WorldWideScience

Sample records for science experiments require

  1. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  2. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  3. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    International Nuclear Information System (INIS)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  4. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  5. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  6. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  7. Deriving Earth Science Data Analytics Requirements

    Science.gov (United States)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  8. BER Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  9. NP Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Rotman, Lauren [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tierney, Brian [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  10. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  11. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  12. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    Science.gov (United States)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  13. What makes a good experiment ? reasons and roles in science

    CERN Document Server

    Franklin, Allan

    2016-01-01

    What makes a good experiment? Although experimental evidence plays an essential role in science, as Franklin argues, there is no algorithm or simple set of criteria for ranking or evaluating good experiments, and therefore no definitive answer to the question. Experiments can, in fact, be good in any number of ways: conceptually good, methodologically good, technically good, and pedagogically important. And perfection is not a requirement: even experiments with incorrect results can be good, though they must, he argues, be methodologically good, providing good reasons for belief in their results. Franklin revisits the same important question he posed in his 1981 article in the British Journal for the Philosophy of Science, when it was generally believed that the only significant role of experiment in science was to test theories. But experiments can actually play a lot of different roles in science—they can, for example, investigate a subject for which a theory does not exist, help to articulate an existing ...

  14. BES Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  15. BES Science Network Requirements

    International Nuclear Information System (INIS)

    Dart, Eli; Tierney, Brian; Biocca, A.; Carlson, R.; Chen, J.; Cotter, S.; Dattoria, V.; Davenport, J.; Gaenko, A.; Kent, P.; Lamm, M.; Miller, S.; Mundy, C.; Ndousse, T.; Pederson, M.; Perazzo, A.; Popescu, R.; Rouson, D.; Sekine, Y.; Sumpter, B.; Wang, C.-Z.; Whitelam, S.; Zurawski, J.

    2011-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  16. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  17. Belle-II Experiment Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bell, Greg [ESnet; Carlson, Tim [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cowley, David [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Dart, Eli [ESnet; Erwin, Brock [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Godang, Romulus [Univ. of South Alabama, Mobile, AL (United States); Hara, Takanori [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Johnson, Jerry [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Johnson, Ron [Univ. of Washington, Seattle, WA (United States); Johnston, Bill [ESnet; Dam, Kerstin Kleese-van [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Kaneko, Toshiaki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Kubota, Yoshihiro [NII; Kuhr, Thomas [Karlsruhe Inst. of Technology (KIT) (Germany); McCoy, John [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Miyake, Hideki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Monga, Inder [ESnet; Nakamura, Motonori [NII; Piilonen, Leo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Pordes, Ruth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ray, Douglas [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Russell, Richard [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schram, Malachi [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schroeder, Jim [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Sevior, Martin [Univ. of Melbourne (Australia); Singh, Surya [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Suzuki, Soh [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Sasaki, Takashi [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Williams, Jim [Indiana Univ., Bloomington, IN (United States)

    2013-05-28

    The Belle experiment, part of a broad-based search for new physics, is a collaboration of ~400 physicists from 55 institutions across four continents. The Belle detector is located at the KEKB accelerator in Tsukuba, Japan. The Belle detector was operated at the asymmetric electron-positron collider KEKB from 1999-2010. The detector accumulated more than 1 ab-1 of integrated luminosity, corresponding to more than 2 PB of data near 10 GeV center-of-mass energy. Recently, KEK has initiated a $400 million accelerator upgrade to be called SuperKEKB, designed to produce instantaneous and integrated luminosity two orders of magnitude greater than KEKB. The new international collaboration at SuperKEKB is called Belle II. The first data from Belle II/SuperKEKB is expected in 2015. In October 2012, senior members of the Belle-II collaboration gathered at PNNL to discuss the computing and neworking requirements of the Belle-II experiment with ESnet staff and other computing and networking experts. The day-and-a-half-long workshop characterized the instruments and facilities used in the experiment, the process of science for Belle-II, and the computing and networking equipment and configuration requirements to realize the full scientific potential of the collaboration's work.

  18. Interdisciplinary Science Courses for College General Education Requirements: Perspectives of Faculty at a State University.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    Science educators have been advocating a broader role for science education--that of helping all students see the relevance of science to their own lives. Yet the only experience with post-secondary science that non-science majors get is through a couple of science courses which are part of the general education requirements (GERs) for a liberal…

  19. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  20. WFIRST: Update on the Coronagraph Science Requirements

    Science.gov (United States)

    Douglas, Ewan S.; Cahoy, Kerri; Carlton, Ashley; Macintosh, Bruce; Turnbull, Margaret; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams

    2018-01-01

    The WFIRST Coronagraph instrument (CGI) will enable direct imaging and low resolution spectroscopy of exoplanets in reflected light and imaging polarimetry of circumstellar disks. The CGI science investigation teams were tasked with developing a set of science requirements which advance our knowledge of exoplanet occurrence and atmospheric composition, as well as the composition and morphology of exozodiacal debris disks, cold Kuiper Belt analogs, and protoplanetary systems. We present the initial content, rationales, validation, and verification plans for the WFIRST CGI, informed by detailed and still-evolving instrument and observatory performance models. We also discuss our approach to the requirements development and management process, including the collection and organization of science inputs, open source approach to managing the requirements database, and the range of models used for requirements validation. These tools can be applied to requirements development processes for other astrophysical space missions, and may ease their management and maintenance. These WFIRST CGI science requirements allow the community to learn about and provide insights and feedback on the expected instrument performance and science return.

  1. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  2. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  3. NASA's Earth Science Data Systems Standards Process Experiences

    Science.gov (United States)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  4. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  5. BER Science Network Requirements Workshop -- July 26-27,2007

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian L.; Dart, Eli

    2008-02-01

    characterizing the network requirements of the science endeavors funded by the BER Program Office, the workshop emphasized some additional points. These included the need for a future ESnet presence in the Denver area, a desire for ESnet to continue support of collaboration services, and the need for ESnet to support dedicated bandwidth or 'virtual circuit' services. In addition, it is clear that the BER facilities are going to experience significant growth in data production over the next 5 years. The reasons for this vary (model resolution and supercomputer allocations for climate, detector upgrades for EMSL and ARM, sequencing hardware upgrades for JGI), but all indicators point to significant growth in data volumes over the near to medium term. This growth in data volume, combined with the ever-expanding scope of scientific collaboration, will continue to demand ever-increasing bandwidth, reliability and service richness from the networks that support DOE science.

  6. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions

    Science.gov (United States)

    Atlas, R. M.

    2016-12-01

    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  7. Nuclear science experiments in high schools

    International Nuclear Information System (INIS)

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  8. ASCR Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high

  9. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  10. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  11. Articulating attrition: Graduate school experiences of female doctoral students in the sciences

    Science.gov (United States)

    Osburn, Kathryn Ann

    2005-07-01

    Despite decades of research and reform efforts designed to bolster female retention in scientific disciplines, the conundrum of women's departure from doctoral programs in the sciences remains. This qualitative case study investigated the aspects of the graduate school experience that female doctoral students described as facilitating or impeding their successful degree completion in chemistry. I analyzed the graduate school narratives of twelve female participants who represented both successful and unsuccessful doctoral recipients from four advisors at one university. Participants identified four types of experiences that facilitated their retention in the doctoral program: feeling successful and confident in meeting the program requirements, having positive research experiences, receiving support from social networks, and being dedicated to career goals. Participants cited four kinds of experiences that impeded their continued participation in the doctoral program: having negative research experiences, feeling a lack of success and confidence in meeting the program requirements, changing career goals, and receiving no support from social networks. The graduate school experiences of participants who did and did not successfully attain their degree objectives differed in terms of four dimensions: pre-program experiences, academic experiences, advisory experiences, and social experiences. Based on these findings, I have proposed a model of attrition and retention that emphasizes the role that these unique program experiences play in shaping participants' sense of professional fit within the community of doctoral chemists, consequently contributing to their differential program outcomes. This study not only offers a new perspective on the phenomenon of female doctoral attrition in the sciences but also informs the development of more gender-inclusive graduate science practices and policies that will support the retention of female doctoral students.

  12. Long-Term Stewardship Science and Technology Requirements

    International Nuclear Information System (INIS)

    McDonald, J.K.; Nickelson, R.A.

    2002-01-01

    To ensure technology developed for long-term stewardship will meet existing requirements, a review of requirements was performed. In addition to identifying existing science and technology related requirements, gaps and conflicts of requirements were identified

  13. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    Science.gov (United States)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  14. Preservice science teachers' experiences with repeated, guided inquiry

    Science.gov (United States)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  15. HEP Science Network Requirements--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Jon; Barczyk, Artur; Blatecky, Alan; Boehnlein, Amber; Carlson, Rich; Chekanov, Sergei; Cotter, Steve; Cottrell, Les; Crawford, Glen; Crawford, Matt; Dart, Eli; Dattoria, Vince; Ernst, Michael; Fisk, Ian; Gardner, Rob; Johnston, Bill; Kent, Steve; Lammel, Stephan; Loken, Stewart; Metzger, Joe; Mount, Richard; Ndousse-Fetter, Thomas; Newman, Harvey; Schopf, Jennifer; Sekine, Yukiko; Stone, Alan; Tierney, Brian; Tull, Craig; Zurawski, Jason

    2010-04-27

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans

  16. HEP Science Network Requirements. Final Report

    International Nuclear Information System (INIS)

    Dart, Eli; Tierney, Brian

    2010-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans-Atlantic connectivity

  17. AUTHENTIC SCIENCE EXPERIENCES: PRE-COLLEGIATE SCIENCE EDUCATORS’ SUCCESSES AND CHALLENGES DURING PROFESSIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Andrea C. Burrows

    2016-04-01

    Full Text Available Twenty-three pre-collegiate educators of elementary students (ages 5-10 years and secondary students (ages 11-18 years attended a two-week science, technology, engineering, and mathematics (STEM astronomy focused professional development in the summer of 2015 with activities focused on authentic science experiences, inquiry, and partnership building. ‘Authentic’ in this research refers to scientific skills and are defined. The study explores the authentic science education experience of the pre-collegiate educators, detailing the components of authentic science as seen through a social constructionism lens. Using qualitative and quantitative methods, the researchers analyzed the successes and challenges of pre-collegiate science and mathematics educators when immersed in STEM and astronomy authentic science practices, the educators’ perceptions before and after the authentic science practices, and the educators’ performance on pre to post content tests during the authentic science practices. Findings show that the educators were initially engaged, then disengaged, and then finally re-engaged with the authentic experience. Qualitative responses are shared, as are the significant results of the quantitative pre to post content learning scores of the educators. Conclusions include the necessity for PD team delivery of detailed explanations to the participants - before, during, and after – for the entire authentic science experience and partnership building processes. Furthermore, expert structure and support is vital for participant research question generation, data collection, and data analysis (successes, failures, and reattempts. Overall, in order to include authentic science in pre-collegiate classrooms, elementary and secondary educators need experience, instruction, scaffolding, and continued support with the STEM processes.

  18. Impact of Service-Learning Experiences in Culinary Arts and Nutrition Science

    Science.gov (United States)

    Daugherty, Jamie B.

    2015-01-01

    A grant from a regional nonprofit organization for the 2012-2013 academic year facilitated the revision of an existing course learning objective in a Culinary Nutrition lab course--performing effective culinary demonstrations--to include a service-learning experience. This course is a graduation requirement in a research- and science-based…

  19. Mapping classroom experiences through the eyes of enlace students: The development of science literate identities

    Science.gov (United States)

    Oemig, Paulo Andreas

    The culture of a science classroom favors a particular speech community, thus membership requires students becoming bilingual and bicultural at the same time. The complexity of learning science rests in that it not only possesses a unique lexicon and discourse, but it ultimately entails a way of knowing. My dissertation examined the academic engagement and perceptions of a group (N=30) of high school students regarding their science literate practices. These students were participating in an Engaging Latino Communities for Education (ENLACE) program whose purpose is to increase Latino high school graduation rates and assist them with college entrance requirements. At the time of the study, 19 students were enrolled in different science classes to fulfill the science requirements for graduation. The primary research question: What kind of science classroom learning environment supports science literate identities for Latino/a students? was addressed through a convergent parallel mixed research design (Creswell & Plano Clark, 2011). Over the course of an academic semester I interviewed all 30 students arranged in focus groups and observed in their science classes. ENLACE students expressed interest in science when it was taught through hands-on activities or experiments. Students also stressed the importance of having teachers who made an effort to get to know them as persons and not just as students. Students felt more engaged in science when they perceived their teachers respected them for their experiences and knowledge. Findings strongly suggest students will be more interested in science when they have opportunities to learn through contextualized practices. Science literate identities can be promoted when inquiry serves as a vehicle for students to engage in the language of the discipline in all its modalities. Inquiry-based activities, when carefully planned and implemented, can provide meaningful spaces for students to construct knowledge, evaluate claims

  20. Pre-college Science Experiences; Timing and Causes of Gender Influence Science Interest Levels

    Science.gov (United States)

    Kaplita, E.; Reed, D. E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    It is known that female students tend to turn away from science during their pre-college years. Experiences during this time are not limited to the classroom, as cultural influences extend beyond K-12 science education and lead to the widely studied reduction in females in STEM fields. This has a large impact on climate science because currently relatively little effort is put into K-12 climate education, yet this is when college attitudes towards science are formed. To help quantify these changes, 400 surveys were collected from 4 different colleges in Oklahoma. Student responses were compared by gender against student experiences (positive and negative), and interest in science. Results of our work show that females tend to have their first positive experience with science at a younger age with friends, family and in the classroom, and have more of an interest in science when they are younger. Males in general like experiencing science more on their own, and surpass the interest levels of females late in high school and during college. While in college, males are more comfortable with science content than females, and males enjoy math and statistics more while those aspects of science were the largest areas of dislike in females. Understanding how to keep students (particularly female) interested in science as they enter their teen years is extremely important in preventing climate misconceptions in the adult population. Potential small changes such as hosting K-12 climate outreach events and including parents, as opposed to just inviting students, could greatly improve student experiences with science and hence, their understanding of climate science. Importantly, a greater focus on female students is warranted.

  1. Earth Science Informatics Community Requirements for Improving Sustainable Science Software Practices: User Perspectives and Implications for Organizational Action

    Science.gov (United States)

    Downs, R. R.; Lenhardt, W. C.; Robinson, E.

    2014-12-01

    Science software is integral to the scientific process and must be developed and managed in a sustainable manner to ensure future access to scientific data and related resources. Organizations that are part of the scientific enterprise, as well as members of the scientific community who work within these entities, can contribute to the sustainability of science software and to practices that improve scientific community capabilities for science software sustainability. As science becomes increasingly digital and therefore, dependent on software, improving community practices for sustainable science software will contribute to the sustainability of science. Members of the Earth science informatics community, including scientific data producers and distributers, end-user scientists, system and application developers, and data center managers, use science software regularly and face the challenges and the opportunities that science software presents for the sustainability of science. To gain insight on practices needed for the sustainability of science software from the science software experiences of the Earth science informatics community, an interdisciplinary group of 300 community members were asked to engage in simultaneous roundtable discussions and report on their answers to questions about the requirements for improving scientific software sustainability. This paper will present an analysis of the issues reported and the conclusions offered by the participants. These results provide perspectives for science software sustainability practices and have implications for actions that organizations and their leadership can initiate to improve the sustainability of science software.

  2. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    Science.gov (United States)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  3. Putting Science FIRST: Memories of Family Science Experiences.

    Science.gov (United States)

    Science and Children, 1996

    1996-01-01

    Presents anecdotes from prominent citizens including Bill Clinton, Alan Alda, Carl Sagan, Gerald Wheeler, JoAnne Vasquez, and Lynn Margulis in which they reminisce about interesting science experiences with their families. (JRH)

  4. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  5. An experience of science theatre: Earth Science for children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  6. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  7. Survey of Mathematics and Science Requirements for Production-Oriented Agronomy Majors.

    Science.gov (United States)

    Aide, Michael; Terry, Danny

    1996-01-01

    Analyzes course requirements to determine the amount of required mathematics and science for production-oriented agronomy majors. Reports that mathematics requirements center around college algebra and statistics; science requirements generally include chemistry, biology, plant physiology, and genetics; and land-grant institutions have a…

  8. Soil Science self-learning based on the design and conduction of experiments

    Science.gov (United States)

    Jordán, A.; Bárcenas-Moreno, G.; Zavala, L. M.

    2012-04-01

    This paper presents an experience for introducing the methodology of project-based learning (PBL) in the area of Soil Science in the University of Sevilla (Spain). Currently, teachers try to enhance practical experience of university students in a complementary manner to theoretical knowledge. However, many times this is a difficult process. Practice is an important part of personal work in the vast majority of subjects that degree students receive, since the implementation of the EHEA. In most cases, these experiences are presented as partial small experiments or projects, assigned to the area-specific knowledge agenda. Certain sciences, such as Soil Science, however, require synthesis and integration capabilities of previous knowledge. It is therefore necessary to develop practical programs that address the student not only to the performance of laboratory determinations, but to the formulation of hypotheses, experimental design and problem solving, whether in groups or individually, situated in a wide context and allowing students to make connections with other areas of knowledge. This project involves the development of teamwork experiments, for the study real cases and problems and making decisions in the field of Soil Science. The results of the experimental work were publicly exposed as posters and oral presentations and were discussed during a mini-congress open to students and a general audience. The open and dynamic nature of the project substantially improves student motivation, which adds value to our project. Due to the multidisciplinary character of Soil Science it is relatively easy to propose projects of some complexity, and therefore, provides good conditions for introducing the PBL methodology. The teacher's role is also important and is not limited to observe or qualify the students, but it is a catalyst for learning. It is important that teacher give the leadership of the process and make the students themselves feel the protagonists of the

  9. Long-Term Stewardship Program Science and Technology Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  10. The Content and Integrative Component of Capstone Experiences: An Analysis of Political Science Undergraduate Programs

    Science.gov (United States)

    Hummer, Jill Abraham

    2014-01-01

    In 1991, the APSA Task Force on Political Science recommended elements of a curricular structure that would best promote student learning. The report stated that there should be a capstone experience at the end of the senior year and that the capstone should require students to integrate their whole learning experience in the major. This article…

  11. Mapping the entangled ontology of science teachers’ lived experience

    DEFF Research Database (Denmark)

    Daugbjerg, Peer Schrøder; de Freitas, E.; Valero, Paola

    2015-01-01

    , the following questions are pursued: (1) In what ways do primary science teachers refer to the lived and living body in teaching and learning? (2) In what ways do primary science teachers tap into past experiences in which the body figured prominently in order to teach students about living organisms? We draw...... the entanglement of lived experience and embodied teaching using these three proposed dimensions of experience. Analysing interviews and observations of three Danish primary science teachers—Erik, Jane and Tina—, we look for how their self-reported lived experiences become entangled with their content knowledge......In this paper we investigate how the bodily activity of teaching, along with the embodied aspect of lived experience, relates to science teachers’ ways of dealing with bodies as living organisms which are both the subject matter as well as the site or vehicle of learning. More precisely...

  12. MIT-NASA/KSC space life science experiments - A telescience testbed

    Science.gov (United States)

    Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.

    1990-01-01

    Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.

  13. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    Science.gov (United States)

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  14. Science Experiences among Female Athletes: Race Makes a Difference

    Science.gov (United States)

    Kraus, Rebecca S.; Hanson, Sandra L.

    Sport participation is increasingly seen as a resource with considerable physical, social, and academic benefits. As a new millennium begins with girls more visible in sport, an important question is whether all girls reap these benefits. Although general academic benefits of sport have been shown, the authors' earlier work showed that experience in the male sport domain benefits young women in the elite (often male) science curriculum. Competition, self-esteem, and other individual resources gained through sport are potential sources of success in the similarly competitive male realm of science. In this research, the authors used critical feminist theory to guide their examination of racial and ethnic variations in the relation between sport participation and science experiences for young women. Data from the nationally representative National Education Longitudinal Study were used to explore the impact of sport participation in the 8th and 10th grades on 10th grade science achievement (measured by science grades and standardized test scores) and course taking for African American, Hispanic, and White women. The findings revealed that sport participation has some positive consequences for the science experiences of each of the groups of women. It also has some negative consequences, although the positive consequences outnumber the negative consequences for Hispanic and White, but not African American, women. Sport in 10th grade, especially competitive varsity sport, is most likely to have positive consequences. The findings revealed that each of the groups experiences different routes to success in science, and sport participation is present at some level in each of these routes. A consideration of multiple areas of science experience is important for understanding the connections between race and ethnicity, sport, and science for young women. Unique sociocultural contexts are used to attempt to understand these findings, and implications are discussed.

  15. Life sciences research in space: The requirement for animal models

    Science.gov (United States)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  16. Round table: moderated by Marco Bersanelli and François Bouchet - What next? science objectives and required observations: Objective: Open discussion of what are the strengths and weaknesses of possible future experiments, complementarity, what is our target science for the M5 proposal and what is the best strategy to get it

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Round table: moderated by Marco Bersanelli and François Bouchet - What next? science objectives and required observations: Objective: Open discussion of what are the strengths and weaknesses of possible future experiments, complementarity, what is our target science for the M5 proposal and what is the best strategy to get it

  17. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  18. Family Experiences, the Motivation for Science Learning and Science Achievement of Different Learner Groups

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2017-01-01

    Science education is particularly important for both developed and developing countries to promote technological development, global economic competition and economic growth. This study explored the relationship between family experiences, the motivation for science learning, and the science achievement of a group of Grade Nine learners in South…

  19. The Dimensions and Impact of Informal Science Learning Experiences on Middle Schoolers' Attitudes and Abilities in Science

    Science.gov (United States)

    Lin, Pei-Yi; Schunn, Christian D.

    2016-01-01

    Learners encounter science in a wide variety of contexts beyond the science classroom which collectively could be quite influential on student attitudes and abilities. But relatively little is known about the relative influence of different forms of informal science experiences, especially for the kinds of experiences that students typically…

  20. Architecting Learning Continuities for Families Across Informal Science Experiences

    Science.gov (United States)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit

  1. Transforming patient experience: health web science meets medicine 2.0.

    Science.gov (United States)

    McHattie, Lynn-Sayers; Cumming, Grant; French, Tara

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London.

  2. Transforming Patient Experience: Health Web Science Meets Medicine 2.0

    Science.gov (United States)

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London. PMID:25075246

  3. To touch the science through the experiment!

    Science.gov (United States)

    Słowik, Grzegorz

    2016-04-01

    To touch the science through the experiment! Grzegorz P. Slowik, Gymnasium No. 2 in Zielona Gora, Poland Our School - Gymnasium No. 2 in Zielona Gora - where pupils' age is 13 -16, has for many years organized a lot of exciting events popularizing science among Zielona Gora children and young people, in particular experimental physics and astronomy. The best known in our town is the regular event on physics, - called the physical Festival of Zielona Gora, of which I am the main initiator and organizer. The Festival is directed to students of the last classes of Zielona Góra primary schools. During the Festivities their shows have also physicists and astronomers, from cooperating with us in popularization of science Zielona Gora University. At the festival the students from our Experimental School Group "Archimedes". Presented their own prepared themselves physical experience. With considerable help of students of Gymnasium No. 2 interested in astronomy, we organize the cyclical event, named "Cosmic Santa Claus," where I share with the students the knowledge gained through my active annual participation in the Space Workshop organized by the Science Centre in Warsaw. We all have fun and learn in a great way and with a smile, we touch real science that reveals its secrets!

  4. Science Festivals: Grand Experiments in Public Outreach

    Science.gov (United States)

    Hari, K.

    2015-12-01

    Since the Cambridge Science Festival launched in 2007, communities across the United States have experimented with the science festival format, working out what it means to celebrate science and technology. What have we learned, and where might we go from here? The Science Festival Alliance has supported and tracked developments among U.S. festivals, and this presentation will present key findings from three years of independent evaluation. While science festivals have coalesced into a distinct category of outreach activity, the diversity of science festival initiatives reflects the unique character of the regions in which the festivals are organized. This symposium will consider how festivals generate innovative public programming by adapting to local conditions and spur further innovation by sharing insights into such adaptations with other festivals. With over 55 annual large scale science festivals in the US alone, we will discuss the implications of a dramatic increase in future festival activity.

  5. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  6. Reconstructing Iconic Experiments in Electrochemistry: Experiences from a History of Science Course

    Science.gov (United States)

    Eggen, Per-Odd; Kvittingen, Lise; Lykknes, Annette; Wittje, Roland

    2012-01-01

    The decomposition of water by electricity, and the voltaic pile as a means of generating electricity, have both held an iconic status in the history of science as well as in the history of science teaching. These experiments featured in chemistry and physics textbooks, as well as in classroom teaching, throughout the nineteenth and twentieth…

  7. Ongoing experiments: diagnostics requirements

    International Nuclear Information System (INIS)

    Dickerman, C.E.

    1976-01-01

    The paper reviews the fuel motion diagnostics needs for ongoing LMFBR safety experiments over approximately the next five years, with the discussion centered on TREAT. Brief comments on the direction in which clad motion diagnostics requirements are expected to develop are also presented

  8. More Life-Science Experiments For Spacelab

    Science.gov (United States)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  9. Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

    Science.gov (United States)

    Fox, Jared

    This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education.

  10. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  11. Motivation and career outcomes of a precollege life science experience for underrepresented minorities

    Science.gov (United States)

    Ortega, Robbie Ray

    Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were

  12. Taking our own medicine: on an experiment in science communication.

    Science.gov (United States)

    Horst, Maja

    2011-12-01

    In 2007 a social scientist and a designer created a spatial installation to communicate social science research about the regulation of emerging science and technology. The rationale behind the experiment was to improve scientific knowledge production by making the researcher sensitive to new forms of reactions and objections. Based on an account of the conceptual background to the installation and the way it was designed, the paper discusses the nature of the engagement enacted through the experiment. It is argued that experimentation is a crucial way of making social science about science communication and engagement more robust.

  13. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    Science.gov (United States)

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  14. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    Science.gov (United States)

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  15. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  16. Instrumentation requirements for the ESF thermomechanical experiments

    International Nuclear Information System (INIS)

    Pott, J.; Brechtel, C.E.

    1992-01-01

    In situ thermomechanical experiments are planned as part of the Yucca Mountain Site Characterization Project that require instruments to measure stress and displacement at temperatures that exceed the typical specifications of existing geotechnical instruments. A high degree of instrument reliability will also be required to satisfy the objectives of the experiments, therefore a study was undertaken to identify areas where improvement in instrument performance was required. A preliminary list of instruments required for the experiments was developed, based on existing test planning and analysis. Projected temperature requirements were compared to specifications of existing instruments to identify instrumentation development needs. Different instrument technologies, not currently employed in geotechnical instrumentation, were reviewed to identify potential improvements of existing designs for the high temperature environment. Technologies with strong potentials to improve instrument performance with relatively high reliability include graphite fiber composite materials, fiber optics, and video imagery

  17. Earth at Rest. Aesthetic Experience and Students' Grounding in Science Education

    Science.gov (United States)

    Østergaard, Edvin

    2017-07-01

    Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I discuss efforts to promote aesthetic experience in science class and in science teacher education. Within a wide range of definitions, my main understanding of aesthetic experience is that of pre-conceptual experience, relational to the environment and incorporated in students' embodied knowledge. I ground the idea of Earth at rest in Husserl's phenomenological philosophy and Heidegger's notion of science' deprivation of the world. A critique of the ontological reversal leads to an ontological re-reversal that implies giving lifeworld experience back its value and rooting scientific concepts in students' everyday lives. Six aspects of facilitating grounding in sustainability-oriented science teaching and teacher education are highlighted and discussed: students' everyday knowledge and experience, aesthetic experience and grounding, fostering aesthetic sensibility, cross-curricular integration with art, ontological and epistemological aspects, and belongingness and (re-)connection to Earth. I conclude that both science students and student-teachers need to practice their sense of caring and belonging, as well as refining their sensibility towards the world. With an intension of educating for a sustainable development, there is an urgent need for a critical discussion in science education when it comes to engaging learners for a sustainable future.

  18. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  19. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    Science.gov (United States)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  20. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  1. Disciplinary Literacy in Science: Developing Science Literacy through Trade Books

    Science.gov (United States)

    Fang, Zhihui

    2014-01-01

    Developing science literacy requires not only firsthand explorations of the material world but also secondhand investigations with text. A potentially powerful kind of text in science is trade books. This column describes four classroom ploys for using science trade books to enhance students' secondhand experiences.

  2. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  3. Measuring Choice to Participate in Optional Science Learning Experiences during Early Adolescence

    Science.gov (United States)

    Sha, Li; Schunn, Christian; Bathgate, Meghan

    2015-01-01

    Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…

  4. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  5. Effects of an intensive middle school science experience on the attitude toward science, self-esteem, career goal orientation, and science achievement of eighth-grade female students

    Science.gov (United States)

    Williams, Tammy Kay

    The purpose of this investigation was to examine the effects of a year long intensive extracurricular middle school science experience on the self-esteem, career goal orientation, and attitude toward science of eighth grade female students using both quantitative and qualitative methods. Sixteen self-selected eighth grade female students participated in extracurricular science experiences such as camping, rock climbing, specimen collecting and hiking, as well as meeting and interacting with female science role models. Data was collected using pre- and posttest methods using the Children's Attitude Toward Science Survey, the Coopersmith Self-Esteem Inventory, and the Self-Directed Search (SDS) Career Explorer. End of year science course grades were examined for seventh and eighth grades and compared to first semester high school grades. Qualitative data was in the form of: (1) focus group interviews conducted prior to field experiences, at the end of all field experiences, and at the end of the first semester of high school, and (2) journal entries from throughout the project. Qualitative data was examined for changes in student perceptions of science as a discipline, self as scientist, women in science, and social comparison of self in science.

  6. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  7. Experiment Prevails Over Observation in Geophysical Science

    Science.gov (United States)

    Galvin, C.

    2006-05-01

    Thomson and Tait gave their name to a text (T and T') that sums up nineteenth century mechanics. T and T' says that scientists gain knowledge of the natural universe and the laws that regulate it through Experience. T and T' divides Experience into Observation and Experiment. The posthumous (1912) edition of T and T' appeared seven years before Eddington's expeditions to observe the eclipse of 29 May 1919 that demonstrated the bending of starlight predicted by Einstein's general theory of relativity. During the 2005 centenary of young Einstein's remarkably productive year, Eddington's (1919) result was frequently remembered, but the description in 2005 of what Eddington did in 1919 often differed from what Eddington said that he did. In his words then, Eddington observed; in words from scientists, historians of science, and philosophers of science during 2005, Eddington often experimented. In 1912, T and T' had distinguished Observation from Experiment with an apt contrast: ""When, as in astronomy, we endeavour to ascertain these causes by simply watching, we observe; when, as in our laboratories, we interfere arbitrarily with the causes or circumstances of a phenomenon, we are said to experiment"". (italics in T and T'). Eddington himself conformed to this distinction in his report (Physical Society of London, 1920). In its Preface, he states that observations were made at each of two stations, and concludes that ""I think it may now be stated that Einstein's law of gravitation is definitely established by observation..."". Chapter V of that report deals with The Crucial Phenomena. In this chapter, some form of the word observe (noun, verb, adjective, adverb) appears 13 times. In this chapter, experiment appears only as experimental, and then only twice. Einstein's prediction, with Eddington's observations, profoundly impressed contemporary philosophers of science. Karl Popper, then aged 17, considered Eddington's findings to effect a turning point in his career

  8. Planet Formation Imager (PFI): science vision and key requirements

    Science.gov (United States)

    Kraus, Stefan; Monnier, John D.; Ireland, Michael J.; Duchêne, Gaspard; Espaillat, Catherine; Hönig, Sebastian; Juhasz, Attila; Mordasini, Chris; Olofsson, Johan; Paladini, Claudia; Stassun, Keivan; Turner, Neal; Vasisht, Gautam; Harries, Tim J.; Bate, Matthew R.; Gonzalez, Jean-François; Matter, Alexis; Zhu, Zhaohuan; Panic, Olja; Regaly, Zsolt; Morbidelli, Alessandro; Meru, Farzana; Wolf, Sebastian; Ilee, John; Berger, Jean-Philippe; Zhao, Ming; Kral, Quentin; Morlok, Andreas; Bonsor, Amy; Ciardi, David; Kane, Stephen R.; Kratter, Kaitlin; Laughlin, Greg; Pepper, Joshua; Raymond, Sean; Labadie, Lucas; Nelson, Richard P.; Weigelt, Gerd; ten Brummelaar, Theo; Pierens, Arnaud; Oudmaijer, Rene; Kley, Wilhelm; Pope, Benjamin; Jensen, Eric L. N.; Bayo, Amelia; Smith, Michael; Boyajian, Tabetha; Quiroga-Nuñez, Luis Henry; Millan-Gabet, Rafael; Chiavassa, Andrea; Gallenne, Alexandre; Reynolds, Mark; de Wit, Willem-Jan; Wittkowski, Markus; Millour, Florentin; Gandhi, Poshak; Ramos Almeida, Cristina; Alonso Herrero, Almudena; Packham, Chris; Kishimoto, Makoto; Tristram, Konrad R. W.; Pott, Jörg-Uwe; Surdej, Jean; Buscher, David; Haniff, Chris; Lacour, Sylvestre; Petrov, Romain; Ridgway, Steve; Tuthill, Peter; van Belle, Gerard; Armitage, Phil; Baruteau, Clement; Benisty, Myriam; Bitsch, Bertram; Paardekooper, Sijme-Jan; Pinte, Christophe; Masset, Frederic; Rosotti, Giovanni

    2016-08-01

    The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.

  9. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  10. Participatory Design of Citizen Science Experiments

    Science.gov (United States)

    Senabre, Enric; Ferran-Ferrer, Nuria; Perelló, Josep

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through co-creation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention…

  11. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  12. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  13. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  14. Taking an active stance: How urban elementary students connect sociocultural experiences in learning science

    Science.gov (United States)

    Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy

    2017-12-01

    In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students' sociocultural experiences in learning science and choosing science activities.

  15. Pura Vida: Teacher Experiences in a Science Education Study Abroad Course in Costa Rica

    Science.gov (United States)

    Medina, Stephanie Rae

    The purpose of this study was to explore the experiences of classroom teachers who participated in a science-focused study abroad during their time as a preservice teacher and to explore how they are using their study abroad experiences in science curriculum planning and in classroom instruction. This study is guided by two research questions: 1) what are the study abroad experiences that have influenced classroom teachers; and, 2) how do classroom teachers incorporate study abroad experiences into science curriculum planning and instruction in the classroom? Participants were two in-service science teachers from schools located in the Southwestern United States. The participants were enrolled in the course, Environmental Science and Multicultural Experience for K-8 Teachers offered through the Department of Educational Leadership, Curriculum and Instruction during their time as preservice teachers. The course included a two-week study abroad component in Costa Rica. Participants spent their mornings observing a monolingual, Spanish-speaking elementary classroom followed by a faculty-led multicultural seminar. Afternoons during the study abroad experience were dedicated to field science activities such as quantifying plant and animal biodiversity, constructing elevation profiles, determining nutrient storage in soil, and calculating river velocity. Throughout the course students participated in science-focused excursions. A cross case study design was used to answer the two research questions guiding this dissertation study. Data collection included participant-created concept maps of the science experiences during the study abroad experience, in-depth interviews detailing the study abroad experience and classroom instruction, and participant reflective journal entries. Cross-caseanalysis was employed to explore the uniqueness of each participant's experience and commonalities between the cases. Trustworthiness was established by utilizing multiple sources of data

  16. P1-7: Modern Display Technology in Vision Science: Assessment of OLED and LCD Monitors for Visual Experiments

    Directory of Open Access Journals (Sweden)

    Tobias Elze

    2012-10-01

    Full Text Available For many decades, cathode ray tube (CRT monitors have been the dominant display technology in vision science. However, in recent years, most manufacturers stopped their CRT production lines, which enforces the application of alternative display technology in the field of vision science. Here, we analyze liquid crystal displays (LCDs and organic light-emitting diode (OLED monitors for their applicability in vision science experiments. Based on extensive measurements of their photometric output, we compare these technologies and contrast them with classical CRT monitors. Vision scientists aim to accurately present both static and dynamic stimuli on their display devices. As for the presentation of static stimuli, we demonstrate an increased accuracy for LCD and OLED devices compared to CRT monitors, because the former exhibit a higher degree of independence of neighboring pixels. As for dynamic presentations, both CRTs and OLEDs outperform LCD devices in terms of accuracy, because dynamic presentations on LCDs require a reorientation of the liquid crystal molecules, so that successive frames in time depend on each other. Together with widely unknown and uncontrolled technical artifacts, these properties of LCDs may impair visual experiments that require high temporal precision. Therefore, OLED monitors are more suitable for vision science experiments with respect to both their static and their temporal characteristics. However, for certain applications in visual neuroscience, the low duty cycle of some OLED devices may introduce frequencies to the photometric output which fall within the window of visibility of neurons in the visual cortex and therefore interfere with single unit recordings.

  17. An Investigation of the Effects of Authentic Science Experiences Among Urban High School Students

    Science.gov (United States)

    Chapman, Angela

    Providing equitable learning opportunities for all students has been a persistent issue for some time. This is evident by the science achievement gap that still exists between male and female students as well as between White and many non-White student populations (NCES, 2007, 2009, 2009b) and an underrepresentation of female, African-American, Hispanic, and Native Americans in many science, technology, engineering, and mathematics (STEM) related careers (NCES, 2009b). In addition to gender and ethnicity, socioeconomic status and linguistic differences are also factors that can marginalize students in the science classroom. One factor attributed to the achievement gap and low participation in STEM career is equitable access to resources including textbooks, laboratory equipment, qualified science teachers, and type of instruction. Extensive literature supports authentic science as one way of improving science learning. However, the majority of students do not have access to this type of resource. Additionally, extensive literature posits that culturally relevant pedagogy is one way of improving education. This study examines students' participation in an authentic science experience and argues that this is one way of providing culturally relevant pedagogy in science classrooms. The purpose of this study was to better understand how marginalized students were affected by their participation in an authentic science experience, within the context of an algae biofuel project. Accordingly, an interpretivist approach was taken. Data were collected from pre/post surveys and tests, semi-structured interviews, student journals, and classroom observations. Data analysis used a mixed methods approach. The data from this study were analyzed to better understand whether students perceived the experience to be one of authentic science, as well as how students science identities, perceptions about who can do science, attitudes toward science, and learning of science practices

  18. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada

    2006-06-01

    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  19. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    Science.gov (United States)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  20. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  1. Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview

    Science.gov (United States)

    Cabrol, N. A.; Thomas, G.; Witzke, B.

    2001-04-01

    Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.

  2. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  3. Mapping the entangled ontology of science teachers' lived experience

    Science.gov (United States)

    Daugbjerg, Peer S.; de Freitas, Elizabeth; Valero, Paola

    2015-09-01

    In this paper we investigate how the bodily activity of teaching, along with the embodied aspect of lived experience, relates to science teachers' ways of dealing with bodies as living organisms which are both the subject matter as well as the site or vehicle of learning. More precisely, the following questions are pursued: (1) In what ways do primary science teachers refer to the lived and living body in teaching and learning? (2) In what ways do primary science teachers tap into past experiences in which the body figured prominently in order to teach students about living organisms? We draw on the relational ontology and intra-action of Karen Barad (J Women Cult Soc 28(3): 801, 2003) as she argues for a "relational ontology" that sees a relation as a dynamic flowing entanglement of a matter and meaning. We combine this with the materialist phenomenological studies of embodiment by SungWon Hwang and Wolff-Michael Roth (Scientific and mathematical bodies, Sense Publishers, Rotterdam, 2011), as they address how the teachers and students are present in the classroom with/in their "living and lived bodies". Our aim is to use theoretical insights from these two different but complementary approaches to map the embodiment of teachers' experiences and actions. We build our understanding of experience on the work of John Dewey (Experience and education, Simon & Schuster, New York, 1938) and also Jean Clandinin and Michael Connelly (Handbook of qualitative research, Sage Publications, California, 2000), leading us to propose three dimensions: settings, relations and continuity. This means that bodies and settings are mutually entailed in the present relation, and furthermore that the past as well as the present of these bodies and settings—their continuity—is also part of the present relation. We analyse the entanglement of lived experience and embodied teaching using these three proposed dimensions of experience. Analysing interviews and observations of three Danish

  4. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  5. Why Everyday Experience? Interpreting Primary Students' Science Discourse from the Perspective of John Dewey

    Science.gov (United States)

    Na, Jiyeon; Song, Jinwoong

    2014-05-01

    The purposes of this study were, based on John Dewey's ideas on experience, to examine how primary students used their own everyday experience and were affected by own and others' experience in science discourse, and to illuminate the implications of experience in science education. To do these, science discourses by a group of six fourth-graders were observed, where they talked about their ideas related to thermal concepts. The data was collected through interviews and open-ended questions, analyzed based on Dewey's perspective, and depicted as the discourse map which was developed to illustrate students' transaction and changing process of students' ideas. The results of the analysis showed typical examples of Dewey's notions of experience, such as the principles of continuity and of transaction and of different types of experience, examples of `the expanded continuity and transaction', and science discourse as inquiry. It was also found that students' everyday experiences played several roles: as a rebuttal for changing their own ideas or others', backing for assurance of their own ideas in individual students' inner changes after discourse with others, and backing for other's ideas. Based on these observations, this study argues that everyday experience should be considered as a starting point for primary students' science learning because most of their experience comes from everyday, not school science, contexts. In addition, to evoke educative experience in science education, it is important for teachers to pay more attention to Dewey's notions of the principles of continuity and of transaction and to their educational implications.

  6. The AGING Initiative experience: a call for sustained support for team science networks.

    Science.gov (United States)

    Garg, Tullika; Anzuoni, Kathryn; Landyn, Valentina; Hajduk, Alexandra; Waring, Stephen; Hanson, Leah R; Whitson, Heather E

    2018-05-18

    Team science, defined as collaborative research efforts that leverage the expertise of diverse disciplines, is recognised as a critical means to address complex healthcare challenges, but the practical implementation of team science can be difficult. Our objective is to describe the barriers, solutions and lessons learned from our team science experience as applied to the complex and growing challenge of multiple chronic conditions (MCC). MCC is the presence of two or more chronic conditions that have a collective adverse effect on health status, function or quality of life, and that require complex healthcare management, decision-making or coordination. Due to the increasing impact on the United States society, MCC research has been identified as a high priority research area by multiple federal agencies. In response to this need, two national research entities, the Healthcare Systems Research Network (HCSRN) and the Claude D. Pepper Older Americans Independence Centers (OAIC), formed the Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative to build nationwide capacity for MCC team science. This article describes the structure, lessons learned and initial outcomes of the AGING Initiative. We call for funding mechanisms to sustain infrastructures that have demonstrated success in fostering team science and innovation in translating findings to policy change necessary to solve complex problems in healthcare.

  7. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    Science.gov (United States)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather

  8. How do marine and coastal citizen science experiences foster environmental engagement?

    Science.gov (United States)

    Dean, Angela J; Church, Emma K; Loder, Jenn; Fielding, Kelly S; Wilson, Kerrie A

    2018-05-01

    Citizen science programs enable community involvement in scientific research. In addition to fostering greater science literacy, some citizen science programs aim to foster engagement in environmental issues. However, few data are available to indicate whether and how citizen science programs can achieve greater environmental engagement. We survey individuals choosing to attend one of seventeen reef citizen science events and examine the extent to which attendees reported three indicators of greater environmental engagement: (i) willingness to share information, (ii) increased support for marine conservation and citizen science, and (iii) intentions to adopt a new behavior. Most participants reported being willing to share information about reef conservation (91%) and described increased support for marine science and conservation (87%). Half of participants (51%) reported intentions to adopt a new conservation behavior. We found that key elements of the citizen science experience associated with these outcomes were learning about actions to protect reefs and coasts (procedural learning), experiencing surprise, and experiencing negative emotions about environmental problems. Excitement was also associated with positive outcomes, but only in participants who were less likely to see themselves as environmental, or were less frequent visitors to reefs and coasts. Importantly, the association between factual learning and environmental engagement outcomes was limited or negative. These findings suggest that the way citizen science experiences make people feel, may be more important for fostering future environmental engagement than factual-based learning. When designing citizen science programs for community members, these findings provide a reminder to not focus on provision of factual information alone, but to highlight environmental impacts while providing meaningful experiences and building environmental skills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Science writing workshops with the ATLAS experiment

    CERN Document Server

    Bourdarios, Claire; The ATLAS collaboration

    2017-01-01

    Particle physics is fascinating to an overwhelming majority of the population but is shrouded in mystery.. Our theories appear abstruse and abstract, our experiments are specialized and technical; there is a barrier-both literal and metaphorical -that keeps the uninitiated out. As practicing scientists, we are often called upon to explain our work: to spread awareness, to educate, to justify the expenditure of public funds, or to counter an increasingly troubling suspicion of science. But the dispassionate, objective, disembodied voice we have been trained to use in our professional lives, doesn't work very well with the public. In order to communicate meaningfully with a more general audience, we must start from a point of connection and keep referring back to the things we have in common -the human experiences and emotions we all share; we must risk being subjective and personal, be willing to talk about the messy, creative aspects of science and the passion that animates our work. This talk will describe w...

  10. Background experiences, time allocation, time on teaching and perceived support of early-career college science faculty

    Science.gov (United States)

    Sagendorf, Kenneth S.

    The purposes of this research were to create an inventory of the research, teaching and service background experiences of and to document the time allocation and time spent on teaching by early-career college science faculty members. This project is presented as three distinct papers. Thirty early-career faculty in the science disciplines from sixteen different institutions in their first year of employment participated in this study. For the first two papers, a new survey was developed asking participants to choose which experiences they had acquired prior to taking their current faculty position and asking them to document their time allocation and time spent on teaching activities in an average work week. In addition, a third component documents the support early-career college faculty in the sciences are receiving from the perspective of faculty members and their respective department chairpersons and identifies areas of disagreement between these two different groups. Twenty early-career college science faculty and their respective department chairpersons completed a newly-designed survey regarding the support offered to new faculty. The survey addressed the areas of feedback on performance, clarity of tenure requirements, mentoring, support for teaching and scholarship and balancing faculty life. This dissertation presents the results from these surveys, accounting for different demographic variables such as science discipline, gender and institutional category.

  11. Science fair: Is it worth the work? A qualitative study on deaf students' perceptions and experiences regarding science fair in primary and secondary school

    Science.gov (United States)

    Smith, Vivian Lee

    Science fairs have a long history in American education. They play an important role for establishing inquiry-based experiences in a science classroom. Students may be more motivated to learn science content when they are allowed to choose their own science fair topics. The purpose of this study was to examine Deaf college students' perceptions and experiences regarding science fair participation during primary and/or secondary school and determine the influence of science fair involvement on the development of language skills, writing skills, and higher order thinking skills as well as its impact on choice of a STEM major. This study examined responses from Deaf students attending Gallaudet University and National Technical Institute for the Deaf (NTID) majoring in a Science, Technology, Engineering, or Math (STEM) field. An electronic questionnaire and a semi-structured interview were used to collect data. The electronic questionnaire was divided into two strands: demographics and science fair experience. Twenty-one respondents participated in the questionnaire and ten participants were interviewed. A cross-case analysis revealed communication was the key to a successful science fair experience. Findings showed the educational background of participants influenced their perspective regarding the experience of a science fair. When communicating through American Sign Language, the science fair experience was more positive. When communicating through an interpreter or having no interpreter at all, the science fair experience was viewed in a negative light. The use of science fairs to enhance language development, writing skills, and higher order thinking skills was supported. Teachers and parents were strong influences for Deaf students participating in a science fair. Participation in a science fair did influence students to choose a STEM major but there were other considerations as well.

  12. Nuclear Physics Science Network Requirements Workshop, May 6 and 7, 2008. Final Report

    International Nuclear Information System (INIS)

    Tierney, Ed. Brian L; Dart, Ed. Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  13. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic

  14. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  15. Uncovering the lived experiences of junior and senior undergraduate female science majors

    Science.gov (United States)

    Adornato, Philip

    The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.

  16. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    Science.gov (United States)

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  17. Ground Validation Assessments of GPM Core Observatory Science Requirements

    Science.gov (United States)

    Petersen, Walt; Huffman, George; Kidd, Chris; Skofronick-Jackson, Gail

    2017-04-01

    NASA Global Precipitation Measurement (GPM) Mission science requirements define specific measurement error standards for retrieved precipitation parameters such as rain rate, raindrop size distribution, and falling snow detection on instantaneous temporal scales and spatial resolutions ranging from effective instrument fields of view [FOV], to grid scales of 50 km x 50 km. Quantitative evaluation of these requirements intrinsically relies on GPM precipitation retrieval algorithm performance in myriad precipitation regimes (and hence, assumptions related to physics) and on the quality of ground-validation (GV) data being used to assess the satellite products. We will review GPM GV products, their quality, and their application to assessing GPM science requirements, interleaving measurement and precipitation physical considerations applicable to the approaches used. Core GV data products used to assess GPM satellite products include 1) two minute and 30-minute rain gauge bias-adjusted radar rain rate products and precipitation types (rain/snow) adapted/modified from the NOAA/OU multi-radar multi-sensor (MRMS) product over the continental U.S.; 2) Polarimetric radar estimates of rain rate over the ocean collected using the K-Pol radar at Kwajalein Atoll in the Marshall Islands and the Middleton Island WSR-88D radar located in the Gulf of Alaska; and 3) Multi-regime, field campaign and site-specific disdrometer-measured rain/snow size distribution (DSD), phase and fallspeed information used to derive polarimetric radar-based DSD retrievals and snow water equivalent rates (SWER) for comparison to coincident GPM-estimated DSD and precipitation rates/types, respectively. Within the limits of GV-product uncertainty we demonstrate that the GPM Core satellite meets its basic mission science requirements for a variety of precipitation regimes. For the liquid phase, we find that GPM radar-based products are particularly successful in meeting bias and random error requirements

  18. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  19. World Experience in Using Education and Science in the Process of Building the State Intellectual Potential

    Directory of Open Access Journals (Sweden)

    Krupka Mykhaylo I.

    2015-11-01

    Full Text Available The aim of the article is to analyze the world experience in using education and science in the processes of increasing the intellectual potential of the state and prospects of its application in Ukraine. The article describes features of the continental, Atlantic and the East Asian models of higher education management with emphasis on the key points, which can be useful for reforming the Ukrainian system of education. It has been noted that the problem of higher education quality in Ukraine lies in fundamental principles of its functioning, because development of the national education system for a long time took place under conditions of administrative system, while the European system of education is built on principles of competition and free market. On the basis of comparative characteristics of sources of finance in the United States there has been determined a dominant role of the federal government and it has been found that among the branches of science the leading positions are occupied by the life sciences. The experience of reforming science in countries of the Central and Eastern Europe, which took place on the model of functioning of the research institutes and research process in the EU countries, has been analyzed. Particular attention is paid to the successful experience of reforming the education and science in China. Taking into account the international experience the author has substantiated the directions of increasing the intellectual potential in Ukraine by deepening the integration of education and science, in particular: the creation of a wide network of research universities and conducting of a fair share of fundamental research on their base; accelerated development of public-private partnership in education and science; quick updating of the curricula adequate to the requirements of time and introduction of interdisciplinary courses; competitive financing of scientific programs with participation of the state and

  20. Requirements, Science, and Measurements for Landsat 10 and Beyond: Perspectives from the Landsat Science Team

    Science.gov (United States)

    Crawford, C. J.; Masek, J. G.; Roy, D. P.; Woodcock, C. E.; Wulder, M. A.

    2017-12-01

    The U.S. Geological Survey (USGS) and NASA are currently prioritizing requirements and investing in technology options for a "Landsat 10 and beyond" mission concept as part of the Sustainable Land Imaging (SLI) architecture. Following the successful February 2013 launch of the Landsat 8, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have now added over 1 million images to the USGS Landsat archive. The USGS and NASA support and co-lead a Landsat Science Team made up largely of university and government experts to offer independent insight and guidance of program activities and directions. The rapid development of Landsat 9 reflects, in part, strong input from the 2012-2017 USGS Landsat Science Team (LST). During the last two years of the LST's tenure, individual LST members and within LST team working groups have made significant contributions to Landsat 10 and beyond's science traceability and future requirements justification. Central to this input, has been an effort to identify a trade space for enhanced measurement capabilities that maintains mission continuity with eight prior multispectral instruments, and will extend the Landsat Earth observation record beyond 55+ years with an approximate launch date of 2027. The trade space is framed by four fundamental principles in remote sensing theory and practice: (1) temporal resolution, (2) spatial resolution, (3) radiometric resolution, and (4) spectral coverage and resolution. The goal of this communication is to provide a synopsis of past and present 2012-2017 LST contributions to Landsat 10 and beyond measurement science and application priorities. A particular focus will be to document the links between new science and societal benefit areas with potential technical enhancements to the Landsat mission.

  1. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  2. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  3. The impact of real-time, Internet experiments versus interactive, asynchronous replays of experiments on high school students science concepts and attitudes

    Science.gov (United States)

    Kubasko, Dennis S., Jr.

    The purpose of this study was to investigate whether students' learning experiences were similar or different with an interactive, live connection via the Internet in real-time to an Atomic Force Microscope (AFM) versus a stored replay of AFM experiments. Did the two treatments influence students' attitudes towards the learning experience? Are there differences in students' understandings of viruses and science investigations? In addition, this study investigated treatment effects on students' understandings of the nature of science. The present study drew upon the research that examined students' attitudes toward science, students' views of the nature of science, instructional technology in education, and prior research on the nanoManipulator. Specific efforts have been made to address reform efforts in science education throughout the literature review. Eighty-five high school biology students participated in the nanoManipulator experience (44 males, 41 females, 64 Euro-American, 16 African-American, and 5 of other ethnicities). Two high school classes were randomly selected and administered the interactive, real-time treatment. Two different high school classes were randomly selected and administered the limited-interaction, experimental replay treatment. The intervention occurred over a one-week period. Qualitative and quantitative measures were used to examine the differences between two treatment conditions. Experiential, affective, cognitive, and the nature of science domains were assessed. Findings show that the questions and statements made in synchronous time by the live treatment group were significantly different than students' questions and statements in asynchronous communication. Students in the replay treatment made more statements about what they learned or knew about the experience than did students in the live experience. Students in both groups showed significant gains in understanding viruses (particularly viral dimensionality and shape

  4. Development of flight experiment work performance and workstation interface requirements, part 1. Technical report and appendices A through G

    Science.gov (United States)

    Hatterick, R. G.

    1973-01-01

    A skill requirement definition method was applied to the problem of determining, at an early stage in system/mission definition, the skills required of on-orbit crew personnel whose activities will be related to the conduct or support of earth-orbital research. The experiment data base was selected from proposed experiments in NASA's earth orbital research and application investigation program as related to space shuttle missions, specifically those being considered for Sortie Lab. Concepts for two integrated workstation consoles for Sortie Lab experiment operations were developed, one each for earth observations and materials sciences payloads, utilizing a common supporting subsystems core console. A comprehensive data base of crew functions, operating environments, task dependencies, task-skills and occupational skills applicable to a representative cross section of earth orbital research experiments is presented. All data has been coded alphanumerically to permit efficient, low cost exercise and application of the data through automatic data processing in the future.

  5. Increasing Engagement in Science through an Authentic Crop Protection Experiment for Year 9 School Students Working with Scientists

    Science.gov (United States)

    Oliver, Richard; Rybak, Kasia; Gruber, Cornelia; Nicholls, Graeme; Roberts, Graeme; Mengler, Janet; Oliver, Mary

    2011-01-01

    Practical work is often considered to be a highlight of science classes for students. However, there are few opportunities for students to engage in an investigation which is situated in a real world problem and students are required to contribute their own ideas to the design and conduct of an experiment. This paper reports on a Scientists in…

  6. Meeting the Next Generation Science Standards Through "Rediscovered" Climate Model Experiments

    Science.gov (United States)

    Sohl, L. E.; Chandler, M. A.; Zhou, J.

    2013-12-01

    Since the Educational Global Climate Model (EdGCM) Project made its debut in January 2005, over 150 institutions have employed EdGCM software for a variety of uses ranging from short lab exercises to semester-long and year-long thesis projects. The vast majority of these EdGCM adoptees have been at the undergraduate and graduate levels, with few users at the K-12 level. The K-12 instructors who have worked with EdGCM in professional development settings have commented that, although EdGCM can be used to illustrate a number of the Disciplinary Core Ideas and connects to many of the Common Core State Standards across subjects and grade levels, significant hurdles preclude easy integration of EdGCM into their curricula. Time constraints, a scarcity of curriculum materials, and classroom technology are often mentioned as obstacles in providing experiences to younger grade levels in realistic climate modeling research. Given that the NGSS incorporates student performance expectations relating to Earth System Science, and to climate science and the human dimension in particular, we feel that a streamlined version of EdGCM -- one that eliminates the need to run the climate model on limited computing resources, and provides a more guided climate modeling experience -- would be highly beneficial for the K-12 community. This new tool currently under development, called EzGCM, functions through a browser interface, and presents "rediscovery experiments" that allow students to do their own exploration of model output from published climate experiments, or from sensitivity experiments designed to illustrate how climate models as well as the climate system work. The experiments include background information and sample questions, with more extensive notes for instructors so that the instructors can design their own reflection questions or follow-on activities relating to physical or human impacts, as they choose. An added benefit of the EzGCM tool is that, like EdGCM, it helps

  7. Norfolk State University Research Experience in Earth System Science

    Science.gov (United States)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  8. Participatory design of citizen science experiments

    OpenAIRE

    Senabre, Enric; Ferran Ferrer, Núria; Perelló, Josep, 1974-

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through cocreation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention to social concerns and needs, as well as the collective construction of research questions, can be integrated into scientific research. The 95 stude...

  9. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  10. Pathways to success in science: A phenomenological study, examining the life experiences of African-American women in higher education

    Science.gov (United States)

    Giscombe, Claudette Leanora

    This study is a qualitative investigation in which five African American women science faculty, in higher education, within the age range of 45--60, were the participants. The data that was collected, over twelve months, was primarily obtained from the in-depth phenomenological interviewing method (Seidman, 1991). The interpretation of the data was the result of ongoing cross analysis of the participants' life experiences, perceptions, and beliefs of the how they navigated and negotiated pathways to careers in the natural sciences, and the meanings they attach to these experiences. The software Ethnograph (V5.0) was used to organize the participants' responses into patterns and emergent themes. The Black women in this study articulated several themes that were critical determinants of their successes and achievements in science careers. From the analysis of the data set, four major findings were identified: (1) "Black Intentional Communities" acted as social agencies for the positive development of the participants; (2) "My World Reality" which was described by the participants as their acceptance of their segregated worlds, not being victims of inequities and injustices, but being resilient and determined to forge on to early academic successes. Early academic successes were identified as precursors and external motivational stimuli to their interests and achievements in science; (3) Their experiences of "Tensions and Double Consciousness" from race and gender negative images and career stereotypes, required the women to make "intra-cultural deviations" from stereotypic career roles and to develop "pragmatic coping strategies" to achieve in science careers and; (4) "Meaning-making"---Significant to the meaning of their journey was the fact that the participants grounded their experiences in a social context rather than in a scientific context and that they ended their journey with expressions of personal satisfactions about their journey and their unique drive and

  11. Some general requirements for irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P; Skjoeldebrand, R

    1960-05-15

    This paper is limited to the interests of the EAES-symposium, namely the use of reactors for materials research and testing, for convenience we exclude consideration of chemical effects and problems of coolant technology. Its purpose is to try to define the general requirements for irradiation experiments and the reactors housing them; to see what facilities for irradiation experiments are available within the European Atomic Energy Society countries and finally, to point out possible limitations of these facilities.

  12. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  13. Transfer adjustment experiences of underrepresented students of color in the sciences

    Science.gov (United States)

    Chang, June C.

    Two-year colleges have long served as the starting point for many students in higher education and particularly those of underrepresented backgrounds. In recent years, these institutions have been called upon to help address the high attrition rates facing the science and mathematics disciplines by promoting interest development and transfer of underrepresented students in these fields. This study examined the adjustment experiences of underrepresented students of color after transferring from community colleges to a four-year university in the sciences. By employing qualitative interviews with students of African, Latino, Pacific Island, and Southeast Asian descent, students' perceptions of the sciences at the two- and four-year campus, adjustment process, and benefits and detriments of taking the transfer route were the focus of this research. The findings show that transfer students experience a very different science culture at each institutional type in terms of pedagogy and curriculum and interactions with classmates and faculty. While students witnessed a collaborative science culture at the community college, they faced a highly competitive and individualistic environment at the university. The greater the difference encountered, the more difficult were students' adjustment. Adjustment was aided in two primary ways: socialization experiences before transferring and the development of common identity groups with other students who shared similar backgrounds, goals, and struggles. These groups formed organically at the two-year college but were more difficult to forge at the university. When present, however, they served as niches, sites of validation, and counter spaces within the larger university setting. It appears that starting at the community college benefited most participants by providing a nurturing environment that fostered their commitment to science. Some students felt that they would have been dissuaded from pursuing their majors had they only

  14. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  15. The relationship between competencies acquired through Swiss academic sports science courses and the job requirements.

    Science.gov (United States)

    Schlesinger, T; Studer, F; Nagel, S

    2016-01-01

    In view of the changes in and growing variety of sports-related occupations, it is highly relevant for educational institutions to know how well the educational contents of their sport science courses meet the professional requirements. This study analyses the relationship between the competencies acquired through academic sports science courses and the requirements of the relevant jobs in Switzerland. The data for this empirical analysis were drawn from a sample of n = 1054 graduates of different academic sport science programmes at all eight Swiss universities. The results show that academic sport science courses primarily communicate sports-specific expertise and practical sports skills. On the other hand, most graduates consider that the acquisition of interdisciplinary competencies plays a comparatively minor role in sport science education, even though these competencies are felt to be an important requirement in a variety of work-related environments and challenges.

  16. Reflection after teaching a lesson: Experiences of secondary school science teachers

    Science.gov (United States)

    Halstead, Melissa A.

    Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the reflective experiences of secondary science educators after teaching a single or several lessons. The collection of data consisted of interviews from a group of purposefully selected secondary science teachers who met the criteria set forth by the researcher. Through a qualitative analysis of interviews and field notes, the researcher determined that the secondary science teachers in this study shared similar as well as different experiences regarding collaborative and individual reflection after teaching a single or several lessons. The findings from this study also suggested that secondary science educators prefer to collaboratively reflect and then reflect alone to allow for further thought. Additionally, a supportive school culture increases the secondary science teacher’s desire to engage in collaborative as well as individual reflection. The information from this study could be used to close the gaps that exist in the teacher professional development programs.

  17. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  18. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  19. Fostering Science Club: Creating a Welcoming Extra-Curricular Science Inquiry Space for ALL Learners that Seeks to Close the Science Experience Gap in a Predominantly Minority Urban Community

    Science.gov (United States)

    Mayfield, K. K.

    2017-12-01

    BackgroundTo minority adolescents in urban centers science inquiry seems like an engagement completed by others with specialized skills (Alkon & Agyeman, 2012). When scientists teach science classes those spaces and pedagogy are underwritten by the science teachers' beliefs about how science happens (Southerland, Gess-Newsome & Johnston, 2002). Further, scientific inquiry is often presented as the realm of upperclass whiteness (Alkon & Agyeman, 2012; Mayfield, 2014). When science educators talk about the achievement gaps between raced and classed learners, accompanying that gap is also a gap in science experience. My high school students in a postindustrial school district: attend a school under state takeover (the lowest 5/5 rating (MA Executive Office of Education, 2017)); have a student body that is 70% Latinx; and 96% of whom receive Free and Reduced Lunch (a Federal marker of a family below the poverty line). Annual Yearly Progress is a goal set by state and federal governments for school populations by race, ability, and language. In 2016, the site has failed to make its goals for special education, black, hispanic, white, and English as a Second Language populations. As a high poverty district there is a paucity of extracurricular science experiences. This lack of science extensions make closing standardized test gaps difficult. Geoscience Skills & FindingsThis after school program does not replicate deficit narratives that keep certain bodies of students away from science inquiry (Mayfield, 2015; Ogbu, 1987). Instead, Science Club uses an array of student-centered science (physics, math, arts, chemistry, biology) projects to help students see themselves as citizen scientists who lead explorations of their world. We meet 1.5 hours a week in a 30 week school year. Science club helps students feel like powerful and capable science inquirers with 80% girls in attendance, and uses science experiments to cultivate essential inquiry skills like: Observation

  20. Virtual Experiments on the Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E; Cobb, John W; Farhi, Emmanuel N; Miller, Stephen D; Taylor, M

    2008-01-01

    The TeraGrid's outreach effort to the neutron science community is creating an environment that is encouraging the exploration of advanced cyberinfrastructure being incorporated into facility operations in a way that leverages facility operations to multiply the scientific output of its users, including many NSF supported scientists in many disciplines. The Neutron Science TeraGrid Gateway serves as an exploratory incubator for several TeraGrid projects. Virtual neutron scattering experiments from one exploratory project will be highlighted

  1. Perspectives on Science Teacher Professional Development: A study of the ASSET Experience

    Science.gov (United States)

    Reeves, Katrina; Miller, Scott; Foster, Andrea

    2015-01-01

    The Astronomy Summer School of East Texas (ASSET) is a two-year NASA-funded teacher professional development program created to help improve middle and high school science teachers' knowledge of and attitudes toward astronomy. During an intensive summer astronomy course experience, science teachers are taught astronomy concepts and principles through engaging pedagogical techniques. The workshop models hands-on/minds-on teaching strategies that strengthened teachers' own pedagogical content knowledge and ways of teaching astronomy to students.As part of our second year of ASSET, participants were observed and interviewed before, during and after the workshop experience to ascertain their perspectives on their own professional development and understanding of astronomy. Interview data, participant observations, surveys, and artifact data (journaling, one-minute papers, etc...) were analyzed and three broad themes emerged regarding the significance of the ASSET experience on teacher enhancement of content knowledge, pedagogical content knowledge (PCK), and the significance of teacher professional development communities in teaching and learning science. We will discuss the major implications of our observations and outline what tools and techniques can be best implemented as part of professional development workshops such as ASSET.This project is supported by the NASA Science Mission Directorate Education and Public Outreach for Earth and Space Science (EPOESS), which is part of the Research Opportunities in Space and Earth Sciences (ROSES), Grant Number NNX12AH11G.

  2. Effect of the challenger experience on elementary children's attitudes to science

    Science.gov (United States)

    Jarvis, Tina; Pell, Anthony

    2002-12-01

    This research explored how the Challenger experience influenced over 655 elementary boys' and girls' general attitudes to science and space during the 5 months after their visit by examining their responses to four different attitude scales. These were administered to the 10- to 11-year-olds immediately before and after the Challenger experience as well as 2 and 5 months later. Knowledge tests were also administered before and after the visit. A sample of children completed an existing measure of anxiety. Although there were mainly positive outcomes immediately after the Challenger experience, there were some negative effects. There were also noticeable differences between boys and girls. Some 24% of pupils were inspired to become scientists. There was also less fear of space travel with a greater appreciation of the use of science to protect the planet after the visit. Most girls improved and maintained their attitudes toward science in society. A sizeable number of pupils were relatively unaffected by the experience and there was a significant negative effect on a small group of anxious girls. There are indications that previsit preparation and careful choice of roles during the simulation are important.

  3. Summary of 2016 Light Microscopy Module (LMM) Physical Science Experiments on ISS. Update of LMM Science Experiments and Facility Capabilities

    Science.gov (United States)

    Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo

    2016-01-01

    This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.

  4. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  5. EV M-experiment in radiation material science

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kislitsin, S.B.; Pyatiletov, Yu.S.; Turkebaev, T.Eh.; Tyupkina, O.G.

    1999-01-01

    To simulate rapid processes in materials, rearrangement at the atomic level, or processes in which the access to the materials is limited or considered to be hazardous, the EV M-experiment is going to be applied more often in the atomic material science (calculating experiment, computer-aided simulation). This paper presents the most important outcomes obtained from the calculating experiment carried out by scientists of the Institute of Nuclear Physics of NNC RK, who are considered to be followers of the scientific school named after Kirsanov V.V. The review consists of the following sections: 1. Simulation of dynamic processes of radiation damage of materials. 2. Simulation of radiation defects in materials. 3. Simulation of radiation defects migration processes in crystals. 4. Simulation of irradiated materials failure and deformation processes

  6. Science and Mathematics Teachers' Experiences, Needs, and Expectations regarding Professional Development

    Science.gov (United States)

    Chval, Kathryn; Abell, Sandra; Pareja, Enrique; Musikul, Kusalin; Ritzka, Gerard

    2008-01-01

    High quality teachers are essential to improving the teaching and learning of mathematics and science, necessitating effective professional development (PD) and learning environments for teachers. However, many PD programs for science and mathematics teachers fall short because they fail to consider teacher background, experience, knowledge,…

  7. Teaching and Learning Science Through Song: Exploring the experiences of students and teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-12-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.

  8. Russian-American Experience in Science Education and Volcanological Research

    Science.gov (United States)

    Eichelberger, J. C.; Gordeev, E. I.; Vesna, E. B.

    2007-12-01

    After five years experience in bringing American students to meet and learn with Russian students in Kamchatka and bringing Russian students to meet and learn with American students in Alaska, it is possible to make some generalizations about the problems and benefits this growing program. Some 200 students, including many from other countries besides the United States and Russian Federation, have now had this experience. The context of their collaboration is the International Volcanological Field School, sponsored by the University of Alaska Fairbanks, Kamchatka State University, and the Institute of Volcanology and Seismology, and also a comparison of Mount St Helens, Bezymianny, and Shiveluch volcanoes under the National Science Foundation's Partnerships in International Research in Education, with important support from the Russian Academy of Sciences, Far East Division. Elements of these two projects are adaptation to unfamiliar, harsh, and remote environments; intensive courses in Russian language, history, geography, and culture; and sharing of research and education experiences among students. The challenges faced by the program are: · Slow and complex visa processes. · Demise of a direct airline connection, necessitating round-the-world travel to go 3000 km. · Adequately communicating to students beforehand the need for physical fitness, mental fortitude in uncomfortable conditions, and patience when bad weather limits mobility. Benefits of the projects have been: · Experiences that students report to be career- and life-changing. · Much more positive perceptions of Russia and Russian people by American students and of America and Americans by Russian students. · Introduction to the "expedition style" volcanology necessary in challenging environments. · Development of long-lasting collaborations and friendships in the context of international science. Students often comment that hearing about what their peers have done or are doing in research at

  9. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    Science.gov (United States)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  10. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    Science.gov (United States)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science

  11. Enhancing the Math and Science Experiences of Latinas and Latinos: A Study of the Joaquin Bustoz Math-Science Honors Program

    Science.gov (United States)

    Escontrias, Gabriel, Jr.

    Latinas and Latinos are currently underrepresented in terms of our 21 st century student academic attainment and workforce, compared to the total U.S. Hispanic population. In a field such as mathematical sciences, Hispanic or Latino U.S. citizenship doctoral recipients only accounted for 3.04% in 2009--2010. While there are various initiatives to engage underrepresented STEM populations through education, there is a need to give a voice to the experiences of Latinas and Latinos engaged in such programs. This study explored the experiences of seven Arizona State University undergraduate Latina and Latino Joaquin Bustoz Math-Science Honors Program (JBMSHP) participants as well as examined how the program enhanced their math and science learning experiences. Participants attended either a five-week or eight-week program and ranged in attendance from 2006 to 2011. Students were provided an opportunity to begin university mathematics and science studies before graduating high school. Through a demographic survey and one-on-one guided interview, participants shared their personal journey, their experience in the JBMSHP, and their goals. Using grounded theory, a qualitative research approach, this study focuses on the unique experiences of Latina and Latino participants. Four major themes emerged from the analysis of the data. Each participant applied to the program with a foundation in which they sought to challenge themselves academically through mathematics and/or science. Through their involvement it the JBMSHP, participants recognized benefits during and after the program. All participants recognized the value of these benefits and their participation and praised the program. Overall, the JBMSHP provided the students the resources to grow their academic capital and if they chose seek a STEM related bachelor degree. The results of this study emphasize the need to expand the JBMSHP both within Arizona and nationally. In addition, there is a need to explore the other

  12. Enabling the Public to Experience Science from Beginning to End (Invited)

    Science.gov (United States)

    Trouille, L.; Chen, Y.; Lintott, C.; Lynn, S.; Simmons, B.; Smith, A.; Tremonti, C.; Whyte, L.; Willett, K.; Zevin, M.; Science Team; Moderator Team, G.

    2013-12-01

    In this talk we present the results of an experiment in collaborative research and article writing within the citizen science context. During July-September 2013, astronomers and the Zooniverse team ran Galaxy Zoo Quench (quench.galaxyzoo.org), investigating the mechanism(s) that recently and abruptly shut off star formation in a sample of post-quenched galaxies. Through this project, the public had the opportunity to experience the entire process of science, including galaxy classification, reading background literature, data analysis, discussion, debate, drawing conclusions, and writing an article to submit to a professional journal. The context was galaxy evolution, however, the lessons learned are applicable across the disciplines. The discussion will focus on how to leverage online tools to authentically engage the public in the entire process of science.

  13. New science on the Open Science Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, R; Altunay, M; Sehgal, C [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Avery, P [University of Florida, Gainesville, FL 32611 (United States); Bejan, A; Gardner, R; Wilde, M [University of Chicago, Chicago, IL 60607 (United States); Blackburn, K [California Institute of Technology, Pasadena, CA 91125 (United States); Blatecky, A; McGee, J [Renaissance Computing Institute, Chapel Hill, NC 27517 (United States); Kramer, B; Olson, D; Roy, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Livny, M [University of Wisconsin, Madison, Madison, WI 53706 (United States); Potekhin, M; Quick, R; Wenaus, T [Indiana University, Bloomington, IN 47405 (United States); Wuerthwein, F [University of California, San Diego, La Jolla, CA 92093 (United States)], E-mail: ruth@fnal.gov

    2008-07-15

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org.

  14. New science on the Open Science Grid

    International Nuclear Information System (INIS)

    Pordes, R; Altunay, M; Sehgal, C; Avery, P; Bejan, A; Gardner, R; Wilde, M; Blackburn, K; Blatecky, A; McGee, J; Kramer, B; Olson, D; Roy, A; Livny, M; Potekhin, M; Quick, R; Wenaus, T; Wuerthwein, F

    2008-01-01

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org

  15. Students' Perceptions of an Applied Research Experience in an Undergraduate Exercise Science Course.

    Science.gov (United States)

    Pearson, Regis C; Crandall, K Jason; Dispennette, Kathryn; Maples, Jill M

    2017-01-01

    Applied research experiences can provide numerous benefits to undergraduate students, however few studies have assessed the perceptions of Exercise Science (EXS) students to an applied research experience. The purpose of this study was two-fold: 1) to describe the rationale and implementation of an applied research experience into an EXS curriculum and 2) to evaluate EXS undergraduate students' perceptions of an applied research experience. An EXS measurement course was chosen for implementation of an applied research experience. The applied research experience required groups of students to design, implement, and evaluate a student-led research project. Fourteen questions were constructed, tailored to EXS undergraduate students, to assess students' perceptions of the experience. Qualitative analysis was used for all applicable data, with repeated trends noted; quantitative data were collapsed to determine frequencies. There was an overall positive student perception of the experience and 85.7% of students agreed an applied research experience should be continued. 84.7% of students perceived the experience as educationally enriching, while 92.8% reported the experience was academically challenging. This experience allowed students to develop comprehensive solutions to problems that arose throughout the semester; while facilitating communication, collaboration, and problem solving. Students believed research experiences were beneficial, but could be time consuming when paired with other responsibilities. Results suggest an applied research experience has the potential to help further the development of EXS undergraduate students. Understanding student perceptions of an applied research experience may prove useful to faculty interested in engaging students in the research process.

  16. Science and Engineering of the Environment of Los Angeles: A GK-12 Experiment at Developing Science Communications Skills in UCLA's Graduate Program

    Science.gov (United States)

    Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.

    2008-12-01

    Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.

  17. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  18. The Science of Sex Differences in Science and Mathematics

    Science.gov (United States)

    Halpern, Diane F.; Benbow, Camilla P.; Geary, David C.; Gur, Ruben C.; Hyde, Janet Shibley; Gernsbacher, Morton Ann

    2014-01-01

    Summary Amid ongoing public speculation about the reasons for sex differences in careers in science and mathematics, we present a consensus statement that is based on the best available scientific evidence. Sex differences in science and math achievement and ability are smaller for the mid-range of the abilities distribution than they are for those with the highest levels of achievement and ability. Males are more variable on most measures of quantitative and visuospatial ability, which necessarily results in more males at both high- and low-ability extremes; the reasons why males are often more variable remain elusive. Successful careers in math and science require many types of cognitive abilities. Females tend to excel in verbal abilities, with large differences between females and males found when assessments include writing samples. High-level achievement in science and math requires the ability to communicate effectively and comprehend abstract ideas, so the female advantage in writing should be helpful in all academic domains. Males outperform females on most measures of visuospatial abilities, which have been implicated as contributing to sex differences on standardized exams in mathematics and science. An evolutionary account of sex differences in mathematics and science supports the conclusion that, although sex differences in math and science performance have not directly evolved, they could be indirectly related to differences in interests and specific brain and cognitive systems. We review the brain basis for sex differences in science and mathematics, describe consistent effects, and identify numerous possible correlates. Experience alters brain structures and functioning, so causal statements about brain differences and success in math and science are circular. A wide range of sociocultural forces contribute to sex differences in mathematics and science achievement and ability—including the effects of family, neighborhood, peer, and school

  19. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  20. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  1. Accelerating Translational Research through Open Science: The Neuro Experiment.

    Science.gov (United States)

    Gold, E Richard

    2016-12-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  2. Accelerating Translational Research through Open Science: The Neuro Experiment.

    Directory of Open Access Journals (Sweden)

    E Richard Gold

    2016-12-01

    Full Text Available Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  3. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Theresa [Ames Lab., Ames, IA (United States); Banda, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Devereaux, Thomas [SLAC National Accelerator Lab., Menlo Park, CA (United States); White, Julia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Energy Sciences Network (ESNet), Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Energy Sciences Network (ESNet), Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Energy Sciences Network (ESNet), Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baruah, Tunna [Univ. of Texas, El Paso, TX (United States); Benali, Anouar [Argonne National Lab. (ANL), Argonne, IL (United States); Borland, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carter, Emily [Princeton Univ., NJ (United States); Ceperley, David [Univ. of Illinois, Urbana-Champaign, IL (United States); Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States); Chelikowsky, James [Univ. of Texas, Austin, TX (United States); Chen, Jackie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States); Clark, Aurora [Washington State Univ., Pullman, WA (United States); Darancet, Pierre [Argonne National Lab. (ANL), Argonne, IL (United States); DeJong, Wibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dixon, David [Univ. of Alabama, Tuscaloosa, AL (United States); Donatelli, Jeffrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunning, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez-Serra, Marivi [Stony Brook Univ., NY (United States); Freericks, James [Georgetown Univ., Washington, DC (United States); Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States); Galli, Giulia [Univ. of Chicago, IL (United States); Garrett, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glezakou, Vassiliki-Alexandra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gordon, Mark [Iowa State Univ., Ames, IA (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gray, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Gull, Emanuel [Univ. of Michigan, Ann Arbor, MI (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Hexemer, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Isborn, Christine [Univ. of California, Merced, CA (United States); Jarrell, Mark [Louisiana State Univ., Baton Rouge, LA (United States); Kalia, Rajiv K. [Univ. of Southern California, Los Angeles, CA (United States); Kent, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klippenstein, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krishnamurthy, Hulikal [Indian Inst. of Science, Bangalore (India); Kumar, Dinesh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lena, Charles [Univ. of Texas, Austin, TX (United States); Li, Xiaosong [Univ. of Washington, Seattle, WA (United States); Maier, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markland, Thomas [Stanford Univ., CA (United States); McNulty, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Millis, Andrew [Columbia Univ., New York, NY (United States); Mundy, Chris [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nakano, Aiichiro [Univ. of Southern California, Los Angeles, CA (United States); Niklasson, A.M.N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Panagiotopoulos, Thanos [Princeton Univ., NJ (United States); Pandolfi, Ron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parkinson, Dula [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perazzo, Amedeo [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rehr, John [Univ. of Washington, Seattle, WA (United States); Rousseau, Roger [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sankaranarayanan, Subramanian [Argonne National Lab. (ANL), Argonne, IL (United States); Schenter, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Selloni, Annabella [Princeton Univ., NJ (United States); Sethian, Jamie [Univ. of California, Berkeley, CA (United States); Siepmann, Ilja [Univ. of Minnesota, Minneapolis, MN (United States); Slipchenko, Lyudmila [Purdue Univ., West Lafayette, IN (United States); Sternberg, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Stevens, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Summers, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sumpter, Bobby [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sushko, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thayer, Jana [SLAC National Accelerator Lab., Menlo Park, CA (United States); Toby, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valeev, Edward [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States); Venkatakrishnan, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zwart, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-03

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. We could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy

  4. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  5. [Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology].

    Science.gov (United States)

    Wulz, Monika

    2015-03-01

    Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology. Thought experiments are an important element in Ernst Mach's epistemology: They facilitate amplifying our knowledge by experimenting with thoughts; they thus exceed the empirical experience and suspend the quest for immediate utility. In an economical perspective, Mach suggested that thought experiments depended on the production of an economic surplus based on the division of labor relieving the struggle for survival of the individual. Thus, as frequently emphasized, in Mach's epistemology, not only the 'economy of thought' is an important feature; instead, also the socioeconomic conditions of science play a decisive role. The paper discusses the mental and social economic aspects of experimental thinking in Mach's epistemology and examines those within the contemporary evolutionary, physiological, and economic contexts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fancovicova, Jana; Erdogan, Mehmet; Prokop, Pavol

    2010-01-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of…

  7. Language experience narratives and the role of autobiographical reasoning in becoming an urban science teacher

    Science.gov (United States)

    Rivera Maulucci, Maria S.

    2011-06-01

    One of the central challenges globalization and immigration present to education is how to construct school language policies, procedures, and curricula to support academic success of immigrant youth. This case-study compares and contrasts language experience narratives along Elena's developmental trajectory of becoming an urban science teacher. Elena reflects upon her early language experiences and her more recent experiences as a preservice science teacher in elementary dual language classrooms. The findings from Elena's early schooling experiences provide an analysis of the linkages between Elena's developing English proficiency, her Spanish proficiency, and her autobiographical reasoning. Elena's experiences as a preservice teacher in two elementary dual language classrooms indicates ways in which those experiences helped to reframe her views about the intersections between language learning and science learning. I propose the language experience narrative, as a subset of the life story, as a way to understand how preservice teachers reconstruct past language experiences, connect to the present, and anticipate future language practices.

  8. Laboratory science with space data accessing and using space-experiment data

    CERN Document Server

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  9. The laboratory of the mind thought experiments in the natural sciences

    CERN Document Server

    Brown, James Robert

    1993-01-01

    Thought experiments are performed in the laboratory of the mind. Beyond this metaphor it is difficult to say just what these remarkable devices for investigating nature are or how they work. Though most scientists and philosophers would admit their great importance, there has been very little serious study of them. This volume is the first book-length investigation of thought experiments. Starting with Galileo's argument on falling bodies, Brown describes numerous examples of the most influential thought experiments from the history of science. Following this introduction to the subject, some substantial and provocative claims are made, the principle being that some thought experiments should be understood in the same way that platonists understand mathematical activity: as an intellectual grasp of an independently existing abstract realm. With its clarity of style and structure, The Laboratory of the Mind will find readers among all philosophers of science as well as scientists who have puzzled over how thou...

  10. From the instantia crucis to the crucial experiment: different perspectives in philosophy and science

    Directory of Open Access Journals (Sweden)

    Anabel Cardoso Raicik

    2017-12-01

    Full Text Available The existence and meaning of crucial experiments are issues that do not hold consensus in science and the philosophy of science. Duhem, Popper and Lakatos, for example, present antagonistic positions among themselves and even in relation to the idea of instantia crucis made explicit by Francis Bacon in the Novum Organum. This article aims at rescuing the Baconian definition, recognizing that it is part of a distinct philosophical position of contemporary theses, and discussing some conceptions of crucial experiment both by philosophers of science and by some scholars, such as Newton. Also, point out some reflections for the teaching of sciences.

  11. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  12. African American eighth-grade female students' perceptions and experiences as learners of science literacy

    Science.gov (United States)

    Crim, Sharan R.

    The National Assessment of Educational Progress (2000) reports an achievement gap between male and female students and majority and minority students in science literacy. Rutherford and Algren (2000) describe a scientifically literate person as one who is aware that science, mathematics, and technology are interdependent human enterprises with strengths and limitations; understands key concepts and principles of science; is familiar with the natural world and recognizes both its diversity and unity; and uses scientific knowledge and scientific ways of thinking for individual and social purposes. The purpose of this qualitative case study research was to investigate African American eighth grade female students' perceptions and experiences as learners of science literacy. A social learning theory (Bandura, 1986) and constructivist theory (Vygotsky, 1977) served as a guide for the researcher. Two questions were explored: (1) What are African American eighth grade female students' perceptions and experiences as learners of science literacy? (2) In what ways do the perceptions and experiences of African American eighth grade female students influence their learning of science literacy? Purposeful sampling (Merriam, 1998) was used with four African American eighth grade female students selected as participants for the study. Data collection and analysis occurred between February and August in a single year. Data sources included an open-ended questionnaire, two in-depth interviews with each participant (Seidman, 1991); classroom observations, participant reflective journals, student artifacts, and a researcher's log. Data were analyzed through the constant comparative method (Glaser & Strauss, 1967), and richly descriptive participant portraits and qualitative case studies (Merriam, 1998) were used to report the findings. Three themes emerged from the study that positively affected the perceptions and experiences of African American eighth grade female students as

  13. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs.

    Science.gov (United States)

    Phinney, Jackie; Horsman, Amanda Rose

    2018-01-01

    Health sciences training programs have progressively expanded onto satellite campuses, allowing students the opportunity to learn in communities away from an academic institution's main campus. This expansion has encouraged a new role for librarians to assume, in that a subset of health sciences librarians identify as "satellite librarians" who are permanently located at a distance from the main campus. Due to the unique nature of this role and lack of existing data on the topic, the authors investigated the experiences and perceptions of this unique group of information professionals. An electronic survey was distributed to health sciences librarians via two prominent North American email discussion lists. Questions addressed the librarians' demographics, feelings of social inclusion, technological support, autonomy, professional support, and more. Eighteen surveys were analyzed. While several respondents stated that they had positive working relationships with colleagues, many cited issues with technology, scheduling, and lack of consideration as barriers to feeling socially included at both the parent and local campuses. Social inclusion, policy creation, and collection management issues were subject to their unique situations and their colleagues' perceptions of their roles as satellite librarians. The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  14. Work Integrated Learning: What do the students want? A qualitative study of Health Sciences students’ experiences of a non-competency based placement

    Directory of Open Access Journals (Sweden)

    Elizabeth Abery

    2015-08-01

    Full Text Available Work Integrated Learning (WIL offers students the opportunity to explore and expand on theoretical concepts encountered throughout their academic studies in an applied real-life context. WIL also assists students in their transition from educational to professional practice informed by experience, engagement and reflection. Traditionally, disciplines such as Medicine, Nursing, Education, and Law have incorporated WIL into their programs. Literature outlines the benefits of a WIL placement to measure learned competencies, which are integral to such fields of practice. Currently, the scope for a WIL experience is expanding into other non-clinical courses due to increasing pressure for universities to produce “work ready” graduates. However, in generalist degrees such as Health Sciences, where clinical or explicit skill competencies are not required, the WIL experience is generic. This study sought the perceptions of past Health Sciences students’ WIL experiences in order to develop appropriate resources for future students.  

  15. All Christians? Experiences of science educators in Northern Ireland

    Science.gov (United States)

    Murphy, Colette; Hickey, Ivor; Beggs, Jim

    2010-03-01

    In this paper we respond to Staver's article (this issue) on an attempt to resolve the discord between science and religion. Most specifically, we comment on Staver's downplaying of difference between Catholics and Protestants in order to focus on the religion-science question. It is our experience that to be born into one or other of these traditions in some parts of the world (especially Northern Ireland) resulted in starkly contrasting opportunities, identities and practices in becoming and being science educators. The paper starts with a short contextual background to the impact of religion on schooling and higher education in Northern Ireland. We then explore the lives and careers of three science/religious educators in Northern Ireland: Catholic (Jim) and Protestant (Ivor) males who are contemporaries and whose experience spans pre-Troubles to post-conflict and a Catholic female (Colette) who moved to Northern Ireland during the Troubles as a teenager. Finally, we discuss the situation regarding the teaching of creationism and evolution in Northern Ireland—an issue has recently generated high public interest. The Chair of the Education Committee of the Northern Ireland Assembly recently stated that "creationism is not for the RE class because I believe that it can stand scientific scrutiny and that is a debate which I am quite happy to encourage and be part of…" (News Letter 2008). It could be the case that the evolution debate is being fuelled as a deliberate attempt to undermine some of the post-conflict collaboration projects between schools and communities in Northern Ireland.

  16. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  17. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  18. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  19. Elementary teachers past experiences: A narrative study of the past personal and professional experiences of elementary teachers who use science to teach math and reading

    Science.gov (United States)

    Acre, Andrea M.

    This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of high-stakes tests is of the upmost importance given that science is being eliminated from the elementary curriculum and it is during the elementary years that students' nurture and develop their interest in science. Additionally, the United States is failing to produce enough college graduates in STEM areas to fill the thousands of STEM jobs each year. Through a review of the literature, the past trends and current trends of elementary science education were explored as well as teacher training. Furthermore, the literature reviewed inquiry teaching which is considered to be the most effective teaching method when teaching science at any level. Using John Dewey's Interest and Effort Relationship Theory and the Self-Determination Motivation Theory to guide this study, there were five prominent themes which emerged from the reconstructed stories of the four teachers: positive experiences with science, neutral/negative experiences with science, seeks meaningful professional development, influence and support from others, and regret/wants to do more.

  20. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  1. The Current Situation of Field Experience in a Five-Year Science Teacher Education Program in Thailand

    Science.gov (United States)

    Faikhamta, Chatree; Jantarakantee, Ekgapoom; Roadrangka, Vantipa

    2011-01-01

    This research explored the current situation in managing the field experience of a five-year science teacher education program in one university in Thailand. A number of methods were used to assess field experience situation: (1) a questionnaire on the perceptions of pre-service science teachers of field experience management; (2) participant…

  2. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    Science.gov (United States)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  3. Practical data science cookbook

    CERN Document Server

    Ojeda, Tony; Bengfort, Benjamin; Dasgupta, Abhijit

    2014-01-01

    If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of data science projects, the steps in the data science pipeline, and the programming examples presented in this book. Since the book is formatted to walk you through the projects with examples and explanations along the way, no prior programming experience is required.

  4. Experience in initial training required for the recognition of the qualified RP expert in Spain

    International Nuclear Information System (INIS)

    Rodriguez Suarez, M.; Marco Arboli, M.; Menarguez, J.

    2003-01-01

    , content, programme, objectives and documentation of the course have been updated taking into account the science advances and the new national and international normative. During 2002, CIEMAT has designed, developed and implemented the pilot training course devoted to provide the initial training required for the recognition of the Technical Qualified Expert in Spain. In 2003, this course is being carried out again, improved and updated taking into account the experience and results of the pilot edition. This paper shows the experience having in the initial and continuous training required for the recognition of the qualified RP experts in Spain. (Author) 6 refs

  5. EXPERIENCE AND PROSPECTS OF MASTER’S DEGREE TRAINING OF ENGINEERING STAFF IN THE FIELD OF METALLURGICAL SCIENCE

    Directory of Open Access Journals (Sweden)

    V. M. Konstantinov

    2016-01-01

    Full Text Available The experience of training for MBA in engineering and technologies for specialties “Materials Science in Mechanical Engineering” at the department was analyzed. Efficiency of the practical-focused Master’s degree program for engineering staff of the machine-building and metallurgical enterprises was emphasized. Some ways to increase efficiency of master training of engineering experts in the field of metallurgical science and heat treatment are offered. Need of more active interaction with engineering services of the production enterprise during implementation of the master thesis was proved. Need of domination of requirements of the production enterprise is highlighted in master preparation program. The algorithm of interaction of department and technical service of the production enterprise during training of the factory expert in the correspondence practical-focused Master’s degree program is offered.

  6. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Andre, R. [TRANSP Group, Princeton, NJ (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhattacharjee, Amitava [Princeton Univ., NJ (United States); Bonoli, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Boyd, Iain [Univ. of Michigan, Ann Arbor, MI (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cary, John R. [Tech-X Corporation, Boulder, CO (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); Curreli, Davide [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ernst, Darin R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Green, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hakim, Ammar [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hassanein, A. [Purdue Univ., West Lafayette, IN (United States); Hatch, David [Univ. of Texas, Austin, TX (United States); Held, E. D. [Utah State Univ., Logan, UT (United States); Howard, Nathan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Izzo, Valerie A. [Univ. of California, San Diego, CA (United States); Jardin, Steve [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Jenkins, T. G. [Tech-X Corp., Boulder, CO (United States); Jenko, Frank [Univ. of California, Los Angeles, CA (United States); Kemp, Andreas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Jacob [Tech-X Corp., Boulder, CO (United States); Kritz, Arnold [Lehigh Univ., Bethlehem, PA (United States); Krstic, Predrag [Stony Brook Univ., NY (United States); Kruger, Scott E. [Tech-X Corp., Boulder, CO (United States); Kurtz, Rick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nandipati, Giridhar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pankin, A. Y. [Tech-X Corp., Boulder, CO (United States); Parker, Scott [Univ. of Colorado, Boulder, CO (United States); Perez, Danny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pigarov, Alex Y. [Univ. of California, San Diego, CA (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Pueschel, M. J. [Univ. of Wisconsin, Madison, WI (United States); Rafiq, Tariq [Lehigh Univ., Bethlehem, PA (United States); Rübel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sizyuk, Valeryi A. [Purdue Univ., West Lafayette, IN (United States); Smithe, D. N. [Tech-X Corp., Boulder, CO (United States); Sovinec, C. R. [Univ. of Wisconsin, Madison, WI (United States); Turner, Miles [Dublin City University, Leinster (Ireland); Umansky, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, Jean-Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Verboncoeur, John [Michigan State Univ., East Lansing, MI (United States); Vincenti, Henri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Voter, Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Weixing [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Wright, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Yuan, X. [TRANSP Group, Princeton, NJ (United States)

    2017-02-01

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range of fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.

  7. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  8. Idea-based, transformative experiences in science: What are they and how do you foster them?

    Science.gov (United States)

    Pugh, Kevin James

    Many have argued that science education should enrich students' lives, but, surprisingly, this issue has not been systematically addressed. Much of the work in science education has focused on the issue of how enriched experience leads to the development of conceptual understanding, but relatively little work has focused on the issue of how conceptual understanding leads to the development of enriched experience. This dissertation is comprised of two articles, which address the latter issue. The first article, entitled "Applying Pragmatism and Deweyan Aesthetics to Science Education: A Look at How Concepts Can Enrich Everyday Experience," develops the construct of an idea-based, transformative experience (a particular type of enriched experience) and an understanding of the role that concepts play in such experience, by synthesizing Dewey's writings on experience, aesthetics, and education. Such experience is centrally defined by an expansion of perception, meaning, and value which results from active use of a concept. Three illustrative examples of idea-based, transformative experiences are provided. Implications include a focus on idea-based, transformative experience as the goal of science education. A discussion of how this goal compares, contrasts, and relates to the standard goals of conceptual understanding/change and the development of thinking/participatory skills is provided. The second article, entitled, "Teaching for Idea-based, Transformative Experiences in Science," is a report of a study which examines the effectiveness of two related teaching elements (the artistic crafting of content and the modeling and scaffolding of perception, meaning, and value) at fostering idea-based, transformative experiences. The elements were used in teaching a unit on adaptation and evolution in a high school zoology class and student outcomes were compared with those of students in a roughly equivalent class where case-based methods were used. Results indicate that a

  9. Observation, experiment and hypothesis in modern physical science

    CERN Document Server

    Hannaway, Owen

    1985-01-01

    These original contributions by philosophers and historians of science discuss a range of issues pertaining to the testing of hypotheses in modern physics by observation and experiment. Chapters by Lawrence Sklar, Dudley Shapere, Richard Boyd, R. C. Jeffrey, Peter Achinstein, and Ronald Laymon explore general philosophical themes with applications to modern physics and astrophysics. The themes include the nature of the hypothetico-deductive method, the concept of observation and the validity of the theoretical-observation distinction, the probabilistic basis of confirmation, and the testing of idealizations and approximations.The remaining four chapters focus on the history of particular twentieth-century experiments, the instruments and techniques utilized, and the hypotheses they were designed to test. Peter Galison reviews the development of the bubble chamber; Roger Stuewer recounts a sharp dispute between physicists in Cambridge and Vienna over the interpretation of artificial disintegration experiments;...

  10. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    Science.gov (United States)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  11. Do natural science experiments influence public attitudes towards environmental problems?

    International Nuclear Information System (INIS)

    Wallner, A.; Hunziker, M.; Kienast, F.

    2003-01-01

    We investigated the significance of risk assessment studies in the public discussion on CO 2 emissions. Politicians and representatives from the public were interviewed by using the social-science technique of qualitative in-depth interviews. Three different types of attitudes towards natural science were found among politicians. Depending on which attitude a politician holds, risk assessment studies can have an impact on his/her readiness to support environmental policy measures. Regarding lay people, key factors affecting the acceptance of environmental policy measures are knowledge of environmental problems, their impacts on ecosystems or human health as well as direct personal perception of those impacts. Since direct perception is not always possible in everyday life, natural science experiments might be a means for successfully mediating this lacking perception. (author)

  12. Stories we live, identities we build: how are elementary teachers' science identities shaped by their lived experiences?

    Science.gov (United States)

    Avraamidou, Lucy

    2018-02-01

    The aim of this multiple case study was to uncover a series of critical events and experiences related to the formation of the science identities of four beginning elementary female teachers, through a life-history approach and a conceptualization of teacher identity as lived experience. Grounded within the theoretical framework of Figured Worlds, the study used qualitative, interpretive methods for data collection (interviews, biographies, teaching philosophies) and analysis. The analysis shed light on the ways in which various experiences situated within different Figured Worlds (science, family and childhood, schooling, out-of-school, university, professional) impacted the participants' identity trajectories. The findings provided three main insights that contribute to science identity research and have implications for elementary teacher preparation: (a) science teacher identity is multidimensional and extends beyond cognitive domains of becoming to include affective dimensions; (b) science teacher identity is relational, linked and shaped by various other constructs or sub-identities; (c) place and time, defined as a space with meaning created by experiences, and science teacher identity are inextricably bound to one another.

  13. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs

    Directory of Open Access Journals (Sweden)

    Jackie Phinney

    2018-01-01

    Conclusions: The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  14. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  15. HTR-PM Safety requirement and Licensing experience

    International Nuclear Information System (INIS)

    Li Fu; Zhang Zuoyi; Dong Yujie; Wu Zongxin; Sun Yuliang

    2014-01-01

    HTR-PM is a 200MWe modular pebble bed high temperature reactor demonstration plant which is being built in Shidao Bay, Weihai, Shandong, China. The main design parameters of HTR-PM were fixed in 2006, the basic design was completed in 2008. The review of Preliminary Safety Analysis Report (PSAR) of HTR-PM was started in April 2008, completed in September 2009. In general, HTR- PM design complies with the current safety requirement for nuclear power plant in China, no special standards are developed for modular HTR. Anyway, Chinese Nuclear Safety Authority, together with the designers, developed some dedicated design criteria for key systems and components and published the guideline for the review of safety analysis report of HTR-PM, based on the experiences from licensing of HTR-10 and new development of nuclear safety. The probabilistic safety goal for HTR-PM was also defined by the safety authority. The review of HTR-PM PSAR lasted for one and a half years, with 3 dialogues meetings and 8 topics meetings, with more than 2000 worksheets and answer sheets. The heavily discussed topics during the PSAR review process included: the requirement for the sub-atmospheric ventilation system, the utilization of PSA in design process, the scope of beyond design basis accidents, the requirement for the qualification of TRISO coating particle fuel, and etc. Because of the characteristics of first of a kind for the demonstration plant, the safety authority emphasized the requirement for the experiment and validation, the PSAR was licensed with certain licensing conditions. The whole licensing process was under control, and was re-evaluated again after Fukushima accident to be shown that the design of HTR-PM complies with current safety requirement. This is a good example for how to license a new reactor. (author)

  16. WOLF REXUS EXPERIMENT - European Planetary Science Congress

    Science.gov (United States)

    Buzdugan, A.

    2017-09-01

    WOLF experiment is developing a reaction wheel-based control system, effectively functioning as active nutation damper. One reaction wheel is used to reduce the undesirable lateral rates of spinning cylindrically symmetric free falling units, ejected from a sounding rocket. Once validated in REXUS flight, the concept and the design developed during WOLF experiment can be used for other application which require a flat spin of the free falling units.

  17. Goethe's Conception of "Experiment as Mediator" and Implications for Practical Work in School Science

    Science.gov (United States)

    Park, Wonyong; Song, Jinwoong

    2018-03-01

    There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.

  18. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    Science.gov (United States)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  19. A qualitative, phenomenological study on the lived experiences of science teachers in The Bahamas

    Science.gov (United States)

    Micklewhite, Thalia Vionne

    This phenomenological study investigates the lived experiences and perceptions of secondary science teachers in the archipelagic country of The Bahamas and how these teachers make meaning of the secondary science program in The Bahamas through the lens of life in a democratic society. The study's purpose was to answer the question: What are the lived experiences of secondary science teachers in The Bahamas in terms of their working conditions'? Using principles of phenomenological research to approach meaning, in-depth interviewing was conducted with six secondary science teachers on four islands of The Bahamas, including the capital of New Providence. The participants and the selected islands are representative of the diversity of teachers, the population, and school climates and structures throughout the country. Narratives were obtained via three ninety-minute interviews with each participant; and thematic analysis was the instrument by which three central themes emerged. Analysis of narratives reveals that lived experience of secondary science teachers revolve around themes of: (1) The Professional Self, (2) Curriculum Leadership, and (3) Curriculum. Most participants are in the career of secondary science education as second choice but are still committed to the profession. Participants overwhelmingly commented that there was a lack of supportive frameworks for critical elements of their daily work, and a need for clear, visionary and decisive curriculum leadership by The Ministry of Education and private School Boards. Participants also desired more appropriate and alternative science curricula that would meet the need of non-academically inclined Bahamian students. Antecedent to their calls was a pressing recognition that they lacked participatory democratic voice in national secondary science education evidenced by years of unrecognized and unattended suggestions sent to those in authority. As a result of these findings, the researcher was propelled towards

  20. The influences and experiences of African American undergraduate science majors at predominately White universities

    Science.gov (United States)

    Blockus, Linda Helen

    The purpose of this study is to describe and explore some of the social and academic experiences of successful African American undergraduate science majors at predominately White universities with the expectation of conceptualizing emerging patterns for future study. The study surveyed 80 upperclass African Americans at 11 public research universities about their perceptions of the influences that affect their educational experiences and career interests in science. The mailed survey included the Persistence/ voluntary Dropout Decision Scale, the Cultural Congruity Scale and the University Environment Scale. A variety of potential influences were considered including family background, career goals, psychosocial development, academic and social connections with the university, faculty relationships, environmental fit, retention factors, validation, participation in mentored research projects and other experiences. The students' sources of influences, opportunities for connection, and cultural values were considered in the context of a research university environment and investigated for emerging themes and direction for future research. Results indicate that performance in coursework appears to be the most salient factor in African American students' experience as science majors. The mean college gpa was 3.01 for students in this study. Challenging content, time demands, study habits and concern with poor grades all serve to discourage students; however, for most of the students in this study, it has not dissuaded them from their educational and career plans. Positive course performance provided encouragement. Science faculty provide less influence than family members, and more students find faculty members discouraging than supportive. Measures of faculty relations were not associated with academic success. No evidence was provided to confirm the disadvantages of being female in a scientific discipline. Students were concerned with lack of minority role models

  1. The effect of site-based preservice experiences on elementary science teaching self-efficacy beliefs

    Science.gov (United States)

    Wingfield, Mary E.

    Current reform in science education has focused on the need for improvement of preservice teacher training (National Science Education Standards, 1996). As a situation specific construct (Bandura, 1977), self-efficacy studies have been conducted to investigate factors that impact preservice teachers' sense of confidence as it relates to their ability to become successful science teachers. This descriptive study identified factors in the site based experiences that affected preservice elementary teachers' self-efficacy as measured by the Science Teaching Efficacy Belief Instrument (STEBL-B) (Enochs and Riggs, 1990). The sample consisted of the entire population of undergraduate elementary preservice teachers in the site based teacher education program during the fall semester of 1997 at a large south central urban university. The 131 paired, pretest posttests of the entire STEBL-B and the two constructs were analyzed for significance in mean score gains. Results of the paired t test yielded a t value of 11.52 which was significant at p Bandura identified as sources of information used to determine self-efficacy. These include performance accomplishments through authentic teaching experiences, vicarious experiences through observation of the site based teachers, and verbal persuasion and physiological states from feedback given by the university coordinators. The majority of these preservice teachers started the semester with a negative attitude toward teaching science, but ended the semester with a positive view of themselves as effective science teachers in the future.

  2. Family science: An ethnographic case study of the ordinary science and literacy experiences of one family

    Science.gov (United States)

    McCarty, Glenda M.

    Despite the copious research available on science learning, little is known about ways in which the public engages in free-choice science learning and even fewer studies have focused on how families engage in science to learn about the world around them. The same was true about studies of literacy development in the home until the 1980s when researchers (e.g. Bissex, 1980; Heath, 1983; Taylor, 1983) began documenting the literacy happenings and practices of young children in natural settings. Findings from intensive emergent literacy research studies have challenged traditional approaches to the teaching and learning of literacy, especially drawing attention to the active role children take in their own learning. Drawing upon those early literacy studies, this research project uses ethnographic case study methods along with a naturalistic inquiry approach, to document the daily explorations of one science-oriented family. Over a three year span, I have followed my own family, in our natural setting, through our day-to-day experiences with science and literacy as we seek to mediate and understand the world around us. In doing so, I have explored the ways we have shared knowledge and constructed learning through science books and read alouds, self-initiated inquiry learning, and communication. Throughout the three year research period, I have collected data and documented my own young children's understanding of the nature of science by observing their engagement with world around them.

  3. The psychological characteristics of experiences that influence science motivation and content knowledge

    Science.gov (United States)

    Bathgate, Meghan; Schunn, Christian

    2017-11-01

    While motivational changes towards science are common during adolescence, our work asks which perceived classroom experiences are most strongly related to these changes. Additionally, we examine which experiences are most strongly associated with learning classroom content. In particular, using self-reports from a sample of approximately 3000 middle school students, this study investigates the influence of perceived science classroom experiences, namely student engagement and perceived success, on motivational change (fascination, values, competency belief) and content knowledge. Controlling for demographic information, school effects, and initial levels of motivation and content knowledge, we find that dimensions of engagement (affect, behavioural/cognitive) and perceived success are differentially associated with changes in particular motivational constructs and learning. Affective engagement is positively associated with motivational outcomes and negatively associated with learning outcomes, behavioural-cognitive engagement is associated only with learning, and perceived success is related only to motivational outcomes. Theoretical and practical implications are discussed.

  4. AAFE man-made noise experiment project. Volume 1: Introduction experiment definition and requirements

    Science.gov (United States)

    1974-01-01

    An experiment was conducted to measure and map the man-made radio frequency emanations which exist at earth orbital altitudes. The major objectives of the program are to develop a complete conceptual experiment and developmental hardware for the collection and processing of data required to produce meaningful statistics on man-made noise level variations as functions of time, frequency, and geographic location. A wide dispersion measurement receiver mounted in a spacecraft operating in a specialized orbit is used to obtain the data. A summary of the experiment designs goals and constraints is provided. The recommended orbit for the spacecraft is defined. The characteristics of the receiver and the antennas are analyzed.

  5. Holography and Introductory Science at Hampshire College.

    Science.gov (United States)

    Wirth, Frederick H.

    1991-01-01

    An introductory Natural Science course with a focus on the laboratory is described. The main function of the course is getting students prepared for required individual projects in science. A copy of the syllabus, a description of laboratory experiments, and the context of the course are included. (KR)

  6. Physical and Virtual Laboratories in Science and Engineering Education: review

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Linn, Marcia C.; Zacharia, Zacharias C.

    2013-01-01

    The world needs young people who are skillful in and enthusiastic about science and who view science as their future career field. Ensuring that we will have such young people requires initiatives that engage students in interesting and motivating science experiences. Today, students can investigate

  7. Exposing the Strategies that Can Reduce the Obstacles: Improving the Science User Experience

    Science.gov (United States)

    Lindsay, Francis E.; Brennan, Jennifer; Behnke, Jeanne; Lynnes, Chris

    2017-01-01

    It is now well established that pursuing generic solutions to what seem are common problems in Earth science data access and use can often lead to disappointing results for both system developers and the intended users. This presentation focuses on real-world experience of managing a large and complex data system, NASAs Earth Science Data and Information Science System (EOSDIS), whose mission is to serve both broad user communities and those in smaller niche applications of Earth science data and services. In the talk, we focus on our experiences with known data user obstacles characterizing EOSDIS approaches, including various technological techniques, for engaging and bolstering, where possible, user experiences with EOSDIS. For improving how existing and prospective users discover and access NASA data from EOSDIS we introduce our cross-archive tool: Earthdata Search. This new search and order tool further empowers users to quickly access data sets using clever and intuitive features. The Worldview data visualization tool is also discussed highlighting how many users are now performing extensive data exploration without necessarily downloading data. Also, we explore our EOSDIS data discovery and access webinars, data recipes and short tutorials, targeted technical and data publications, user profiles and social media as additional tools and methods used for improving our outreach and communications to a diverse user community. These efforts have paid substantial dividends for our user communities by allowing us to target discipline specific community needs. The desired take-away from this presentation will be an improved understanding of how EOSDIS has approached, and in several instances achieved, removing or lowering the barriers to data access and use. As we look ahead to more complex Earth science missions, EOSDIS will continue to focus on our user communities, both broad and specialized, so that our overall data system can continue to serve the needs of

  8. Exposing the Strategies that can Reduce the Obstacles: Improving the Science User Experience

    Science.gov (United States)

    Lindsay, F. E.; Brennan, J.; Behnke, J.; Lynnes, C.

    2017-12-01

    It is now well established that pursuing generic solutions to what seem are common problems in Earth science data access and use can often lead to disappointing results for both system developers and the intended users. This presentation focuses on real-world experience of managing a large and complex data system, NASA's Earth Science Data and Information Science System (EOSDIS), whose mission is to serve both broad user communities and those in smaller niche applications of Earth science data and services. In the talk, we focus on our experiences with known data user obstacles characterizing EOSDIS approaches, including various technological techniques, for engaging and bolstering, where possible, user experiences with EOSDIS. For improving how existing and prospective users discover and access NASA data from EOSDIS we introduce our cross-archive tool: Earthdata Search. This new search and order tool further empowers users to quickly access data sets using clever and intuitive features. The Worldview data visualization tool is also discussed highlighting how many users are now performing extensive data exploration without necessarily downloading data. Also, we explore our EOSDIS data discovery and access webinars, data recipes and short tutorials, targeted technical and data publications, user profiles and and social media as additional tools and methods used for improving our outreach and communications to a diverse user community. These efforts have paid substantial dividends for our user communities by allowing us to target discipline specific community needs. The desired take-away from this presentation will be an improved understanding of how EOSDIS has approached, and in several instances achieved, removing or lowering the barriers to data access and use. As we look ahead to more complex Earth science missions, EOSDIS will continue to focus on our user communities, both broad and specialized, so that our overall data system can continue to serve the needs of

  9. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  10. ATLAS Experiment: Collaboration at the frontiers of science and technology

    CERN Document Server

    2018-01-01

    ATLAS is run by a collaboration of physicists, engineers, technicians and support staff from around the world. It is one of the largest collaborative efforts ever attempted in science, with over 5000 members and almost 3000 scientific authors. The ATLAS Collaboration welcomes new collaborators for long-term engagement in the experiment.

  11. Comparison of SOLA-FLX calculations with experiments at systems, science and software

    International Nuclear Information System (INIS)

    Dienes, J.K.; Hirt, C.W.; Stein, L.R.

    1977-03-01

    Preliminary results of a comparison between hydroelastic calculations at the Los Alamos Scientific Laboratory and experiments at Systems, Science and Software are described. The axisymmetric geometry is an idealization of a pressurized water reactor at a scale of 1/25. Reasons for some of the discrepancies are described, and suggestions for improving both experiments and calculations are discussed

  12. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  13. Galaxy Zoo: An Experiment in Public Science Participation

    Science.gov (United States)

    Raddick, Jordan; Lintott, C. J.; Schawinski, K.; Thomas, D.; Nichol, R. C.; Andreescu, D.; Bamford, S.; Land, K. R.; Murray, P.; Slosar, A.; Szalay, A. S.; Vandenberg, J.; Galaxy Zoo Team

    2007-12-01

    An interesting question in modern astrophysics research is the relationship between a galaxy's morphology (appearance) and its formation and evolutionary history. Research into this question is complicated by the fact that to get a study sample, researchers must first assign a shape to a large number of galaxies. Classifying a galaxy by shape is nearly impossible for a computer, but easy for a human - however, looking at one million galaxies, one at a time, would take an enormous amount of time. To create such a research sample, we turned to citizen science. We created a web site called Galaxy Zoo (www.galaxyzoo.org) that invites the public to classify the galaxies. New members see a short tutorial and take a short skill test where they classify galaxies of known types. Once they pass the test, they begin to work with the entire sample. The site's interface shows the user an image of a single galaxy from the Sloan Digital Sky Survey. The user clicks a button to classify it. Each classification is stored in a database, associated with the galaxy that it describes. The site has become enormously popular with amateur astronomers, teachers, and others interested in astronomy. So far, more than 110,000 users have joined. We have started a forum where users share images of their favorite galaxies, ask science questions of each other and the "zookeepers," and share classification advice. In a separate poster, we will share science results from the site's first six months of operation. In this poster, we will describe the site as an experiment in public science outreach. We will share user feedback, discuss our plans to study the user community more systematically, and share advice on how to work with citizen science projects to the mutual benefit of both professional and citizen scientists.

  14. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  15. Community Resilience Informed by Science and Experience (C-RISE)

    Science.gov (United States)

    Young Morse, R.; Peake, L.; Bowness, G.

    2017-12-01

    The Gulf of Maine Research Institute is developing an interactive learning experience that engages participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and the changes we see now and that are predicted for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through the connection to the challenge of city planning in our harbor communities. We are leveraging the ESRI Story Maps platform to build rich visualization-based narratives that feature NOAA maps, data and tools. Our program participants work in teams to navigate the content and participate in facilitated group discussions led by our educators. Based on the adult learning experience and in concert with new content being developed for the LabVenture program around the theme of Climate Change, we will develop a learning experience for 5th and 6th graders.Our goal is to immerse 1000+ adults from target communities in Greater Portland region as well as 8000+ middle school students from throughout the state in the experience.

  16. The Design and Evaluation of Teaching Experiments in Computer Science.

    Science.gov (United States)

    Forcheri, Paola; Molfino, Maria Teresa

    1992-01-01

    Describes a relational model that was developed to provide a framework for the design and evaluation of teaching experiments for the introduction of computer science in secondary schools in Italy. Teacher training is discussed, instructional materials are considered, and use of the model for the evaluation process is described. (eight references)…

  17. Music and the mind: a new interdisciplinary course on the science of musical experience.

    Science.gov (United States)

    Prichard, J Roxanne; Cornett-Murtada, Vanessa

    2011-01-01

    In this paper the instructors describe a new team-taught transdisciplinary seminar, "Music and Mind: The Science of Musical Experience." The instructors, with backgrounds in music and neuroscience, valued the interdisciplinary approach as a way to capture student interest and to reflect the inherent interconnectivity of neuroscience. The course covered foundational background information about the science of hearing and musical perception and about the phenomenology of musical creation and experience. This two-credit honors course, which attracted students from eleven majors, integrated experiential learning (active listening, journaling, conducting mini-experiments) with rigorous reflection and discussion of academic research. The course culminated in student-led discussions and presentations of final projects around hot topics in the science of music, such as the 'Mozart Effect,' music and religious experience, etc. Although this course was a two-credit seminar, it could easily be expanded to a four-credit lecture or laboratory course. Student evaluations reveal that the course was successful in meeting the learning objectives, that students were intrinsically motivated to learn more about the discipline, and that the team-taught, experiential learning approach was a success.

  18. Resident Evaluation of a Required Telepsychiatry Clinical Experience.

    Science.gov (United States)

    Teshima, John; Hodgins, Michael; Boydell, Katherine M; Pignatiello, Antonio

    2016-04-01

    The authors explored resident experiences of telepsychiatry clinical training. This paper describes an analysis of evaluation forms completed by psychiatry residents following a required training experience in telepsychiatry. Retrospective numeric and narrative data were collected from 2005 to 2012. Using a five-point Likert-type scale (1 = strongly disagree and 5 = strongly agree), residents ranked the session based on the following characteristics: the overall experience, interest in participating in telepsychiatry in the future, understanding service provision to underserved areas, telepsychiatry as mode of service delivery, and the unique aspects of telepsychiatry work. The authors also conducted a content analysis of narrative comments in response to open-ended questions about the positive and negative aspects of the training experience. In all, 88% of residents completed (n = 335) an anonymous evaluation following their participation in telepsychiatry consultation sessions. Numeric results were mostly positive and indicated that the experience was interesting and enjoyable, enhanced interest in participating in telepsychiatry in the future, and increased understanding of providing psychiatric services to underserved communities. Narrative data demonstrated that the most valuable aspects of training included the knowledge acquired in terms of establishing rapport and engaging with patients, using the technology, working collaboratively, identifying different approaches used, and awareness of the complexity of cases. Resident desire for more training of this nature was prevalent, specifically a wish for more detail, additional time for discussion and debriefing, and further explanation of the unique aspects of telepsychiatry as mode of delivery. More evaluation of telepsychiatry training, elective or required, is needed. The context of this training offered potential side benefits of learning about interprofessional and collaborative care for the

  19. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    Science.gov (United States)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other

  20. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    Science.gov (United States)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  1. Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited)

    Science.gov (United States)

    Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.

    2013-12-01

    The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model

  2. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    Science.gov (United States)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  3. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  4. The Laboratory of the Mind Thought Experiments in the Natural Sciences

    CERN Document Server

    Brown, James Robert

    2010-01-01

    Newton's bucket, Einstein's elevator, Schrödinger's cat - these are some of the best-known examples of thought experiments in the natural sciences. But what function do these experiments perform? Are they really experiments at all? Can they help us gain a greater understanding of the natural world?  How is it possible that we can learn new things just by thinking?   In this revised and updated new edition of his classic text The Laboratory of the Mind, James Robert Brown continues to defend apriorism in the physical world. This edition features two new chapters, one on "counter

  5. Science Literacy: Hand in Glove with Numeracy

    Directory of Open Access Journals (Sweden)

    Gerry G. Meisels

    2010-07-01

    Full Text Available Science Literacy requires numeracy as part of its foundation, and much of Numeracy draws on examples and applications from the sciences. They share the goal of creating a society that is mathematics numerate and science literate, and are interrelated. National priorities to strengthen both among all our students are driven by practical considerations of economic competitiveness that increasingly depend on technological innovation. It is also critical to each individual for long-term job opportunities and for informed citizenship. With up to 80% of 21st century jobs requiring mathematics and science skills, a large majority of the 2,900,000 students who graduate from America’s high schools every year must become Numerate and Science Literate. Many of these students are not motivated to learn, requiring a change in teaching strategies. Societal will and substantial resources are required to help teachers adopt new approaches that are much more demanding than traditional lectures. Major organizational changes may be needed to strengthen student experience in elementary schools. Advocates of Numeracy and Science Literacy need to work hand in glove to create a citizenry prepared to compete in the 21st century.

  6. 42 CFR 482.80 - Condition of participation: Data submission, clinical experience, and outcome requirements for...

    Science.gov (United States)

    2010-10-01

    ..., clinical experience, and outcome requirements for initial approval of transplant centers. 482.80 Section... Hospitals Transplant Center Data Submission, Clinical Experience, and Outcome Requirements § 482.80 Condition of participation: Data submission, clinical experience, and outcome requirements for initial...

  7. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  8. Primatology between feelings and science: a personal experience perspective.

    Science.gov (United States)

    Vitale, Augusto

    2011-03-01

    The aim of this article is to discuss some aspects of the relationship between feelings and primatological science, and how this relationship can influence this particular scientific practice. This point of view is based on the author's personal experience. A sentimental reason to study primatology in the first place will be discussed, and then the existence of a bond between the observer and the observed will be presented as a possible by-product of primatology. The following question is whether a sentimental attitude toward primates is detrimental for good science or is, alternatively, actually leading to better primatological science. As an example, the practice of naming individual monkeys is considered. It is argued that naming monkeys can help by characterizing individuality, and this is likely to improve planning of behavioural observations and welfare of captive individuals. The relationship between the researcher and study subject in biomedical studies is discussed in terms of hierarchy of moral status. Finally, primatology is not unique in the existence of bonds between the observer and the observed, at least from the point of view of the observer. However, primatology is unique because, more than in other cases, it gives greater opportunity for reasoning about different factors surrounding "doing science with animals." This is most probably owing to the phylogenetic closeness primatologists have with their study subjects. Among the different factors involved in making science using animals, the sentimental bond developing between the researcher and study animal can be very influential. 2010 Wiley-Liss, Inc.

  9. Historical Experiments and Physics Teaching: adding considerations from a Bibliographic Review and the Cultural History of Science

    Science.gov (United States)

    Jardim, W. T.; Guerra, A.

    2017-12-01

    In this paper, a discussion about the purposes of historical experiments in science teaching found in the literature will be presented. As a starting point, we carried out a bibliographic review, on the websites of six relevant periodicals for the area of Science Teaching and, especially for Physics Teaching. The search was based, at first, on works published between the years 2001 and 2016, from terms like "historical experiments", "museums" and "experience". Thereon, due to the large number of publications found, a screening process was developed based on the analysis of titles, abstracts, keywords and, whether necessary, the whole text, aiming to identify which searches emphasize working with historical experiments in Physics teaching, from a theoretical perspective or based on manipulation of a replica of historical apparatus. The selected proposals were arranged in categories adapted from the work of Heering and Höttecke (2014) which allowed us to draw a parallel between the national and international publication that presented resembling scopes. Furthermore, the analysis of the results leads us to infer that, in general, extralab factors, inherent to science, when not neglected, are placed in a peripheral perspective. Thus, we draw theoretical considerations based on Historians of Science, which develop their researches based on the bias of the Cultural History of Science, seeking to add reflections to what has been developed about historical experiments in teaching up to now.

  10. Data Crosscutting Requirements Review

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, Arie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Plata, Charity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities. They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.

  11. Urban fifth graders' connections-making between formal earth science content and their lived experiences

    Science.gov (United States)

    Brkich, Katie Lynn

    2014-03-01

    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples—the Grand Canyon, beach erosion, and others. However, these examples—which resonate well with middle- and upper-class students—ill-serve students of poverty attending urban schools who may have never traveled farther from home than the corner store. In this paper, I explore the use of a place-based educational framework in teaching earth science concepts to urban fifth graders and explore the connections they make between formal earth science content and their lived experiences using participant-driven photo elicitation techniques. I argue that students are able to gain a sounder understanding of earth science concepts when they are able to make direct observations between the content and their lived experiences and that when such direct observations are impossible they make analogies of appearance, structure, and response to make sense of the content. I discuss additionally the importance of expanding earth science instruction to include man-made materials, as these materials are excluded traditionally from the curriculum yet are most immediately available to urban students for examination.

  12. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  13. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  14. Why Do They Stay? A Phenomenological Study of Secondary Science Teacher Experiences

    Science.gov (United States)

    Lastica, Joelle Ramirez

    In 2004, The U.S. Department of Education reported that 20% of schoolteachers (public and private) leave their classrooms during the first year of teaching, and nearly twice as many leave within the first three years of teaching (Koppich, 2004). According to the 2007 Condition of Education report, the U.S. Department of Education estimated there were nearly 380,000 public school math and science teachers during the 2003-2004 school year, and of those, approximately 23,000 left the teaching profession the following school year. Yet despite these reports, in 2004-2005, approximately 360,000 public school math and science teachers remained in their classrooms. In this phenomenological dissertation study, I sought to discover how eight secondary science teachers (whose years of teaching experience range from five to 30 years) make meaning of their decisions to remain in teaching. Through semi-structured interviews, these teacher participants and I discussed how each of them decided to become a science teacher, how each of them think of themselves as a science teacher, and how each of them decided to remain teaching despite the ever-growing list of challenges (s)he faces in and out of his/her classroom. These teacher participants chose to become science teachers because they loved their subject area and working with secondary students. These teachers enjoyed working with their students and their teaching colleagues. However, they acknowledged there were also tensions and frustrations in their work, including not feeling supported by school and district administrators and being overwhelmed with the demands of their workload and time. These eight science teachers chose to remain classroom teachers because they have a profound love for their students, a deep admiration for their colleagues, and a strong sense of mission in their work. It is my intent that the stories shared by the teacher participants in this study will shed light upon concerns, tensions and experiences

  15. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  16. Requirements Engineering in Building Climate Science Software

    Science.gov (United States)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the

  17. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  18. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  19. Making ionising radiation a real experience for high school science students

    International Nuclear Information System (INIS)

    Whitlock, J.; Lang, P.; De La Matter, D.; Hinman, P.; White, B.

    2009-01-01

    The Canadian public has little understanding of ionising radiation due in part to its treatment in popular media. In principle, students learn about ionising radiation in their school science classes. Developments in science curricula are providing more education opportunities for this subject. The Canadian Nuclear Society's program for introducing real, personal experience with ionising radiation in the classroom is starting to make a difference. The demand is expected to exceed the resources of the CNS and the program is being developed to facilitate external support. This paper summarizes the need, the history of this program development, and the path forward. (author)

  20. What Governs Ice-Sticking in Planetary Science Experiments?

    Science.gov (United States)

    Gaertner, Sabrina; Gundlach, B.; Blum, J.; Fraser, H. J.

    2018-06-01

    Water ice plays an important role, alongside dust, in current theories of planet formation. Decades of laboratory experiments have proven that water ice is far stickier in particle collisions than dust. However, water ice is known to be a metastable material. Its physical properties strongly depend on its environmental parameters, the foremost being temperature and pressure. As a result, the properties of ice change not only with the environment it is observed in, but also with its thermal history.The abundance of ice structures that can be created by different environments likely explains the discrepancies observed across the multitude of collisional laboratory studies in the past [1-16]; unless the ices for such experiments have been prepared in the same way and are collided under the same environmental conditions, these experiments simply do not collide the same ices.This raises several questions:1. Which conditions and ice properties are most favourable for ice sticking?2. Which conditions and ice properties are closest to the ones observed in protoplanetary disks?3. To what extent do these two regimes overlap?4. Consequently, which collisional studies are most relevant to planetary science and therefore best suited to inform models of planet formation?In this presentation, I will give a non-exhaustive overview of what we already know about the properties of ice particles, covering those used in planetary science experiments and those observed in planet forming regions. I will discuss to what extent we can already answer questions 1-3, and what information we still need to obtain from observations, laboratory experiments, and modelling to be able to answer question 4.References:1. Bridges et al. 1984 Natur 309.2. Bridges et al. 1996 Icar 123.3. Deckers & Teiser 2016 MNRAS 456.4. Dilley & Crawford 1996 JGRE 101.5. Gundlach & Blum 2015 ApJ 798.6. Hatzes et al. 1991 Icar 89.7. Hatzes et al. 1988 MNRAS 231.8. Heißelmann et al. 2010 Icar 206.9. Higa et al. 1996 P

  1. Analytical Study of Self-Motivations among a Southwest Public University Nonpolitical Science Major Students in Required Political Science Courses

    Science.gov (United States)

    Gasim, Gamal; Stevens, Tara; Zebidi, Amira

    2012-01-01

    All undergraduate students are required by state law to take six credited hours in political science. This study will help us identify if differences exist in self-determination among students enrolled in American Public Policy and American Government at a large, Southwestern public university. Because some types of motivation are associated with…

  2. Life Science Research Facility materials management requirements and concepts

    Science.gov (United States)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  3. An Invitation to Kitchen Earth Sciences, an Example of MISO Soup Convection Experiment in Classroom

    Science.gov (United States)

    Kurita, K.; Kumagai, I.; Davaille, A.

    2008-12-01

    In recent frontiers of earth sciences such as computer simulations and large-scale observations/experiments involved researchers are usually remote from the targets and feel difficulty in having a sense of touching the phenomena in hands. This results in losing sympathy for natural phenomena particularly among young researchers, which we consider a serious problem. We believe the analog experiments such as the subjects of "kitchen earth sciences" proposed here can be a remedy for this. Analog experiments have been used as an important tool in various research fields of earth science, particularly in the fields of developing new ideas. The experiment by H. Ramberg by using silicone pate is famous for guiding concept of the mantle dynamics. The term, "analog" means something not directly related to the target of the research but in analogical sense parallel comparison is possible. The advantages of the analog experiments however seem to have been overwhelmed by rapid progresses of computer simulations. Although we still believe in the present-day meaning, recently we are recognizing another aspect of its significance. The essence of "kitchen earth science" as an analog experiment is to provide experimental setups and materials easily from the kitchen, by which everyone can start experiments and participate in the discussion without special preparations because of our daily-experienced matter. Here we will show one such example which can be used as a heuristic subject in the classrooms at introductory level of earth science as well as in lunch time break of advanced researchers. In heated miso soup the fluid motion can be easily traced by the motion of miso "particles". At highly heated state immiscible part of miso convects with aqueous fluid. At intermediate heating the miso part precipitates to form a sediment layer at the bottom. This layered structure is destroyed regularly by the instability caused by accumulated heat in the miso layer as a bursting. By showing

  4. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  5. Why Should We Study Experience More Systematically: Neurophenomenology and Modern Cognitive Science

    Directory of Open Access Journals (Sweden)

    Toma Strle

    2013-10-01

    Full Text Available In the article I will defend the view that cognitive science needs to use first- and second-person methods more systematically, as part of everyday research practice, if it wants to understand the human mind in its full scope. Neurophenomenological programme proposed by Varela as a remedy for the hard problem of consciousness (i.e. the problem of experience does not solve it on the ontological level. Nevertheless, it represents a good starting point of how to tackle the phenomenon of experience in a more systematic, methodologically sound way. On the other hand, Varela’s criterion of phenomenological reduction as a necessary condition for systematic investigation of experience is too strong. Regardless of that and some other problems that research of experience faces (e.g. the problem of training, the question of what kind of participants we want to study, it is becoming clear that investigating experience seriously – from first- and second-person perspective – is a necessary step cognitive science must take. This holds especially when researching phenomena that involve consciousness and/or where differentiation between conscious and unconscious processing is crucial. Furthermore, gathering experiential data is essential for interpreting experimental results gained purely by quantitative methods – especially when we are implicitly or explicitly referring to experience in our conclusions and interpretations. To support these claims some examples from the broader area of decision making will be given (the effect of deliberation-without-attention, cognitive reflection test.

  6. Primary Science Teaching--Is It Integral and Deep Experience for Students?

    Science.gov (United States)

    Timoštšuk, Inge

    2016-01-01

    Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…

  7. The IFS for WFIRST CGI: Science Requirements to Design

    Science.gov (United States)

    Groff, Tyler; Gong, Qian; Mandell, Avi M.; Zimmerman, Neil; Rizzo, Maxime; McElwain, Michael; harvey, david; Saxena, Prabal; cady, eric; mejia prada, camilo

    2018-01-01

    Direct Imaging of exoplanets using a coronagraph has become a major field of research both on the ground and in space. Key to the science of direct imaging is the spectroscopic capabilities of the instrument, our ability to extract spectra, and measure the abundance of molecular species such as Methane. To take these spectra, the WFIRST coronagraph instrument (CGI) uses an integral field spectrograph (IFS), which encodes the spectrum into a two-dimensional image on the detector. This results in more efficient detection and characterization of targets, and the spectral information is critical to achieving detection limits below the speckle floor of the imager. The CGI IFS operates in three 18% bands spanning 600nm to 970nm at a nominal spectral resolution of R50. We present the current science and engineering requirements for the IFS design, the instrument design, anticipated performance, and how the calibration is integrated into the focal plane wavefront control algorithms. We also highlight the role of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) at the JPL High Contrast Imaging Testbed to demonstrate performance and validate calibration methodologies for the flight instrument.

  8. High gain requirements and high field Tokamak experiments

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1994-01-01

    Operation at sufficiently high gain (ratio of fusion power to external heating power) is a fundamental requirement for tokamak power reactors. For typical reactor concepts, the gain is greater than 25. Self-heating from alpha particles in deuterium-tritium plasmas can greatly reduce ητ/temperature requirements for high gain. A range of high gain operating conditions is possible with different values of alpha-particle efficiency (fraction of alpha-particle power that actually heats the plasma) and with different ratios of self heating to external heating. At one extreme, there is ignited operation, where all of the required plasma heating is provided by alpha particles and the alpha-particle efficiency is 100%. At the other extreme, there is the case of no heating contribution from alpha particles. ητ/temperature requirements for high gain are determined as a function of alpha-particle heating efficiency. Possibilities for high gain experiments in deuterium-tritium, deuterium, and hydrogen plasmas are discussed

  9. Systemics, Communication and Knowledge: Shifts of Perspective and the Need for Requirements in Second-Order Science

    Directory of Open Access Journals (Sweden)

    Thomas J. Marlowe

    2013-12-01

    Full Text Available The systemic view of second-order science emphasizes the interaction of observer and observed, but tacitly assumes a single observer, or at least a unity of observer perspective. But experience in multiple domains, including software engineering, decision science, health sciences, co-creation and Living Labs, knowledge management, community development and government policy has emphasized the multiplicity of goals and perspectives across stakeholders. We look at the issues that arise when multiple views are incorporated, and propose a toolkit for addressing those issues.

  10. A Workbook for Scaffolding Mentored Undergraduate Research Experiences in the Social and Behavioral Sciences

    Science.gov (United States)

    Colbert-White, Erin; Simpson, Elizabeth

    2017-01-01

    Research mentors strive to ensure that undergraduates gain research skills and develop professionally during mentored research experiences in the sciences. We created the SURE (Specialized Undergraduate Research Experience) Workbook, a freely-available, interactive guide to scaffold student learning during this process. The Workbook: (1)…

  11. Combustion process science and technology

    Science.gov (United States)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  12. Plasma experiments with relevance for other branches of science

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.

    2000-01-01

    A new scenario of self-organization, suggested by plasma experiments, is presented as an enlightening model able to illustrate, on some examples, the necessity of a paradigm shift in science. Thus, self-organization at criticality in fusion devices, differential negative resistance of semi-conductors, generation of complex space charge configurations under controllable laboratory conditions and in nature are mentioned as phenomena potentially explicable in the frame of a unique framework in which self-organization is the central concept. (authors)

  13. Fourth Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE4)

    NARCIS (Netherlands)

    Katz, Daniel S; Niemeyer, Kyle E; Gesing, Sandra; Hwang, Lorraine; Bangerth, Wolfgang; Hettrick, Simon; Idaszak, Ray; Salac, Jean; Chue Hong, Neil; Núñez-Corrales, Santiago; Allen, Alice; Geiger, R Stuart; Miller, Jonah; Chen, Emily; Dubey, Anshu; Lago, Patricia

    2018-01-01

    This article summarizes motivations, organization, and activities of the Fourth Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE4). The WSSSPE series promotes sustainable research software by positively impacting principles and best practices, careers, learning, and

  14. Functional requirements document for NASA/MSFC Earth Science and Applications Division: Data and information system (ESAD-DIS). Interoperability, 1992

    Science.gov (United States)

    Stephens, J. Briscoe; Grider, Gary W.

    1992-01-01

    These Earth Science and Applications Division-Data and Information System (ESAD-DIS) interoperability requirements are designed to quantify the Earth Science and Application Division's hardware and software requirements in terms of communications between personal and visualization workstation, and mainframe computers. The electronic mail requirements and local area network (LAN) requirements are addressed. These interoperability requirements are top-level requirements framed around defining the existing ESAD-DIS interoperability and projecting known near-term requirements for both operational support and for management planning. Detailed requirements will be submitted on a case-by-case basis. This document is also intended as an overview of ESAD-DIs interoperability for new-comers and management not familiar with these activities. It is intended as background documentation to support requests for resources and support requirements.

  15. Academic attainment and the high school science experiences among high-achieving African American males

    Science.gov (United States)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  16. Teachers doing science: An authentic geology research experience for teachers

    Science.gov (United States)

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  17. An analysis of Science Olympiad participants' perceptions regarding their experience with the science and engineering academic competition

    Science.gov (United States)

    Wirt, Jennifer L.

    Science education and literacy, along with a focus on the other STEM fields, have been a center of attention on the global scale for decades. The 1950's race to space is often considered the starting point. Through the years, the attention has spread to highlight the United States' scientific literacy rankings on international testing. The ever-expanding global economy and global workplace make the need for literacy in the STEM fields a necessity. Science and academic competitions are worthy of study to determine the overall and specific positive and negative aspects of their incorporation in students' educational experiences. Science Olympiad is a national science and engineering competition that engages thousands of students each year. The purpose of this study was to analyze the perceptions of Science Olympiad participants, in terms of science learning and interest, 21st century skills and abilities, perceived influence on careers, and the overall benefits of being involved in Science Olympiad. The study sought to determine if there were any differences of perception when gender was viewed as a factor. Data was acquired through the Science Olympiad survey database. It consisted of 635 usable surveys, split evenly between males and females. This study employed a mixed methods analysis. The qualitative data allowed the individual perceptions of the respondents to be highlighted and acknowledged, while the quantitative data allowed generalizations to be identified. The qualitative and quantitative data clearly showed that Science Olympiad had an impact on the career choices of participants. The qualitative data showed that participants gained an increased level of learning and interest in science and STEM areas, 21st century skills, and overall positive benefits as a result of being involved. The qualitative data was almost exclusively positive. The quantitative data however, did not capture the significance of each researched category that the qualitative

  18. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    Science.gov (United States)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  19. Patterns and Impacts of Short-Term Cross-Cultural Experience in Science and Mathematics Teaching: Benefits, Value, and Experience

    Science.gov (United States)

    Kanyaprasith, Kamonwan; Finley, Fred N.; Phonphok, Nason

    2015-01-01

    This study evaluates a cross-cultural experience in science and mathematics teaching in Thailand--an internship program. In this study, qualitative data sources including semi-structured interviews, classroom observations, and pre-post questionnaire were collected from five groups of participants, which were: (a) administrators; (b) Thai…

  20. Power requirements assessment for lunar and Mars scientific and experimental payloads

    International Nuclear Information System (INIS)

    Kotas, J.F.

    1992-01-01

    This paper reports on an evaluation of prospective scientific payloads and surface experiments for future manned missions to the moon and Mars which determined that overall mission objectives and requirements influence the selection of candidate power systems. A generic classification of these science missions was developed to examine these relationships. Scientific missions were defined for the four Synthesis Report architectures and cumulative power load and payload mix computed. Approximately half of all deployed science payloads were sited within the main surface outpost and powered by the central power generation facility. The remaining remote science payloads require either autonomous or smaller central power facilities

  1. Taking an Active Stance: How Urban Elementary Students Connect Sociocultural Experiences in Learning Science

    Science.gov (United States)

    Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy

    2017-01-01

    In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards…

  2. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  3. General experiences + race + racism = Work lives of Black faculty in postsecondary science education

    Science.gov (United States)

    Parsons, Eileen R. C.; Bulls, Domonique L.; Freeman, Tonjua B.; Butler, Malcolm B.; Atwater, Mary M.

    2016-12-01

    Existent research indicates that postsecondary Black faculty members, who are sorely underrepresented in the academy especially in STEM fields, assume essential roles; chief among these roles is diversifying higher education. Their recruitment and retention become more challenging in light of research findings on work life for postsecondary faculty. Research has shown that postsecondary faculty members in general have become increasingly stressed and job satisfaction has declined with dissatisfaction with endeavors and work overload cited as major stressors. In addition to the stresses managed by higher education faculty at large, Black faculty must navigate diversity-related challenges. Illuminating and understanding their experiences can be instrumental in lessening stress and job dissatisfaction, outcomes that facilitate recruitment and retention. This study featured the experiences and perceptions of Black faculty in science education. This study, framed by critical race theory, examines two questions: What characterizes the work life of some Black faculty members who teach, research, and serve in science education? How are race and racism present in the experiences of these postsecondary Black faculty members? A phenomenological approach to the study situates the experiences of the Black participants as valid phenomena worthy of investigation, illuminates their experiences, and seeks to retain the authenticity of their voices.

  4. OpenSesame: An Open-source, Graphical Experiment Builder for the Social Sciences

    NARCIS (Netherlands)

    Mathot, S.; Schreij, D.B.B.; Theeuwes, J.

    2012-01-01

    In the present article, we introduce OpenSesame, a graphical experiment builder for the social sciences. OpenSesame is free, open-source, and cross-platform. It features a comprehensive and intuitive graphical user interface and supports Python scripting for complex tasks. Additional functionality,

  5. Educating Laboratory Science Learners at a Distance Using Interactive Television

    Science.gov (United States)

    Reddy, Christopher

    2014-01-01

    Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…

  6. Metacognitive and multimedia support of experiments in inquiry learning for science teacher preparation

    Science.gov (United States)

    Bruckermann, Till; Aschermann, Ellen; Bresges, André; Schlüter, Kirsten

    2017-04-01

    Promoting preservice science teachers' experimentation competency is required to provide a basis for meaningful learning through experiments in schools. However, preservice teachers show difficulties when experimenting. Previous research revealed that cognitive scaffolding promotes experimentation competency by structuring the learning process, while metacognitive and multimedia support enhance reflection. However, these support measures have not yet been tested in combination. Therefore, we decided to use cognitive scaffolding to support students' experimental achievements and supplement it by metacognitive and multimedia scaffolds in the experimental groups. Our research question is to what extent supplementing cognitive support by metacognitive and multimedia scaffolding further promotes experimentation competency. The intervention has been applied in a two-factorial design to a two-month experimental course for 63 biology teacher students in their first bachelor year. Pre-post-test measured experimentation competency in a performance assessment. Preservice teachers worked in groups of four. Therefore, measurement took place at group level (N = 16). Independent observers rated preservice teachers' group performance qualitatively on a theory-based system of categories. Afterwards, experimentation competency levels led to quantitative frequency analysis. The results reveal differing gains in experimentation competency but contrary to our hypotheses. Implications of combining scaffolding measures on promoting experimentation competency are discussed.

  7. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  8. Investigating the experience: A case study of a science professional development program based on Kolb's experiential learning model

    Science.gov (United States)

    Davis, Brian L.

    Professional development for educators has been defined as the process or processes by which teachers achieve higher levels of professional competence and expand their understanding of self, role, context and career (Duke and Stiggins, 1990). Currently, there is limited research literature that examines the effect a professional development course, which uses David Kolb's experiential learning model, has on the professional growth and teaching practice of middle school science teachers. The purpose of this interpretive case study is to investigate how three science teachers who participated in the Rivers to Reef professional development course interpreted the learning experience and integrated the experience into their teaching practice. The questions guiding this research are (1) What is the relationship between a professional development course that uses an experiential learning model and science teaching practice? (2) How do the Rivers to Reef participants reflect on and describe the course as a professional growth experience? The creation of the professional development course and the framework for the study were established using David Kolb's (1975) experiential learning theory and the reflection process model designed by David Boud (1985). The participants in the study are three middle school science teachers from schools representing varied settings and socioeconomic levels in the southeastern United States. Data collected used the three-interview series interview format designed by Dolbere and Schuman (Seidman, 1998). Data was analyzed for the identification of common categories related to impact on science teaching practice and professional growth. The major finding of this study indicates the years of teaching experience of middle school science teachers significantly influences how they approach professional development, what and how they learn from the experience, and the ways in which the experience influences their teaching practices.

  9. 42 CFR 482.82 - Condition of participation: Data submission, clinical experience, and outcome requirements for re...

    Science.gov (United States)

    2010-10-01

    ..., clinical experience, and outcome requirements for re-approval of transplant centers. 482.82 Section 482.82... Hospitals Transplant Center Data Submission, Clinical Experience, and Outcome Requirements § 482.82 Condition of participation: Data submission, clinical experience, and outcome requirements for re-approval...

  10. Egg and a lot of science: an interdisciplinary experiment

    OpenAIRE

    Gayer, M. C.; Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil; T., Rodrigues D.; Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil; Denardin, E. L.G.; Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil; Roehrs, R.; Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil

    2014-01-01

    Egg and a lot of science: an interdisciplinary experimentGayer, M.C.1,2;Rodrigues, D.T.1,2; Escoto, D.F.1; Denardin, E.L.G.2, Roehrs, R.1,21Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, BrazilIntroduction: How to tell if an egg is rotten? How to calculate the volume of an egg? Because the rotten egg float? Why has this...

  11. Learning Robotics in a Science Museum Theatre Play: Investigation of Learning Outcomes, Contexts and Experiences

    Science.gov (United States)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2017-12-01

    Theatre is often introduced into science museums to enhance visitor experience. While learning in museums exhibitions received considerable research attention, learning from museum theatre has not. The goal of this exploratory study was to investigate the potential educational role of a science museum theatre play. The study aimed to investigate (1) cognitive learning outcomes of the play, (2) how these outcomes interact with different viewing contexts and (3) experiential learning outcomes through the theatrical experience. The play `Robot and I', addressing principles in robotics, was commissioned by a science museum. Data consisted of 391 questionnaires and interviews with 47 children and 20 parents. Findings indicate that explicit but not implicit learning goals were decoded successfully. There was little synergy between learning outcomes of the play and an exhibition on robotics, demonstrating the effect of two different physical contexts. Interview data revealed that prior knowledge, experience and interest played a major role in children's understanding of the play. Analysis of the theatrical experience showed that despite strong identification with the child protagonist, children often doubted the protagonist's knowledge jeopardizing integration of scientific content. The study extends the empirical knowledge and theoretical thinking on museum theatre to better support claims of its virtues and respond to their criticism.

  12. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    Science.gov (United States)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom

  13. The Use of Online Citizen-Science Projects to Provide Experiential Learning Opportunities for Nonmajor Science Students

    Directory of Open Access Journals (Sweden)

    Donna M. Kridelbaugh

    2015-11-01

    Full Text Available Citizen science is becoming even more accessible to the general public through technological advances in the development of mobile applications, facilitating information dissemination and data collection. With the advent of “big data,” many citizen-science projects designed to help researchers sift through piles of research data now exist entirely online, either in the form of playing a game or via other digital avenues. Recent trends in citizen science have also focused on “crowdsourcing” solutions from the general public to help solve societal issues, often requiring nothing more than brainstorming and a computer to submit ideas. Online citizen science thus provides an excellent platform to expand the accessibility of experiential learning opportunities for a broad range of nonmajor science students at institutions with limited resources (e.g., community colleges. I created an activity for a general microbiology lecture to engage students in hands-on experiences via participation in online citizen-science projects. The objectives of the assignment were for students to: 1 understand that everyone can be a scientist; 2 learn to be creative and innovative in designing solutions to health and science challenges; and 3 further practice science communication skills with a written report. This activity is designed for introductory science courses with nonmajor science students who have limited opportunities to participate in undergraduate research experiences.

  14. Understanding the Educational Experiences of Science Teachers in a Five-Year Teacher Education Program: A Phenomenological Study

    Science.gov (United States)

    Srivastava, Nitin

    This qualitative study provides an overview of educational experiences of six in-service and three pre-service secondary science teachers in the Benedum Collaborative Five-Year Teacher Education Program at a land-grant university. The researcher interviewed secondary science teachers on the experiences they found meaningful in various program components that influenced their teacher identity, beliefs about science pedagogy, and their sense of preparedness for teaching. Document analysis of teachers' journals and lesson plans supplemented the qualitative data in addition to the researcher's role and knowledge as an outsider (non-Benedum graduate) and insider (facilitator and instructor in the technology integration based classes for one year) of the Benedum Collaborative Five-Year Teacher Education Program. Findings also supported the Holmes (1986) and Goodlad (1990) views for extended field experiences and "collaborative culture" in teacher education for well-prepared teachers.

  15. The Earth System Science Education Experience: Personal Vignettes

    Science.gov (United States)

    Ruzek, M.; Aron, J.; Maranto, G.; Reider, D.; Wake, C.

    2006-12-01

    Colleges and universities across the country and around the world have embraced the Earth system approach to gain deeper understanding of the interrelationships of processes that define the home planet. The Design Guide for Undergraduate Earth System Science Education, a product of the NASA/USRA Earth System Science Education for the 21st Century Program (ESSE 21), represents a synthesis of community understanding of the content and process of teaching and learning about Earth as a system. The web-based Design Guide serves faculty from multiple disciplines who wish to adopt an ESS approach in their own courses or programs. Illustrating the nine topical sections of the Design Guide are a series of short vignettes telling the story of how ESS is being used in the classroom, how ESS has contributed to institutional change and personal professional development, how ESS is being implemented at minority serving institutions, and the impact of ESS education on student research. Most vignettes are written from a personal perspective and reflect a direct experience with Earth System Science Education. Over forty vignettes have been assembled aiming to put a face on the results of the systemic reform efforts of the past fifteen years of the ESSE programs, documenting the sometimes intangible process of education reform to be shared with those seeking examples of ESS education. The vignettes are a vital complement to the Design Guide sections, and are also available as a separate collection on the Design Guide and ESSE 21 web sites.

  16. Neutral Beam Injection Requirements and Design Issues for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    Kugel, H.W.; Neilson, H.; Reiersen, W.; Zarnstorff, M.

    2002-01-01

    The National Compact Stellarator Experiment (NCSX) will require 6 MW of 50 keV neutral beam injection (NBI) with initial pulse lengths of 500 msec and upgradeable to pulse lengths of 1.5 sec. This paper discusses the NCSX NBI requirements and design issues, and shows how these are provided by the candidate PBX-M [Princeton Beta Experiment-Modification] NBI system

  17. The effects of experience and attrition for novice high-school science and mathematics teachers.

    Science.gov (United States)

    Henry, Gary T; Fortner, C Kevin; Bastian, Kevin C

    2012-03-02

    Because of the current high proportion of novice high-school teachers, many students' mastery of science and mathematics depends on the effectiveness of early-career teachers. In this study, which used value-added models to analyze high-school teachers' effectiveness in raising test scores on 1.05 million end-of-course exams, we found that the effectiveness of high-school science and mathematics teachers increased substantially with experience but exhibited diminishing rates of return by their fourth year; that teachers of algebra 1, algebra 2, biology, and physical science who continued to teach for at least 5 years were more effective as novice teachers than those who left the profession earlier; and that novice teachers of physics, chemistry, physical science, geometry, and biology exhibited steeper growth in effectiveness than did novice non-science, technology, engineering, and mathematics teachers.

  18. Can a Rabbit Be a Scientist? Stimulating Philosophical Dialogue in Science Classes

    Science.gov (United States)

    Dunlop, Lynda; de Schrijver, Jelle

    2018-01-01

    Philosophical dialogue requires an approach to teaching and learning in science that is focused on problem posing and provides space for meaning making, finding new ways of thinking and understanding and for linking science with broader human experiences. This article explores the role that philosophical dialogue can play in science lessons and…

  19. How Historical Experiments Can Improve Scientific Knowledge and Science Education: The Cases of Boiling Water and Electrochemistry

    Science.gov (United States)

    Chang, Hasok

    2011-01-01

    I advance some novel arguments for the use of historical experiments in science education. After distinguishing three different types of historical experiments and their general purposes, I define "complementary experiments", which can recover lost scientific knowledge and extend what has been recovered. Complementary experiments can help science…

  20. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  1. Undergraduate Science Research: A Comparison of Influences and Experiences between Premed and Non–Premed Students

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non–premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non–premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non–premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non–premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school. PMID:21633068

  2. Undergraduate science research: a comparison of influences and experiences between premed and non-premed students.

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non-premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non-premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non-premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non-premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school.

  3. Middle Years Science Teachers Voice Their First Experiences with Interactive Whiteboard Technology

    Science.gov (United States)

    Gadbois, Shannon A.; Haverstock, Nicole

    2012-01-01

    Among new technologies, interactive whiteboards (IWBs) particularly seem to engage students and offer entertainment value that may make them highly beneficial for learning. This study examined 10 Grade 6 teachers' initial experiences and uses of IWBs for teaching science. Through interviews, classroom visits, and field notes, the outcomes…

  4. Capacitor requirements for controlled thermonuclear experiments and reactors

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Hoffman, P.S.

    1975-01-01

    Future controlled thermonuclear experiments as well as controlled thermonuclear reactors will require substantial numbers of capacitors. The demands on these units are likely to be quite severe and quite different from the normal demands placed on either present energy storage capacitors or present power factor correction capacitors. It is unlikely that these two types will suffice for all necessary Controlled Thermonuclear Research (CTR) applications. The types of capacitors required for the various CTR operating conditions are enumerated. Factors that influence the life, cost and operating abilities of these types of capacitors are discussed. The problems of capacitors in a radiation environment are considered. Areas are defined where future research is needed. Some directions that this research should take are suggested. (U.S.)

  5. Capacitor requirements for controlled thermonuclear experiments and reactors

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Hoffman, P.S.

    1975-01-01

    Future controlled thermonuclear experiments as well as controlled thermonuclear reactors will require substantial numbers of capacitors. The demands on these units are likely to be quite severe and quite different from the normal demands placed on either present energy storage capacitors or present power factor correction capacitors. It is unlikely that these two types will suffice for all necessary Controlled Thermonuclear Research (CTR) applications. The types of capacitors required for the various CTR operating conditions are enumerated. Factors that influence the life, cost and operating abilities of these types of capacitors are discussed. The problems of capacitors in a radiation environment are considered. Areas are defined where future research is needed. Some directions that this research should take are suggested

  6. The influence of authentic scientific research experiences on teachers' conceptions of the nature of science (NOS) and their NOS teaching practices

    Science.gov (United States)

    Moriarty, Meghan A.

    This study explored the influence of teachers' authentic scientific research experiences (ASREs) on teachers' conceptions of the nature of science (NOS) and teachers' NOS instruction. Twelve high school biology teachers participated in this study. Six of the participants had authentic scientific research experience (ASRE) and six had not participated in authentic scientific research. Data included background surveys, modified Views of the Nature of Science (VNOS) questionnaires, interviews, and teaching observations. Data was coded based on the eight NOS understandings outlined in 2013 in the Next Generation Science Standards (NGSS). Evidence from this study indicates participating in authentic scientific research as a member of a scientific community has dual benefits of enabling high school science teachers with informed understandings of the NOS and positioning them to teach with the NOS. However, these benefits do not always result from an ASRE. If the nature of the ASRE is limited, then it may limit teachers' NOS understandings and their NOS teaching practices. The results of this study suggest that participation in ASREs may be one way to improve teachers' NOS understandings and teaching practices if the experiences themselves offer a comprehensive view of the NOS. Because ASREs and other science learning experiences do not always offer such experiences, pre-service teacher education and professional development opportunities may engage science teachers in two ways: (1) becoming part of a scientific community may enable them to teach with NOS and (2) being reflective about what being a scientist means may improve teachers' NOS understandings and better position them to teach about NOS.. Keywords: nature of science, authentic scientific research experiences, Next Generation Science Standards, teaching about NOS, teaching with NOS.

  7. Cultivation of science identity through authentic science in an urban high school classroom

    Science.gov (United States)

    Chapman, Angela; Feldman, Allan

    2017-06-01

    This study examined how a contextually based authentic science experience affected the science identities of urban high school students who have been marginalized during their K-12 science education. We examined students' perceptions of the intervention as an authentic science experience, how the experience influenced their science identity, as well as their perceptions about who can do science. We found that the students believed the experience to be one of authentic science, that their science identity was positively influenced by participation in the experience, and that they demonstrated a shift in perceptions from stereotypical to more diverse views of scientists. Implications for science education are discussed.

  8. Expanding Computer Science Education in Schools: Understanding Teacher Experiences and Challenges

    Science.gov (United States)

    Yadav, Aman; Gretter, Sarah; Hambrusch, Susanne; Sands, Phil

    2017-01-01

    The increased push for teaching computer science (CS) in schools in the United States requires training a large number of new K-12 teachers. The current efforts to increase the number of CS teachers have predominantly focused on training teachers from other content areas. In order to support these beginning CS teachers, we need to better…

  9. Troubled Waters: where Multiple Streams of Inequality Converge in the Math and Science Experiences of Nonprivileged Girls

    Science.gov (United States)

    Parrott, Laurel; Spatig, Linda; Kusimo, Patricia S.; Carter, Carolyn C.; Keyes, Marian

    Water is often hardest to navigate at the confluence of individual streams. As they experience math and science, nonprivileged girls maneuver through roiling waters where the streams of gender, ethnicity, poverty, place, and teaching practices converge. Just as waters of separate streams blend, these issues - too often considered separate factors - become blended and difficult to isolate, and the resulting turbulence produces a bumpy ride. We draw on 3 years of qualitative data collected as part of an intervention program to explore the math and science experiences and perceptions of a group of ethnically diverse, low socioeconomic status rural and urban adolescent Appalachian girls. After describing program and community contexts, we explore "opportunity to leant" issues - specifically, expectations, access to content, and support networks - and examine their schooling experiences against visions of science and math reform and pressures for accountability. Data are discussed within a framework of critical educational theory.

  10. TEACHERS’ EXPERIENCES IN INCORPORATING STUDENTS’ FUNDS OF KNOWLEDGE TO PROMOTE THE LEARNING OF SCIENCE

    Directory of Open Access Journals (Sweden)

    Rohandi Rohandi

    2014-10-01

    Full Text Available Abstrak: Salah satu bidang kajian menarik bagi pendidik bidang sains di negara berkembang dan dalam budaya timur (non-Western adalah hakikat interaksi antara praktik tradisi dan keyakinan yang ada di masyarakat tempat siswa tinggal dan sains yang diajarkan di sekolah. Penelitian ini bertujuan untuk mempertimbangkan isu-isu budaya dalam konteks pembelajaran sains di Indonesia. Keterkaitan antara budaya siswa, pengalaman siswa di rumah, dan pengalaman pengetahuan siswa yang diidentifikasi sebagai funds of knowledge, telah diintegrasikan ke dalam pembelajaran sains. Penelitian ini berlangsung di dua SMP di Indonesia. Dua guru dan 173 siswa (94 laki-laki dan 79 perempuan berpartisipasi dalam penelitian ini. Hasil penelitian ini menunjukan bahwa kecocokan antara pengalaman hidup siswa, tingkat pengetahuan, dan konsep ilmu pengetahuan dapat menjadi faktor utama dalam menjaga keberlanjutan pembelajaran ilmiah pada kelas sains. Hal ini penting untuk mengembangkan pengajaran dan pembelajaran sains yang menekankan pada penggabungan pengetahuan siswa, terutama dalam menyajikan ilmu yang relevan dengan siswa kehidupan sehari-hari. Kata Kunci: funds of knowledge, sekolah menengah, pembelajaran sains PENGALAMAN GURU DALAM MENGINTEGRASIKAN PENGALAMAN BUDAYA SISWA UNTUK MENINGKATKAN BELAJAR SAIN Abstract: One area of interest for science educators in developing countries and in non-Western settings is the nature of interaction between traditional practices and beliefs existing in the communities in which students live and the science taught in schools. The purpose of this study is to consider cultural issues in the context of the teaching of science in Indonesia. The connection between students’ culture, home experiences and experiential knowledge of students which is identified as funds of knowledge have been incorporated into learning science. This study took place within two sub-urban Junior High Schools in Indonesia. Two teachers and 173 students (94

  11. The Lived Experience of Applied Science Graduates Who Complete the Applied Baccalaureate

    Science.gov (United States)

    Kujawa, Tricia A.

    2012-01-01

    The enrollment and transfer behaviors of college students are diverse. As a result college students travel various pathways to the baccalaureate degree. The purpose of this qualitative study was to better understand the lived experience of students who entered higher education through an associate of applied science (AAS) program and then…

  12. Delivering effective science communication: advice from a professional science communicator.

    Science.gov (United States)

    Illingworth, Sam

    2017-10-01

    Science communication is becoming ever more prevalent, with more and more scientists expected to not only communicate their research to a wider public, but to do so in an innovative and engaging manner. Given the other commitments that researchers and academics are required to fulfil as part of their workload models, it is unfair to be expect them to also instantly produce effective science communication events and activities. However, by thinking carefully about what it is that needs to be communicated, and why this is being done, it is possible to develop high-quality activities that are of benefit to both the audience and the communicator(s). In this paper, I present some practical advice for developing, delivering and evaluating effective science communication initiatives, based on over a decade of experience as being a professional science communicator. I provide advice regarding event logistics, suggestions on how to successfully market and advertise your science communication initiatives, and recommendations for establishing effective branding and legacy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Second-Order Science of Interdisciplinary Research

    DEFF Research Database (Denmark)

    Alrøe, Hugo Fjelsted; Noe, Egon

    2014-01-01

    require and challenge interdisciplinarity. Problem: The conventional methods of interdisciplinary research fall short in the case of wicked problems because they remain first-order science. Our aim is to present workable methods and research designs for doing second-order science in domains where...... there are many different scientific knowledges on any complex problem. Method: We synthesize and elaborate a framework for second-order science in interdisciplinary research based on a number of earlier publications, experiences from large interdisciplinary research projects, and a perspectivist theory...... of science. Results: The second-order polyocular framework for interdisciplinary research is characterized by five principles. Second-order science of interdisciplinary research must: 1. draw on the observations of first-order perspectives, 2. address a shared dynamical object, 3. establish a shared problem...

  14. Liberal Studies in Science--A Successful Experiment

    Science.gov (United States)

    Jevons, F. R.

    1970-01-01

    Describes the job placement success experienced by graduates of the Science Greats Course at the University of Manchester. Discusses the course content which centers on the social relations of science. Since nearly half the course involves science content, the author discusses the science background necessary for enrollees. Presents a personal…

  15. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    Science.gov (United States)

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  16. Artificial climate experiment facility in Institute for Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Shunichi [Department of Radioecology, Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    1999-03-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). `Yamase` condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  17. Artificial climate experiment facility in Institute for Environmental Sciences

    International Nuclear Information System (INIS)

    Hisamatsu, Shunichi

    1999-01-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). 'Yamase' condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  18. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    Science.gov (United States)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  19. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    Science.gov (United States)

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  20. Transforming beliefs and practices: Elementary teacher candidates' development through shared authentic teaching and reflection experiences within an innovative science methods course

    Science.gov (United States)

    Naidoo, Kara

    Elementary teachers are criticized for failing to incorporate meaningful science instruction in their classrooms or avoiding science instruction altogether. The lack of adequate science instruction in elementary schools is partially attributed to teacher candidates' anxiety, poor content and pedagogical preparation, and low science teaching self-efficacy. The central premise of this study was that many of these issues could be alleviated through course modifications designed to address these issues. The design tested and presented here provided prospective elementary educators' authentic science teaching experiences with elementary students in a low-stakes environment with the collaboration of peers and science teacher educators. The process of comprehensive reflection was developed for and tested in this study. Comprehensive reflection is individual and collective, written and set in dialogic discourse, focused on past and future behavior, and utilizes video recordings from shared teaching experiences. To test the central premise, an innovative science methods course was designed, implemented and evaluated using a one-group mixed-method design. The focus of the analysis was on changes in self-efficacy, identity and teaching practices as a function of authentic science teaching experiences and comprehensive reflection. The quantitative tools for analysis were t-tests and repeated-measures ANOVA on the Science Teaching Efficacy Belief Instrument-B (STEBI-B) and weekly self-rating on confidence as a learner and a teacher of science, respectively. The tools used to analyze qualitative data included thematic analysis and interpretative phenomenological analysis. In addition, theoretically grounded tools were developed and used in a case study to determine the ways one prospective educator's science teaching identity was influenced by experiences in the course. The innovative course structure led the development of teacher candidates' science teaching identity

  1. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  2. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-02-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by now many universities and colleges have courses that incorporate science fiction stories or film. The intent appears to be to a) increase student interest in physics, b) increase the imaginative grasp of the student, and c) enable a clearer understanding of physics concepts. Reports on these experiments, from Freedman and Little's classic 1980 paper to more recent work like that of Dubeck et al.,2 Dark,3 and Smith,4 indicate that such innovative approaches do work. I was curious as to whether a combination of science fiction and science fact (in the form of a science news article) might enhance the benefits of including science fiction. Below I describe how I used a science fiction story along with a science article on a related theme to pique the interest of students in a new and exciting area of research that was nevertheless connected to the course material.

  3. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  4. Science Diplomacy: French Experience

    Directory of Open Access Journals (Sweden)

    Alexei V. Shestopal

    2016-01-01

    Full Text Available The article deals with the formulation in France in the early twenty-first century of a new kind of diplomacy - science diplomacy. It studies the reasons for this process and its problems. On the one hand, the French foreign policy doctrine presupposes an ability to exercise certain influence on its international partners. However, its goals in this area are reduced to mere survival under conditions dictated by other countries. Modern trends in the world of science, which lead to integration, force to reconsider the attitude towards staff training, to research itself, and to its place and role in politics and diplomacy. However, an achievement of the French political class is an understanding of the main aspects of what is happening. This understanding leads to the search for ways to adapt to the new situation. At the same time, diplomats can operate only with those resources that are available to them. Competition with the US, China and other countries for scientific personnel and achievements cannot be won by diplomatic means alone, without backing by appropriate legal, economic and other efforts which provide favorable conditions for winning the competition. The main causes of France's unfavorable position in the struggle for an independent science are economic and political. It is they that lead to conditions, which prohibit French scientists to live up to their potential at home.

  5. Big questions, big science: meeting the challenges of global ecology.

    Science.gov (United States)

    Schimel, David; Keller, Michael

    2015-04-01

    Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects.

  6. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  7. Glovebox and Experiment Safety

    Science.gov (United States)

    Maas, Gerard

    2005-12-01

    Human spaceflight hardware and operations must comply with NSTS 1700.7. This paper discusses how a glovebox can help.A short layout is given on the process according NSTS/ISS 13830, explaining the responsibility of the payload organization, the approval authority of the PSRP and the defined review phases (0 till III).Amongst others, the following requirement has to be met:"200.1 Design to Tolerate Failures. Failure tolerance is the basic safety requirement that shall be used to control most payload hazards. The payload must tolerate a minimum number of credible failures and/or operator errors determined by the hazard level. This criterion applies when the loss of a function or the inadvertent occurrence of a function results in a hazardous event.200.1a Critical Hazards. Critical hazards shall be controlled such that no single failure or operator error can result in damage to STS/ISS equipment, a nondisabling personnel injury, or the use of unscheduled safing procedures that affect operations of the Orbiter/ISS or another payload.200.1b Catastrophic Hazards. Catastrophic hazards shall be controlled such that no combination of two failures or operator errors can result in the potential for a disabling or fatal personnel injury or loss of the Orbiter/ISS, ground facilities or STS/ISS equipment."For experiments in material science, biological science and life science that require real time operator manipulation, the above requirement may be hard or impossible to meet. Especially if the experiment contains substances that are considered hazardous when released into the habitable environment. In this case operation of the experiment in a glovebox can help to comply.A glovebox provides containment of the experiment and at the same time allows manipulation and visibility to the experiment.The containment inside the glovebox provides failure tolerance because the glovebox uses a negative pressure inside the working volume (WV). The level of failure tolerance is dependent of

  8. Science-Driven Computing: NERSC's Plan for 2006-2010

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.; Banda,Michael J.; Bethel, E. Wes; Craw, James M.; Fortney, William J.; Hules,John A.; Meyer, Nancy L.; Meza, Juan C.; Ng, Esmond G.; Rippe, Lynn E.; Saphir, William C.; Verdier, Francesca; Walter, Howard A.; Yelick,Katherine A.

    2005-05-16

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise of the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.

  9. A Phenomenological Research Study of the Experience of Teachers in the Virgin Islands Teacher Enhancement in Mathematics and Science Project

    Science.gov (United States)

    Thurland, Karen C.

    The purpose of conducting this study was to describe the experience of elementary teachers in a mathematics and science staff development project in the U.S. Virgin Islands. The focus of this study was to describe the meaning teachers attribute to their experience in this three year project, in which many of the national mathematics and science reform efforts were implemented. A phenomenological approach was used in order to develop a complete picture of the teachers' experiences. Data collection consisted of interviews with seven elementary teachers. The data were subjective descriptions of the teachers pertaining to the initial summer institute, the follow-up sessions, and the new innovative methods. The transcendental phenomenological model was used. The textural and structural themes included enhanced learning and changes in teaching practice, and interactions with colleagues. From these themes, individual and composite textual descriptions of the experience of the teacher participants were developed. The synthesis of those descriptions illuminated the meanings and essence of their lived experience. The findings indicate that the essence of the experience was the development of a positive attitude towards the teaching of math and science. The teachers gained confidence in their ability to motivate students with the inquiry method and taught more math and science. The implications for the Virgin Islands Department of Education include establishing a partnership with the local university to offer staff development training in mathematics and science and to conduct evaluations of its training efforts.

  10. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    Science.gov (United States)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  11. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  12. Some comments on the requirement for nuclear data in the earth sciences

    International Nuclear Information System (INIS)

    Clayton, C.G.; Patrick, B.H.; Sanders, L.G.; Sowerby, M.G.

    1984-01-01

    The increasing application of nuclear techniques in the earth sciences, and especially the use of particle tracking codes, has focussed attention on the need for more accurate nuclear data and for data which particularly refer to elements of interest in the analysis of rocks and ores. The present paper gives a brief summary of the current and potential requirement for nuclear data in nuclear geophysics and an indication of several important areas where better data would be valuable. (author)

  13. Wow, My Science Teacher Does Real Research! Engaging and Motivating Students Using Experiences from the Field

    Science.gov (United States)

    Scott, C.

    2013-12-01

    Students respond to personal connections. When K-12 science teachers are able to participate as field assistants on research projects, their students can benefit greatly from the stories, pictures, and video transmitted or brought back from the field. Teachers can translate and tailor their learning while in the field to the level of their students. Students are ';hooked' into science content by seeing their own teacher out there actually ';doing' science. The teacher is able to provide a direct content connection for the student, an avenue for understanding why ';learning this' is relevant and important. This presentation provides a case for why science teachers and researchers should collaborate as much as possible. The NSF funded PolarTREC program (Teachers and Researchers Exploring and Collaborating) is an excellent example of how to make this collaboration work. The presentation will also provide a look into how teachers can make an effective connection for their students between field science and classroom learning. Alaskan secondary science teacher Carol Scott spent a month at the Kevo Research Station in northern Finland in May/June 2013 as a PolarTREC teacher, and is translating this experience for students. She has also worked on an NSF Research Experience for Teachers grant in Prince William Sound, AK, and has successfully used this work to engage students in the classroom.

  14. Commonly Shared Foundation of Mathematics, Information Science, Natural Science, Social Science, and Theology

    OpenAIRE

    Wayne, James J.

    2014-01-01

    Through a simple thought experiment, this paper shows that there must be a shared foundation of mathematics, information science, natural science, social science, and theology. The thought experiment is to ask a volunteer to write down an arbitrary real number between 0 and 1 with many digits. For example, 0.19823765010367129462…. would be one of such numbers. Then we analyze this experiment result by asking five simple questions: Is the real number a random real? Can the observed real numbe...

  15. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    Science.gov (United States)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  16. The National Eclipse Weather Experiment: use and evaluation of a citizen science tool for schools outreach.

    Science.gov (United States)

    Portas, Antonio M; Barnard, Luke; Scott, Chris; Harrison, R Giles

    2016-09-28

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  17. Detector Control System for an LHC experiment - User Requirements Document

    CERN Document Server

    CERN. Geneva

    1997-01-01

    The purpose of this document is to provide the user requirements for a detector control system kernel for the LHC experiments following the ESA standard PSS-05 [1]. The first issue will be used to provide the basis for an evaluation of possible development philosophies for a kernel DCS. As such it will cover all the major functionality but only to a level of detail sufficient for such an evaluation to be performed. Many of the requirements are therefore intentionally high level and generic, and are meant to outline the functionality that would be required of the kernel DCS, but not yet to the level of the detail required for implementation. The document is also written in a generic fashion in order not to rule out any implementation technology.

  18. Applying new science leadership theory in planning an international nursing student practice experience in Nepal.

    Science.gov (United States)

    Doyle, Rose Marie

    2004-09-01

    Planning an international practice experience for nursing students is a challenging, but rewarding, opportunity. Kwantlen University College faculty members' experience of planning for 8 Bachelor of Science in Nursing students to study abroad was no exception. Faculty members' and students' interest prompted a request for a placement in Nepal. The faculty members involved in the planning were dedicated to using a process that would enable them to remain true to the program philosophy and theoretical underpinnings throughout the entire experience, from the planning phase to the follow-up presentation. Using Wheatley's theory, the students and faculty members reexamined their personal leadership styles to ensure they remained relationship focused, rather than task focused. Wheatley maintained that because the potentiality lies in building strong relationships, it is important to support the creative power that lies in those involved in a project. This article describes new science leadership and relates it to the planning phase for the practice experience in Nepal. Then, reflections on how the philosophy of the program may have influenced the experience are shared. Finally, critical reflection on using this theory in nursing education is presented.

  19. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  20. Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1

    Directory of Open Access Journals (Sweden)

    Daniel S Katz

    2014-07-01

    Full Text Available Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1 was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54 of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software.

  1. Elementary student teachers' science content representations

    Science.gov (United States)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  2. Publication ethics from the perspective of PhD students of health sciences: a limited experience.

    Science.gov (United States)

    Arda, Berna

    2012-06-01

    Publication ethics, an important subtopic of science ethics, deals with determination of the misconducts of science in performing research or in the dissemination of ideas, data and products. Science, the main features of which are secure, reliable and ethically obtained data, plays a major role in shaping the society. As long as science maintains its quality by being based on reliable and ethically obtained data, it will be possible to maintain its role in shaping the society. This article is devoted to the presentation of opinions of PhD candidate students in health sciences in Ankara concerning publication ethics. The data obtained from 143 PhD students from the fields of medicine, dentistry, pharmacy and veterinary reveal limited but unique experiences. It also shows that plagiarism is one of the worst issues in the publication ethics from the perspective of these young academics.

  3. Relationships Between the Way Students Are Assessed in Science Classrooms and Science Achievement Across Canada

    Science.gov (United States)

    Chu, Man-Wai; Fung, Karen

    2018-04-01

    Canadian students experience many different assessments throughout their schooling (O'Connor 2011). There are many benefits to using a variety of assessment types, item formats, and science-based performance tasks in the classroom to measure the many dimensions of science education. Although using a variety of assessments is beneficial, it is unclear exactly what types, format, and tasks are used in Canadian science classrooms. Additionally, since assessments are often administered to help improve student learning, this study identified assessments that may improve student learning as measured using achievement scores on a standardized test. Secondary analyses of the students' and teachers' responses to the questionnaire items asked in the Pan-Canadian Assessment Program were performed. The results of the hierarchical linear modeling analyses indicated that both students and teachers identified teacher-developed classroom tests or quizzes as the most common types of assessments used. Although this ranking was similar across the country, statistically significant differences in terms of the assessments that are used in science classrooms among the provinces were also identified. The investigation of which assessment best predicted student achievement scores indicated that minds-on science performance-based tasks significantly explained 4.21% of the variance in student scores. However, mixed results were observed between the student and teacher responses towards tasks that required students to choose their own investigation and design their own experience or investigation. Additionally, teachers that indicated that they conducted more demonstrations of an experiment or investigation resulted in students with lower scores.

  4. Can that be right? essays on experiment, evidence, and science

    CERN Document Server

    Franklin, Allan

    1999-01-01

    In this collection of essays Allan Franklin defends the view that science provides us with knowledge about the world which is based on experimental evidence and on reasoned and critical discussion. In short, he argues that science is a reasonable enterprise. He begins with detailed studies of four episodes from the history of modern physics: (1) the early attempts to detect gravity waves, (2) how the physics community decided that a proposed new elementary particle, 17-keV neutrino, did not exist, (3) a sequence of experiments on K meson decay, and (4) the origins of the Fifth Force hypothesis, a proposed modification of Newton's Law of Universal Gravitation. The case studies are then used to examine issues such as how discord between experimental results is resolved, calibration of an experimental apparatus and its legitimate use in validating an experimental result, and how experimental results provide reasonable grounds for belief in both the truth of physical theories and in the existence of the entities ...

  5. Brownfield Action: An education through an environmental science simulation experience for undergraduates

    Science.gov (United States)

    Kelsey, Ryan Daniel

    Brownfield Action is a computer simulation experience used by undergraduates in an Introduction to Environmental Science course for non-science majors at Barnard College. Students play the role of environmental consultants given the semester-long task of investigating a potentially contaminated landsite in a simulated town. The simulation serves as the integration mechanism for the entire course. The project is a collaboration between Professor Bower and the Columbia University Center for New Media Teaching and Learning (CCNMTL). This study chronicles the discovery, design, development, implementation, and evaluation of this project over its four-year history from prototype to full-fledged semester-long integrated lecture and lab experience. The complete project history serves as a model for the development of best practices in contributing to the field of educational technology in higher education through the study of fully designed and implemented projects in real classrooms. Recommendations from the project focus on linking the laboratory and lecture portions of a course, the use of simulations (especially for novice students), instructor adaptation to the use of technology, general educational technology project development, and design research, among others. Findings from the study also emphasize the uniqueness of individual student's growth through the experience, and the depth of understanding that can be gained from embracing the complexity of studying sophisticated learning environments in real classrooms.

  6. I'm Not Sure What to Do! Learning Experiences in the Humanities and Social Sciences

    Science.gov (United States)

    Maher, JaneMaree; Mitchell, Jennifer

    2010-01-01

    This article reports on a focus group study of student experience in a large humanities and social science faculty in Australia. The study had two purposes: the first was to examine student study/work/life balance issues, and the second purpose was to investigate their experiences of study, workloads and assessment. This article reports on the…

  7. Neutral Beam Injection Requirements and Design Issues for the National Compact Stellarator Experiment; TOPICAL

    International Nuclear Information System (INIS)

    H.W. Kugel; H. Neilson; W. Reiersen; M. Zarnstorff

    2002-01-01

    The National Compact Stellarator Experiment (NCSX) will require 6 MW of 50 keV neutral beam injection (NBI) with initial pulse lengths of 500 msec and upgradeable to pulse lengths of 1.5 sec. This paper discusses the NCSX NBI requirements and design issues, and shows how these are provided by the candidate PBX-M[Princeton Beta Experiment-Modification] NBI system

  8. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)

    Science.gov (United States)

    Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.

    2018-05-01

    Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.

  9. Formative experience mediated by virtual learning environment: science and mathematics teachers’ education in the amazon region

    Directory of Open Access Journals (Sweden)

    France Fraiha Martins

    2012-06-01

    Full Text Available This article reports results of a qualitative research, in the narrative modality. We investigated the formative experiences of teachers of Mathematics and Science through distance learning in the Amazon region, experienced in a course through the Virtual Learning Environment (VLE. We investigated under what conditions this education experience was a catalyst for teachers’ reflections on the Amazonian context of teaching science and mathematics. By using Discursive Textual Analysis some categories e merged: graduating in the Amazon region: obstacles and confrontations; AVA and Technologies: meaning (s of the education experience and the impact of the experience in the perceptions of teachers’ practices and training. The analysis of the results reveals the obstacles to the training in this context. The dynamics experienced by the use of VLE technologies and of the teachers reverberated methodological insights regarding the use of technology in teaching practices, indicating also the VLE as an alternative of (self education on the Amazon reality

  10. Space life sciences perspectives for Space Station Freedom

    Science.gov (United States)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  11. Improved Management of Water and Natural Resources Requires Open, Cognizant, Adaptive Science and Policy

    Science.gov (United States)

    Glynn, P. D.; Voinov, A. A.; Shapiro, C. D.; Jenni, K. E.

    2017-12-01

    Water issues impact the availability and use of other natural resources as well as environmental conditions. In an increasingly populated hyper-connected world, water issues are increasingly "wicked problems": complex problems with high uncertainties and no independent observers. Water is essential to life, and life affects water quality and availability. Scientists, managers, decision-makers, and the greater public all have a stake in improving the management of water resources. In turn, they are part of the systems that they are studying, deciding on, affecting, or trying to improve. Governance of water issues requires greater accessibility, traceability, and accountability (ATA) in science and policy. Water-related studies and decision-making need transdisciplinary science, inclusive participatory processes, and consideration and acceptance of multiple perspectives. Biases, Beliefs, Heuristics, and Values (BBHV) shape much of our perceptions and knowledge, and inevitably, affect both science and policy. Understanding the role of BBHV is critical to (1) understanding individual and group judgments and choices, (2) recognizing potential differences between societal "wants" and societal "needs", and (3) identifying "winners" and "losers" of policy decisions. Societal acceptance of proposed policies and actions can be fostered by enhancing participatory processes and by providing greater ATA in science, in policy, and in development of the laws, rules, and traditions that constrain decision-making. An adaptive science-infused governance framework is proposed that seeks greater cognizance of the role of BBHV in shaping science and policy choices and decisions, and that also seeks "Open Traceable Accountable Policy" to complement "Open Science". We discuss the limitations of the governance that we suggest, as well as tools and approaches to help implementation.

  12. Toward a Big Data Science: A challenge of "Science Cloud"

    Science.gov (United States)

    Murata, Ken T.; Watanabe, Hidenobu

    2013-04-01

    During these 50 years, along with appearance and development of high-performance computers (and super-computers), numerical simulation is considered to be a third methodology for science, following theoretical (first) and experimental and/or observational (second) approaches. The variety of data yielded by the second approaches has been getting more and more. It is due to the progress of technologies of experiments and observations. The amount of the data generated by the third methodologies has been getting larger and larger. It is because of tremendous development and programming techniques of super computers. Most of the data files created by both experiments/observations and numerical simulations are saved in digital formats and analyzed on computers. The researchers (domain experts) are interested in not only how to make experiments and/or observations or perform numerical simulations, but what information (new findings) to extract from the data. However, data does not usually tell anything about the science; sciences are implicitly hidden in the data. Researchers have to extract information to find new sciences from the data files. This is a basic concept of data intensive (data oriented) science for Big Data. As the scales of experiments and/or observations and numerical simulations get larger, new techniques and facilities are required to extract information from a large amount of data files. The technique is called as informatics as a fourth methodology for new sciences. Any methodologies must work on their facilities: for example, space environment are observed via spacecraft and numerical simulations are performed on super-computers, respectively in space science. The facility of the informatics, which deals with large-scale data, is a computational cloud system for science. This paper is to propose a cloud system for informatics, which has been developed at NICT (National Institute of Information and Communications Technology), Japan. The NICT science

  13. Teacher Learning from Girls' Informal Science Experiences

    Science.gov (United States)

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  14. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  15. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    Science.gov (United States)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  16. Professionalism--a required CLS/CLT curricular component.

    Science.gov (United States)

    Latshaw, Sandra; Honeycutt, Karen

    2010-01-01

    Determine the impact of requiring Clinical Laboratory Science (CLS) students to participate in approved professionalism activities as part of a mandatory management course. Quasi-experimental, case study reporting qualitative results of 25 CLS students. During the admission interview, students complete a written response to questions about their perceptions related to professionalism. During the clinical educational year, students are required to complete approved professionalism activities as part of a management course. At the end of the course, students write a reflective paper focusing on their professional activities and how these experiences will influence their future professional practice. Overall themes of student reflections are provided. University of Nebraska Medical Center (UNMC) CLS Program in Omaha. After participating in a mandatory professionalism curricular component requiring active student participation in professional activities, student reflective writings provide evidence this is one successful approach to nurture professional identity within future Clinical Laboratory Science/Clinical Laboratory Technician (CLS/CLT) practitioners.

  17. Japanese Family and Consumer Sciences Teachers' Lived Experiences: Self-Disclosure in the Classroom

    Science.gov (United States)

    Katadae, Ayako

    2008-01-01

    The purpose of this phenomenological study was to understand the lived experiences of Japanese family and consumer sciences teachers' self-disclosure in the classroom. Twelve secondary school teachers were interviewed, beginning with this primary question, "Think about a specific time and space when you self-disclosed in the classroom. Would you…

  18. Life Sciences Data Archive (LSDA)

    Science.gov (United States)

    Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.

    2008-01-01

    In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.

  19. Science, technology and mission design for LATOR experiment

    Science.gov (United States)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.

    2017-11-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor {30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.

  20. Research priorities for grassland science: the need of long term integrated experiments networks

    Directory of Open Access Journals (Sweden)

    G. Lemaire

    2007-07-01

    Full Text Available Grasslands have to be considered not only as a mean for providing foods for domestic herbivore but also as an important biome of terrestrial biosphere. This function of grasslands as an active component of our environment requires specific studies on the role and impact of this ecosystem on soil erosion and soil quality, quality and quantity of water resources, atmosphere composition and greenhouse gas emission or sequestration, biodiversity dynamics at different scales from field plot to landscape. All these functions have to be evaluated in conjunction with the function of providing animal products for increasing human population. So multifunctionality of grasslands become a new paradigm for grassland science. Environmental and biodiversity outputs require long term studies, being the long term retro-active processes within soil, vegetation and micro-organism communities in relation to changes in management programme. So grassland science needs to carry on long term integrated experimentation for studying all the environmental outputs and ecological services associated to grassland management systems.

  1. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    Science.gov (United States)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  2. An examination of key experiences which contribute to a positive change in attitude toward science in two elementary education teacher candidates at the University of Wyoming

    Science.gov (United States)

    Cason, Maggie A.

    This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with

  3. Intending to stay: Positive images, attitudes, and classroom experiences as influences on students' intentions to persist in science and engineering majors

    Science.gov (United States)

    Wyer, Mary Beth

    2000-10-01

    Contemporary research on persistence in undergraduate education in science and engineering has focused primarily on identifying the structural, social, and psychological barriers to participation by students in underrepresented groups. As a result, there is a wealth of data to document why students leave their majors, but there is little direct empirical data to support prevailing presumptions about why students stay. Moreover, researchers have used widely differing definitions and measures of persistence, and they have seldom explored field differences. This study compared three ways of measuring persistence. These constituted three criterion variables: commitment to major, degree aspirations, and commitment to a science/engineering career. The study emphasized social factors that encourage students to persist, including four predictor variables---(1) positive images of scientists/engineers, (2) positive attitudes toward gender and racial equality, (3) positive classroom experiences, and (4) high levels of social integration. In addition, because researchers have repeatedly documented the degree to which women are more likely than men to drop out of science and engineering majors, the study examined the potential impact of gender in relation to these predictor variables. A survey was administered in the classroom to a total of 285 students enrolled in a required course for either a biological sciences and or an engineering major. Predictor variables were developed from standard scales, including the Images of Science/Scientists Scale, the Attitudes toward Women Scale, the Women in Science Scale, and the Perceptions of Prejudice Scale. Based on logistic regression models, results indicate that positive images of scientists and engineers was significantly related to improving the odds of students having a high commitment to major, high degree aspirations, and high commitment to career. There was also evidence that positive attitudes toward gender and racial equality

  4. Is psychological science a-cultural?

    Science.gov (United States)

    Gone, Joseph P

    2011-07-01

    The history of psychological science, as it has intersected with ethnoracial, cultural, and other marginalized domains of group difference, is replete with disinterest, dismissal, or denigration of these diverse forms of psychological experience. This has led some to wonder whether psychological science is a-cultural, or even anti-cultural in orientation. Assessment of this provocative proposition first requires exploration of three composite questions: (1) What is culture?, (2) What is science?, and (3) What is psychological science? Based on brief consideration of these composite questions--which are remarkably complex in their own right--I argue that psychological science is not, has never been, and indeed cannot in principle be a-cultural. Instead, like all forms of knowing, psychological science emerges at particular historical moments to achieve particular goals that are motivated by particular interests. Throughout much of the history of psychological science, these goals and interests were tied to ideologically suspect agendas that contemporary psychologists are right to repudiate. The interesting question becomes whether psychology's knowledge practices can be disentangled from this earlier ideological contamination to furnish the discipline with viable methods. I propose that psychological science can in fact be so disentangled; nevertheless, the resulting methods are never adopted or deployed outside of culturally constituted interests, objectives, and motivations, thereby requiring ongoing critical engagement with the subtexts of disciplinary knowledge production. In fact, there seem to be important ways in which psychology's scientific aspirations hobble disciplinary inquiry into the human condition that has motivated multicultural psychologists to consider alternative paradigms of inquiry.

  5. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    Science.gov (United States)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  6. Robotics as an integration subject in the computer science university studies. The experience of the University of Almeria

    Directory of Open Access Journals (Sweden)

    Manuela Berenguel Soria

    2012-11-01

    Full Text Available This work presents a global view of the role of robotics in computer science studies, mainly in university degrees. The main motivation of the use of robotics in these studies deals with the following issues: robotics permits to put in practice many computer science fundamental topics, it is a multidisciplinary area which allows to complete the basic knowledge of any computer science student, it facilitates the practice and learning of basic competences of any engineer (for instance, teamwork, and there is a wide market looking for people with robotics knowledge. These ideas are discussed from our own experience in the University of Almeria acquired through the studies of Computer Science Technical Engineering, Computer Science Engineering, Computer Science Degree and Computer Science Postgraduate.

  7. Teacher experiences in the use of the "Zoology Zone" multimedia resource in elementary science

    Science.gov (United States)

    Paradis, Lynne Darlene

    This interpretive research study explored the experiences of teachers with the use of the Zoology Zone multimedia resource in teaching grade three science. Four generalist teachers used the multimedia resource in the teaching of the Animal Life Cycle topic from the Alberta grade three science program. The experiences of the teachers were examined through individual interviews, classroom visits and group interviews. Three dimensions of the study, as they related to elementary science teaching using the Zoology Zone multimedia resource were examined: (a) technology as a teaching resource, (b) science education and constructivist theory, and (c) teacher learning. In the area of planning for instruction, the teachers found that using the multimedia resource demanded more time and effort than using non-computer resources because of the dependence teachers had on others for ensuring access to computer labs and setting up the multimedia resource to run on school computers. The teachers felt there was value in giving students the opportunity to independently explore the multimedia resource because it captured their attention, included appropriate content, and was designed so that students could navigate through the teaming activities easily and make choices about how to proceed with their own learning. Despite the opportunities for student directed learning, the teachers found that it was also necessary to include some teacher directed learning to ensure that students were learning the mandated curriculum. As the study progressed, it became evident that the teachers valued the social dimensions of learning by making it a priority to include lessons that encouraged student to student interaction, student to teacher interaction, small group and whole class discussion, and peer teaching. When students were engaged with the multimedia resource, the teacher facilitated learning by circulating to each student and discussing student findings. Teachers focussed primarily on the

  8. Facilitating interest and out-of-school engagement in science in secondary school girls: Increasing the effectiveness of the teaching for transformative experience in science model through parental involvement

    Science.gov (United States)

    Heddy, Benjamin Charles

    This study investigated the impact of adding a parental involvement intervention to the Teaching for Transformative Experience in Science (TTES) model in science courses (biology and chemistry) in an all-girl middle and high school (N = 89). Specifically, the goal was to increase out-of-school engagement, interest, parental involvement, and achievement. Analysis showed that TTES with the addition of a parent intervention (TTES+PI) facilitated more out-of-school engagement and parent involvement than a comparison. Furthermore, a high initial level of situational and individual interest was maintained in the TTES+PI condition; whereas both forms of interest decreased in the comparison. A content analysis of transformative experience journal entries suggested that when parents showed value for science concepts, students' experiential value increased. The results provide evidence that the addition of a parent intervention may increase the effectiveness of TTES and maintain girl's interest in science, which has theoretical and practical implications.

  9. Game Immersion Experience: Its Hierarchical Structure and Impact on Game-Based Science Learning

    Science.gov (United States)

    Cheng, M.-T.; She, H.-C.; Annetta, L. A.

    2015-01-01

    Many studies have shown the positive impact of serious educational games (SEGs) on learning outcomes. However, there still exists insufficient research that delves into the impact of immersive experience in the process of gaming on SEG-based science learning. The dual purpose of this study was to further explore this impact. One purpose was to…

  10. The simulation method in learning interpersonal communication competence--experiences of masters' degree students of health sciences.

    Science.gov (United States)

    Saaranen, Terhi; Vaajoki, Anne; Kellomäki, Marjaana; Hyvärinen, Marja-Leena

    2015-02-01

    This article describes the experiences of master students of nursing science in learning interpersonal communication competence through the simulation method. The exercises reflected challenging interactive situations in the field of health care. Few studies have been published on using the simulation method in the communication education of teachers, managers, and experts in this field. The aim of this study is to produce information which can be utilised in developing the simulation method to promote the interpersonal communication competence of master-level students of health sciences. This study used the qualitative, descriptive research method. At the Department of Nursing Science, the University of Eastern Finland, students major in nursing science specialise in nursing leadership and management, preventive nursing science, or nurse teacher education. Students from all three specialties taking the Challenging Situations in Speech Communication course participated (n=47). Essays on meaningful learning experiences collected using the critical incident technique, underwent content analysis. Planning of teaching, carrying out different stages of the simulation exercise, participant roles, and students' personal factors were central to learning interpersonal communication competence. Simulation is a valuable method in developing the interpersonal communication competence of students of health sciences at the masters' level. The methods used in the simulation teaching of emergency care are not necessarily applicable as such to communication education. The role of teacher is essential to supervising students' learning in simulation exercises. In the future, it is important to construct questions that help students to reflect specifically on communication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Advanced Colloids Experiment (ACE) Science Overview

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; hide

    2013-01-01

    accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.

  12. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    Science.gov (United States)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  13. The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS

    Science.gov (United States)

    Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit

    The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS

  14. Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

  15. Inquiry-based laboratory and History of Science: a report about an activity using Oersted’s experiment

    Directory of Open Access Journals (Sweden)

    José Antonio Ferreira Pinto

    2017-05-01

    Full Text Available This work presents an example of how to explore an historical experiment as a problem to be investigated in an inquiry-based laboratory model. The elaborated and executed purpose is one of the possibilities to insert History of Science in Science classroom. The inquiry-based experimental activity, the texts with historical approach based on modern historiography of science and teacher’s pedagogical knowledge allowed the development of argumentative skills and the comprehension of electromagnetism concepts. This study was developed with 3rd grade high school students from a public school of State of Paraiba.

  16. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    Science.gov (United States)

    Shell, Duane F.; Soh, Leen-Kiat

    2013-12-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.

  17. Who Are the Science Teachers That Seek Professional Development in Research Experience for Teachers (RET's)? Implications for Teacher Professional Development

    Science.gov (United States)

    Saka, Yavuz

    2013-01-01

    To address the need to better prepare teachers to enact science education reforms, the National Science Foundation has supported a Research Experience for Teachers (RET's) format for teacher professional development. In these experiences, teachers work closely with practicing scientists to engage in authentic scientific inquiry. Although…

  18. Autonomous Science Analysis with the New Millennium Program-Autonomous Sciencecraft Experiment

    Science.gov (United States)

    Doggett, T.; Davies, A. G.; Castano, R. A.; Baker, V. R.; Dohm, J. M.; Greeley, R.; Williams, K. K.; Chien, S.; Sherwood, R.

    2002-12-01

    The NASA New Millennium Program (NMP) is a testbed for new, high-risk technologies, including new software and hardware. The Autonomous Sciencecraft Experiment (ASE) will fly on the Air Force Research Laboratory TechSat-21 mission in 2006 is such a NMP mission, and is managed by the Jet Propulsion Laboratory, California Institute of Technology. TechSat-21 consists of three satellites, each equipped with X-band Synthetic Aperture Radar (SAR) that will occupy a 13-day repeat track Earth orbit. The main science objectives of ASE are to demonstrate that process-related change detection and feature identification can be conducted autonomously during space flight, leading to autonomous onboard retargeting of the spacecraft. This mission will observe transient geological and environmental processes using SAR. Examples of geologic processes that may be observed and investigated include active volcanism, the movement of sand dunes and transient features in desert environments, water flooding, and the formation and break-up of lake ice. Science software onboard the spacecraft will allow autonomous processing and formation of SAR images and extraction of scientific information. The subsequent analyses, performed on images formed onboard from the SAR data, will include feature identification using scalable feature "templates" for each target, change detection through comparison of current and archived images, and science discovery, a search for other features of interest in each image. This approach results in obtaining the same science return for a reduced amount of resource use (such as downlink) when compared to that from a mission operating without ASE technology. Redundant data is discarded. The science-driven goals of ASE will evolve during the ASE mission through onboard replanning software that can re-task satellite operations. If necessary, as a result of a discovery made autonomously by onboard science processing, existing observation sequences will be pre-empted to

  19. The Virtual GloveboX (VGX: a Semi-immersive Virtual Environment for Training Astronauts in Life Sciences Experiments

    Directory of Open Access Journals (Sweden)

    I. Alexander Twombly

    2004-06-01

    Full Text Available The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The "Virtual GloveboX" (VGX integrates high-fidelity graphics, force-feedback devices and real-time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  20. Education and Policy in Soil Science: The U.S. Experience

    Science.gov (United States)

    Sharpley, Andrew; van Es, Harold; Dick, Richard; Bergfeld, Ellen; Anderson, Karl; Chapman, Susan; Fisk, Susan

    2017-04-01

    The Soil Science Society of America (SSSA), founded in 1936, fosters the transfer of knowledge and practices to sustain soils globally, and now serves 6,000 members worldwide. It is also home to over 1,000 certified professionals dedicated to advancing the field of soil science. The Society provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use. We provide high-impact research publications, educational programs, certifications, and science-policy initiatives, which will be described in more detail in this presentation. The need for soil science education to a wider audience and development and promotion of soils-based policy initiatives, has increased in the last decade with recognition of the role soils play in sustaining life, population well-being at the nexus of food, energy, and water security. To address these needs, SSSA has two general public outreach sites online: www.soils.org/discover-soils and https://soilsmatter.wordpress.com/, reaching over a half-million viewers per year, as well as social media platforms. We are dedicated to increasing interest and awareness of soil science among K-12 teachers and their students, and working to integrate more information on soil science into the science curriculum of schools over multiple grade levels. For instance, we have a website dedicated to children (http://www.soils4kids.org/), which describes fun games to play with soil, suggestions for science-fair experiments, and opens their minds to careers in soil science. Another site (http://www.soils4teachers.org/) is dedicated to the needs of school teachers, providing ready resources for the classroom. Society members have even authored books ("Soil! Get the Inside Scoop" for one) to get children aged 9 to 12, excited about the living world of soil. In keeping with the times, a blog called "Soils Matter" is hosted by Society staff and now has

  1. Engaging High School Science Teachers in Field-Based Seismology Research: Opportunities and Challenges

    Science.gov (United States)

    Long, M. D.

    2015-12-01

    Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the

  2. Conceptual requirements for large fusion experiment control, data, robotics, and management systems

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Sullivan, J.D.

    1987-05-01

    The conceptual system requirements for the control, data, robotics, and project management (CDRM) system for the next generation of fusion experiments are developed by drawing on the success of the Tara control and data system. The requirements are described in terms of an integrated but separable matrix of well-defined interfaces among the various systems and subsystems. The study stresses modularity, performance, cost effectiveness, and exportability

  3. Foundations of data-intensive science: Technology and practice for high throughput, widely distributed, data management and analysis systems

    Science.gov (United States)

    Johnston, William; Ernst, M.; Dart, E.; Tierney, B.

    2014-04-01

    Today's large-scale science projects involve world-wide collaborations depend on moving massive amounts of data from an instrument to potentially thousands of computing and storage systems at hundreds of collaborating institutions to accomplish their science. This is true for ATLAS and CMS at the LHC, and it is true for the climate sciences, Belle-II at the KEK collider, genome sciences, the SKA radio telescope, and ITER, the international fusion energy experiment. DOE's Office of Science has been collecting science discipline and instrument requirements for network based data management and analysis for more than a decade. As a result of this certain key issues are seen across essentially all science disciplines that rely on the network for significant data transfer, even if the data quantities are modest compared to projects like the LHC experiments. These issues are what this talk will address; to wit: 1. Optical signal transport advances enabling 100 Gb/s circuits that span the globe on optical fiber with each carrying 100 such channels; 2. Network router and switch requirements to support high-speed international data transfer; 3. Data transport (TCP is still the norm) requirements to support high-speed international data transfer (e.g. error-free transmission); 4. Network monitoring and testing techniques and infrastructure to maintain the required error-free operation of the many R&E networks involved in international collaborations; 5. Operating system evolution to support very high-speed network I/O; 6. New network architectures and services in the LAN (campus) and WAN networks to support data-intensive science; 7. Data movement and management techniques and software that can maximize the throughput on the network connections between distributed data handling systems, and; 8. New approaches to widely distributed workflow systems that can support the data movement and analysis required by the science. All of these areas must be addressed to enable large

  4. Toward solidarity as the ground for changing science education

    Science.gov (United States)

    Roth, Wolff-Michael

    2007-10-01

    In science education, reform frequently is conceived and implemented in a top-down fashion, whether teachers are required to engage in change by their principals or superintendents (through high-stakes testing and accountability measures) or by researchers, who inform teachers about alternatives they ought to implement. In this position paper on science education policy, I draw on first philosophy to argue for a different approach to reform, one that involves all stakeholders—teachers, interns, school and university supervisors, and, above all, students—who participate in efforts to understand and change their everyday praxis of teaching and learning. Once all stakeholders experience control over the shaping and changing of classroom learning (i.e., experience agency), they may recognize that they really are in it together, that is, they experience a sense of solidarity. Drawing on ethnographic vignettes, science teaching examples, and philosophical concepts, I outline how more democratic approaches to reform can be enabled.

  5. Life sciences payload definition and integration study. Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.

  6. Reproducibility of Psychological Experiments as a Problem of Post-Nonclassical Science

    Directory of Open Access Journals (Sweden)

    Vachkov I.V.,

    2016-04-01

    Full Text Available A fundamental project on reproducibility carried out in the USA by Brian Nosek in 2015 (the Reproducibility Project revealed a serious methodological problem in psychology: the issue of replication of psycho- logical experiments. Reproducibility has been traditionally perceived as one of the basic principles of the scientific method. However, methodological analysis of the modern post-nonclassical stage in the development of science suggests that this might be a bit too uncompromising as applied to psychology. It seems that the very criteria of scientific research need to be reconsidered with regard to the specifics of post-nonclassical science, and, as the authors put it, as a result, reproducibility might lose its key status or even be excluded at all. The reviewed problem and the proposed ways of coping with it are of high importance to research and practice in psychology as they define the strategies for organizing, conducting and evaluating experimental research.

  7. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  8. The Relationship between Family Experiences and Motivation to Learn Science for Different Groups of Grade 9 Students in South Africa

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2016-01-01

    Worldwide science education is a national priority due to the role played by science performance in economic growth and the supply and quality of the human capital pool in scientific fields. One factor that may impact on the motivation to learn science is family experiences. This study therefore explored the relationship between family experiences…

  9. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    Science.gov (United States)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  10. USING INTERNET-RESOURCES FOR SCHOOL PHYSICS EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Nina P. Dementievska

    2012-06-01

    Full Text Available Using virtual computer simulation of physics processes and phenomena is becoming increasingly popular among teachers of science around the world. Such simulation for school experiment has several advantages, but teaching needs improvement of methodology for using in modern school. In order to computer simulations were successful in education it requires compliance with a number of conditions. Educators around the world collaborate on the web site Phet (http://phet.colorado.edu/, which provides science-based and effective computer simulations for studying the natural sciences in different languages, as well as the methodology for use in secondary school.

  11. A Framework for Understanding Student Nurses' Experience of Chemistry as Part of a Health Science Course

    Science.gov (United States)

    Boddey, Kerrie; de Berg, Kevin

    2018-01-01

    Twenty-seven first-year nursing students, divided across six focus groups formed on the basis of their past chemistry experience, were interviewed about their chemistry experience as a component of a Health Science unit. Information related to learning and academic performance was able to be established from student conversations resulting in…

  12. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  13. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  14. A Graduate Student's Experience and Perspective on a Student-Teacher-Researcher Partnership

    Science.gov (United States)

    Bostic, J.; Stylinski, C.; Doty, C.

    2017-12-01

    Teachers and their K-12 students lack firsthand experience in science research and often harbor misconceptions about science practices and the nature of science. To address this challenge, the NOAA-funded Student-Teacher-Researcher (STAR) partnership that provides rural high school students with authentic research experiences investigating the amount and sources of nitrate in schoolyard runoff. Teachers received training, guiding curricular materials aligned with NGSS and in-classroom support. With a focus on evidence-based reasoning skills, students actively participate in the research process through sample collection, data analysis, and an in-person discussion of conclusions and implications with our scientist team. As a member of this team, I assisted with refining the study design, analyzing nitrate isotope runoff samples, and sharing insights and feedback with students during the in-person discussion session. Assessment results indicate student gained an understanding of nitrate pollution and of science practices. As a graduate student, young scientist, and possessor of a B.S. in Science Education, I already recognized the value of involving K-12 students and teachers in authentic research experiences, as these experiences expose students to the nature of science while also improving content knowledge. During the STAR partnership, I learned firsthand some of the obstacles presented during outreach involving partnerships between a research institution and schools, such as inflexibility of school scheduling and the need for flexibility with research questions requiring complex lab analysis. Additionally, I discovered the challenge of working systemically across a school district, which can have broad impact but limit student experiences. Highlights of my experience included interactions with students and teachers, especially when students have unexpected answers to my questions, providing novel explanations for patterns observed in the data. Despite the

  15. Thematic web portals for different user profiles in a virtual health science library: Bibliosalut's experience

    OpenAIRE

    Páez, Virgili; Font, Mònica; Pastor-Ramon, Elena; Sastre-Suárez, Sílvia; Costa-Marin, Maria

    2016-01-01

    Normally users of a virtual health library have different professional profiles (physicians, nurses, pharmacists...) and/or they are from different specialties (Primary Health Care, Internal Medicine, Oncology...). This poster shows the experience of the Virtual Health Sciences Library of the Balearic Islands (Bibliosalut) of creating thematic web portals, which aims is to improve the experience of our users to browse and query to information resources and services of the virtual library and ...

  16. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    Science.gov (United States)

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  17. Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

  18. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    Science.gov (United States)

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency

  19. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  20. Planning and management of science programs on Skylab

    Science.gov (United States)

    Parker, R. A. R.; Sevier, J. R.

    1974-01-01

    Discussion of the experience gained in experiment operation planning during the Skylab mission. The Skylab flight planning activity allowed the experimenters to interact with the system and provided the flexibility to respond to contingencies both major and minor. Both these aspects contributed to make efficient use of crew time thus helping to increase the science return from the mission. Examples of the need for real time scheduling response and of the tradeoffs considered between conflicting experiment requirements are presented. General management principles derived from this experience are developed. The Skylab mission experiences, together with previous Apollo mission experiences, are shown to provide a good background for Shuttle flight planning.

  1. A lived experience of dualism between the natural and human science paradigms in nursing.

    Science.gov (United States)

    Chan, Engle Angela

    2002-12-01

    To describe the use of narrative as both phenomenon and method to illuminate college nurse educators' nursing knowledge development through their day-to-day stories on the institutional landscape, which shape and are shaped by health-care and nursing education changes. The Ontario health-care reform in Canada and a shift in nursing curriculum have brought to light a different dimension of a theory-practice issue. The traditional predominant natural science approach in nursing is now no longer considered responsive to the unique characteristics of patients' health-care needs. Emerging from current nursing education is an emphasis on a human science paradigm. However, as many college nurse educators moved back and forth between their classrooms to clinical settings, they experienced tremendous tensions in living between the new caring paradigm and the old culture of biomedical science ideology. Compounding this challenge is a lack of understanding by the policymakers and administrators of the importance of nurses' contribution vis-à-vis an ailing health-care system. This growing complexity demands that nursing, as a practice discipline, should articulate its unique body of knowledge for advancing contributions in health care. My stories of experience and those of my participants were analysed narratively to determine the knowledge and understanding developed from living the complex and interwoven changes in nursing education and practice. Through living, telling, retelling and reliving our stories, my participants and I recognized a false dualism between the seemingly polarized biomedical and human science paradigms. The meaning of certainty-uncertainty inherent in nursing teaching and practice demands that nurse educators rethink how stories of experience play out in their understanding of teaching future graduates the interrelationships between these two approaches.

  2. Science Shops

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    1999-01-01

    The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented.......The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented....

  3. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  4. An Experience of Science Theatre to Introduce Earth Interior and Natural Hazards to Children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-01-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of making them acquainted with a topic, the interior of the Earth, largely underestimated in compulsory school curricula worldwide. A not less important task was to encourage a positive attitude towards natural…

  5. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    Science.gov (United States)

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  6. A Case-Based Scenario with Interdisciplinary Guided-Inquiry in Chemistry and Biology: Experiences of First Year Forensic Science Students

    Science.gov (United States)

    Cresswell, Sarah L.; Loughlin, Wendy A.

    2017-01-01

    In this paper, insight into forensic science students' experiences of a case-based scenario with an interdisciplinary guided-inquiry experience in chemistry and biology is presented. Evaluation of student experiences and interest showed that the students were engaged with all aspects of the case-based scenario, including the curriculum theory…

  7. Expedition Zenith: Experiences of eighth grade girls in a non-traditional math/science program

    Science.gov (United States)

    Ulm, Barbara Jean

    2004-11-01

    This qualitative study describes the experiences of a group of sixteen, eighth grade girls participating in a single-sex, math/science program based on gender equity research and constructivist theory. This phenomenological case study highlights the individual changes each girl perceives in herself as a result of her involvement in this program which was based at a suburban middle school just north of New York City. Described in narrative form is what took place during this single-sex program. At the start of the program the girls worked cooperatively in groups to build canoes. The canoes were then used to study a wetland during the final days of the program. To further immerse the participants into nature, the girls also camped during these final days. Data were collected from a number of sources to uncover, as fully as possible, the true essence of the program and the girls' experiences in it. The data collection methods included direct observation; in-depth, open-ended interviews; and written documentation. As a result of data collection, the girls' perceived outcomes and assessment of the program, as well as their recommendations for future math/science programs are revealed. The researcher in this study also acted as teacher, directing the program, and as participant to better understand the experiences of the girls involved in the program. Thus, unique insights could be made. The findings in this study provide insight into the learning of the participants, as well as into the relationships they formed both inside and outside of the program. Their perceived experiences and assessment of the program were then used to develop a greater understanding as to the effectiveness of this non-traditional program. Although this study echoed much of what research says about the needs of girls in learning situations, and therefore, reinforces previously accepted beliefs, it also reveals significant findings in areas previously unaddressed by gender studies. For example

  8. Shared-Book Experience Using Science-Themed Books to Develop Scientific Literacy: An Interactive Approach with Struggling Readers

    Science.gov (United States)

    Chung, Mi-Hyun; Keckler, Barbara

    2016-01-01

    This paper will explain what a reading teacher learned from working with a group of first-grade struggling readers in a series of shared-book experience classes. The shared-book experience approach used a variety of science-themed books that were aligned with the first-grade curriculum and appropriate for beginning readers. Considering the…

  9. MCTP Summer Research Internship Program. Research Presentation Day: Experience Mathematics and Science in the Real World

    Science.gov (United States)

    1996-01-01

    This paper presents the summaries of the MCTP Summer Research Internship Program. Technological areas discussed include: Mathematical curriculum development for real world problems; Rain effects on air-water gas exchange; multi-ring impact basins on mars; developing an interactive multimedia educational cd-rom on remote sensing; a pilot of an activity for for the globe program; fossils in maryland; developing children's programming for the american horticultural society at river farm; children's learning, educational programs of the national park service; a study of climate and student satisfaction in two summer programs for disadvantaged students interested in careers in mathematics and science; the maryland governor's academy, integrating technology into the classroom; stream sampling with the maryland biological stream survey (MBSS); the imaging system inspection software technology, the preparation and detection of nominal and faulted steel ingots; event-based science, the development of real-world science units; correlation between anxiety and past experiences; environmental education through summer nature camp; enhancing learning opportunities at the Salisbury zoo; plant growth experiment, a module for the middle school classroom; the effects of proxisome proliferators in Japanese medaka embryos; development of a chapter on birth control and contraceptive methodologies as part of an interactive computer-based education module on hiv and aids; excretion of gentamicin in toadfish and goldfish; the renaissance summer program; and Are field trips important to the regional math science center?

  10. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  11. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  12. Experiment-o-mania

    Science.gov (United States)

    Drndarski, Marina

    2015-04-01

    Every 21st century student is expected to develop science literacy skills. As this is not part of Serbian national curriculum yet, we decided to introduce it with this project. Experiment-o-mania provides students to experience science in different and exciting way. It makes opportunity for personalized learning offering space and time to ask (why, where, how, what if) and to try. Therefore, we empower young people with skills of experimenting, and they love science back. They ask questions, make hypothesis, make problems and solve them, make mistakes, discuss about the results. Subsequently this raises the students' interest for school curriculum. This vision of science teaching is associated with inquiry-based learning. Experiment-o-mania is the unique and recognizable teaching methodology for the elementary school Drinka Pavlović, Belgrade, Serbia. Experiment-o-mania implies activities throughout the school year. They are held on extra class sessions, through science experiments, science projects or preparations for School's Days of science. Students learn to ask questions, make observations, classify data, communicate ideas, conduct experiments, analyse results and make conclusions. All science teachers participate in designing activities and experiments for students in Experiment-o-mania teaching method. But they are not alone. Teacher of fine arts, English teachers and others also take part. Students have their representatives in this team, too. This is a good way to blend knowledge among different school subject and popularize science in general. All the experiments are age appropriate and related to real life situations, local community, society and the world. We explore Fibonacci's arrays, saving energy, solar power, climate change, environmental problems, pollution, daily life situations in the country or worldwide. We introduce great scientists as Nikola Tesla, Milutin Milanković and sir Isaac Newton. We celebrate all relevant international days, weeks

  13. Moral Perceptions of College Science Students

    Science.gov (United States)

    Nolan, Eric

    This thesis argues that college-level science education is in need of explicit moral focuses centered on society's use of scientific knowledge. Many benefits come with scientific advancements but unfortunately the misuse of scientific knowledge has led to planetary crises that should be a concern for all who inhabit the Earth (e.g., climate change). The teaching of the misuses of science is often left out of college science classrooms and the purpose of this thesis is to see what effect college science students' education has had on their moral perception of these pressing issues. To evaluate how college science students morally perceive these global issues within their educational experiences, two focus group interviews were conducted and analyzed. Students converged on three themes when thinking of society's misuse of science: 1) there is something wrong with the way science is communicated between science and non-science groups; 2) misusing science for private benefit is not right, and 3) it is important for people to comprehend sustainability along different scales of understanding and action. This thesis concludes that although to some extent students were familiar with moral features that stem from society's misuse of science, they did not attribute their learning of those features from any of their required coursework within their programs of study.

  14. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    Science.gov (United States)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  15. Science case and requirements for the MOSAIC concept for a multi-object spectrograph for the European extremely large telescope

    International Nuclear Information System (INIS)

    Evans, C.J.; Puech, M.; Bonifacio, P.; Hammer, F.; Jagourel, P.; Caffau, E.; Disseau, K.; Flores, H.; Huertas-Company, M.; Mei, S.; Aussel, H.

    2014-01-01

    Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-section of astronomers across the ESO partner countries. In this contribution we summarise the key cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for two observational modes to best exploit the large (=40 arcmin 2 ) patrol field of the E-ELT. The first mode ('high multiplex') requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of ≥100 objects simultaneously. The second ('high definition'), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of ≥10 objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the top level requirements from each case and introduce the next steps in the design process. (authors)

  16. Design Features and Capabilities of the First Materials Science Research Rack

    Science.gov (United States)

    Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.

    2003-01-01

    The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.

  17. Life science payloads planning study. [for space shuttle orbiters and spacelab

    Science.gov (United States)

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  18. Physics of Health Sciences

    Science.gov (United States)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  19. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  20. Science during crisis: the application of social science during major environmental crises

    Science.gov (United States)

    Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther

    2014-01-01

    Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of science – including all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.

  1. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    Science.gov (United States)

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  2. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    International Nuclear Information System (INIS)

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10 22 atoms/cm 2 ) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  3. Learning Science in the 21st century - a shared experience between schools

    Science.gov (United States)

    Pinto, Tânia; Soares, Rosa; Ruas, Fátima

    2015-04-01

    Problem Based Learning is considered an innovative teaching and learning inquiry methodology that is student centered, focused in the resolution of an authentic problem and in which the teacher acts like a facilitator of the work in small groups. In this process, it is expected that students develop attitudinal, procedural and communication skills, in addition to the cognitive typically valued. PBL implementation also allows the use of multiple educational strategies, like laboratorial experiments, analogue modeling or ICT (video animations, electronic presentations or software simulations, for instance), which can potentiate a more interactive environment in the classroom. In this study, taken in three schools in the north of Portugal, which resulted from the cooperation between three science teachers, with a 75 individuals sample, were examined students' opinions about the main difficulties and strengths concerning the PBL methodology, having as a common denominator the use of a laboratorial experiment followed by an adequate digital software as educational resource to interpret the obtained results and to make predictions (e.g. EarthQuake, Virtual Quake, Stellarium). The data collection methods were based on direct observation and questionnaires. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life and that the use of software was relevant, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.

  4. The Office of Science Data-Management Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard P.; /SLAC

    2005-10-10

    Science--like business, national security, and even everyday life--is becoming more and more data intensive. In some sciences the data-management challenge already exceeds the compute-power challenge in its needed resources. Leadership in applying computing to science will necessarily require both world-class computing and world-class data management. The Office of Science program needs a leadership-class capability in scientific data management. Currently two-thirds of Office of Science research and development in data management is left to the individual scientific programs. About $18M/year is spent by the programs on data-management research and development targeted at their most urgent needs. This is to be compared with the $9M/year spent on data management by DOE computer science. This highly mission-directed approach has been effective, but only in meeting just the highest-priority needs of individual programs. A coherent, leadership-class, program of data management is clearly warranted by the scale and nature of the Office of Science programs. More directly, much of the Office of Science portfolio is in desperate need of such a program; without it, data management could easily become the primary bottleneck to scientific progress within the next five years. When grouped into simulation-intensive science, experiment/observation-intensive science, and information-intensive science, the Office of Science programs show striking commonalities in their data-management needs. Not just research and development but also packaging and hardening as well as maintenance and support are required. Meeting these needs is a medium- to long-term effort requiring a well-planned program of evolving investment. We propose an Office of Science Data-Management Program at an initial scale of $32M/year of new funding. The program should be managed by a Director charged with creating and maintaining a forward-looking approach to multiscience data-management challenges. The program

  5. Inclusive Planetary Science Outreach and Education: a Pioneering European Experience

    Science.gov (United States)

    Galvez, A.; Ballesteros, F.; García-Frank, A.; Gil, S.; Gil-Ortiz, A.; Gómez-Heras, M.; Martínez-Frías, J.; Parro, L. M.; Parro, V.; Pérez-Montero, E.; Raposo, V.; Vaquerizo, J. A.

    2017-09-01

    Abstract Universal access to space science and exploration for researchers, students and the public, regardless of physical abilities or condition, is the main objective of work by the Space Inclusive Network (SpaceIn). The purpose of SpaceIn is to conduct educational and communication activities on Space Science in an inclusive and accessible way, so that physical disability is not an impediment for participating. SpaceIn members aim to enlarge the network also by raising awareness among individuals such as undergraduate students, secondary school teachers, and members of the public with an interest and basic knowledge on science and astronomy. As part of a pilot experience, current activities are focused on education and outreach in the field of comparative Planetary Science and Astrobiology. Themes include the similarities and differences between terrestrial planets, the role of water and its interaction with minerals on their surfaces, the importance of internal thermal energy in shaping planets and moons and the implications for the appearance of life, as we know it, in our planet and, possibly, in other places in our Solar System and beyond. The topics also include how scientific research and space missions can shed light on these fundamental issues, such as how life appears on a planet, and thus, why planetary missions are important in our society, as a source of knowledge and inspiration. The tools that are used to communicate the concepts include talks with support of multimedia and multi-sensorial material (video, audio, tactile, taste, smell) and field trips to planetary analogue sites that are accessible to most members of the public, including people with some kind of disability. The field trips help illustrate scientific concepts in geology e.g. lava formations, folds, impact features, gullies, salt plains; biology, e.g. extremophiles, halophites; and exploration technology, e.g. navigation in an unknown environment, hazard and obstacle avoidance

  6. Improving Science Literacy and Earth Science Awareness Through an Intensive Summer Research Experience in Paleobiology

    Science.gov (United States)

    Heim, N. A.; Saltzman, J.; Payne, J.

    2014-12-01

    The chasm between classroom science and scientific research is bridged in the History of Life Internships at Stanford University. The primary foci of the internships are collection of new scientific data and original scientific research. While traditional high school science courses focus on learning content and laboratory skills, students are rarely engaged in real scientific research. Even in experiential learning environments, students investigate phenomena with known outcomes under idealized conditions. In the History of Life Internships, high school youth worked full time during the summers of 2013 and 2014 to collect body size data on fossil Echinoderms and Ostracods, measuring more than 20,000 species in total. These data are contributed to the larger research efforts in the Stanford Paleobiology Lab, but they also serve as a source of data for interns to conduct their own scientific research. Over the course of eight weeks, interns learn about previous research on body size evolution, collect data, develop their own hypotheses, test their hypotheses, and communicate their results to their peers and the larger scientific community: the 2014 interns have submitted eight abstracts to this meeting for the youth session entitled Bright STaRS where they will present their research findings. Based on a post-internship survey, students in the 2013 History of Life cohort had more positive attitudes towards science and had a better understanding of how to conduct scientific research compared to interns in the Earth Sciences General Internship Program, where interns typically do not complete their own research project from start to finish. In 2014, we implemented both pre- and post-internship surveys to determine if these positive attitudes were developed over the course of the internship. Conducting novel research inspires both the students and instructors. Scientific data collection often involves many hours of repetitive work, but answering big questions typically

  7. Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

  8. Gender, Families, and Science: Influences on Early Science Training and Career Choices

    Science.gov (United States)

    Hanson, Sandra L.

    This research examines the effects of gender and a number of family experiences on young people's chances of going into postsecondary science training and science occupations in the years immediately following high school. Data came from the nationally representative, longitudinal High School and Beyond survey. Results show that gender plays a significant role in choices involving early science training and occupations - especially training. Amongst young men and women with comparable resources and qualifications, young women are less likely to make the science choice. The family experiences and expectations examined here are not a major factor in understanding gender differences in access to science training and occupations. Although much of the literature describes the domains of science and of family as being at odds, results from this research suggest that family experiences play a rather minimal role in predicting who will enter science training or occupations in the early post-high school years. When family variables do have an effect, they are not always negative and the nature of the effect varies by the time in the life cycle that the family variable is measured, by type of family experience (orientation vs. procreation), by outcome (science major vs. science occupation), and by gender.

  9. Multiple Payload Ejector for Education, Science and Technology Experiments

    Science.gov (United States)

    Lechworth, Gary

    2005-01-01

    The education research community no longer has a means of being manifested on Space Shuttle flights, and small orbital payload carriers must be flown as secondary payloads on ELV flights, as their launch schedule, secondary payload volume and mass permits. This has resulted in a backlog of small payloads, schedule and cost problems, and an inability for the small payloads community to achieve routine, low-cost access to orbit. This paper will discuss Goddard's Wallops Flight Facility funded effort to leverage its core competencies in small payloads, sounding rockets, balloons and range services to develop a low cost, multiple payload ejector (MPE) carrier for orbital experiments. The goal of the MPE is to provide a low-cost carrier intended primarily for educational flight research experiments. MPE can also be used by academia and industry for science, technology development and Exploration experiments. The MPE carrier will take advantage of the DARPAI NASA partnership to perform flight testing of DARPA s Falcon small, demonstration launch vehicle. The Falcon is similar to MPE fiom the standpoint of focusing on a low-cost, responsive system. Therefore, MPE and Falcon complement each other for the desired long-term goal of providing the small payloads community with a low-cost ride to orbit. The readiness dates of Falcon and MPE are complementary, also. MPE is being developed and readied for flight within 18 months by a small design team. Currently, MPE is preparing for Critical Design Review in fall 2005, payloads are being manifested on the first mission, and the carrier will be ready for flight on the first Falcon demonstration flight in summer, 2006. The MPE and attached experiments can weigh up to 900 lb. to be compatible with Falcon demonstration vehicle lift capabilities fiom Wallops, and will be delivered to the Falcon demonstration orbit - 100 nautical mile circular altitude.

  10. Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft

    Science.gov (United States)

    Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy

    2018-01-01

    The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.

  11. A Colorimetric Analysis Experiment Not Requiring a Spectrophotometer: Quantitative Determination of Albumin in Powdered Egg White

    Science.gov (United States)

    Charlton, Amanda K.; Sevcik, Richard S.; Tucker, Dorie A.; Schultz, Linda D.

    2007-01-01

    A general science experiment for high school chemistry students might serve as an excellent review of the concepts of solution preparation, solubility, pH, and qualitative and quantitative analysis of a common food product. The students could learn to use safe laboratory techniques, collect and analyze data using proper scientific methodology and…

  12. History and Philosophy of Science as a Guide to Understanding Nature of Science

    Directory of Open Access Journals (Sweden)

    Mansoor Niaz

    2016-06-01

    Full Text Available Nature of science (NOS is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others of understanding NOS: a Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick; b Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola; c Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understand ‘science in the making’ (Niaz. The following framework helps to facilitate integration: i Elaboration of a theoretical framework

  13. Near-death experiences between science and prejudice

    Science.gov (United States)

    Facco, Enrico; Agrillo, Christian

    2012-01-01

    Science exists to refute dogmas; nevertheless, dogmas may be introduced when undemonstrated scientific axioms lead us to reject facts incompatible with them. Several studies have proposed psychobiological interpretations of near-death experiences (NDEs), claiming that NDEs are a mere byproduct of brain functions gone awry; however, relevant facts incompatible with the ruling physicalist and reductionist stance have been often neglected. The awkward transcendent look of NDEs has deep epistemological implications, which call for: (a) keeping a rigorously neutral position, neither accepting nor refusing anything a priori; and (b) distinguishing facts from speculations and fallacies. Most available psychobiological interpretations remain so far speculations to be demonstrated, while brain disorders and/or drug administration in critical patients yield a well-known delirium in intensive care and anesthesia, the phenomenology of which is different from NDEs. Facts can be only true or false, never paranormal. In this sense, they cannot be refused a priori even when they appear implausible with respect to our current knowledge: any other stance implies the risk of turning knowledge into dogma and the adopted paradigm into a sort of theology. PMID:22826697

  14. NEAR-DEATH EXPERIENCES BETWEEN SCIENCE AND PREJUDICE

    Directory of Open Access Journals (Sweden)

    Enrico eFacco

    2012-07-01

    Full Text Available Science exists to refute dogmas; nevertheless, dogmas may be introduced when undemonstrated scientific axioms lead us to reject facts incompatible with them.Several studies have proposed psychobiological interpretations of near-death experiences (NDEs, claiming that NDEs are a byproduct of brain functions gone awry; however, relevant facts incompatible with the ruling physicalist and reductionist stance have been often neglected. The awkward transcendent look of NDEs has deep epistemological implications, which call for: a keeping a rigorously neutral position, neither accepting nor refusing anything a priori; and b distinguishing facts from speculations and fallacies. Most available psychobiological interpretations remain so far speculations to be demonstrated, while brain disorders and/or drug administration in critical patients yield a well-known delirium in intensive care and anesthesia, the phenomenology of which is different from NDEs. Facts can be only true or false, never paranormal. In this sense, they cannot be refused a priori even when they appear implausible with respect to our current knowledge: any other stance implies the risk of turning knowledge into dogma and the adopted paradigm into a sort of theology.

  15. Report on the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2)

    Science.gov (United States)

    Katz, Daniel S.; Choi, Sou-Cheng T.; Wilkins-Diehr, Nancy; Chue Hong, Neil; Venters, Colin C.; Howison, James; Seinstra, Frank; Jones, Matthew; Cranston, Karen; Clune, Thomas L.; de Val-Borro, Miguel; Littauer, Richard

    2016-02-01

    This technical report records and discusses the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2). The report includes a description of the alternative, experimental submission and review process, two workshop keynote presentations, a series of lightning talks, a discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code review. For each topic, the report includes a list of tangible actions that were proposed and that would lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all areas of world-leading research today. The workshop participants then proceeded to explore different perspectives on the concept of sustainability. Key enablers and barriers of sustainable scientific software were identified from their experiences. In addition, recommendations with new requirements such as software credit files and software prize frameworks were outlined for improving practices in sustainable software engineering. There was also broad consensus that formal training in software development or engineering was rare among the practitioners. Significant strides need to be made in building a sense of community via training in software and technical practices, on increasing their size and scope, and on better integrating them directly into graduate education programs. Finally, journals can define and publish policies to improve reproducibility, whereas reviewers can insist that authors provide sufficient information and access to data and software to allow them reproduce the results in the paper. Hence a list of criteria is compiled for journals to provide to reviewers so as to make it easier to review software submitted for publication as a "Software Paper."

  16. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M

  17. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  18. Examining how youth of color engage youth participatory action research to interrogate racism in their science experiences

    Science.gov (United States)

    Sato, Takumi C.

    While many researchers have worked to address the unequal educational outcomes between White and non-White students, there are few signs of progress for people of color seeking entry into a STEM career trajectory. Starting from high school, the number of students who persist to complete a STEM bachelor's degree and obtaining a job in science or engineering continues to indicate that people of color are underrepresented. I suggest that research must consider the role of race and racism in the education of youth of color. Especially in science education, there is very little work addressing how racism may present barriers that impede progress for students along the STEM trajectory. This study is informed by critical race theory (CRT) that posits racism is endemic in society. White privilege enables the dominant group to maintain inequitable advantages that marginalizes populations of color. CRT also puts forth that counter narratives of the marginalized groups is essential to challenge the institutionalized forms of oppression. Using CRT and youth participatory action research (YPAR), this investigation re-imagines youth as capable of transforming their own social and political condition through research and action. This project asked youth of color to interrogate their own experiences as science learners, engage in research on structural inequities of STEM trajectories, plan strategic moves to challenge power structures, and take action for social justice. The youth started by exploring the concept of race and instances where racism was found in public spaces and in their personal experiences. They examined their experiences in science as a student more generally and then for racism. Then, the focus turned to conducting research with peers, observing science classrooms in another school, and using online information to compare schools. The youth planned strategic action against the racism they found in the analysis of the data that included conference presentations

  19. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    Science.gov (United States)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-04-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach's alpha reliability of 0.88. The findings showed that the teachers' conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers' understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.

  20. Technical note: Application of the Box-Cox data transformation to animal science experiments.

    Science.gov (United States)

    Peltier, M R; Wilcox, C J; Sharp, D C

    1998-03-01

    In the use of ANOVA for hypothesis testing in animal science experiments, the assumption of homogeneity of errors often is violated because of scale effects and the nature of the measurements. We demonstrate a method for transforming data so that the assumptions of ANOVA are met (or violated to a lesser degree) and apply it in analysis of data from a physiology experiment. Our study examined whether melatonin implantation would affect progesterone secretion in cycling pony mares. Overall treatment variances were greater in the melatonin-treated group, and several common transformation procedures failed. Application of the Box-Cox transformation algorithm reduced the heterogeneity of error and permitted the assumption of equal variance to be met.

  1. Participatory Action Research Experiences for Undergraduates

    Science.gov (United States)

    Sample McMeeking, L. B.; Weinberg, A. E.

    2013-12-01

    Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved

  2. Living science: Science as an activity of living beings.

    Science.gov (United States)

    MacLennan, Bruce J

    2015-12-01

    The philosophy of science should accommodate itself to the facts of human existence, using all aspects of human experience to adapt more effectively, as individuals, species, and global ecosystem. This has several implications: (1) Our nature as sentient beings interacting with other sentient beings requires the use of phenomenological methods to investigate consciousness. (2) Our embodied, situated, purposeful physical interactions with the world are the foundation of scientific understanding. (3) Aristotle's four causes are essential for understanding living systems and, in particular, the final cause aids understanding the role of humankind, and especially science, in the global ecosystem. (4) In order to fulfill this role well, scientists need to employ the full panoply of human faculties. These include the consciousness faculties (thinking, sensation, feeling, intuition), and therefore, as advocated by many famous scientists, we should cultivate our aesthetic sense, emotions, imagination, and intuition. Our unconscious faculties include archetypal structures common to all humans, which can guide scientific discovery. By striving to engage the whole of human nature, science will fulfill better its function for humans and the global ecosystem. Copyright © 2015. Published by Elsevier Ltd.

  3. Innovating the Experience of Peer Learning and Earth Science Education in the Field

    Science.gov (United States)

    Scoates, J. S.; Hanano, D. W.; Weis, D.; Bilenker, L.; Sherman, S. B.; Gilley, B.

    2017-12-01

    The use of active learning and collaborative strategies is widely gaining momentum at the university level and is ideally suited to field instructional settings. Peer learning, when students learn with and from each other, is based on the principle that students learn in a more profound way by explaining their ideas to others and by participating in activities in which they can learn from their peers. The Multidisciplinary Applied Geochemistry Network (MAGNET), an NSERC Collaborative Research and Training Experience (CREATE) initiative in Canada, recently experimented with this approach during its fourth annual workshop in August 2016. With a group of 25 geochemistry graduate students from universities across Canada, three remarkable field sites in Montana and Wyoming were explored: the Stillwater Complex, the Beartooth Mountains, and Yellowstone National Park. Rather than developing a rigorous teaching curriculum led by faculty, groups of students were tasked with designing and delivering half-day teaching modules that included field activities at each of the locations. Over the course of two months and with feedback from mentors, the graduate students transformed their ideas into formal lesson plans, complete with learning goals, a schedule of teaching activities, equipment lists, and plans for safety and environmental mitigation. This shift, from teacher-centered to learner-centered education, requires students to take greater initiative and responsibility for their own learning and development. We highlight the goals, structure and implementation of the workshop, as well as some of the successes and challenges. We also present the results of participant feedback taken immediately after each lesson and both pre- and post-trip surveys. The outdoor classroom and hands-on activities accelerated learning of field techniques and enhanced understanding of complex geological systems and processes. The trainee-led format facilitated peer knowledge transfer and the

  4. Science and technology related global problems: An international survey of science educators

    Science.gov (United States)

    Bybee, Rodger W.; Mau, Teri

    This survey evaluated one aspect of the Science-Technology-Society theme, namely, the teaching of global problems related to science and technology. The survey was conducted during spring 1984. Two hundred sixty-two science educators representing 41 countries completed the survey. Response was 80%. Findings included a ranking of twelve global problems (the top six were: World Hunger and Food Resources, Population Growth, Air Quality and Atmosphere, Water Resources, War Technology, and Human Health and Disease). Science educators generally indicated the following: the science and technology related global problems would be worse by the year 2000; they were slightly or moderately knowledgeable about the problems; print, audio-visual media, and personal experiences were their primary sources of information; it is important to study global problems in schools; emphasis on global problems should increase with age/grade level; an integrated approach should be used to teach about global problems; courses including global problems should be required of all students; most countries are in the early stages of developing programs including global problems; there is a clear trend toward S-T-S; there is public support for including global problems; and, the most significant limitations to implementation of the S-T-S theme (in order of significance) are political, personnel, social, psychological, economic, pedagogical, and physical. Implications for research and development in science education are discussed.

  5. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  6. Funktioneel programmeren: evaluatie van een onderwijsexperiment [Functional programming: evaluation of an educational experiment

    NARCIS (Netherlands)

    van den Berg, Klaas; Pilot, A.

    In this report we describe an experiment with a course in Functional Programming for first years students in Computer Science. The background of the experiment is given as well as the aims of the questionaires, assignments and time requirement analysis. A discussion is given about some didactical

  7. Expecting the Unexpected: a Comparative Study of African-American Women's Experiences in Science during the High School Years

    Science.gov (United States)

    Hanson, Sandra L.; Johnson, Elizabeth Palmer

    Data from the National Educational Longitudinal Study (NELS) for the years 1988 to 1992 are used to explore the science experiences of young African-American women during the high school years. The comparison groups we use in trying to understand these experiences involve White women (for a race contrast) and African-American men (for a gender contrast). Within the context of a critical feminist perspective, it is argued that gender is constructed in a different way in White and African-American communities. Instead of expecting a disadvantage for young African-American women because of their gender and minority statuses, it is suggested that unique gender ideologies and work-family arrangements in the African-American community give these young women the resources and agency that allow them to compete with their White female counterparts and their African-American male counterparts in the science domain. Results from our analyses of the NELS data confirm these expectations. We find that on a majority of science measures, African-American women do as well as - and sometimes better than - White women and African-American men. For example, there are no differences between African-American women and men on attitudes toward science. And when compared with White women, African-American women tend to have more positive attitudes. When disadvantages appear for these young African-American women, they are more likely to be race effects then gender effects. The minimal gender effects in the science experiences of young African-Americans is in contrast to the more frequent male advantage in the White sample. A careful examination of family and individual resources shows that African-American families compensate for disadvantages on some resources (e.g., family socioeconomic status) by providing young women with an excess of other resources (e.g., unique gender ideologies, work expectations, and maternal expectations and involvement). And, unlike White parents, they sometimes

  8. Science Experience Unit: Conservation.

    Science.gov (United States)

    Ferguson-Florissant School District, Ferguson, MO.

    GRADES OR AGES: Intermediate grades. SUBJECT MATTER: Conservation. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 24 experiments. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: A specific skill or knowledge objective is stated at the beginning of each experiment. Detailed procedures are listed…

  9. [A study of development of medicine and science in the nineteenth century science fiction: biomedical experiments in Mary Shelley's Frankenstein].

    Science.gov (United States)

    Choo, Jae-Uk

    2014-12-01

    As the sciences advanced rapidly in the modern European world, outstanding achievements have been made in medicine, chemistry, biology, physiology, physics and others, which have been co-influencing each of the scientific disciplines. Accordingly, such medical and scientific phenomena began to be reflected in novels. In particular, Mary Shelley's Frankenstein includes the diverse aspects of the change and development in the medicine and science. Associated with medical and scientific information reflected in Frankenstein and Frankenstein's experiments in the text, accordingly, this research will investigate the aspects of medical and scientific development taking place in the nineteenth century in three ways. First, the medical and scientific development of the nineteenth century has been reviewed by summerizing both the information of alchemy in which Frankenstein shows his interest and the new science in general that M. Waldman introduces in the text. Second, the actual features of medical and scientific development have been examined through some examples of the experimental methods that M. Waldman implicitly uttered to Frankenstein. Third, it has been checked how the medical and scientific development is related to the main issues of mechanism and vitalism which can be explained as principles of life. Even though this research deals with the developmental process of medicine & science and origin & principles of life implied in Mary Shelley's Frankenstein, its significance is that it is the interdisciplinary research focussing on how deeply medical and scientific discourse of Mary Shelley's period has been imbedded in the nineteenth century novel.

  10. Data management for interdisciplinary field experiments: OTTER project support

    Science.gov (United States)

    Angelici, Gary; Popovici, Lidia; Skiles, J. W.

    1993-01-01

    The ability of investigators of an interdisciplinary science project to properly manage the data that are collected during the experiment is critical to the effective conduct of science. When the project becomes large, possibly including several scenes of large-format remotely sensed imagery shared by many investigators requiring several services, the data management effort can involve extensive staff and computerized data inventories. The OTTER (Oregon Transect Ecosystem Research) project was supported by the PLDS (Pilot Land Data System) with several data management services, such as data inventory, certification, and publication. After a brief description of these services, experiences in providing them are compared with earlier data management efforts and some conclusions regarding data management in support of interdisciplinary science are discussed. In addition to providing these services, a major goal of this data management capability was to adopt characteristics of a pro-active attitude, such as flexibility and responsiveness, believed to be crucial for the effective conduct of active, interdisciplinary science. These are also itemized and compared with previous data management support activities. Identifying and improving these services and characteristics can lead to the design and implementation of optimal data management support capabilities, which can result in higher quality science and data products from future interdisciplinary field experiments.

  11. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  12. Teaching Experiences for Graduate Student Researchers: A Study of the Design and Implementation of Science Courses for Secondary Students

    Science.gov (United States)

    Collins, Anne Wrigley

    Modern science education reform recommends that teachers provide K-12 science students a more complete picture of the scientific enterprise, one that lies beyond content knowledge and centers more on the processes and culture of scientists. In the case of Research Experience for Teachers (RET) programs, the "teacher" becomes "researcher" and it is expected that he/she will draw from the short-term science research experience in his/her classroom, offering students more opportunities to practice science as scientists do. In contrast, this study takes place in a program that allows graduate students, engaged in research full-time, to design and implement a short-duration course for high school students on Saturdays; the "researcher" becomes "teacher" in an informal science program. In this study, I investigated eleven graduate students who taught in the Saturday Science (SS) program. Analyses revealed participants' sophisticated views of the nature of science. Furthermore, participants' ideas about science clearly resonated with the tenets of NOS recommended for K-12 education (McComas et al., 1998). This study also highlighted key factors graduate students considered when designing lessons. Instructors took great care to move away from models of traditional, "lecture"-based, university science teaching. Nonetheless, instruction lacked opportunities for students to engage in scientific inquiry. In instances when instructors included discussions of NOS in SS courses, opportunities for high school students to learn NOS were not explicit enough to align with current science reform recommendations (e.g., AAAS, 2009). Graduate students did, however, offer high school students access to their own science or engineering research communities. These findings have significant implications for K-12 classroom reform. Universities continue to be a valuable resource for K-12 given access to scientists, materials or equipment, and funding. Nonetheless, and as was the case with

  13. Design for the magnetic field requirements of the tandem mirror experiment

    International Nuclear Information System (INIS)

    Chen, F.K.; Chargin, A.K.; Denhoy, B.S.; Waugh, A.F.

    1977-01-01

    The tandem mirror magnetic geometry is described, followed by an analysis of the magnet set designed to meet the requirements of the TMX experiment. The final magnet line-up is composed of a baseball coil with two C coils for each plug, six solenoidal coils for the central cell, and two RC coils plus one octupole coil for each transition

  14. Experiences of high school Hispanic girls in pursuit of science, technology, engineering, and mathematics-related coursework and careers

    Science.gov (United States)

    Vijil, Veronica G.

    2011-12-01

    An overall increased awareness of the importance of science, technology, engineering, and mathematics (STEM) has prompted attention toward the continued underrepresentation of Hispanic women in this field. The purpose of this collective case study was to explore the support systems, perceived barriers, and prior experiences influencing high school Hispanic girls' decisions to pursue advanced coursework and related careers through a career pathway in science, technology, engineering, and mathematics (STEM) areas. Specifically, participants were interviewed regarding their mathematics and science experiences in elementary and middle schools, as well as perceived supports and barriers to their choices to pursue STEM careers and advanced coursework. Results indicated that the participants linked their elementary and middle school experiences with their teachers rather than specific activities. Accolades such as certificates and good grades for academic achievement contributed to the girls' strong self-efficacy at an early age. The participants possessed self-discipline and self-confidence, using intrinsic motivation to pursue their goals. Support systems included families and a few teachers. Barriers were revealed in different forms including derogatory comments by boys in class, difficult curricula with limited tutors available for higher level courses, and receipt of financial assistance to attend a university of their choice.

  15. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  16. Egg and a lot of science: an interdisciplinary experiment

    Directory of Open Access Journals (Sweden)

    M. C. Gayer

    2014-08-01

    Full Text Available Egg and a lot of science: an interdisciplinary experimentGayer, M.C.1,2;Rodrigues, D.T.1,2; Escoto, D.F.1; Denardin, E.L.G.2, Roehrs, R.1,21Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, BrazilIntroduction: How to tell if an egg is rotten? How to calculate the volume of an egg? Because the rotten egg float? Why has this characteristic rotten egg smell? Because the gray-green color is formed on the surface of the cooked egg yolk? These issues are commonplace and unnoticed in day-to-day. Our grandmothers know how to tell if an egg is rotten or not, you just put the egg in a glass of water. If it is rotten floating, sinking is good. But why this happens? That they do not know answer. With only one egg chemical reactions work, macromolecules (proteins, density, membranes and conservation of matter. Hydrogen sulphide is responsible for the aroma of a freshly cooked egg. This gas as they break down the molecules of albumin, a protein present in the egg is formed. The color comes from a sulfide precipitation, this time with the Fe2+ ion contained in the yolk (Fe2+ + S2  FeS. The use of simple and easy to perform experiments, correlating various knowledge proves a very useful tool in science education. Objectives: Develop multidisciplinary learning contents through the problem. Materials and methods: The teacher provides students with a boiled egg, salt, a syringe and a cup, a plate and water. The teacher lays the aforementioned issues for students and allows them to exchange information with each other, seeking answers through experimentation. Results and discussion: Students engaged with the activity and interaction of groups in order to solve the proposed problem. Still, through trial and error have sought in various ways to find the answers. This tool takes the student to

  17. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    Science.gov (United States)

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  18. Astronomy TV outreach, CUBA experiences

    Science.gov (United States)

    Alvarez, Oscar

    2015-08-01

    As professional astronomer and science communicator, I want to share my personal experience communicating Astronomy and general science principles in maybe, the most popular science outreach devoted TV program in Cuba. It is broadcasted nationwide in a prime time schedule every Sunday. The Science Popularization on TV, is in a Third World Country hard to do if you want to produce attractive materials for a broad audience. Budgets constraints in most of the cases and lack of the technical equipment required to produce first class visual materials conspire, against motivation and creativity of local scientists and media professionals. A way to show the advance of the national scientific community in Science fields and connecting them in a friendly relation with a broad majority of the people, is to combine the wisdom and knowledge of the local scientists together with the most spectacular TV production of the first world countries. Commenting, analyzing and conveying the hard science into the public debate of the common citizens. Here is shown a way to convey cutting edge science to the general public, using limited resources to produce imaginative television productions, highlighting the development, knowledge and wisdom of the local scientists.

  19. On track for success: an innovative behavioral science curriculum model.

    Science.gov (United States)

    Freedy, John R; Carek, Peter J; Dickerson, Lori M; Mallin, Robert M

    2013-01-01

    This article describes the behavioral science curriculum currently in place at the Trident/MUSC Family Medicine Residency Program. The Trident/MUSC Program is a 10-10-10 community-based, university-affiliated program in Charleston, South Carolina. Over the years, the Trident/MUSC residency program has graduated over 400 Family Medicine physicians. The current behavioral science curriculum consists of both required core elements (didactic lectures, clinical observation, Balint groups, and Resident Grand Rounds) as well as optional elements (longitudinal patient care experiences, elective rotations, behavioral science editorial experience, and scholars project with a behavioral science focus). All Trident/MUSC residents complete core behavioral science curriculum elements and are free to participate in none, some, or all of the optional behavioral science curriculum elements. This flexibility allows resident physicians to tailor the educational program in a manner to meet individual educational needs. The behavioral science curriculum is based upon faculty interpretation of existing "best practice" guidelines (Residency Review Committee-Family Medicine and AAFP). This article provides sufficient curriculum detail to allow the interested reader the opportunity to adapt elements of the behavioral science curriculum to other residency training programs. While this behavioral science track system is currently in an early stage of implementation, the article discusses track advantages as well as future plans to evaluate various aspects of this innovative educational approach.

  20. Using Experiential Learning Through Science Experiments to Increase the Motivation of Students Classified as Emotionally Disturbed

    Science.gov (United States)

    Crozier, Marisa

    When learning is an adventure rather than an exercise in memorization, students can enjoy the process and be motivated to participate in classroom activities (Clem, Mennicke, & Beasley, 2014). Students classified as emotionally disturbed are prone to disruptive behaviors and struggle learning in a traditional science classroom consisting of lecture and demonstrations. They cannot maintain the necessary level of attention nor have the strong reading, writing or memory skills needed to succeed. Therefore, this study examined whether the use of experiential learning would increase on-task behavior and improve the motivation of emotionally disturbed, middle school students in science. Students completed four hands-on experiments aligned with the science curriculum. The data collection methods implemented were an observation checklist with corresponding journal entries, a summative assessment in the form of lab sheets, and student interviews. Through triangulation and analysis, data revealed that the students had more on-task behaviors, were engaged in the lessons, and improved grades in science.

  1. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  2. Science Teachers' Beliefs about the Influence of Their Summer Research Experiences on Their Pedagogical Practices

    Science.gov (United States)

    Miranda, Rommel J.; Damico, Julie B.

    2013-01-01

    This study sought to determine the beliefs that tenured, in-service high school science teachers hold about how their participation in a large mid-Atlantic university's 6-week summer research experiences for teachers (RET) program might influence their pedagogical practices. The findings show a number of factors that teachers believed helped them…

  3. One Science Teacher's Professional Development Experience: A Case Study Exploring Changes in Students' Perceptions of Their Fluency with Innovative Technologies

    Science.gov (United States)

    Ebenezer, Jazlin; Columbus, Russell; Kaya, Osman Nafiz; Zhang, Lin; Ebenezer, Devairakkam Luke

    2012-01-01

    The purpose of this case-study is to narrate a secondary science teacher's experience of his professional development (PD) education and training in innovative technologies (IT) in the context of engaging students in environmental research projects. The sources from which the narrative is derived include (1) the science teacher's reflective…

  4. The construction of emotional experience requires the integration of implicit and explicit emotional processes.

    Science.gov (United States)

    Quirin, Markus; Lane, Richard D

    2012-06-01

    Although we agree that a constructivist approach to emotional experience makes sense, we propose that implicit (visceromotor and somatomotor) emotional processes are dissociable from explicit (attention and reflection) emotional processes, and that the conscious experience of emotion requires an integration of the two. Assessments of implicit emotion and emotional awareness can be helpful in the neuroscientific investigation of emotion.

  5. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  6. Popularizing Natural Sciences by Means of Scientific Fair

    Directory of Open Access Journals (Sweden)

    Martin Cápay

    2011-12-01

    Full Text Available Science popularization is demanding from the financial as well as the time point of view. It is necessary to find the premises that would be easily available to general public. Another important step is to promote the event so that it would attract the audience. The preparation of scientific experiments itself also requires some financial resources. If we want to take advantage of these resources in the most useful and effective way, we have to find answers to the question: “What, where and how do we want to popularise?” In the paper, we describe one-day project aimed to popularization of scientific fields carried out by eight departments of the Faculty of Natural Sciences, Constantine the Philosopher University in Nitra. The project was named Scientific Fair – Science you can see, hear and experience. Its main goal was to present seven scientific fields - Physics, Informatics, Mathematics, Geography, Ecology, Chemistry and Biology. Popularization was carried out as experimental interactive activities unveiling the undisclosed corners of science. Their aim was to inspire the audience, arouse their interest in science and motivate the participants to cognitive activities. We introduce the idea of the project in detail concentrating mainly on informatics realized by the Department of Informatics.

  7. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    Science.gov (United States)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  8. Rethinking Environmental Science Education from Indigenous Knowledge Perspectives: An Experience with a Dene First Nation Community

    Science.gov (United States)

    Datta, Ranjan Kumar

    2018-01-01

    This auto-ethnographic article explores how land-based education might challenge Western environmental science education (ESE) in an Indigenous community. This learning experience was developed from two perspectives: first, land-based educational stories from Dene First Nation community Elders, knowledge holders, teachers, and students; and…

  9. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    Science.gov (United States)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  10. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  11. Student's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement

    Science.gov (United States)

    Ellwood, Robin; Abrams, Eleanor

    2017-02-01

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13-14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a

  12. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  13. Social infrastructure to integrate science and practice: the experience of the Long Tom Watershed Council

    Science.gov (United States)

    Rebecca L. Flitcroft; Dana C. Dedrick; Courtland L. Smith; Cynthia A. Thieman; John P. Bolte

    2009-01-01

    Ecological problem solving requires a flexible social infrastructure that can incorporate scientific insights and adapt to changing conditions. As applied to watershed management, social infrastructure includes mechanisms to design, carry out, evaluate, and modify plans for resource protection or restoration. Efforts to apply the best science will not bring anticipated...

  14. Spacecraft Fire Experiment (Saffire) Development Status

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2014-01-01

    requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the atmosphere. A computer......-g flammability limits compared to those obtained in NASA’s normal gravity material flammability screening test. The experiments will be conducted in Orbital Science Corporation’s Cygnus vehicle after it has deberthed from the International Space Station. Although the experiment will need to meet rigorous safety...

  15. Sport medicine and sport science practitioners' experiences of organizational change.

    Science.gov (United States)

    Wagstaff, C R D; Gilmore, S; Thelwell, R C

    2015-10-01

    Despite the emergence of and widespread uptake of a growing range of medical and scientific professions in elite sport, such environs present a volatile professional domain characterized by change and unprecedentedly high turnover of personnel. This study explored sport medicine and science practitioners' experiences of organizational change using a longitudinal design over a 2-year period. Specifically, data were collected in three temporally defined phases via 49 semi-structured interviews with 20 sport medics and scientists employed by three organizations competing in the top tiers of English football and cricket. The findings indicated that change occurred over four distinct stages; anticipation and uncertainty, upheaval and realization, integration and experimentation, normalization and learning. Moreover, these data highlight salient emotional, behavioral, and attitudinal experiences of medics and scientists, the existence of poor employment practices, and direct and indirect implications for on-field performance following organizational change. The findings are discussed in line with advances to extant change theory and applied implications for prospective sport medics and scientists, sport organizations, and professional bodies responsible for the training and development of neophyte practitioners. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    Science.gov (United States)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  17. Report on the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2

    Directory of Open Access Journals (Sweden)

    Daniel S. Katz

    2016-02-01

    Full Text Available This technical report records and discusses the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2. The report includes a description of the alternative, experimental submission and review process, two workshop keynote presentations, a series of lightning talks, a discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code review. For each topic, the report includes a list of tangible actions that were proposed and that would lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all areas of world-leading research today. The workshop participants then proceeded to explore different perspectives on the concept of sustainability. Key enablers and barriers of sustainable scientific software were identified from their experiences. In addition, recommendations with new requirements such as software credit files and software prize frameworks were outlined for improving practices in sustainable software engineering. There was also broad consensus that formal training in software development or engineering was rare among the practitioners. Significant strides need to be made in building a sense of community via training in software and technical practices, on increasing their size and scope, and on better integrating them directly into graduate education programs. Finally, journals can define and publish policies to improve reproducibility, whereas reviewers can insist that authors provide sufficient information and access to data and software to allow them reproduce the results in the paper. Hence a list of criteria is compiled for journals to provide to reviewers so as to make it easier to review software submitted for publication as a “Software Paper.” 

  18. Complementary social science? Quali-quantitative experiments in a Big Data world

    Directory of Open Access Journals (Sweden)

    Anders Blok

    2014-08-01

    Full Text Available The rise of Big Data in the social realm poses significant questions at the intersection of science, technology, and society, including in terms of how new large-scale social databases are currently changing the methods, epistemologies, and politics of social science. In this commentary, we address such epochal (“large-scale” questions by way of a (situated experiment: at the Danish Technical University in Copenhagen, an interdisciplinary group of computer scientists, physicists, economists, sociologists, and anthropologists (including the authors is setting up a large-scale data infrastructure, meant to continually record the digital traces of social relations among an entire freshman class of students ( N  > 1000. At the same time, fieldwork is carried out on friendship (and other relations amongst the same group of students. On this basis, the question we pose is the following: what kind of knowledge is obtained on this social micro-cosmos via the Big (computational, quantitative and Small (embodied, qualitative Data, respectively? How do the two relate? Invoking Bohr’s principle of complementarity as analogy, we hypothesize that social relations, as objects of knowledge, depend crucially on the type of measurement device deployed. At the same time, however, we also expect new interferences and polyphonies to arise at the intersection of Big and Small Data, provided that these are, so to speak, mixed with care. These questions, we stress, are important not only for the future of social science methods but also for the type of societal (self-knowledge that may be expected from new large-scale social databases.

  19. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  20. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  1. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  2. Social Infrastructure to Integrate Science and Practice: the Experience of the Long Tom Watershed Council

    Directory of Open Access Journals (Sweden)

    Rebecca L. Flitcroft

    2009-12-01

    Full Text Available Ecological problem solving requires a flexible social infrastructure that can incorporate scientific insights and adapt to changing conditions. As applied to watershed management, social infrastructure includes mechanisms to design, carry out, evaluate, and modify plans for resource protection or restoration. Efforts to apply the best science will not bring anticipated results without the appropriate social infrastructure. For the Long Tom Watershed Council, social infrastructure includes a management structure, membership, vision, priorities, partners, resources, and the acquisition of scientific knowledge, as well as the communication with and education of people associated with and affected by actions to protect and restore the watershed. Key to integrating science and practice is keeping science in the loop, using data collection as an outreach tool, and the Long Tom Watershed Council's subwatershed enhancement program approach. Resulting from these methods are ecological leadership, restoration projects, and partnerships that catalyze landscape-level change.

  3. Time accuracy requirements for fusion experiments: A case study at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Raupp, Gerhard; Behler, Karl; Eixenberger, Horst; Fitzek, Michael; Kollotzek, Horst; Lohs, Andreas; Lueddecke, Klaus; Mueller, Peter; Merkel, Roland; Neu, Gregor; Schacht, Joerg; Schramm, Gerold; Treutterer, Wolfgang; Zasche, Dieter; Zehetbauer, Thomas

    2010-01-01

    To manage and operate a fusion device and measure meaningful data an accurate and stable time is needed. As a benchmark, we suggest to consider time accuracy as sufficient if it is better than typical data errors or process timescales. This allows to distinguish application domains and chose appropriate time distribution methods. For ASDEX Upgrade a standard NTP method provides Unix time for project and operation management tasks, and a dedicated time system generates and distributes a precise experiment time for physics applications. Applying the benchmark to ASDEX Upgrade shows that physics measurements tagged with experiment time meet the requirements, while correlation of NTP tagged operation data with physics data tagged with experiment time remains problematic. Closer coupling of the two initially free running time systems with daily re-sets was an efficient and satisfactory improvement. For ultimate accuracy and seamless integration, however, continuous adjustment of the experiment time clock frequency to NTP is needed, within frequency variation limits given by the benchmark.

  4. Short-Term Research Experiences with Teachers in Earth and Planetary Sciences and a Model for Integrating Research into Classroom Inquiry

    Science.gov (United States)

    Morgan, P.; Bloom, J. W.

    2006-12-01

    For the past three summers, we have worked with in-service teachers on image processing, planetary geology, and earthquake and volcano content modules using inquiry methods that ended with mini-research experiences. Although almost all were science teachers, very few could give a reasonable definition of science at the start of the modules, and very few had a basic grasp of the processes of scientific research and could not include substantive scientific inquiry into their lessons. To build research understanding and confidence, an instructor-student interaction model was used in the modules. Studies have shown that children who participate in classrooms as learning and inquiry communities develop more complex understandings. The same patterns of complex understandings have resulted in similarly structured professional communities of teachers. The model is based on professional communities, emphasizing from the beginning that inquiry is a form of research. Although the actual "research" component of the modules was short, the teachers were identified as professionals and researchers from the start. Research/inquiry participation is therefore an excellent example by which to allow their teachers to learn. Initially the teachers were very reluctant to pose questions. As they were encouraged to share, collaborate, and support each other, the role of the instructor became less of a leader and more of a facilitator, and the confidence of the teachers as professionals and researchers grew. One teacher even remarked, "This is how we should be teaching our kids!' Towards the end of the modules the teachers were ready for their mini- research projects and collaborated in teams of 2-4. They selected their own research topics, but were guided toward research questions that required data collection (from existing studies), some data manipulation, interpretation, and drawing conclusions with respect to the original question. The teachers were enthusiastic about all of their

  5. Capstone Interdisciplinary Team Project: A Requirement for the MS in Sustainability Degree

    Science.gov (United States)

    Jiji, Latif M.; Schonfeld, Irvin Sam; Smith, George A.

    2015-01-01

    Purpose: This paper aims to describe experience gained with a required six-credit year-long course, the Capstone Interdisciplinary Team Project, a key component of the Master of Science (MS) in Sustainability degree at the City College of New York. A common feature of sustainability problems is their interdisciplinary nature. Solutions to…

  6. Material Science Experiments on Mir

    Science.gov (United States)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  7. The Impact of Nursing Students' Prior Chemistry Experience on Academic Performance and Perception of Relevance in a Health Science Course

    Science.gov (United States)

    Boddey, Kerrie; de Berg, Kevin

    2015-01-01

    Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…

  8. Scientific literacy: Role of natural history studies in constructing understanding of the nature of science

    Science.gov (United States)

    Lutz, Martha Victoria Rosett

    2002-01-01

    Scientific literacy is a central goal of science education. One purpose of this investigation was to reevaluate the definition of 'scientific literacy.' Another purpose was to develop and implement new curriculum involving natural history experiments with insects, with the goal of allowing students opportunities to construct an understanding of the nature of science, a crucial aspect of scientific literacy. This investigation was a qualitative case study. Methods of data collection included direct observations, analysis of sketches and written products created by students and class-room teachers, and analysis of audio tapes. Major findings include: (1) Scientific literacy is generally defined by lists of factual information which students are expected to master. When asked to evaluate their knowledge of selected items on a list published in a science education reform curriculum guide, 15 practicing scientists reported lack of familiarity or comprehension with many items, with the exception of items within their areas of specialization. (2) Genuine natural history experiments using insects can be incorporated into the existing school schedule and need not require any increase in the budget for science materials. (3) Students as young as first through third grade can learn the manual techniques and conceptual skills necessary for designing and conducting original natural history experiments, including manipulating the insects, making accurate sketches, developing test able hypotheses, recording data, and drawing conclusions from their data. Students were generally enthusiastic both about working with live insects and also conducting genuine science experiments. (4) Girls appear both positive and engaged with natural history activities and may be more likely than boys to follow through on designing, conducting, and reporting on independent experiments. The results imply that a valid definition of scientific literacy should be based on the ability to acquire scientific

  9. Science and Community Engagement: Connecting Science Students with the Community

    Science.gov (United States)

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  10. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  11. Summary -- Experiments with Radioactive Beams Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.J. [Los Alamos National Lab., NM (United States); Wiescher, M. [Notre Dame Univ., IN (United States)

    1992-12-31

    During the course of the workshop, a wide range of futuristic radioactive-beam experiments were discussed. These extended from the study of electroweak interactions in nuclei to materials science, nuclear astrophysics, and a host of nuclear physics investigations. Emphasis was placed on illustrating how these prototypical experiments could be done, discussing what types of detection systems would be needed, exploring the new problems which would be confronting the radioactive beam experimenter, and better defining the beam requirements. Contained herein is a summary of these discussions.

  12. Science Operations Management

    Science.gov (United States)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  13. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  14. Experiencing the Implementation of New Inquiry Science Curricula

    Science.gov (United States)

    Ower, Peter S.

    Using a phenomenological methodology, a cohort of four experienced science teachers was interviewed about their experience transitioning from traditional, teacher and fact-centered science curricula to inquiry-based curricula. Each teacher participated in two interviews that focused on their teaching backgrounds, their experience teaching the prior traditional curriculum, and their experience teaching the new inquiry-based curriculum. The findings are presented as a narrative of each teachers' experience with the new curriculum implementation. Analyzing the data revealed four key themes. 1) The teachers felt trapped by the old curriculum as it did not align with their positive views of teaching science through inquiry. 2) The teachers found a way to fit their beliefs and values into the old and new curriculum. This required changes to the curriculum. 3) The teachers attempted to make the science curriculum as meaningful as possible for their students. 4) The teachers experienced a balancing act between their beliefs and values and the various aspects of the curriculum. The revealed essence of the curriculum transition is one of freedom and reconciliation of their beliefs. The teachers experienced the implementation of the new curriculum as a way to ensure their values and beliefs of science education were embedded therein. They treated the new curriculum as a malleable structure to impart their grander ideas of science education (e.g. providing important skills for future careers, creating a sense of wonder, future problem solving) to the students. Their changes were aligned with the philosophy of the curriculum kits they were implementing. Thus, the fidelity of the curriculum's philosophy was not at risk even though the curriculum kits were not taught as written. This study showed that phenomenological methods are able to reveal the relationship between a teacher's prior experiences, values and beliefs and their current instructional philosophy in science

  15. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    Science.gov (United States)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  16. On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat

    Science.gov (United States)

    Hua, H.

    2016-12-01

    Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.

  17. Comparing the Impact of Course-Based and Apprentice-Based Research Experiences in a Life Science Laboratory Curriculum†

    Science.gov (United States)

    Shapiro, Casey; Moberg-Parker, Jordan; Toma, Shannon; Ayon, Carlos; Zimmerman, Hilary; Roth-Johnson, Elizabeth A.; Hancock, Stephen P.; Levis-Fitzgerald, Marc; Sanders, Erin R.

    2015-01-01

    This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students’ interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers. PMID:26751568

  18. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics

    NARCIS (Netherlands)

    Barnhoorn, Jonathan Sebastiaan; Haasnoot, Erwin; Bocanegra, Bruno R.; van Steenbergen, Henk

    2015-01-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this

  19. Women, race, and science: The academic experiences of twenty women of color with a passion for science

    Science.gov (United States)

    Johnson, Angela C.

    Women of color drop out of science at higher rates than other students. This study is an ethnographic examination of why this occurs and how women of color can be supported in studying science. Through participant observation in science classes, labs, and a program supporting high-achieving students of color, as well as interviews with minority women science students, the student identities celebrated by science departments, as well as those embraced by my informants, were uncovered. Cultural norms of science classes often differed from those of the women in the study. Only one identity---apprentice research scientist---was celebrated in science settings, although others were tolerated. The women tended to either embrace the apprentice research scientist identity, form an alternative science-oriented identity, or never form a satisfying science student identity. Women who were more racially marked were more likely to fall into the second and third groups. This study uncovered difficulties which women students of color faced more than other science students. In addition, it uncovered several seemingly neutral institutional features of science lectures and labs which actually served to discourage or marginalize women students of color. It revealed values held in common by the women in the study and how those characteristics (especially altruism and pride and pleasure in academic challenge) led them to study science. It also revealed strategies used by the most successful women science students, as well as by professors and programs most successful at supporting women of color in the study of science. Based on this study, increasing the participation of women of color in science holds the possibility of altering the basic values of science; however, institutional features and personal interactions within science departments tend to resist those changes, primarily by encouraging women of color to abandon their study of science.

  20. Reimagining publics and (non)participation: Exploring exclusion from science communication through the experiences of low-income, minority ethnic groups.

    Science.gov (United States)

    Dawson, Emily

    2018-01-01

    This article explores science communication from the perspective of those most at risk of exclusion, drawing on ethnographic fieldwork. I conducted five focus groups and 32 interviews with participants from low-income, minority ethnic backgrounds. Using theories of social reproduction and social justice, I argue that participation in science communication is marked by structural inequalities (particularly ethnicity and class) in two ways. First, participants' involvement in science communication practices was narrow (limited to science media consumption). Second, their experiences of exclusion centred on cultural imperialism (misrepresentation and 'Othering') and powerlessness (being unable to participate or change the terms of their participation). I argue that social reproduction in science communication constructs a narrow public that reflects the shape, values and practices of dominant groups, at the expense of the marginalised. The article contributes to how we might reimagine science communication's publics by taking inclusion/exclusion and the effects of structural inequalities into account.

  1. Measurement of Bitumen Viscosity in a Room-Temperature Drop Experiment: Student Education, Public Outreach and Modern Science in One

    Science.gov (United States)

    Widdicombe, A. T.; Ravindrarajah, P.; Sapelkin, A.; Phillips, A. E.; Dunstan, D.; Dove, M. T.; Brazhkin, V. V.; Trachenko, K.

    2014-01-01

    The slow flow of a viscous liquid is a thought-provoking experiment that challenges students, academics and the public to think about some fundamental questions in modern science. In the Queensland demonstration--the world's longest-running experiment, which has earned the Ig Nobel prize--one drop of pitch takes about ten years to fall, leading to…

  2. The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    Science.gov (United States)

    Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.

    2010-01-01

    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement

  3. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  4. Imaginative science education the central role of imagination in science education

    CERN Document Server

    Hadzigeorgiou, Yannis

    2016-01-01

    This book is about imaginative approaches to teaching and learning school science. Its central premise is that science learning should reflect the nature of science, and therefore be approached as an imaginative/creative activity. As such, the book can be seen as an original contribution of ideas relating to imagination and creativity in science education. The approaches discussed in the book are storytelling, the experience of wonder, the development of ‘romantic understanding’, and creative science, including science through visual art, poetry and dramatization. However, given the perennial problem of how to engage students (of all ages) in science, the notion of ‘aesthetic experience’, and hence the possibility for students to have more holistic and fulfilling learning experiences through the aforementioned imaginative approaches, is also discussed. Each chapter provides an in-depth discussion of the theoretical background of a specific imaginative approach (e.g., storytelling, ‘wonder-full’ s...

  5. Science as a Model for Rational, Legitimate Government

    Science.gov (United States)

    Branscomb, Lewis

    2009-05-01

    Before WWII science was largely dependent on support through teaching, and a few foundations. In the last half century, thanks to the contribution of applied science to winning the second world war, government became a deep-pockets source of support for science. While many academic scientists were deeply suspicious of government as a sponsor, the research universities saw an opportunity to build their institutions around government support. Government saw science as a means for sustaining its military primacy. Thus a marriage was consummated by partners -- science and politics -- who needed each other, but for quite different and to some degree conflicting motives. In the U.S. democracy, the relationship between science and politics has never been easy. The search for truth in science and for legitimacy in politics both require systems for generating public trust, but these systems are not the same, and indeed they are often incompatible. The most profound area of mismatch between science and politics is found not in conflicts over what kinds of research are deserving of public funding, but rather in conflicts over the advice government receives from scientific and technical experts. It is no accident that democratic America fostered progress in science and technology. Both American democracy and modern science are products of the Enlightenment, with its emphasis on reason and openness rather than on prejudice and traditional authority. American democracy has always benefited from a pragmatic willingness to learn from experience, very much as science relies on experiment. Progress in science is based transparency and accountability; these are also basic principles of democratic government. If science is corrupted by government, government itself is in danger of becoming corrupt. In recent years we seemed to be going down that path. It is no accident that President Obama and media commentators speak often of the ``new pragmatism,'' or that he appointed exceptionally

  6. Science writing heurisitc: A writing-to-learn strategy and its effect on student's science achievement, science self-efficacy, and scientific epistemological view

    Science.gov (United States)

    Caukin, Nancy S.

    The purpose of this mixed-methods study was to determine if employing the writing-to-learn strategy known as a "Science Writing Heuristic" would positively effect students' science achievement, science self-efficacy, and scientific epistemological view. The publications Science for All American, Blueprints for Reform: Project 2061 (AAAS, 1990; 1998) and National Science Education Standards (NRC 1996) strongly encourage science education that is student-centered, inquiry-based, active rather than passive, increases students' science literacy, and moves students towards a constructivist view of science. The capacity to learn, reason, problem solve, think critically and construct new knowledge can potentially be experienced through writing (Irmscher, 1979; Klein, 1999; Applebee, 1984). Science Writing Heuristic (SWH) is a tool for designing science experiences that move away from "cookbook" experiences and allows students to design experiences based on their own ideas and questions. This non-traditional classroom strategy focuses on claims that students make based on evidence, compares those claims with their peers and compares those claims with the established science community. Students engage in reflection, meaning making based on their experiences, and demonstrate those understandings in multiple ways (Hand, 2004; Keys et al, 1999, Poock, nd.). This study involved secondary honors chemistry students in a rural prek-12 school in Middle Tennessee. There were n = 23 students in the group and n = 8 in the control group. Both groups participated in a five-week study of gases. The treatment group received the instructional strategy known as Science Writing Heuristic and the control group received traditional teacher-centered science instruction. The quantitative results showed that females in the treatment group outscored their male counterparts by 11% on the science achievement portion of the study and the males in the control group had a more constructivist scientific

  7. The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)

    Science.gov (United States)

    McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.

  8. Liberal Arts and Sciences Graduates' Reflections on Their Cooperative Education Experiences and Career Self-Efficacy

    Science.gov (United States)

    Brantley, Jennifer

    2012-01-01

    The purpose of this phenomenological study was to provide insight into Liberal Arts and Sciences (LAS) graduates' reflections on their cooperative education (co-op) experiences and resulting career self-efficacy. Wichita State University houses a cooperative education program, the only one of its kind in the state of Kansas. This program…

  9. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  10. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    Science.gov (United States)

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  11. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science.

    Science.gov (United States)

    Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T

    2018-02-01

    Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.

  12. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  13. Using ESSEA Modules, Local Event Studies and Personal Learning Experiences in an Earth Systems Science Course for Preservice Middle School Teachers

    Science.gov (United States)

    Slattery, W.; Brown, D.

    2008-12-01

    Most science courses, including courses that provide preparation for pre-service K-12 teachers are only taught from a deductive big picture perspective. This method is fine for most abstract learners, but pre- service classroom educators that are being prepared to teach in middle school classrooms will be faced with the challenge of building science content knowledge in students that are concrete learners. For these K-12 students a better pedagogical practice is to use local real-world familiar places, issues and personal experience to connect student learning with more abstract concepts. To make it more likely that teachers have the requisite skills and pedagogical content knowledge to build K- 12 student science concept knowledge and science process skills we have integrated ESSEA modules that connect worldwide issues such as global climate change with local event studies chosen by learners. Some recent examples include how such local events such as landfill fires and suburban sprawl impact the local area's air, land, water and life. Course participants are able to choose a more personal route to understanding how their habits impact the global environment by participating in a three week learning experience called the Lifestyle Project. This experience asks students to incrementally reduce their use of heating or air-conditioning, the amount of waste going to landfills, to conserve electricity, drive less and eat less energy intensively. Pre-post content assessments indicate that students in this course scored significantly higher on post course content assessments and reported that by engaging in personal experience to global scale learning experiences they have a new appreciation for how personal choices impact the global environment and how to use local artifacts and issues to enhance K-12 student learning.

  14. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  15. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  16. Latina and European American Girls' Experiences with Academic Sexism and their Self-Concepts in Mathematics and Science During Adolescence.

    Science.gov (United States)

    Brown, Christia Spears; Leaper, Campbell

    2010-12-01

    The study investigated Latina and European American adolescent girls' (N = 345, M = 15.2 years, range = 13 to 18) experiences with academic sexism in mathematics and science (M/S) and their M/S perceived competence and M/S value (liking and importance). M/S academic sexism was based on girls' reported experiences hearing sexist comments about girls' abilities in math and science. Older European American adolescents, and both younger and older Latina adolescents, who experienced several instances of academic sexism felt less competent in M/S than girls who experienced less sexism (controlling for M/S grades). In addition, among older girls (regardless of ethnicity), those who experienced several instances of academic sexism valued M/S less than girls who experienced less sexism.

  17. Meeting report: Ocean 'omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013).

    Science.gov (United States)

    Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F

    2014-06-15

    The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.

  18. Social Media and Student Engagement in a Microgravity Planetary Science Experiment

    Science.gov (United States)

    Lane, S. S.; Lai, K.; Hoover, B.; Whitaker, A.; Tiller, C.; Benjamin, S.; Dove, A.; Colwell, J. E.

    2014-12-01

    The Collisional Accretion Experiment (CATE) is a planetary science experiment funded by NASA's Undergraduate Instrumentation Program (USIP). CATE is a microgravity experiment to study low-velocity collisions between cm-sized particles and 0.1-1.0 mm-sized particles in vacuum to better understand the conditions for accretion in the protoplanetary disk as well as collisions in planetary ring systems. CATE flew on three parabolic airplane flights in July, 2014, using NASA's "Weightless Wonder VI" aircraft. A significant part of the project was documenting the experience of designing, building, testing, and flying spaceflight hardware from the perspective of the undergraduates working on the experiment. The outreach effort was aimed at providing high schools students interested in STEM careers with a first-person view of hands-on student research at the university level. We also targeted undergraduates at the University of Central Florida to make them aware of space research on campus. The CATE team pursued multiple outlets, from social media to presentations at local schools, to connect with the public and with younger students. We created a website which hosted a blog, links to media publications that ran our story, videos, and galleries of images from work in the lab throughout the year. In addition the project had Facebook, Twitter, and Instagram accounts. These social media outlets had much more traffic than the website except during the flight week when photos posted on the blog generated significant traffic. The most effective means of communicating the project to the target audience, however, was through face-to-face presentations in classrooms. We saw a large increase in followers on Twitter and Instagram as the flight campaign got closer and while we were there. The main source of followers came after we presented to local high school students. These presentations were made by the undergraduate student team and the faculty mentors (Colwell and Dove).

  19. The Impact of E-Education on At Risk High School Students' Science Achievement and Experiences during Summer School Credit Recovery Courses

    Science.gov (United States)

    Phillips, Pamela Prevette

    Nationally, at risk students make up to 30% of U.S. students in public schools. Many at risk students have poor attendance, are disengaged from the learning environment and have low academic achievement. Educational failure occurs when students do not complete the required courses and as a result do not receive a high school diploma or a certificate of attendance. Many at risk students will not graduate; nearly one-third of all United States high school students have left the public school system before graduating, which has been referred to as a national crisis. Many at risk students fail science courses that are required for graduation, such as biology. Clearly, many students are not responding positively to the conditions in many public school classrooms, suggesting the need for different methods of educating at risk students, such as e-education. Three research questions guided the study: 1) Who are the students in an e-education, online summer school credit recovery course? 2) Do students' beliefs about their learning environment or other personal factors influence their academic achievement?, and 3) How do students describe their experiences of an e-education science course? This mixed methods study investigates thirty-two at risk students who were enrolled in one of three e-education science education courses (biology, earth science, and physical science) during a summer session in a rural county in a southeastern US state. These students failed their most recent science course taken in a traditional classroom setting. Artino's (2010) social-cognitive model of academic motivation and emotion was used as a theoretical framework to highlight the salient motivational factors toward learning science (e.g., task characteristics, task value beliefs, positive emotions). Student data included pre and post tests for all e-education lessons, a final exam, survey data (Students Motivation towards Science Learning (SMTSL), time (on task and idle), field notes, and

  20. The motivations and experiences of students enrolled in online science courses at the community college

    Science.gov (United States)

    Ghosh, Urbi

    An important question in online learning involves how to effectively motivate and retain students in science online courses. There is a dearth of research and knowledge about the experiences of students enrolled in online science courses in community colleges which has impeded the proper development and implementation of online courses and retention of students in the online environment. This study sought to provide an understanding of the relationships among each of the following variables: self-efficacy, task value, negative-achievement emotions, self-regulation learning strategies (metacognition), learning strategy (elaboration), and course satisfaction to student's performance (course final grade). Bandura's social-cognitive theory was used as a framework to describe the relationships among students' motivational beliefs (perceived task value, self-efficacy, and self-regulation) and emotions (frustration and boredom) with the dependent variables (elaboration and overall course satisfaction). A mixed-method design was used with a survey instrumentation and student interviews. A variety of science online courses in biology, genetics, astronomy, nutrition, and chemistry were surveyed in two community colleges. Community colleges students (N = 107) completed a questionnaire during enrollment in a variety of online science online courses. Upon course completion, 12 respondents were randomly selected for follow-up in-depth interviews. Multiple regression results from the study indicate perceived task value and self-regulatory learning strategies (metacognition) were as important predictors for students' use of elaboration, while self-efficacy and the number of prior online courses was not significant predictors for students' elaboration when all four predictors were included. Frustration was a significant negative predictor of overall course satisfaction, and boredom unexpectedly emerged as a positive predictor when frustration was also in the model. In addition, the