instrument is useful in probing students' understanding or misunderstanding of scientific concepts and ideas. The diagnostic instrument in this study was designed and then progressively refined, improved, and implemented to evaluate student understanding of genetics in three case schools. The final version of the instrument had Cronbach's alpha reliability of 0.75 and 0.64, respectively, for its pretest and the posttest forms when it was administered to a group of grade 12 students (n = 17). This two-tier diagnostic instrument complemented other qualitative data collection methods in this research in generating a more holistic picture of student conceptual learning of genetics in terms of scientific reasoning. Implications of the findings of this study using the diagnostic instrument are discussed.

  14. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  15. Cost Effectiveness of the Instrumentalism in Occupational Therapy (IOT) Conceptual Model as a Guide for Intervention with Adolescents with Emotional and Behavioral Disorders (EBD)

    Science.gov (United States)

    Ikiugu, Moses N.; Anderson, Lynne

    2007-01-01

    The purpose of this paper was to demonstrate the cost-effectiveness of using the Instrumentalism in Occupational Therapy (IOT) conceptual practice model as a guide for intervention to assist teenagers with emotional and behavioral disorders (EBD) transition successfully into adulthood. The cost effectiveness analysis was based on a project…

  16. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-08-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.

  17. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  18. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    Science.gov (United States)

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  19. Developing instruments concerning scientific epistemic beliefs and goal orientations in learning science: a validation study

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.

  20. Tool – Material, Metaphor – Metonymy, Instrument(ness)

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren

    2008-01-01

    creativity , supported by analysis of, and interviews with, musical composers. Instrumentness is explained through discussions of materiality and metonymy as central strategies for computer mediated creativity. The paper is contributing to an investigation of the aesthetics of use in relation to software...... are controlled and conceptualized through values such as virtuosity and palyability, which are important for computer-mediated creative work supporting development in use beyond what is initially designed for. The papet performs a conceptual investigation into qualities in software interfaces that support...

  1. Conceptual and procedural knowledge community college students use when solving a complex science problem

    Science.gov (United States)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  2. Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    1998-01-01

    This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.

  3. Initialization, conceptualization, and application in the generalized (fractional) calculus.

    Science.gov (United States)

    Lorenzo, Carl F; Hartley, Tom T

    2007-01-01

    This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.

  4. The Use of Cronbach's Alpha When Developing and Reporting Research Instruments in Science Education

    Science.gov (United States)

    Taber, Keith S.

    2017-06-01

    Cronbach's alpha is a statistic commonly quoted by authors to demonstrate that tests and scales that have been constructed or adopted for research projects are fit for purpose. Cronbach's alpha is regularly adopted in studies in science education: it was referred to in 69 different papers published in 4 leading science education journals in a single year (2015)—usually as a measure of reliability. This article explores how this statistic is used in reporting science education research and what it represents. Authors often cite alpha values with little commentary to explain why they feel this statistic is relevant and seldom interpret the result for readers beyond citing an arbitrary threshold for an acceptable value. Those authors who do offer readers qualitative descriptors interpreting alpha values adopt a diverse and seemingly arbitrary terminology. More seriously, illustrative examples from the science education literature demonstrate that alpha may be acceptable even when there are recognised problems with the scales concerned. Alpha is also sometimes inappropriately used to claim an instrument is unidimensional. It is argued that a high value of alpha offers limited evidence of the reliability of a research instrument, and that indeed a very high value may actually be undesirable when developing a test of scientific knowledge or understanding. Guidance is offered to authors reporting, and readers evaluating, studies that present Cronbach's alpha statistic as evidence of instrument quality.

  5. First Results from the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Stephanie

    2009-01-01

    Considerable effort in the astronomy education research over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing astronomy as a sub-discipline of physics education research, allowing researchers to establish the initial knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Moving beyond the 10-year old Astronomy Diagnostics Test, we have developed and validated a new assessment instrument that is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. Researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science and Math Teaching Center (UWYO SMTC) designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this multiple-choice instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for undergraduate science survey courses with learning goals tightly aligned to the consensus goals of the astronomy education community.

  6. The Astronomy and Space Science Concept Inventory: Assessment Instruments Aligned with the K-12 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.

    2011-01-01

    We report on the development of an item test bank and associated instruments based on those K-12 national standards which involve astronomy and space science. Utilizing hundreds of studies in the science education research literature on student misconceptions, we have constructed 211 unique items that measure the degree to which students abandon such ideas for accepted scientific views. Piloted nationally with 7599 students and their 88 teachers spanning grades 5-12, the items reveal a range of interesting results, particularly student difficulties in mastering the NRC Standards and AAAS Benchmarks. Teachers generally perform well on items covering the standards of the grade level at which they teach, exhibiting few misconceptions of their own. Teachers dramatically overestimate their students’ performance, perhaps because they are unaware of their students’ misconceptions. Examples are given showing how the developed instruments can be used to assess the effectiveness of instruction and to evaluate the impact of professional development activities for teachers.

  7. Conceptual design of the X-IFU Instrument Control Unit on board the ESA Athena mission

    Science.gov (United States)

    Corcione, L.; Ligori, S.; Capobianco, V.; Bonino, D.; Valenziano, L.; Guizzo, G. P.

    2016-07-01

    Athena is one of L-class missions selected in the ESA Cosmic Vision 2015-2025 program for the science theme of the Hot and Energetic Universe. The Athena model payload includes the X-ray Integral Field Unit (X-IFU), an advanced actively shielded X-ray microcalorimeter spectrometer for high spectral resolution imaging, utilizing cooled Transition Edge Sensors. This paper describes the preliminary architecture of Instrument Control Unit (ICU), which is aimed at operating all XIFU's subsystems, as well as at implementing the main functional interfaces of the instrument with the S/C control unit. The ICU functions include the TC/TM management with S/C, science data formatting and transmission to S/C Mass Memory, housekeeping data handling, time distribution for synchronous operations and the management of the X-IFU components (i.e. CryoCoolers, Filter Wheel, Detector Readout Electronics Event Processor, Power Distribution Unit). ICU functions baseline implementation for the phase-A study foresees the usage of standard and Space-qualified components from the heritage of past and current space missions (e.g. Gaia, Euclid), which currently encompasses Leon2/Leon3 based CPU board and standard Space-qualified interfaces for the exchange commands and data between ICU and X-IFU subsystems. Alternative architecture, arranged around a powerful PowerPC-based CPU, is also briefly presented, with the aim of endowing the system with enhanced hardware resources and processing power capability, for the handling of control and science data processing tasks not defined yet at this stage of the mission study.

  8. Conceptual modelling of human resource evaluation process

    Directory of Open Access Journals (Sweden)

    Negoiţă Doina Olivia

    2017-01-01

    Full Text Available Taking into account the highly diverse tasks which employees have to fulfil due to complex requirements of nowadays consumers, the human resource within an enterprise has become a strategic element for developing and exploiting products which meet the market expectations. Therefore, organizations encounter difficulties when approaching the human resource evaluation process. Hence, the aim of the current paper is to design a conceptual model of the aforementioned process, which allows the enterprises to develop a specific methodology. In order to design the conceptual model, Business Process Modelling instruments were employed - Adonis Community Edition Business Process Management Toolkit using the ADONIS BPMS Notation. The conceptual model was developed based on an in-depth secondary research regarding the human resource evaluation process. The proposed conceptual model represents a generic workflow (sequential and/ or simultaneously activities, which can be extended considering the enterprise’s needs regarding their requirements when conducting a human resource evaluation process. Enterprises can benefit from using software instruments for business process modelling as they enable process analysis and evaluation (predefined / specific queries and also model optimization (simulations.

  9. The use of Gowin’s “V” in elementary school science teacher’s education

    Directory of Open Access Journals (Sweden)

    Henri Araujo Leboeuf

    2013-12-01

    Full Text Available This work investigates the use of the heuristic instrument, known as Gowin’s “V” Diagram, in elementary school teachers pre-service education. It is part of a research that aimed to investigate possible contributions of a potentially meaningful teaching approach that integrates conceptual and methodological issues in teacher’s education. The didactic approach was based on the Theory of Meaningful Learning, and integrated conceptual, historical and experimental contents of the topic Optics of Vision in a course on science teaching embedded in a pedagogy course. The "V" diagram was used during the process as a learning facilitator, assessment tool, and data collection. We analyzed the diagrams built by students from the first contact with this instrument until its use during the course activities. Considerations are made on the potential use of this instrument in teacher education.

  10. MACROPRUDENTIAL POLICY: CONCEPTUAL POSITIONS

    OpenAIRE

    Radu CUHAL; Ludmila STARIŢÎNA; Nicolae BASISTÎI

    2013-01-01

    The article explains the conceptual principles of macroprudential policy, its main objectives and instruments. The classification of macroprudential policy tools of the Committee on the Global Financial System is defined. The comparative characteristics of macro-prudential policy in the Western developed countries are also examined.

  11. Macroprudential policy: conceptual positions

    OpenAIRE

    Stariţîna Ludmila; Cuhal Radu

    2013-01-01

    The article explains the conceptual principles of macroprudential policy, its main objectives and instruments. The classification of macroprudential policy tools of the Committee on the Global Financial System is defined. The comparative characteristics of macro-prudential policy in the Western developed countries are also examined.

  12. Optical instrumentation for science and formation flying with a starshade observatory

    Science.gov (United States)

    Martin, Stefan; Scharf, Daniel; Cady, Eric; Liebe, Carl; Tang, Hong

    2015-09-01

    In conjunction with a space telescope of modest size, a starshade enables observation of small exoplanets close to the parent star by blocking the direct starlight while the planet light remains unobscured. The starshade is flown some tens of thousands of kilometers ahead of the telescope. Science instruments may include a wide field camera for imaging the target exoplanetary system as well as an integral field spectrometer for characterization of exoplanet atmospheres. We show the preliminary designs of the optical instruments for observatories such as Exo-S, discuss formation flying and control, retargeting maneuvers and other aspects of a starshade mission. The implementation of a starshade-ready WFIRST-AFTA is discussed and we show how a compact, standalone instrument package could be developed as an add-on to future space telescopes, requiring only minor additions to the telescope spacecraft.

  13. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  14. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on 'de Broglie Matter Waves' Subject

    Directory of Open Access Journals (Sweden)

    Meryem Gorecek Baybars

    2018-04-01

    Full Text Available The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the Faculty of Education-Science Teaching students (2nd year / 48 individual in the academic year of 2010-2011. The study was planned as a single group pretest-posttest design. A two-step question was used in the study, prior to and after the instruction. Lessons were conducted using the 7E learning model in the instruction process. When all these results are evaluated, it can be said that the conceptual understanding of the prospective teachers regarding "de Broglie; matter waves" has been taken place. In general, when all the sections are examined, it has been observed that the prospective teachers have more alternative concepts prior to the instruction and more scientific concepts after the instruction. In this process, besides instruction, the prospective teachers have not taken any place in a different application regarding the basic concepts of quantum physics. Therefore, it has been determined that the 7E learning model used in the research and the activities included in the 7E learning model are effective in conceptual understanding.

  15. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  16. Gestures: A Mode of Conceptualization in Science Gestures: A Mode of Conceptualization in Science

    OpenAIRE

    Givry , Damien; Roth , Wolff-Michael

    2003-01-01

    International audience; Problem Since the late 1970's there has been a lot of research to identify students' conceptions about physics (e.g., Pfundt & Duit, 1999). Now, more recent studies attempt to identify the factors that support the evolution of students' initial knowledge towards scientific knowledge. Among the studies of conceptual change (Posner, Strike, Hewson & Gertzog, 1982), we belong to small group of researchers that follow learning and change processes in real time, that is, "t...

  17. Modelo conceptual e instrumental de sostenibilidad organizacional a partir de la evaluacion del tejido social empresarial

    Directory of Open Access Journals (Sweden)

    Diana Maria Garzon R.

    2004-12-01

    Full Text Available Las organizaciones actuales enfrentan condiciones cada vez más cambiantes que les exigen capacidad de adaptarse y mantenerse en el tiempo. El presente artículo propone un modelo conceptual e instrumental de sostenibilidad, que se fundamenta en diferentes concepciones y enfoques, con los cuales se ha abordado la realidad del ser humano en las organizaciones, a partir de la introducción del concepto de tejido social empresarial. La investigación de campo se realizó en un grupo de empresas del sector biotecnológico colombiano. Se planteó una nueva perspectiva en la administración del factor humano enfocada en la sostenibilidad organizacional, y centrada en el análisis de la realidad que experimentan las personas en las organizaciones de hoy.

  18. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  19. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    Science.gov (United States)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  20. The Nature of Science Instrument-Elementary (NOSI-E): the end of the road?

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M

    2014-01-01

    This research continues prior work published in this journal (Peoples, O'Dwyer, Shields and Wang, 2013). The first paper described the scale development, psychometric analyses and part-validation of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). In the first paper, evidence was provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. The research described in this paper examines two additional validity aspects (structural and external). The purpose of this study was to determine which of three competing internal models provides reliable, interpretable, and responsive measures of students' understanding of NOS. One postulate is that the NOS construct is unidimensional;. alternatively, the NOS construct is composed of five independent unidimensional constructs (the consecutive approach). Lastly, the NOS construct is multidimensional and composed of five inter-related but separate dimensions. The vast body of evidence supported the claim that the NOS construct is multidimensional. Measures from the multidimensional model were positively related to student science achievement and students' perceptions of their classroom environment; this provided supporting evidence for the external validity aspect of the NOS construct. As US science education moves toward students learning science through engaging in authentic scientific practices and building learning progressions (NRC, 2012), it will be important to assess whether this new approach to teaching science is effective, and the NOSI-E may be used as a measure of the impact of this reform.

  1. The conceptualization and measurement of cognitive health sophistication.

    Science.gov (United States)

    Bodie, Graham D; Collins, William B; Jensen, Jakob D; Davis, Lashara A; Guntzviller, Lisa M; King, Andy J

    2013-01-01

    This article develops a conceptualization and measure of cognitive health sophistication--the complexity of an individual's conceptual knowledge about health. Study 1 provides initial validity evidence for the measure--the Healthy-Unhealthy Other Instrument--by showing its association with other cognitive health constructs indicative of higher health sophistication. Study 2 presents data from a sample of low-income adults to provide evidence that the measure does not depend heavily on health-related vocabulary or ethnicity. Results from both studies suggest that the Healthy-Unhealthy Other Instrument can be used to capture variability in the sophistication or complexity of an individual's health-related schematic structures on the basis of responses to two simple open-ended questions. Methodological advantages of the Healthy-Unhealthy Other Instrument and suggestions for future research are highlighted in the discussion.

  2. The Student Actions Coding Sheet (SACS): An instrument for illuminating the shifts toward student-centered science classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Hashidah Abd-Hamid, Nor

    2011-07-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3) refinement of the item pool based on reviewer comments, (4) pilot testing of the instrument, and (5) statistical reliability and item analysis leading to additional refinement and finalization of the instrument. In the field test, the instrument consisted of 26 items separated into four categories originally derived from student-centered instruction literature and used by the authors to sort student actions in previous research. The SACS was administered across 22 Grade 6-8 classrooms by 22 groups of observers, with a total of 67 SACS ratings completed. The finalized instrument was found to be internally consistent, with acceptable estimates from inter-rater intraclass correlation reliability coefficients at the p Observation Protocol. Based on the analyses completed, the SACS appears to be a useful instrument for inclusion in comprehensive assessment packages for illuminating the extent to which student-centered actions are occurring in science classrooms.

  3. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    Science.gov (United States)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  4. Development of the Test Of Astronomy STandards (TOAST) Assessment Instrument

    Science.gov (United States)

    Slater, Timothy F.; Slater, S. J.

    2008-05-01

    Considerable effort in the astronomy education research (AER) community over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing the AER discipline so that researchers could establish the initial knowledge state of students as well as to attempt measure some of the impacts of innovative instructional interventions. Unfortunately, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. This was not done in oversight, but rather as a result of the relative youth of AER as a discipline. Now that several important science education reform documents exist and are generally accepted by the AER community, we are in a position to develop, validate, and disseminate a new assessment instrument which is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. In response, researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science & Math Teaching Center (UWYO SMTC) have designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for courses with learning goals tightly aligned to the consensus goals of our community.

  5. Visualizing time: how linguistic metaphors are incorporated into displaying instruments in the process of interpreting time-varying signals

    Science.gov (United States)

    Garcia-Belmonte, Germà

    2017-06-01

    Spatial visualization is a well-established topic of education research that has allowed improving science and engineering students' skills on spatial relations. Connections have been established between visualization as a comprehension tool and instruction in several scientific fields. Learning about dynamic processes mainly relies upon static spatial representations or images. Visualization of time is inherently problematic because time can be conceptualized in terms of two opposite conceptual metaphors based on spatial relations as inferred from conventional linguistic patterns. The situation is particularly demanding when time-varying signals are recorded using displaying electronic instruments, and the image should be properly interpreted. This work deals with the interplay between linguistic metaphors, visual thinking and scientific instrument mediation in the process of interpreting time-varying signals displayed by electronic instruments. The analysis draws on a simplified version of a communication system as example of practical signal recording and image visualization in a physics and engineering laboratory experience. Instrumentation delivers meaningful signal representations because it is designed to incorporate a specific and culturally favored time view. It is suggested that difficulties in interpreting time-varying signals are linked with the existing dual perception of conflicting time metaphors. The activation of specific space-time conceptual mapping might allow for a proper signal interpretation. Instruments play then a central role as visualization mediators by yielding an image that matches specific perception abilities and practical purposes. Here I have identified two ways of understanding time as used in different trajectories through which students are located. Interestingly specific displaying instruments belonging to different cultural traditions incorporate contrasting time views. One of them sees time in terms of a dynamic metaphor

  6. CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ROBINSON,K.

    2006-12-31

    Brookhaven National Laboratory has prepared a conceptual design for a world class user facility for scientific research using synchrotron radiation. This facility, called the ''National Synchrotron Light Source II'' (NSLS-II), will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility. Together these will enable the study of material properties and functions with a spatial resolution of {approx}1 nm, an energy resolution of {approx}0.1 meV, and the ultra high sensitivity required to perform spectroscopy on a single atom. The overall objective of the NSLS-II project is to deliver a research facility to advance fundamental science and have the capability to characterize and understand physical properties at the nanoscale, the processes by which nanomaterials can be manipulated and assembled into more complex hierarchical structures, and the new phenomena resulting from such assemblages. It will also be a user facility made available to researchers engaged in a broad spectrum of disciplines from universities, industries, and other laboratories.

  7. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  8. Development and Validation of Nature of Science Instrument for Elementary School Students

    Science.gov (United States)

    Hacieminoglu, Esme; Yilmaz-Tüzün, Özgül; Ertepinar, Hamide

    2014-01-01

    The purposes of this study were to develop and validate an instrument for assessing elementary students' nature of science (NOS) views and to explain the elementary school students' NOS views, in terms of varying grade levels and gender. The sample included 782 students enrolled in sixth, seventh, and eighth grades. Exploratory factor analysis…

  9. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    Science.gov (United States)

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

  10. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    Science.gov (United States)

    Ice, G. E.; Larson, B. C.; Liu, W.; Barabash, R. I.; Specht, E. D.; Pang, J. W. L.; Budai, J. D.; Tischler, J. Z.; Khounsary, A.; Liu, C.; Macrander, A. T.; Assoufid, L.

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization.

  11. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    International Nuclear Information System (INIS)

    Ice, G.E.; Larson, Ben C.; Liu, Wenjun; Barabash, Rozaliya; Specht, Eliot D; Pang, Judy; Budai, John D.; Tischler, Jonathan Zachary; Khounsary, Ali; Liu, Chian; Macrander, Albert T.; Assoufid, Lahsen

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization

  12. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding

    Science.gov (United States)

    Şenel Zor, Tuba; Aslan, Oktay

    2018-03-01

    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  13. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  14. Uncertainty in biodiversity science, policy and management: a conceptual overview

    Directory of Open Access Journals (Sweden)

    Yrjö Haila

    2014-10-01

    Full Text Available The protection of biodiversity is a complex societal, political and ultimately practical imperative of current global society. The imperative builds upon scientific knowledge on human dependence on the life-support systems of the Earth. This paper aims at introducing main types of uncertainty inherent in biodiversity science, policy and management, as an introduction to a companion paper summarizing practical experiences of scientists and scholars (Haila et al. 2014. Uncertainty is a cluster concept: the actual nature of uncertainty is inherently context-bound. We use semantic space as a conceptual device to identify key dimensions of uncertainty in the context of biodiversity protection; these relate to [i] data; [ii] proxies; [iii] concepts; [iv] policy and management; and [v] normative goals. Semantic space offers an analytic perspective for drawing critical distinctions between types of uncertainty, identifying fruitful resonances that help to cope with the uncertainties, and building up collaboration between different specialists to support mutual social learning.

  15. Neural correlates of recognition and naming of musical instruments.

    Science.gov (United States)

    Belfi, Amy M; Bruss, Joel; Karlan, Brett; Abel, Taylor J; Tranel, Daniel

    2016-10-01

    Retrieval of lexical (names) and conceptual (semantic) information is frequently impaired in individuals with neurological damage. One category of items that is often affected is musical instruments. However, distinct neuroanatomical correlates underlying lexical and conceptual knowledge for musical instruments have not been identified. We used a neuropsychological approach to explore the neural correlates of knowledge retrieval for musical instruments. A large sample of individuals with focal brain damage (N = 298), viewed pictures of 16 musical instruments and were asked to name and identify each instrument. Neuroanatomical data were analyzed with a proportional MAP-3 method to create voxelwise lesion proportion difference maps. Impaired naming (lexical retrieval) of musical instruments was associated with damage to the left temporal pole and inferior pre- and postcentral gyri. Impaired recognition (conceptual knowledge retrieval) of musical instruments was associated with a more broadly and bilaterally distributed network of regions, including ventromedial prefrontal cortices, occipital cortices, and superior temporal gyrus. The findings extend our understanding of how musical instruments are processed at neural system level, and elucidate factors that may explain why brain damage may or may not produce anomia or agnosia for musical instruments. Our findings also help inform broader understanding of category-related knowledge mapping in the brain, as musical instruments possess several characteristics that are similar to various other categories of items: They are inanimate and highly manipulable (similar to tools), produce characteristic sounds (similar to animals), and require fine-grained visual differentiation between each other (similar to people). (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Relationships among Prior Conceptual Knowledge, Metacognitive Awareness, Metacognitive Self-Management, Cognitive Style, Perception-Judgment Style, Attitude toward School Science, Self-Regulation, and Science Achievement in Grades 6-7 Students.

    Science.gov (United States)

    Holden, Trudy G.; Yore, Larry D.

    This study explores the learner dimension in learning biological science topics in five elementary school classrooms instructed by different teachers using a common course of study and outcome measures. Specifically, the study addressed the associations among conceptual, metacognitive, cognitive, stylistic, and affective characteristics and…

  17. Determining Students' Conceptual Understanding Level of Thermodynamics

    Science.gov (United States)

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  18. FMIT test-end instrumentation conceptual design

    International Nuclear Information System (INIS)

    Fuller, J.L.

    1984-08-01

    FMIT test-end measurement techniques and instrumentation concepts for deuteron beam control, test-end device protection, test cell radiation field characterization, lithium jet performance monitoring, and in-situ off-line target testing and examination are described. The test-end refers to the beam line-target-test assembly interface area inside the test cell, but TEI includes measurements inside and outside the cell. The measurement requirements are briefly reviewed and referenced. The sometimes severe environmental limitations are discussed. Where feasible, multifunctional systems have been configured. Special facility features have been minimized

  19. Toward conceptualizations in nursing: harbingers from the sciences and humanities.

    Science.gov (United States)

    Aamodt, A M

    1992-01-01

    Conceptualizations of care and caring generated from ethnographic study of Tohono O'odham children, Norwegian-Americans, elderly clients in nursing clinics, preschoolers, children with cancer, and gender differences is outlined. Where research questions came from during life experiences of the author, a journey of nursing scholarship viewed from concepts of context development, transformation and care, and "Where do we go from here?" serve as the outline for a discussion of the generation of conceptualizations. A question for nursing research is proposed: What characteristics of care promote human responses for quality human experience? Suggestions for nursing research in the future emphasize the potential of human responses, variations in conceptualizations of care during the life cycles of human beings living in diverse cultural contexts, and changes in conceptualizations of care over time.

  20. Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding

    Science.gov (United States)

    Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo

    2017-12-01

    Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.

  1. Promoting students' conceptual understanding using STEM-based e-book

    Science.gov (United States)

    Komarudin, U.; Rustaman, N. Y.; Hasanah, L.

    2017-05-01

    This study aims to examine the effect of Science, Technology, Engineering, and Mathematics (STEM) based e-book in promoting students'conceptual understanding on lever system in human body. The E-book used was the e-book published by National Ministry of Science Education. The research was conducted by a quasi experimental with pretest and posttest design. The subjects consist of two classes of 8th grade junior high school in Pangkalpinang, Indonesia, which were devided into experimental group (n=34) and control group (n=32). The students in experimental group was taught by STEM-based e-book, while the control group learned by non STEM-based e-book. The data was collected by an instrument pretest and postest. Pretest and posttest scored, thenanalyzed using descriptive statistics and independent t-test. The result of independent sample t-test shows that no significant differenceson students' pretest score between control and experimental group. However, there were significant differences on students posttest score and N-gain score between control and experimental group with sig = 0.000(pscience.

  2. Rasch Validation of a Measure of Reform-Oriented Science Teaching Practices

    Science.gov (United States)

    You, Hye Sun

    2016-06-01

    Growing evidence from recent curriculum documents and previous research suggests that reform-oriented science teaching practices promote students' conceptual understanding, levels of achievement, and motivation to learn, especially when students are actively engaged in constructing their ideas through scientific inquiries. However, it is difficult to identify to what extent science teachers engage students in reform-oriented teaching practices (RTPs) in their science classrooms. In order to exactly diagnose the current status of science teachers' implementation of the RTPs, a valid and reliable instrument tool is needed. The principles of validity and reliability are fundamental cornerstones in developing a robust measurement tool. As such, this study was motivated by the desire to point out the limitations of the existing statistical and psychometric analyses and to further examine the validation of the RTP survey instrument. This paper thus aims at calibrating the items of the RTPs for science teachers using the Rasch model. The survey instrument scale was adapted from the 2012 National Survey of Science and Mathematics Education (NSSME) data. A total of 3701 science teachers from 1403 schools from across the USA participated in the NSSME survey. After calibrating the RTP items and persons on the same scale, the RTP instrument well represented the population of US science teachers. Model-data fit determined by Infit and Outfit statistics was within an appropriate range (0.5-1.5), supporting the unidimensional structure of the RTPs. The ordered category thresholds and the probability of the thresholds showed that the five-point rating scale functioned well. The results of this study support the use of the RTP measure from the 2012 NSSME in assessing usage of RTPs.

  3. The Student Actions Coding Sheet (SACS): An Instrument for Illuminating the Shifts toward Student-Centered Science Classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah

    2011-01-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…

  4. Conceptualizing the Science-Practice Interface: Lessons from a Collaborative Network on the Front-Line of Climate Change

    Directory of Open Access Journals (Sweden)

    Nathan P. Kettle

    2017-06-01

    Full Text Available The gap between science and practice is widely recognized as a major concern in the production and application of decision-relevant science. This research analyzed the roles and network connections of scientists, service providers, and decision makers engaged in climate science and adaptation practice in Alaska, where rapid climate change is already apparent. Our findings identify key actors as well as significant differences in the level of bonding ties between network members who perceive similarity in their social identities, bridging ties between network members across different social groups, and control of information across roles—all of which inform recommendations for adaptive capacity and the co-production of usable knowledge. We also find that some individuals engage in multiple roles in the network suggesting that conceptualizing science policy interactions with the traditional categories of science producers and consumers oversimplifies how experts engage with climate science, services, and decision making. Our research reinforces the notion that the development and application of knowledge is a networked phenomenon and highlights the importance of centralized individuals capable of playing multiple roles in their networks for effective translation of knowledge into action.

  5. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  6. Assessment for One-Shot Library Instruction: A Conceptual Approach

    Science.gov (United States)

    Wang, Rui

    2016-01-01

    The purpose of this study is to explore a conceptual approach to assessment for one-shot library instruction. This study develops a new assessment instrument based on Carol Kuhlthau's information search process (ISP) model. The new instrument focuses on measuring and identifying changes in student readiness to do research along three…

  7. Differentiating the Sources of Taiwanese High School Students' Multidimensional Science Learning Self-Efficacy: An Examination of Gender Differences

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-04-01

    The main purpose of this study was to investigate Taiwanese high school students' multi-dimensional self-efficacy and its sources in the domain of science. Two instruments, Sources of Science Learning Self-Efficacy (SSLSE) and Science Learning Self-Efficacy (SLSE), were used. By means of correlation and regression analyses, the relationships between students' science learning self-efficacy and the sources of their science learning self-efficacy were examined. The findings revealed that the four sources of the students' self-efficacy were found to play significant roles in their science learning self-efficacy. By and large, Mastery Experience and Vicarious Experience were found to be the two salient influencing sources. Several gender differences were also revealed. For example, the female students regarded Social Persuasion as the most influential source in the "Science Communication" dimension, while the male students considered Vicarious Experience as the main efficacy source. Physiological and Affective States, in particular, was a crucial antecedent of the female students' various SLSE dimensions, including "Conceptual Understanding," "Higher-Order Cognitive Skills," and "Science Communication." In addition, the variations between male and female students' responses to both instruments were also unraveled. The results suggest that, first, the male students perceived themselves as having more mastery experience, vicarious experience and social persuasion than their female counterparts. Meanwhile, the female students experienced more negative emotional arousal than the male students. Additionally, the male students were more self-efficacious than the females in the five SLSE dimensions of "Conceptual Understanding," "Higher-Order Cognitive Skills," "Practical Work," "Everyday Application," and "Science Communication."

  8. Differentiating the Sources of Taiwanese High School Students' Multidimensional Science Learning Self-Efficacy: An Examination of Gender Differences

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2018-06-01

    The main purpose of this study was to investigate Taiwanese high school students' multi-dimensional self-efficacy and its sources in the domain of science. Two instruments, Sources of Science Learning Self-Efficacy (SSLSE) and Science Learning Self-Efficacy (SLSE), were used. By means of correlation and regression analyses, the relationships between students' science learning self-efficacy and the sources of their science learning self-efficacy were examined. The findings revealed that the four sources of the students' self-efficacy were found to play significant roles in their science learning self-efficacy. By and large, Mastery Experience and Vicarious Experience were found to be the two salient influencing sources. Several gender differences were also revealed. For example, the female students regarded Social Persuasion as the most influential source in the "Science Communication" dimension, while the male students considered Vicarious Experience as the main efficacy source. Physiological and Affective States, in particular, was a crucial antecedent of the female students' various SLSE dimensions, including "Conceptual Understanding," "Higher-Order Cognitive Skills," and "Science Communication." In addition, the variations between male and female students' responses to both instruments were also unraveled. The results suggest that, first, the male students perceived themselves as having more mastery experience, vicarious experience and social persuasion than their female counterparts. Meanwhile, the female students experienced more negative emotional arousal than the male students. Additionally, the male students were more self-efficacious than the females in the five SLSE dimensions of "Conceptual Understanding," "Higher-Order Cognitive Skills," "Practical Work," "Everyday Application," and "Science Communication."

  9. Learning environment, learning styles and conceptual understanding

    Science.gov (United States)

    Ferrer, Lourdes M.

    1990-01-01

    In recent years there have been many studies on learners developing conceptions of natural phenomena. However, so far there have been few attempts to investigate how the characteristics of the learners and their environment influence such conceptions. This study began with an attempt to use an instrument developed by McCarthy (1981) to describe learners in Malaysian primary schools. This proved inappropriate as Asian primary classrooms do not provide the same kind of environment as US classrooms. It was decided to develop a learning style checklist to suit the local context and which could be used to describe differences between learners which teachers could appreciate and use. The checklist included four dimensions — perceptual, process, self-confidence and motivation. The validated instrument was used to determine the learning style preferences of primary four pupils in Penang, Malaysia. Later, an analysis was made regarding the influence of learning environment and learning styles on conceptual understanding in the topics of food, respiration and excretion. This study was replicated in the Philippines with the purpose of investigating the relationship between learning styles and achievement in science, where the topics of food, respiration and excretion have been taken up. A number of significant relationships were observed in these two studies.

  10. Conceptual Underpinnings for Innovation Policy Design

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    of innovation policy. This serves two important purposes. Firstly, it allows the identification of problems in an innovation system that require public policy intervention through the choice of appropriate policy instruments. Secondly, it allows a theoretically based identification of input indicators......In cases where innovation indicators and data fail to serve properly as a (necessary) basis for the design of innovation policies, it often has its roots in conceptual unclarities in the underlying concepts. The aim of this paper is to provide a theoretical and conceptual basis for the design...

  11. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    Science.gov (United States)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  12. The Use of Triadic Dialogue in the Science Classroom: a Teacher Negotiating Conceptual Learning with Teaching to the Test

    Science.gov (United States)

    Salloum, Sara; BouJaoude, Saouma

    2017-08-01

    The purpose of this research is to better understand the uses and potential of triadic dialogue (initiation-response-feedback) as a dominant discourse pattern in test-driven environments. We used a Bakhtinian dialogic perspective to analyze interactions among high-stakes tests and triadic dialogue. Specifically, the study investigated (a) the global influence of high-stakes tests on knowledge types and cognitive processes presented and elicited by the science teacher in triadic dialogue and (b) the teacher's meaning making of her discourse patterns. The classroom talk occurred in a classroom where the teacher tried to balance conceptual learning with helping low-income public school students pass the national tests. Videos and transcripts of 20 grade 8 and 9 physical science sessions were analyzed qualitatively. Teacher utterances were categorized in terms of science knowledge types and cognitive processes. Explicitness and directionality of shifts among different knowledge types were analyzed. It was found that shifts between factual/conceptual/procedural-algorithmic and procedural inquiry were mostly dialectical and implicit, and dominated the body of concept development lessons. These shifts called for medium-level cognitive processes. Shifts between the different knowledge types and procedural-testing were more explicit and occurred mostly at the end of lessons. Moreover, the science teacher's focus on success and high expectations, her explicitness in dealing with high-stakes tests, and the relaxed atmosphere she created built a constructive partnership with the students toward a common goal of cracking the test. We discuss findings from a Bakhtinian dialogic perspective and the potential of triadic dialogue for teachers negotiating multiple goals and commitments.

  13. Informatics Science and Technology for Development in Latin America: Towards a Conceptual Framework for Comparative Analysis.

    Science.gov (United States)

    Hogeboom, Richard L.

    The information-based technologies and the accompanying managerial sciences have come to symbolize the ideology of progress and operate as a material instrumentality in social governance systems. Developing countries have incorporated the technologies, but have lacked a developed knowledge or service sector; the linkage of…

  14. The Friedrich-Lively Instrument to Assess the Impact of Schizophrenia on Siblings (FLIISS): Part I--instrument construction.

    Science.gov (United States)

    Friedrich, Rose Marie; Lively, Sonja; Rubenstein, Linda; Buckwalter, Kathleen

    2002-01-01

    Siblings of persons with schizophrenia may provide primary or secondary care for their sibling and support to parents who are primary care givers. These siblings experience stress and the accompanying sequelae of decreased quality of life, grief, chronic illness, and symptoms of depression and anxiety. Comprehensive measures of sibling stress have not been published. Before interventions to help siblings can be created, health professionals need such an assessment. The Friedrich-Lively Instrument to Assess the Impact of Schizophrenia on Siblings (FLIISS) has been developed to meet the needs of both health workers and siblings. The instrument has a strong conceptual basis adapted from Pearlin's model of stress in caregiving and was preceded by pilot work that evaluated both quantitative and qualitative data. In this article, (Part I), the development of the instrument and its relationships to the conceptual model are described. Health professionals can use the instrument for collecting information that will increase their ability to identify sources of stress faced by siblings of persons with schizophrenia, and from this assessment they may develop interventions for this underserved population.

  15. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Science Foundation's National Survey of Academic Research Instruments and Instrumentation Needs.

    Science.gov (United States)

    Burgdorf, Kenneth; White, Kristine

    This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…

  16. Music-therapy analyzed through conceptual mapping

    Science.gov (United States)

    Martinez, Rodolfo; de la Fuente, Rebeca

    2002-11-01

    Conceptual maps have been employed lately as a learning tool, as a modern study technique, and as a new way to understand intelligence, which allows for the development of a strong theoretical reference, in order to prove the research hypothesis. This paper presents a music-therapy analysis based on this tool to produce a conceptual mapping network, which ranges from magic through the rigor of the hard sciences.

  17. Key issues in the thermal design of spaceborne cryogenic infrared instruments

    Science.gov (United States)

    Schember, Helene R.; Rapp, Donald

    1992-12-01

    Thermal design and analysis play an integral role in the development of spaceborne cryogenic infrared (IR) instruments. From conceptual sketches to final testing, both direct and derived thermal requirements place significant constraints on the instrument design. Although in practice these thermal requirements are interdependent, the sources of most thermal constraints may be grouped into six distinct categories. These are: (1) Detector temperatures, (2) Optics temperatures, (3) Pointing or alignment stability, (4) Mission lifetime, (5) Orbit, and (6) Test and Integration. In this paper, we discuss these six sources of thermal requirements with particular regard to development of instrument packages for low background infrared astronomical observatories. In the end, the thermal performance of these instruments must meet a set of thermal requirements. The development of these requirements is typically an ongoing and interactive process, however, and the thermal design must maintain flexibility and robustness throughout the process. The thermal (or cryogenic) engineer must understand the constraints imposed by the science requirements, the specific hardware, the observing environment, the mission design, and the testing program. By balancing these often competing factors, the system-oriented thermal engineer can work together with the experiment team to produce an effective overall design of the instrument.

  18. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  19. New Contemporary Criterion-Referenced Assessment Instruments for Astronomy & Geology: TOAST & EGGS

    Science.gov (United States)

    Guffey, Sarah Katie; Slater, Stephanie J.; Slater, Timothy F.

    2015-08-01

    Considerable effort in the astronomy and Earth sciences education research over the past decade has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing discipline-based education research allowing scholar to establish the initial, incoming knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Whereas first-generation assessment tools, such as the Astronomy Diagnostics Test ADT2) were based primarily upon further identifying documented astronomy misconceptions, scholars from the CAPER Center for Astronomy & Physics Education Research team are creating contemporary instruments based instead by developing items using modern test construction techniques and tightly aligned to the consensus learning goals identified by the American Association of the Advancement of Science’s Project 2061 Benchmarks, and the National Research Council’s National Science Education Standards, and the National Research Council’s Frameworks for A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. These consensus learning goals are further enhanced guiding documents from the American Astronomical Society - Chair’s Conference on ASTRO 101 and the NSF-funded Earth Science Literacy Initiative. Two of the resulting criterion-referenced assessment tools widely used by researchers are the Test Of Astronomy STandards (TOAST) and the Exam of GeoloGy StandardS (EGGS). These easy-to-use and easy-to-score multiple-choice instruments have a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to

  20. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  1. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  2. The scientific use of technological instruments

    NARCIS (Netherlands)

    Boon, Mieke; Hansson, Sven Ove

    2015-01-01

    One of the most obvious ways in which the natural sciences depend on technology is through the use of instruments. This chapter presents a philosophical analysis of the role of technological instruments in science. Two roles of technological instruments in scientific practices are distinguished:

  3. INSTRUMENTS OF SUPPORT FOR RESEARCH AND DEVELOPMENT FUNDED BY LEADING DOMESTIC AND INTERNATIONAL SCIENCE FOUNDATIONS

    Directory of Open Access Journals (Sweden)

    Irina E. Ilina

    2017-06-01

    Full Text Available Introduction: one of the key aspects of the knowledge economy development is the growing significance of the results of research and development. The education and basic research play a key role in this process. Funding for education and fundamental science is carried out mainly at the expense of the state resources, including a system of foundations for scientific, engineering and innovation activities in Russia. The purpose of this article is to present recommendations for improving the tools of domestic foundations in funding fundamental research and development, including education and training. The propositions are made with a comparative analysis of the domestic and foreign science foun dations’ activities. Materials and Methods: the authors used analysis, comparison, induction, deduction, graphical analysis, generalisation and other scientific methods during the study. Results: the lack of comparability between domestic and foreign scientific funds in the volume of funding allocated for basic research and development is revealed. This situation affects the scientific research. The foreign foundations have a wide range of instruments to support research projects at all stages of the life cycle of grants for education and training prior to release of an innovative product to market (the use of “innovation elevator” system. The Russian national scientific foundations have no such possibilities. The authors guess that the Russian organisations ignore some of the instruments for supporting research and development. Use of these tools could enhance the effectiveness of research projects. According to the study of domestic and foreign experience in supporting research and development, the authors proposed a matrix composed of instruments for support in the fields of basic scientific researches and education with such phases of the project life cycle as “research” and “development”. Discussion and Conclusions: the foreign science

  4. Measuring patient-perceived hospital service quality: a conceptual framework.

    Science.gov (United States)

    Pai, Yogesh P; Chary, Satyanarayana T

    2016-04-18

    Purpose - Although measuring healthcare service quality is not a new phenomenon, the instruments used to measure are timeworn. With the shift in focus to patient centric processes in hospitals and recognizing healthcare to be different compared to other services, service quality measurement needs to be tuned specifically to healthcare. The purpose of this paper is to design a conceptual framework for measuring patient perceived hospital service quality (HSQ), based on existing service quality literature. Design/methodology/approach - Using HSQ theories, expanding existing healthcare service models and literature, a conceptual framework is proposed to measure HSQ. The paper outlines patient perceived service quality dimensions. Findings - An instrument for measuring HSQ dimensions is developed and compared with other service quality measuring instruments. The latest dimensions are in line with previous studies, but a relationship dimension is added. Practical implications - The framework empowers managers to assess healthcare quality in corporate, public and teaching hospitals. Originality/value - The paper helps academics and practitioners to assess HSQ from a patient perspective.

  5. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  6. The Instrument Implementation of Two-tier Multiple Choice to Analyze Students’ Science Process Skill Profile

    Directory of Open Access Journals (Sweden)

    Sukarmin Sukarmin

    2018-01-01

    Full Text Available This research is aimed to analyze the profile of students’ science process skill (SPS by using instrument two-tier multiple choice. This is a descriptive research that describes the profile of students’ SPS. Subjects of the research were 10th-grade students from high, medium and low categorized school. Instrument two-tier multiple choice consists of 30 question that contains an indicator of SPS. The indicator of SPS namely formulating a hypothesis, designing experiment, analyzing data, applying the concept, communicating, making a conclusion. Based on the result of the research and analysis, it shows that: 1 the average of indicator achievement of science process skill at high categorized school on formulating hypothesis is 74,55%, designing experiment is 74,89%, analyzing data is 67,89%, applying concept is 52,89%, communicating is 80,22%, making conclusion is 76%, 2. the average of indicator achievement of science process skill at medium categorized school on formulating hypothesis is 53,47%, designing experiment is 59,86%, analyzing data is 42,22%, applying concept is 33,19%, communicating is 76,25%, making conclusion is 61,53%, 3 the average of indicator achievement of science process skill at low categorized school on formulating hypothesis is 51%, designing experiment is 55,17%, analyzing data is 39,17%, applying concept is 35,83%, communicating is 58,83%, making conclusion is 58%.

  7. The development and validation of the Self-Efficacy Beliefs about Equitable Science Teaching and learning instrument for prospective elementary teachers

    Science.gov (United States)

    Ritter, Jennifer M.

    1999-12-01

    The purpose of this study was to develop, validate and establish the reliability of an instrument to assess the self-efficacy beliefs of prospective elementary teachers with regards to science teaching and learning for diverse learners. The study used Bandura's theoretical framework, in that the instrument would use the self-efficacy construct to explore the beliefs of prospective elementary science teachers with regards to science teaching and learning to diverse learners: specifically the two dimensions of self-efficacy beliefs defined by Bandura (1977): personal self-efficacy and outcome expectancy. A seven step plan was designed and followed in the process of developing the instrument, which was titled the Self-Efficacy Beliefs about Equitable Science Teaching or SEBEST. Diverse learners as recognized by Science for All Americans (1989) are "those who in the past who have largely been bypassed in science and mathematics education: ethnic and language minorities and girls" (p. xviii). That definition was extended by this researcher to include children from low socioeconomic backgrounds based on the research by Gomez and Tabachnick (1992). The SEBEST was administered to 226 prospective elementary teachers at The Pennsylvania State University. Using the results from factor analyses, Coefficient Alpha, and Chi-Square a 34 item instrument was found to achieve the greatest balance across the construct validity, reliability and item balance with the content matrix. The 34 item SEBEST was found to load purely on four factors across the content matrix thus providing evidence construct validity. The Coefficient Alpha reliability for the 34 item SEBEST was .90 and .82 for the PSE sub-scale and .78 for the OE sub-scale. A Chi-Square test (X2 = 2.7 1, df = 7, p > .05) was used to confirm that the 34 items were balanced across the Personal Self-Efficacy/Outcome Expectancy and Ethnicity/LanguageMinority/Gender Socioeconomic Status/dimensions of the content matrix. Based on

  8. A Transcultural Theory of Thinking for Instrumental Music Education: Philosophical Insights from Confucius and Dewey

    Science.gov (United States)

    Tan, Leonard

    2016-01-01

    In music education, thinking is often construed in terms of acquiring conceptual knowledge of musical elements. Research has found, however, that instrumental music educators have largely neglected conceptual teaching and learning. This begs the following questions: What is the nature of thinking in instrumental music education? How should…

  9. Instrumental traditions and theories of light the uses of instruments in the optical revolution

    CERN Document Server

    Chen, Xiang

    2000-01-01

    An analysis of the optical revolution in the context of early 19th century Britain. Far from merely involving the replacement of one optical theory by another, the revolution also involved substantial changes in instruments and the practices that surrounded them. People's judgements about classification, explanation and evaluation were affected by the way they used such optical instruments as spectroscopes, telescopes, polarisers, photometers, gratings, prisms and apertures. There were two instrumental traditions in this historical period, each of which nurtured a body of practice that exemplified how optical instruments should be operated, and especially how the eye should be used. These traditions functioned just like paradigms, shaping perspectives and even world views. Readership: Scholars and graduate students in the history of science, history of instrument, philosophy of science and science studies. Can also be used as a textbook in graduate courses on 19th century physics.

  10. Testing a Conceptual Change Model Framework for Visual Data

    Science.gov (United States)

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  11. Level conceptual change pre-service elementary teachers on electric current conceptions through visual multimedia supported conceptual change

    Science.gov (United States)

    Hermita, N.; Suhandi, A.; Syaodih, E.; Samsudin, A.; Marhadi, H.; Sapriadil, S.; Zaenudin, Z.; Rochman, C.; Mansur, M.; Wibowo, F. C.

    2018-05-01

    Now a day, conceptual change is the most valuable issues in the science education perspective, especially in the elementary education. Researchers have already dialed with the aim of the research to increase level conceptual change process on the electric conceptions through Visual Multimedia Supported Conceptual Change Text (VMMSCCText). We have ever utilized research and development method namely 3D-1I stands for Define, Design, Development, and Implementation. The 27 pre-service elementary teachers were involved in the research. The battery function in circuit electric conception is the futuristic concept which should have been learned by the students. Moreover, the data which was collected reports that static about 0%, disorientation about 0%, reconstruction about 55.6%, and construction about 25.9%. It can be concluded that the implementation of VMMSCCText to pre-service elementary teachers are increased to level conceptual change categories.

  12. Evolution and validation of a personal form of an instrument for assessing science laboratory classroom environments

    Science.gov (United States)

    Fraser, Barry J.; Giddings, Geoffrey J.; McRobbie, Campbell J.

    The research reported in this article makes two distinctive contributions to the field of classroom environment research. First, because existing instruments are unsuitable for science laboratory classes, the Science Laboratory Environment Inventory (SLEI) was developed and validated. Second, a new Personal form of the SLEI (involving a student's perceptions of his or her own role within the class) was developed and validated in conjunction with the conventional Class form (involving a student's perceptions of the class as a whole), and its usefulness was investigated. The instrument was cross-nationally fieldtested with 5,447 students in 269 senior high school and university classes in six countries, and cross-validated with 1,594 senior high school students in 92 classes in Australia. Each SLEI scale exhibited satisfactory internal consistency reliability, discriminant validity, and factorial validity, and differentiated between the perceptions of students in different classes. A variety of applications with the new instrument furnished evidence about its usefulness and revealed that science laboratory classes are dominated by closed-ended activities; mean scores obtained on the Class form were consistently somewhat more favorable than on the corresponding Personal form; females generally held more favorable perceptions than males, but these differences were somewhat larger for the Personal form than the Class form; associations existed between attitudinal outcomes and laboratory environment dimensions; and the Class and Personal forms of the SLEI each accounted for unique variance in student outcomes which was independent of that accounted for by the other form.

  13. Effect of problem type toward students’ conceptual understanding level on heat and temperature

    Science.gov (United States)

    Ratnasari, D.; Sukarmin; Suparmi, S.

    2017-11-01

    The aim of this research is to analyze the level of students’ understanding of heat and temperature concept and effect of problem type toward students’ conceptual understanding of heat and temperature. This research is descriptive research with the subjects of the research are 96 students from high, medium, and low categorized school in Surakarta. Data of level of students’ conceptual understanding is from students’ test result using essay instrument (arranged by researcher and arranged by the teacher) and interview. Before being tested in the samples, essay instrument is validated by the experts. Based on the result and the data analysis, students’ conceptual understanding level of 10th grade students on heat and temperature is as follows: (1) Most students have conceptual understanding level at Partial Understanding with a Specific Misconception (PUSM) with percentage 28,85%; (2) Most students are able to solve mathematic problem from teacher, but don’t understand the underlying concept.

  14. Development of perceived instrumentality for mathematics, reading and science curricula

    Science.gov (United States)

    Garcia, Steve L.

    Perceptions of instrumentality (PI) are the connections one sees between a current activity and a future goal. With high PI, one is motivated to persist with quality effort because the current activity, even when difficult, is perceived as aligned with, and progress toward, the goal. Conversely, with low PI, one is motivated to relinquish effort in pursuit of other, more meaningful goals. In view of the alarming dropout rates in this country, it appears that PI research has much to offer in understanding students' motivations to stay in school and hence to become employed in their field of choice. Because academic achievement motivation can be affected by gender and ethnicity, particularly for specific components of the curriculum, and because curricular content varies across grade levels and school settings, this line of research offers significant potential for understanding and improving student outcomes. This research examined the development of PI among suburban 6th, 8th, 10th and 12th graders from a school district in the southwestern United States. Twelve hundred students completed a one-time paper and pencil survey measuring the perceived instrumentality of mathematics, literacy and science courses in terms of the students' occupational choices. MANOVA was used to determine factors that may affect students' overall PI and individual subject PI. Grade, gender, ethnicity, occupational choice, expectancy and value were the independent variables. A school setting variable was examined for effects on 12th graders. For the 8th through 12th grade sample, significant main effects were observed for grade, gender, minority status, occupational choice and expectancy on PI. Results show that PI is highest in the 6 th grade. Males reported higher Math PI than females. Females reported higher Reading PI and Science PI than males. Minority students reported lower overall PI and Science PI than non-minority students. Students who aspire to professional careers report the

  15. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    Science.gov (United States)

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    Science.gov (United States)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with

  17. Connecting Practice, Theory and Method: Supporting Professional Doctoral Students in Developing Conceptual Frameworks

    Science.gov (United States)

    Kumar, Swapna; Antonenko, Pavlo

    2014-01-01

    From an instrumental view, conceptual frameworks that are carefully assembled from existing literature in Educational Technology and related disciplines can help students structure all aspects of inquiry. In this article we detail how the development of a conceptual framework that connects theory, practice and method is scaffolded and facilitated…

  18. Conceptual design of the IFMIF Start-Up monitoring module

    Energy Technology Data Exchange (ETDEWEB)

    Gouat, Philippe, E-mail: philippe.gouat@sckcen.be [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Leysen, Willem; Goussarov, Andrei; Galledou, Papa Sally [SCK-CEN – The Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Rapisarda, David; Mota, Fernando; Garcia, Angela [CIEMAT – Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avda. Complutense 40, 28040 Madrid (Spain)

    2013-10-15

    Highlights: ► IFMIF test module conceptual design. ► IFMIF test module foreseen instrumentation. ► Cerenkov photon flux monitor. -- Abstract: The preliminary engineering design of the test facilities, including the various test modules to be used in the IFMIF plant is a part of the IFMIF/EVEDA (Engineering Validation and Engineering Design Activities) project from the Broader Approach to fusion. One presents the current status of the conceptual development of the IFMIF Start-Up Monitoring Module, a dedicated device used in the IFMIF test cell during the commissioning phase of the installation, in order to completely characterise the irradiation conditions behind the target on which the beam of deuterons will be focused. This STUMM embarks a lot of instrumentation to precisely characterise the neutron field, the nuclear heating and the temperatures in the test cell. One briefly describes the measuring instruments (including a specific radiation flux monitor under development), the possible layouts and the possible positioning. One also defines which types of measurements are expected by this especially dedicated commissioning module.

  19. Enhancing Conceptual Knowledge of Energy in Biology with Incorrect Representations

    Science.gov (United States)

    Wernecke, Ulrike; Schütte, Kerstin; Schwanewedel, Julia; Harms, Ute

    2018-01-01

    Energy is an important concept in all natural sciences, and a challenging one for school science education. Students' conceptual knowledge of energy is often low, and they entertain misconceptions. Educational research in science and mathematics suggests that learning through depictive representations and learning from errors, based on the theory…

  20. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  1. The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students' Science Achievement and Conceptual Understanding of Evaporation and Condensation

    Science.gov (United States)

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2018-01-01

    The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students' science achievement and conceptual understanding in the domain of state changes of water, focusing…

  2. It's not rocket science : developing pupils’ science talent in out-of-school science education for primary schools

    NARCIS (Netherlands)

    Geveke, Carla

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  3. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  4. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  5. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  6. A Conceptual Framework for Graduate Teaching Assistant Professional Development Evaluation and Research.

    Science.gov (United States)

    Reeves, Todd D; Marbach-Ad, Gili; Miller, Kristen R; Ridgway, Judith; Gardner, Grant E; Schussler, Elisabeth E; Wischusen, E William

    2016-01-01

    Biology graduate teaching assistants (GTAs) are significant contributors to the educational mission of universities, particularly in introductory courses, yet there is a lack of empirical data on how to best prepare them for their teaching roles. This essay proposes a conceptual framework for biology GTA teaching professional development (TPD) program evaluation and research with three overarching variable categories for consideration: outcome variables, contextual variables, and moderating variables. The framework's outcome variables go beyond GTA satisfaction and instead position GTA cognition, GTA teaching practice, and undergraduate learning outcomes as the foci of GTA TPD evaluation and research. For each GTA TPD outcome variable, key evaluation questions and example assessment instruments are introduced to demonstrate how the framework can be used to guide GTA TPD evaluation and research plans. A common conceptual framework is also essential to coordinating the collection and synthesis of empirical data on GTA TPD nationally. Thus, the proposed conceptual framework serves as both a guide for conducting GTA TPD evaluation at single institutions and as a means to coordinate research across institutions at a national level. © 2016 T. D. Reeves et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. PROFESSIONAL SPECIFICITY OF CONCEPTUAL THINKING

    Directory of Open Access Journals (Sweden)

    S. A. Gilmanov

    2017-01-01

    Full Text Available Introduction. Most studies of psychologists and teachers in the phenomenon of conceptual thinking and ways of its formation are considered to be rather controversial and questionable. However, the research results were limited to the phenomenon of conceptual thinking and are therefore not representative for its implementation during the process of vocational training at the higher school. There is still considerable uncertainty with regard to the approaches to the problem of conceptual thinking in the humanities, including pedagogics and psychology. Furthermore, previous studies have not dealt with the objectives of conceptual thinking formation.The aims of the article are: to justify the use of the term “professional conceptualization of thinking” (PCT in theory and practice; to describe the prospects of the development of PCT in the training process.Methodology and research methods. The methodological base of the research involves the Russian psychological and pedagogical science approaches to the consideration of conceptual thinking as a higher mental function, a systematized and summarized form of cognitive reflection of notions and relations of reality. The experimental work was carried out using the method of observation, interviews, and tests. Quantitative and qualitative analysis of the data was conducted. The process of formation of PCT is described through the theory of stage-by-stage systematic development of mental acts.Results and scientific novelty. The concept “professional conceptualization of thinking” (PCT, a new one for psychological-pedagogical science, is suggested. The PCT levels are identified: ordinary, formal, substantial, system, and holistic. The objectives proposed for the development of the PCT levels in the process of professional education consist in the organization of consecutive transition from conscious mastering of a terminological framework to its use in the performance of educational tasks; from

  8. The Impact of Crosstalk in the X-IFU Instrument on Athena Science Cases

    Science.gov (United States)

    Hartog, R. Den; Peille, P.; Dauser, T.; Jackson, B.; Bandler, S.; Barret, D.; Brand, T.; Herder, J-W Den; Kiviranta, M.; Kuur, J. Van Der; hide

    2016-01-01

    In this paper we present a first assessment of the impact of various forms of instrumental crosstalk on the science performance of the X-ray Integral Field Unit (X-IFU) on the Athena X-ray mission. This assessment is made using the SIXTE end-to-end simulator in the context of one of the more technically challenging science cases for the XIFU instrument. Crosstalk considerations may influence or drive various aspects of the design of the array of high-count-rate Transition Edge Sensor (TES) detectors and its Frequency Domain Multiplexed (FDM) readout architecture. The Athena X-ray mission was selected as the second L-class mission in ESA's Cosmic Vision 2015–25 plan, with alaunch foreseen in 2028, to address the theme ''Hot and Energetic Universe"1. One of the two instruments on boardAthena is the X-ray Integral Field Unit2 (X-IFU) which is based on an array of 3800 Transition Edge Sensors (TES's)operated at a temperature of 90 mK. The science cases pose an interesting challenge for this instrument, as they requirea combination of high energy resolution (2.5 eV FWHM or better), high spatial resolution (5 arcsec or better) and highcount rate capability (several tens of counts per second per detector for point sources as bright as 10 mCrab).The performance at the single sensor level has been demonstrated3, but the operation of such detectors in an array, usingmultiplexed readout, brings additional challenges, both for the design of the array in which the sensors are placed and forthe readout of the sensors. The readout of the detector array will be based on Frequency Domain Multiplexing (FDM)4.In this system of detectors and readout, crosstalk can arise through various mechanisms: on the TES array, neighboringsensors can couple through thermal crosstalk. Detectors adjacent in carrier frequency may suffer from electrical crosstalkdue to the finite width of the bandpass filters, and shared sources of impedance in their signal lines. The signals from theindividual

  9. A Thermal Imaging Instrument with Uncooled Detectors

    Science.gov (United States)

    Joseph, A. T.; Barrentine, E. M.; Brown, A. D.

    2017-12-01

    In this work, we perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. The National Research Council's Committee on Implementation of a Sustained Land Imaging Program has identified the inclusion of a thermal imager as critical for both current and future land imaging missions. Such an imaging instrument operating in two bands located at approximately 11 and 12 microns (for example, in Landsat 8, and also Landsat 9 when launched) will provide essential information for furthering our hydrologic understanding at scales of human influence, and produce field-scale moisture information through accurate retrievals of evapotranspiration (ET). Landsat 9 is slated to recycle the TIRS-2 instrument launched with Landsat 8 that uses cooled quantum well infrared photodetectors (QWIPs), hence requiring expensive and massive cryocooler technology to achieve its required spectral and spatial accuracies. Our goal is to conceptualize and develop a thermal imaging instrument which leverages recent and imminent technology advances in uncooled detectors. Such detector technology will offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. It would also allow a thermal imaging instrument to be fielded on board a low-cost platform, e.g., a CubeSat. Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, crop status, environment, and climate. Accurate satellite mapping of ET at the agricultural field scale (the finest spatial scale of the environmental processes of interest) requires high-quality thermal data to produce the corresponding accurate land surface temperature (LST) retrievals used to drive an ET model. Such an imaging instrument would provide important information on the following: 1) the relationship between land-use and land/water management practices and water use dynamics; 2) the

  10. Mentoring the Next Generation of Science Gateway Developers and Users

    Science.gov (United States)

    Hayden, L. B.; Jackson-Ward, F.

    2016-12-01

    The Science Gateway Institute (SGW-I) for the Democratization and Acceleration of Science was a SI2-SSE Collaborative Research conceptualization award funded by NSF in 2012. From 2012 through 2015, we engaged interested members of the science and engineering community in a planning process for a Science Gateway Community Institute (SGCI). Science Gateways provide Web interfaces to some of the most sophisticated cyberinfrastructure resources. They interact with remotely executing science applications on supercomputers, they connect to remote scientific data collections, instruments and sensor streams, and support large collaborations. Gateways allow scientists to concentrate on the most challenging science problems while underlying components such as computing architectures and interfaces to data collection changes. The goal of our institute was to provide coordinating activities across the National Science Foundation, eventually providing services more broadly to projects funded by other agencies. SGW-I has succeeded in identifying two underrepresented communities of future gateway designers and users. The Association of Computer and Information Science/Engineering Departments at Minority Institutions (ADMI) was identified as a source of future gateway designers. The National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE) was identified as a community of future science gateway users. SGW-I efforts to engage NOBCChE and ADMI faculty and students in SGW-I are now woven into the workforce development component of SGCI. SGCI (ScienceGateways.org ) is a collaboration of six universities, led by San Diego Supercomputer Center. The workforce development component is led by Elizabeth City State University (ECSU). ECSU efforts focus is on: Produce a model of engagement; Integration of research into education; and Mentoring of students while aggressively addressing diversity. This paper documents the outcome of the SGW

  11. Towards to An Explanation for Conceptual Change: A Mechanistic Alternative

    Science.gov (United States)

    Rusanen, Anna-Mari

    2014-07-01

    Conceptual change is one of the most studied fields in science education and psychology of learning. However, there are still some foundational issues in conceptual change research on which no clear consensus has emerged. Firstly, there is no agreement on what changes in belief and concept systems constitute conceptual change and what changes do not. Secondly, there is no consensus on what the specific mechanisms of conceptual change are. Thirdly, there is no common explanatory framework of how to explain conceptual change. In this paper a sketch for explanations of conceptual change is outlined. According to this account, the explanation for conceptual change requires (1) a description for the information processing task and (2) a sufficiently accurate and detailed description of the cognitive mechanisms responsible for the task. The scope and limits of this type of explanation are discussed.

  12. “Biotecnological War” - A Conceptual And Perceptual Assessment Tool For Teaching Biotechnology And Protein Chemistry For Undergraduate Students In Biological Sciences.

    OpenAIRE

    C. R. C. Cruz et al.

    2017-01-01

    "Biotecnological War" board game, a conceptual and perceptual assessment tool for biotechnology and protein chemistry teaching for undergraduate students in biological sciences and related areas. It is a proposal initially conceived as an alternative complementary tool for biochemistry teaching of proteins and peptides, challenging students, aiming to review concepts transmitted in classroom, stimulating diverse student’s abilities, such as their creativity, competitiveness and resource manag...

  13. A systematic review of instruments that assess the implementation of hospital quality management systems.

    Science.gov (United States)

    Groene, Oliver; Botje, Daan; Suñol, Rosa; Lopez, Maria Andrée; Wagner, Cordula

    2013-10-01

    Health-care providers invest substantial resources to establish and implement hospital quality management systems. Nevertheless, few tools are available to assess implementation efforts and their effect on quality and safety outcomes. This review aims to (i) identify instruments to assess the implementation of hospital quality management systems, (ii) describe their measurement properties and (iii) assess the effects of quality management on quality improvement and quality of care outcomes. We performed a systematic literature search from 1990 to 2011 in PubMed, CINAHL, EMBASE, Cochrane Library and Web of Science. In addition, we used snowball strategies, screened the reference lists of eligible papers, reviewed grey literature and contacted experts in the field. and data extraction Two reviewers screened eligible papers based on pre-defined inclusion and exclusion criteria and all authors extracted data. Eligible papers are described in terms of general characteristics (settings, type and level of respondents, mode of data collection), methodological properties (sampling strategy, item derivation, conceptualization of quality management, assessment of reliability and validity, scoring) and application/implementation (accounting for context, organizational adaptations, sensitivity to change, deployment and effect size). Eighteen papers were deemed eligible for inclusion. While some common domains emerged in measurement conceptualization, substantial differences in scope persist. The instruments' measurement properties were insufficiently described and only few instruments assessed links between the implementation of quality management systems (QMS) and improvement strategies or outcomes. There is currently no well-established measure to assess the implementation and effectiveness of quality management systems. Future research should address this gap.

  14. Role of conceptual models in nuclear power plant operation

    International Nuclear Information System (INIS)

    Williams, M.D.; Moran, T.P.; Brown, J.S.

    1982-01-01

    A crucial objective in plant operation (and perhaps licensing) ought to be to explicitly train operators to develop, perhaps with computer aids, robust conceptual models of the plants they control. The question is whether we are actually able to develop robust conceptual models and validate their robustness. Cognitive science is just beginning to come to grips with this problem. This paper describes some of the evolving technology for building conceptual models of physical mechanisms and some of the implications of such models in the context of nuclear power plant operation

  15. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  16. Do You Believe in Magic? Exploring the Conceptualization of Augmented Reality and its Implications for the User in the Field of Library and Information Science

    Directory of Open Access Journals (Sweden)

    Elizabeth Zak

    2014-12-01

    Full Text Available Augmented reality technology has implications for the ways that the field of library and information science (LIS serves users and organizes information. Through content analysis, the author examined how augmented reality (AR is conceptualized within a sample of LIS literature from the Library and Information Science and Technology Abstracts (LISTA database and Google Blogs postings, and whether Radical Change Theory (RCT and the digital age principles of interactivity, connectivity and access are present in the discussion of this technology. The analysis of data led to the identification of 14 categories comprised of 132 total codes across sources within the data set.  The analysis indicates that the conceptualization of AR, while inconsistent, suggests expectations that overall, the technology will enhance the user experience.   This can lead to future examinations of user behavior, response and observation of technologies like AR.

  17. Examining the Teaching of Science, and Technology and Engineering Content and Practices: An Instrument Modification Study

    Science.gov (United States)

    Love, Tyler S.; Wells, John G.; Parkes, Kelly A.

    2017-01-01

    A modified Reformed Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000) instrument was used to separately examine eight technology and engineering (T&E) educators' teaching of science, and T&E content and practices, as called for by the "Standards for Technological Literacy: Content for the Study of Technology"…

  18. Understanding the interplay of cancer patients' instrumental concerns and emotions.

    Science.gov (United States)

    Brandes, Kim; van der Goot, Margot J; Smit, Edith G; van Weert, Julia C M; Linn, Annemiek J

    2017-05-01

    1) to assess patients' descriptions of concerns, and 2) to inform a conceptual framework in which the impact of the nature of concerns on doctor-patient communication is specified. Six focus groups were conducted with 39 cancer patients and survivors. In these focus groups participants were asked to describe their concerns during and after their illness. Concerns were described as instrumental concerns (e.g., receiving insufficient information) and emotions (e.g., sadness). Patients frequently explained their concerns as an interplay of instrumental concerns and emotions. Examples of the interplay were "receiving incorrect information" and "frustration", and "difficulties with searching, finding and judging of information" and "fear". Instrumental concerns need to be taken into account in the operationalization of concerns in research. Based on the interplay, the conceptual framework suggests that patients can express instrumental concerns as emotions and emotions as instrumental concerns. Consequently, providers can respond with instrumental and emotional communication when patients express an interplay of concerns. The results of this study can be used to support providers in recognizing concerns that are expressed by patients in consultations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. "Designing Instrument for Science Classroom Learning Environment in Francophone Minority Settings: Accounting for Voiced Concerns among Teachers and Immigrant/Refugee Students"

    Science.gov (United States)

    Bolivar, Bathélemy

    2015-01-01

    The three-phase process "-Instrument for Minority Immigrant Science Learning Environment," an 8-scale, 32-item see Appendix I- (I_MISLE) instrument when completed by teachers provides an accurate description of existing conditions in classrooms in which immigrant and refugee students are situated. Through the completion of the instrument…

  20. Instruments of Science and Citizenship: Science Education for Dutch Orphans During the Late Eighteenth Century

    Science.gov (United States)

    Roberts, Lissa L.

    2012-01-01

    One of the two most extensive instrument collections in the Netherlands during the second half of the eighteenth century—rivaling the much better known collection at the University of Leiden—belonged to an orphanage in The Hague that was specially established to mold hand-picked orphans into productive citizens. (The other was housed at the Mennonite Seminary in Amsterdam, for use in the education of its students.) The educational program at this orphanage, one of three established by the Fundatie van Renswoude, grew out of a marriage between the socially-oriented generosity of the wealthy Baroness van Renswoude and the pedagogical vision of the institute's director and head teacher—a vision that fit with the larger movement of oeconomic patriotism. Oeconomic patriotism, similar to `improvement' and oeconomic movements in other European countries and their colonies, sought to tie the investigation of nature to an improvement of society's material and moral well-being. Indeed, it was argued that these two facets of society should be viewed as inseparable from each other, distinguishing the movement from more modern conceptions of economics. While a number of the key figures in this Dutch movement also became prominent Patriots during the revolutionary period at the end of the century, fighting against the House of Orange, they did not have a monopoly on oeconomic ideas of societal improvement. This is demonstrated by the fact that an explicitly pro-Orangist society, Mathesis Scientiarum Genitrix, was organized in 1785 to teach science and mathematics to poor boys and orphans for very similar reasons: to turn them into productive and useful citizens. As was the case with the Fundatie van Renswoude, a collection of instruments was assembled to help make this possible. This story is of interest because it discusses a hitherto under-examined use to which science education was put during this period, by revealing the link between such programs and the highly

  1. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  2. A Conceptual Framework for Responsive Global Engagement in Communication Sciences and Disorders

    Science.gov (United States)

    Hyter, Yvette D.

    2014-01-01

    The field of speech-language pathology needs a conceptual framework to guide the provision of services in a globalized world. Proposed in this article is a conceptual framework designed to facilitate responsive global engagement for professionals such as speech-language pathologists, who are increasingly serving diverse populations around the…

  3. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  4. Development and Use of a Conceptual Survey in Introductory Quantum Physics

    Science.gov (United States)

    Wuttiprom, Sura; Sharma, Manjula Devi; Johnston, Ian D.; Chitaree, Ratchapak; Soankwan, Chernchok

    2009-01-01

    Conceptual surveys have become increasingly popular at many levels to probe various aspects of science education research such as measuring student understanding of basic concepts and assessing the effectiveness of pedagogical material. The aim of this study was to construct a valid and reliable multiple-choice conceptual survey to investigate…

  5. Empirical Support for Perceptual Conceptualism

    Directory of Open Access Journals (Sweden)

    Nicolás Alejandro Serrano

    2018-03-01

    Full Text Available The main objective of this paper is to show that perceptual conceptualism can be understood as an empirically meaningful position and, furthermore, that there is some degree of empirical support for its main theses. In order to do this, I will start by offering an empirical reading of the conceptualist position, and making three predictions from it. Then, I will consider recent experimental results from cognitive sciences that seem to point towards those predictions. I will conclude that, while the evidence offered by those experiments is far from decisive, it is enough not only to show that conceptualism is an empirically meaningful position but also that there is empirical support for it.

  6. Community science, philosophy of science, and the practice of research.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2005-06-01

    Embedded in community science are implicit theories on the nature of reality (ontology), the justification of knowledge claims (epistemology), and how knowledge is constructed (methodology). These implicit theories influence the conceptualization and practice of research, and open up or constrain its possibilities. The purpose of this paper is to make some of these theories explicit, trace their intellectual history, and propose a shift in the way research in the social and behavioral sciences, and community science in particular, is conceptualized and practiced. After describing the influence and decline of logical empiricism, the underlying philosophical framework for science for the past century, I summarize contemporary views in the philosophy of science that are alternatives to logical empiricism. These include contextualism, normative naturalism, and scientific realism, and propose that a modified version of contextualism, known as perspectivism, affords the philosophical framework for an emerging community science. I then discuss the implications of perspectivism for community science in the form of four propositions to guide the practice of research.

  7. On the conceptual foundations of psychological measurement

    International Nuclear Information System (INIS)

    Maul, Andrew; Wilson, Mark; Irribarra, David Torres

    2013-01-01

    Measurement has long been an important element of epistemology in the physical sciences and natural philosophy. More recently, the psychological sciences have developed a variety of techniques that purport to be instances of measurement as well. However, it is not clear how the understanding of measurement invoked in psychological science applications accords with the understanding of measurement found in other scientific disciplines. A sharper focus on conceptual clarity and coherence across the psychological and physical sciences has the potential to add a great deal to efforts to improve such practices. In this paper, we argue that it is possible to formulate a philosophically coherent account of how measurement works in both the physical and the human sciences

  8. On the conceptual foundations of psychological measurement

    Science.gov (United States)

    Maul, Andrew; Wilson, Mark; Torres Irribarra, David

    2013-09-01

    Measurement has long been an important element of epistemology in the physical sciences and natural philosophy. More recently, the psychological sciences have developed a variety of techniques that purport to be instances of measurement as well. However, it is not clear how the understanding of measurement invoked in psychological science applications accords with the understanding of measurement found in other scientific disciplines. A sharper focus on conceptual clarity and coherence across the psychological and physical sciences has the potential to add a great deal to efforts to improve such practices. In this paper, we argue that it is possible to formulate a philosophically coherent account of how measurement works in both the physical and the human sciences.

  9. Conceptual Relativity Meets Realism in Metaphysics

    Czech Academy of Sciences Publication Activity Database

    Marvan, Tomáš

    2016-01-01

    Roč. 12, č. 2 (2016), s. 23-37 E-ISSN 1849-0514 Institutional support: RVO:67985955 Keywords : Hilary Putnam * conceptual relativity * realism * optional languages Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology https://www.ffri.hr/phil/casopis/content.html

  10. Conceptual change through the use of student-generated analogies of photosynthesis and respiration by college non-science majors

    Science.gov (United States)

    Hill, Gary D.

    Two of the most important and difficult concepts in biology are photosynthesis and respiration. A pilot study was performed using student volunteers from introductory biology classes to assess student alternative frameworks regarding photosynthesis and respiration. The results of the pilot study were used to construct the Instrument for the Assessment of Respiration and Photosynthesis (IFARP). This was an 11-item, three-tier multiple choice instrument designed to conveniently assess the common misconceptions students have about these concepts upon entering a biology course. The first tier of each item of the IFARP contained a multiple choice question about photosynthesis or respiration. The second tier had a multiple choice question regarding the reason for the choice in the first tier. The third tier asked the students to indicate how confident they were in their responses, on a scale from 1 (not very confident) to 5 (very confident). The IFARP was administered as a pretest and posttest to a group of science non-majors in an introductory biology course. No significant changes were observed in student performance as measured by the IFARP between the pretest and posttest administrations. The students did, however, demonstrate a statistical increase in mean confidence levels regarding their knowledge of photosynthesis and respiration. Even though their comprehension and understanding regarding photosynthesis and respiration had not increased, the confidence they had in their responses about these two concepts had increased. The IFARP was also administered to a group of nursing student volunteers in an introductory microbiology course. This group of students also participated in the use of student-generated analogies as a learning strategy to alter conceptual frameworks. One test group of students provided analogies to photosynthesis and respiration, while the other test group provided analogies to two other concepts. No significant changes were observed in the

  11. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2013-01-01

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  12. Fair Value Accounting for Financial InstrumentsConceptual Approach and Implications

    OpenAIRE

    Dumitru MATIS; Carmen Giorgiana BONACI

    2008-01-01

    This study complements the growing literature on the value relevance of fair value by examining the validity of the hypothesis that fair value is more informative than historical cost as a financial reporting standard for financial instruments. We therefore compare the relative explanatory power of fair value and historical cost in explaining equity values. In order to reflect fair values’ role in offering the fair view where financial instruments are concerned we briefly reviewed capital mar...

  13. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are

  14. Defining Conceptual Understanding in General Chemistry

    Science.gov (United States)

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  15. EVALUATION OF CONCEPTUAL FRAMEWORKS IN ASTRONOMY

    Directory of Open Access Journals (Sweden)

    David Pundak

    2016-02-01

    Full Text Available Even though astronomy is the oldest science, it is still an open question how to evaluate students’ understanding in astronomy. In spite of the fact that some methods and evaluation tools have been developed for that purpose, the sources of students' difficulties in astronomy are still unclear. This paper presents an investigation of the changes in conceptual frameworks in astronomy among 50 engineering students as a result of learning a general course in astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA, which was initially used in 1989, was adopted to gather data for the present research. In its new version, the tool includes 23 questions and five to six optional answers to each question. Each of the answers characterizes one of the four conceptual frameworks: pre-scientific, geocentric, heliocentric and sidereal. These four conceptual frameworks act as a taxonomical system that enables us to evaluate astronomical understanding. The paper describes the background of the CFA, its development, and discusses its validity and reliability. Using the CFA we were able to: (1 identify the students’ conceptual frameworks at the beginning of the course and at its end, (2 to evaluate the students’ paradigmatic change following the course. It was found that the measure of the students’ improvement (gain index was g = 0.37. Approximately 45% of the students in the course improved their conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks. The CFA can also be applied as an evaluation tool in all schools and institutions that teach astronomy.

  16. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    Science.gov (United States)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  17. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year's summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer's summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs

  18. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A [ed.

    1996-11-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year`s summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer`s summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs.

  19. Heterogeneous performances of conceptual dis/continuity: a dialectic reading of Brown and Kloser's article

    Science.gov (United States)

    Hwang, Sungwon; Kim, Mijung

    2009-12-01

    We review Brown and Kloser's article, "Conceptual continuity and the science of baseball: using informal science literacy to promote students science learning" from a Vygotskian cultural-historical and dialectic perspective. Brown and Kloser interpret interview data with student baseball players and claim that students' conceptual understanding articulated in vernacular genres involves continuities (similarities) with the canonical scientific explanations. In this commentary, we suggest that the authors' approach presupposes the dichotomy of the formal and the informal, which brings the authors' attention to continuity into the separation of cognition from language. We propose a Vygotskian approach that points out the problem of theorizing cognition (conceptual understanding) by depending on specific forms of representation (e.g., scientific terms). As alternative, we envision a Vygotskian cultural-historical approach to language, which considers different, irreducible modes of communication as an integrated whole and therefore allows theorizing cognition without dichotomizing it from the concrete ways by which human being communicates. We provide an exemplary analysis of a lecture talk in a university physics classroom and exemplify dialectic theories that explain the development of conceptual understanding. We discuss that this Vygotskian dialectic approach shows that people communicate scientific concepts through hybridization, which does not reproduce a genre self-identically; the continuity of conceptual understanding involves dis/continuity.

  20. Game innovation through conceptual blending

    DEFF Research Database (Denmark)

    Möring, Sebastian Martin

    In  this  paper  I  wish  to  apply implications of  the  Conceptual  Blending  Theory  to  computer  games.  I  will  analyze  chosen  examples  and  discuss  them  as  a  result  of  video  game  innovation  made  possible  through  "conceptual  blending."  Conceptual  blending  links  at  least.......,  Hell.  The  purpose  of  my  approach  is  not  so  much  to  validate  the  ideas  of  conceptual  blending  theory  through  another  field  of  examples  (computer  games)  but  to  name  and analyze characteristics of the mentioned games with the  help of a given method.......  integration  network  consisting  of  at  least  two  input  spaces,  a  generic  space  and  a  blended  space  as  well  as  its  governing  principles  consisting  of  composition,  completion,  and  elaboration.  With  the  help  of  these  instruments  I  analyze computer  games like  Tuper  Tario  Tros...

  1. The Need for Paradigms in Science Education Research

    Science.gov (United States)

    Bowen, Barbara L.

    1975-01-01

    Suggests that the absence of conceptually based research in science education may derive from an attempt to conduct scientific research based on misperceptions of the nature of science and an inability to identify a suitable conceptual model. Suggests that Ausubel's model of meaningful learning may serve as a candidate for a science education…

  2. Conceptual Models as Tools for Communication Across Disciplines

    Directory of Open Access Journals (Sweden)

    Marieke Heemskerk

    2003-12-01

    Full Text Available To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.

  3. Moving Beyond Concepts: Getting Urban High School Students Engaged in Science through Cognitive Processes

    Science.gov (United States)

    Singh, Renu

    In order to maintain its global position, the United States needs to increase the number of students opting for science careers. Science teachers face a formidable challenge. Students are not choosing science because they do not think coursework is interesting or applies to their lives. These problems often compound for adolescents in urban areas. This action research investigated an innovation aimed at engaging a group of adolescents in the science learning process through cognitive processes and conceptual understanding. It was hoped that this combination would increase students' engagement in the classroom and proficiency in science. The study was conducted with 28 juniors and sophomores in an Environmental Science class in an urban high school with a student body of 97% minority students and 86% students receiving free and reduced lunch. The study used a mixed-methods design. Instruments included a pre- and post-test, Thinking Maps, transcripts of student discourse, and a two-part Engagement Observation Instrument. Data analysis included basic descriptives and a grounded theory approach. Findings show students became engaged in activities when cognitive processes were taught prior to content. Furthermore it was discovered that Thinking Maps were perceived to be an easy tool to use to organize students' thinking and processing. Finally there was a significant increase in student achievement. From these findings implications for future practice and research are offered.

  4. Business Model Innovation: An Integrative Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Bernd Wirtz

    2017-01-01

    Full Text Available Purpose: The point of departure of this exploratory study is the gap between the increasing importance of business model innovation (BMI in science and management and the limited conceptual assistance available. Therefore, the study identi es and explores scattered BMI insights and deduces them into an integrative framework to enhance our understanding about this phenomenon and to present a helpful guidance for researchers and practitioners. Design/Methodology/Approach: The study identi es BMI insights through a literature-based investigation and consolidates them into an integrative BMI framework that presents the key elements and dimensions of BMI as well as their presumed relationships. Findings: The study enhances our understanding about the key elements and dimensions of BMI, presents further conceptual insights into the BMI phenomenon, supplies implications for science and management, and may serve as a helpful guidance for future research. Practical Implications: The presented framework provides managers with a tool to identify critical BMI issues and can serve as a conceptual BMI guideline. Research limitations: Given the vast amount of academic journals, it is unlikely that every applicable scienti c publication is included in the analysis. The illustrative examples are descriptive in nature, and thus do not provide empirical validity. Several implications for future research are provided. Originality/Value: The study’s main contribution lies in the unifying approach of the dispersed BMI knowledge. Since our understanding of BMI is still limited, this study should provide the necessary insights and conceptual assistance to further develop the concept and guide its practical application.

  5. Instrument for Analysis of Organic Compounds on Other Planets

    Science.gov (United States)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  6. Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models

    Science.gov (United States)

    Delgado, Cesar

    2015-04-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic

  7. Geography and environmental science

    OpenAIRE

    Milinčić, Miroljub; Souliotis, Lily; Mihajlović, Ljiljana; Požar, Tea

    2014-01-01

    Geography is one of the oldest academic disciplines with a strong holistic approach in conceptualizing the interaction between nature and society, i.e. animate and inanimate parts of the environment. Over time, geography has been increasing and improving its conceptual and terminological abilities for studying and understanding complex relationships among environmental systems. For this reason, geography has advanced from a well-known science about nature and society into a relevant science a...

  8. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    Science.gov (United States)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept

  9. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  10. Safety Research Experiment Facility Project. Conceptual design report. Volume VIII. Instrumentation and control

    International Nuclear Information System (INIS)

    1975-01-01

    Included are sections dealing with the following: nuclear instrumentation system, reactor control system, plant protection system, plant annunciator system, data acquisition system, and reactor cooling system instrumentation and control

  11. Preservice Science Teachers' Beliefs about Astronomy Concepts

    Science.gov (United States)

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…

  12. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    Science.gov (United States)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  13. Conceptualizations of Mental Health Across Europe: Comparing Psychology with Science and Engineering Students

    NARCIS (Netherlands)

    Lamers, S.M.A.; Gül, P.; Kovács, B.E.; Kroeze, R.; Müller, A.M.K.; Stojadinović, I.; Stüker, D.L.; Vigani, A.

    2014-01-01

    There is a lack of consensus on the conceptualization of mental health, with models emphasizing negative aspects, positive aspects, or both. The models are mainly theory-based and may not fit in with the population’s opinions. The aim of this ongoing study is to investigate the conceptualizations of

  14. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  15. Measurement properties of instruments assessing permanent functional impairment of the spine: a systematic review protocol

    Science.gov (United States)

    Trask, Catherine M; Boden, Catherine; Bath, Brenna; Hendrick, Paul; Clay, Lynne; Zeng, Xiaoke; Milosavljevic, Stephan

    2018-01-01

    Introduction Permanent functional impairment (PFI) of the spine is a rating system used by compensation authorities, such as workers compensation boards, to establish an appropriate level of financial compensation for persistent loss of function. Determination of PFI of the spine is commonly based on the assessment of spinal movement combined with other measures of physical and functional impairments; however, the reliability and validity of the measurement instruments used for these evaluations have yet to be established. The aim of this study is to systematically review and synthesise the literature concerning measurement properties of the various and different instruments used for assessing PFI of the spine. Methods Three conceptual groups of terms (1) PFI, (2) spinal disorder and (3) measurement properties will be combined to search Medline, EMBASE, CINAHL, Web of Science, Scopus, PEDro, OTSeeker and Health and Safety Science Abstracts. We will examine peer-reviewed, full-text articles over the full available date range. Two reviewers will independently screen citations (title, abstract and full text) and perform data extraction. Included studies will be appraised as to their methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments criteria. Findings will be summarised and presented descriptively, with meta-analysis pursued as appropriate. Ethics and dissemination This review will summarise the current level of evidence of measurement properties of instruments used for assessing PFI of the spine. Findings of this review may be applicable to clinicians, policy-makers, workers’ compensation boards, other insurers and health and safety organisations. The findings will likely provide a foundation and direction for future research priorities for assessing spinal PFI. PROSPERO registration number CRD42017060390. PMID:29374671

  16. College physics students' epistemological self-reflection and its relationship to conceptual learning

    Science.gov (United States)

    May, David B.; Etkina, Eugenia

    2002-12-01

    Students should develop self-reflection skills and appropriate views about knowledge and learning, both for their own sake and because these skills and views may be related to improvements in conceptual understanding. We explored the latter issue in the context of an introductory physics course for first-year engineering honors students. As part of the course, students submitted weekly reports, in which they reflected on how they learned specific physics content. The reports by 12 students were analyzed for the quality of reflection and some of the epistemological beliefs they exhibited. Students' conceptual learning gains were measured with standard survey instruments. We found that students with high conceptual gains tend to show reflection on learning that is more articulate and epistemologically sophisticated than students with lower conceptual gains. Some implications for instruction are suggested.

  17. Science and the Large Hadron Collider: a probe into instrumentation, periodization and classification

    CERN Document Server

    Roy, Arpita

    2012-01-01

    On September 19, 2008, the Large Hadron Collider (LHC) at CERN, Switzerland, began the world’s highest energy experiments as a probe into the structure of matter and forces of nature. Just nine days after the gala start-up, an explosion occurred in the LHC tunnel that brought the epic collider to a complete standstill. In light of the catastrophic incident that disrupted the operation of the LHC, the paper investigates the relation of temporality to the cycle of work in science, and raises the question: What kind of methodological value should we ascribe to events such as crises or breakdowns? Drawing upon and integrating classical anthropological themes with two and a half years of fieldwork at the LHC particle accelerator complex, the paper explores how the incident in September, which affected the instrument, acquaints us with the distribution of work in the laboratory. The incident discloses that the organization of science is not a homogenous ensemble, but marked by an enormous diversity of tasks and p...

  18. On the way to a philosophy of science education

    Science.gov (United States)

    Schulz, Roland M.

    This Thesis argues the case that a philosophy of science education is required for improving science education as a research field as well as curriculum and teacher pedagogy. It seeks to re-think science education as an educational endeavor by examining why past reform efforts have been only partially successful, including why the fundamental goal of achieving scientific literacy after several "reform waves" has proven to be so elusive. The identity of such a philosophy is first defined in relation to the fields of philosophy, philosophy of science, and philosophy of education. Considering science education as a research discipline it is emphasized a new field should be broached with the express purpose of developing a discipline-specific "philosophy of science education" (largely neglected since Dewey). A conceptual shift towards the philosophy of education. is needed, thereto, on developing and demarcating true educational theories which could in addition serve to reinforce science education's growing sense of academic autonomy and independence from socio-economic demands. Two educational metatheories are contrasted, those of Kieran Egan and the Northern European Bildung tradition, to illustrate the task of such a philosophy. Egan's cultural-linguistic metatheory is presented for two primary purposes: it is offered as a possible solution to the deadlock of the science literacy conceptions within the discipline; regarding practice, examples are provided how it can better guide the instructional practice of teachers, specifically how it reinforces the work of other researchers in the History and Philosophy of Science (HPS) reform movement who value narrative in learning science. Considering curriculum and instruction, a philosophy of science education is conceptualized as a "second order" reflective capacity of the teacher. This notion is aligned with Shulman's idea of Pedagogical Content Knowledge. It is argued that for educators the nature of science learning

  19. Conceptual assessment tool for advanced undergraduate electrodynamics

    Science.gov (United States)

    Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.

    2017-12-01

    As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question preinstruction test, and accompanying grading rubrics. The instrument's development was guided by faculty-consensus learning goals and research into common student difficulties. It can be used to gauge the effectiveness of transformed pedagogy, and to gain insights into student thinking in the covered topic areas. We present baseline data representing 500 students across 9 institutions, along with validity, reliability, and discrimination measures of the instrument and scoring rubric.

  20. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  1. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  2. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    Science.gov (United States)

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  3. SOFIA science instruments: commissioning, upgrades and future opportunities

    Science.gov (United States)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  4. Facets of Academic Excellence in Management Education: Conceptualization and Instrument Development in India

    Science.gov (United States)

    Shukla, Amit; Singh, Shailendra

    2016-01-01

    The present work conceptualizes the idea of "Academic Excellence in Management Education" (AEM) in the Indian context. AEM is defined as a set of attributes that favourably and significantly contribute to a wide range of academic activities from faculty's perspective. The paper also describes grounded-theory approach for development of…

  5. Changing Attitudes, Changing Behaviors. Conceptual Change as a Model for Teaching Freedom of Religion or Belief

    Science.gov (United States)

    Rea-Ramirez, Mary Anne; Ramirez, Tina M.

    2017-01-01

    Purpose: The purpose is to demonstrate that conceptual change theory and strategies can be applied to areas of the social science, such as human rights education on FORB. Design/methodology/approach: The theoretical scope of this paper is conceptual change theory and is intended to introduce the theory and practice of conceptual change in teaching…

  6. Improving Student Perceptions of Science through the Use of State-of-the-Art Instrumentation in General Chemistry Laboratory

    Science.gov (United States)

    Aurentz, David J.; Kerns, Stefanie L.; Shibley, Lisa R.

    2011-01-01

    Access to state-of-the-art instrumentation, namely nuclear magnetic resonance (NMR) spectroscopy, early in the college curriculum was provided to undergraduate students in an effort to improve student perceptions of science. Proton NMR spectroscopy was introduced as part of an aspirin synthesis in a guided-inquiry approach to spectral…

  7. Developing and validating rapid assessment instruments

    CERN Document Server

    Abell, Neil; Kamata, Akihito

    2009-01-01

    This book provides an overview of scale and test development. From conceptualization through design, data collection, analysis, and interpretation, critical concerns are identified and grounded in the increasingly sophisticated psychometric literature. Measurement within the health, social, and behavioral sciences is addressed, and technical and practical guidance is provided. Acknowledging the increasingly sophisticated contributions in social work, psychology, education, nursing, and medicine, the book balances condensation of complex conceptual challenges with focused recommendations for conceiving, planning, and implementing psychometric study. Primary points are carefully referenced and consistently illustrated to illuminate complicated or abstract principles. Basics of construct conceptualization and establishing evidence of validity are complimented with introductions to concept mapping and cross-cultural translation. In-depth discussion of cutting edge topics like bias and invariance in item responses...

  8. The Conceptual Framework of Strategic Management Accounting

    Directory of Open Access Journals (Sweden)

    Iershova Natalia Yu.

    2017-03-01

    Full Text Available The aim of the article is to elaborate a conceptual framework for strategic management accounting. By analyzing, systematizing and generalizing the structural and characteristic approaches of many scientists, the content of the concept “strategic management accounting” is defined; the identification of system-forming elements of the conceptual framework of strategic management accounting is presented. Based on the results of the research, the conceptual framework of strategic management accounting revealing the economic mechanism of its functioning is elaborated; scientific approaches that ensure its development as a holistic system and empirical science are defined; the methodology determining the organizational and methodological possibilities of its practical building at enterprises is improved. Prospects for further research in this area are the elaboration of a modern concept of strategic management accounting aimed at information-anticipating reflection of the events sequence and support of feedbacks based on proactive information support for strategic management.

  9. Comment: Interactive Problem-Solving Interventions as Instrument of ...

    African Journals Online (AJOL)

    This structural and conceptual metamorphosis in the international conflict paradigm has required the international community to rethink the traditional and formal conflict management and third party intervention techniques and instruments such as negotiation and mediation. In the course of achieving these goals, conflict ...

  10. Purchasing social responsibility : a conceptual study

    OpenAIRE

    Mørk, Eirik; Solheim, Kristian Hauge

    2014-01-01

    This paper focuses on Purchasing Social Responsibility (PSR). Suppliers play an important role in the overall corporate social responsibility (CSR) efforts of the purchasing firm. The purpose of this paper is to explore potential firm performance effects from PSR, which contributes to an area of research that is limited at this point. The aim is to develop a survey instrument based on a set of formulated hypotheses and a conceptual framework. These are grounded in a literature review of core ...

  11. Knowledge Management: A Conceptual Platform for the Sharing of Ideas.

    Science.gov (United States)

    Mahdjoubi, Darius; Harmon, Glynn

    2001-01-01

    The concept of the learning organization and intellectual capital were instrumental in the beginning stage of knowledge management, about 1995. From the spontaneous combination of these two fields, the modern concept of knowledge management as a conceptual platform emerged. The seven main fields that are so far most intimately connected to…

  12. Conceptual design of next generation MTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Hiroshi; Yamaura, Takayuki; Naka, Michihiro; Kawamata, Kazuo; Izumo, Hironobu; Hori, Naohiko; Nagao, Yoshiharu; Kusunoki, Tsuyoshi; Kaminaga, Masanori; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Mine, M [Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki (Japan); Yamazaki, S [Kawasaki Heavy Industries, Ltd., Kobe, Hyogo (Japan); Ishikawa, S [NGK Insulators, Ltd., Nagoya, Aichi (Japan); Miura, K [Sukegawa Electric Co., Ltd., Takahagi, Ibaraki (Japan); Nakashima, S [Fuji Electric Co., Ltd., Tokyo (Japan); Yamaguchi, K [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    Conceptual design of the high-performance and low-cost next generation materials testing reactor (MTR) which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  13. Assessing health status and quality-of-life instruments: attributes and review criteria.

    Science.gov (United States)

    Aaronson, Neil; Alonso, Jordi; Burnam, Audrey; Lohr, Kathleen N; Patrick, Donald L; Perrin, Edward; Stein, Ruth E

    2002-05-01

    The field of health status and quality of life (QoL) measurement - as a formal discipline with a cohesive theoretical framework, accepted methods, and diverse applications--has been evolving for the better part of 30 years. To identify health status and QoL instruments and review them against rigorous criteria as a precursor to creating an instrument library for later dissemination, the Medical Outcomes Trust in 1994 created an independently functioning Scientific Advisory Committee (SAC). In the mid-1990s, the SAC defined a set of attributes and criteria to carry out instrument assessments; 5 years later, it updated and revised these materials to take account of the expanding theories and technologies upon which such instruments were being developed. This paper offers the SAC's current conceptualization of eight key attributes of health status and QoL instruments (i.e., conceptual and measurement model; reliability; validity; responsiveness; interpretability; respondent and administrative burden; alternate forms; and cultural and language adaptations) and the criteria by which instruments would be reviewed on each of those attributes. These are suggested guidelines for the field to consider and debate; as measurement techniques become both more familiar and more sophisticated, we expect that experts will wish to update and refine these criteria accordingly.

  14. Management of science policy, sociology of science policy and economics of science policy

    CERN Document Server

    Ruivo, Beatriz

    2017-01-01

    'Management of science policy, sociology of science policy and economics of science policy' is a theoretical essay on the scientific foundation of science policy (formulation, implementation, instruments and procedures). It can be also used as a textbook.

  15. Exploring the gender gap in the conceptual survey of electricity and magnetism

    Directory of Open Access Journals (Sweden)

    Rachel Henderson

    2017-09-01

    Full Text Available The “gender gap” on various physics conceptual evaluations has been extensively studied. Men’s average pretest scores on the Force Concept Inventory and Force and Motion Conceptual Evaluation are 13% higher than women’s, and post-test scores are on average 12% higher than women’s. This study analyzed the gender differences within the Conceptual Survey of Electricity and Magnetism (CSEM in which the gender gap has been less well studied and is less consistent. In the current study, data collected from 1407 students (77% men, 23% women in a calculus-based physics course over ten semesters showed that male students outperformed female students on the CSEM pretest (5% and post-test (6%. Separate analyses were conducted for qualitative and quantitative problems on lab quizzes and course exams and showed that male students outperformed female students by 3% on qualitative quiz and exam problems. Male and female students performed equally on the quantitative course exam problems. The gender gaps within CSEM post-test scores, qualitative lab quiz scores, and qualitative exam scores were insignificant for students with a CSEM pretest score of 25% or less but grew as pretest scores increased. Structural equation modeling demonstrated that a latent variable, called Conceptual Physics Performance/Non-Quantitative (CPP/NonQnt, orthogonal to quantitative test performance was useful in explaining the differences observed in qualitative performance; this variable was most strongly related to CSEM post-test scores. The CPP/NonQnt of male students was 0.44 standard deviations higher than female students. The CSEM pretest measured CPP/NonQnt much less accurately for women (R^{2}=4% than for men (R^{2}=17%. The failure to detect a gender gap for students scoring 25% or less on the pretest suggests that the CSEM instrument itself is not gender biased. The failure to find a performance difference in quantitative test performance while detecting a gap in

  16. Exploring the gender gap in the conceptual survey of electricity and magnetism

    Science.gov (United States)

    Henderson, Rachel; Stewart, Gay; Stewart, John; Michaluk, Lynnette; Traxler, Adrienne

    2017-12-01

    The "gender gap" on various physics conceptual evaluations has been extensively studied. Men's average pretest scores on the Force Concept Inventory and Force and Motion Conceptual Evaluation are 13% higher than women's, and post-test scores are on average 12% higher than women's. This study analyzed the gender differences within the Conceptual Survey of Electricity and Magnetism (CSEM) in which the gender gap has been less well studied and is less consistent. In the current study, data collected from 1407 students (77% men, 23% women) in a calculus-based physics course over ten semesters showed that male students outperformed female students on the CSEM pretest (5%) and post-test (6%). Separate analyses were conducted for qualitative and quantitative problems on lab quizzes and course exams and showed that male students outperformed female students by 3% on qualitative quiz and exam problems. Male and female students performed equally on the quantitative course exam problems. The gender gaps within CSEM post-test scores, qualitative lab quiz scores, and qualitative exam scores were insignificant for students with a CSEM pretest score of 25% or less but grew as pretest scores increased. Structural equation modeling demonstrated that a latent variable, called Conceptual Physics Performance/Non-Quantitative (CPP/NonQnt), orthogonal to quantitative test performance was useful in explaining the differences observed in qualitative performance; this variable was most strongly related to CSEM post-test scores. The CPP/NonQnt of male students was 0.44 standard deviations higher than female students. The CSEM pretest measured CPP/NonQnt much less accurately for women (R2=4 % ) than for men (R2=17 % ). The failure to detect a gender gap for students scoring 25% or less on the pretest suggests that the CSEM instrument itself is not gender biased. The failure to find a performance difference in quantitative test performance while detecting a gap in qualitative performance

  17. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    Science.gov (United States)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  18. What Is Science? Some Research from Primary Schools

    Science.gov (United States)

    Crompton, Zoe

    2013-01-01

    By the end of primary school, we might expect children to be able to give a reasonable description of what science is. In their response to the question "What is science?", Eshach and Fried (2005) distinguish between conceptual and procedural knowledge and understanding. They explain that children's conceptual knowledge is developed…

  19. Effectiveness of Teamwork in an Integrated Care Setting for Patients with COPD: Development and Testing of a Self-Evaluation Instrument for Interprofessional Teams.

    Science.gov (United States)

    Van Dijk-de Vries, Anneke N; Duimel-Peeters, Inge G P; Muris, Jean W; Wesseling, Geertjan J; Beusmans, George H M I; Vrijhoef, Hubertus J M

    2016-04-08

    Teamwork between healthcare providers is conditional for the delivery of integrated care. This study aimed to assess the usefulness of the conceptual framework Integrated Team Effectiveness Model for developing and testing of the Integrated Team Effectiveness Instrument. Focus groups with healthcare providers in an integrated care setting for people with chronic obstructive pulmonary disease (COPD) were conducted to examine the recognisability of the conceptual framework and to explore critical success factors for collaborative COPD practice out of this framework. The resulting items were transposed into a pilot instrument. This was reviewed by expert opinion and completed 153 times by healthcare providers. The underlying structure and internal consistency of the instrument were verified by factor analysis and Cronbach's alpha. The conceptual framework turned out to be comprehensible for discussing teamwork effectiveness. The pilot instrument measures 25 relevant aspects of teamwork in integrated COPD care. Factor analysis suggested three reliable components: teamwork effectiveness, team processes and team psychosocial traits (Cronbach's alpha between 0.76 and 0.81). The conceptual framework Integrated Team Effectiveness Model is relevant in developing a practical full-spectrum instrument to facilitate discussing teamwork effectiveness. The Integrated Team Effectiveness Instrument provides a well-founded basis to self-evaluate teamwork effectiveness in integrated COPD care by healthcare providers. Recommendations are provided for the improvement of the instrument.

  20. Effectiveness of Teamwork in an Integrated Care Setting for Patients with COPD: Development and Testing of a Self-Evaluation Instrument for Interprofessional Teams

    Directory of Open Access Journals (Sweden)

    Anneke N Van Dijk-de Vries

    2016-04-01

    Full Text Available Introduction: Teamwork between healthcare providers is conditional for the delivery of integrated care. This study aimed to assess the usefulness of the conceptual framework Integrated Team Effectiveness Model for developing and testing of the Integrated Team Effectiveness Instrument. Theory and methods: Focus groups with healthcare providers in an integrated care setting for people with chronic obstructive pulmonary disease (COPD were conducted to examine the recognisability of the conceptual framework and to explore critical success factors for collaborative COPD practice out of this framework. The resulting items were transposed into a pilot instrument. This was reviewed by expert opinion and completed 153 times by healthcare providers. The underlying structure and internal consistency of the instrument were verified by factor analysis and Cronbach’s alpha. Results: The conceptual framework turned out to be comprehensible for discussing teamwork effectiveness. The pilot instrument measures 25 relevant aspects of teamwork in integrated COPD care. Factor analysis suggested three reliable components: teamwork effectiveness, team processes and team psychosocial traits (Cronbach’s alpha between 0.76 and 0.81. Conclusions and discussion: The conceptual framework Integrated Team Effectiveness Model is relevant in developing a practical full-spectrum instrument to facilitate discussing teamwork effectiveness. The Integrated Team Effectiveness Instrument provides a well-founded basis to self-evaluate teamwork effectiveness in integrated COPD care by healthcare providers. Recommendations are provided for the improvement of the instrument.

  1. Measuring teamwork in health care settings: a review of survey instruments.

    Science.gov (United States)

    Valentine, Melissa A; Nembhard, Ingrid M; Edmondson, Amy C

    2015-04-01

    Teamwork in health care settings is widely recognized as an important factor in providing high-quality patient care. However, the behaviors that comprise effective teamwork, the organizational factors that support teamwork, and the relationship between teamwork and patient outcomes remain empirical questions in need of rigorous study. To identify and review survey instruments used to assess dimensions of teamwork so as to facilitate high-quality research on this topic. We conducted a systematic review of articles published before September 2012 to identify survey instruments used to measure teamwork and to assess their conceptual content, psychometric validity, and relationships to outcomes of interest. We searched the ISI Web of Knowledge database, and identified relevant articles using the search terms team, teamwork, or collaboration in combination with survey, scale, measure, or questionnaire. We found 39 surveys that measured teamwork. Surveys assessed different dimensions of teamwork. The most commonly assessed dimensions were communication, coordination, and respect. Of the 39 surveys, 10 met all of the criteria for psychometric validity, and 14 showed significant relationships to nonself-report outcomes. Evidence of psychometric validity is lacking for many teamwork survey instruments. However, several psychometrically valid instruments are available. Researchers aiming to advance research on teamwork in health care should consider using or adapting one of these instruments before creating a new one. Because instruments vary considerably in the behavioral processes and emergent states of teamwork that they capture, researchers must carefully evaluate the conceptual consistency between instrument, research question, and context.

  2. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    Science.gov (United States)

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  3. Las Ciencias instrumentales en la Investigación Biomédica Instrumental Sciences in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Josep Roma Millán

    2004-03-01

    Full Text Available Hay una serie de ciencias que se hacen imprescindibles para poder investigar e interpretar los resultados científicos, son la ciencias que llamamos instrumentales o auxiliares. Entre ellas se encuentran la Demografía, la Epidemiología y la Bioestadística. Además, hay que tomar en consideración las técnicas de investigación cualitativa, el conjunto de estrategias e instrumentos de búsqueda de información bibliográfica y, también las metodologías de presentación de resultados. Finalmente, no puede olvidarse la ética, en sus dos componentes de bioética y de ética del trabajo científico, si queremos desarrollar un trabajo siguiendo el método científico. Este capítulo explica cuál es la función de estas disciplinas en el seno de la investigación científica y del desarrollo de proyectos.Some scientific disciplines are essential for research and scientific results interpretation. Instrumental or auxiliary sciences include Demography, Epidemiology, and Biostatistics. Also, it is necessary to take into account the techniques for qualitative research, the strategies and instruments for bibliographic information and the methodology for scientific results presentation. Finally, to develop a project according to the scientific method, it is necessary to consider ethics, in its two components: bioethics and the ethics of scientific method. This report explains which is the function of these instrumental and auxiliary sciences in the context of the scientific research and the development of scientific projects.

  4. Students' beliefs, attitudes, and conceptual change in a traditional and a constructivistic high school physics classroom

    Science.gov (United States)

    Adams, April Dean

    In this study, the relationships between student beliefs about the nature of science, student attitudes, and conceptual change about the nature of forces were investigated within a traditional and within a constructivistic high school physics classroom. Students in both classrooms were honors students taking a first year high school physics course and were primarily white and middle to upper SES. Students in the traditional classroom were all high ability juniors, and physics instruction was integrated with pre-calculus. Students in the constructivistic classroom were a mixture of juniors and seniors. Due to the interrelated nature of these factors and the complexity of their interactions, a naturalistic inquiry design was chosen. The data sources included videotape of 7-9 weeks of instruction; analysis of the videotapes using the Secondary Teacher Analysis Matrix (Gallagher & Parker, 1995); field notes; pretest/posttest assessment with the Force Concept Inventory (Hestenes, Wells, & Swackhammer, 1992); student responses from the Views on Science-Technology-Society questionnaire (Aikenhead & Ryan, 1992), the Questionnaire for the Assessment of a Science Course (Chiappetta, 1995), and the Constructivist Learning Environment Survey (Taylor, Fraser, & White, 1994); student interviews; and teacher interviews. In the traditional classroom, (a) students did not think that physics was relevant to everyday experiences; (b) high conceptual change students were more likely to have an angular world view (Cobern, 1993) and have views more similar to the teacher's about the nature of science; and (c) high conceptual change students were able to develop an internally consistent understanding of the content; however, that content appeared to be isolated knowledge in some students. In the constructivistic classroom, (a) students saw physics as relevant and useful; (b) there was no difference in world view or agreement with the teacher's views on the nature of science between high

  5. Measurement properties of instruments assessing permanent functional impairment of the spine: a systematic review protocol.

    Science.gov (United States)

    Goes, Suelen Meira; Trask, Catherine M; Boden, Catherine; Bath, Brenna; Ribeiro, Daniel Cury; Hendrick, Paul; Clay, Lynne; Zeng, Xiaoke; Milosavljevic, Stephan

    2018-01-27

    Permanent functional impairment (PFI) of the spine is a rating system used by compensation authorities, such as workers compensation boards, to establish an appropriate level of financial compensation for persistent loss of function. Determination of PFI of the spine is commonly based on the assessment of spinal movement combined with other measures of physical and functional impairments; however, the reliability and validity of the measurement instruments used for these evaluations have yet to be established. The aim of this study is to systematically review and synthesise the literature concerning measurement properties of the various and different instruments used for assessing PFI of the spine. Three conceptual groups of terms (1) PFI, (2) spinal disorder and (3) measurement properties will be combined to search Medline, EMBASE, CINAHL, Web of Science, Scopus, PEDro, OTSeeker and Health and Safety Science Abstracts. We will examine peer-reviewed, full-text articles over the full available date range. Two reviewers will independently screen citations (title, abstract and full text) and perform data extraction. Included studies will be appraised as to their methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments criteria. Findings will be summarised and presented descriptively, with meta-analysis pursued as appropriate. This review will summarise the current level of evidence of measurement properties of instruments used for assessing PFI of the spine. Findings of this review may be applicable to clinicians, policy-makers, workers' compensation boards, other insurers and health and safety organisations. The findings will likely provide a foundation and direction for future research priorities for assessing spinal PFI. CRD42017060390. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  6. How Surgeons Conceptualize Talent: A Qualitative Study Using Sport Science as a Lens.

    Science.gov (United States)

    Jensen, Rune Dall; Christensen, Mette Krogh; LaDonna, Kori A; Seyer-Hansen, Mikkel; Cristancho, Sayra

    Debates prevail regarding the definition of surgical talent, and how individuals with the potential to become talented surgeons can be identified and developed. However, over the past 30 years, talent has been studied extensively in other domains. The objectives of this study is to explore notions of talent in surgery and sport in order to investigate if the field of surgical education can benefit from expanding its view on talented performances. Therefore, this study aims to use the sport literature as a lens when exploring how surgeons conceptualize and define talent. Semi-structured interviews were conducted with a sample of 11 consultant surgeons from multiple specialties. We used constructivist grounded theory principles to explore talent in surgery. Ongoing data analysis refined the theoretical framework and iteratively informed data collection. Themes were identified iteratively using constant comparison. The setting included 8 separate hospitals across Canada and Denmark. A total of 11 consultant surgeons from 6 different surgical subspecialties (urology, orthopedic surgery, colorectal surgery, general surgery, vascular surgery, head & neck surgery) were included. We identified three key elements for conceptualizing surgical talent: (1) Individual skills makes the surgical prospect "good", (2) a mixture of skills gives the surgical prospect the potential to become talented, and (3) becoming talented may rely on the fit between person and environment. We embarked on a study aimed at understanding talent in surgery. Talent is a difficult construct to agree on. Whether in medicine or sports, debates about talent will continue to persist, as we all perceive talent differently. While we heard different opinions, three key ideas summarize our participants' discussions regarding surgical talent. These findings resonate with the holistic ecological approach from sport science and hence highlight the limits of a reductionist approach while favoring the individual

  7. Conceptualization about conservation, production and development

    International Nuclear Information System (INIS)

    Angel, Augusto

    1994-01-01

    The article tries the conceptualization, production and development, of the environmental sciences or environmentalism and ecology; they are made a series of reflections that it haven't just been defined still these sciences with clarity like a epistemological field in front of the other sciences, or in combination or in integration with them that doesn't have, unfortunately, for the way like it has been come developing the science western, many possibilities of theoretical approach, in fact for the sciences compartment. The author comments that this compartment was obligatory inside the development process begun by Europe and that it ends fundamentally in the capitalist development. That the positivism and the empiricism like expression forms have been indispensable to dominate the nature and to exploit it; so that there we needed specialized sciences that had the capacity the resources that it needed the development. The environmentalism and, before the environmentalism, the ecology is putting us in a quite complicated noise, and it is that more and more they are putting us before the pressure that in fact the natural resources are integrated to complex systems, and it is that the science is not organized to manage systems

  8. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  9. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  10. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    integration into a new conceptual approach to enable more effective use of SAR instruments.

  11. Conceptualizations of clinical leadership: a review of the literature

    Directory of Open Access Journals (Sweden)

    Mianda S

    2017-10-01

    Full Text Available Solange Mianda, Anna S Voce Department of Public Health Medicine, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa Introduction: Poor patient outcomes in South African maternal health settings have been associated with inadequately performing health care providers and poor clinical leadership at the point of care. While skill deficiencies among health care providers have been largely addressed, the provision of clinical leadership has been neglected. In order to develop and implement initiatives to ensure clinical leadership among frontline health care providers, a need was identified to understand the ways in which clinical leadership is conceptualized in the literature.Design: Using the systematic quantitative literature review, papers published between 2004 and 2016 were obtained from search engines (Google Scholar and EBSCOhost. Electronic databases (CINHAL, PubMed, Medline, Academic Search Complete, Health Source: Consumer, Health Source: Nursing/Academic, ScienceDirect and Ovid® and electronic journals (Contemporary Nurse, Journal of Research in Nursing, Australian Journal of Nursing and Midwifery, International Journal of Clinical Leadership were also searched.Results: Using preselected inclusion criteria, 7256 citations were identified. After screening 230 potentially relevant full-text papers for eligibility, 222 papers were excluded because they explored health care leadership or clinical leadership among health care providers other than frontline health care providers. Eight papers met the inclusion criteria for the review. Most studies were conducted in high-income settings. Conceptualizations of clinical leadership share similarities with the conceptualizations of service leadership but differ in focus, with the intent of improving direct patient care. Clinical leadership can be a shared responsibility, performed by every competent frontline health care provider

  12. An overview of animal science research 1945-2011 through science mapping analysis.

    Science.gov (United States)

    Rodriguez-Ledesma, A; Cobo, M J; Lopez-Pujalte, C; Herrera-Viedma, E

    2015-12-01

    The conceptual structure of the field of Animal Science (AS) research is examined by means of a longitudinal science mapping analysis. The whole of the AS research field is analysed, revealing its conceptual evolution. To this end, an automatic approach to detecting and visualizing hidden themes or topics and their evolution across a consecutive span of years was applied to AS publications of the JCR category 'Agriculture, Dairy & Animal Science' during the period 1945-2011. This automatic approach was based on a coword analysis and combines performance analysis and science mapping. To observe the conceptual evolution of AS, six consecutive periods were defined: 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2005 and 2006-2011. Research in AS was identified as having focused on ten main thematic areas: ANIMAL-FEEDING, SMALL-RUMINANTS, ANIMAL-REPRODUCTION, DAIRY-PRODUCTION, MEAT-QUALITY, SWINE-PRODUCTION, GENETICS-AND-ANIMAL-BREEDING, POULTRY, ANIMAL-WELFARE and GROWTH-FACTORS-AND-FATTY-ACIDS. The results show how genomic studies gain in weight and integrate with other thematic areas. The whole of AS research has become oriented towards an overall framework in which animal welfare, sustainable management and human health play a major role. All this would affect the future structure and management of livestock farming. © 2014 Blackwell Verlag GmbH.

  13. Conceptual strategies and inter-theory relations: The case of nanoscale cracks

    Science.gov (United States)

    Bursten, Julia R.

    2018-05-01

    This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.

  14. Instrumented techniques in tool - and object perspectives

    DEFF Research Database (Denmark)

    Andresen, Mette

    2007-01-01

    The aim of this paper is to report from a study of the role of instrumented techniques in the students? learning process. The paper analyses an episode from a case study of students solving differential equations in a CAS environment. The analysis demonstrates how tasks can be designed with the aim...... to encourage the students to change between the perspective of tool on a mathematical conception and the perspective of object on the conception. Reasons are given in the paper for the assertion, that changing between these two perspectives supports the instrumental genesis as well as the conceptual...

  15. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  16. Habilidades informativas: convergencia entre ciencias de información y comunicación Information Skills: Conceptual Convergence between Information and Communication Sciences

    Directory of Open Access Journals (Sweden)

    Jesús Cortés

    2009-03-01

    Full Text Available La información se constituye, en la época actual, en uno de los principales recursos para el desarrollo y bienestar de los individuos, por lo que su distribución y aprovechamiento debe constituirse en una prioridad social. Por ello, es necesario establecer estrategias para que las personas aprendan a utilizar estos recursos. Por otra parte, el avance científico y los paradigmas educativos actuales hablan de la importancia de la transdisciplinaridad; las ciencias de la información y las de la comunicación son por naturaleza complementarias, una se enfoca al medio informativo y la otra al proceso comunicativo; es deseable, por ende, que exista una mayor claridad y consistencia conceptual en algunos temas de relevancia común. Este trabajo constituye un esfuerzo, desde la perspectiva de la bibliotecología y las ciencias de la información, para identificar algunos posibles puntos de encuentro entre estas disciplinas, en lo que respecta al estudio y desarrollo de las competencias necesarias para manejar adecuadamente la información. Nowadays, information is one of the main resources for an individual’s development and wellbeing, therefore distributing and using information must be a top priority for society. This entails establishing strategies so people can learn to use this resource. Furthermore, scientific progress and present-day educational paradigms stress trans-disciplinary learning. Information and communication sciences are complementary by nature –one focusing on the medium and the other on the process– so there must be greater clarity and conceptual consistency in a number of key shared areas. This document is an effort, from the perspective of library science and information science, to identify some possible meeting-points between these disciplines, regarding the study and development of the necessary competencies to handle information adequately.

  17. A Conceptual Framework for Evolving, Recommender Online Learning Systems

    Science.gov (United States)

    Peiris, K. Dharini Amitha; Gallupe, R. Brent

    2012-01-01

    A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…

  18. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  19. Space station accommodations for life sciences research facilities. Phase 1: Conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 2: Study results

    Science.gov (United States)

    1986-01-01

    Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.

  20. Cross-cultural adaptation of the instrument 'Family Needs Questionnaire'.

    Science.gov (United States)

    Hora, Edilene Curvelo; de Sousa, Regina Márcia Cardoso

    2009-01-01

    This is a quantitative methodological development study on the cross-cultural adaptation of the 'Family Needs Questionnaire' (FNQ), which is a structured instrument developed in the United States to measure the perceived needs of family members after the Traumatic Brain Injury (TBI) of a relative. This instrument aims to identify important needs presented by family members, whether met or not. The FNQ translation and adaptation followed a particular method, which permitted to achieve semantic, idiomatic, cultural and conceptual equivalence of the instrument version labeled in Portuguese as 'Questionário de Necessidades da Família'. The results of the questionnaire application to 161 family members showed that the instrument content is valid to measure the needs of families of patients with TBI in the Brazilian context.

  1. Investigating the Quality of Project-Based Science and Technology Learning Environments in Elementary School: A Critical Review of Instruments

    Science.gov (United States)

    Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre

    2016-01-01

    This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…

  2. The use of a four-tier wave diagnostic instrument to measure the scientific literacy among students in SMA Negeri 2 Karanganyar

    Science.gov (United States)

    Krisdiana, A.; Aminah, N. S.; Nurosyid, F.

    2018-03-01

    This study aims to investigate the scientific literacy among 12th grade science students in SMA Negeri 2 Karanganyar. The instrument used is a four-tier wave diagnostic instrument. This instrument was originally used to diagnose students’ conceptions about nature and propagation of waves. This study using quantitative descriptive method. The diagnostic results based on dominant students’ answers show the lack of knowledge percentage of 14.3%-77.1%, alternative conceptions percentage 0%-60%, scientific conceptions percentage 0%-65.7%. Lack of knowledge indicated when there is doubt about at least one tier of the student’s answer. The results of the research shows that the students’ dominant scientific literacy is in the nominal literacy category with the percentage of 22.9% - 91.4%, the functional literacy with the percentage 2.86% - 28.6%, and the conceptual/procedural literacy category with the percentage 0% - 65.7%. Description level of nominal literacy in context of the current study is student have alternative conceptions and lack of knowledge. Student recognize the scientific terms, but is not capable to justify this term.

  3. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  4. Development of a representational conceptual evaluation in the first law of thermodynamics

    Science.gov (United States)

    Sriyansyah, S. P.; Suhandi, A.

    2016-08-01

    As part of an ongoing research to investigate student consistency in understanding the first law of thermodynamics, a representational conceptual evaluation (RCET) has been developed to assess student conceptual understanding, representational consistency, and scientific consistency in the introductory physics course. Previous physics education research findings were used to develop the test. RCET items were 30 items which designed as an isomorphic multiple-choice test with three different representations concerning the concept of work, heat, first law of thermodynamics, and its application in the thermodynamic processes. Here, we present preliminary measures of the validity and reliability of the instrument, including the classical test statistics. This instrument can be used to measure the intended concept in the first law of thermodynamics and it will give the consistent results with the ability to differentiate well between high-achieving students and low-achieving students and also students at different level. As well as measuring the effectiveness of the learning process in the concept of the first law of thermodynamics.

  5. Development of a representational conceptual evaluation in the first law of thermodynamics

    International Nuclear Information System (INIS)

    Sriyansyah, S P; Suhandi, A

    2016-01-01

    As part of an ongoing research to investigate student consistency in understanding the first law of thermodynamics, a representational conceptual evaluation (RCET) has been developed to assess student conceptual understanding, representational consistency, and scientific consistency in the introductory physics course. Previous physics education research findings were used to develop the test. RCET items were 30 items which designed as an isomorphic multiple-choice test with three different representations concerning the concept of work, heat, first law of thermodynamics, and its application in the thermodynamic processes. Here, we present preliminary measures of the validity and reliability of the instrument, including the classical test statistics. This instrument can be used to measure the intended concept in the first law of thermodynamics and it will give the consistent results with the ability to differentiate well between high-achieving students and low-achieving students and also students at different level. As well as measuring the effectiveness of the learning process in the concept of the first law of thermodynamics. (paper)

  6. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Kusunoki, Tsuyoshi; Hori, Naohiko; Kaminaga, Masanori

    2012-01-01

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  7. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  8. Análisis conceptual e investigación en Didáctica de la Matemática

    OpenAIRE

    Rico, Luis

    2004-01-01

    En este capítulo se resalta la importancia del análisis conceptual como herramienta metodológica que permite controlar la complejidad, seleccionar las opciones conceptuales idóneas y disponer del aparato teórico adecuado en una investigación. Se ubica el análisis conceptual dentro del proceso de diseño de una investigación y se presenta un ejemplo de esta herramienta para la noción de modelo. In this chapter we emphasize the conceptual analysis as a methodological instrument which allows in a...

  9. Characterizing the Fundamental Intellectual Steps Required in the Solution of Conceptual Problems

    Science.gov (United States)

    Stewart, John

    2010-02-01

    At some level, the performance of a science class must depend on what is taught, the information content of the materials and assignments of the course. The introductory calculus-based electricity and magnetism class at the University of Arkansas is examined using a catalog of the basic reasoning steps involved in the solution of problems assigned in the class. This catalog was developed by sampling popular physics textbooks for conceptual problems. The solution to each conceptual problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content within the course. Using this characterization technique, an exceptionally detailed picture of the information flow and structure of the class can be produced. The intellectual structure of published conceptual inventories is compared with the information presented in the class and the dependence of conceptual performance on the details of coverage extracted. )

  10. WFIRST: Data/Instrument Simulation Support at IPAC

    Science.gov (United States)

    Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin

    2018-01-01

    As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.

  11. Tinkering: a conceptual and historical evaluation.

    Science.gov (United States)

    Laubichler, Manfred D

    2007-01-01

    Francois Jacob's article 'Evolution and Tinkering' published in Science in 1977 is still the locus classicus for the concept of tinkering in biology. It first introduced the notion of tinkering to a wide audience of scientists. Jacob drew on a variety of different sources ranging from molecular biology to evolutionary biology and cultural anthropology. The notion of tinkering, or more accurately, the concept of bricolage, are conceptual abstractions that allow for the theoretical analysis of a wide range of phenomena that are united by a shared underlying process--tinkering, or the opportunistic rearrangement and recombination of existing elements. This paper looks at Jacob's analysis as itself an example of conceptual tinkering. It traces the history of some of its elements and sketches how it has become part of an inclusive discourse of theoretical biology and evolutionary developmental biology that emerged over the last 30 years. I will argue that the theoretical power of Jacob's analysis lies in the fact that he captured a widespread phenomenon. His conceptual analysis is thus an example of an interdisciplinary synthesis that is based on a shared process rather than a shared object.

  12. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  13. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  14. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  15. The Justice Dimension of Sustainability: A Systematic and General Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Klara Helene Stumpf

    2015-06-01

    Full Text Available We discuss how the normative dimension of sustainability can be captured in terms of justice. We (i identify the core characteristics of the concept of sustainability and discuss underlying ethical, ontological and epistemological assumptions; (ii introduce a general conceptual structure of justice for the analysis and comparison of different conceptions of justice; and (iii employ this conceptual structure to determine the specific characteristics and challenges of justice in the context of sustainability. We demonstrate that sustainability raises specific and partly new challenges of justice regarding the community of justice, the judicandum, the informational base, the principles, and the instruments of justice.

  16. Falsification Testing of Instrumental Variables Methods for Comparative Effectiveness Research.

    Science.gov (United States)

    Pizer, Steven D

    2016-04-01

    To demonstrate how falsification tests can be used to evaluate instrumental variables methods applicable to a wide variety of comparative effectiveness research questions. Brief conceptual review of instrumental variables and falsification testing principles and techniques accompanied by an empirical application. Sample STATA code related to the empirical application is provided in the Appendix. Comparative long-term risks of sulfonylureas and thiazolidinediones for management of type 2 diabetes. Outcomes include mortality and hospitalization for an ambulatory care-sensitive condition. Prescribing pattern variations are used as instrumental variables. Falsification testing is an easily computed and powerful way to evaluate the validity of the key assumption underlying instrumental variables analysis. If falsification tests are used, instrumental variables techniques can help answer a multitude of important clinical questions. © Health Research and Educational Trust.

  17. Data Science and Some Instruments

    Directory of Open Access Journals (Sweden)

    Corina SBUGHEA

    2017-12-01

    Full Text Available This paper is addressed to beginners, who want to form an overview on the field of Data Science, on the skills needed to access available IT tools, for obtaining meaningful and valuable analyzes in developing new strategies.

  18. Perspectives on Information Literacy: A Framework for Conceptual Understanding

    Science.gov (United States)

    Addison, Colleen; Meyers, Eric

    2013-01-01

    Information literacy, 40 years since the term was coined, remains a conceptually contested aspect of library and information science research. This paper uses a review of the literature related to the concept of information literacy to identify three different perspectives, their historical origins, and connection to library and information…

  19. A Cross-Cultural Comparison of Singaporean and Taiwanese Eighth Graders' Science Learning Self-Efficacy from a Multi-Dimensional Perspective

    Science.gov (United States)

    Lin, Tzung-Jin; Tan, Aik Ling; Tsai, Chin-Chung

    2013-05-01

    Due to the scarcity of cross-cultural comparative studies in exploring students' self-efficacy in science learning, this study attempted to develop a multi-dimensional science learning self-efficacy (SLSE) instrument to measure 316 Singaporean and 303 Taiwanese eighth graders' SLSE and further to examine the differences between the two student groups. Moreover, within-culture comparisons were made in terms of gender. The results showed that, first, the SLSE instrument was valid and reliable for measuring the Singaporean and Taiwanese students' SLSE. Second, through a two-way multivariate analysis of variance analysis (nationality by gender), the main result indicated that the SLSE held by the Singaporean eighth graders was significantly higher than that of their Taiwanese counterparts in all dimensions, including 'conceptual understanding and higher-order cognitive skills', 'practical work (PW)', 'everyday application', and 'science communication'. In addition, the within-culture gender comparisons indicated that the male Singaporean students tended to possess higher SLSE than the female students did in all SLSE dimensions except for the 'PW' dimension. However, no gender differences were found in the Taiwanese sample. The findings unraveled in this study were interpreted from a socio-cultural perspective in terms of the curriculum differences, societal expectations of science education, and educational policies in Singapore and Taiwan.

  20. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    Science.gov (United States)

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  1. Monitoring instrumentation spent fuel management program. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    Preliminary monitoring system methodologies are identified as an input to the risk assessment of spent fuel management. Conceptual approaches to instrumentation for surveillance of canister position and orientation, vault deformation, spent fuel dissolution, temperature, and health physics conditions are presented. In future studies, the resolution, reliability, and uncertainty associated with these monitoring system methodologies will be evaluated

  2. Strengthening Science Departments

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  3. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  4. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    International Nuclear Information System (INIS)

    Knott, Robert

    2000-01-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  5. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation (Australia)

    2000-10-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  6. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-02-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During the quantitative data collection phase, a new instrument—the Social Constructivist Learning Environment Survey (SCLES)—was developed and used to collect data from 1,955 grade 9 science students from 52 classes in 50 schools in the Western Cape province, South Africa. The data were analysed to evaluate the reliability and validity of the new instrument, which assessed six dimensions of the classroom learning environment, namely, Working with Ideas, Personal Relevance, Collaboration, Critical Voice, Uncertainty in Science and Respect for Difference. Two dimensions were developed specifically for the present study in order to contextualise the questionnaire to the requirements of the new South African curriculum (namely, Metacognition and Respect for Difference). In the qualitative data collection phase, two case studies were used to investigate whether profiles of class mean scores on the new instrument could provide an accurate and "trustworthy" description of the learning environment of individual science classes. The study makes significant contributions to the field of learning environments in that it is one of the first major studies of its kind in South Africa with a focus on social constructivism and because the instrument developed captures important aspects of the learning environment associated with social constructivism.

  7. Flipping to Teach the Conceptual Foundations of Successful Workplace Writing

    Science.gov (United States)

    Campbell, Kim Sydow

    2016-01-01

    Flipping originated in science, technology, engineering, and mathematics fields, where didactic transmission of conceptual knowledge has been the standard pedagogy. Flipping has resulted in additional focus on procedural knowledge within class meetings. This article argues that business and professional writing pedagogy, which already focuses…

  8. The Instrumentation Program for the Thirty Meter Telescope

    OpenAIRE

    Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne

    2012-01-01

    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Science cases and operational concepts as well as their links to the instruments are continually revisited and updated through a series of workshops and conferences. Work on the three first-light instruments (WFOS IRIS, and IRMS) has made significant progress, and many groups in TMT partner communities are developing future instrument concepts. Other instrument-related subsystems are al...

  9. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  10. Enhancing climate literacy through the use of an interdisciplinary global change framework and conceptual models

    Science.gov (United States)

    Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.

    2016-12-01

    Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.

  11. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  12. Proceedings of national symposium on advanced instrumentation for nuclear research

    International Nuclear Information System (INIS)

    1993-01-01

    The National Symposium on Advanced Instrumentation for Nuclear Research was held in Bombay during January 27-29, 1993 at BARC. Progress of modern nuclear research is closely related to the availability of state of the art instruments and systems. With the advancements in experimental techniques and sophisticated detector developments, the performance specifications have become more stringent. State of the art techniques and diverse applications of sophisticated nuclear instrumentation systems are discussed along with indigenous efforts to meet the specific instrumentation needs of research programs in nuclear sciences. Papers of relevance to nuclear science and technology are indexed separately. (original)

  13. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  14. Food formulation and not processing level: Conceptual divergences between public health and food science and technology sectors.

    Science.gov (United States)

    Botelho, R; Araújo, W; Pineli, L

    2018-03-04

    Observed changes in eating and drinking behaviors in economically developing countries are associated with increase of obesity and related chronic diseases. Researchers from field of public health (PH) have attributed this problem to food processing and have created new food classification systems to support their thesis. These classifications conceptually differ from processing level concepts in food science, and state to people that food processing is directly related to nutritional impact of food. Our work aims to compare the concept of food processing from the standpoint of food science and technology (FST) and public health and to discuss differences related to formulation or level of processing of products and their impact on nutritional quality. There is a misconception between food processing/unit operation/food technology and formulation or recipes. For the public health approach, classification is based on food products selection and the use of ingredients that results in higher consumption of sugar, sodium, fat, and additives, whereas in FST, processing level is based on the intensity and amount of unit operations to enhance shelf life, food safety, food quality, and availability of edible parts of raw materials. Nutritional quality of a product or preparation is associated with formulation/recipe and not with the level of processing, with few exceptions. The impact of these recommendations on the actual comprehension of food processing and quality must be considered by the population.

  15. The opportunities and challenges of guided inquiry science for students with special needs

    Science.gov (United States)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  16. Development of an Instrument to Measure Higher Order Thinking Skills in Senior High School Mathematics Instruction

    Science.gov (United States)

    Tanujaya, Benidiktus

    2016-01-01

    The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…

  17. Dealing with the Ambiguities of Science Inquiry

    Science.gov (United States)

    Tan, Yuen Sze Michelle; Caleon, Imelda Santos

    2016-01-01

    The current vision of science education in myriad educational contexts encourages students to learn through the process of science inquiry. Science inquiry has been used to promote conceptual learning and engage learners in an active process of meaning-making and investigation to understand the world around them. The science inquiry process…

  18. Lateral Violence in Nursing Survey: Instrument Development and Validation

    Directory of Open Access Journals (Sweden)

    Lynne S. Nemeth

    2017-07-01

    Full Text Available An examination of the psychometric properties of the Lateral Violence in Nursing Survey (LVNS, an instrument previously developed to measure the perceived incidence and severity of lateral violence (LV in the nursing workplace, was carried out. Conceptual clustering and principal components analysis were used with survey responses from 663 registered nurses and ancillary nursing staff in a southeastern tertiary care medical center. Where appropriate, Cronbach’s alpha (α evaluated internal consistency. The prevalence/severity of lateral violence items constitute two distinct subscales (LV by self and others with Cronbach’s alpha of 0.74 and 0.86, respectively. The items asking about potential causes of LV are unidimensional and internally consistent (alpha = 0.77 but there is no conceptually coherent theme underlying the various causes. Respondents rating a potential LV cause as “major” scored higher on both prevalence/severity subscales than those rating it a “minor” cause or not a cause. Subsets of items on the LVNS are internally reliable, supporting construct validity. Revisions of the original LVNS instrument will improve its use in future work.

  19. Adults' decision-making about the electronic waste issue: The role of the nature of science conceptualizations and moral concerns in socio-scientific decision-making

    Science.gov (United States)

    Yu, Yuqing

    Socio-scientific issues have become increasingly important in Science-Technology-Society (STS) education as a means to make science learning more relevant to students' lives. This study used the e-waste issue as a context to investigate two aspects of socio-scientific decision-making: (1) the relationship between the nature of science (NOS) conceptualizations and decision-making; and (2) moral concerns involved in the process of decision-making. This study contributes to the field of socio-scientific issue research and STS education in the following ways. First, it is the first study that performed meta-analysis to seek the relationship between the NOS understanding and decision-making. This study concludes that valuable NOS conceptualizations that are highly related to the socio-scientific issue under investigation, rather than general NOS understanding, exert statistically significant influences on decision-making. Second, this study empirically examined the Multiple Responses Model (MRM), which enables the transfer of qualitative NOS responses into quantitative data, and hence, inferential statistics. The current study justifies the significance of unidimensionality to the application of the MRM. It addresses the limitations associated with the MRM and provides implications for future use of the MRM in other contexts. Finally, the study explores the role of moral concerns in socio-scientific decision-making. Eight participants engaged in interviews that were designed to elicit their reactions and feelings regarding the issue of exporting e-waste to poor countries. Qualitative analyses demonstrated that moral considerations were significant influences on decision-making. In addition, participants' action responses revealed that they were motivated to take action to help the environment. The study has implications for socio-scientific issue studies in other contexts and for teacher education programs that use socio-scientific issues to advance teachers' reasoning

  20. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  1. Philosophy and the front line of science.

    Science.gov (United States)

    Pernu, Tuomas K

    2008-03-01

    According to one traditional view, empirical science is necessarily preceded by philosophical analysis. Yet the relevance of philosophy is often doubted by those engaged in empirical sciences. I argue that these doubts can be substantiated by two theoretical problems that the traditional conception of philosophy is bound to face. First, there is a strong normative etiology to philosophical problems, theories, and notions that is dfficult to reconcile with descriptive empirical study. Second, conceptual analysis (a role that is typically assigned to philosophy) seems to lose its object of study if it is granted that terms do not have purely conceptual meanings detached from their actual use in empirical sciences. These problems are particularly acute to the current naturalistic philosophy of science. I suggest a more concrete integration of philosophy and the sciences as a possible way of making philosophy of science have more impact.

  2. Models in Science Education: Applications of Models in Learning and Teaching Science

    Science.gov (United States)

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  3. Modularized Parallel Neutron Instrument Simulation on the TeraGrid

    International Nuclear Information System (INIS)

    Chen, Meili; Cobb, John W.; Hagen, Mark E.; Miller, Stephen D.; Lynch, Vickie E.

    2007-01-01

    In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serial instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evaluation, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new features seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented

  4. Conceptual Play and Science Inquiry: Using the 5E Instructional Model

    Science.gov (United States)

    Desouza, Josephine M. Shireen

    2017-01-01

    Play has been synonymous with early childhood education and is an important aspect of child development. Researchers have characterized and defined play from different perspectives. If play is an integral part of the early years what is its relationship to learning? This paper describes the development of conceptual play by using the pedagogy of…

  5. State of the science on prevention of elder abuse and lessons learned from child abuse and domestic violence prevention: Toward a conceptual framework for research.

    Science.gov (United States)

    Teresi, Jeanne A; Burnes, David; Skowron, Elizabeth A; Dutton, Mary Ann; Mosqueda, Laura; Lachs, Mark S; Pillemer, Karl

    2016-01-01

    The goal of this review is to discuss the state of the science in elder abuse prevention. Findings from evidence-based programs to reduce elder abuse are discussed, drawing from findings and insights from evidence-based programs for child maltreatment and domestic/intimate partner violence. A conceptual measurement model for the study of elder abuse is presented and linked to possible measures of risk factors and outcomes. Advances in neuroscience in child maltreatment and novel measurement strategies for outcome assessment are presented.

  6. "A bare outpost of learned European culture on the edge of the jungles of Java": Johan Maurits Mohr (1716-1775) and the emergence of instrumental and institutional science in Dutch colonial Indonesia.

    Science.gov (United States)

    Zuidervaart, Huib J; Van Gent, Rob H

    2004-03-01

    The transits of Venus in 1761 and 1769 appear to mark the starting point of instrumental science in the Dutch East Indies (now Indonesia). This essay examines the conditions that triggered and constituted instrumental and institutional science on Indonesian soil in the late eighteenth century. In 1765 the Reverend J. M. Mohr, whose wife had received a large inheritance, undertook to build a fully equipped private observatory in Batavia (now Jakarta). There he made several major astronomical and meteorological observations. Mohr's initiative inspired other Europeans living on Java around 1770 to start a scientific movement. Because of the lack of governmental and other support, it was not until 1778 that this offspring of the Dutch-Indonesian Enlightenment became a reality. The Bataviaasch Genootschap van Kunsten en Wetenschappen tried from the beginning to put into effect the program Mohr had outlined. The members even bought his instruments from his widow, intending to continue his measurements. For a number of reasons, however, this instrumental program was more than the society could support. Around 1790 instrumental science in the former Dutch East Indies came to a standstill, not to be resumed for several decades.

  7. Conceptual definitions of indicators for the nursing outcome "Knowledge: Fall Prevention".

    Science.gov (United States)

    Luzia, Melissa de Freitas; Argenta, Carla; Almeida, Miriam de Abreu; Lucena, Amália de Fátima

    2018-01-01

    to construct conceptual definitions for indicators of nursing outcome Knowledge: Fall Prevention, selected for evaluation of hospitalized patients with the nursing diagnosis Risk for falls. integrative literature review performed in the LILACS, MEDLINE and Web of Science databases, comprising articles published in English, Spanish and Portuguese languages from 2005 to 2015. the final sample of the study was composed of 17 articles. The conceptualizations were constructed for 14 indicators of nursing outcome Knowledge: Fall Prevention focused on hospitalized patients. the theoretical support of the Nursing Outcomes Classification (NOC), through the process of constructing the conceptual definitions of the indicators of its results, allows nurses to accurately implement this classification in clinical practice and to evaluate the effectiveness of their interventions through the change of the patients' status over time.

  8. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    Science.gov (United States)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  9. Conceptual Diagnosis Model Based on Distinct Knowledge Dyads for Interdisciplinary Environments

    Directory of Open Access Journals (Sweden)

    Cristian VIZITIU

    2014-06-01

    Full Text Available The present paper has a synergic dual purpose of bringing a psychological and neuroscience related perspective oriented towards decision making and knowledge creation diagnosis in the frame of Knowledge Management. !e conceptual model is built by means ofCognitive-Emotional and Explicit-Tacit knowledge dyads and structured on Analytic Hierarchy Process (AHP according to the hypothesis which designates the first dyad as an accessing mechanism of knowledge stored in the second dyad. Due to the well acknowledged needsconcerning new advanced decision making instruments and enhanced knowledge creation processes in the field of technical space projects emphasized by a high level of complexity, the herein study tries also to prove the relevance of the proposed conceptual diagnosis modelin Systems Engineering (SE methodology which foresees at its turn concurrent engineering within interdisciplinary working environments. !e theoretical model, entitled DiagnoSE, has the potential to provide practical implications to space/space related business sector butnot merely, and on the other hand, to trigger and inspire other knowledge management related researches for refining and testing the proposed instrument in SE or other similar decision making based working environment.

  10. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. From Conceptual Frameworks to Mental Models for Astronomy: Students' Perceptions

    Science.gov (United States)

    Pundak, David; Liberman, Ido; Shacham, Miri

    2017-01-01

    Considerable debate exists among discipline-based astronomy education researchers about how students change their perceptions in science and astronomy. The study questioned the development of astronomical models among students in institutions of higher education by examining how college students change their initial conceptual frameworks and…

  12. Science Teachers' Conceptual Growth within Vygotsky's Zone of Proximal Development.

    Science.gov (United States)

    Jones, M. Gail; Rua, Melissa J.; Carter, Glenda

    1998-01-01

    Examines how science teachers' (n=14) knowledge of science and science pedagogy changed after participation in a constructivist-based methods course. More-experienced teachers were paired with less-experienced teachers, and pre- and post-instructional concept maps, journals, portfolios, and transcripts revealed that, within the zone of proximal…

  13. The Impact of Peer Instruction on College Students' Beliefs about Physics and Conceptual Understanding of Electricity and Magnetism

    Science.gov (United States)

    Gok, Tolga

    2012-01-01

    The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…

  14. Novices’ Struggles with Conceptual and Theoretical Framing in Writing Dissertations and Papers for Publication

    Directory of Open Access Journals (Sweden)

    Christine Pearson Casanave

    2015-04-01

    Full Text Available In this conceptual paper, we address the problem that novice scholars in social sciences sometimes have in constructing conceptual or theoretical frameworks for their dissertations and papers for publication. In the first part of the paper, we discuss why the topic is important in the high pressure environment that novice scholars face, in which finishing a doctoral degree and getting published can make a difference in career success or failure, and explain our understanding of theoretical/conceptual framing, including provisionally defining some key terms. We then elucidate ten problems that novice scholars have with theoretical/conceptual framing, using our own experiences as manuscript reviewers and writers as examples. The paper concludes with ways that novice scholars can address the task of framing their scholarly work conceptually and theoretically, on the understanding that the struggles continue over the lifetime of a scholarly career.

  15. Science teacher candidates' perceptions about roles and nature of scientific models

    Science.gov (United States)

    Yenilmez Turkoglu, Ayse; Oztekin, Ceren

    2016-05-01

    Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks to teach and learn inaccessible facts. As being indispensable parts of learning and doing science, use of scientific models in science classes should be reinforced. At this point, uncovering pre-service science teachers' (PSTs) understandings of scientific models are of great importance since they will design and conduct teaching situations for their students. Purpose: The study aimed to provide an answer to the research question: What understandings do PSTs possess about scientific models? Sample: The sample of the study consisted of 14 PSTs enrolled in an Elementary Science Education program in a public university in Ankara, Turkey. Design and methods: Data were collected by using an open-item instrument and semi-structured interviews, and were analyzed by using qualitative data analysis methods. Results: Findings showed that PSTs held fragmented views of models by having informed views in some aspects while having naïve views on others. That is, although they displayed a constructivist orientation by acknowledging the presence of multiple models for the same phenomenon depending on scientists' perspectives or creativity involved in the production of scientific knowledge, PSTs also expressed logical positivist views by believing that models should be close to the real phenomena that they represent. Findings further revealed that PSTs generally conceptualized models' materialistic uses, yet they did not think much about their theoretical and conceptual uses. It was observed that roles like reifying and visualizing were overestimated and models were dominantly characterized as three-dimensional representations

  16. Cultural Emergence: Theorizing Culture in and from the Margins of Science Education

    Science.gov (United States)

    Wood, Nathan Brent; Erichsen, Elizabeth Anne; Anicha, Cali L.

    2013-01-01

    This special issue of the Journal of Research in Science Teaching seeks to explore conceptualizations of culture that address contemporary challenges in science education. Toward this end, we unite two theoretical perspectives to advance a conceptualization of culture as a complex system, emerging from iterative processes of cultural bricolage,…

  17. Instrumentness for Creativity - Mediation, Materiality & Metonymy

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren

    2007-01-01

    in use beyond what is initially designed for. The paper performs a conceptual investigation into qualities in software interfaces that support creativity, supported by analysis of, and interviews with, musical composers. Instrumentness is explained through discussions of materiality and metonymy...... as central strategies for computer mediated creativity. The paper is contributing to an investigation of the aesthetics of use in relation to software, pointing to alternative values, differing from traditional usability, which are also relevant in creative work outside art and music composition....

  18. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  19. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  20. Structure and dynamics of European sports science textual contents: Analysis of ECSS abstracts (1996-2014).

    Science.gov (United States)

    Hristovski, Robert; Aceski, Aleksandar; Balague, Natalia; Seifert, Ludovic; Tufekcievski, Aleksandar; Cecilia, Aguirre

    2017-02-01

    The article discusses general structure and dynamics of the sports science research content as obtained from the analysis of 21998 European College of Sport Science abstracts belonging to 12 science topics. The structural analysis showed intertwined multidisciplinary and unifying tendencies structured along horizontal (scope) and vertical (level) axes. Methodological (instrumental and mode of inquiry) integrative tendencies are dominant. Theoretical integrative tendencies are much less detectable along both horizontal and vertical axes. The dynamic analysis of written abstracts text content over the 19 years reveals the contextualizing and guiding role of thematic skeletons of each sports science topic in forming more detailed contingent research ideas and the role of the latter in stabilizing and procreating the former. This circular causality between both hierarchical levels and functioning on separate characteristic time scales is crucial for understanding how stable research traditions self-maintain and self-procreate through innovative contingencies. The structure of sports science continuously rebuilds itself through use and re-use of contingent research ideas. The thematic skeleton ensures its identity and the contingent conceptual sets its flexibility and adaptability to different research or applicative problems.

  1. The Re-Conceptualization of the Port Supply Chain as a Smart Port Service System: The Case of the Port of Salerno

    Directory of Open Access Journals (Sweden)

    Antonio Botti

    2017-04-01

    Full Text Available This paper proposes a re-conceptualization of the port supply chain as a smart service system, in accordance with the theory of service science. Starting from a short literature review about the port supply chain approach and service science, a new comprehensive framework is provided to better understand seaport dynamics and the creation of competitive port supply chains. The methodology used is the case study approach. The Authors examined the Port of Salerno (Italy and re-conceptualized it as a smart port service system. The originality of the work lies in the application of service science as a lens to re-conceptualize the port supply chain, that allows the implementation of a logistic framework. Both theoretical and practical implications are provided to enrich the literature about port supply chains and to support port operators.

  2. Development and validation of a survey instrument to measure children's advertising literacy

    NARCIS (Netherlands)

    Rozendaal, E.; Opree, S.J.; Buijzen, M.A.

    2016-01-01

    The aim of this study was to develop and validate a survey measurement instrument for children's advertising literacy. Based on the multidimensional conceptualization of advertising literacy by 0056"> Rozendaal, Lapierre, Van Reijmersdal, and Buijzen (2011), 39 items were created to measure two

  3. State-of-the-science on prevention of elder abuse and lessons learned from child abuse and domestic violence prevention: Toward a conceptual framework for research

    Science.gov (United States)

    Teresi, Jeanne A.; Burnes, David; Skowron, Elizabeth A.; Dutton, Mary Ann; Mosqueda, Laura; Lachs, Mark S.; Pillemer, Karl

    2017-01-01

    The goal of this review is to discuss the state-of-the-science in elder abuse prevention. Findings from evidence-based programs to reduce elder abuse are discussed, drawing from findings and insights from evidence-based programs for child maltreatment and domestic/ intimate partner violence. A conceptual measurement model for the study of elder abuse is presented, and linked to possible measures of risk factors and outcomes. Advances in neuroscience in child maltreatment and novel measurement strategies for outcome assessment are presented. PMID:27676289

  4. Highly integrated Pluto payload system (HIPPS): a sciencecraft instrument for the Pluto mission

    Science.gov (United States)

    Stern, S. Alan; Slater, David C.; Gibson, William; Reitsema, Harold J.; Delamere, W. Alan; Jennings, Donald E.; Reuter, D. C.; Clarke, John T.; Porco, Carolyn C.; Shoemaker, Eugene M.; Spencer, John R.

    1995-09-01

    We describe the design concept for the highly integrated Pluto payload system (HIPPS): a highly integrated, low-cost, light-weight, low-power instrument payload designed to fly aboard the proposed NASA Pluto flyby spacecraft destined for the Pluto/Charon system. The HIPPS payload is designed to accomplish all of the Pluto flyby prime (IA) science objectives, except radio science, set forth by NASA's Outer Planets Science Working Group (OPSWG) and the Pluto Express Science Definition Team (SDT). HIPPS contains a complement of three instrument components within one common infrastructure; these are: (1) a visible/near UV CCD imaging camera; (2) an infrared spectrograph; and (3) an ultraviolet spectrograph. A detailed description of each instrument is presented along with how they will meet the IA science requirements.

  5. Discovery stories in the science classroom

    Science.gov (United States)

    Arya, Diana Jaleh

    School science has been criticized for its lack of emphasis on the tentative, dynamic nature of science as a process of learning more about our world. This criticism is the guiding force for this present body of work, which focuses on the question: what are the educational benefits for middle school students of reading texts that highlight the process of science in the form of a discovery narrative? This dissertation traces my journey through a review of theoretical perspectives of narrative, an analysis of first-hand accounts of scientific discovery, the complex process of developing age-appropriate, cohesive and engaging science texts for middle school students, and a comparison study (N=209) that seeks to determine the unique benefits of the scientific discovery narrative for the interest in and retained understanding of conceptual information presented in middle school science texts. A total of 209 middle school participants in nine different classrooms from two different schools participated in the experimental study. Each subject read two science texts that differed in topic (the qualities of and uses for radioactive elements and the use of telescopic technology to see planets in space) and genre (the discovery narrative and the "conceptually known exposition" comparison text). The differences between the SDN and CKE versions for each topic were equivalent in all possible ways (initial introduction, overall conceptual accuracy, elements of human interest, coherence and readability level), save for the unique components of the discovery narrative (i.e., love for their work, acknowledgement of the known, identification of the unknown and the explorative or experimental process to discovery). Participants generally chose the discovery narrative version as the more interesting of the two texts. Additional findings from the experimental study suggest that science texts in the form of SDNs elicit greater long-term retention of key conceptual information, especially

  6. THE IMPORTANCE OF CONCEPTUAL MAPS IN ACCOUNTING CURRICULUM

    Directory of Open Access Journals (Sweden)

    2015-07-01

    Full Text Available This paper provides a model for using conceptual maps in accounting courses. While this notion is commonly used in natural science education, it is less known inaccounting education. Conceptual maps are tools that raise significant learning in the classroom. As teachers, we are challenged to change our curriculum and teaching methods. We are going to present a literature review of this concept, identifying its basic principles and strategies of development. Reading them in accounting education academic perspective will allow us to evaluate to what extent is a method that is suitable for teaching and learning in this field. Following Trébucq and Noel (2006, the set of selected information will be the basis of a study applied on some students in Romanian space in order to observe the extent to which the use of conceptual maps to help structuring and strengthening specialized concepts. This work seen as a qualitative research shows that by using conceptual maps we both improve what students learn and develop higher-order skill competencies demanded by the accounting profession. This paper brings the following contributions to knowledge. First it adds to a limited number of education papers that puts conceptual maps in an accounting context. Second, it is the first paper in Romanian context that show how concept maps can be used for both the students and the teachers in accounting education field by promoting self-learning and life-long learning skills. The main conclusion of the study conducted consists in the fact that this concept should be integrated into the Romanian accounting curriculum. Hence we outlined a three-dimensional approach on using conceptual maps advantage for students: first is the fact that reflects their own knowledge at the beginning of an accounting course, second show the progress made during the course and finally helps students to synthesize information gained.

  7. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  8. The Nature of Information Science: Changing Models

    Science.gov (United States)

    Robinson, Lyn; Karamuftuoglu, Murat

    2010-01-01

    Introduction: This paper considers the nature of information science as a discipline and profession. Method: It is based on conceptual analysis of the information science literature, and consideration of philosophical perspectives, particularly those of Kuhn and Peirce. Results: It is argued that information science may be understood as a field of…

  9. Conceptual Tutoring Software for Promoting Deep Learning: A Case Study

    Science.gov (United States)

    Stott, Angela; Hattingh, Annemarie

    2015-01-01

    The paper presents a case study of the use of conceptual tutoring software to promote deep learning of the scientific concept of density among 50 final year pre-service student teachers in a natural sciences course in a South African university. Individually-paced electronic tutoring is potentially an effective way of meeting the students' varied…

  10. Supporting conceptual modelling of dynamic systems: A knowledge engineering perspective on qualitative reasoning

    NARCIS (Netherlands)

    Liem, J.

    2013-01-01

    Research has shown that even students educated in science at prestigious universities have misconceptions about the systems underlying climate change, sustainability and government spending. Interactive conceptual modelling and simulation tools, which are based on Artificial Intelligence techniques,

  11. Conceptual design of control rod regulating system for plate type fuels of Triga-2000 reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Saminto

    2016-01-01

    Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor has been made. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor was made with refer to study result of instrument and control system which is used in BATAN'S reactor. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor consist of 4 segments that is control panel, translator, driver and display. Control panel is used for regulating, safety and display control rod, translator is used for signal processing from control panel, driver is used for driving control rod and display is used for display control rod level position. The translator was designed in 2 modes operation i.e operation by using PLC modules and IC TTL modules. These conceptual design can be used as one of reference of control rod regulating system detail design. (author)

  12. Conceptual Design for the In-Pile Test Section(IPS) Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Shim, Bong Sik; Lee, Chung Young; Chi, Dae Young; Park, Su Ki; Ahn, Sung Ho; Kim, Young Ki; Lee, Kye Hong; Kim, Kwan Hyun

    2009-01-15

    Conceptual design on the IPS, instrumentation and 1/4' Tubing, test fuel supports, test fuel inspection station and inner assembly O-ring replacement was suggested for their improvement. There is a need Jacking bolt on the Top flange for the inner assembly disassemble from the outer assembly and the replacement about the top flange O-ring to metal gasket to secure pressure boundary. Mechanical sealing was suggested instead of brazing. Instrumentation and tubing route should be modified for the reduction of bending and protection from unexpected occasion. Concept on the test fuel inspection station under the consideration of canal dimension. Top flange Bolt handling tool, O-ring replacement platform and O-ring replacement tool was designed for the O-ring replacement at the inner assembly.

  13. Conceptual Modeling in the Time of the Revolution: Part II

    Science.gov (United States)

    Mylopoulos, John

    Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.

  14. The picture superiority effect in conceptual implicit memory: a conceptual distinctiveness hypothesis.

    Science.gov (United States)

    Hamilton, Maryellen; Geraci, Lisa

    2006-01-01

    According to leading theories, the picture superiority effect is driven by conceptual processing, yet this effect has been difficult to obtain using conceptual implicit memory tests. We hypothesized that the picture superiority effect results from conceptual processing of a picture's distinctive features rather than a picture's semantic features. To test this hypothesis, we used 2 conceptual implicit general knowledge tests; one cued conceptually distinctive features (e.g., "What animal has large eyes?") and the other cued semantic features (e.g., "What animal is the figurehead of Tootsie Roll?"). Results showed a picture superiority effect only on the conceptual test using distinctive cues, supporting our hypothesis that this effect is mediated by conceptual processing of a picture's distinctive features.

  15. Drawbacks in the scientification of forensic science.

    Science.gov (United States)

    Biedermann, A; Curran, J

    2014-12-01

    This letter to the Editor comments on the article On the limitations of probability in conceptualizing pattern matches in forensic science by P. T. Jayaprakash (Forensic Science International, [10]). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Instruments and accessories for neutron scattering research

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  17. A conceptual framework for teaching research in nursing

    Directory of Open Access Journals (Sweden)

    SCD Wright

    2005-09-01

    Full Text Available Though research is often referred to the lifeblood, hallmark or cornerstone in the development of a profession (Brink, 1996:2, teaching research in Nursing is a challenge. The challenge does not just lie in teaching the subject, but in resistance and unwillingness of students to engage in the subject. In the experience of the researcher, registered nurses identify themselves with being a nurse and a caregiver; the role of researcher has never been internalised. The challenge is to achieve the outcome envisaged, namely, nurses who are knowledgeable consumers of research as well as continuous productive scholars in their application of nursing. Research generates knowledge and knowledge is the basis of caring with excellence. Nursing is an art and a science and the science must produce the knowledge upon which the art is based. The purpose of this article is to propose a conceptual framework of how to teach research in order to achieve such a successful outcome. The conceptual framework proposed in this article is based on four pillars, theoretical knowledge of research, scientific writing, psychological support and experiential learning. The importance of the research facilitator, not just as a teacher but also as a positive role model, is also described.

  18. Build of virtual instrument laboratory related to nuclear species specialized

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Guizhi; Zhao Xiuliang; Tang Lingzhi

    2009-01-01

    As rapid development of specialized related to nuclear science,the requirement of laboratory construct is analyzed in this article at first, One total conceive, One scheme deploy soft and hardware,three concrete characteristics targets and five different phases of put in practice of virtual instrument laboratory of specialized related to nuclear science are suggest in the paper,the concrete hardware structure and the headway of build of virtual instrument laboratory are described,and the first step effect is introduced.Lastly,the forward target and the further deliberateness that the virtual instrument laboratory construct are set forth in the thesis. (authors)

  19. Atom Surprise: Using Theatre in Primary Science Education

    Science.gov (United States)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2011-10-01

    Early exposure to science may have a lifelong effect on children's attitudes towards science and their motivation to learn science in later life. Out-of-class environments can play a significant role in creating favourable attitudes, while contributing to conceptual learning. Educational science theatre is one form of an out-of-class environment, which has received little research attention. This study aims to describe affective and cognitive learning outcomes of watching such a play and to point to connections between theatrical elements and specific outcomes. "Atom Surprise" is a play portraying several concepts on the topic of matter. A mixed methods approach was adopted to investigate the knowledge and attitudes of children (grades 1-6) from two different school settings who watched the play. Data were gathered using questionnaires and in-depth interviews. Analysis suggested that in both schools children's knowledge on the topic of matter increased after the play with younger children gaining more conceptual knowledge than their older peers. In the public school girls showed greater gains in conceptual knowledge than boys. No significant changes in students' general attitudes towards science were found, however, students demonstrated positive changes towards science learning. Theatrical elements that seemed to be important in children's recollection of the play were the narrative, props and stage effects, and characters. In the children's memory, science was intertwined with the theatrical elements. Nonetheless, children could distinguish well between scientific facts and the fictive narrative.

  20. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  1. Ignoring Ignorance: Notes on Pedagogical Relationships in Citizen Science

    Directory of Open Access Journals (Sweden)

    Michael Scroggins

    2017-04-01

    Full Text Available Theoretically, this article seeks to broaden the conceptualization of ignorance within STS by drawing on a line of theory developed in the philosophy and anthropology of education to argue that ignorance can be productively conceptualized as a state of possibility and that doing so can enable more democratic forms of citizen science. In contrast to conceptualizations of ignorance as a lack, lag, or manufactured product, ignorance is developed here as both the opening move in scientific inquiry and the common ground over which that inquiry proceeds. Empirically, the argument is developed through an ethnographic description of Scroggins' participation in a failed citizen science project at a DIYbio laboratory. Supporting the empirical case are a review of the STS literature on expertise and a critical examination of the structures of participation within two canonical citizen science projects. Though onerous, through close attention to how people transform one another during inquiry, increasingly democratic forms of citizen science, grounded in the commonness of ignorance, can be put into practice.

  2. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  3. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    Science.gov (United States)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  4. The Subject of Conceptual Mapping: Theological Anthropology across Brain, Body, and World

    Directory of Open Access Journals (Sweden)

    Kidd Erin

    2018-02-01

    Full Text Available Research in conceptual metaphor and conceptual blending-referred to collectively as “conceptual mapping”-identifies human thought as a process of making connections across fields of meaning. Underlying the theory of conceptual mapping is a particular understanding of the mind as embodied. Over the past few decades, researchers in the cognitive sciences have been “putting brain, body, and world back together again.” The result is a picture of the human being as one who develops in transaction with her environment, and whose highest forms of intelligence and meaning-making are rooted in the body’s movement in the world. Conceptual mapping therefore not only gives us insight into how we think, but also into who we are. This calls for a revolution in theological anthropology. Our spirituality must be understood in light of the fact that we are embodied beings, embedded in our environment, whose identities are both material and discursive. Finally, using the example of white supremacy, I show how this revolution in understanding the human person can be useful for ethical reflection, and in thinking about sin and redemption.

  5. a Conceptual Framework for Virtual Geographic Environments Knowledge Engineering

    Science.gov (United States)

    You, Lan; Lin, Hui

    2016-06-01

    VGE geographic knowledge refers to the abstract and repeatable geo-information which is related to the geo-science problem, geographical phenomena and geographical laws supported by VGE. That includes expert experiences, evolution rule, simulation processes and prediction results in VGE. This paper proposes a conceptual framework for VGE knowledge engineering in order to effectively manage and use geographic knowledge in VGE. Our approach relies on previous well established theories on knowledge engineering and VGE. The main contribution of this report is following: (1) The concepts of VGE knowledge and VGE knowledge engineering which are defined clearly; (2) features about VGE knowledge different with common knowledge; (3) geographic knowledge evolution process that help users rapidly acquire knowledge in VGE; and (4) a conceptual framework for VGE knowledge engineering providing the supporting methodologies system for building an intelligent VGE. This conceptual framework systematically describes the related VGE knowledge theories and key technologies. That will promote the rapid transformation from geodata to geographic knowledge, and furtherly reduce the gap between the data explosion and knowledge absence.

  6. Moving Science Off the ``Back Burner'': Meaning Making Within an Action Research Community of Practice

    Science.gov (United States)

    Goodnough, Karen

    2008-02-01

    In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers’ beliefs about science teaching and learning transformed? and (c) How does teachers’ knowledge of curriculum, instruction, assessment, and student learning change as a result of learning within a community of practice? In this instrumental case study (Stake 2000, In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435-454). Thousand Oaks, CA: Sage), a range of data collection sources and methods were adopted. Outcomes focus on how the design principles for cultivating a community of practice emerged in the action research group, as well as the types of teacher learning that occurred by engaging in action research.

  7. Our evolving conceptual model of the coastal eutrophication problem

    Science.gov (United States)

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  8. EFFICIENCY INCREASE OF MASTERING PROCESS OF PHYSICS CONCEPTUAL APPARATUS BY STUDENTS THOUGHT THE INSTRUMENTALITY OF MULTIMEDIA FACILITIES

    Directory of Open Access Journals (Sweden)

    Olga P. Pinchuk

    2010-09-01

    Full Text Available The relevance of the article material specified the change of accent in school subjects teaching from the transmission of knowledge to forming of students’ ability and willingness to use this knowledge in the real vital situations. The elements of forming method of students’ conceptual apparatus on the lessons of physics are offered. The process of mastering of scientific knowledge system by students with the use of different working methods with conceptual apparatus of physics is described. Use of multimedia technologies on the different stages of teacher’s activity is studied. The author considers research of possibilities of combination of the free communication with an audience with the use of computer device and co-operation of means of network technologies and telecommunications with an educational purpose to be perspective.

  9. The cross-cultural equivalence of participation instruments: a systematic review.

    Science.gov (United States)

    Stevelink, S A M; van Brakel, W H

    2013-07-01

    Concepts such as health-related quality of life, disability and participation may differ across cultures. Consequently, when assessing such a concept using a measure developed elsewhere, it is important to test its cultural equivalence. Previous research suggested a lack of cultural equivalence testing in several areas of measurement. This paper reviews the process of cross-cultural equivalence testing of instruments to measure participation in society. An existing cultural equivalence framework was adapted and used to assess participation instruments on five categories of equivalence: conceptual, item, semantic, measurement and operational equivalence. For each category, several aspects were rated, resulting in an overall category rating of 'minimal/none', 'partial' or 'extensive'. The best possible overall study rating was five 'extensive' ratings. Articles were included if the instruments focussed explicitly on measuring 'participation' and were theoretically grounded in the ICIDH(-2) or ICF. Cross-validation articles were only included if it concerned an adaptation of an instrument developed in a high or middle-income country to a low-income country or vice versa. Eight cross-cultural validation studies were included in which five participation instruments were tested (Impact on Participation and Autonomy, London Handicap Scale, Perceived Impact and Problem Profile, Craig Handicap Assessment Reporting Technique, Participation Scale). Of these eight studies, only three received at least two 'extensive' ratings for the different categories of equivalence. The majority of the cultural equivalence ratings given were 'partial' and 'minimal/none'. The majority of the 'none/minimal' ratings were given for item and measurement equivalence. The cross-cultural equivalence testing of the participation instruments included leaves much to be desired. A detailed checklist is proposed for designing a cross-validation study. Once a study has been conducted, the checklist can

  10. Investigating the Effectiveness of Inquiry-Based Instruction on Students with Different Prior Knowledge and Reading Abilities

    Science.gov (United States)

    Wang, Jing-Ru; Wang, Yuh-Chao; Tai, Hsin-Jung; Chen, Wen-Ju

    2010-01-01

    This study examined the differential impacts of an inquiry-based instruction on conceptual changes across levels of prior knowledge and reading ability. The instrument emphasized four simultaneously important components: conceptual knowledge, reading ability, attitude toward science, and learning environment. Although the learning patterns and…

  11. UAVSAR Program: Initial Results from New Instrument Capabilities

    Science.gov (United States)

    Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip; hide

    2013-01-01

    UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.

  12. Conceptual Commitments of the LIDA Model of Cognition

    Science.gov (United States)

    Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard

    2013-06-01

    Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

  13. Transmutability, generalised Darwinism and the limits to conceptual integration

    OpenAIRE

    Christopher Brown

    2013-01-01

    This article explores the limits to conceptual integration between evolutionary biology, cognitive neuroscience and economics. The new learning in the natural sciences supplies material to update and enrich the microfoundations of institutional economics—specifically, the instinct–habit psychology. The framing of social reality with evolutionary concepts is, however, misguided in important respects. Metaphorical modelling is the transfer of concepts developed for the understanding of one doma...

  14. Workshop on Advanced Technologies for Planetary Instruments, part 1

    International Nuclear Information System (INIS)

    Appleby, J.F.

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DOD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

  15. The Complexity integrated-Instruments components media of IPA at Elementary School

    Directory of Open Access Journals (Sweden)

    Angreni Siska

    2018-01-01

    Full Text Available This research aims at describing the complexity of Integrated Instrument Components media (CII in learning of science at Elementary schools in District Siulak Mukai and at Elementary schools in District Siulak. The research applied a descriptive method which included survey forms. Instruments used were observation sheets. The result of the research showed Integrated Instrument Components media (CII natural science that complexity at primary school district Siulak was more complex compared with that at primary school district Siulak Mukai. is better than from primary school district Mukai

  16. STRUCTURAL AND FUNCTIONAL MODEL OF FORMING FUTURE MUSIC TEACHER’S CREATIVE THINKING IN INSTRUMENTAL AND PERFORMING TRAINING

    Directory of Open Access Journals (Sweden)

    Nadiia Lavrentieva

    2016-11-01

    Full Text Available In the article conceptual bases of forming students’ creative thinking in the instrumental and performing activities are revealed, taking current training trends into account. The contradictions between the requirements of society to create favorable conditions to realize future music teachers’ creative potential and current directions of a higher educational establishment to ‘a result”, which causes a specific system of promotion and support students’ value orientations and encourages students to master existing knowledge, algorithms, and performing models, depict the relevant problems of making out the system of the future music teachers’ instrumental and performing training that is aimed at developing their creative thinking. It is noted that while defining such phenomena as creative thinking and cognitive work a great number of scientists emphasizes on the word “create” which means finding and creating something that hasn’t been found in the previous individual or social experience. The aim of the article is to disclose the content and stages of implementing structural and functional model of forming future music teachers’ creative thinking The model is formed as an alternative to information and reproductive approach to training future specialists. The concept model is based on the target of forming future music teachers’ creative and methodological thinking, professional competence, activity and approaches to the students’ training to complete fulfillment of modern needs of professional and music education. The author specifies criteria of structural model of future music teachers’ creative thinking. They are value and motivational, cognitive and educational, action and technological, creative and modulating ones The effectiveness of the future music teachers’ creative thinking in instrumental and performing training depends on the level of forming clear science-based system that has a certain conceptual

  17. Social isolation in mental health: a conceptual and methodological review.

    Science.gov (United States)

    Wang, Jingyi; Lloyd-Evans, Brynmor; Giacco, Domenico; Forsyth, Rebecca; Nebo, Cynthia; Mann, Farhana; Johnson, Sonia

    2017-12-01

    Social isolation and related concepts have been discussed increasingly in the field of mental health. Despite this, there is a lack of conceptual clarity and consistency in the definition and operationalisation of these terms. This review aimed to provide a clear framework for social isolation and related concepts, and to identify well-established measures in the field of mental health for each conceptual domain discussed. We used an iterative strategy of expert consultation and literature searching. A multi-disciplinary group of senior academics was consulted both before and after the literature searching to identify relevant terms, conceptual papers, or recommended measures. Our conceptual framework was also validated through expert consultation. We searched the Web of Science database using terms suggested by experts and subsequently identified further relevant studies through review articles and by reading full texts and reference lists of included studies. A narrative synthesis was conducted. We developed a model with five domains incorporating all the concepts relevant to social isolation in regular use in the mental health research literature. These five domains are: social network-quantity; social network-structure; social network-quality; appraisal of relationships-emotional; and appraisal of relationships-resources. We also identified well-developed measures suitable for assessing each of the five conceptual domains or covering multi-domains. Our review proposes a conceptual model to encompass and differentiate all terms relating to social isolation. Potential uses are in allowing researchers and intervention developers to identify precisely the intended outcomes of interventions, and to choose the most appropriate measures to use in mental health settings.

  18. Conceptual Design of the ITER ECE Diagnostic - An Update

    Science.gov (United States)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  19. Validation of a Teachers' Achievement Goal Instrument for Teaching Physical Education

    Science.gov (United States)

    Wang, Jian; Shen, Bo; Luo, Xiaobin; Hu, Qingshan; Garn, Alex C.

    2018-01-01

    Purpose: Using Butler's teacher achievement goal orientation as a conceptual framework, we developed this study to validate a teachers' achievement goal instrument for teaching physical education. Methods: A sample of 322 Chinese physical education teachers participated in this study and completed measures of achievement goal orientations and job…

  20. FIRE - Flyby of Io with Repeat Encounters: A conceptual design for a New Frontiers mission to Io

    Science.gov (United States)

    Suer, Terry-Ann; Padovan, Sebastiano; Whitten, Jennifer L.; Potter, Ross W. K.; Shkolyar, Svetlana; Cable, Morgan; Walker, Catherine; Szalay, Jamey; Parker, Charles; Cumbers, John; Gentry, Diana; Harrison, Tanya; Naidu, Shantanu; Trammell, Harold J.; Reimuller, Jason; Budney, Charles J.; Lowes, Leslie L.

    2017-09-01

    A conceptual design is presented for a low complexity, heritage-based flyby mission to Io, Jupiter's innermost Galilean satellite and the most volcanically active body in the Solar System. The design addresses the 2011 Decadal Survey's recommendation for a New Frontiers class mission to Io and is based upon the result of the June 2012 NASA-JPL Planetary Science Summer School. A science payload is proposed to investigate the link between the structure of Io's interior, its volcanic activity, its surface composition, and its tectonics. A study of Io's atmospheric processes and Io's role in the Jovian magnetosphere is also planned. The instrument suite includes a visible/near-IR imager, a magnetic field and plasma suite, a dust analyzer, and a gimbaled high gain antenna to perform radio science. Payload activity and spacecraft operations would be powered by three Advanced Stirling Radioisotope Generators (ASRG). The primary mission includes 10 flybys with close-encounter altitudes as low as 100 km. The mission risks are mitigated by ensuring that relevant components are radiation tolerant and by using redundancy and flight-proven parts in the design. The spacecraft would be launched on an Atlas V rocket with a delta-v of 1.3 km/s. Three gravity assists (Venus, Earth, Earth) would be used to reach the Jupiter system in a 6-year cruise. The resulting concept demonstrates the rich scientific return of a flyby mission to Io.

  1. Magnetospheric Multiscale Instrument Suite Operations and Data System

    Science.gov (United States)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  2. The ACTIVE conceptual framework as a structural equation model

    Science.gov (United States)

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be

  3. The ACTIVE conceptual framework as a structural equation model.

    Science.gov (United States)

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from

  4. Analysis of Subjective Conceptualizations Towards Collective Conceptual Modelling

    DEFF Research Database (Denmark)

    Glückstad, Fumiko Kano; Herlau, Tue; Schmidt, Mikkel Nørgaard

    2013-01-01

    This work is conducted as a preliminary study for a project where individuals' conceptualizations of domain knowledge will thoroughly be analyzed across 150 subjects from 6 countries. The project aims at investigating how humans' conceptualizations differ according to different types of mother la...

  5. Eric Davidson, his philosophy, and the history of science.

    Science.gov (United States)

    Deichmann, Ute

    2017-10-16

    Eric Davidson, a passionate molecular developmental biologist and intellectual, believed that conceptual advances in the sciences should be based on knowledge of conceptual history. Convinced of the superiority of a causal-analytical approach over other methods, he succeeded in successfully applying this approach to the complex feature of organismal development by introducing the far-reaching concept of developmental Gene Regulatory Networks. This essay reviews Davidson's philosophy, his support for the history of science, and some aspects of his scientific personality.

  6. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    1999-01-01

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  7. A conceptual framework to support exposure science research ...

    Science.gov (United States)

    While knowledge of exposure is fundamental to assessing and mitigating risks, exposure information has been costly and difficult to generate. Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition that allows it to be more agile, predictive, and data- and knowledge-driven. A necessary element of this evolved paradigm is an organizational and predictive framework for exposure science that furthers the application of systems-based approaches. To enable such systems-based approaches, we proposed the Aggregate Exposure Pathway (AEP) concept to organize data and information emerging from an invigorated and expanding field of exposure science. The AEP framework is a layered structure that describes the elements of an exposure pathway, as well as the relationship between those elements. The basic building blocks of an AEP adopt the naming conventions used for Adverse Outcome Pathways (AOPs): Key Events (KEs) to describe the measurable, obligate steps through the AEP; and Key Event Relationships (KERs) describe the linkages between KEs. Importantly, the AEP offers an intuitive approach to organize exposure information from sources to internal site of action, setting the stage for predicting stressor concentrations at an internal target site. These predicted concentrations can help inform the r

  8. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-08-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education from 1990 to 2007. The multi-stage clustering technique was employed to investigate with what topics, to what development trends, and from whose contribution that the journal publications constructed as a science education research field. This study found that the research topic of Conceptual Change & Concept Mapping was the most studied topic, although the number of publications has slightly declined in the 2000's. The studies in the themes of Professional Development, Nature of Science and Socio-Scientific Issues, and Conceptual Chang and Analogy were found to be gaining attention over the years. This study also found that, embedded in the most cited references, the supporting disciplines and theories of science education research are constructivist learning, cognitive psychology, pedagogy, and philosophy of science.

  9. The Effect of Group Works and Demonstrative Experiments Based on Conceptual Change Approach: Photosynthesis and Respiration

    Science.gov (United States)

    Cibik, Ayse Sert; Diken, Emine Hatun; Darcin, Emine Selcen

    2008-01-01

    The purpose of this study is to investigate the effect of the use of group works and demonstration experiments based on conceptual change approach in the elimination of misconception about the subject of photosynthesis and respiration in plants in pre-service science teachers. This study was conducted with 78 pre-service science teachers including…

  10. The Instructional Model for Using History of Science

    Science.gov (United States)

    Seker, Hayati

    2012-01-01

    This paper discusses the levels of The Instructional Model for Using History of Science (UHOS) to explain the relationship between the history of science and science teaching. The UHOS model proposes four levels: Conceptual Level, Epistemological Level, Sociocultural Level, and Interest Level. Each Level has sublevels with regards to types of…

  11. IAEA programme on maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Vuister, P.H.

    1986-01-01

    The Medical Applications Section in the Division of Life Sciences of the International Atomic Energy Agency has been engaged since 1975 in activities aimed at the more effective use of nuclear instruments. Activities and achievements are described concerning the conditioning of laboratories, preventive maintenance and repair of instruments, the management thereof, space parts and the promotion of local training in these subjects. (author)

  12. The semiosis of students’ conceptual understanding of biochemistry

    DEFF Research Database (Denmark)

    Musaeus, Peter; Mathiesen, Søren Læssøe; Dahl, Mads Ronald

    2013-01-01

    University students learning of scientific concepts can be described as a process of semiosis at three different levels: Ontogenetic, whereby students over time actively acquire signs that represent new meaning to themselves; mesogenetic, whereby a teacher through teaching an dialogue activities...... together with students build conceptual understanding; sociogenetic, whereby the scientific achievements of a science disseminate into the classroom. Semiotic processes have been investigated in educational semiotics (Cunningham, 1992), sociocultural psychology (Valsiner, 2007) and research on math...

  13. PROSPECTS OF CONCEPTUALIZATION OF THE NOTION “HEREDITY”

    Directory of Open Access Journals (Sweden)

    A. A. Kochergin

    2015-01-01

    Full Text Available The article examines the prospects for further development of the conceptualization of the notion “heredity” in a wide range of biological and socio-humanitarian aspects. Further development of genetics closely relates to the disclosure of interaction of genetic, interdisciplinary, general scientific, ethical, legal and philosophical categories, its complex dialectics. The doctrine of heredity in the post-nonclassical stage of its development is increasingly taking on the traits of humanities, of a science of human.

  14. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  15. Using Conceptual Change Texts with Analogies for Misconceptions in Acids and Bases

    Science.gov (United States)

    Cetingul, Ipek; Geban, Omer

    2011-01-01

    This study was conducted to explore the effectiveness of conceptual change oriented instruction over traditional instruction on students' understanding of acids and bases concept. Besides, effects of gender difference and science process skills on students' understanding of acids and bases were also investigated. Analysis of the results showed…

  16. Constructing a philosophy of science of cognitive science.

    Science.gov (United States)

    Bechtel, William

    2009-07-01

    Philosophy of science is positioned to make distinctive contributions to cognitive science by providing perspective on its conceptual foundations and by advancing normative recommendations. The philosophy of science I embrace is naturalistic in that it is grounded in the study of actual science. Focusing on explanation, I describe the recent development of a mechanistic philosophy of science from which I draw three normative consequences for cognitive science. First, insofar as cognitive mechanisms are information-processing mechanisms, cognitive science needs an account of how the representations invoked in cognitive mechanisms carry information about contents, and I suggest that control theory offers the needed perspective on the relation of representations to contents. Second, I argue that cognitive science requires, but is still in search of, a catalog of cognitive operations that researchers can draw upon in explaining cognitive mechanisms. Last, I provide a new perspective on the relation of cognitive science to brain sciences, one which embraces both reductive research on neural components that figure in cognitive mechanisms and a concern with recomposing higher-level mechanisms from their components and situating them in their environments. Copyright © 2009 Cognitive Science Society, Inc.

  17. Conceptualizing Programme Evaluation

    Science.gov (United States)

    Hassan, Salochana

    2013-01-01

    The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…

  18. Scientific Instruments and Epistemology Engines

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Tomáš

    2012-01-01

    Roč. 34, č. 4 (2012), s. 529-540 ISSN 1210-0250 R&D Projects: GA ČR(CZ) GAP401/11/2338 Institutional support: RVO:67985955 Keywords : material culture of science * scientific instruments * epistemology engines * experimental systems Subject RIV: AA - Philosophy ; Religion

  19. The Conceptual Framework of Thematic Mapping in Case Conceptualization.

    Science.gov (United States)

    Ridley, Charles R; Jeffrey, Christina E

    2017-04-01

    This article, the 3rd in a series of 5, introduces the conceptual framework for thematic mapping, a novel approach to case conceptualization. The framework is transtheoretical in that it is not constrained by the tenets or concepts of any one therapeutic orientation and transdiagnostic in that it conceptualizes clients outside the constraints of diagnostic criteria. Thematic mapping comprises 4 components: a definition, foundational principles, defining features, and core concepts. These components of the framework, deemed building blocks, are explained in this article. Like the foundation of any structure, the heuristic value of the method requires that the building blocks have integrity, coherence, and sound anchoring. We assert that the conceptual framework provides a solid foundation, making thematic mapping a potential asset in mental health treatment. © 2017 Wiley Periodicals, Inc.

  20. SHARK-NIR: from K-band to a key instrument, a status update

    Science.gov (United States)

    Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina

    2016-07-01

    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral

  1. Design requirements for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2013-01-01

    The Stratospheric Wind Interferometer for Transport studies (SWIFT) instrument is a proposed limb-viewing satellite instrument that employs the method of Doppler Michelson interferometry to measure stratospheric wind velocities and ozone densities in the altitude range of 15–45 km. The values of the main instrument parameters including filter system parameters and Michelson interferometer parameters are derived using simulations and analyses. The system design requirements for the instrument and spacecraft are presented and discussed. Some of the retrieval-imposed design requirements are also discussed. Critical design issues are identified. The design optimization process is described. The sensitivity of wind measurements to instrument characteristics is investigated including the impact on critical design issues. Using sensitivity analyses, the instrument parameters were iteratively optimized in order to meet the science objectives. It is shown that wind measurements are sensitive to the thermal sensitivity of the instrument components, especially the narrow filter and the Michelson interferometer. The optimized values of the main system parameters including Michelson interferometer optical path difference, instrument visibility, instrument responsivity and knowledge of spacecraft velocity are reported. This work also shows that the filter thermal drift and the Michelson thermal drift are two main technical risks. (paper)

  2. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  3. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  4. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. BALDEV RAJ. Articles written in Bulletin of Materials Science. Volume 26 Issue 4 June 2003 pp 449-460 Instrumentation. Thermogravimetry-evolved gas analysis–mass spectrometry system for materials research · M Kamruddin P K Ajikumar S Dash A K Tyagi Baldev Raj.

  6. 'Green' preferences as regulatory policy instrument

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2006-01-01

    We examine here the suggestion that if consumers in sufficient numbers are willing to pay the premium to have power generated using low-emission technologies, tax or permit policies become less necessary or stringent. While there are implementation difficulties with this proposal, our purpose is more fundamental: Can economics make sense of using preferences as a regulatory instrument? If 'green' preferences are exogenously given, to what extent can or should they be regarded as a substitute for other policies? Even with 'green' preferences, production and consumption of polluting goods continue to impose social costs not borne in the market. Moreover, if green preferences are regarded as a policy instrument, the 'no policy' baseline would require a problematic specification of counterfactual 'non-green' preferences. Viewing green preferences as a regulatory policy instrument is conceptually sensible if the benchmark for optimal emissions is based on value judgments apart from the preferences consumers happen to have. If so, optimal environmental protection would be defined by reference to ethical theory, or, even less favorably, by prescriptions from policy advocates who give their own preferences great weight while giving those of the public at large (and the costs they bear) very little consideration. (author)

  7. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    Science.gov (United States)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre

    2017-01-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  8. How Pre-Service Teachers' Understand and Perform Science Process Skills

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon

    2012-01-01

    This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…

  9. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Instrument development for materials science research at WNR

    International Nuclear Information System (INIS)

    Eckert, J.; Silver, R.N.; Soper, A.; Vergamini, P.J.; Goldstone, J.; Larson, A.; Seeger, P.A.; Yarnell, J.

    1980-01-01

    The neutron scattering program at the Los Alamos spallation neutron source is based on the operational WNR facility which provides up to 11 μA of 800 MeV protons to a target in pulse widths up to 8 μs at 120 Hz. The immediate goals of the program are: to gain experience with neutron instrumentation at spallation neutron sources; and to explore the scientific potential for condensed matter research at these sources. The proton storage ring (PSR) funded for construction will provide 100 μA in 0.27 μs pulses at 12 Hz, therefore greatly improving intensity, time-of-flight (TOF) resolution, and repetition rate. The initial emphasis, given limited manpower and resources, has been placed on developing a set of prototype instruments which are relatively easy to implement and which take advantage of the unique characteristics of the present WNR when compared with reactor neutron sources

  11. Neutron beam instruments at Harwell

    International Nuclear Information System (INIS)

    Baston, A.H.; Harris, D.H.C.

    1978-11-01

    A list and brief descriptions are given of the neutron beam facilities for U.K. scientists at Harwell and in academic institutions, available under an agreement between the Science Research Council and AERE (Harwell). The list falls under the following headings: reactor instruments (single crystal diffractometers, powder diffractometers, triple axis spectrometers, time-of-flight cold neutron twin rotor spectrometer, beryllium filter spectrometer, MARX spectrometer, Harwell small-angle scattering spectrometer); LINAC instruments (total scattering spectrometer, back scattering spectrometer, active sample spectrometer, inelastic rotor spectrometer, constant Q spectrometer); ancillary equipment (cryostats, superconducting magnets, electromagnets, furnaces). (U.K.)

  12. Knowledge Production on Science and Technology: a Conceptual Approach; Produccion de Conocimiento Cientifico y Tecnologico: una Aproximacion Conceptual

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, I

    2013-02-01

    One traditional reflection on philosophy of science is the analysis of knowledge production. This is also a relevant aim for contemporary social studies of science. This work review the main contributions routed in this academic field regarding present production of knowledge -Weinberg (1961, 1972), Funtowicz and Ravetz (1993), Gibbons et al. (1994), Jasanoff (1995), Ziman (1998) and Echeverria (2003). A specific attention to the consequences of its features for the public management of science and technology and it relation with society will be attended. (Author) 31 refs.

  13. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    Energy Technology Data Exchange (ETDEWEB)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  14. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  15. Idea and Action: Action Research and the Development of Conceptual Change Teaching of Science.

    Science.gov (United States)

    Tabachnick, B. Robert; Zeichner, Kenneth M.

    1999-01-01

    Describes and analyzes an action-research seminar for prospective elementary and secondary teachers in terms of how it facilitated prospective teachers' learning to teach for conceptual change. Contains 37 references. (Author/WRM)

  16. Improving Science and IT Literacy by Providing Urban-Based Environmental Science Research Opportunities

    Science.gov (United States)

    Cuff, K. E.; Corazza, L.; Liang, J.

    2007-12-01

    A U.C. Berkeley-based outreach program known as Environmental Science Information Technology Activities has been in operation over the past four years. The primary aim of the program is to provide opportunities for grades 9 and 10 students in diverse East San Francisco Bay Area communities to develop deeper understandings of the nature and conduct of science, which will increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future. Design of the program has been informed by recent research that indicates a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Accordingly, ESITA includes an important student-led environmental science research project component, which provides participants with opportunities to engage in research investigations that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews with participants and specific assessment/evaluation instruments indicates that ESITA program activities, including after-school meetings, summer and school year research projects, and conference preparations and presentations has provided students with high-quality inquiry science experiences that increased their knowledge of STEM and IT concepts, as well as their understanding of the nature of the scientific enterprise. In addition, the program has achieved a high degree of success in that it has: enhanced participants' intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. Overall

  17. Relationships between the Philosophy of Science and Didactics of Science.

    Science.gov (United States)

    Aduriz-Bravo, Agustin; Izquierdo, Merce; Galagovsky, Lydia

    2002-01-01

    Presents a theoretical classification of relationships between the philosophy of science and didactics of science, based on the metadiscursive nature which philosophy and didactics share. Describes five different relationships between the two disciplines: material, instrumental, explanatory, rhetorical, and metatheoretical. (Author/MM)

  18. A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives

    Science.gov (United States)

    Tytler, Russell; Prain, Vaughan

    2010-10-01

    Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.

  19. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  20. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    Science.gov (United States)

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  1. Applicability of analytical instrument in trace evidence analysis

    International Nuclear Information System (INIS)

    Sharma, Mukesh; Jha, Shailendra

    2014-01-01

    In the present paper, we explain the importance of the analytical instrument used in the field of forensic science for the analysis of the trace evidences collected from the scene of occurrence. The forensic scientist has to rely upon these instrumental analyses of trace amounts of materials like drugs, toxicological specimens, GSR, fibres, glass, paints, soil etc. Through this paper, reviews on these techniques which are extensively used in forensic sciences are reported. Our report summaries on the basis of analytical problem facing for a forensic expert and techniques employed to tackle them like XRD/XRF, inductively coupled plasma (ICP) techniques, Raman spectroscopy and microscopy (optical, GRIM, electron microscopy, TEM). (author)

  2. MetBaro - Pressure Instrument for Mars MetNet Lander

    Science.gov (United States)

    Polkko, J.; Haukka, H.; Harri, A.-M.; Schmidt, W.; Leinonen, J.; Mäkinen, T.

    2009-04-01

    THE METNET MISSION FOCUSED ON THE Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure instrument of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitic type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 6 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  3. Mercury Science Objectives and Traceability Within the BepiColombo Project: Optimising the Science Output of the Next Mission to Mercury

    Science.gov (United States)

    Besse, S.; Benkhoff, J.; Bentley, M.; Cornet, T.; Moissl, R.; Munoz, C.; Zender, J.

    2018-05-01

    The BepiColombo Science Ground Segment is developing, in collaboration with the instrument teams, targeted science traceability matrix of each instrument. They are defined in such a way that they can be tracked during the observation lifecycle.

  4. Combined Raman/Infrared Reflectance Instrument for In Situ Mineral Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Science Instruments, Observatories, and Sensor Systems Roadmap calls for instruments capable of in situ mineralogical analysis in support of planetary...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. G Sasibhushana Rao. Articles written in Journal of Earth System Science. Volume 116 Issue 5 October 2007 pp 407-411. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling · G Sasibhushana Rao.

  6. Primary Teachers' Attitudes toward Science: A New Theoretical Framework

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; Asma, Lieke J. F.

    2012-01-01

    Attention to the attitudes of preservice and inservice primary teachers toward science is of fundamental importance to research on primary science education. However, progress in this field of research has been slow due to the poor definition and conceptualization of the construct of primary teachers' attitude toward science. This poor theoretical…

  7. Conceptual Design of the ITER ECE Diagnostic – An Update

    Directory of Open Access Journals (Sweden)

    Ouroua A.

    2012-09-01

    Full Text Available The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  8. Management Approach for Earth Venture Instrument

    Science.gov (United States)

    Hope, Diane L.; Dutta, Sanghamitra

    2013-01-01

    The Earth Venture Instrument (EVI) element of the Earth Venture Program calls for developing instruments for participation on a NASA-arranged spaceflight mission of opportunity to conduct innovative, integrated, hypothesis or scientific question-driven approaches to pressing Earth system science issues. This paper discusses the EVI element and the management approach being used to manage both an instrument development activity as well as the host accommodations activity. In particular the focus will be on the approach being used for the first EVI (EVI-1) selected instrument, Tropospheric Emissions: Monitoring of Pollution (TEMPO), which will be hosted on a commercial GEO satellite and some of the challenges encountered to date and corresponding mitigations that are associated with the management structure for the TEMPO Mission and the architecture of EVI.

  9. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  10. Traveling with Science

    Science.gov (United States)

    Fast, Danene; Wild, Tiffany

    2018-01-01

    For early elementary students with vision loss, these seemingly simple questions can pose great difficulty, especially when conceptual development is being established. Because students with vision loss are unable to observe non-verbal cues within environmental settings, supplemental learning techniques must be utilized for learning. In science,…

  11. In Defense of Engineering Sciences: On the Epistemological Relations Between Science and Technology

    NARCIS (Netherlands)

    Boon, Mieke

    2011-01-01

    This article presents an overview of discussions in the philosophy of technology on epistemological relations between science and technology, illustrating that often several mutually entangled issues are at stake. The focus is on conceptual and ideological issues concerning the relationship between

  12. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  13. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  14. An Enquiry concerning the nature of Conceptual Categories: a case-study on the social dimension of human cognition

    Directory of Open Access Journals (Sweden)

    John eStewart

    2014-06-01

    Full Text Available Cognitive Science, in all its guises, has not yet accorded any fundamental importance to the social dimension of human cognition. In order to illustrate the possibilities that have not so far been developed, this article seeks to pursue the idea, first put forward by Durkheim, that the major categories which render conceptual thought possible may actually have a social origin. Durkheim illustrated his thesis, convincingly enough, by examining the societies of Australian aborigines. The aim here is to extend this idea to cover the case of the conceptual categories underpinning modern Western science, as they developed historically first in Ancient Greece, and then at the Renaissance. These major non-empirical concepts include those of abstract Space (Euclidean space, perfectly homogeneous in all its dimensions; abstract Time (conceived as spatially linearized, with the possibility of imaginatively going back and forth; and a number of canonical logical categories (equality, abstract quantity, essential versus accidental properties, the continuous and the discontinuous, the transcendental…. Sohn-Rethel has proposed that the heart of the conceptual categories in question is to be found in an analysis of the exchange abstraction. This hypothesis will be fleshed out by examining the co-emergence of new social structures and new forms of conceptual thought in the course of historical evolution. This includes the Renaissance, which saw the emergence of both Capitalism and Modern Science; and on the contemporary situation, where the form of social life is dominated by financial speculation which goes together with the advent of automation in the processes of production. It is concluded that Cognitive Science, and in particular the nascent paradigm of Enaction, would do well to broaden its transdisciplinary scope to include the dimensions of sociology and anthropology.

  15. An enquiry concerning the nature of conceptual categories: a case-study on the social dimension of human cognition.

    Science.gov (United States)

    Stewart, John

    2014-01-01

    Cognitive Science, in all its guises, has not yet accorded any fundamental importance to the social dimension of human cognition. In order to illustrate the possibilities that have not so far been developed, this article seeks to pursue the idea, first put forward by Durkheim, that the major categories which render conceptual thought possible may actually have a social origin. Durkheim illustrated his thesis, convincingly enough, by examining the societies of Australian aborigines. The aim here is to extend this idea to cover the case of the conceptual categories underpinning modern Western science, as they developed historically first in Ancient Greece, and then at the Renaissance. These major non-empirical concepts include those of abstract Space (Euclidean space, perfectly homogeneous in all its dimensions); abstract Time (conceived as spatially linearized, with the possibility of imaginatively going back and forth); and a number of canonical logical categories (equality, abstract quantity, essential versus accidental properties, the continuous and the discontinuous, the transcendental…). Sohn-Rethel (1978) has proposed that the heart of the conceptual categories in question is to be found in an analysis of the exchange abstraction. This hypothesis will be fleshed out by examining the co-emergence of new social structures and new forms of conceptual thought in the course of historical evolution. This includes the Renaissance, which saw the emergence of both Capitalism and Modern Science; and on the contemporary situation, where the form of social life is dominated by financial speculation which goes together with the advent of automation in the processes of production. It is concluded that Cognitive Science, and in particular the nascent paradigm of Enaction, would do well to broaden its transdisciplinary scope to include the dimensions of sociology and anthropology.

  16. Science Anxiety, Science Attitudes, and Constructivism: A Binational Study

    Science.gov (United States)

    Bryant, Fred B.; Kastrup, Helge; Udo, Maria; Hislop, Nelda; Shefner, Rachel; Mallow, Jeffry

    2013-08-01

    Students' attitudes and anxieties about science were measured by responses to two self-report questionnaires. The cohorts were Danish and American students at the upper secondary- and university-levels. Relationships between and among science attitudes, science anxiety, gender, and nationality were examined. Particular attention was paid to constructivist attitudes about science. These fell into at least three broad conceptual categories: Negativity of Science Toward the Individual, Subjective Construction of Knowledge, and Inherent Bias Against Women. Multigroup confirmatory factor analyses revealed that these dimensions of constructivist attitudes were equally applicable and had the same meaning in both cultures. Gender differences in mean levels of constructivist attitudes were found; these varied across the two cultures. Constructivist beliefs were associated with science anxiety, but in different ways for females and males, and for Danes and Americans. In agreement with earlier studies, females in both the US and Danish cohorts were significantly more science anxious than males, and the gender differences for the Americans were larger than those for the Danes. Findings are discussed in terms of their implications for reducing science anxiety by changing constructivist beliefs.

  17. Conceptions and characterization : an explanation for the theory-practice gap in conceptual change theory

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2010-01-01

    For more than 2 decades now, conceptual change theory has been lauded as a powerful framework for improving science teaching and learning. This has resulted in an increasingly sophisticated theory building, yielding, among other things, a comprehensive documentation of students’ (mis-, alternative,

  18. GEOQUIMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling versus K[D])

    International Nuclear Information System (INIS)

    Hammond, Glenn E.; Cygan, Randall Timothy

    2007-01-01

    Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K D approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K D and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given

  19. 75 FR 62763 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2010-10-13

    ... Technology, 771 Ferst Drive, NW., School of Materials Science and Engineering, Atlanta, GA 30332-0245... components of the instrument are necessary to elicit information from core-shell nanoparticles. Justification... enhanced by extending the resolution using phase-plate technology with this instrument. The instrument is...

  20. Changing our minds: a commentary on `Conceptual change: a discussion of theoretical, methodological and practical challenges for science education'

    Science.gov (United States)

    Mercer, Neil

    2008-07-01

    This paper begins with a consideration of some important themes dealt with in the paper by Treagust and Duit. These include the relationship between research on conceptual change and educational practice, the significance of emotion and identity in the process of conceptual change, and role of cognitive conflict in motivating change. I then argue that the authors implicitly assert the importance of spoken dialogue as a motor for conceptual change, but do not give it the proper, explicit recognition that it deserves. I first use their own data of transcribed talk to make this point, and then go on to elaborate my case by drawing on other research. Talk amongst students and teacher-student talk are both considered. My conclusion is that while more empirical research is needed to understand how dialogue is involved in conceptual change, available evidence shows very clearly that the role of talk and social interaction is so significant that it cannot be ignored. It is therefore necessary for theoretical accounts to deal with both social (i.e. communicative) and cognitive aspects of conceptual change.