WorldWideScience

Sample records for science education subject

  1. Biopolitics and the `subject' of labor in science education

    Science.gov (United States)

    Bazzul, Jesse

    2017-12-01

    Viewing science education as a site of biopolitical engagement—intervention into forces that seek to define, control, and exploit life (biopower)—requires that science educators ask after how individuals and populations are governed by technologies of power. In this paper, I argue that microanalyses, the analysis of everyday practices and discourses, are integral to biopolitical engagement, are needed to examine practices that constitute subjectivities and maintain oppressive social conditions. As an example of a microanalysis I will discuss how repetitive close-ended lab/assessment tasks, as well as discourses surrounding careers in science, can work to constitute students as depoliticized, self-investing subjects of human capital. I also explore the relationship between science education, (bio)labor and its relation to biopolitics, which remains an underdeveloped area of science education. This paper, part of my doctoral work, began to take shape in 2011, shortly after the 2008 economic crisis achieved a tiny breached in the thick neoliberal stupor of everyday (educational) life.

  2. Neoliberal ideology, global capitalism, and science education: engaging the question of subjectivity

    Science.gov (United States)

    Bazzul, Jesse

    2012-12-01

    This paper attempts to add to the multifaceted discussion concerning neoliberalism and globalization out of two Cultural Studies of Science Education journal issues along with the recent Journal of Research in Science Teaching devoted to these topics. However, confronting the phenomena of globalization and neoliberalism will demand greater engagement with relevant sociopolitical thought in fields typically outside the purview of science education. Drawing from thinkers Michel Foucault, Jean Baudrillard, Judith Butler, and Louis Althusser this paper attempts to extend some key ideas coming from Ken Tobin, Larry Bencze, and Lyn Carter and advocates science educators taking up notions of ideology, discourse, and subjectivity to engage globalization and neoliberalism. Subjectivity (and its constitution in science education) is considered alongside two relevant textbook examples and also in terms of its importance in formulating political and culturally relevant questions in science education.

  3. Tracing "Ethical Subjectivities" in Science Education: How Biology Textbooks Can Frame Ethico-Political Choices for Students

    Science.gov (United States)

    Bazzul, Jesse

    2015-02-01

    This article describes how biology textbooks can work to discursively constitute a particular kind of "ethical subjectivity." Not only do textbooks constrain the possibilities for thought and action regarding ethical issues, they also require a certain kind of "subject" to partake in ethical exercises and questions. This study looks at how ethical questions/exercises found in four Ontario textbooks require students and teachers to think and act along specific lines. These include making ethical decisions within a legal-juridical frame; deciding what kinds of research should be publically funded; optimizing personal and population health; and regulation through policy and legislation. While engaging ethical issues in these ways is useful, educators should also question the kinds of (ethical) subjectivities that are partially constituted by discourses of science education. If science education is going to address twenty-first century problems such as climate change and social inequality, educators need to address how the possibilities for ethical engagement afforded to students work to constitute specific kinds of "ethical actors."

  4. Piaget's epistemic subject and science education: Epistemological vs. psychological issues

    Science.gov (United States)

    Kitchener, Richard F.

    1993-06-01

    Many individuals claim that Piaget's theory of cognitive development is empirically false or substantially disconfirmed by empirical research. Although there is substance to such a claim, any such conclusion must address three increasingly problematic issues about the possibility of providing an empirical test of Piaget's genetic epistemology: (1) the empirical underdetermination of theory by empirical evidence, (2) the empirical difficulty of testing competence-type explanations, and (3) the difficulty of empirically testing epistemic norms. This is especially true of a central epistemic construct in Piaget's theory — the epistemic subject. To illustrate how similar problems of empirical testability arise in the physical sciences, I briefly examine the case of Galileo and the correlative difficulty of empirically testing Galileo's laws. I then point out some important epistemological similarities between Galileo and Piaget together with correlative changes needed in science studies methodology. I conclude that many psychologists and science educators have failed to appreciate the difficulty of falsifying Piaget's theory because they have tacitly adopted a philosophy of science at odds with the paradigm-case of Galileo.

  5. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  6. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  7. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  8. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  9. Sociology, Basis for the Secondary-School Subject of Social Sciences

    Directory of Open Access Journals (Sweden)

    Lieke Meijs

    2009-12-01

    Full Text Available This paper reformulates the question of ‘sociology, who needs it’ in two ways, The first question we address is that of the reason why the educational system itself did not come to sociology for help in their long quest for a clear-cut content of the subject. The second question is why sociology did not adopt the orphaned subject of social studies back in 1960. The answer to the first question lies in the vulnerability of a subject that is dependent for its continued existence on the political leanings of the day. This led to a new goal for the subject almost every decade: from social education in the sixties and social and political education in the seventies, to a focus on citizenship education in the nineties. Although the objective was renamed on several occasions, the prescriptive viewpoint is recognizable in each. This perspective is difficult to reconcile with a social science content. The answer to the second questions points towards Dutch social scientists with a strong focus on academic sociology and not for critical, policy or public sociology. This choice was also made in order to win the competition with psychologists and for the discipline to get rid of the poor image it had acquired in the 1960s. The new subject social sciences, with a strong focus on science made it possible for sociology to become the pillar of this new subject.

  10. IS THE INQUIRY-BASED SCIENCE EDUCATION THE BEST?

    Directory of Open Access Journals (Sweden)

    Milan Kubiatko

    2016-10-01

    Full Text Available The science education is fighting with a relatively big problem. Many academicians, teachers and also laic society are still perceiving difficulty in understanding of concepts from science subject and lack of interest about this group of subjects. In the past the teaching process was very formal focused on the memorizing of the facts without any deeper understanding of the processes in the nature. Pupils and students knew all definitions about concepts in the science subjects, but practical application was on the low level. The academicians, teachers and other people interested in the science education were eager to change system of education.

  11. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  12. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    Science.gov (United States)

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  13. Role of the epistemic subject in Piaget's genetic epistemology and its importance for science education

    Science.gov (United States)

    Niaz, Mansoor

    According to Piaget, a fundamental epistemological distinction must be made between the psychological and the epistemic subject. The epistemic subject is studied by the genetic epistemologist who charts development through a common universal rationality, which develops, whereas the psychological subject is studied by the developmental/cognitive psychologist by focusing on accidental contingencies surrounding particular people and their individual differences. The epistemic subject as compared to the psychological subject is an idealized abstraction, viz., that set of underlying epistemic structures common to everyone at the same level of development. The objective of this study is to investigate the degree to which investigators in science education conceptualize the difference between the epistemic and the psychological subjects. It is argued that just as the ideal gas law (based on the theoretical formulation of Maxwell and Boltzmann) provides a general model to which the real gases approximate under different experimental conditions, so we can consider (by abduction) the epistemic subject to be an ideal knower to which the real (psychological) subjects approximate to varying degrees. The difference between the epistemic and the psychological subjects, however, cannot be used as an epistemological shield in defense of Piagetian theory. Any test of the Piagetian theory must involve psychological or real subjects. Empirical testability, however, need not be equated to being scientific. An analogy is drawn between Galileo's idealization, which led to the discovery of the law of free-fall, and Piaget's epistemic subject. Research conducted in science education shows that at least for some critics the wide variations in the age at which individuals acquire the different Piagetian stages is crucial for rejecting the theory. It is argued that the real issue is not the proportion of heterogeneity but the understanding that Piaget, by neglecting individual differences

  14. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  15. Pharmacy students' perceptions of natural science and mathematics subjects.

    Science.gov (United States)

    Prescott, Julie; Wilson, Sarah Ellen; Wan, Kai-Wai

    2014-08-15

    To determine the level of importance pharmacy students placed on science and mathematics subjects for pursuing a career in pharmacy. Two hundred fifty-four students completed a survey instrument developed to investigate students' perceptions of the relevance of science and mathematics subjects to a career in pharmacy. Pharmacy students in all 4 years of a master of pharmacy (MPharm) degree program were invited to complete the survey instrument. Students viewed chemistry-based and biology-based subjects as relevant to a pharmacy career, whereas mathematics subjects such as physics, logarithms, statistics, and algebra were not viewed important to a career in pharmacy. Students' experience in pharmacy and year of study influenced their perceptions of subjects relevant to a pharmacy career. Pharmacy educators need to consider how they can help students recognize the importance of scientific knowledge earlier in the pharmacy curriculum.

  16. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  17. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  18. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  19. Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-01-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…

  20. Victorian Certificate of Education: Mathematics, Science and Gender

    Science.gov (United States)

    Cox, Peter J.; Leder, Gilah C.; Forgasz, Helen J.

    2004-01-01

    Gender differences in participation and performance at "high stakes" examinations have received much public attention, which has often focused on mathematics and science subjects. This paper describes the innovative forms of assessment introduced into mathematics and science subjects within the Victorian Certificate of Education (VCE)…

  1. Neoliberal Ideology, Global Capitalism, and Science Education: Engaging the Question of Subjectivity

    Science.gov (United States)

    Bazzul, Jesse

    2012-01-01

    This paper attempts to add to the multifaceted discussion concerning neoliberalism and globalization out of two Cultural Studies of Science Education journal issues along with the recent Journal of Research in Science Teaching devoted to these topics. However, confronting the phenomena of globalization and neoliberalism will demand greater…

  2. Enhancing student engagement to positively impact mathematics anxiety, confidence and achievement for interdisciplinary science subjects

    Science.gov (United States)

    Everingham, Yvette L.; Gyuris, Emma; Connolly, Sean R.

    2017-11-01

    Contemporary science educators must equip their students with the knowledge and practical know-how to connect multiple disciplines like mathematics, computing and the natural sciences to gain a richer and deeper understanding of a scientific problem. However, many biology and earth science students are prejudiced against mathematics due to negative emotions like high mathematical anxiety and low mathematical confidence. Here, we present a theoretical framework that investigates linkages between student engagement, mathematical anxiety, mathematical confidence, student achievement and subject mastery. We implement this framework in a large, first-year interdisciplinary science subject and monitor its impact over several years from 2010 to 2015. The implementation of the framework coincided with an easing of anxiety and enhanced confidence, as well as higher student satisfaction, retention and achievement. The framework offers interdisciplinary science educators greater flexibility and confidence in their approach to designing and delivering subjects that rely on mathematical concepts and practices.

  3. COMPUTER SCIENCE IN THE EDUCATION OF UKRAINE: FORMATION PROSPECTS

    OpenAIRE

    Viktor Shakotko

    2016-01-01

    The article deals with the formation of computer science as science and school subject as well in the system of education in Ukraine taking into consideration the development tendencies of this science in the world. The introduction of the notion« information technology», «computer science» and «informatics science» into the science, their correlation and the peculiarities of subject sphere determination are analyzed through the historical aspect. The author considers the points of view conce...

  4. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  5. The paradox of un/making science people: practicing ethico-political hesitations in science education

    Science.gov (United States)

    Wallace, Maria F. G.

    2018-03-01

    Over the years neoliberal ideology and discourse have become intricately connected to making science people. Science educators work within a complicated paradox where they are obligated to meet neoliberal demands that reinscribe dominant, hegemonic assumptions for producing a scientific workforce. Whether it is the discourse of school science, processes of being a scientist, or definitions of science particular subjects are made intelligible as others are made unintelligible. This paper resides within the messy entanglements of feminist poststructural and new materialist perspectives to provoke spaces where science educators might enact ethicopolitical hesitations. By turning to and living in theory, the un/making of certain kinds of science people reveals material effects and affects. Practicing ethicopolitical hesitations prompt science educators to consider beginning their work from ontological assumptions that begin with abundance rather than lack.

  6. Implementation of small group discussion as a teaching method in earth and space science subject

    Science.gov (United States)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  7. Using hierarchical linear models to test differences in Swedish results from OECD’s PISA 2003: Integrated and subject-specific science education

    Directory of Open Access Journals (Sweden)

    Maria Åström

    2012-06-01

    Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.

  8. Problems and Prospects of Science Education in Bangladesh

    Science.gov (United States)

    Choudhury, Shamima K.

    2009-04-01

    Scientific and technological know-how, not the amount of natural resources, determines the development of a country. Bangladesh, with insignificant natural resources and a huge population on a small piece of land, can be developed through scientific and technological means. Whereas it was once the most sought-after subject at secondary and postsecondary levels, science is losing its appeal in an alarming shift of choice. Problems in science education and possible solutions for Bangladesh, which has limited resources for encouraging science education, are presented.

  9. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  10. Computer Science Education in Secondary Schools--The Introduction of a New Compulsory Subject

    Science.gov (United States)

    Hubwieser, Peter

    2012-01-01

    In 2004 the German state of Bavaria introduced a new compulsory subject of computer science (CS) in its grammar schools ("Gymnasium"). The subject is based on a comprehensive teaching concept that was developed by the author and his colleagues during the years 1995-2000. It comprises mandatory courses in grades 6/7 for all students of…

  11. Computer Science (CS) in the Compulsory Education Curriculum: Implications for Future Research

    Science.gov (United States)

    Passey, Don

    2017-01-01

    The subject of computer science (CS) and computer science education (CSE) has relatively recently arisen as a subject for inclusion within the compulsory school curriculum. Up to this present time, a major focus of technologies in the school curriculum has in many countries been on applications of existing technologies into subject practice (both…

  12. Leyla and Mahmood--Emotions in Social Science Education

    Science.gov (United States)

    Blennow, Katarina

    2018-01-01

    Purpose: The paper explores what emotions do in social science education through two specific cases and discusses the relation between emotion and politicization in the subject education. Method/approach: The cases are selected from an on-going dissertation project that uses interviews, video and observations in examining how social science…

  13. From object to subject: hybrid identities of indigenous women in science

    Science.gov (United States)

    McKinley, Elizabeth

    2008-12-01

    The use of hybridity today suggests a less coherent, unified and directed process than that found in the Enlightenment science's cultural imperialism, but regardless of this neither concept exists outside power and inequality. Hence, hybridity raises the question of the terms of the mixture and the conditions of mixing. Cultural hybridity produced by colonisation, under the watchful eye of science at the time, and the subsequent life in a modern world since does not obscure the power that was embedded in the moment of colonisation. Indigenous identities are constructed within and by cultural power. While we all live in a global society whose consequences no one can escape, we remain unequal participants and globalisation remains an uneven process. This article argues that power has become a constitutive element in our own hybrid identities in indigenous people's attempts to participate in science and science education. Using the indigenous peoples of Aotearoa New Zealand (called Māori) as a site of identity construction, I argue that the move from being the object of science to the subject of science, through science education in schools, brings with it traces of an earlier meaning of `hybridity' that constantly erupts into the lives of Māori women scientists.

  14. The Subject of Culture Within the Objective Scope of the Philosophy of Education

    Directory of Open Access Journals (Sweden)

    Svitlana Cherepanova

    2017-09-01

    Full Text Available In the article it is pointed out that European and worldwide integration processes, the informatization and the competitive character of all the spheres of social life require the overcoming of the tendency of “catching up” that is characteristic of Ukraine — in favour of leaving behind the transformation of the educational sphere, especially the pedagogical one. The attitude of a human being to the world contains theoretical (knowledge and ideas and practical aspects. Created in the process of social development new establishments, things, technologies have a human content; implement human subjectivity — knowledge, intellect, feelings, thinking, volition, convictions, objectives etc. Under discordant challenges of globalization, the philosophy of education can provide an adequate answer, approaches and objectives. The philosophy of education functions as a combination of world view theories (ideas, scientific, cultural, value, moral and ethical principles that predetermine not only the content of education but also a certain type of personality… This takes into account the peculiarities of technogenic (western and traditional (eastern cultures, that is the type of personality: individualistic (the West, collectivistic (the East. The methodological prospects are determined by the correlation of humanitarian, dialogical, synergetic paradigms, the philosophic anthropology and ontology with the accent on culture creation as overcoming the boundaries of the possible (cognition, activity creation of the being by means of culture. The humanitarian and culture creating strategies of the philosophy of education are grounded as conceptually reasonable: integrity and interaction of basic being and value concepts (man-science-culture-art-the style of thinking and objectives — the formation of a personality as a subject of culture. The formation of the subject of culture takes place in a certain social community, among moral rules, customs and

  15. Educational challenges of molecular life science: Characteristics and implications for education and research.

    Science.gov (United States)

    Tibell, Lena A E; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.

  16. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  17. ROLE OF INTERNET - RESOURCES IN FORMING OF ECOLOGICAL KNOWLEDGE AT THE STUDY OF NATURAL SCIENCES SUBJECTS

    Directory of Open Access Journals (Sweden)

    Olga M. Naumenko

    2013-06-01

    Full Text Available The problem of internet resources application for forming of pupils ecological knowledge at the study of natural sciences subjects is considered. It is noticed, that distribution of ecological knowledge and development of ecological education became the near-term tasks of school education, taking into account a global ecological crisis. It is therefore important to use in school preparation all possibilities that allow to promote the level of ecological knowledge of students and to influence the same on forming of modern views in relation to environmental preservation. Considerable attention is given to advices for the teachers of natural sciences subjects in relation to methodology of the internet resources use at preparation and realization of practical and laboratory works and other forms of educational-searching activity of students.

  18. Under-Representation of Women in Science: From Educational, Feminist and Scientific Views

    Science.gov (United States)

    Sarseke, Gulnar

    2018-01-01

    The article aims to explore the main reasons why women are under-represented in science, technology, engineering, and mathematics (STEM) subjects and careers. The article critically analyzes three approaches: educational, feminist, and scientific. This work highlights that the subject "gender and science" has been looked at for at least…

  19. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    Science.gov (United States)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  20. From Professional Competencies to Capacity: A Study of Education and Training for Subject Specialists

    Directory of Open Access Journals (Sweden)

    Ming-Hsin Phoebe Chiu

    2009-12-01

    Full Text Available Subject specialists are important assets in academic and research libraries. They possess not only the specialized knowledge of a particular subject field, but also the skills in library and information services. Looming shortage of qualified subject specialists resulting from the retirement of current professionals, most likely the baby-boomer generation, persuasively suggests that education and training are in urgent need of rethinking. This empirical study was conducted within the context of Library and Information Science education and academic librarianship in North America. Survey, content analysis, and focus group were employed as data collection methods. This study aims to analyze the status of LIS education for subject specialists, education needs and personal attributes of subject specialists, and the qualifications and responsibilities of becoming subject specialists. The goal of the study is to understand the knowledge, skills, and attitude of becoming subject specialists. Results of the study may provide insight into planning of formal curriculum and on-the-job training. [Article content in Chinese

  1. Informal and Non-formal Education: An Outline of History of Science in Museums

    Science.gov (United States)

    Filippoupoliti, Anastasia; Koliopoulos, Dimitris

    2014-04-01

    Although a growing number of research articles in recent years have treated the role of informal settings in science learning, the subject of the history of science in museums and its relationship to informal and non-formal education remains less well explored. The aim of this review is to assemble the studies of history of science in science museums and explore the opportunities for the further use of the history of science in science museum education practice.

  2. Linking Teaching in Mathematics and the Subjects of Natural Science

    DEFF Research Database (Denmark)

    Michelsen, Claus

    2017-01-01

    teaching programs. This is partly due to the lack of a framework for integrating productive ideas across the disciplines. This paper focus on how to grasp the challenges of an interdisciplinary approach to teaching in mathematics and the subjects of natural science. Based on contemporary mathematics...... and science education we design a didactical framework for interdisciplinary teaching centered on modeling activities across mathematics and the disciplines of natural science. To exemplify the potential of the framework we present a case study of an intensive in-service teacher-training program...... for mathematics and biology teachers. The teachers were presented to the didactical framework and in pairs of two, one mathematics teacher and one biology teacher; they designed and implemented interdisciplinary mathematicsbiology teaching sequences. The teachers’ reports on their development and implementation...

  3. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  4. Defining the Relationship of Student Achievement Between STEM Subjects Through Canonical Correlation Analysis of 2011 Trends in International Mathematics and Science Study (TIMSS) Data

    Science.gov (United States)

    O'Neal, Melissa Jean

    Canonical correlation analysis was used to analyze data from Trends in International Mathematics and Science Study (TIMSS) 2011 achievement databases encompassing information from fourth/eighth grades. Student achievement in life science/biology was correlated with achievement in mathematics and other sciences across three analytical areas: mathematics and science student performance, achievement in cognitive domains, and achievement in content domains. Strong correlations between student achievement in life science/biology with achievement in mathematics and overall science occurred for both high- and low-performing education systems. Hence, partial emphases on the inter-subject connections did not always lead to a better student learning outcome in STEM education. In addition, student achievement in life science/biology was positively correlated with achievement in mathematics and science cognitive domains; these patterns held true for correlations of life science/biology with mathematics as well as other sciences. The importance of linking student learning experiences between and within STEM domains to support high performance on TIMSS assessments was indicated by correlations of moderate strength (57 TIMSS assessments was indicated by correlations of moderate strength (57 mathematics, and other sciences. At the eighth grade level, students who built increasing levels of cognitive complexity upon firm foundations were prepared for successful learning throughout their educational careers. The results from this investigation promote a holistic design of school learning opportunities to improve student achievement in life science/biology and other science, technology, engineering, and mathematics (STEM) subjects at the elementary and middle school levels. While the curriculum can vary from combined STEM subjects to separated mathematics or science courses, both professional learning communities (PLC) for teachers and problem-based learning (PBL) for learners can be

  5. Towards a truer multicultural science education: how whiteness impacts science education

    Science.gov (United States)

    Le, Paul T.; Matias, Cheryl E.

    2018-03-01

    The hope for multicultural, culturally competent, and diverse perspectives in science education falls short if theoretical considerations of whiteness are not entertained. Since whiteness is characterized as a hegemonic racial dominance that has become so natural it is almost invisible, this paper identifies how whiteness operates in science education such that it falls short of its goal for cultural diversity. Because literature in science education has yet to fully entertain whiteness ideology, this paper offers one of the first theoretical postulations. Drawing from the fields of education, legal studies, and sociology, this paper employs critical whiteness studies as both a theoretical lens and an analytic tool to re-interpret how whiteness might impact science education. Doing so allows the field to reconsider benign, routine, or normative practices and protocol that may influence how future scientists of Color experience the field. In sum, we seek to have the field consider the theoretical frames of whiteness and how it might influence how we engage in science education such that our hope for diversity never fully materializes.

  6. A comparison of science and mathematics teachers’ interpersonal behaviour with teachers of other subjects.

    NARCIS (Netherlands)

    Brok, den P.J.; Taconis, R.; Fisher, D.; Gilmer, P.J.; Czerniak, C.M.; Osborne, J.; Kyle, W.C.

    2008-01-01

    The differences in teacher interpersonal behavior between science classes and other subject classes in secondary education are investigated using the Questionnaire on Teacher Interaction (QTI). Multilevel analysis of variance was used on an existing Dutch data set containing 44,353 students and 605

  7. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  8. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  9. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  10. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  11. Gendered education in a gendered world: looking beyond cosmetic solutions to the gender gap in science

    Science.gov (United States)

    Sinnes, Astrid T.; Løken, Marianne

    2014-06-01

    Young people in countries considered to be at the forefront of gender equity still tend to choose very traditional science subjects and careers. This is particularly the case in science, technology, engineering and mathematics subjects (STEM), which are largely male dominated. This article uses feminist critiques of science and science education to explore the underlying gendered assumptions of a research project aiming to contribute to improving recruitment, retention and gender equity patterns in STEM educations and careers. Much research has been carried out to understand this gender gap phenomenon as well as to suggest measures to reduce its occurrence. A significant portion of this research has focused on detecting the typical "female" and "male" interest in science and has consequently suggested that adjustments be made to science education to cater for these interests. This article argues that adjusting science subjects to match perceived typical girls' and boys' interests risks being ineffective, as it contributes to the imposition of stereotyped gender identity formation thereby also imposing the gender differences that these adjustments were intended to overcome. This article also argues that different ways of addressing gender issues in science education themselves reflects different notions of gender and science. Thus in order to reduce gender inequities in science these implicit notions of gender and science have to be made explicit. The article begins with an overview of the current situation regarding gender equity in some so- called gender equal countries. We then present three perspectives from feminist critiques of science on how gender can be seen to impact on science and science education. Thereafter we analyze recommendations from a contemporary research project to explore which of these perspectives is most prevalent.

  12. The contribution of IUPAC to polymer science education

    Czech Academy of Sciences Publication Activity Database

    Chan, C. H.; Fellows, C. M.; Hess, M.; Hiorns, R. C.; Hoven, V. P.; Russell, G. T.; dos Santos, C. G.; Šturcová, Adriana; Theato, P.

    2017-01-01

    Roč. 94, č. 11 (2017), s. 1618-1628 ISSN 0021-9584 Institutional support: RVO:61389013 Keywords : graduate education/research * internet /web-based learning * nomenclature/units/symbols * polymer chemistry Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.419, year: 2016

  13. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  14. Collaboration with a local organization on the subjects of energy/radiation field in high school science education

    International Nuclear Information System (INIS)

    Suzuki, Takahiro; Mori, Chizuo

    2005-01-01

    We, high school teachers, collaborated with a local organization, Chubu Atomic Power Conference (partly in co-operation with The Radiation Education Forum), in the education on the subjects of energy and radiation fields. In addition to the subjects concerned with radiations, cloud chamber and personal radiation-monitor, we developed a few new subjects, which are not directly connected themselves with radiations, for the purpose to widen the fields and to bring the high acceptability of the subjects in high school side. (author)

  15. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Farrell, W. M.

    2015-12-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  16. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.

    2015-01-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  17. Phenomenology as a potential methodology for subjective knowing in science education research

    OpenAIRE

    Koopman, Oscar

    2015-01-01

    This paper charts the journey that led to the author's discovery of phenomenology as a potential research methodology in the field of science education, and describes the impact on his own thinking and approach of his encounters with the work of Husserl and Heidegger, Merleau-Ponty and Van Manen. Drawing on this theoretical framework, the author argues that, as a methodology for investigating scientific thinking in relation to life experience, learning and curriculum design, phenomenology not...

  18. Ethics in science education: responsabilities and commitments with the child's moral development in the discussion of controversial subjects

    Directory of Open Access Journals (Sweden)

    Júlio César Castilho Razera

    2006-03-01

    Full Text Available A review of recent research outcomes presents in a sample of Science Education journals, shows that ethics and moral development issues have been neglected in the Science Education research. Based in theoretical referential directed toward this theme, and in a research carried out on controversial issues in the Science Teaching, such as those related to the debate creationism versus evolutionism, this paper tries to show the necessity and possibilities to take into consideration questions of this nature in classroom, in order to help developing the moral in students.

  19. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  20. NASA’s Universe of Learning: Engaging Subject Matter Experts to Support Museum Alliance Science Briefings

    Science.gov (United States)

    Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this

  1. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  2. A sociohistorical examination of George Herbert Mead's approach to science education.

    Science.gov (United States)

    Edwards, Michelle L

    2016-07-01

    Although George Herbert Mead is widely known for his social psychological work, his views on science education also represent a significant, yet sometimes overlooked contribution. In a speech delivered in March 1906 entitled "The Teaching of Science in College," Mead calls for cultural courses on the sciences, such as sociology of science or history of science courses, to increase the relevancy of natural and physical science courses for high school and university students. These views reflect Mead's perspective on a number of traditional dualisms, including objectivity versus subjectivity and the social sciences versus natural and physical sciences. Taking a sociohistorical outlook, I identify the context behind Mead's approach to science education, which includes three major influences: (1) German intellectual thought and the Methodenstreit debate, (2) pragmatism and Darwin's theory of evolution, and (3) social reform efforts in Chicago and the General Science Movement. © The Author(s) 2014.

  3. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  4. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  5. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  6. ACCOUNTING AND CONTROL AS SCIENCES AND ACADEMIC SUBJECTS IN ACCOUNTING AND ANALYTICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    V. Shvets

    2014-09-01

    Full Text Available The knowledge of accounting and control, analysis and audit as the main instruments of cognition and management functions is an integral part of economic education, science and practice and requires improving the training of the accounting personnel in accordance with the requirements of public administration and development of global information systems of business. Real European integration processes require high qualifications and competence of the teaching staff, the development of scientific schools, intellectualization of preparation of masters and PhDs based on the traditions of patriotism, democracy and self-sufficiency. We must form a new set of modern disciplines and economic specialties and optimize the network for universities on the basis of convergent-integrative structures (clusters in education on principles of transparency and openness. The priority should be the principle of continuity of professional and analytical accounting education for business managers and civil servants. Practical implementation of the Law of Ukraine "On Higher Education" and the principles of the Bologna Declaration while training specialists in accounting and auditing will somehow harmonize national education, improve and keep elements of own competitive advantages and enrich them by the best achievements of the world practice.

  7. How to link geography, cross-curricular approach and inquiry in science education at the primary schools

    Science.gov (United States)

    Karvánková, Petra; Popjaková, Dagmar

    2018-05-01

    Pupil research in school lessons in the sense of Inquiry-Based Education (IBE) is one of the constructivist approaches to education. Inquiry strengthens the positive approach of pupils to natural science subjects, encouraging them to study phenomena and processes taking place in the natural environment around them and use the acquired knowledge in their practical life. Geography as a school subject, due to the multidisciplinary nature of geography as a science, is close to natural sciences as well. This is because of the broadness of the subject of geographical studies, the complex (natural and cultural) landscape. The close links of geography to all cross-sectional themes make it a good support for teaching classical science subjects at schools such as mathematics, physics, chemistry or biology, environmental education. Moreover, the field teaching is one of the strong assets of the implementation of IBE in the school geography. Presented case study on the 'effect of noise on the surroundings' explores the facts mentioned above, in geography teaching. It verifies the pupils' knowledge and skills to adopt the basic principles of IBE in the practice. At the same time, it presents the concrete experiences how the children master the individual stages of IBE during the process of education.

  8. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  9. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  10. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  11. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  12. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  13. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  14. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  15. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  16. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  17. The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics: The cases of "library and information science" and "science & technology studies"

    NARCIS (Netherlands)

    Leydesdorff, L.; Bornmann, L.

    Normalization of citation scores using reference sets based on Web of Science subject categories (WCs) has become an established (“best”) practice in evaluative bibliometrics. For example, the Times Higher Education World University Rankings are, among other things, based on this operationalization.

  18. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  19. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  20. Exploring social networks of municipal science education stakeholders in Danish Science Municipalities

    DEFF Research Database (Denmark)

    von der Fehr, Ane

    development in the science and technology industry. Therefore, much effort has been invested to improve science education. The importance of school external stakeholders in development of education has been an increasingly emphasised, also in the field of science education. This has led to a growing focus......Science education development is a field of many interests and a key interest is recruitment of students who wish to pursue an education in science. This is an urgent societal demand in Denmark as well as internationally, since highly skilled science graduates are needed for the continuous...... involved in science education development. These municipal science education networks (MSE networks) were identified as important for development of science education in the SM project. Therefore, it was a key interest to explore these networks in order to investigate how the central stakeholders affected...

  1. Media education in the subject of civic education (design worksheets)

    OpenAIRE

    ZIFČÁKOVÁ, Monika

    2012-01-01

    This bachelor thesis deals with Media education and its participation in subject called Citizenship education, which is taught in the form of worksheets at elementary school. The main aim of the thesis is to create worksheets to the subject of Media education. The worksheets should contribute to develop knowledge and skills in the field of Media education. Topics for worksheets are chosen in appropriate form, so they can be taught in Citizenship education at elementary school. The topics are ...

  2. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  3. Informal and Non-Formal Education: An Outline of History of Science in Museums

    Science.gov (United States)

    Filippoupoliti, Anastasia; Koliopoulos, Dimitris

    2014-01-01

    Although a growing number of research articles in recent years have treated the role of informal settings in science learning, the subject of the history of science in museums and its relationship to informal and non-formal education remains less well explored. The aim of this review is to assemble the studies of history of science in science…

  4. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  5. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  6. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  7. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  8. PHYSICAL EDUCATION BETWEEN ART AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Goran Šekeljić

    2011-08-01

    Full Text Available Physical Education has its own definition inside the system of anthropomorphological sciences. But, there is a question whether it is possible to explain the phenomenon of physical education only inside of the system of abstrct atitudes based on an objective observation of reality or it is (at least some of its parts are an activity which has for an object the stimulation of human senses, mind or spirit. In this essey we discuss, in a very subjective way, the matter which concerns the culture in order to define the position of physical education inside the art system. The word "art" can relate to the variety of subjects, feelings or activities. Because of it, the fragments of art can be defined as creative interpretations of indefinite concepts or ideas. Having in mind the fact that in a world of art it is not possible to define standards that determine the art itself, according to the criteria which are generally accepted, it is still possible to make connection between sport and art by some rational observation. This work can enter the history thanks to the initiative to accept the sport as an aspect of art

  9. Science and Theatre Education: A Cross-Disciplinary Approach of Scientific Ideas Addressed to Student Teachers of Early Childhood Education

    Science.gov (United States)

    Tselfes, Vasilis; Paroussi, Antigoni

    2009-01-01

    There is, in Greece, an ongoing attempt to breach the boundaries established between the different teaching-learning subjects of compulsory education. In this context, we are interested in exploring to what degree the teaching and learning of ideas from the sciences' "internal life" (Hacking, in: Pickering (ed) "Science as practice…

  10. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  11. Single Subject Research: Applications to Special Education

    Science.gov (United States)

    Cakiroglu, Orhan

    2012-01-01

    Single subject research is a scientific research methodology that is increasingly used in the field of special education. Therefore, understanding the unique characteristics of single subject research methodology is critical both for educators and practitioners. Certain characteristics make single subject research one of the most preferred…

  12. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  13. Scale of Academic Emotion in Science Education: Development and Validation

    Science.gov (United States)

    Chiang, Wen-Wei; Liu, Chia-Ju

    2014-04-01

    Contemporary research into science education has generally been conducted from the perspective of 'conceptual change' in learning. This study sought to extend previous work by recognizing that human rationality can be influenced by the emotions generated by the learning environment and specific actions related to learning. Methods used in educational psychology were adopted to investigate the emotional experience of science students as affected by gender, teaching methods, feedback, and learning tasks. A multidisciplinary research approach combining brain activation measurement with multivariate psychological data theory was employed in the development of a questionnaire intended to reveal the academic emotions of university students in three situations: attending science class, learning scientific subjects, and problem solving. The reliability and validity of the scale was evaluated using exploratory and confirmatory factor analyses. Results revealed differences between the genders in positive-activating and positive-deactivating academic emotions in all three situations; however, these differences manifested primarily during preparation for Science tests. In addition, the emotions experienced by male students were more intense than those of female students. Finally, the negative-deactivating emotions associated with participation in Science tests were more intense than those experienced by simply studying science. This study provides a valuable tool with which to evaluate the emotional response of students to a range of educational situations.

  14. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  15. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  16. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  17. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  18. A philosophical examination of Mead's pragmatist constructivism as a referent for adult science education

    Science.gov (United States)

    Furbish, Dean Russel

    The purpose of this study is to examine pragmatist constructivism as a science education referent for adult learners. Specifically, this study seeks to determine whether George Herbert Mead's doctrine, which conflates pragmatist learning theory and philosophy of natural science, might facilitate (a) scientific concept acquisition, (b) learning scientific methods, and (c) preparation of learners for careers in science and science-related areas. A philosophical examination of Mead's doctrine in light of these three criteria has determined that pragmatist constructivism is not a viable science education referent for adult learners. Mead's pragmatist constructivism does not portray scientific knowledge or scientific methods as they are understood by practicing scientists themselves, that is, according to scientific realism. Thus, employment of pragmatist constructivism does not adequately prepare future practitioners for careers in science-related areas. Mead's metaphysics does not allow him to commit to the existence of the unobservable objects of science such as molecular cellulose or mosquito-borne malarial parasites. Mead's anti-realist metaphysics also affects his conception of scientific methods. Because Mead does not commit existentially to the unobservable objects of realist science, Mead's science does not seek to determine what causal role if any the hypothetical objects that scientists routinely posit while theorizing might play in observable phenomena. Instead, constructivist pragmatism promotes subjective epistemology and instrumental methods. The implication for learning science is that students are encouraged to derive scientific concepts based on a combination of personal experience and personal meaningfulness. Contrary to pragmatist constructivism, however, scientific concepts do not arise inductively from subjective experience driven by personal interests. The broader implication of this study for adult education is that the philosophically laden

  19. Science education and literacy: imperatives for the developed and developing world.

    Science.gov (United States)

    Webb, Paul

    2010-04-23

    This article explores current language-based research aimed at promoting scientific literacy and examines issues of language use in schools, particularly where science teaching and learning take place in teachers' and learners' second language. Literature supporting the premise that promoting reading, writing, and talking while "doing science" plays a vital role in effective teaching and learning of the subject is highlighted. A wide range of studies suggest that, whether in homogenous or language-diverse settings, science educators can make a significant contribution to both understanding science and promoting literacy.

  20. Students' Experienced Coherence Between Chemistry and Biology in Context-Based Secondary Science Education

    NARCIS (Netherlands)

    Boer, Hilde; Prins, Gjalt; Goedhart, M.J.; Boersma, Kerst

    2014-01-01

    Creating coherence between the content of science subjects has been a primary aim of certain reforms in science education and is often proposed in policy documents in various countries (Osborne and Dillon 2008 ; Schmidt et al. 2005 ; Osborne and Collins 2001 ). One of the problems that emerges from

  1. Troubling an embodied pedagogy in science education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Kristensen, Liv Kondrup

    2017-01-01

    This chapter explores the idea of using an embodied pedagogy for science teaching following the mandated introduction of physical activity across all subjects in Danish primary schools. While there is research available that explores the different ways of utilizing movement in school, very little...... for the intertwined relationship between the body and mind. Based on observations that were conducted in science lessons at a Danish primary school, and from talking with the students, we examine how an embodied pedagogy in science was implemented. We explore a specific instance where a group of 14-16 year old...... of that which is available applies to science education. The argument is made that an embodied pedagogy recognises and validates the centrality of the body in learning, but it is about more than making students move. Utilising such an approach requires one to recognise that embodiment shapes interactions...

  2. A distributed model: redefining a robust research subject advocacy program at the Harvard Clinical and Translational Science Center.

    Science.gov (United States)

    Winkler, Sabune J; Cagliero, Enrico; Witte, Elizabeth; Bierer, Barbara E

    2014-08-01

    The Harvard Clinical and Translational Science Center ("Harvard Catalyst") Research Subject Advocacy (RSA) Program has reengineered subject advocacy, distributing the delivery of advocacy functions through a multi-institutional, central platform rather than vesting these roles and responsibilities in a single individual functioning as a subject advocate. The program is process-oriented and output-driven, drawing on the strengths of participating institutions to engage local stakeholders both in the protection of research subjects and in advocacy for subjects' rights. The program engages stakeholder communities in the collaborative development and distributed delivery of accessible and applicable educational programming and resources. The Harvard Catalyst RSA Program identifies, develops, and supports the sharing and distribution of expertise, education, and resources for the benefit of all institutions, with a particular focus on the frontline: research subjects, researchers, research coordinators, and research nurses. © 2014 Wiley Periodicals, Inc.

  3. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  4. Democratizing science and technology education: Perspectives from the philosophy of education

    Science.gov (United States)

    Pierce, Clayton Todd

    This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the

  5. Career-Related Learning and Science Education: The Changing Landscape

    Science.gov (United States)

    Hutchinson, Jo

    2012-01-01

    Pupils ask STEM subject teachers about jobs and careers in science, but where else do they learn about work? This article outlines career-related learning within schools in England alongside other factors that influence pupils' career decisions. The effect of the Education Act 2011 will be to change career learning in schools. The impact on…

  6. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  7. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  8. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  9. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  10. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    Science.gov (United States)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In

  11. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  12. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  13. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  14. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  15. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  16. Science cafés. Cross-cultural adaptation and educational applications

    Directory of Open Access Journals (Sweden)

    M. Norton

    2009-10-01

    Full Text Available Tokyo Institute of Technology (TokyoTech has been developing a number of methodologies to teach graduate students the theory and practice of science communication since 2005. One of the tools used is the science café, where students are taught about the background based primarily on theoretical models developed in the UK. They then apply that knowledge and adapt it the Japanese cultural context and plan, execute and review outcomes as part of their course. In this paper we review 4 years of experience in using science cafés in this educational context; we review the background to the students’ decision-making and consensus-building process towards deciding on the style and subject to be used, and the value this has in illuminating the cultural influences on the science café design and implementation. We also review the value of the science café as an educational tool and conclude that it has contributed to a number of teaching goals related to both knowledge and the personal skills required to function effectively in an international environment.

  17. Who is the Subject in Educational Research?

    Directory of Open Access Journals (Sweden)

    Alicia Gurdián-Fernández

    2011-11-01

    Full Text Available In this paper I argue, first, that the identity of the researcher has an impact not only in the way she/he invThis article explains, in the first place, that the identity of the researcher not only influences his way to do research, but also the teaching processes and, therefore, training of future researchers. Secondly, it states that schools and teachers play a central role in the construction of identities. Third, this paper emphasizes that those engaged in educational research are not released from this responsibility, so this is an invitation to reflect on the following: What are our responsibilities in the process of identity construction? Who is the subject of education? Who is the subject of educational research? How inclusive is our notion of both the educational and the empirical subjects? Through the analysis of questions on topics such us: the subject-object relationship; the subject in educational research; the contribution of subjectivity; the contribution of phenomenology; among others, this paper explains that: a the intellectual autobiography is a great potential instrument to understand the direction of a research process and b focusing on people, their history, social relationships and environment, as subjects and not just as objects of study, is an epistemological, political and ethical movement, which recognizes the subject’s action in and on the world. Finally, this paper states that qualitative researchers should not only understand who they are, they are ethically obliged to make it explicitly.

  18. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  19. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  20. Basic science right, not basic science lite: medical education at a crossroad.

    Science.gov (United States)

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  1. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  2. The academic qualification of sexual education in biological science at IFRO Campus Colorado Do Oeste/RO

    Directory of Open Access Journals (Sweden)

    Juliana Negrello Rossarolla

    2018-03-01

    Full Text Available This article gives evidence of results in an initial training offered to the students from the seventh semestre in Biological Sciences course at the Federal Institute in Education, Science and Technology of Rondônia - IFRO - CampusColoradodo Oeste. This activity was developed during the IX Environmental Week, an event that took place at Campus in June, 2016. During the activity, the academics in Biological Sciences course carried out mini-courses in which was approached the subject of human sexuality for four classes from the first year students in Agricultural Technical Course integrated to High School. After completing the activities of Sexual Education that dealt with some topics such as: early sexual initiation, STIs (sexually transmitted infections, homophobia, sexual harassment, media exposure, gender difference, contraceptive methods, among others and after all the data were collected. For that, the students answered a questionnaire about the subject on sexuality, the contributions of this practice is in order to discuss situations related to the subject. After the analysis, was checked a great relevance of the theme proposed for the initial qualification of academics in order to them approach the subject in a significant way to teenagers who attend the schools in which these academics will be able to develop their activities. It was checked out that students from the Agricultural Course integrated to High School who was developing the course have a very restricted index of information about the subject that was handled it. This can be a reality that reaches many young people who attend the Basic Education in many Brazilian schools. On the other hand, the information obtained gave the academics and teachers from the Biological Sciences Course moments of reflection about the inclusion of contents that contemplate this subject in the school curriculum of Basic Education and of the higher course that they attend, as well as the need of a

  3. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  4. La educación como objeto de interés para las ciencias de la complejidad The education as a subject of interest of the science of complexity

    Directory of Open Access Journals (Sweden)

    Cecilia Dimaté Rodríguez

    2007-12-01

    Full Text Available Las ciencias de la complejidad se consideran hoy el punto más avanzado del estudio de las ciencias mismas, en tanto, con el desarrollo de sus temas se busca transformar las relaciones entre los seres humanos y su entorno en general, bajo el espectro de una construcción teórica enraizada en una visión multidisciplinar. La educación, como campo de producción y reproducción de saber, debería configurar también un objeto de estudio de las ciencias de la complejidad, sin embargo, las aproximaciones que desde las ciencias de la complejidad se han hecho al estudio de la educación han sido escasas y se han centrado esencialmente en una de sus corrientes denominada pensamiento complejo. El presente artículo aborda la temática de la educación en el marco de las ciencias de la complejidad que, necesariamente, lleva a la reflexión del papel que estas ciencias cumplen actualmente en la configuración del tema educativo.Today, sciences of the complexity are considered the most advanced point of the study of sciences themselves. Through the development of their subjects, each science searches to transform the relations between human beings and their general surroundings. This is done under the view of a theoretical construction deeply rooted in a multidisciplinar vision. The education as a field of production and reproduction of knowledge should also form part of the areas of study of sciences of the complexity. Nevertheless, the approaches from the sciences of the complexity geared towards the study of the education have been few and they have been centered essentially in one of its approaches denominated "complex thought". The following article tackles the education thematic in the framework of the sciences of the complexity that, necessarily, takes reflection of the role that is now used by these sciences to accomplish the configuration of the educational area.

  5. The ruins of neo-liberalism and the construction of a new (scientific) subjectivity

    Science.gov (United States)

    Lather, Patti

    2012-12-01

    Given my long-time interests in neoliberalism and questions of subjectivity, I am pleased to respond to Jesse Bazzul's paper, "Neoliberal Ideology, global capitalism, and science education: Engaging the question of subjectivity." In what follows, I first summarize what I see as Bazzul's contributions to pushing science education in `post' directions. I next introduce the concept of "post-neoliberalism" as a tool in this endeavor. Finally, I address what all of this might have to do with subjectivity in the context of science education. I speak as a much-involved veteran of a version of the science wars fought out in education research for the last decade (NRC 2002). My interest is to use this "battle" to think politics and science anew toward an engaged social science, without certainty, rethinking subjectivity, the unconscious and bodies where I ask "what kind of science for what kind of politics?"

  6. A Position Paper Joint Science Education Panel (IASc, INSA, NASI)

    Indian Academy of Sciences (India)

    user

    ogy and computer science, etc., are being introduced as substitutes for the fundamental subjects like biology, physics or mathematics. This practice is hollowing the .... absence of the required level of academic audit, the quality of education imparted at many of them is below the minimal expected levels. The categories 4-6 ...

  7. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  8. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  9. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  10. New concepts of science and medicine in science and technology studies and their relevance to science education.

    Science.gov (United States)

    Wang, Hsiu-Yun; Stocker, Joel F; Fu, Daiwie

    2012-02-01

    Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS) perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian) approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society. Copyright © 2011. Published by Elsevier B.V.

  11. New concepts of science and medicine in science and technology studies and their relevance to science education

    Directory of Open Access Journals (Sweden)

    Hsiu-Yun Wang

    2012-02-01

    Full Text Available Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society.

  12. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  13. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  14. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  15. Disciplinary analysis of nuclear engineering education for 21st century style science and technology

    International Nuclear Information System (INIS)

    Woo, Taeho

    2012-01-01

    The nuclear engineering education (NEE) is analyzed by the aspect of the advanced science and technology which is characterized by interdisciplinary R and D. The creative innovation is a goal of the education. This work is performed by the conceptual analysis and numerical analysis. Creativity and its innovation are represented as a critical role in the science and technology. So, the education should follow the characteristics of the creativity and its innovation philosophy. Using system dynamics (SD) method, the quantification of the education effect is performed. In addition, the dynamical simulation shows the expected situations of the education usefulness. The final result shows the highest value is 19.11 of Nuclear Industry Innovation. The value increases gradually. So, the education is well developed, as time goes on in this study. In this paper, the education of the nuclear science and technology is modelled for the interdisciplinary promotions in the nuclear industry. The conventional technology has focused on the unit subject and its related technologies. By the way, creativity and its innovation are shown as a critical role in the science and technology. Hence, the education should follow the characteristics of the creativity and its innovation philosophy. Following the characteristics of the 21 st style science and technology, it is necessary to construct the education program of the information technology (IT), nanotechnology (NT), and biotechnology (BT). (orig.)

  16. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  17. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  18. Research trends and issues in informal science education

    Science.gov (United States)

    Pinthong, Tanwarat; Faikhamta, Chatree

    2018-01-01

    Research in informal science education (ISE) become more interesting area in science education for a few decades. The main purpose of this research is to analyse research articles in 30 issues of top three international journals in science education; Journal of Research in Science Teaching, Science Education, and the International Journal of Science Education. The research articles during 2007 and 2016 were reviewed and analysed according to the authors' nationality, informal science education's research topics, research paradigms, methods of data collection and data analysis. The research findings indicated that there were 201 published papers related to informal science education, successfully submitted by 469 authors from 27 different countries. In 2008, there was no article related to informal science education. Statistical analyses showed that authors from USA are the most dominant, followed by UK and Israel. The top three ISE's research topics most frequently investigated by the researchers were regarding students' informal learning, public understanding in science, and informal perspectives, policies and paradigms. It is also found that theoretical framework used in informal science education which is becoming more strongly rooted is in a mix of the sociocultural and constructivist paradigms, with a growing acceptance of qualitative research methods and analyses.

  19. A Case Study of Beginning Science Teachers' Subject Matter (SMK) and Pedagogical Content Knowledge (PCK) of Teaching Chemical Reaction in Turkey

    Science.gov (United States)

    Usak, Muhammet; Ozden, Mustafa; Eilks, Ingo

    2011-01-01

    This paper describes a case study focusing on the subject matter knowledge, pedagogical content knowledge, and beliefs about science teaching of student teachers in Turkey at the start of their university education. The topic of interest was that of teaching chemical reactions in secondary chemistry education. A written test was developed which…

  20. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  1. Open Distribution of Virtual Containers as a Key Framework for Open Educational Resources and STEAM Subjects

    Science.gov (United States)

    Corbi, Alberto; Burgos, Daniel

    2017-01-01

    This paper presents how virtual containers enhance the implementation of STEAM (science, technology, engineering, arts, and math) subjects as Open Educational Resources (OER). The publication initially summarizes the limitations of delivering open rich learning contents and corresponding assignments to students in college level STEAM areas. The…

  2. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  3. A response to Annette Gough and Jesse Bazzul. Subverting subjectivity: an anti-neoliberal reformulation of science education for life

    Science.gov (United States)

    Levinson, Ralph

    2017-12-01

    In responding to Jesse Bazzul's and Annette Gough's articles I maintain that contemporary positivist science curricula cannot address the urgent issues of sustainability and biopower that confront us. Drawing on the writings and interpretations of Emmanuel Levinas I argue that contemplating the meaning of responsibility to the Other is a radically subversive activity and a means of moving from the neoliberal dominance of science education towards a science one steeped in social justice.

  4. Prospective Science Teachers' Subject-Matter Knowledge about Overflow Container

    Science.gov (United States)

    Ültay, Eser

    2016-01-01

    The purpose of this study was to determine prospective science teachers' subject-matter knowledge (SMK) about overflow container. This study was carried out in the form of a case study in spring term of the academic year of 2013-2014 with seven sophomore prospective science teachers who were studying at Elementary Science Teaching Department in…

  5. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  6. Sex Education as a Transversal Subject

    Science.gov (United States)

    Rabelo, Amanda Oliveira; Pereira, Graziela Raupp; Reis, Maria Amélia; Ferreira, António G.

    2015-01-01

    Currently, sex education is in many countries a transversal subject, in which the school becomes a privileged place for the implementation of policies that aim at promoting "public health." Its design as a cross-cutting subject envisages fostering the dissemination of these subjects in all pedagogical and curricular fields; however, we…

  7. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  8. Inquiry Based Science Education og den sociokulturelt forankrede dialog i naturfagsundervisningen

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino

    2012-01-01

    Through study, investigation and discussion of the concept Best Practice in science education (Ellebæk & Østergaard, 2009) it was shown, that the dialogue in the teaching sequences was an important factor for the children’s understanding, engagement and interest for the science subjects......). The method is central in the action research project NatSats, where focus is on chidren’s hypothesizing and the way teacher’s use dialogue in their teaching or guiding of children in kindergarten and primary school. Results from the project indicate that an open and interrogative dialogue based...... and phenomena. In this article we will discuss dialogue in the light of sociocultural learning theories, and relate it to Inquiry Based Science Education (IBSE), as the pedagogical and didactical method, which are promoted most strongly these years (e.g. in the inter-European Pollen and Fibonacci projects...

  9. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  10. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  11. 75 FR 13265 - National Board for Education Sciences

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  12. 75 FR 53280 - National Board for Education Sciences

    Science.gov (United States)

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  13. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  14. Science standards: The foundation of evolution education in the United States

    Directory of Open Access Journals (Sweden)

    Elizabeth Watts

    2016-12-01

    Full Text Available Science standards and textbooks have a huge impact on the manner in which evolution is taught in American classrooms. Standards dictate how much time and what points have to be dedicated to the subject in order to prepare students for state-wide assessments, while the textbooks will largely determine how the subject is presented in the classroom. In the United States both standards and textbooks are determined at the state-level through a political process. Currently there is a tremendous amount of pressure arising from anti-evolutionists in the United States to weaken or omit the teaching of evolution despite recommendations from central institutions such as the National Academy of Science. Results from the Program for International Student Assessment (PISA showed that not only are American students performing below average, but also that their performance is declining as they scored worse in 2012 than they did in 2010. Interestingly PISA also found that the internal variation within a country is often greater than between countries with a variation of up to 300 points, which is equivalent to seven years of education pointing to the extreme heterogeneous quality of education within a country (OECD, 2012. An implementation of strong standards would not only help to increase the average performance of American students but could also alleviate the vast discrepancy between the highest and lowest scoring groups of American students. Although the Next Generation Science Standards have been in existence since 2013 and A Framework for K-12 Science Education has been available to the public since 2011 many American states still continue to create their own standards that, according to the Fordham study, are well below par (Lerner et al., 2012. Due to the political nature of the adoption procedure of standards and textbooks, there are many opportunities for interested individuals to get involved in the process of improving these fundamental elements of

  15. Perspectives of the Sociology of Scientific Knowledge and Science Education: a study of Education Journals

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Meglhioratti

    2018-04-01

    Full Text Available Despite the fact that Science Teaching emphasizes the importance of researches in Epistemology and History of Science and also covers social aspects of the scientific construction, there are still relatively very few studies which are systematically based on perspectives from the Sociology of Science or from the Sociology of Scientific Knowledge. In this article, it has been outlined a brief history of the sociological perspectives of scientific knowledge, characterizing them as differentiationist, antidifferentiationist and tranversalist. Then, a bibliographical study was developed in journals Qualis A1 and A2 in the area of “Teaching” of CAPES, with emphasis in Science Teaching, from 2007 to 2016, aiming to understand how the sociological perspectives are present in science education. The search for articles which articulate sociological aspects and Science Education was done through use of search engines emerging from the accomplished historic, among them: Sociology of Science, Sociology of Scientific Knowledge, Ethnography, Laboratory Studies, Strong Program, Scientific Fields, Scientific Ethos, Actor-Network Theory, Social and Technical Networks, Latour, Bloor, Merton and Bourdieu. Through this research, we have identified 46 articles which have approaches with the subject. The articles were investigated by Content Analysis and were organized in the units of analysis: 1 Foundations of the sociology of knowledge; 2 Scientific Ethos; 3 Science Working System; 4 Sociogenesis of knowledge; 5 Strong Program of Sociology of Knowledge; 6 Laboratory studies and scientific practice; 7 Actor-Network Theory; 8 Bourdieusian Rationale; 9 Non-Bourdieusian tranversalist approaches; 10 Notes regarding the Sociology of Science. The units of analysis with the greatest number of articles were "Laboratory Studies and Scientific Practice" and "Actor-Network Theory", both closer to an antidifferentiationist perspective of the sociology of science, in which

  16. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  17. Teaching and Learning about Complex Systems in K-12 Science Education: A Review of Empirical Studies 1995-2015

    Science.gov (United States)

    Yoon, Susan A.; Goh, Sao-Ee; Park, Miyoung

    2018-01-01

    The study of complex systems has been highlighted in recent science education policy in the United States and has been the subject of important real-world scientific investigation. Because of this, research on complex systems in K-12 science education has shown a marked increase over the past two decades. In this systematic review, we analyzed 75…

  18. Contextual assessment in science education: Background, issues, and policy

    Science.gov (United States)

    Klassen, Stephen

    2006-09-01

    Contemporary assessment practices in science education have undergone significant changes in recent decades. The basis for these changes and the resulting new assessment practices are the subject of this two-part paper. Part 1 considers the basis of assessment that, more than 25 years ago, was driven by the assumptions of decomposability and decontextualization of knowledge, resulting in a low-inference testing system, often described as traditional. This assessment model was replaced not on account of direct criticism, but rather on account of a larger revolution - the change from behavioral to cognitive psychology, developments in the philosophy of science, and the rise of constructivism. Most notably, the study of the active cognitive processes of the individual resulted in a major emphasis on context in learning and assessment. These changes gave rise to the development of various contextual assessment methodologies in science education, for example, concept mapping assessment, performance assessment, and portfolio assessment. In Part 2, the literature relating to the assessment methods identified in Part 1 is reviewed, revealing that there is not much research that supports their validity and reliability. However, encouraging new work on selected-response tests is forming the basis for reconsideration of past criticisms of this technique. Despite the major developments in contextual assessment methodologies in science education, two important questions remain unanswered, namely, whether grades can be considered as genuine numeric quantities and whether the individual student is the appropriate unit of assessment in public accountability. Given these issues and the requirement for science assessment to satisfy the goals of the individual, the classroom, and the society, tentative recommendations are put forward addressing these parallel needs in the assessment of science learning.

  19. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  20. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  1. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  2. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  3. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  4. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  5. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  6. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  7. Disciplinary analysis of nuclear engineering education for 21{sup st} century style science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Taeho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering; Yoon, Jaehwan [2G-PEM Engineers, Inc., Seoul (Korea, Republic of)

    2012-03-15

    The nuclear engineering education (NEE) is analyzed by the aspect of the advanced science and technology which is characterized by interdisciplinary R and D. The creative innovation is a goal of the education. This work is performed by the conceptual analysis and numerical analysis. Creativity and its innovation are represented as a critical role in the science and technology. So, the education should follow the characteristics of the creativity and its innovation philosophy. Using system dynamics (SD) method, the quantification of the education effect is performed. In addition, the dynamical simulation shows the expected situations of the education usefulness. The final result shows the highest value is 19.11 of Nuclear Industry Innovation. The value increases gradually. So, the education is well developed, as time goes on in this study. In this paper, the education of the nuclear science and technology is modelled for the interdisciplinary promotions in the nuclear industry. The conventional technology has focused on the unit subject and its related technologies. By the way, creativity and its innovation are shown as a critical role in the science and technology. Hence, the education should follow the characteristics of the creativity and its innovation philosophy. Following the characteristics of the 21{sup st} style science and technology, it is necessary to construct the education program of the information technology (IT), nanotechnology (NT), and biotechnology (BT). (orig.)

  8. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  9. On the almost inconceivable misunderstandings concerning the subject of value-free social science.

    Science.gov (United States)

    Black, Donald

    2013-12-01

    A value judgment says what is good or bad, and value-free social science simply means social science free of value judgments. Yet many sociologists regard value-free social science as undesirable or impossible and readily make value judgments in the name of sociology. Often they display confusion about such matters as the meaning of value-free social science, value judgments internal and external to social science, value judgments as a subject of social science, the relevance of objectivity for value-free social science, and the difference between the human significance of social science and value-free social science. But why so many sociologists are so value-involved - and generally so unscientific - is sociologically understandable: The closest and most distant subjects attract the least scientific ideas. And during the past century sociologists have become increasingly close to their human subject. The debate about value-free social science is also part of an epistemological counterrevolution of humanists (including many sociologists) against the more scientific social scientists who invaded and threatened to expropriate the human subject during the past century. © London School of Economics and Political Science 2013.

  10. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  11. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  12. Symposium 3 - Science Education “Leopoldo de Meis”: The Critical Importance of Science Education for Society

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Symposium 3 - Science Education “Leopoldo de Meis” Chair: Wagner Seixas da Silva, Universidade Federal do Rio de JaneiroAbstract:Three ambitious goals for science education:1. Enable all children to acquire the problem-solving, thinking, and communication skills of scientists – so that they can be productive and competitive in the new world economy.2. Generate a “scientific temper” for each nation, with scientifically trained people in many professions, ensuring the rationality and the tolerance essential for a democratic society.3. Help each nation generate new scientific knowledge and technology by casting the widest possible net for talent.My preferred strategy for the United States:1. Science education should have a much larger role in all school systems, but only if this science education is of a different kind than is experienced in most schools today.2. Making such a change will require a redefinition of what we mean by the term  “science education”.3. To create continually improving education systems, we will need much more collaborative, effective, and use-inspired education research - research that is focused on real school needs and that integrates the best school teachers into the work.4. Our best teachers need to have a much larger voice in helping to steer our national and state policies, as well as in our local school systems!

  13. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  14. [The politics of the self: psychological science and bourgeois subjectivity in 19th century Spain.].

    Science.gov (United States)

    Novella, Enric J

    2010-01-01

    This paper offers an analysis of the process of institutionalization of psychological knowledge in Spain following the educative reforms implemented during the second third of the 19th century, which prescribed its inclusion in the curricular program of the new secondary education. After a detailed examination of the theoretical orientation, the ideological assumptions and the socio-political connections of the contents transmitted to the students throughout the century, its militant spiritualism is interpreted as a highly significant attempt on the part of the liberal elites to articulate a pedagogy of subjectivity intended to counteract the trends toward reduction, naturalization and fragmentation of psychic life inherent to the development of modern science.

  15. Investigation of the Values Found in Primary Education Science and Technology Textbooks in Turkey

    Science.gov (United States)

    Benzer, Elif

    2013-01-01

    In this study, the value types of 6, 7 and 8 class text books which take place in the primary education science and technology education program, have been targeted for investigation for the present rate of these values in different textbooks, and, whether they changed in accordance with class variables (class, subject content, and divisions of…

  16. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  17. Considerations of education in the field of biophotonics in engineering: the experience of the subject fundamentals of biophotonics

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2017-12-01

    Education in the field of photonics is usually somehow complex due to the fact that most of the programs include just a few subjects on the field, apart from specific Master programs in Photonics. There are also specific doctorate programs dealing with photonics. Apart from the problems shared with photonics in education in general, biophotonics specifically needs an interdisciplinary approach between biomedical and technical or scientific fields. In this work, we present our education experience in teaching the subject Fundamentals of Biophotonics, intended preferentially to engineering Bachelor and Master degrees students, but also to science and medicine students. First it was necessary to join a teaching group coming from the scientific technical and medical fields, working together in the subject. This task was easier as our research group, the Applied Optical Techniques group, had previous contacts and experience in working with medicine professors and medical doctors at hospitals. The orientation of the subject, intended for both technical and medical students, has to be carefully selected. All this information could be employed by other education institutions willing to implement studies on biomedical optics.

  18. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  19. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  20. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  1. Reforming Science Education: Part I. The Search for a Philosophy of Science Education

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    The call for reforms in science education has been ongoing for a century, with new movements and approaches continuously reshaping the identity and values of the discipline. The HPS movement has an equally long history and taken part in the debates defining its purpose and revising curriculum. Its limited success, however, is due not only to competition with alternative visions and paradigms (e.g. STS, multi-culturalism, constructivism, traditionalism) which deadlock implementation, and which have led to conflicting meanings of scientific literacy, but the inability to rise above the debate. At issue is a fundamental problem plaguing science education at the school level, one it shares with education in general. It is my contention that it requires a guiding “metatheory” of education that can appropriately distance itself from the dual dependencies of metatheories in psychology and the demands of socialization—especially as articulated in most common conceptions of scientific literacy tied to citizenship. I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science. This will be elaborated in Part II of a supplemental paper to the present one. As a prerequisite to presenting Egan’s metatheory I first raise the issue of the need for a conceptual shift back to philosophy of education within the discipline, and thereto, on developing and demarcating true educational theories (essentially neglected since Hirst). In the same vein it is suggested a new research field should be opened with the express purpose of developing a discipline-specific “philosophy of science education” (largely neglected since Dewey) which could in addition serve to reinforce science education

  2. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  3. Examination of Science and Technology Teachers’ Attitude and Opinions Related Giftedness and Gifted Education in Turkey

    Directory of Open Access Journals (Sweden)

    Kürşat KUNT

    2017-03-01

    Full Text Available In this study, it is aimed to examine the Science and Technology teachers’ attitude and views related giftedness and gifted education. This research used both qualitative and quantitative research designs, is a mixed pattern research. The study group of the research consists of 111 Science and Technology teachers in the academic year 2011- 2012 in the province of A. These participants were applied Teacher Attitude Scale towards Gifted Education (TASGE as collection of quantitative data. For obtaining qualitative data, semi-structured interview was used with four science and technology teachers. For the analysis of quantitative data, percentage, frequency, t-test and analysis of variance were used. The data obtained from the interview were subjected to content analysis. As a result, science and technology teachers' attitudes towards gifted education were found to be slightly above the undecided attitude. In addition, science and technology teachers stated that supportive education for gifted children in Science and Art Centers (SACs was insufficient and they adequately could not cooperated with this institution.

  4. Introductory Programming Subject in European Higher Education

    Science.gov (United States)

    Aleksic, Veljko; Ivanovic, Mirjana

    2016-01-01

    Programming is one of the basic subjects in most informatics, computer science mathematics and technical faculties' curricula. Integrated overview of the models for teaching programming, problems in teaching and suggested solutions were presented in this paper. Research covered current state of 1019 programming subjects in 715 study programmes at…

  5. The role of subject-matter analysis in science didactics

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    Cultural-historical theory is primarily a psychological theory about and human action and development within meaningful contexts. As a psychologically-oriented theory, it can be relevant to science education research, even if it was not been developed or elaborated specifically in relation...... to problems within science education. STEM education research can be reduced (roughly) to four major problem areas: curriculum, empirical evaluation of existing practices and conditions, didactics, and professional development, where each of these categories can be concretised further according to grade...... paper is primarily on the didactics category, and slightly on the professional development category. The purpose of this paper is to outline three significant points that have been developed within the cultural-historical tradition that have consequences for these two categories: (a) the relation...

  6. The profile of problem-solving ability of students of distance education in science learning

    Science.gov (United States)

    Widiasih; Permanasari, A.; Riandi; Damayanti, T.

    2018-05-01

    This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.

  7. Toward a Social Ontology for Science Education: Introducing Deleuze and Guattari's Assemblages

    Science.gov (United States)

    Bazzul, Jesse; Kayumova, Shakhnoza

    2016-01-01

    This essay's main objective is to develop a theoretical, ontological basis for critical, social justice-oriented science education. Using Deleuze and Guattari's notion of assemblages, rhizomes, and arborescent structures, this article challenges authoritarian institutional practices, as well as the subject of these practices, and offers a way for…

  8. [Re]considering queer theories and science education

    Science.gov (United States)

    Fifield, Steve; Letts, Will

    2014-06-01

    We take Mattias Lundin's Inviting queer ideas into the science classroom: studying sexual education from a queer perspective as a point of departure to explore some enduring issues related to the use of queer theories to interrogate science education and its practices. We consider the uneasy, polygamous relationship between gay and lesbian studies and queer theories; the border surveillance that characterizes so much of science [education]; the alluring call of binaries and binary thinking; the `all' within the catchcry `science for all'; and the need to better engage the fullness of science and the curriculum, in addition to noting silences around diverse sexes, sexualities, and desires. We catalogue some of the challenges that persist in this work, and offer thoughts about how to work with and against them to enact a more just and compelling science education.

  9. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  10. Response to science education reforms: The case of three science education doctoral programs in the United States

    Science.gov (United States)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question

  11. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  12. Factors influencing subject selection in upper secondary education (Key Stage 4 for males and females in England

    Directory of Open Access Journals (Sweden)

    Joanne Vaughan

    2015-08-01

    Full Text Available Background Research to date has investigated the potential factors that influence students’ decisions in opting to study certain subjects during their upper secondary education. Trends in subject selection at this level (Key Stage 4 have been maintained over time and have consistently displayed comparable differences for males and females. It is recognised that males typically opt for subjects such as physical education and science, while females are traditionally noted as favouring the arts and humanities. These educational decisions may impact on future occupational directions. In light of recent initiatives, such as the English Baccalaureate, it is of interest to explore whether such measures have had an influence on this noted gender gap. Participants and procedure The present study investigates the potential predictors of subject selection, while controlling for gender, offering a specific focus on the education system in England. Attention is given to students’ perceived academic ability and attitude toward school, and how such factors may guide subject choice. Participants (N = 276 were students currently in the process of selecting optional modules for Key Stage 4 study. Results The findings demonstrate that female students are less likely than their male counterparts to opt for physical education (PE and business studies/information and communication technology (ICT as preferred modules, in comparison to ‘creative and performance’ subjects (reference category. Higher levels of reported masculinity were also shown to relate to the up-take of PE at Key Stage 4. Conclusions The implications of these findings are discussed in relation to existing research and practical contributions to the educational arena.

  13. Qualitative exploration of centralities in municipal science education networks

    DEFF Research Database (Denmark)

    von der Fehr, Ane; Sølberg, Jan

    2016-01-01

    This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education ar...... of science education, especially if they are aware of their own centrality and are able to use their position intentionally for the benefit of science education.......This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education...... are diverse and in order to understand how municipal stakeholders may support such development, we explored four different municipal science education networks (MSE networks) using three different measures of centrality. The centrality measures differed in terms of what kind of stakeholder functions...

  14. Scientism and Scientific Thinking. A Note on Science Education

    Science.gov (United States)

    Gasparatou, Renia

    2017-11-01

    The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education's most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.

  15. How a Deweyan Science Education Further Enables Ethics Education

    Science.gov (United States)

    Webster, Scott

    2008-01-01

    This paper questions the perceived divide between "science" subject matter and "moral" or "ethical" subject matter. A difficulty that this assumed divide produces is that science teachers often feel that there needs to be "special treatment" given to certain issues which are of an ethical or moral nature and which are "brought into" the science…

  16. A new approach to environmental education: environment-challenge for science, technology and society

    International Nuclear Information System (INIS)

    Popovic, D.

    2002-01-01

    The paper presents a new approach to environmental education within the project Environment: Challenge for Science, Technology and Education, realized on the Alternative Academic Education Network (AAEN) in Belgrade. The project is designed for graduate or advanced undergraduate students of science, medicine, engineering, biotechnology, political and law sciences. It is multidisciplinary and interdisciplinary project aimed to support students interest in different areas of the environmental sciences through strong inter-connection between modern scientific ideas, technological achievements and society. The project contains four basic courses (Living in the Environment; Physical and Chemical Processes in the Environment; Industrial Ecology and Sustainable Development; Environmental Philosophy and Ethics) and a number of elective courses dealing with environmental biology, adaptation processes , global eco politics, environmental ethics, scientific and public policy, environmental consequences of warfare, environmental pollution control, energy management, environmental impact assessment, etc. The standard ex catedra teaching is replaced with active student-teacher communication method enabling students to participate actively in the subject through seminars, workshops, short essays and individual research projects

  17. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  18. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  19. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  20. Sex-related differences in the determinants and process of science and mathematics choice in pre-university education

    NARCIS (Netherlands)

    van Langen, A.; Rekers-Mombarg, L; Dekkers, H

    2006-01-01

    The more science and mathematics subjects that pupils in pre-university education include in their final examination package, the more future academic routes are available to them. Equality of educational opportunity is thus threatened when groups of pupils, distinguished by sex and family

  1. Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.

    Science.gov (United States)

    Tohkin, Masahiro

    2017-01-01

    I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.

  2. Science Instructors' Perceptions of the Risks of Biotechnology: Implications for Science Education

    Science.gov (United States)

    Gardner, Grant Ean; Jones, M. Gail

    2011-01-01

    Developing scientifically literate students who understand the socially contextualized nature of science and technology is a national focus of science education reform. Science educators' perceptions of risks and benefits of new technologies (such as biotechnology) may shape their instructional approaches. This study examined the perceived risk of…

  3. Simulation-based Serious Games for Science Education and teacher assessment

    Directory of Open Access Journals (Sweden)

    Seungho Baek

    2016-09-01

    Full Text Available This paper presents serious games developed for the science subject in elementary and middle schools, specifically on the three topics of “Force and Motion,” “State Change of Water,” and “Earth and Moon.” The PC game “Force and Motion” implemented frictional/gravitational/magnetic force simulations, in the mobile game “State Change of Water,” particle-based fluid simulations were implemented, and in the PC- and mobile-based multi-platform game “Earth and Moon,” a solar system simulation was implemented. In order to find out the essential components for the science educational games, the components of each topic were thoroughly analyzed, and then a game-based curriculum was developed for the components classified as having high- or mid-level difficulties in both teaching and learning. Based on the curriculum, the three games were created. The games were evaluated by elementary and middle school teachers, and the evaluation results showed that simulation-based serious games are promising tools for improving learning effects in science-related subjects.

  4. The Six-Legged Subject: A Survey of Secondary Science Teachers' Incorporation of Insects into U.S. Life Science Instruction.

    Science.gov (United States)

    Ingram, Erin; Golick, Douglas

    2018-03-14

    To improve students' understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers' incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers' preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers' need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles.

  5. The Six-Legged Subject: A Survey of Secondary Science Teachers’ Incorporation of Insects into U.S. Life Science Instruction

    Science.gov (United States)

    Ingram, Erin

    2018-01-01

    To improve students’ understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers’ incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers’ preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers’ need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles. PMID:29538297

  6. Imaginative science education the central role of imagination in science education

    CERN Document Server

    Hadzigeorgiou, Yannis

    2016-01-01

    This book is about imaginative approaches to teaching and learning school science. Its central premise is that science learning should reflect the nature of science, and therefore be approached as an imaginative/creative activity. As such, the book can be seen as an original contribution of ideas relating to imagination and creativity in science education. The approaches discussed in the book are storytelling, the experience of wonder, the development of ‘romantic understanding’, and creative science, including science through visual art, poetry and dramatization. However, given the perennial problem of how to engage students (of all ages) in science, the notion of ‘aesthetic experience’, and hence the possibility for students to have more holistic and fulfilling learning experiences through the aforementioned imaginative approaches, is also discussed. Each chapter provides an in-depth discussion of the theoretical background of a specific imaginative approach (e.g., storytelling, ‘wonder-full’ s...

  7. On the way to a philosophy of science education

    Science.gov (United States)

    Schulz, Roland M.

    This Thesis argues the case that a philosophy of science education is required for improving science education as a research field as well as curriculum and teacher pedagogy. It seeks to re-think science education as an educational endeavor by examining why past reform efforts have been only partially successful, including why the fundamental goal of achieving scientific literacy after several "reform waves" has proven to be so elusive. The identity of such a philosophy is first defined in relation to the fields of philosophy, philosophy of science, and philosophy of education. Considering science education as a research discipline it is emphasized a new field should be broached with the express purpose of developing a discipline-specific "philosophy of science education" (largely neglected since Dewey). A conceptual shift towards the philosophy of education. is needed, thereto, on developing and demarcating true educational theories which could in addition serve to reinforce science education's growing sense of academic autonomy and independence from socio-economic demands. Two educational metatheories are contrasted, those of Kieran Egan and the Northern European Bildung tradition, to illustrate the task of such a philosophy. Egan's cultural-linguistic metatheory is presented for two primary purposes: it is offered as a possible solution to the deadlock of the science literacy conceptions within the discipline; regarding practice, examples are provided how it can better guide the instructional practice of teachers, specifically how it reinforces the work of other researchers in the History and Philosophy of Science (HPS) reform movement who value narrative in learning science. Considering curriculum and instruction, a philosophy of science education is conceptualized as a "second order" reflective capacity of the teacher. This notion is aligned with Shulman's idea of Pedagogical Content Knowledge. It is argued that for educators the nature of science learning

  8. Science education policy for emergency, conflict, and post-conflict: An analysis of trends and implications for the science education program in Uganda

    Science.gov (United States)

    Udongo, Betty Pacutho

    This study analyzes the impact of armed conflicts on the development of education policy and particularly science education program in Uganda. Since independence from the British colonial rule, Uganda has experienced a series of armed conflicts, with the most devastating being the 21 years of conflict in Northern Uganda. The research study was guided by the following questions: (1) What is the level of government funding towards improving science education program in Uganda? (2) Have recent initiatives, such as free Primary and Secondary education, compulsory science, and 75% sponsorship for science-based courses, had a measurable impact on the proportion of students from the conflict-affected regions who enter tertiary institutions to pursue science and technology programs? (3) To what extent do the Ugandan Education Policy and, in particular, the Science Education Policy effectively address the educational needs of students affected by armed conflicts? The study employed a mixed method design where both quantitative and qualitative data were collected and analyzed. Quantitative data were obtained from a comprehensive search of policy documents and content analysis of literature on education policy, science education programs, and impact of conflicts on educational delivery. Qualitative data were obtained from surveys and interviews distributed to policy makers, central government and the local government officials, teachers, and students from the war-ravaged Northern Uganda. Analysis of policy documents and respondents' views revealed that Uganda does not have a science education policy, and the present education policy does not fully address the educational needs of students studying in conflict-affected regions. It was further observed that fewer students from the conflict-affected regions qualify for government scholarship to study science courses in higher institutions of learning. The study recommended the following policy interventions: (a) affirmative

  9. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  11. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    Science.gov (United States)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  12. Improving science education for sustainable development

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    In recent issues of noteworthy journals, natural scientists have argued for the improvement of science education [1–4]. Such pleas reflect the growing awareness that high-quality science education is required not only for sustaining a lively scientific community that is able to address global

  13. Fermilab Friends for Science Education | Tree of Knowledge

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Tree of Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education precollege science education programs. Prominently displayed at the Lederman Science Center is the lovely

  14. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  15. The Making of Entrepreneurial Subjectivity in Adult Education

    Science.gov (United States)

    Siivonen, Päivi; Brunila, Kristiina

    2014-01-01

    This article focuses on the idea of entrepreneurial subjectivity and the ways in which it is shaped by the entrepreneurial discourse in adult education. As a result, we argue that educational practices related to adults form a particular kind of ideal subjectivity that we refer to as entrepreneurial. In order to understand how this entrepreneurial…

  16. The Role of Critical Thinking in Science Education

    Science.gov (United States)

    Santos, Luis Fernando

    2017-01-01

    This review aims to respond various questions regarding the role of Critical Thinking in Science Education from aspects concerning the importance or relevance of critical thinking in science education, the situation in the classroom and curriculum, and the conception of critical thinking and fostering in science education. This review is specially…

  17. The New England Space Science Initiative in Education (NESSIE)

    Science.gov (United States)

    Waller, W. H.; Clemens, C. M.; Sneider, C. I.

    2002-12-01

    Founded in January 2002, NESSIE is the NASA/OSS broker/facilitator for education and public outreach (E/PO) within the six-state New England region. NESSIE is charged with catalyzing and fostering collaborations among space scientists and educators within both the formal and informal education communities. NESSIE itself is a collaboration of scientists and science educators at the Museum of Science, Harvard-Smithsonian Center for Astrophysics, and Tufts University. Its primary goals are to 1) broker partnerships among space scientists and educators, 2) facilitate a wide range of educational and public outreach activities, and 3) examine and improve space science education methods. NESSIE's unique strengths reside in its prime location (the Museum of Science), its diverse mix of scientists and educators, and its dedicated board of advisors. NESSIE's role as a clearinghouse and facilitator of space science education is being realized through its interactive web site and via targeted meetings, workshops, and conferences involving scientists and educators. Special efforts are being made to reach underserved groups by tailoring programs to their particular educational needs and interests. These efforts are building on the experiences of prior and ongoing programs in space science education at the Museum of Science, the Harvard-Smithsonian Center for Astrophysics, Tufts University, and NASA.

  18. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  19. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  20. Library and Information Science Education: An Approach to Albania

    Directory of Open Access Journals (Sweden)

    Elsa Bitri

    2013-11-01

    Full Text Available This study aims to develop and suggest to Albania an applicable academic-level Library and Infor­mation Science (LIS educational program approach parallel to world developments in this aspect. Scientific and technological developments have deeply impacted LISfield. The development-education interaction has reflected even in the curriculum changes. In an era where scientific and technological changes can deeply affect education merely a flexible and general approach that could place profes- sional developments and local characteristics of the country could be suggested. A descriptive method was used and a survey questionnaire was applied to 94 librarians from different types of libraries and 6 educators. From the questionnaires it was concluded that a LIS education in a university level is needed in the country. As conclusion this study suggested a conceptual educational approach regarding LIS education. This approach is comprised of eight general modules/subject areas such as information resources, information organization, information users and communication, research, theory and phi- losophy, systems and information technology management, and other disciplines.

  1. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  2. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  3. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  4. Qualifications of Subject Teachers in Special Education Schools

    Science.gov (United States)

    Rasmussen, Meryem Uçar; Kis, Arzu

    2018-01-01

    Teacher qualifications are essential to be able to teach children with special needs efficiently. Therefore the aim of this study is to determine the qualifications of subject teachers in special education schools in Turkey. In the study 20 subject teachers within the field of music, art and sports who worked in special education schools in Turkey…

  5. CosmoQuest: Better Citizen Science Through Education

    Science.gov (United States)

    Gay, P. L.; Lehan, C.; Bracey, G.; Yamani, A.; Francis, M.; Durrell, P.; Spivey, C.; Noel-Storr, J.; Buxner, S.; Cobb, W.; hide

    2016-01-01

    In the modern era, NASA SMD missions and facilities are producing data at a rate too great for the science community to maximally utilize. While software can help, what is really needed is additional eyes, hands, and minds - help we can find in the form of citizen scientist volunteers. The CosmoQuest virtual research facility has demonstrated through published research results that classroom students and the public can, with proper training and support from Subject Matter Experts (SMEs), fill roles more traditionally filled by university students. The research question behind CosmoQuest's creation was simple: if students and the public are provided a properly scaffolded experience that mirrors that of researchers, will they come and perform as well as our students? and can they rise up to be research collaborators? In creating CosmoQuest, we started with a core of citizen science portals, educational materials for both students and life-long learners, and collaboration areas. These three primary focuses mirror the research, courses, and collaboration spaces that form the foundation of a university department. We then went on to add the features that make a center stand out - we added seminars in the form of Google Hangouts on Air, planetarium content through our Science on the Half Sphere program, and even the chance to vicariously attend conferences through live blogging by our team members. With this design for a virtual research facility, the answer to our foundational question has been a resounding yes; the public can aid us in doing science provided they are properly trained. To meet the needs of our population we have developed four areas of engagement: research, education, media, and community.

  6. van Eijck and Roth's utilitarian science education: why the recalibration of science and traditional ecological knowledge invokes multiple perspectives to protect science education from being exclusive

    Science.gov (United States)

    Mueller, Michael P.; Tippins, Deborah J.

    2010-12-01

    This article is a philosophical analysis of van Eijck and Roth's (2007) claim that science and traditional ecological knowledge (TEK) should be recalibrated because they are incommensurate, particular to the local contexts in which they are practical. In this view, science maintains an incommensurate status as if it is a "fundamental" basis for the relative comparison of other cultural knowledges, which reduces traditional knowledge to a status of in relation to the prioritized (higher)-status of natural sciences. van Eijck and Roth reject epistemological Truth as a way of thinking about sciences in science education. Rather they adopt a utilitarian perspective of cultural-historical activity theory to demonstrate when traditional knowledge is considered science and when it is not considered science, for the purposes of evaluating what should be included in U.S. science education curricula. There are several challenges for evaluating what should be included in science education when traditional knowledges and sciences are considered in light of a utilitarian analysis. Science as diverse, either practically local or theoretically abstract, is highly uncertain, which provides opportunities for multiple perspectives to enlarge and protect the natural sciences from exclusivity. In this response to van Eijck and Roth, we make the case for considering dialectical relationships between science and TEK in order to ensure cultural diversity in science education, as a paradigm. We also emphasize the need to (re)dissolve the hierarchies and dualisms that may emerge when science is elevated in status in comparison with other knowledges. We conclude with a modification to van Eijck and Roth's perspective by recommending a guiding principle of cultural diversity in science education as a way to make curriculum choices. We envision this principle can be applied when evaluating science curricula worldwide.

  7. The relationship between type of secondary education and subject choice with technically oriented aptitudes for automotive operators

    Directory of Open Access Journals (Sweden)

    Juliet I. Puchert

    2017-10-01

    Full Text Available Orientation: The central theme of this study attends to the role of secondary education in relation to two broad categories of specific aptitudes (psychomotor and spatial abilities. Utilising type of secondary education (incorporating subject choice could be a crucial selection mechanism for high-volume, entry-level technical positions. Research purpose: The objective of this research was to investigate whether the type of secondary education (incorporating subject choice could be used as a proxy for psychomotor (dexterity and coordination and/or spatial (ability to mentally assemble representations and spatial perception 2-D and 3-D aptitudes in the selection of operators for an automotive plant in South Africa. Motivation for the study: The motivation for this study arose from the evident gap in academic literature as well as the selection needs of the automotive industry. Research design, approach and method: A quantitative approach with a cross-sectional research design was used with a convenience sample (n = 1566 of work-seeking applicants for automotive operator positions in South Africa. These applicants completed a biographical questionnaire and five sub-tests from the Trade Aptitude Test Battery. The Chi-square test was used to determine the association between form of Grade 12 qualification and selected technical aptitudes. Main findings: Statistically and practically significant relationships were found between type of secondary education (incorporating subject choice, eye–hand coordination and spatial visualisation. Broad performance levels in the five aptitude instruments employed in this study were significantly associated with the type of matriculation certificate held by applicants. Specifically, types of secondary education that included mathematics and/or science as subjects were associated with higher levels of performance in the five specific aptitudes. Practical/managerial implications: The type of secondary education

  8. SPORTS SCIENCES AND MULTICULTURALISM - EDUCATIONAL AND PROFESSIONAL IMPACT

    Directory of Open Access Journals (Sweden)

    Danica Pirsl

    2012-09-01

    Full Text Available The aim of the paper is to familiarize the sports sciences educators to the pedagogic concept and professional benefits and awareness of multicultural education if implemented in sports sciences curricula, especially in the efforts to obtain international transparency through sports science literature writing and publishing. Data Sources were textbook chapters and articles searched through the archives of Diversity Digest and Academic Medicine for the years 2000 to 2005 with the key words multiculturalism, diversity, cultural competence, education, and learning. Synthesized data were used to present a rational argument for the inclusion of a critical pedagogy into the field of sports science education. The infrastructure in the professional field of sports sciences, review of the literature on critical multicultural theory and pedagogy and the potential cognitive and intellectual implications of diversity and multicultural education were analyzed. Conclusions/Recommendations focus on possible various and creative strategies for implementing a multicultural agenda in sports sciences curricula and on the analysis of the associated benefits and outcomes of such educational strategies.

  9. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-08-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education from 1990 to 2007. The multi-stage clustering technique was employed to investigate with what topics, to what development trends, and from whose contribution that the journal publications constructed as a science education research field. This study found that the research topic of Conceptual Change & Concept Mapping was the most studied topic, although the number of publications has slightly declined in the 2000's. The studies in the themes of Professional Development, Nature of Science and Socio-Scientific Issues, and Conceptual Chang and Analogy were found to be gaining attention over the years. This study also found that, embedded in the most cited references, the supporting disciplines and theories of science education research are constructivist learning, cognitive psychology, pedagogy, and philosophy of science.

  10. How Discourses of Biology Textbooks Work to Constitute Subjectivity: From the Ethical to the Colonial

    Science.gov (United States)

    Bazzul, Jesse

    This thesis examines how discourses of biology textbooks can work to constitute various kinds of subjectivities. Using a Foucauldian archaeological approach to discourse analysis I examine how four Ontario secondary school biology textbooks discursively delimit what can be thought and acted upon, and in the process work to partially constitute students/teachers as sex/gendered; neocolonial; neoliberal (and a subject of work), and ethical subjects and subjectivities. This thesis engages the topic of how discourse can constitute subjectivity in science in three basic ways: First, on a theoretical level, in terms of working out an understanding of subject constitution/interpellation that would also be useful when engaging with other sociopolitical and ethical questions in science education. Secondly, in terms of an empirically based critical discourse analysis that examines how various statements within these four textbooks could set limits on what is possible for students to think and act upon in relation to themselves, science, and the world. Thirdly, this thesis represents a narrative of scholarly development that moves from an engagement of my personal experiences in science education and current science education literature towards the general politico-philosophical topic of subjectivity and biopolitics. This thesis begins with a discussion of my experiences as a science teacher, a review of relevant science education literature, and considerations of subjectivity that relate specifically ii to the specific methodological approach I employ when examining these textbooks. After this I present five chapters, each of which can be thought of as a somewhat separate analysis concerning how the discourses of these textbooks can work to constitute specific subjectivities (each involving different theoretical/methodological considerations). I conclude with a reflection/synthesis chapter and a call to see science education as a site for biopolitical struggle.

  11. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  12. If Science Teachers Are Positively Inclined Toward Inclusive Education, Why Is It So Difficult?

    Science.gov (United States)

    Spektor-Levy, Ornit; Yifrach, Merav

    2017-08-01

    This paper describes the unique challenges that students with learning disabilities (LD) experience in science studies and addresses the question of the extent to which science teachers are willing and prepared to teach in inclusive classrooms. We employed the theory of planned behavior (TPB), according to which behavioral intentions are a function of individuals' attitudes toward the behavior, their subjective norms, and their perceived control—i.e., their perception of the simplicity and benefits of performing the behavior. The study comprised 215 junior high school science teachers, who answered a TPB-based quantitative questionnaire. Semi-structured interviews were conducted to support and enrich the findings and conclusions. We found that teachers held positive attitudes and were willing to adapt their teaching methods (perceived control), which correlated and contributed to their behavioral intention. In terms of subjective norms, however, they felt a lack of support and ongoing guidance in providing the appropriate pedagogy to meet the needs of students with LD. We therefore recommend that educational policy makers and school management devote attention and resources to providing professional training and appropriate instructional materials and to establishing frameworks for meaningful cooperation between the science teachers and special education staff. This could ensure the efficient cooperation and coordination of all the involved parties and send a positive message of support to the science teachers who are the actual implementers of change.

  13. The Particulate Nature of Matter in Science Education and in Science.

    Science.gov (United States)

    Vos, Wobbe de; Verdonk, Adri H.

    1996-01-01

    Discusses ideas about the particulate nature of matter and assesses the extent to which these represent a compromise between scientific and educational considerations. Analyzes relations between the particulate nature of matter in science and science education in an attempt to understand children's inclination to attribute all kinds of macroscopic…

  14. What is `Agency'? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-03-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development of this new research agenda and to argue that there is a need for research in science education that attends to agency as a social practice. Despite increasing interest in student agency in educational research, the term 'agency' has lacked explicit operationalisation and, across the varied approaches, such as critical ethnography, ethnographies of communication, discourse analysis and symbolic interactionism, there has been a lack of coherence in its research usage. There has also been argument concerning the validity of the use of the term 'agency' in science education research. This article attempts to structure the variety of definitions of 'student agency' in science education research, identifies problems in the research related to assigning intentionality to research participants and argues that agency is a kind of discursive practice. The article also draws attention to the need for researchers to be explicit in the assumptions they rely upon in their interpretations of social worlds. Drawing upon the discursive turn in the social sciences, a definition of agency is provided, that accommodates the discursive practices of both individuals and the various functional social groups from whose activities classroom practice is constituted. The article contributes to building a focused research agenda concerned with understanding and promoting student agency in science.

  15. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    Science.gov (United States)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  16. [Regulatory science: modern trends in science and education for pharmaceutical products].

    Science.gov (United States)

    Beregovykh, V V; Piatigorskaia, N V; Aladysheva, Zh I

    2012-01-01

    This article reviews modern trends in development of new instruments, standards and approaches to drugs safety, efficacy and quality assessment in USA and EU that can be called by unique term--"regulatory science" which is a new concept for Russian Federation. New education programs (curricula) developed by USA and EU universities within last 3 years are reviewed. These programs were designed in order to build workforce capable to utilize science approach for drug regulation. The principal mechanisms for financing research in regulatory science used by Food and Drug Administration are analyzed. There are no such science and relevant researches in Russian Federation despite the high demand as well as needs for the system for higher education and life-long learning education of specialists for regulatory affairs (or compliance).

  17. The soil education technical commission of the Brazilian Soil Science Society: achievements and challenges

    Science.gov (United States)

    Muggler, Cristine Carole; Aparecida de Mello, Nilvania

    2013-04-01

    last three symposia was dramatically changed compared to the former ones, considering both participants and papers: basic school teachers, science mediators instead of university docents and a prevalence of papers on soil education in basic schools and non-formal education. The main challenge for soil scientists remains in how to spread the knowledge about the importance of soil and its care among individuals and society in general. Diversified experiences, strategies and instruments are on the move, still soils are overlooked in the present environmental issues. Within the commission the challenge remains with the popularity of the subject in the academic world: it is marginal, it is an interface between knowledge areas and it is commonly the second subject of researchers, easily abandoned when work pressure grows.

  18. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  19. The Ruins of Neo-Liberalism and the Construction of a New (Scientific) Subjectivity

    Science.gov (United States)

    Lather, Patti

    2012-01-01

    Given my long-time interests in neoliberalism and questions of subjectivity, I am pleased to respond to Jesse Bazzul's paper, "Neoliberal Ideology, global capitalism, and science education: Engaging the question of subjectivity." In what follows, I first summarize what I see as Bazzul's contributions to pushing science education in "post"…

  20. The Utility of a Physics Education in Science Policy

    Science.gov (United States)

    Roberts, Drew

    2016-03-01

    In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.

  1. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  2. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  3. Task value profiles across subjects and aspirations to physical and IT-related sciences in the United States and Finland.

    Science.gov (United States)

    Chow, Angela; Eccles, Jacquelynne S; Salmela-Aro, Katariina

    2012-11-01

    Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a) physics and chemistry, (b) math, and (c) English. Study 2 measured task values of a sample of students in the second year of high school in Finland (N = 351) across (a) math and science, (b) Finnish, and (c) the arts and physical education. In both studies, students were classified into groups according to how they ranked math and science in relation to the other subjects. Regression analyses indicated that task value group membership significantly predicted subsequent aspirations toward physical and IT-related sciences measured 1-2 years later. The task value groups who placed the highest priority on math and science were significantly more likely to aspire to physical and IT-related sciences than were the other groups. These findings provide support for the theoretical assumption regarding the predictive role of intraindividual hierarchical patterns of task values for subsequent preferences and choices suggested by the Eccles [Parsons] (1983) expectancy-value model.

  4. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  5. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  6. Promoting Pre-college Science Education

    Science.gov (United States)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  8. A review of forensic science higher education programs in the United States: bachelor's and master's degrees.

    Science.gov (United States)

    Tregar, Kristen L; Proni, Gloria

    2010-11-01

    As the number of forensic science programs offered at higher education institutions rises, and more students express an interest in them, it is important to gain information regarding the offerings in terms of courses, equipment available to students, degree requirements, and other important aspects of the programs. A survey was conducted examining the existing bachelor's and master's forensic science programs in the U.S. Of the responding institutions, relatively few were, at the time of the survey, accredited by the forensic science Education Programs Accreditation Commission (FEPAC). In general, the standards of the responding programs vary considerably primarily in terms of their size and subjects coverage. While it is clear that the standards for the forensic science programs investigated are not homogeneous, the majority of the programs provide a strong science curriculum, faculties with advanced degrees, and interesting forensic-oriented courses. © 2010 American Academy of Forensic Sciences.

  9. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  10. Applied Math & Science Levels Utilized in Selected Trade & Industrial Vocational Education. Final Report.

    Science.gov (United States)

    Gray, James R.

    Research identified and evaluated the level of applied mathematics and science used in selected trade and industrial (T&I) subjects taught in the Kentucky Vocational Education System. The random sample was composed of 52 programs: 21 carpentry, 20 electricity/electronics, and 11 machine shop. The 96 math content items that were identified as…

  11. Approaches for Improving Earth System Science Education in Middle Schools and High Schools in the United States (Invited)

    Science.gov (United States)

    Adams, P. E.

    2009-12-01

    Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.

  12. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. R K Varma. Articles written in Resonance – Journal of Science Education. Volume 3 Issue 8 August 1998 pp 8-13. On Science Education and Scientific Research · R K Varma · More Details Fulltext PDF ...

  14. Multicultural education, pragmatism, and the goals of science teaching

    Science.gov (United States)

    El-Hani, Charbel Niño; Mortimer, Eduardo Fleury

    2007-07-01

    In this paper, we offer an intermediate position in the multiculturalism/universalism debate, drawing upon Cobern and Loving's epistemological pluralism, pragmatist philosophies, Southerland's defense of instructional multicultural science education, and the conceptual profile model. An important element in this position is the proposal that understanding is the proper goal of science education. Our commitment to this proposal is explained in terms of a defense of an ethics of coexistence for dealing with cultural differences, according to which social argumentative processes—including those in science education—should be marked by dialogue and confrontation of arguments in the search of possible solutions, and an effort to (co-)live with differences if a negotiated solution is not reached. To understand the discourses at stake is, in our view, a key requirement for the coexistence of arguments and discourses, and the science classroom is the privileged space for promoting an understanding of the scientific discourse in particular. We argue for "inclusion" of students' culturally grounded ideas in science education, but in a sense that avoids curricular multicultural science education, and, thus, any attempt to broaden the definition of "science" so that ideas from other ways of knowing might be simply treated as science contents. Science teachers should always take in due account the diversity of students' worldviews, giving them room in argumentative processes in science classrooms, but should never lose from sight the necessity of stimulating students to understand scientific ideas. This view is grounded on a distinction between the goals of science education and the nature of science instruction, and demands a discussion about how learning is to take place in culturally sensitive science education, and about communicative approaches that might be more productive in science classrooms organized as we propose here. We employ the conceptual profile model to

  15. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    Science.gov (United States)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  16. An integrated model of decision-making in health contexts: the role of science education in health education

    Science.gov (United States)

    Arnold, Julia C.

    2018-03-01

    Health education is to foster health literacy, informed decision-making and to promote health behaviour. To date, there are several models that seek to explain health behaviour (e.g. the Theory of Planned Behaviour or the Health Belief Model). These models include motivational factors (expectancies and values) that play a role in decision-making in health contexts. In this theoretical paper, it is argued that none of these models makes consequent use of expectancy-value pairs. It is further argued that in order to make these models fruitful for science education and for informed decision-making, models should systematically incorporate knowledge as part of the decision-making process. To fill this gap, this theoretical paper introduces The Integrated Model of Decision-Making in Health Contexts. This model includes three types of knowledge (system health knowledge, action-related health knowledge and effectiveness health knowledge) as influencing factors for motivational factors (perceived health threat, attitude towards health action, attitude towards health outcome and subjective norm) that are formed of expectancy-value pairs and lead to decisions. The model's potential for health education in science education as well as research implications is discussed.

  17. Timeliness of Creative Subjects in Architecture Education

    Science.gov (United States)

    Vargot, T.

    2017-11-01

    The following article is about the problem of insufficient number of drawing and painting lessons delivered in the process of architectural education. There is a comparison between the education of successful architects of the past and modern times. The author stands for the importance of creative subjects being the essential part of development and education of future architects. Skills achieved during the study of creative subjects will be used not only as a mean of self-expression but as an instrument in the toolkit of a professional. Sergei Tchoban was taken as an example of a successful architect for whom the knowledge of a man-made drawing is very important. He arranges the contests of architectural drawings for students promoting creative development in this way. Nowadays, students tend to use computer programs to make architectural projects losing their individual approach. The creative process becomes a matter of scissors and paste being just a copy of something that already exists. The solution of the problem is the reconsideration of the department’s curriculum and adding extra hours for creative subjects.

  18. Trashing the millenium: Subjectivity and technology in cyberpunk science fiction

    Directory of Open Access Journals (Sweden)

    J. A. Sey

    1992-05-01

    Full Text Available 'Cyberpunk’ science fiction is a self-proclaimed movement within the genre which began in the 1980s. As the name suggests, it is an extrapolative form of science fiction which combines an almost obsessional interest in machines (particularly information machines with an anarchic, amoral, streetwise sensibility This paper sketches the development of the movement and seeks to make qualified claims for the radical. potential of its fiction. Of crucial importance are the ways in which human subjectivity (viewed in psychoanalytic terms interacts with 'technological subjectivity' in cyberpunk, particularly with regard to implications of these interactions for oedipalization.

  19. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  20. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  1. Cultural, Social and Political Perspectives in Science Education

    DEFF Research Database (Denmark)

    This book presents a collection of critical thinking that concern cultural, social and political issues for science education in the Nordic countries. The chapter authors describe specific scenarios to challenge persisting views, interrogate frameworks and trouble contemporary approaches to resea......This book presents a collection of critical thinking that concern cultural, social and political issues for science education in the Nordic countries. The chapter authors describe specific scenarios to challenge persisting views, interrogate frameworks and trouble contemporary approaches...... to researching teaching and learning in science. Taking a point of departure in empirical examples from the Nordic countries the collection of work is taking a critical sideways glance at the Nordic education principles. Critical examinations target specifically those who are researching in the fields of science...... conditions and contexts in science education. The different chapters review debates and research in teacher education, school teaching and learning including when external stakeholders are involved. Even though the chapters are contextualized in Nordic settings there will be similarities and parallels...

  2. Public science policy and administration. [cooperation of government industry, foundations, and educational institutions

    Science.gov (United States)

    Rosenthal, A. H. (Editor)

    1973-01-01

    Science, the overwhelming concern of our time, is no longer a matter of private research and development but one of public policy and administration, in which government, industry, foundations, and educational institutions must all work together as never before. Few other single tasks are of such decisive importance to the collective and individual welfare of American citizens as the formulation of public science policy and the administration of scientific programs. Eleven national authorities of varied background in science, education, and government administration contribute their experience and their judgment in an effort to deal with the major aspects of the subject. Their focus is on the meeting of actual problems; they consider the decision making process in both public and public-private organizations. Topics are grouped in three general categories: personnel needs and resources, organizational problems and techniques, and the administrative role in policy leadership.

  3. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  4. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  5. Science Center Public Forums: Engaging Lay-Publics in Resilience Deliberations Through Informal Science Education

    Science.gov (United States)

    Sittenfeld, D.; Choi, F.; Farooque, M.; Helmuth, B.

    2017-12-01

    Because climate hazards present a range of potential impacts and considerations for different kinds of stakeholders, community responses to increase resilience are best considered through the inclusion of diverse, informed perspectives. The Science Center Public Forums project has created multifaceted modules to engage diverse publics in substantive deliberations around four hazards: heat waves, drought, extreme precipitation, and sea level rise. Using a suite of background materials including visualization and narrative components, each of these daylong dialogues engage varied groups of lay-participants at eight US science centers in learning about hazard vulnerabilities and tradeoffs of proposed strategies for building resilience. Participants listen to and consider the priorities and perspectives of fellow residents and stakeholders, and work together to formulate detailed resilience plans reflecting both current science and informed public values. Deliverables for the project include visualizations of hazard vulnerabilities and strategies through immersive planetarium graphics and Google Earth, stakeholder perspective narratives, and detailed background materials for each project hazard. This session will: communicate the process for developing the hazard modules with input from subject matter experts, outline the process for iterative revisions based upon findings from formative focus groups, share results generated by participants of the project's first two pilot forums, and describe plans for broader implementation. These activities and outcomes could help to increase the capacity of informal science education institutions as trusted conveners for informed community dialogue by educating residents about vulnerabilities and engaging them in critical thinking about potential policy responses to critical climate hazards while sharing usable public values and priorities with civic planners.

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Search. Search. Resonance – Journal of Science Education. Title. Author. Keywords. Category. Fulltext. Submit. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues ...

  7. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  8. Joe L. Kincheloe: Embracing criticality in science education

    Science.gov (United States)

    Bayne, Gillian U.

    2009-09-01

    This article reviews significant contributions made by Joe L. Kincheloe to critical research in science education, especially through a multimethodological, multitheoretical, and multidisciplinary informed lens that incorporates social, cultural, political, economic, and cognitive dynamics—the bricolage. Kincheloe's ideas provide for a compelling understanding of, and insights into, the forces that shape the intricacies of teaching and learning science and science education. They have implications in improving science education policies, in developing actions that challenge and cultivate the intellect while operating in ways that are more understanding of difference and are socially just.

  9. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  10. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  11. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  12. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  13. Use of Future Scenarios as a Pedagogical Approach for Science Teacher Education

    Science.gov (United States)

    Paige, Kathryn; Lloyd, David

    2016-04-01

    Futures studies is usually a transdisciplinary study and as such embraces the physical world of the sciences and system sciences and the subjective world of individuals and cultures, as well as the time dimension—past, present and futures. Science education, where student interests, opportunities and challenges often manifest themselves, can provide a suitable entry point for futures work. In this paper, we describe how we have used futures themes, concepts and techniques both implicitly and explicitly in our undergraduate middle school teacher education courses and, in particular, science curriculum and general studies courses. Taking a critical orientation to the past and the present in these courses enables the future to be more than a mere reproduction of the status quo and opens up a range of possible futures in the areas of current interest. For example, having studied middle school teaching and learning in mathematics and science, students explore the past, present and possible future of a natural part of a university campus. In a general studies course on the science of the Earth's atmosphere, students construct a normative futures scenario on living in a changing climate. One way to gain insight into an uncertain future is to construct scenarios. This technique has been used since the 1970s to bring issues of environment and development—areas with strong science content—to the attention of both scientists and policymakers.

  14. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  15. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  16. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Kathy Ceceri. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 9 September 2011 pp 879-880 Personal Reflections. Five Things I Learned from Richard Feynman About Science Education · Kathy Ceceri · More Details Fulltext PDF ...

  18. Cultural, Social and Political Perspectives in Science Education

    DEFF Research Database (Denmark)

    conditions and contexts in science education. The different chapters review debates and research in teacher education, school teaching and learning including when external stakeholders are involved. Even though the chapters are contextualized in Nordic settings there will be similarities and parallels...... that will be informative to the international science education research community.......This book presents a collection of critical thinking that concern cultural, social and political issues for science education in the Nordic countries. The chapter authors describe specific scenarios to challenge persisting views, interrogate frameworks and trouble contemporary approaches...

  19. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  20. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  1. PROGNOSIS OF VISUALIZATION USAGE IN THE SCIENCE EDUCATION PROCESS

    OpenAIRE

    Bilbokaite, Renata

    2016-01-01

    Future education depends on many external exogenous factors - society evolution, technologic progress, teachers’ opinion and their ability to organize the education process. Science education is difficult for many students but the progress of the society definitely correlated with achievements of science. This highlights the importance of teaching biology, chemistry, physics, geography and mathematics at school. Visualization helps students to learn science education but at the moment teacher...

  2. Education and Training in Forensic Science: A Guide for Forensic Science Laboratories, Educational Institutions, and Students. Special Report.

    Science.gov (United States)

    US Department of Justice, 2004

    2004-01-01

    Forensic science provides scientific and foundational information for investigators and courts, and thus plays a crucial role in the criminal justice system. This guide was developed through the work of the Technical Working Group on Education and Training in Forensic Science (TWGED) to serve as a reference on best education and training practices…

  3. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  4. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  5. Strengthening Mathematics And Science Education (SMASE) For Improving The Quality Of Teachers in Nigeria

    Science.gov (United States)

    Shuaibu, Zainab Muhammad

    2016-04-01

    The education system in Nigeria, especially at the basic education level, teachers who teach mathematics and science need to be confident with what they are teaching, they need to have appropriate techniques and strategies of motivating the pupils. If these subjects are not taught well at the basic education level its extraordinarily hard to get them (pupils/students) back to track, no matter what will be done in the secondary and tertiary level. Teachers as the driving force behind improvements in the education system are in the best position to understand and propose solutions to problems faced by students. Teachers must have access to sustainable, high quality professional development in order to improve teaching and student learning. Teachers' professional development in Nigeria, however, has long been criticized for its lack of sustainability and ability to produce effective change in teaching and students achievement. Education theorists today believe that a critical component of educational reform lies in providing teachers with various opportunities and supports structures that encourage ongoing improvement in teachers' pedagogy and discipline-specific content knowledge. However, the ongoing reforms in education sector and the need to refocus the Nigeria education system towards the goal of the National Economical Empowerment and Development Strategies (NEEDS) demand that the existing In-service and Education Training (INSET) in Nigeria be refocused. It is against this premise that an INSET programme aimed at Strengthening Mathematics And Science Education (SMASE) for primary and secondary school teachers was conceived. The relevance of the SMASE INSET according to the Project Design Matrix (PDM) was derived from an In-service aimed at enhancing the quality of teachers in terms of positive attitude, teaching methodology, mastery of content, resource mobilization and utilization of locally available teaching and learning materials. The intervention of

  6. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  7. INFORMATIZATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    А А Меджидова

    2016-12-01

    Full Text Available The article draws attention to the fact that the Informatization of primary education is a uniform process, in which I the first turn mathematics and computer science are associated. Learning these disciplines is in natural interrelation and this comes from the nature of these disciplines. But in other subjects both mathematics and computer science play an applied role. It is proved that at the modern stage of Informatization in education contributes to improving the quality of assimilated knowledge acquired and skills.The article touches upon issues that reveal the relevance of the subject of Informatics in education. In connection with the information development there is a need of Informatization of education and society as a whole. The basic concepts of Informatics as a scientific and academic discipline are shown. Set out the subject, object and objectives of teaching science. Methodical program of the subject, aimed to develop school education is also considered.

  8. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  9. Principles of Professionalism for Science Educators. National Science Teachers Association Position Statement

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Science educators play a central role in educating, inspiring, and guiding students to become responsible, scientifically literate citizens. Therefore, teachers of science must uphold the highest ethical standards of the profession to earn and maintain the respect, trust, and confidence of students, parents, school leaders, colleagues, and other…

  10. "Shool Biotope" as science and environment educational tools in Japan

    Science.gov (United States)

    Yoshida, K.; Matsumoto, I.

    2011-12-01

    We have very small artificial pond in elementary school and junior high school in Japan. There are small fish, aquatic insect, and plant, and we can easily check and study. Recently, this type very small artificial pond that we call "Biotope" has been reconsidered as educational tool for study about biology and ecology. We introduce the some cases of the elementary school in Shimane Prefecture, Japan. And then, we pick up some important good educational materials and methods and their problems. Shimane prefecture is the place where relatively much nature is left even in Japan, and children are favored in the opportunity which usually touches nature and study it. It thought about use for Biotope in the inside of school of such from the viewpoint of science and environment education. It is possible with Biotope in the inside of school that a fish, aquatic insect, and plant in Biotope and that's environment are observed for every day and for a long time. As for the teacher of the elementary and junior high schools, it is important to make a plan of Biotope corresponding to the subject and those contents of learning through the year. We define School-Biotope as a thing that a teacher recognizes that educational importance and to make the most of as an education subject intentionally.

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bala Iyer. Articles written in Resonance – Journal of Science Education. Volume 21 Issue 3 March 2016 pp 203-205 Editorial. Editorial · Bala Iyer · More Details Fulltext PDF. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current ...

  12. Some Aspects of Science Education in European Context

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2008-01-01

    Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher practice…

  13. Deconstructing science

    Science.gov (United States)

    Trifonas, Peter Pericles

    2012-12-01

    In this paper I expand on the premises of Jesse Bazzul's thesis in his paper, Neoliberal ideology, global capitalism, and science education: engaging the question of subjectivity, exploring the implications of the ideologies within the culturally emerging logic of science exposes the incommensurability of intents and purposes in its methods and epistemology. I argue that science needs to acknowledge the subjectivity at its core to make space for non-absolute agents and new fields of study.

  14. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  15. History, Philosophy and Sociology of Science in Science Education: Results from the Third International Mathematics and Science Study

    Science.gov (United States)

    Wang, Hsingchi A.; Sshmidt, William H.

    Throughout the history of enhancing the public scientific literacy, researchers have postulated that since every citizen is expected to have informal opinions on the relationships among government, education, and issues of scientific research and development, it is imperative that appreciation of the past complexities of science and society and the nature of scientific knowledge be a part of the education of both scientists and non-scientists. HPSS inclusion has been found to be an effective way to reach the goal of enhancing science literacy for all citizens. Although reports stated that HPSS inclusion is not a new educational practice in other part of the world, nevertheless, no large scale study has ever been attempted to report the HPSS educational conditions around the world. This study utilizes the rich data collected by TIMSS to unveil the current conditions of HPSS in the science education of about forty TIMSS countries. Based on the analysis results, recommendations to science educators of the world are provided.

  16. African Indigenous science in higher education in Uganda

    Science.gov (United States)

    Akena Adyanga, Francis

    This study examines African Indigenous Science (AIS) in higher education in Uganda. To achieve this, I use anticolonial theory and Indigenous knowledge discursive frameworks to situate the subjugation of Indigenous science from the education system within a colonial historical context. These theories allow for a critical examination of the intersection of power relations rooted in the politics of knowledge production, validation, and dissemination, and how this process has become a systemic and complex method of subjugating one knowledge system over the other. I also employ qualitative and autoethnographic research methodologies. Using a qualitative research method, I interviewed 10 students and 10 professors from two universities in Uganda. My research was guided by the following key questions: What is African Indigenous Science? What methodology would help us to indigenize science education in Uganda? How can we work with Indigenous knowledge and anticolonial theoretical discursive frameworks to understand and challenge the dominance of Eurocentric knowledge in mainstream education? My research findings revealed that AIS can be defined in multiple ways, in other words, there is no universal definition of AIS. However, there were some common elements that my participants talked about such as: (a) knowledge by Indigenous communities developed over a long period of time through a trial and error approach to respond to the social, economic and political challenges of their society. The science practices are generational and synergistic with other disciplines such as history, spirituality, sociology, anthropology, geography, and trade among others, (b) a cumulative practice of the use, interactions with and of biotic and abiotic organism in everyday life for the continued existence of a community in its' totality. The research findings also indicate that Indigenous science is largely lacking from Uganda's education curriculum because of the influence of colonial and

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  18. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  19. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  20. Centring the Subject in Order to Educate

    Science.gov (United States)

    Webster, R. Scott

    2007-01-01

    It is important for educators to recognise that the various calls to decentre the subject--or self--should not be interpreted as necessarily requiring the removal of the subject altogether. Through the individualism of the Enlightenment the self was centred. This highly individualistic notion of the sovereign self has now been decentred especially…

  1. European Meteorological Society and education in atmospheric sciences

    Science.gov (United States)

    Halenka, T.; Belda, M.

    2010-09-01

    EMS is supporting the exchange of information in the area of education in atmospheric sciences as one of its priority and organizing the educational sessions during EMS annual meetings as a good occasion for such an exchange. Brief thought will be given to the fate of the series of International Conferences on School and Popular Meteorological and Oceanographic Education - EWOC (Education in Weather, Ocean and Climate) and to the project oriented basis of further cooperation in education in atmospheric sciences across Europe. Another tool of EMS is the newly established and developed EDU portal of EMS. In most European countries the process of integration of education at university level was started after Bologna Declaration with the objective to have the system where students on some level could move to another school, or rather university. The goal is to achieve the compatibility between the systems and levels in individual countries to have no objections for students when transferring between the European countries. From this point of view EMS is trying to provide the information about the possibility of education in meteorology and climatology in different countries in centralised form, with uniform shape and content, but validated on national level. In most European countries the necessity of education in Science and Mathematics to achieve higher standard and competitiveness in research and technology development has been formulated after the Lisboa meeting. The European Meteorological Society is trying to follow this process with implication to atmospheric sciences. One of the important task of the EMS is the activity to promote public understanding of meteorology (and sciences related to it), and the ability to make use of it, through schools and more generally. One of the elements of EMS activity is the analysis of the position of atmospheric science in framework of curricula in educational systems of European countries as well as in more general sense, the

  2. Towards Science Education for all: Teacher Support for Female ...

    African Journals Online (AJOL)

    Towards Science Education for all: Teacher Support for Female Pupils in the Zimbabwean Science Class. ... Annals of Modern Education ... One hundred female pupils studying sciences at either Ordinary or Advanced level, and 10 science teachers from 10 selected secondary schools in one province in Zimbabwe, ...

  3. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  4. Feminist Physics Education: Deconstructed Physics and Students' Multiple Subjectivities

    Science.gov (United States)

    Jammula, Diane Crenshaw

    Physics is one of the least diverse sciences; in the U.S. in 2010, only 21% of bachelors degrees in physics were awarded to women, 2.5% to African Americans, and 4% to Hispanic Americans (AIP, 2012). Though physics education reform efforts supporting interactive engagement have doubled students' learning gains (Hake, 1998), gender and race gaps persist (Brewe et al., 2010; Kost, Pollock, & Finkelstein, 2009). When students' subjectivities align with presentations of physics, they are more likely to develop positive physics identities (Hughes, 2001). However, both traditional and reformed physics classrooms may present physics singularly as abstract, elite, and rational (Carlone, 2004). Drawing from feminist science, I argue that binaries including abstract / concrete, elite / accessible, and rational / emotional are hierarchal and gendered, raced and classed. The words on the left define conventional physics and are associated with middle class white masculinity, while the words on the right are associated with femininity or other, and are often missing or delegitimized in physics education, as are females and minorities. To conceptualize a feminist physics education, I deconstructed these binaries by including the words on the right as part of doing physics. I do not imply that women and men think differently, but that broadening notions of physics may allow a wider range of students to connect with the discipline. I used this conceptual framework to modify a popular reformed physics curriculum called Modeling Instruction (Hestenes, 1987). I taught this curriculum at an urban public college in an introductory physics course for non-science majors. Twenty-three students of diverse gender, race, ethnic, immigrant and class backgrounds enrolled. I conducted an ethnography of the classroom to learn how students negotiate their subjectivities to affiliate with or alienate from their perceptions of physics, and to understand how classroom experiences exacerbate or

  5. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  6. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  8. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  9. A university system's approach to enhancing the educational mission of health science schools and institutions: the University of Texas Academy of Health Science Education

    Directory of Open Access Journals (Sweden)

    L. Maximilian Buja

    2013-03-01

    Full Text Available Background: The academy movement developed in the United States as an important approach to enhance the educational mission and facilitate the recognition and work of educators at medical schools and health science institutions. Objectives: Academies initially formed at individual medical schools. Educators and leaders in The University of Texas System (the UT System, UTS recognized the academy movement as a means both to address special challenges and pursue opportunities for advancing the educational mission of academic health sciences institutions. Methods: The UTS academy process was started by the appointment of a Chancellor's Health Fellow for Education in 2004. Subsequently, the University of Texas Academy of Health Science Education (UTAHSE was formed by bringing together esteemed faculty educators from the six UTS health science institutions. Results: Currently, the UTAHSE has 132 voting members who were selected through a rigorous, system-wide peer review and who represent multiple professional backgrounds and all six campuses. With support from the UTS, the UTAHSE has developed and sustained an annual Innovations in Health Science Education conference, a small grants program and an Innovations in Health Science Education Award, among other UTS health science educational activities. The UTAHSE represents one university system's innovative approach to enhancing its educational mission through multi- and interdisciplinary as well as inter-institutional collaboration. Conclusions: The UTAHSE is presented as a model for the development of other consortia-type academies that could involve several components of a university system or coalitions of several institutions.

  10. PARRISE, Promoting Attainment of Responsible Research and Innovation in Science Education, FP7 : Rethinking science, rethinking education

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; van Dam, F.W.

    The PARRISE (Promoting Attainment of Responsible Research & Innovation in Science Education) project aims at introducing the concept of Responsible Research and Innovation in primary and secondary education. It does so by combining inquiry-based learning and citizenship education with

  11. Subject Teachers as Educators for Sustainability: A Survey Study

    Directory of Open Access Journals (Sweden)

    Anna Uitto

    2017-01-01

    Full Text Available Sustainability education (SE is included in school curricula to integrate the principles, values, and practices of sustainable development (SD into all education. This study investigates lower secondary school subject teachers as educators for sustainability. A survey was used to study the perceptions of 442 subject teachers from 49 schools in Finland. There were significant differences between the subject teachers’ perceptions of their SE competence, and the frequency with which they used different dimensions of SE (ecological, economic, social, well-being, cultural in their teaching varied. Teachers’ age had a small effect, but gender, school, and its residential location were nonsignificant factors. Teachers could be roughly classified into three different subgroups according to their perceptions of the role of SE in their teaching; those who considered three SE dimensions rather often and used holistic sustainability approaches in their teaching (biology, geography, history; those who considered two or three dimensions often but were not active in holistic teaching (mother tongue, religion, visual arts, crafts, music, physical and health education, and home economics and those who used one SE dimension or consider only one holistic approach in their teaching (mathematics, physics, chemistry and language. Subject teachers’ awareness of their SE competence is important to encourage them to plan and implement discipline-based and interdisciplinary SE in their teaching. The specific SE expertise of subject teachers should be taken into account in teacher training and education.

  12. Partnering to Enhance Planetary Science Education and Public Outreach Program

    Science.gov (United States)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  13. The Implications for Science Education of Heidegger's Philosophy of Science

    Science.gov (United States)

    Shaw, Robert

    2013-01-01

    Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…

  14. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    Science.gov (United States)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  15. Introductory Comments on Philosophy and Constructivism in Science Education

    Science.gov (United States)

    Matthews, Michael R.

    This article indicates something of the enormous influence of constructivism on contemporary science education. The article distinguishes educational constructivism (that has its origins in theories of children's learning), from constructivism in the philosophy of science (usually associated with instrumentalist views of scientific theory), and from constructivism in the sociology of science (of which the Edinburgh Strong Programme in the sociology of scientific knowledge is the best known example). It notes the expansion of educational constructivism from initial considerations of how children come to learn, to views about epistemology, educational theory, ethics, and the cognitive claims of science. From the learning-theory beginnings of constructivism, and at each stage of its growth, philosophical questions arise that deserve the attention of educators. Among other things, the article identifies some theoretical problems concerning constructivist teaching of the content of science.

  16. PHYSICAL SCIENCE TEACHERS’ PERCEPTIONS OF AN ADVANCED CERTIFICATE IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Sarah Bansilal

    2016-04-01

    Full Text Available Advanced Certificate in Education programmes was offered by many South African universities to provide opportunities for teachers to upgrade their positions. The purpose of the study was to explore Physical Science teachers’ perceptions of their professional development. In this study we considered three domains of professional development which are content knowledge, pedagogic content knowledge and teacher beliefs and attitudes. This study used a mixed method approach using the form of an embedded design. The study was conducted with 156 students enrolled in an ACE Physical Science programme. The teachers stated that their content knowledge and pedagogic content knowledge had not only improved, but also their engagement with actual laboratories, and conducting experiments contributed to their teaching experiences. Hence, their self-confidence of physical science teaching evolved. The authors recommend that the ACE programme should also include a mentoring system with teaching practicum via school leadership and subject advisers.

  17. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  18. Education for hydraulics and pnuematics in Department of Computer Science, Faculty of Information Sciences, Hiroshima City University; Hiroshima shiritsudaigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Sano, M. [Hiroshima City University, Hiroshima (Japan)

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Hiroshima City University. Department of Computer Science is responsible for the education, covering a wide educational range from basics of information processing methodology to application of mathematical procedures. This university provides no subject directly related to hydraulics and pneumatics, which, however, can be studied by the courses of control engineering or modern control theories. These themes are taken up for graduation theses for bachelors and masters; 2 for dynamic characteristics of pneumatic cylinders, and one for pneumatic circuit simulation. Images of the terms hydraulics and pneumatics are outdated for students of information-related departments. Hydraulics and pneumatics are being forced to rapidly change, like other branches of science, and it may be time to make a drastic change from hardware to software, because their developments have been excessively oriented to hardware. It is needless to say that they are based on hardware, but it may be worthy of drastically changing these branches of science by establishing virtual fluid power systems. It is also proposed to introduce the modern multi-media techniques into the education of hydraulics and pneumatics. (NEDO)

  19. Education in the nuclear sciences at Japanese universities

    International Nuclear Information System (INIS)

    Takashima, Y.

    1990-01-01

    Though there are 430 government and private universities in Japan, only a limited number of them have the department associated with nuclear science education. And the education is one-sided to government universities because mainly of financial problem. Nuclear engineering departments are installed at only 7 big universities. In addition, there are 3 institutes associated with a nuclear reactor. In these facilities, education on reactor physics, radiation measurement, electromagnetics and material sciences are conducted. For education on safety handling of radioactive materials, 10 radioisotope centers and 7 radiochemistry laboratories attached to big government universities act an important role. Almost all of the financial support for the above nuclear education come from the Ministry of Education, Science and Culture. However, some other funds are introduced by the private connection of professors

  20. Cultural, Social and Political Perspectives in Science Education

    DEFF Research Database (Denmark)

    education research to question whether conventional research approaches, foci and theoretical approaches are sufficient in a world of science education that is neither politically neutral, nor free of cultural values. Attention is not only on the individual learner but on the cultural, social and political......This book presents a collection of critical thinking that concern cultural, social and political issues for science education in the Nordic countries. The chapter authors describe specific scenarios to challenge persisting views, interrogate frameworks and trouble contemporary approaches...... to researching teaching and learning in science. Taking a point of departure in empirical examples from the Nordic countries the collection of work is taking a critical sideways glance at the Nordic education principles. Critical examinations target specifically those who are researching in the fields of science...

  1. Science Teacher Identity and Eco-Transformation of Science Education: Comparing Western Modernism with Confucianism and Reflexive "Bildung"

    Science.gov (United States)

    Sjöström, Jesper

    2018-01-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on "reform-minded" science teachers. The starting point is the paper "Science education reform in…

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  4. Primary science education: Views from three Australian States

    Science.gov (United States)

    Jeans, Bruce; Farnsworth, Ian

    1992-12-01

    This paper reports an empirical study of science education in Australian primary schools. The data show that, while funding is seen as a major determinant of what is taught and how it is taught, teacher-confidence and teacher-knowledge are also important variables. Teachers are most confident with topics drawn from the biological sciences, particularly things to do with plants. With this exception there is no shared body of science education knowledge that could be used to develop a curriculum for science education. There was evidence that most teachers see a need for a hands-on approach to primary science education involving the use of concrete materials. A substantial proportion of teachers agree that some of the problems would be alleviated by having a set course together with simple, prepared kits containing sample learning experiences. Any such materials must make provision for individual teachers to capitalise on critical teaching incidents as they arise and must not undermine the professional pride that teachers have in their work.

  5. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    Science.gov (United States)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  6. Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung

    Science.gov (United States)

    Sjöström, Jesper

    2018-03-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on `reform-minded' science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing "new pedagogy" in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers' implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an "old pedagogy" in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called "new pedagogy" is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a "new pedagogy" and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.

  7. Education services quality of Kashan Medical Science University, based on SERVQUAL model in viewpoints of students

    Directory of Open Access Journals (Sweden)

    Ebrahim Kouchaki

    2017-01-01

    Full Text Available Introduction: Sustainable development of higher educational systems, as a dynamic system, requires a coherent moderate growth both in qualitative and quantitative dimensions. Since students are the major clients of higher education systems and their perspectives can play a key role in the quality promotion of the services; this study has been conducted based on SERVQUAL model aiming at the assessment of educational services quality in Kashan Medical Science University in 2016. Study Methodology: A total of 212 students of Kashan Medical Science University were selected with a population of 616 subjects through random sampling, using Morgan tables for this descriptive-analytical research. Data collection tools were the standard SERVQUAL questionnaire composing of three sections of basic information and 28 items, according to Likert six-option scale for the measurement of services quality current and desired expected conditions. The difference between the average of current and desirable statuses was measured as the services gap. Descriptive deductive statistics were used to analyze the obtained data. Results: The students aged averagely 23 ± 1.8, 65% (138 subjects were female, and 35% (74 subjects were male. About 72% (153 subjects were single, and 28% (59 subjects were married. The obtained results revealed that there was a negative gap in all dimensions of quality. The results also showed that the minimum gap obtained for learning assist tools (physical and tangibility dimensions with an amount of −0.38 and the maximum gap for guide instructor availability once needed by the students (accountability dimension with an amount of −2.42. Total mean of perceptions and expectations measurement for the students obtained 2.28 and 3.85, respectively. Conclusion: Respecting the negative gap obtained for all dimensions of educational services quality and insufficiencies to meet the students' expectations, it is recommended to assign further resources

  8. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    Science.gov (United States)

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  9. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  10. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  11. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  12. Encountering Science Education's Capacity to Affect and Be Affected

    Science.gov (United States)

    Alsop, Steve

    2016-01-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science…

  13. SunDial: embodied informal science education using GPS

    Directory of Open Access Journals (Sweden)

    Megan K. Halpern

    2011-06-01

    Full Text Available Science centers serve a number of goals for visitors, ideally providing experiences that are educational, social, and meaningful. This paper describes SunDial, a handheld application developed for families to use at a science center. Inspired by the idea of geocaching, the high-tech treasure hunting game that utilizes GPS technologies, SunDial asks families to use a single handheld device to locate and participate in a series of learning modules around the museum. Observations of 10 families suggest that it supports rich informal science education experiences, provides insights about families’ interaction patterns around and with single handheld devices, and demonstrates the value of navigation as an educational experience. Further, using recently released guidelines for Informal Science Education (ISE experiences to inform the design process proved valuable, tying features of the technology to educational and social goals, and giving evidence that explicit reference to these guidelines can improve ISE experiences and technologies.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  15. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  16. Making graduate research in science education more scientific

    Science.gov (United States)

    Firman, Harry

    2016-02-01

    It is expected that research conducted by graduate students in science education provide research findings which can be utilized as evidence based foundations for making decisions to improve science education practices in schools. However, lack of credibility of research become one of the factors cause idleness of thesis and dissertation in the context of education improvement. Credibility of a research is constructed by its scientificness. As a result, enhancement of scientific characters of graduate research needs to be done to close the gap between research and practice. A number of guiding principles underlie educational researchs as a scientific inquiry are explored and applied in this paper to identify common shortages of some thesis and dissertation manuscripts on science education reviewed in last two years.

  17. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  18. Engagement as a Threshold Concept for Science Education and Science Communication

    Science.gov (United States)

    McKinnon, Merryn; Vos, Judith

    2015-01-01

    Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…

  19. Science &Language Teaching in Hands-on Education

    Science.gov (United States)

    Gehlert, Sylvia

    2002-01-01

    As announced in the paper presented in Toulouse, a trinational teacher training program addressing school teachers from France, Germany and Italy on teaching foreign languages together with science and history through Space related projects has been implemented and launched successfully. Supported by the French Ministry of Education (Académie de Nice), the bigovernmental French-German Youth Office (Office franco- allemand pour la Jeunesse) and the European Space Agency the first session was held in Cannes in October 2001 and brought together 36 language, science and history teachers, 12 from each country. Through different workshops, presentations and visits this five-day training encounter initiated the participants with Space activities and exploration as well as offering them back-up information on astronomy. It gave them furthermore the opportunity of improving their linguistic skills and of exchanging their teaching experience. The program was highly welcomed by all the participants who will meet this year in Germany for the second session devoted to establishing together bi- or trinational projects for future class encounters based on the same subjects. My paper will deal with the results of the program which have been beyond expectation and will encourage us to continue this pluridisciplinary approach of language &science teaching and extend it to other language combinations.

  20. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  1. The ongoing educational anomaly of earth science placement

    Science.gov (United States)

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  2. Individuals with greater science literacy and education have more polarized beliefs on controversial science topics.

    Science.gov (United States)

    Drummond, Caitlin; Fischhoff, Baruch

    2017-09-05

    Although Americans generally hold science in high regard and respect its findings, for some contested issues, such as the existence of anthropogenic climate change, public opinion is polarized along religious and political lines. We ask whether individuals with more general education and greater science knowledge, measured in terms of science education and science literacy, display more (or less) polarized beliefs on several such issues. We report secondary analyses of a nationally representative dataset (the General Social Survey), examining the predictors of beliefs regarding six potentially controversial issues. We find that beliefs are correlated with both political and religious identity for stem cell research, the Big Bang, and human evolution, and with political identity alone on climate change. Individuals with greater education, science education, and science literacy display more polarized beliefs on these issues. We find little evidence of political or religious polarization regarding nanotechnology and genetically modified foods. On all six topics, people who trust the scientific enterprise more are also more likely to accept its findings. We discuss the causal mechanisms that might underlie the correlation between education and identity-based polarization.

  3. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    Science.gov (United States)

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  4. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  5. Ernst Mach and the Epistemological Ideas Specific for Finnish Science Education

    Science.gov (United States)

    Siemsen, Hayo

    2011-03-01

    Where does Finnish science education come from? Where will it go? The following outside view reflects on relations, which Finns consider "normal" (and thus unrecognizable in introspection) in science education. But what is "normal" in Finnish culture cannot be considered "normal" for science education in other cultures, for example in Germany. The following article will trace the central ideas, which had a larger influence in the development of this difference. The question is, if and why the Finnish uniqueness in the philosophy of science education is empirically important. This puts Finnish science education into the perspective of a more general epistemological debate around Ernst Mach's Erkenntnistheorie (a German term similar to the meaning of history and philosophy of science, though more general; literally translated "cognition/knowledge theory"). From this perspective, an outlook will be given on open questions within the epistemology of Finnish science education. Following such questions could lead to the adaptation of the "successful" ideas in Finnish science education (indicated by empirical studies, such as the OECD PISA study) as well as the further development of the central ideas of Finnish science education.

  6. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Science.gov (United States)

    2010-02-04

    ... DEPARTMENT OF EDUCATION Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications for New Awards for Fiscal....305D, 84.305E, 84.324A, 84.324B, and 84.324C. Summary: The Director of the Institute of Education...

  7. Changing the science education paradigm: from teaching facts to engaging the intellect: Science Education Colloquia Series, Spring 2011.

    Science.gov (United States)

    Fischer, Caleb Nathaniel

    2011-09-01

    Dr. Jo Handelsman, Howard Hughes Medical Institute Professor in the Department of Molecular, Cellular and Developmental Biology at Yale University, is a long-time devotee of scientific teaching, receiving this year's Presidential Award for Science Mentoring. She gave a seminar entitled "What is Scientific Teaching? The Changing Landscape of Science Education" as a part of the Scientific Education Colloquia Series in spring 2011. After dissecting what is wrong with the status quo of American scientific education, several ideological and practical changes are proposed, including active learning, regular assessment, diversity, and mentorship. Copyright © 2011.

  8. Education of natural science in the work of the Municipal Center for Extracurricular Activities

    Science.gov (United States)

    Jokin, I.

    2012-04-01

    In the description of my work I presented my own experience in the organizing and carrying out of extracurricular activities with the students, the used modes and methods of work, the obtained results and some good practices in the field of natural sciences. Organizing and carrying out of scientific festivals, participation in joint projects together with scientific organizations. Key words: European dimension, interactive methods, key competences, natural sciences, extracurricular activities. We are witnesses of a fundamental change in the pedagogical culture and practice in our schools to establish the parameters of the quality of training. The good scientific culture is an important part of the students' education. Unfortunately, at the present time the scientific and technological culture is on a low level. One of the contemporary problems and realities of the education in natural science school subjects, as a whole and in particular in the secondary education, is the decreased interest for the training in them and in particular in physics, as well as synchronization of the interrelations: school environment - society. In many countries there is a drop in the orientation of the students towards the science and technology - the problem of Science and Technology (S&T). The training of the young people often creates some problems. The teachers meet with the problem of insufficient motivation of the learners for study and difficulties that they encounter in the process of training. The students find it difficult to apply the mastered knowledge to an applied context. The knowledge is rather academic and rather remote from the context, in which the children live and communicate, which makes it nonfunctional. At present there are not enough extracurricular activities that should meet these necessities of the Bulgarian school. The reasons are various, but they mainly consist in the lack of a material base, an exchange of experience and good practices and motivation

  9. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  10. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  11. Toward inclusive science education: University scientists' views of students,instructional practices, and the nature of science

    Science.gov (United States)

    Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.

    2002-01-01

    This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  13. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    Science.gov (United States)

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  14. Flogging a Dead Horse: Pseudoscience and School Science Education

    Science.gov (United States)

    Vlaardingerbroek, Barend

    2011-01-01

    Pseudoscience is a ubiquitous aspect of popular culture which constitutes a direct challenge to science, and by association, to science education. With the exception of politically influential pseudosciences trying to impose themselves on official curricula such as creationism, science education authorities and professional organisations seem…

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. R Jagannathan. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 1 January 1999 pp 89-92 Information and Announcements. The Institute of Mathematical Sciences · R Jagannathan · More Details Fulltext PDF ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 4. Simulation of Electron Motion in Fields – An Interactive Teaching Aid ... Department of Physics Shivaji Education Society Amravati's Science College Congress Nagar, Nagpur 440 012, India; Department of Computer Science Anuradha ...

  17. Science Under Attack Public Policy, Science Education, and the Emperor's New Clothes

    International Nuclear Information System (INIS)

    Krauss, Lawrence

    2005-01-01

    The popular debate about the teaching of intelligent design in public schools is but one quandary for scientists and policy makers. Given recent developments which have worked to breed a general distrust of science, it is evident that researchers and politicians alike should be wary of using popular opinion as a guide for policy and pedagogy when it comes to science in public education. Dr. Krauss will qualify this complex issue and will address how educators, policy makers and scientists can work effectively to prevent public misconceptions of science.

  18. Science comics as tools for science education and communication: a brief, exploratory study

    Directory of Open Access Journals (Sweden)

    M. Tatalovic

    2009-11-01

    Full Text Available Comics are a popular art form especially among children and as such provide a potential medium for science education and communication. In an attempt to present science comics in a museum exhibit I found many science themed comics and graphic books. Here I attempt to provide an overview of already available comics that communicate science, the genre of ‘science comics’. I also provide a quick literature review for evidence that comics can indeed be efficiently used for promoting scientific literacy via education and communication. I address the issue of lack of studies about science comics and their readers and suggest some possible reasons for this as well as some questions that could be addressed in future studies on the effect these comics may have on science communication.

  19. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2017-03-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  20. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  1. Possible reasons for low scientific literacy of Slovak students in some natural science subjects

    Science.gov (United States)

    Bellová, Renata; Melicherčíková, Danica; Tomčík, Peter

    2018-04-01

    Background: The results of international studies have concluded the low level of science literacy in natural science subjects of Slovak students. These studies also showed that this state can be positively influenced by various innovations, which are implemented into the teaching process of above-mentioned subjects.

  2. The pedagogy of argumentation in science education: science teachers' instructional practices

    Science.gov (United States)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  3. Agriculture vs. social sciences: subject classification and sociological conceptualization of rural tourism in Scopus and Web of Science

    Directory of Open Access Journals (Sweden)

    Marjan HOČEVAR

    2016-12-01

    Full Text Available Agriculture and consumptive function of countryside (rural areas are connected which should be reflected in scientific research. In order to test relationships, we selected the topic of rural tourism (also agritourism, agrotourism, agricultural tourism considering sociological conceptualization (social sciences, sociology and methodological approaches of information sciences (bibliometrics, scientometrics in describing fields of science or scientific disciplines. We ascertained scatter of information in citation databases (Web of Science, Scopus, Google Scholar. Functionalities were evaluated, affecting search precision and recall in information retrieval. We mapped documents to Scopus subject areas as well as Web of Science (WOS research areas and subject categories, and related publications (journals. Databases do not differ substantially in mapping this topic. Social sciences (including economics or business occupy by far the most important place. The strongest concentration was found in tourism-related journals (consistent with power laws. Agriculture-related publications are rare, accounting for some 10 % of documents. Interdisciplinarity seems to be weak. Results point to poor inclusion of emerging social topics in agricultural research whereby agriculture may lose out in possible venues of future research.

  4. DEVELOPMENT STRATEGY OF PARTNERSHIP OF HIGHER EDUCATION, SCIENCE AND BUSINESS

    Directory of Open Access Journals (Sweden)

    I. Mazur

    2014-12-01

    Full Text Available In the article the cooperation of higher education, science and business is analysed. A conflict of civilizations wave development in the confrontation of two forces: the "factory of Education" and force change is disclosed. European and Ukrainian higher education quality estimation is analysed. The effect of unsynchronization in time is educed between the necessities of business and possibilities of education and science. Reasons of bribery are exposed at higher school. The development strategy of partnership of higher education, science and business is proposed.

  5. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    BCom Management (Finance (MSU), MCom Strategic Management and Corporate Governance (MSU), Diploma in Education (GTC). Prof. G. Nyamadzawo. BSc (Hons) Agriculture (Soil Science) (UZ), MPhil Agriculture (Soil Science) (UZ), MSc Agriculture (WSU, USA), Diploma in Education, PhD (UZ). ISSN: 1819-3692.

  6. Population Health Science: A Core Element of Health Science Education in Sub-Saharan Africa.

    Science.gov (United States)

    Hiatt, Robert A; Engmann, Natalie J; Ahmed, Mushtaq; Amarsi, Yasmin; Macharia, William M; Macfarlane, Sarah B; Ngugi, Anthony K; Rabbani, Fauziah; Walraven, Gijs; Armstrong, Robert W

    2017-04-01

    Sub-Saharan Africa suffers an inordinate burden of disease and does not have the numbers of suitably trained health care workers to address this challenge. New concepts in health sciences education are needed to offer alternatives to current training approaches.A perspective of integrated training in population health for undergraduate medical and nursing education is advanced, rather than continuing to take separate approaches for clinical and public health education. Population health science educates students in the social and environmental origins of disease, thus complementing disease-specific training and providing opportunities for learners to take the perspective of the community as a critical part of their education.Many of the recent initiatives in health science education in sub-Saharan Africa are reviewed, and two case studies of innovative change in undergraduate medical education are presented that begin to incorporate such population health thinking. The focus is on East Africa, one of the most rapidly growing economies in sub-Saharan Africa where opportunities for change in health science education are opening. The authors conclude that a focus on population health is a timely and effective way for enhancing training of health care professionals to reduce the burden of disease in sub-Saharan Africa.

  7. Staying in the science stream: patterns of participation in A-level science subjects in the UK.

    OpenAIRE

    Smith, Emma

    2011-01-01

    This paper describes patterns of participation and attainment in A-level physics, chemistry and biology from 1961 to 2009. The A-level has long been seen as an important gateway qualification for higher level study, particularly in the sciences. This long term overview examines how recruitment to these three subjects has changed in the context of numerous policies and initiatives that seek to retain more young people in the sciences. The results show that recruitment to the pure sciences has ...

  8. Subjects' experiences of a nutrition education programme: a ...

    African Journals Online (AJOL)

    Subjects' experiences of a nutrition education programme: a qualitative study of adults with type 2 diabetes mellitus living in a rural resource-limited setting in South Africa. ... Positive educator characteristics, such as competence, patience, being respectful and approachable, were cited as desirable. Conclusion: ...

  9. Assessment of clinical residents' needs for ten educational subjects

    Directory of Open Access Journals (Sweden)

    Mansour Razavi

    2002-04-01

    Full Text Available Background Fulfilling the learners' "real needs" will improve medical education. There are subjects that are necessary for any clinical residents not considering their field of specialty. Among the subjects ten seems to be the most important: research methodology and data analysis, computer-based programs, medical recording, cardiopulmonary and cerebral resuscitation, clinical teaching programs, communication skills, clinical ethics, laboratory examinations, reporting special diseases and death certification, and prescription. Purpose This cross-sectional study assessed educational needs of clinical residents for ten educational subjects. Methods A questionnaire prepared by board faculty members consisted of 10 close-ended questions, and one open­ ended question was distributed among 1307 residents from 22 clinical disciplines, who registered for preboard or promotion exam in June 2000. Results Among the subjects three were the most needed: computer-based programs 149 (60%, data collecting system 606 (49%, and clinical ethics 643 (46%. The prescription standard was the least required 177(13%. Conclusion Complementary training courses on these subjects can be an answer to the clinical residents needs. Keywords : research methodology, computer in medicine, cpr, clinical teaching methods, communication in medicine, medical ethics, laboratory ordering, disease coding system, death certificate, prescription writing

  10. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  11. Analysis of the Importance of Subjects to Improve the Educational Curriculum in the Radiological Science: Focused on Radiological Technologists

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Ko, Seong Jin; Kang, Se Sik; Kim, Dong Hyun; Kim, Chang Soo

    2012-01-01

    In this study a group of experts and clinical radiological technologists were surveyed to evaluate the clinical importance of current subjects in the radiological sciences. For the data collection and analysis, an open-ended questionnaire was distributed to the group of experts, and a multiple choice questionnaire was distributed to radiological technologists. Subjects were classified into 9 groups for analysis of the importance of subjects, and in regard to the questionnaire design for measurement of variables, departments and type of hospital were set up as independent variables, and the 9 groups of subjects were set up as dependent variables. As a result, clinical radiological technologists perceived Diagnostic Imaging Technology and practical courses, including general radiography, CT and MRI, as the most clinically necessary subjects, and the group of experts placed most weight on basic courses for the major. The result of this study suggests that the curriculum should be revised in a way that combines theory and practice in order to foster radiological technologists capable of adapting to the rapidly changing healthcare environment.

  12. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  13. Advancing Pre-college Science and Mathematics Education

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rick [General Atomics, San Diego, CA (United States)

    2015-05-06

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter, the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.

  14. It's not rocket science : developing pupils’ science talent in out-of-school science education for primary schools

    NARCIS (Netherlands)

    Geveke, Carla

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  15. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Sheela K Ramasesha. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 16-24 Series Article. Science and Technology of Ceramics - Traditional Ceramics · Sheela K Ramasesha · More Details Fulltext PDF. Volume ...

  17. Avoiding the Issue of Gender in Japanese Science Education

    Science.gov (United States)

    Scantlebury, Kathryn; Baker, Dale; Sugi, Ayumi; Yoshida, Atsushi; Uysal, Sibel

    2007-01-01

    This paper describes how the patriarchal structure of Japanese society and its notions of women, femininity, and gendered stereotypes produced strong cultural barriers to increasing the participation of females in science education. Baseline data on attitudes toward science and the perceptions of gender issues in science education, academic major…

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Srinivasan Ramani. Articles written in Resonance – Journal of Science Education. Volume 13 Issue 5 May 2008 pp 407-409 Article-in-a-Box. Rangaswamy Narasimhan: Doyen of Computer Science and Technology · Srinivasan Ramani · More Details Fulltext ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Veena Srinivasan. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 303-313 Research News. Doing Science That Matters to Address India'sWater Crisis · Veena Srinivasan · More Details Abstract Fulltext PDF.

  20. Making science education meaningful for American Indian students: The effect of science fair participation

    Science.gov (United States)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  1. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  2. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  3. Knowledge, language and subjectivities in a discourse community: Ideas we can learn from elementary children about science

    Science.gov (United States)

    Kurth, Lori Ann

    2000-10-01

    In light of continuing poor performance by American students in school science, feminists and sociocultural researchers have demonstrated that we need to look beyond content to address the science needs of all school children. In this study I examined issues of discourse norms, knowledge, language and subjectivities (meaning personal and social observations and characteristics) in elementary science. Over a two-year period, I used an interpretive methodological approach to investigate science experiences in two first-second and second grade classrooms. I first established some of the norms and characteristics of the discourse communities through case studies of new students attempting to gain entry to whole class conversations. I then examined knowledge, a central focus of science education addressed by a variety of theoretical approaches. In these classrooms students co-constructed and built knowledge in their whole class science conversations sometimes following convergent (similar knowledge) and, at other times, divergent (differing knowledge) paths allowing for broader discourse. In both paths, there was gendered construction of knowledge in which same gender students elaborated the reasoning of previous speakers. In conjunction with these analyses, I examined what knowledge sources the students used in their science conversations. Students drew on a variety of informal and formal knowledge sources including personal experiences, other students, abstract logic and thought experiments, all of which were considered valid. In using sources from both in and out of school, students' knowledge bases were broader than traditional scientific content giving greater access and richness to their conversations. The next analysis focused on students' use of narrative and paradigmatic language forms in the whole class science conversations. Traditionally, only paradigmatic language forms have been used in science classrooms. The students in this study used both narrative and

  4. Individuals with greater science literacy and education have more polarized beliefs on controversial science topics

    Science.gov (United States)

    2017-01-01

    Although Americans generally hold science in high regard and respect its findings, for some contested issues, such as the existence of anthropogenic climate change, public opinion is polarized along religious and political lines. We ask whether individuals with more general education and greater science knowledge, measured in terms of science education and science literacy, display more (or less) polarized beliefs on several such issues. We report secondary analyses of a nationally representative dataset (the General Social Survey), examining the predictors of beliefs regarding six potentially controversial issues. We find that beliefs are correlated with both political and religious identity for stem cell research, the Big Bang, and human evolution, and with political identity alone on climate change. Individuals with greater education, science education, and science literacy display more polarized beliefs on these issues. We find little evidence of political or religious polarization regarding nanotechnology and genetically modified foods. On all six topics, people who trust the scientific enterprise more are also more likely to accept its findings. We discuss the causal mechanisms that might underlie the correlation between education and identity-based polarization. PMID:28827344

  5. Designing Infographics to support teaching complex science subject: A comparison between static and animated Infographics

    Science.gov (United States)

    Hassan, Hesham Galal

    This thesis explores the proper principles and rules for creating excellent infographics that communicate information successfully and effectively. Not only does this thesis examine the creation of Infographics, it also tries to answer which format, Static or Animated Infographics, is the most effective when used as a teaching-aid framework for complex science subjects, and if compelling Infographics in the preferred format facilitate the learning experience. The methodology includes the creation of infographic using two formats (Static and Animated) of a fairly complex science subject (Phases Of The Moon), which were then tested for their efficacy as a whole, and the two formats were compared in terms of information comprehension and retention. My hypothesis predicts that the creation of an infographic using the animated format would be more effective in communicating a complex science subject (Phases Of The Moon), specifically when using 3D computer animation to visualize the topic. This would also help different types of learners to easily comprehend science subjects. Most of the animated infographics produced nowadays are created for marketing and business purposes and do not implement the analytical design principles required for creating excellent information design. I believe that science learners are still in need of more variety in their methods of learning information, and that infographics can be of great assistance. The results of this thesis study suggests that using properly designed infographics would be of great help in teaching complex science subjects that involve spatial and temporal data. This could facilitate learning science subjects and consequently impact the interest of young learners in STEM.

  6. Analyzing Subject Disciplines of Knowledge Originality and Knowledge Generality for Library & Information Science

    Directory of Open Access Journals (Sweden)

    Mu-Hsuan Huang

    2007-12-01

    Full Text Available This study used bibliometric methods to analyze subject disciplines of knowledge originality and knowledge generality for Library and Information Science (LIS by using citing and cited documents from 1997 to 2006. We found that the major subject disciplines of knowledge originality and generality are still LIS, and computer science and LIS interact and influence each other closely. It is evident that number of subject disciplines of knowledge originality is higher than that of knowledge generality. The interdisciplinary characteristics of LIS are illustrated by variety areas of knowledge originality and knowledge generality. Because the number of received subject disciplines is higher than that of given subject disciplines, it suggests that LIS is an application-oriented research area. [Article content in Chinese

  7. The New Science Education Leadership: An IT-Based Learning Ecology Model. Technology, Education--Connections (TEC) Series

    Science.gov (United States)

    Schielack, Jane F., Ed.; Knight, Stephanie L., Ed.

    2012-01-01

    How can we use new technology to support and educate the science leaders of tomorrow? This unique book describes the design, development, and implementation of an effective science leadership program that promotes collaboration among scientists and science educators, provides authentic research experiences for educators, and facilitates adaptation…

  8. Science Education for Democratic Citizenship through the Use of the History of Science

    Science.gov (United States)

    Kolsto, Stein Dankert

    2008-01-01

    Scholars have argued that the history of science might facilitate an understanding of processes of science. Focusing on science education for citizenship and active involvement in debates on socioscientific issues, one might argue that today's post-academic science differs from academic science in the past, making the history of academic science…

  9. The opportunities and challenges for ICT in science education

    OpenAIRE

    Ferk Savec, Vesna

    2017-01-01

    This article examines the opportunities and challenges for the use of ICT in science education in the light of science teachers’ Technological Pedagogical Content Knowledge (TPACK). Some of the variables that have been studied with regard to the TPACK fra mework in science classrooms (such as teachers’ self - efficacy, gender, teaching experience, teachers’ beliefs, etc.) are reviewed, and variations of the TPACK framework specific for science education ...

  10. Subjectivities in Research in Science Education presented at the National Symposium of Physics Education of the last five years

    Directory of Open Access Journals (Sweden)

    Sérgio Choiti Yamazaki

    2015-12-01

    Full Text Available This paper presents the results of a survey conducted in a public university in the country, which aimed to identify the presence elements ordinarily related to subjective phenomena, in the works published in National Symposium of Physics Education, an event that provides meeting between teachers, researchers and students from around the country. The elements to which we have referred are found in contemporary didactic and pedagogical proposals, because it is identified that purely cognitive or even cultural rights are not sufficient to understand the phenomena that happen in the classroom, or more broadly, in education as a whole. The analysis contemplated the publications of the past 3 symposia, and the results infer a small increase of citations of these elements. However, this growth must be questioned because the quotes are made in isolation, not being taken to support the analysis of the authors. In addition, this research also shows that the presence of these elements is very small compared with the total number of papers published in the events.

  11. Science Education on the Internet: Conference for Developers of OnLine Curricula ''Learning Strategies for Science Education Websites''; FINAL

    International Nuclear Information System (INIS)

    Gesteland, Raymond F.; Dart, Dorothy S.; Logan, Jennifer; Stark, Louisa

    2000-01-01

    Internet-based science education programs are coming of age. Educators now look seriously to the Internet as a source of accessible classroom materials, and they are finding many high-quality online science programs. Beyond providing solid curriculum, these programs have many advantages. They provide materials that are far more current than what textbooks offer and are more accessible to disadvantaged and rural population. Students can engage in inquiry-based learning online through interactive and virtual activities, accessing databases, tracking nature occurrences in real time, joining online science communities and conversing with scientists

  12. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    Science.gov (United States)

    Amolins, Michael W.; Ezrailson, Cathy M.; Pearce, David A.; Elliott, Amy J.

    2015-01-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. PMID:26628658

  13. Ethics as a Gateway to Computer Science in Primary Education

    Directory of Open Access Journals (Sweden)

    Juan Vicente OLTRA GUTIÉRREZ

    2017-07-01

    Full Text Available This paper presents a proposal to bring ethics and ICT closer to students of the first courses of the primary education, supporting one in each other, following the Law “Real Decreto 126/2014, 28th of February”, which establishes the basic curriculum for Primary Education. Within this Law, two of seven skills in the curriculum are established: digital skill (the third and also social and civic skills (the fifth. Given the digital natives population who are receiving education, it would be a slightly more ambitious goal to be able to glimpse them to support one in another. In this area, for example, we find a specific subject such as “Social and Civic values” with evaluation criteria such as “Employ new technologies by developing social and civic values in safe environments”. Thanks to this gateway, we can introduce small door to the vision of computer science, through ethics, which may be transversal with all subjects of the curriculum. The suggestion of the present article is to confront teachers with a vision of technology from an outside perspective, from an ethical prism, once the technology is turned it off and the mobiles or tablets screens are converted into a mere black mirror.

  14. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  15. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Palash Sarkar. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 9 September 2000 pp 22-40 General Article. A Sketch of Modern Cryptology - The Art and Science of Secrecy Systems · Palash Sarkar · More Details Fulltext PDF ...

  17. Improving Health with Science: Exploring Community-Driven Science Education in Kenya

    Science.gov (United States)

    Leak, Anne Emerson

    This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students' place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006). To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community. Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldana, 2013) were used to determine patterns in students' applications of their

  18. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  19. Science and the city: A visual journey towards a critical place based science education

    Science.gov (United States)

    Ibrahim, Sheliza

    The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of

  20. Informing the Development of Science Exhibitions through Educational Research

    Science.gov (United States)

    Laherto, Antti

    2013-01-01

    This paper calls for greater use of educational research in the development of science exhibitions. During the past few decades, museums and science centres throughout the world have placed increasing emphasis on their educational function. Although exhibitions are the primary means of promoting visitors' learning, educational research is not…

  1. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  2. Research on Educational Standards in German Science Education--Towards a Model of Student Competences

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2014-01-01

    This paper gives an overview of research on modelling science competence in German science education. Since the first national German educational standards for physics, chemistry and biology education were released in 2004 research projects dealing with competences have become prominent strands. Most of this research is about the structure of…

  3. Information actions in science and technology: institutionalities, agencies and subjects

    Directory of Open Access Journals (Sweden)

    Rodrigo Rabello

    Full Text Available Considering the influence of new agency forms - intervention and interaction among subjects - in the context of information intermediation, we aim to approach information actions in Science and Technology (S&T taking into consideration the institutionalities involved. For such, we assume there is an influence of a theoretical model emerging in Information Science (IS regarding current inventive and interactive form propitiated by the Web. The text is structured in two central topics bringing: i theoretical and epistemic constructions of the "information action" concept; and ii a certain interpretation oriented by the "informational action in S&T" construct, taking as its object the actions performed by IBICT (Brazilian Institute for Information in Science and Technology, directed towards excellence in information. Finally, we discuss how limitations of the "systemic model" propitiate the construction of new study objects in the model emerging in IS from theoretical innovations and counterpoints thoughts facing the diverse forms of information action, considering, for instance, the action of subjects on what concerns the validation of information in the current scenery of institutional intermediation.

  4. NEWS: Why choose science?

    Science.gov (United States)

    2000-05-01

    National concerns over the uptake of science subjects and an analysis of how school science departments together with careers programmes influence students' subject choices feature in a recent report from the UK's National Institute for Careers Education and Counselling. It points out that decisions on science subjects are taken very early in pupils' education, often well before the implications of those choices can be clearly understood. If pupils are to be encouraged to keep science options open, then both science teachers and careers advisers have important roles to play. Physics is in fact singled out in the report's recommendations as in need of special attention, due to its perceived difficulty both within the double-award science course and also at A-level. The lack of qualified teachers in physics is noted as a problem for schools and the many initiatives to address these issues should be encouraged according to the report, but within an overall high-profile and well funded national strategy for developing science education in schools. The report also notes that science teachers do not feel able to keep up with career information, whilst few careers advisers have a science background and have little opportunity to build up their knowledge of science syllabuses or of science and engineering careers. More contact between both types of specialist is naturally advocated. Copies of the full report, Choosing Science at 16 by Mary Munro and David Elsom, are available from NICEC, Sheraton House, Castle Park, Cambridge CB3 0AX on receipt of an A4 stamped (70p) addressed envelope. A NICEC briefing summary is also available from the same address (20p stamp required).

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. C S Yogananda. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 ... Galileo Galilei: Father of Modern Science · C S Yogananda · More Details Fulltext PDF. Volume 6 Issue 9 September 2001 pp 1-2 Editorial. Editorial.

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Nirupama Raghavan. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 5 May 2004 pp 72-78 Classroom. A Public Experiment in the History of Science Naked Eye Visibility of the Transit of Venus · Nirupama Raghavan · More Details ...

  7. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Roddam Narasimha. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 2 February 1996 pp 6-11. Higher Education in India · Roddam Narasimha · More Details Fulltext PDF. Volume 4 Issue 1 January 1999 pp 76-79 Book Review.

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. I Ceyhun. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 6 June 2004 pp 86-91 Classroom. An Experiment for Teaching Chemical Kinetics in Chemical Education · I Ceyhun Z Karagölge · More Details Fulltext PDF ...

  10. Potential of augmented reality in sciences education. A literature review.

    OpenAIRE

    Swensen, Håkon

    2016-01-01

    POTENTIAL OF AUGMENTED REALITY IN SCIENCES EDUCATION A LITERATURE REVIEW H. Swensen Oslo and Akershus University College of Applied Sciences (NORWAY) Fewer and fewer students in Europe choose STEM education, while in today's job market have a growing need for people with such education. There are many reasons for this situation, but one important factor is that many students perceive school science as difficult. In science, there are many complex and abstract concepts to be learned, which put...

  11. Overview of the First Forum about Informal Science Education

    Science.gov (United States)

    Lebron Santos, Mayra; Pantoja, Carmen

    2018-01-01

    The First Forum on Informal Science Education was held at the University of Puerto Rico in 2015. This Forum had the following goals:1. Gather for the first time professionals dedicated to public communication and science outreach in Puerto Rico. 2. Exchange experiences and dissemination strategies with international professional science communicators.3. Encourage a fruitful dialogue between communicators with experience in museums, the media, and the integration of sciences with the arts.4. Encourage dialogue between communicators to facilitate future collaborations.The invited speakers came from Ibero-America and addressed aspects of science communication in museums and the media, the dissemination of science through the arts, the participation of universities in informal science education and the formal education of science communicators. The participants included museum specialists, journalists, artists, outreach specialists, formal educators interested in science outreach, and college students. During the Forum special events for the public were coordinated to celebrate the International Year of Light (2015). The exhibit “Light: Beyond the Bulb” was displayed. Dr. Julieta Fierro, recipient of the prestigious Kalinga Prize for the Popularization of Science awarded by UNESCO, presented the public talk “Light in the Universe”. Dr. Inés Rodríguez Hidalgo, director of the Science Museum of Valladolid, presented the talk "O Sole Mío: An Invitation to Solar Physics". We present an overview of the forum and some critical reflections on the topics discussed.

  12. Tailoring science education graduate programs to the needs of science educators in low-income countries

    Science.gov (United States)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  13. Invited to Academia. Recruited for Science or Teaching in Education Sciences

    Science.gov (United States)

    Angervall, Petra; Gustafsson, Jan

    2016-01-01

    In the context of higher education in Sweden, we see how major policy change is forming the field of Education Sciences. This change has promoted an increased focus on competitiveness, while reducing inefficiencies in mass-education. It has given legitimacy to specific recruitment strategies and career paths, but can also explain what determines…

  14. Information Science and Information Systems: Conjunct Subjects Disjunct Disciplines.

    Science.gov (United States)

    Ellis, David; Allen, David; Wilson, Tom

    1999-01-01

    Examines the relationship between information science and information-systems (IS) research through analysis of the subject literature of each field and by citation and co-citation analysis of highly cited researchers in each field. Subfields of user studies and information-retrieval research were selected to represent information-science…

  15. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge

    Directory of Open Access Journals (Sweden)

    Carolina Netto Rangel

    2014-09-01

    Full Text Available Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  16. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge.

    Science.gov (United States)

    Rangel, Carolina Netto; Nunn, Rebecca; Dysarz, Fernanda; Silva, Elizabete; Fonseca, Alexandre Brasil

    2014-09-01

    Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE) projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  17. Education and Professional Outreach as an Integrated Component of Science and Graduate Education

    Science.gov (United States)

    Staudigel, H.; Koppers, A. A.

    2007-12-01

    Education and Professional Outreach (EPO) is increasingly becoming a substantive and much needed activity for scientists. Significant efforts are expended to satisfy funding agency requirements, but such requirements may also develop into a mutually beneficial collaboration between scientists and K-16 educators with a minimal impact on science productivity. We focus here on two particularly high impact EPO opportunities, hosting of high school interns and the inclusion of an educational component to a graduate student's&pthesis work. We emphasize the importance of hands-on collaboration with teachers and teacher-educators, and the substantive benefits of highly leveraged customized internet-distribution. We will present two examples for how we integrated this K-12 EPO into our university-based science and education efforts, what types of products emerged from these activities, and how such products may be widely produced by any scientist and disseminated to the educational community. High school seniors offer a unique resource to university EPO because some of them can substantively contribute to the science, and they can be very effective peer-mentors for high and middle schools. Extended internships may be built easily into the schedule of many senior high school student programs, and we were able to involve such interns into a three-week seagoing expedition. The seniors were responsible for our EPO by maintaining a cruise website and video conferencing with their high school. They added substantially to the science outcome, through programming and participating in a range of shipboard science chores. Graduate theses may be augmented with an educational component that places the main theme of the thesis into an educational setting. We designed and supervised such a Master's graduate thesis with an educational component on the geochronology of hot spot volcanoes, including a high school lesson plan, enactment in the classroom and preparation of a wide range of web

  18. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  19. Innovations in Undergraduate Science Education: Going Viral

    OpenAIRE

    Hatfull, Graham F.

    2015-01-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-yea...

  20. Science Education & Cultural Environments in the Americas. Report of the Inter-American Seminar on Science Education (Panama City, Panama, December 10-14, 1984).

    Science.gov (United States)

    Gallagher, James J., Ed.; Dawson, George, Ed.

    The impact of cultural background on science learning is explored in this compilation of papers and reports from an inter-American Seminar on science education. For the purposes of enriching science program planning, teacher education, research, and practice in the schools, varying ideas are offered on the effects of cultural background on science…

  1. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  2. Decolonizing Science and Science Education in a Postcolonial Space (Trinidad, a Developing Caribbean Nation, Illustrates

    Directory of Open Access Journals (Sweden)

    Laila N. Boisselle

    2016-03-01

    Full Text Available The article addresses how remnant or transformed colonialist structures continue to shape science and science education, and how that impact might be mitigated within a postcolonial environment in favor of the development of the particular community being addressed. Though cognizant of, and resistant to, the ongoing colonial impact globally and nationally (and any attempts at subjugation, imperialism, and marginalization, this article is not about anticolonial science. Indeed, it is realized that the postcolonial state of science and science education is not simply defined, and may exist as a mix of the scientific practices of the colonizer and the colonized. The discussion occurs through a generic postcolonial lens and is organized into two main sections. First, the discussion of the postcolonial lens is eased through a consideration of globalization which is held here as the new colonialism. The article then uses this lens to interrogate conceptions of science and science education, and to suggest that the mainstream, standard account of what science is seems to represent a globalized- or arguably a Western, modern, secular-conception of science. This standard account of science can act as a gatekeeper to the indigenous ways of being, knowing, and doing of postcolonial populations. The article goes on to suggest that as a postcolonial response, decolonizing science and science education might be possible through practices that are primarily contextually respectful and responsive. That is, localization is suggested as one possible antidote to the deleterious effects of globalization. Trinidad, a postcolonial developing Caribbean nation, is used as illustration.

  3. Female distance education students overtaking males in science ...

    African Journals Online (AJOL)

    This study was initiated to compare the performance of male and female distance education students of the University of Education, Winneba in Integrated Science. This was done by randomly selecting the cumulated grades of male and female students of 2002, 2003 and 2004-year groups in Integrated Science for analysis ...

  4. Mind Maps as Facilitative Tools in Science Education

    Science.gov (United States)

    Safar, Ammar H.; Jafer,Yaqoub J.; Alqadiri, Mohammad A.

    2014-01-01

    This study explored the perceptions, attitudes, and willingness of pre-service science teachers in the College of Education at Kuwait University about using concept/mind maps and its related application software as facilitative tools, for teaching and learning, in science education. The first level (i.e., reaction) of Kirkpatrick's/Phillips'…

  5. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  6. Planetary Science Educational Materials for Out-of-School Time Educators

    Science.gov (United States)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  7. The perceived roles and functions of school science subject advisors

    African Journals Online (AJOL)

    deals with the perceived roles and functions of science subject ad- visors. .... social control, rather than effective management and professional development at school ..... authority, restrictions on travelling, lack of mobile units and sci- ence kits ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Harold A Scheraga. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 6 June 2003 pp 2-5 Article-in-a-Box. Paul J. Flory – The Man Who Laid the Foundations of Modern Polymer Science · Harold A Scheraga · More Details Fulltext ...

  9. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Journal Home > African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  10. Toward re-thinking science education in terms of affective practices: reflections from the field

    Science.gov (United States)

    Kayumova, Shakhnoza; Tippins, Deborah

    2016-09-01

    Rational and operationalized views of science and what it means for teachers and students to know and enact legitimate science practices have dominated science education research for many decades (Fusco and Barton in J Res Sci Teach 38(3):337-354, 2001. doi: 10.1002/1098-2736(200103)38:33.0.CO;2-0). Michalinos Zembylas challenges historically prevalent dichotomies of mind/body, reason/emotion, and emotion/affect, calling researchers and educators to move beyond the Cartesian dualisms, which have perpetuated a myth of scientific objectivity devoid of bias, subjectivity and emotions. Zembylas (Crit Stud Teach Learn 1(1):1-21, 2013. doi: 10.14426/cristal.v1i1.2) contends that the role of emotions and affect are best understood as relational and entangled in epistemological, cultural, and historical contexts of education, which represent contested sites of control and resistance. We argue that Zembylas' work is pivotal since "theoretical frames of reference for doing research in science education…[and] what constitutes knowledge and being within a particular frame" carry material bearings over the enactments of science teaching and learning (Kyle in J Res Sci Teach 31:695-696, 1994, p. 321. doi: 10.1002/tea.3660310703). In this paper, we hold cogen dialogue about how re-thinking notions of emotion and affect affords us, both science educators and researchers, to re-envision science education beyond cognitive and social frames. The framing of our dialogue as cogen builds on Wolff-Michael Roth and Kenneth Tobin's (At the elbows of another: learning to teach through coteaching. Peter Lang Publishing, New York, 2002) notion of cogenerative dialogue. Holding cogen is an invitation to an openly dialogic and safe area, which serves as a space for a dialogic inquiry that includes radical listening of situated knowledges and learning from similarities as well as differences of experiences (Tobin in Cult Stud Sci Educ, in review, 2015). From our situated experiences reforms

  11. Science and technology related global problems: An international survey of science educators

    Science.gov (United States)

    Bybee, Rodger W.; Mau, Teri

    This survey evaluated one aspect of the Science-Technology-Society theme, namely, the teaching of global problems related to science and technology. The survey was conducted during spring 1984. Two hundred sixty-two science educators representing 41 countries completed the survey. Response was 80%. Findings included a ranking of twelve global problems (the top six were: World Hunger and Food Resources, Population Growth, Air Quality and Atmosphere, Water Resources, War Technology, and Human Health and Disease). Science educators generally indicated the following: the science and technology related global problems would be worse by the year 2000; they were slightly or moderately knowledgeable about the problems; print, audio-visual media, and personal experiences were their primary sources of information; it is important to study global problems in schools; emphasis on global problems should increase with age/grade level; an integrated approach should be used to teach about global problems; courses including global problems should be required of all students; most countries are in the early stages of developing programs including global problems; there is a clear trend toward S-T-S; there is public support for including global problems; and, the most significant limitations to implementation of the S-T-S theme (in order of significance) are political, personnel, social, psychological, economic, pedagogical, and physical. Implications for research and development in science education are discussed.

  12. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  13. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    Science.gov (United States)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  14. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  15. Data Curation Education Grounded in Earth Sciences and the Science of Data

    Science.gov (United States)

    Palmer, C. L.

    2015-12-01

    This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.

  16. Science Education and Education for Citizenship and Sustainable Development

    Science.gov (United States)

    Johnston, Ronald

    2011-01-01

    In the United Kingdom (UK) and Europe, the need for education for sustainable development and global citizenship has recently been emphasised. This emphasis has arguably found its major home in the social studies in higher education. Concurrently, there has been a decline in interest in "the sciences" as evidenced by a reduction in the…

  17. Southern Africa Journal of Education, Science and Technology: Site ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Site Map. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  18. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  19. Evaluating Education and Science at the KSC Visitor Complex

    Science.gov (United States)

    Erickson, Lance K.

    2002-01-01

    As part of a two-year NASA-ASEE project, a preliminary evaluation and subsequent recommendations were developed to improve the education and science content of the Kennedy Space Center Visitor Complex exhibits. Recommendations for improvements in those exhibits were based on qualitative descriptions of the exhibits, on comparisons to similar exhibit collections, and on available evaluation processes. Because of the subjective nature of measuring content in a broad group of exhibits and displays, emphasis is placed on employing a survey format for a follow-on, more quantitative evaluation. The use of an external organization for this evaluation development is also recommended to reduce bias and increase validity.

  20. Increasing Expertise in Earth Science Education through Master's Education

    Science.gov (United States)

    Huntoon, Jackie; Baltensperger, Brad

    2012-01-01

    The processes of developing and the results of testing a master's degree program designed to increase the number and quality of secondary-level earth science teachers are described in this paper. The master's program is intended to serve practicing secondary-level science and math teachers who lack subject-area endorsement in earth science. There…

  1. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  2. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    Science.gov (United States)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  3. Implementation of National Science Education Standards in suburban elementary schools: Teachers' perceptions and classroom practices

    Science.gov (United States)

    Khan, Rubina Samer

    2005-07-01

    This was an interpretive qualitative study that focused on how three elementary school science teachers from three different public schools perceived and implemented the National Science Education Standards based on the Reformed Teaching Observation Protocol and individual interviews with the teachers. This study provided an understanding of the standards movement and teacher change in the process. Science teachers who were experienced with the National Science Education Standards were selected as the subjects of the study. Grounded in the theory of teacher change, this study's phenomenological premise was that the extent to which a new reform has an effect on students' learning and achievement on standardized tests depends on the content a teacher teaches as well as the style of teaching. It was therefore necessary to explore how teachers understand and implement the standards in the classrooms. The surveys, interviews and observations provided rich data from teachers' intentions, reflections and actions on the lessons that were observed while also providing the broader contextual framework for the understanding of the teachers' perspectives.

  4. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  5. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  6. Cross-curricular goals and raising the relevance of science education

    DEFF Research Database (Denmark)

    Belova, Nadja; Dittmar, Johanna; Hansson, Lena

    2017-01-01

    ‘Relevance’ is one of the most commonly used terms when it comes to reforms in science education. The term is used in manifold ways. It can be understood – among other things – as meeting an interest, fulfilling needs or contributing to intellectual development. Many components of relevant science...... education go beyond single contents and concepts; many challenges are tied to cross-curricular goals. Specifically, when it comes to the societal and vocational relevance of science education, many demands can only be met when we develop corresponding skills across disciplines and grade levels. This chapter...... focuses on a set of such cross-curricular goals from a chemistry education perspective, namely, education for sustainability, critical media literacy, innovation competence, vocational orientation and employability. It relates them to the idea of relevant chemistry and science education. Directions...

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Editorial Board. Editorial Board. Resonance – Journal of Science Education. Chief Editor. N Sathyamurthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore ... Guruswamy Kumaraswamy, CSIR-National Chemical Laboratory, Pune

  8. Teaching heroics: Identity and ethical imagery in science education

    Science.gov (United States)

    Robeck, Edward C.

    In what follows, I address ways in which science education can influence personal identity and social relationships. I do this through a consideration of ideological implications of science as it is constituted in science education. In this situation, I consider science to be a symbolic--emanating from socially derived meanings. I begin with the premise that any symbol system is permeated with ideological elements. To highlight the ideological elements of science in science education, I use another more explicitly symbolic system as a comparative framework. That system is epic heroism, primarily as Joseph Campbell (1949) describes it in The Hero With A Thousand Faces. The discussion of science education is given a practical grounding using transcripts from the interviews with twenty Grade 10 students and many of their teachers undertaken in the 1993-1994 school year. I used epic heroism as a framework for initiating interpretations of broad themes from the transcripts, but also read the transcripts in relation to aspects of epic heroism, including existing critiques of Campbell's work and heroism more broadly. Specific quotes are included to illustrations of various points. My particular focus here is on ideological elements that can be associated with racism, sexism, and other social relationships that are collectively referred to as relations involving divisive bias. In particular, two themes are discussed extensively. The first is the theme of identity formed through separation, which results in the promotion of reductive and individualistic identities. The second theme has to do with the role of boundary imagery in the formation of relationship, which establishes difference hierarchically. Both of these are pervasive in divisive bias and in the imagery of epic heroism. Ways in which they can pervade practices in science education are also discussed. The central argument of the thesis is that science education, when undertaken through practices that incorporate

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  10. Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review

    Science.gov (United States)

    Jin, Jun

    2014-01-01

    Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for

  11. Educational technologies in problem-based learning in health sciences education: a systematic review.

    Science.gov (United States)

    Jin, Jun; Bridges, Susan M

    2014-12-10

    As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education

  12. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  13. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  14. Locating a space of criticality as new scholars in science education

    Science.gov (United States)

    Burke, Lydia E. Carol-Ann; Bazzul, Jesse

    2017-09-01

    As newcomers in the field of science education research we discuss our perspectives on critical scholarship in the academy. Using the metalogue approach we explore our perceptions of science education, our experiences of the barriers to critical science education research, our analyses of why these barriers exist, and imaginings about how these barriers could be removed. In this paper, metalogue provides us with a way to retain our individual voices, thoughts and ideas, yet challenge our pre-conceived notions about finding a critical space in science education. Through an interaction with each other's thoughts and past experiences we outline some aspects of the field of science education as we see it; for example, we discuss why the field may be seen as rigid as well as the contexts that surround possibilities for interdisciplinary, critical, social justice research. We conclude that a larger, multi-vocal discussion is necessary to locate the possibilities for critical, social justice oriented science education.

  15. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  16. Professor Barry Fraser's contributions to science education research

    Science.gov (United States)

    Aldridge, Jill M.

    2011-09-01

    In this article, I endeavour to convey the depth of Barry Fraser's contributions to science education research, including his tireless endeavours to promote and advance research, especially the field of learning environments, the realisation of his vision to create one of the largest doctoral programs in science and mathematics education in the world, his leadership capacity in terms of guiding and leading an internationally renowned centre and large-scale cross-national and cross-cultural studies, his dedication towards human capacity building in Africa, Asia and elsewhere, his capacity as a mentor and editor that have seen the publication of numerous journal articles and books and the ongoing success of science education research journals.

  17. Homi Bhabha Centre for Science Education, Tata Institute of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research (A Deemed University). Information and Announcements Volume 22 Issue 2 February 2017 pp 189-189 ...

  18. The Implementation Of Character Education Values In Integrated Physical Education Subject In Elementary School

    Directory of Open Access Journals (Sweden)

    Suherman Ayi

    2018-01-01

    Full Text Available The issue of this research emphasizes on the implementation of character building values through physical education learning in elementary school. The effort in developing this character building practice is essential to be done in order to tackle moral and character crises, which already occur in both individual and collective levels reflected in educational institution from elementary school to higher education. Hence, to form culture and national character, educational program and process are inseparable from environmental factor including the values of society, culture, and humanity. Physical education subject that is based on 2013 Curriculum has significant difference compared to the previous physical education subject. This is due to the fact that integrated physical education has its own uniqueness in terms of planning, systematic implementation, and instructional medium. This research aims at producing guidance in implementing character values integrated in physical education in elementary school. The method used in this research is research and development (R&D method, which includes preliminary research, model designing, limited trial, and extensive trial, as well as validation and dissemination. The findings of the research show that character values can be implemented in physical education in elementary schools in Sumedang Regency.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 7. July 2013, pages 593-688. pp 593-594 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 595-595 Science Smiles. Science Smiles · Ayan Guha.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 6. June 2013, pages 495-594. pp 495-496 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 497-497 Science Smiles. Science Smiles · Ayan Guha.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 9. September 2015, pages 757-864. pp 757-758 Editorial. Editorial · Amit Roy · More Details Fulltext PDF. pp 759-759 Science Smiles. Science Smiles · Ayan Guha.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 6. June 2012, pages 527-622. pp 527-528 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 529-529 Science Smiles. Science Smiles · Ayan Guha.

  3. Evaluating the effectiveness of a laboratory-based professional development program for science educators.

    Science.gov (United States)

    Amolins, Michael W; Ezrailson, Cathy M; Pearce, David A; Elliott, Amy J; Vitiello, Peter F

    2015-12-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. Copyright © 2015 The American Physiological Society.

  4. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  5. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  6. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  7. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  8. Analysis on the effectiveness of gifted education by studying perceptions of science gifted education recipients

    Science.gov (United States)

    Jung, Hyun-Chul; Ryu, Chun-Ryol; Choi, Jinsu; Park, Kyeong-Jin

    2016-04-01

    The necessity of science gifted education is persistently emphasized in the aspect of developing individuals' potential abilities and enhancing national competitiveness. In the case of Korea, gifted education has been conducted on a national level ever since the country established legal and institutional strategies for gifted education in 2000. Even though 15 years has passed since a full-scale implementation of gifted education has started, there are few researches on the effectiveness of gifted education. Therefore, considering the splashdown effect, that a long period of time is needed to obtain reliable assessments on education effectiveness, this research surveyed gifted education recipients to study the effectiveness of gifted education. For this cause, we developed an questionnaire and conducted a survey of university students who had experience of receiving science gifted education. We deduced the following from the analysis. First, generally the recipients were satisfied with their gifted education experiences, but thought that not enough opportunities were provided on problem solving ability enhancement and career related aspects. Second, schools considered 'experiments' as the most effective teaching method, regardless to the stage of education. In addition, they perceived 'discussions and presentations' as effective education methods for elementary school students; 'theme investigating classes' for middle school students; and lectures for high school students. It could be seen that various experiences were held important for elementary school students and as students went into high school education, more emphasis was placed on the importance of understanding mathematical and scientific facts. Third, on gifted education teaching staffs, satisfaction of professionalism on specialities were high but satisfaction of variety of teaching methods were relatively low. In this research, to encourage science gifted students to meet their potentials, we propose

  9. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  10. The Views of Turkish Science Teachers about Gender Equity within Science Education

    Science.gov (United States)

    Idin, Sahin; Dönmez, Ismail

    2017-01-01

    The aim of this study was to investigate Turkish Science teachers' views about gender equity in the scope of science education. This study was conducted with the quantitative methodology. Within this scope, a 35-item 5-point Likert scale survey was developed to determine Science teachers' views concerning gender equity issues. 160 Turkish Science…

  11. Using the Geoscience Literacy Frameworks and Educational Technologies to Promote Science Literacy in Non-science Major Undergraduates

    Science.gov (United States)

    Carley, S.; Tuddenham, P.; Bishop, K. O.

    2008-12-01

    In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Beatrice Tinsley. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 5 May 2004 pp 91-95 Classics. From Big Bang to Eternity? Beatrice Tinsley · More Details Fulltext PDF ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Harsh Vardhan. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 1 January 2002 pp 53-63 General Article. Radio Broadcast Technology · Harsh Vardhan · More Details Fulltext PDF ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. P K Srivastava. Articles written in Resonance – Journal of Science Education. Volume 12 Issue 8 August 2007 pp 85-96 Reflections. Remembering Newton · P K Srivastava · More Details Fulltext PDF ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 3 ... Lorenz system; deterministic chaos; unpredictability; Lyapunov exponent; fractals. ... Professor of Physics Dean Graduate Studies Indian Institute of Science Education & Research Dr Homi Bhabha Road Pashan, Pune 411008, India ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Venkat Arun. Articles written in Resonance – Journal of Science Education. Volume 20 Issue 9 September 2015 pp 844-855 General Article. Multithreaded Processors · Venkat Arun · More Details Fulltext PDF ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Matthew Jacob. Articles written in Resonance – Journal of Science Education. Volume 18 Issue 1 January 2013 pp 78-86 Classroom. Discrete Event Simulation · Matthew Jacob · More Details Fulltext PDF ...

  18. BioSIGHT: Interactive Visualization Modules for Science Education

    Science.gov (United States)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  19. Implementation of inquiry-based science education in different countries: some reflections

    Science.gov (United States)

    Rundgren, Carl-Johan

    2017-03-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to influence the member countries regarding the actual teaching and learning in the classrooms is more limited. In later years, several EU-projects focusing on IBSE have been funded in order to make science education in Europe better, and more motivating for students. Highlighting what Heinz and her colleagues call the policy of `soft governance' of the EU regarding how to improve science education in Europe, I discuss the focus on IBSE in the seventh framework projects, and how it is possible to maintain more long-lasting results in schools through well-designed teacher professional development programs. Another aspect highlighted by Heinz and her colleagues is how global pressures on convergence in education interact with educational structures and traditions in the individual countries. The rise of science and science education as a global culture, encompassing contributions from all around the world, is a phenomenon of great potential and value to humankind. However, it is important to bear in mind that if science and science education is going to become a truly global culture, local variation and differences regarding foci and applications of science in different cultures must be acknowledged.

  20. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  1. Enrichment of Science Education Using Real-time Data Streams

    Science.gov (United States)

    McDonnell, J. M.; de Luca, M. P.

    2002-12-01

    For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.

  2. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  3. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    Science.gov (United States)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style

  4. The Role of Science Education in the Nuclear Age

    DEFF Research Database (Denmark)

    Christensen, Ivan Lind

    2016-01-01

    The ramifications of the atomic bombings of Hiroshima and Nagasaki in 1945 and the Atom for Peace resolution adopted by the UN in 1954 has been the object of study for some time now, especially with regard to international relations, national security policies and popular culture. Far less...... attention has been paid to the impact of the subsequent UNESCO Atoms for Peace initiatives within science education. This article traces the international ideas about the role of education in the atomic age, as they were formulated by central agents within UNESCO’s Natural Science Department, Section...... of Science Teaching, Social Science Department and the Department of Education. Moving from the rhetoric of international ‘Big Politics’ to the local level of primary schools, the article explores how the Atom for Peace initiative was related to the general science teaching discourse and the already ongoing...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. John McCarthy. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 3 March 2014 pp 283-296 Classics. Generality in Artificial Intelligence · John McCarthy · More Details Fulltext PDF ...

  6. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 2. Homi Bhabha Centre for Science Education (TIFR). S Ramaseshan. Information and Announcements Volume 3 Issue 2 February 1998 pp 91-95. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. P N Rangarajan. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 7 July 2002 pp 25-34 General Article. DNA Vaccines · P N Rangarajan · More Details Fulltext PDF ...

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. W Kohn. Articles written in Resonance – Journal of Science Education. Volume 22 Issue 8 August 2017 pp 809-811 Classics. Inhomogeneous Electron Gas · P Hohenberg W Kohn · More Details Abstract Fulltext PDF ...

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. H Guhan Venkat. Articles written in Resonance – Journal of Science Education. Volume 12 Issue 10 October 2007 pp 79-79 Classroom. Sudoku Magic Square · H Guhan Venkat · More Details Fulltext PDF ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Raamesh Gowri Raghavan. Articles written in Resonance – Journal of Science Education. Volume 10 Issue 1 January 2005 pp 17-24 General Article. Numerical Methods in Linguistics - An Introduction to Glottochronology · Raamesh Gowri Raghavan.

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Sovan Sarkar. Articles written in Resonance – Journal of Science Education. Volume 7 Issue 2 February 2002 pp 33-45 General Article. Untangling the Mystery of Alzheimer's Disease - Understanding Molecular Mechanisms for Novel Therapeutic Approaches.

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Irving Langmuir. Articles written in Resonance – Journal of Science Education. Volume 13 Issue 7 July 2008 pp 693-696 Classics. The Speed of the Deer Fly · Irving Langmuir · More Details Fulltext PDF ...

  13. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. V I Arnold. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 9 September 2014 pp 851-861 Classics. On Teaching Mathematics · V I Arnold · More Details Fulltext PDF ...

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Vikram Dhar. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 2 February 1999 pp 27-36 General Article. Imaging Sensors: Artificial and Natural · Vikram Dhar · More Details Fulltext PDF ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Subramania Ranganathan. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 28-33 Series Article. Fascinating Organic Transformations: Rational Mechanistic Analysis The Wagner Meerwein Rearrangement and ...

  16. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Krushnamegh J Kunte. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 3 March 2000 pp 86-97 Classroom. Project Lifescape: Butterfly Accounts · Krushnamegh J Kunte · More Details Fulltext PDF ...

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Hari Sridhar. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 4 April 2018 pp 499-504 Face to Face. On Research Misconduct · Hari Sridhar · More Details Abstract Fulltext PDF ...

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Susanta Das. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 1 January 2004 pp 34-49 General Article. Nuclear Magnetic Resonance Spectroscopy · Susanta Das · More Details Fulltext PDF ...

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. P Vanchinathan. Articles written in Resonance – Journal of Science Education. Volume 21 Issue 3 March 2016 pp 239-245 General Article. Is Calculus a Failure in Cryptography? P Vanchinathan · More Details Fulltext PDF ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Kovid Goyal. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 2 February 2003 pp 76-79 Classroom. Matrix Magic: Spin Half Systems · Kovid Goyal · More Details Fulltext PDF ...