WorldWideScience

Sample records for science education projects

  1. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  2. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  3. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  4. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  5. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  6. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  7. International Science Education: A Study of UNESCO Science Education Improvement Projects in Selected Anglophone Countries of Africa: Project Problems.

    Science.gov (United States)

    Nichter, Richard

    1984-01-01

    Discusses some of the problems faced by technical advisors implementing projects for the improvement of science education in Africa and reasons for these problems. Problem areas considered include underdevelopment, underestimating the process, finances, personality conflict and motivation, and opposition from key groups. (A list of major UNESCO…

  8. Natural Hazards in Earth Science education projects

    Science.gov (United States)

    Ferrero, Elena; Magagna, Alessandra

    2013-04-01

    reconstructing situations recognizable only by clues and following events widely spread in geologic times. These examples will illustrate how methodologies and strategies have been applied to achieve the following purposes: (i) to act according to the principles of geoethics in the formation of professionals of Geosciences education and communication; (ii) to increase individual and collective awareness of the interference of mankind on natural systems, especially on geological heritage. All the mentioned activities have been designed following these common strategies: - to respect and to value the great emotional impact of the issues proposed; - to lighten the irrational aspects of an approximate communication carried out by some media; - to place the impulsive events between the effects of "normal" terrestrial dynamical processes; - to train to a constant and curious attention towards "common" situations, in order to be able to interpret them with awareness; - to highlight the complexity of the phenomena and the richness of the relations between abiotic and living world, despite of convenient simplifications; - to highlight the role of mankind in the system of relationships, as "victim" or "creator" of the changes; - to encourage the awareness of individual responsibility, to enhance the development of a respectful and careful attitude towards other living beings and the Earth system, attitude mindful of the values and the need to protect them. The importance of taking care of the communication approach has been evaluated and tested, giving constant attention to the interlocutors participation, creating informal moments of dialogue, valuing the contributions of their previous knowledge and experience, integrating other contributions of knowledge, relevant to the humanities and the arts.

  9. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  10. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    Science.gov (United States)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  11. 77 FR 58111 - Notice of Submission for OMB Review; Institute of Education Sciences; FAFSA Completion Project...

    Science.gov (United States)

    2012-09-19

    ... DEPARTMENT OF EDUCATION Notice of Submission for OMB Review; Institute of Education Sciences; FAFSA Completion Project Evaluation SUMMARY: The Institute of Education Sciences (IES) at the U.S. Department of Education (ED) is conducting a rigorous study of the Free Application for Federal Student Aid...

  12. A Comparison of Creativity in Project Groups in Science and Engineering Education in Denmark and China

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Valero, Paola

    2015-01-01

    Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China.......Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China....

  13. Classroom Environment in the Implementation of an Innovative Curriculum Project in Science Education.

    Science.gov (United States)

    Suarez, Mercedes; Pias, Rosa; Membiela, Pedro; Dapia, Dolores

    1998-01-01

    Analyzes the perceptions of students, teachers, and external observers in order to study the influence of classroom environment on the implementation of an innovative project in science education. Contains 33 references. (DDR)

  14. Museums for Science Education: can we make the difference? The case of the EST project

    Directory of Open Access Journals (Sweden)

    Maria Xanthoudaki

    2007-06-01

    Full Text Available This paper addresses the role of museums in education in science and technology through the discussion of a specific project entitled EST “Educate in Science and Technology”. The Project puts together methodologies and activities through which museums can be used as resources for long-term project work. In-service training for teachers, work in class with learning kits or with materials brought in by a Science Van, and visits to the museum are planned and developed jointly by museum experts and teachers. The Project proposes a teaching and learning model which sees the museum experience as central and integral part of a teaching and learning process with more effective outcomes. The analysis of the Project activities and methodologies is based on the work carried out at the National Museum of Science and Technology Leonardo da Vinci, which perceives the learner (the visitor at the heart of its educational methodologies and provision.

  15. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions

  16. Balancing the Equation. A Study of Women and Science and Technology within Further Education. Project Report.

    Science.gov (United States)

    Stoney, Sheila M.; Reid, Margaret I.

    A 1-year project was conducted to explore ways and suggest possible strategies by which Further Education staff in Great Britain can help improve women's participation, progress, and attainment in physical science and technology, particularly at technician and craft levels. Data were collected by a questionnaire survey of heads of science and…

  17. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  18. Affordable Integrated Technology Projects Science Education towards New Horizons

    Science.gov (United States)

    Paoletti, Franco; Carlucci, Lisa Marie

    2009-03-01

    The new-era concept of education supports a type of instruction whereby technology directly acts as a conduit of change, fundamentally altering what is learned, how it is learned, and the role of the educator in the classroom. In our current world, the learning about technology itself has become a goal and a means to successful participation in today's society. Efficient integration of technology to enhance and support the educational process will: 1) provide educators with the resources and the freedom to actualize innovative educational programs; 2) allow educators to be successful in challenging each student to reach his/her highest potential to ultimately increase academic achievement. This study analyzes what technology integration into education means identifying the benefits and the challenges that educators need to meet in order to be successful in their efforts while providing examples of how to successfully implement effective programs under budgetary constraints.

  19. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  20. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  1. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  2. Solar Energy Educational Material, Activities and Science Projects

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Educational Materials Solar with glasses " ;The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth. Solar energy can be converted directly or indirectly into other forms of energy, such as

  3. The Rural Girls in Science Project: from Pipelines to Affirming Science Education

    Science.gov (United States)

    Ginorio, Angela B.; Huston, Michelle; Frevert, Katie; Seibel, Jane Bierman

    The Rural Girls in Science (RGS) program was developed to foster the interest in science, engineering, and mathematics among rural high school girls in the state of Washington. Girls served include American Indians, Latinas, and Whites. This article provides an overview of the program and its outcomes not only for the participants (girls, teachers, counselors, and schools) but the researchers. Lessons learned from and about the participants are presented, and lessons learned from the process are discussed to illustrate how RGS moved from a focus on individuals to a focus on the school. The initial guiding concepts (self-esteem and scientific pipeline) were replaced by “possible selves” and our proposed complementary concepts: science-affirming and affirming science education.

  4. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  5. The Windows to the Universe Project: Using the Internet to Support K-12 Science Education

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Bergman, J.; Russell, R.; Genyuk, J.; La Grave, M.

    2003-12-01

    The World Wide Web can be a powerful tool for reaching the public as well as students and teachers around the world, supporting both formal and informal science education. The Windows to the Universe Project, initiated in 1995, provides a case study of approaches for the use of the web to support earth and space science education and literacy efforts. Through the use of innovative approaches such as easy to use design, multi-level content, and science concepts presented in a broader background context that includes connections to culture and the humanities, Windows to the Universe is an accessible format for individuals of various ages and learning styles. A large global audience regularly uses the web site to learn about earth and space science as well as related humanities content such as myths from around the world. User surveys show that the site has over 4 millions users per year, 65 percent of which are K-12 teachers and students. Approximately 46 percent of users access the site once per week or more. Recently, we have had the opportunity to expand our efforts while we continue to update existing content based on new scientific findings and events. Earth science content on Windows to the Universe is currently growing with a new geology section and development efforts are underway to expand our space weather content with a new curriculum. Educational games allow users to learn about space in a playful context, and an online journaling tool further integrates literacy into the learning experience. In addition, we are currently translating the entire Windows to the Universe web site into Spanish. We have included educators in the project as co-designers from its inception, and by aggressively utilizing and providing professional development opportunities for teachers, the web site is now used in thousands of classrooms around the world. In the past year we have continued to support K-12 educators by adding to our suite of classroom activities and leading

  6. Technology Foresight For Youth: A Project For Science and Technology Education in Sweden

    Science.gov (United States)

    Kendal, Anne Louise

    "Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.

  7. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  8. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  9. The Inspiring Science Education project and the resources for HEP analysis by university students

    International Nuclear Information System (INIS)

    Fassouliotis, Dimitris; Kourkoumelis, Christine; Vourakis, Stylianos

    2016-01-01

    The Inspiring Science Education outreach project has been running for more than two years, creating a large number of inquiry based educational resources for high-school teachers and students. Its goal is the promotion of science education in schools though new methods built on the inquiry based education techniques, involving large consortia of European partners and implementation of large-scale pilots in schools. Recent hands-on activities, developing and testing the above mentioned innovative applications are reviewed. In general, there is a lack for educational scenaria and laboratory courses earmarked for more advanced, namely university, students. At the University of Athens for the last four years, the HYPATIA on-line event analysis tool has been used as a lab course for fourth year undergraduate physics students, majoring in HEP. Up to now, the course was limited to visual inspection of a few tens of ATLAS events. Recently the course was enriched with additional analysis exercises, which involve large samples of events. The students through a user friendly interface can analyse the samples and optimize the cut selection in order to search for new physics. The implementation of this analysis is described

  10. Collaborative Projects Weaving Indigenous and Western Science, Knowledge and Perspectives in Climate Change Education

    Science.gov (United States)

    Sparrow, E. B.; Chase, M.; Brunacini, J.; Spellman, K.

    2017-12-01

    The "Reaching Arctic Communities Facing Climate Change" and "Feedbacks and Impacts of A Warming Arctic: Engaging Learners in STEM Using GLOBE and NASA Assets" projects are examples of Indigenous and western science communities' collaborative efforts in braiding multiple perspectives and methods in climate change education. Lessons being learned and applied in these projects include the need to invite and engage members of the indigenous and scientific communities in the beginning as a project is being proposed or formulated; the need for negotiated space in the project and activities where opportunity to present and access both knowledge systems is equitable, recognizes and validates each knowledge and method, and considers the use of pedagogical practices including pace/rhythm and instructional approach most suitable to the target audience. For example with Indigenous audiences/participants, it is important to follow local Indigenous protocol to start an event and/or use a resource that highlights the current experience or voices of Indigenous people with climate change. For mixed audience groups, it is critical to have personal introductions at the beginning of an event so that each participant is given an opportunity and encouraged to voice their ideas and opinions starting with how they want to introduce themselves and thus begin to establish a welcoming and collegial atmosphere for dialog. It is also important to communicate climate science in humanistic terms, that people and communities are affected not just the environment or economies. These collaborative partnerships produce mutual benefits including increased awareness and understanding of personal connections to climate change impacts; opportunities for cultural enrichment; opportunities for accessing elder knowledge which is highly valued as well as science, education and communication tools that are needed in working together in addressing issues and making communities resilient and adaptive.

  11. Merging science, engineering, and data with FUN: Recreational Drones in STEaM Education Activities and Science Fair Projects

    Science.gov (United States)

    Olds, S. E.; Mooney, M. E.; Dahlman, L. E.

    2016-12-01

    Recreational drones, also known as unmanned aerial vehicles (UAVs), provide an ideal platform for engaging students in science, technology, engineering, and math (STEM) investigations for science fair projects, after-school clubs, and in-class activities. UAVs are very popular (estimate of >1 million received as gifts this past year), relatively inexpensive (Arduino board. This presentation will elaborate upon the year-long process of working with educators via webinars and a 1-day workshop at the 2016 ESIP summer meeting and beyond. It will also provide examples of student-led investigations, instructions for building the SABEL sensor package, insights gleaned from workshop feedback - and - the status of the new e-book compilation of student-focused activities using recreational drones to pursue STEM investigations!

  12. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  13. Projection on a Sphere for a More Interactive Approach for Education and Outreach in Earth Sciences

    Science.gov (United States)

    Hardy, A.; King, S. D.

    2011-12-01

    Anna Hardy, Scott D. King, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 Systems that project images onto a spherical surface are relatively new, moderately priced technology that could change the way students and the general public learn about Earth Sciences. For classroom and small museum spaces, such as the Geoscience Museum at Virginia Tech, a globe of about one-meter diameter can be used. Such a system has been recently installed in our 2500 square foot museum space. With this system we are able to display many types of Earth Science data including: global sea rise, weather and climate data, plate reconstructions, and projections of planets in the solar system. Animations show phenomenon over time including motions of plates over millions of years or evolution of global weather patterns over periods of days to weeks. We are importing other deep Earth data sets including global tomographic models to the system. As an outreach tool, one advantage of this technology is that it allows visitors to view global data in its natural spherical geometry and does not require them to visualize global spherical data or models from two-dimensional maps or displays. We will report on the effectiveness of this tool at communicating concepts with both college general education students and museum guests (pre-school through adult) via general surveying. Our initial comparison will be comprehension from classes with and without access to the spherical projection system.

  14. Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education

    Science.gov (United States)

    Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.

    2014-01-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…

  15. Collaborative Project-Based Learning: An Integrative Science and Technological Education Project

    Science.gov (United States)

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-01-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…

  16. ASSESSMENT OF THE INQUIRY-BASED PROJECT IMPLEMENTATION PROCESS IN SCIENCE EDUCATION UPON STUDENTS’ POINTS OF VIEWS

    Directory of Open Access Journals (Sweden)

    Orhan AKINOGLU

    2008-01-01

    Full Text Available Aim of the study is to assess how students in 6th, 7th and 8th grades of primary education see the project works made in science education and their implementation processes. The study was fulfilled upon the descriptive survey model to collect data. Participants of the research were 100 students who had project implementation experiences in science education, and they were from 24 primary schools in 7 districts randomly chosen in the city of Istanbul in Turkey. Data of the study were collected by using a semi-constructed interview form offered to students during the 2005-2006 teaching year. In the research, following items were examined: The extent to which students are inspired from the previously made projects during their own project selection process, the level of scientific document survey and the effects of contemporary events, science and technology class topics and students’ interest areas. It was seen that internet is the mostly used source to obtain information. For students, one of the most problematic issues faced during the project implementation is the time limits set out by teacher. It was found that the most obvious benefit obtained by students from the project works is their increasing interest towards science and technology class. The most significant change seen by students regarding project preparation is their increasing grades in exams during and following the project works.

  17. Education and Public Outreach at The Pavilion Lake Research Project: Fusion of Science and Education using Web 2.0

    Science.gov (United States)

    Cowie, B. R.; Lim, D. S.; Pendery, R.; Laval, B.; Slater, G. F.; Brady, A. L.; Dearing, W. L.; Downs, M.; Forrest, A.; Lees, D. S.; Lind, R. A.; Marinova, M.; Reid, D.; Seibert, M. A.; Shepard, R.; Williams, D.

    2009-12-01

    The Pavilion Lake Research Project (PLRP) is an international multi-disciplinary science and exploration effort to explain the origin and preservation potential of freshwater microbialites in Pavilion Lake, British Columbia, Canada. Using multiple exploration platforms including one person DeepWorker submersibles, Autonomous Underwater Vehicles, and SCUBA divers, the PLRP acts as an analogue research site for conducting science in extreme environments, such as the Moon or Mars. In 2009, the PLRP integrated several Web 2.0 technologies to provide a pilot-scale Education and Public Outreach (EPO) program targeting the internet savvy generation. The seamless integration of multiple technologies including Google Earth, Wordpress, Youtube, Twitter and Facebook, facilitated the rapid distribution of exciting and accessible science and exploration information over multiple channels. Field updates, science reports, and multimedia including videos, interactive maps, and immersive visualization were rapidly available through multiple social media channels, partly due to the ease of integration of these multiple technologies. Additionally, the successful application of videoconferencing via a readily available technology (Skype) has greatly increased the capacity of our team to conduct real-time education and public outreach from remote locations. The improved communication afforded by Web 2.0 has increased the quality of EPO provided by the PLRP, and has enabled a higher level of interaction between the science team and the community at large. Feedback from these online interactions suggest that remote communication via Web 2.0 technologies were effective tools for increasing public discourse and awareness of the science and exploration activity at Pavilion Lake.

  18. Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project

    Science.gov (United States)

    Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.

    2016-12-01

    The Radio JOVE project has long been a hands-on inquiry-based educational project that allows students, teachers and the general public to learn and practice radio astronomy by building their own radio antenna and receiver system from an inexpensive kit that operates at 20.1 MHz and/or using remote radio telescopes through the Internet. Radio JOVE participants observe and analyze natural radio emissions from Jupiter and the Sun. Within the last few years, several Radio JOVE amateurs have upgraded their equipment to make semi-professional spectrographic observations in the frequency band of 15-30 MHz. Due to the widely distributed Radio JOVE observing stations across the US, the Radio JOVE observations can uniquely augment observations by professional telescopes, such as the Long Wavelength Array (LWA) . The Radio JOVE project has recently partnered with the NASA Heliophysics Education Consortium (HEC) to work with students and interested amateur radio astronomers to establish additional spectrograph and single-frequency Radio JOVE stations. These additional Radio JOVE stations will help build a larger amateur radio science network and increase the spatial coverage of long-wavelength radio observations across the US. Our presentation will describe the Radio JOVE project within the context of the HEC. We will discuss the potential for citizen scientists to make and use Radio JOVE observations to study solar radio bursts (particularly during the upcoming solar eclipse in August 2017) and Jovian radio emissions. Radio JOVE observations will also be used to study ionospheric radio scintillation, promoting appreciation and understanding of this important space weather effect.

  19. Scientific Value and Educational Goals: Balancing Priorities and Increasing Adult Engagement in a Citizen Science Project

    Science.gov (United States)

    Sickler, Jessica; Cherry, Tammy Messick; Allee, Leslie; Smyth, Rebecca Rice; Losey, John

    2014-01-01

    The Lost Ladybug Project is a citizen science project that engages individuals and groups in research and learning about ladybug population dynamics. With a dual purpose of advancing scientists' research about ladybug populations and achieving learning outcomes with participants, the project's summative evaluation led to critical reflection on the…

  20. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  1. The health sciences librarian in medical education: a vital pathways project task force.

    Science.gov (United States)

    Schwartz, Diane G; Blobaum, Paul M; Shipman, Jean P; Markwell, Linda Garr; Marshall, Joanne Gard

    2009-10-01

    The Medical Education Task Force of the Task Force on Vital Pathways for Hospital Librarians reviewed current and future roles of health sciences librarians in medical education at the graduate and undergraduate levels and worked with national organizations to integrate library services, education, and staff into the requirements for training medical students and residents. Standards for medical education accreditation programs were studied, and a literature search was conducted on the topic of the role of the health sciences librarian in medical education. Expectations for library and information services in current standards were documented, and a draft standard prepared. A comprehensive bibliography on the role of the health sciences librarian in medical education was completed, and an analysis of the services provided by health sciences librarians was created. An essential role and responsibility of the health sciences librarian will be to provide the health care professional with the skills needed to access, manage, and use library and information resources effectively. Validation and recognition of the health sciences librarian's contributions to medical education by accrediting agencies will be critical. The opportunity lies in health sciences librarians embracing the diverse roles that can be served in this vital activity, regardless of accrediting agency mandates.

  2. Project-Based Science

    Science.gov (United States)

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  3. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  4. WFIRST Project Science Activities

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  5. Taking the Plunge: Next Steps in Engaged Learning: Project Kaleidoscope-Connecticut Conference of Independent Colleges Conference for Science Educators.

    Science.gov (United States)

    Frederick, Jennifer

    2010-09-01

    College and university science educators from across Connecticut gathered at Yale's West Campus in April 2010 for a Project Kaleidoscope (PKAL) program entitled "Taking the Plunge: Next Steps in Engaged Learning." Funded by the National Science Foundation (NSF) and co-sponsored by the Connecticut Conference of Independent Colleges (CCIC) and Yale's McDougal Graduate Teaching Center, the event was the latest in a PKAL series of one-day conferences aimed at equipping science, technology, engineering, and math (STEM) instructors with effective approaches to engaging students and training future scientists.

  6. Visual Literacy and Science Education: Results of a Qualitative Research Project

    Directory of Open Access Journals (Sweden)

    Regula Fankhauser

    2008-10-01

    Full Text Available In the didactics of science the role of pictures—mainly photographs and diagrams—as learning media and their function in the acquisition of knowledge have been discussed. However, the specific problems understanding pictures have seldom been reflected systematically. The aim of the project described in this paper was to address this deficiency. In a first step I refer to theoretical concepts of understanding pictures that were generated within the context of qualitative social research. Next I generate a theoretical model of visual literacy. The focus is on the understanding of pictures used in science education. The model includes aesthetic, epistemological, technical, and pragmatic dimensions. This model was then empirically tested. Thirty-five students were interviewed regarding their reception of scientific pictures. The results reveal that students have difficulties in describing the aesthetic features of pictures. The interviews clarified the epistemological frame theory on which picture understanding is based: most of the students consider the picture as a realistic copy of the object represented. Only a few students showed a more constructivist frame theory. Furthermore, the results revealed no connection between the epistemological theory and the technical knowledge of the students. The discussion of the design and the method of interpretation reflects the results of the study; the students' patterns of picture understanding are surprisingly homogeneous. On the one hand this could be reduced to the method of content analysis; on the other hand it could be an effect of the single sided view of the design. I explored only the subjective reception of pictures. Further research must consider other perspectives and focus on the way teachers work with visual material in classroom teaching. URN: urn:nbn:de:0114-fqs090129

  7. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    Science.gov (United States)

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  8. Succesful Experience of the Project "ASTROTOP" in Israel: Space-astonomy Science education in form of independent reserch projects of pupils

    Science.gov (United States)

    Pustil'Nik, Lev

    We present more then 10 year experience of educational project in Space/Astrophysics/Environment field, realized on the base of National Science- Educational Center "Blossoms of Science" of the Jordan Valley College. Our approach is based on the natural curiosity of children as driver of their self-development from the first minutes of their life and even in adult state. This approach shift center of the weight in educational process from direct lectures, sermons, explanation from teacher to children on own attempts of children to investigate problem, what is interesting for them, by themselves (individually or in group). Our approach includes four levels of the projects: "nano-projects" for children garden and basic school (up to 10-12 years), "micro-projects" for intermediate school (12-16 years), "mini-projects" for high school (16-18 years), and "macro-projects" for the best graduates high schools and students of colleges (17-22 years). These levels and projects are interconnected one with another and sometimes participants, started on the micro-projects level in intermediate school, continue their activity up to macro-projects of the graduate's diploma level. For each level we organize courses for preparation of the teachers and instructors, interested in the using of our receipts, and published books and brochures for them. The content of our activity for different levels: a) Level of kinder gardens/basic schools- special software with interactive movie -nano-projects; b) Level of intermediate school: "Days of Science" in tens schools of Israel- first contact with astronomy; c) Summer astronomy camps (4-5 of one week camps on 200-300 pupils from all country) with introduce to astronomy and with preparation of micro-projects on themes - first successful experience of research in real science fields (hundreds projects); d) ASTROTOP - one year program of preparation of short projects, with solution on the quality level of chosen astrophysical problem - mini-projects

  9. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    Science.gov (United States)

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  10. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  11. Big Data Science Education: A Case Study of a Project-Focused Introductory Course

    Science.gov (United States)

    Saltz, Jeffrey; Heckman, Robert

    2015-01-01

    This paper reports on a case study of a project-focused introduction to big data science course. The pedagogy of the course leveraged boundary theory, where students were positioned to be at the boundary between a client's desire to understand their data and the academic class. The results of the case study demonstrate that using live clients…

  12. Animal Science Project

    International Nuclear Information System (INIS)

    Anon.

    Researches carried out in the 'Animal Science Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo state, Brazil, are described. Such researches comprise : immunology and animal nutrition. Tracer techniques are employed in this study. (M.A.) [pt

  13. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  14. Weekend Science Project

    Science.gov (United States)

    Santos, Karey

    2012-01-01

    Weekend plans...every family has them. Whether it's fishing, swimming, or simply picnicking by the river, water plays a significant role in many recreational endeavors. Encouraging students and their families to use their "scientific eyes" to explore these wonderful wet places is what Weekend Science Project is all about. Weekend Science Project…

  15. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This project is part of the Academy initiative to enhance the quality of science education. It is pursued in ... database through a website. Project Lifescape has also initiated work using some Indian languages. ... and Outreach. Math and Finance ...

  16. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  17. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  18. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Project Lifescape. This project is part of the Academy initiative to enhance the quality of science education. It is pursued in collaboration with the Centre for Ecological Sciences at the Indian Institute of Science to spread biodiversity literacy, expecially within the high school and college student community, and to involve them ...

  19. Development and implementation of a science training course for breast cancer activists: Project LEAD (leadership, education and advocacy development).

    Science.gov (United States)

    Dickersin, K; Braun, L; Mead, M; Millikan, R; Wu, A M; Pietenpol, J; Troyan, S; Anderson, B; Visco, F

    2001-12-01

    To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. The Project LEAD curriculum has developed over 5 years to include lectures, problem-based study groups, case studies, interactive critical appraisal sessions, a seminar by an 'expert' scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course.

  20. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  1. Learning Styles of Science and Engineering Students in Problem and Project Based Education

    DEFF Research Database (Denmark)

    Kolmos, Anette; Holgaard, Jette Egelund

    2008-01-01

    At the Faculty of Engineering and Science at Aalborg University, Denmark, process skills are an integrated part of the curriculum objectives. During the first year programme, a special course in Collaboration, Learning and Project Management (CLP) is given to develop those skills. In order...... to develop students’ learning and the CLP-course, the Felder-Soloman Index of Learning Styles (ILS®) has been used in that course and data has been collected to investigate whether some learning style preferences are more conspicuous that others in a problem based learning environment. The results show, more...... pronounced than similar studies, that the first year engineering students at Aalborg University are considerable more active than reflective. This results leads to a discussion of whether reflection and conceptualization should be facilitated further in the curriculum to balance the students learning style...

  2. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  3. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  4. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  5. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  6. Adoption of ICT in Science Education: A Case Study of Communication Channels in a Teachers' Professional Development Project

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo

    2009-01-01

    This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…

  7. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  8. Humane Education Projects Handbook.

    Science.gov (United States)

    Junior League of Ogden, UT.

    This handbook was developed to promote interest in humane education and to encourage the adoption of humane education projects. Although specifically designed to assist Junior Leagues in developing such projects, the content should prove valuable to animal welfare organizations, zoos, aquariums, nature centers, and other project-oriented groups…

  9. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  10. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  11. THEMES, DREAMS AND REAUTY: THE SCIENCE PROJECT ...

    African Journals Online (AJOL)

    Science Education Project (SEP) is a non-profit making educational trust ... us that many of them fail to survive the rigours of the school and ... environment) emphasis will be placed on in-service training and ... The 'status quo' is safe, everyone.

  12. Setting up crowd science projects.

    Science.gov (United States)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  13. Science communication in European projects

    International Nuclear Information System (INIS)

    Vachev, Boyko; Stamenov, Jordan

    2009-01-01

    Science communication in several resent successful projects of Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences (INRNE, BAS) from the 5th and 6th Framework Programmes of EC is presented: the joint INRNE, BAS project with JRC of EC (FP5 NUSES) and two subsequent Centre of Excellence projects (FP5 HIMONTONET and FP6 BEOBAL) are considered. Innovations and traditional forms development and application are discussed. An overview of presentation and communication of INRNE, BAS contribution to Bulgarian European Project is made. Good practices have been derived. Keywords: Science communication, European projects, Innovations

  14. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  15. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  16. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  17. The Rise and Fall of the Social Science Curriculum Project in Iceland, 1974-1984: Reflections on Reason and Power in Educational Progress.

    Science.gov (United States)

    Edelstein, Wolfgang

    1987-01-01

    Examines the demise of the Icelandic Social Science Curriculum Project (SSCP) as an example of progressive educational reform thwarted by neofundamentalist ideologies. States that the paper goes beyond Jerome Bruner's 1984 account of the rise and fall of "Man: A Course of Study" to provide a deeper analysis of the politics of…

  18. Lobachevsky Year at Kazan University: Center of Science, Education, Intellectual-Cognitive Tourism "Kazan - GeoNa - 2020+" and "Kazan-Moon-2020+" projects

    Science.gov (United States)

    Gusev, A.; Trudkova, N.

    2017-09-01

    Center "GeoNa" will enable scientists and teachers of the Russian universities to join to advanced achievements of a science, information technologies; to establish scientific communications with foreign colleagues in sphere of the high technology, educational projects and Intellectual-Cognitive Tourism. The Project "Kazan - Moon - 2020+" is directed on the decision of fundamental problems of celestial mechanics, selenodesy and geophysics of the Moon(s) connected to carrying out of complex theoretical researches and computer modelling.

  19. Exploring Project Management Education

    NARCIS (Netherlands)

    Steven Nijhuis

    2017-01-01

    From the article: "The object of this paper is to explore the actual practice in project management education in the Netherlands and compare it to reference institutions and recent literature. A little over 40% of the Higher Education institutions in the Netherlands mentions PM education in

  20. Reviews Book: Extended Project Student Guide Book: My Inventions Book: ASE Guide to Research in Science Education Classroom Video: The Science of Starlight Software: SPARKvue Book: The Geek Manifesto Ebook: A Big Ball of Fire Apps

    Science.gov (United States)

    2014-05-01

    WE RECOMMEND Level 3 Extended Project Student Guide A non-specialist, generally useful and nicely put together guide to project work ASE Guide to Research in Science Education Few words wasted in this handy introduction and reference The Science of Starlight Slow but steady DVD covers useful ground SPARKvue Impressive software now available as an app WORTH A LOOK My Inventions and Other Writings Science, engineering, autobiography, visions and psychic phenomena mixed in a strange but revealing concoction The Geek Manifesto: Why Science Matters More enthusiasm than science, but a good motivator and interesting A Big Ball of Fire: Your questions about the Sun answered Free iTunes download made by and for students goes down well APPS Collider visualises LHC experiments ... Science Museum app enhances school trips ... useful information for the Cambridge Science Festival

  1. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  2. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  3. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  4. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  5. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  6. Youth Education - Programs / Projects

    OpenAIRE

    2004-01-01

    Christine Bozak: 4-H Steers that Work. Rebecca Brooks: Relationship Skills Education. Travis Burke: Defining Competency in the 4-H Professional’s Job. Holly L. Hays Butler: 4-H at the Indiana School for the Deaf . Kevin D. Chilek: Quality Assurance Program for Youth Livestock Exhibitors. Graham Cochran: Lessons from an Innovative Urban Youth Education Center. Steve Cramer: Use Activities Fun and Humor to Teach Character Education. Annette Devitt: Life on the Farm Project. Janet Edwards: Emot...

  7. Online Localization of "Zooniverse" Citizen Science Projects--On the Use of Translation Platforms as Tools for Translator Education

    Science.gov (United States)

    Michalak, Krzysztof

    2015-01-01

    This paper aims at describing the way in which online translation platforms can facilitate the process of training translators. "Zooniverse," a website hosting a variety of citizen science projects in which everyone can take part, was used as an example of such a concept. The first section of this paper is focused on the history, idea…

  8. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  9. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  10. ScienceDesk Project Overview

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  11. Science Writer-At-Sea: A New InterRidge Education Outreach Project Joining Scientists and Future Journalists

    Science.gov (United States)

    Kusek, K. M.; Freitag, K.; Devey, C.

    2005-12-01

    , translated into German, and is being showcased in a museum in Germany. Given the great response from a diverse suite of reviewers, the team is now pursuing long term funding; additional partners in the science, education and journalism communities; and partnerships with marine science and education magazines.

  12. The I-Cleen Project (Inquiring on CLimate & ENergy). Research Meets Education in AN Inquiry-Based Approach to Earth System Science in Italian Classrooms

    Science.gov (United States)

    Cattadori, M.; Editorial Staff of the I-CLEN Project

    2011-12-01

    Italian citizens' perception of the seriousness of the issue of climate change is one of the lowest in Europe (Eurobarometer survey, 2008), running next to last among the 28 EU Nations. This has recently driven many national science institutions to take action in order to connect society with the complexities and consequences of climate change. These connection initiatives have encountered a certain deal of opposition in Italian schools. A fact most likely due both to a further weakening of the use of inquiry-based educational practices adopted by teachers and to their reluctance to cooperate on a professional level, which hinders the diffusion of educational practices. I-CLEEN (Inquiring on CLimate and Energy, www.icleen.museum) is a service that offers a new type of link between schools and the complexity of climate change. The project took off in 2008 thanks to the Trento Science Museum (former Tridentine Museum of Natural Science), one of the major Italian science museums that includes both research and science education and dissemination departments. The main aim is to create, using the tools of professional cooperation, a free repository of educational resources that can support teachers in preparing inquiry-based lessons on climate change and earth system science topics, making the task less of a burden. I-CLEEN is inspired by many models, which include: the ARISE (Andrill Research Immersion for Science Educators), the OER (Open Educational Resources) models and those of other projects that have developed similar information gateways such as LRE (Learning Resource Exchange) and DLESE (Digital Library on Earth Science Education). One of the strategies devised by I-CLEEN is to rely upon an editorial team made up of a highly selected group of teachers that interacts with the researchers of the museum and of other Earth system science research centres like the National Institute of Geophysics and Volcanology (INGV). Resource selection, production, revision and

  13. Acid Rain: Science Projects.

    Science.gov (United States)

    Stubbs, Harriett S.

    1989-01-01

    Presented is a science activity designed to help students monitor the pH of rainfall. Materials, procedures and follow-up activities are listed. A list of domestic and foreign sources of information is provided. Topics which relate to acid precipitation are outlined. (CW)

  14. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  15. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  16. Education for Sustainable Development at Notre Dame University--Louaize: Environmental Science Curriculum--A Pre-Phase to the Rucas Project on Education for Sustainable Development

    Science.gov (United States)

    Khalaf-Kairouz, Layla

    2012-01-01

    The Faculty of Natural and Applied Sciences at Notre Dame University--Louaize, conscious to the need of experts in the emerging field of sustainability and to the role that an educational institution plays for the service of the community, introduced into the university curricula a major in environmental science. This paper will present the…

  17. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  18. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  19. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  20. The droso4schools project: Long-term scientist-teacher collaborations to promote science communication and education in schools.

    Science.gov (United States)

    Patel, Sanjai; DeMaine, Sophie; Heafield, Joshua; Bianchi, Lynne; Prokop, Andreas

    2017-10-01

    Science communication is becoming an increasingly important part of a scientist's remit, and engaging with primary and secondary schools is one frequently chosen strategy. Here we argue that science communication in schools will be more effective if based on good understanding of the realities of school life, which can be achieved through structured participation and/or collaboration with teachers. For example, the Manchester Fly Facility advocates the use of the fruit fly Drosophila as an important research strategy for the discovery processes in the biomedical sciences. To communicate this concept also in schools, we developed the 'droso4schools' project as a refined form of scientist-teacher collaboration that embraces the expertise and interests of teachers. Within this project, we place university students as teaching assistants in university partner schools to collaborate with teachers and develop biology lessons with adjunct support materials. These lessons teach curriculum-relevant biology topics by making use of the profound conceptual understanding existing in Drosophila combined with parallel examples taken from human biology. By performing easy to implement experiments with flies, we bring living organisms into these lessons, thus endeavouring to further enhance the pupil's learning experience. In this way, we do not talk about flies but rather work with flies as powerful teaching tools to convey mainstream curriculum biology content, whilst also bringing across the relevance of Drosophila research. Through making these lessons freely available online, they have the potential to reach out to teachers and scientists worldwide. In this paper, we share our experiences and strategies to provide ideas for scientists engaging with schools, including the application of the droso4schools project as a paradigm for long-term school engagement which can be adapted also to other areas of science. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All

  1. Tohoku Women's Hurdling Project: Science Angels (abstract)

    Science.gov (United States)

    Mizuki, Kotoe; Watanabe, Mayuko

    2009-04-01

    Tohoku University was the first National University to admit three women students in Japan in 1913. To support the university's traditional ``open-door'' policy, various projects have been promoted throughout the university since its foundation. A government plan, the Third-Stage Basic Plan for Science and Technology, aims to increase the women scientist ratio up to 25% nationwide. In order to achieve this goal, the Tohoku Women's Hurdling Project, funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), was adopted in 2006. This project is threefold: support for child/family, improvement of facilities, and support for the next generation, which includes our Science Angels program. ``Science Angels'' are women PhD students appointed by the university president, with the mission to form a strong support system among each other and to become role-models to inspire younger students who want to become researchers. Currently, 50 women graduate students of the natural sciences are Science Angels and are encouraged to design and deliver lectures in their areas of specialty at their alma maters. Up to now, 12 lectures have been delivered and science events for children in our community have been held-all with great success.

  2. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  3. Using Climate Change for Teaching Experimental Sciences in Teacher Education through Research Projects on Recycling at the University of Lleida (Western Catalonia)

    Science.gov (United States)

    Sebastia, M. T.; Verdú, N.

    2016-12-01

    Although climate change is one of the most pressing challenges faced by humankind, climate change illiteracy is frequent among primary school teacher college students reaching the second school year at the University of Lleida (UdL). Climate change was chosen to structure the course on Experimental Sciences of the bilingual group because this topic involves all sciences, and because of the importance of the subject for future educators. In the bilingual group of the Education Faculty, Experimental Sciences is taught in English, and there are usually 1-2 international students in addition to around 20 local students. To increase the awareness about climate change and make this topic closer to the students' daily experience, a research project on recycling at the University of Lleida was assigned per groups of 4 students. The assignment was semi-structured, the students received a reduced set of instructions and large freedom to focus their particular projects. Additional instructions were provided along the way. We present results from the comparisons among faculties at UdL, and among the different users: students, professors and researchers, and administration staff. We also discuss the impact that this project had in the learning ability of the students and their awareness about climate change.

  4. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  5. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  6. What Does It Mean for Something to Be "Scientific"? Community Understandings of Science, Educational Attainment, and Community Representation Among a Sample of 25 CBPR Projects.

    Science.gov (United States)

    Spears Johnson, Chaya R; Kraemer Diaz, Anne E; Arcury, Thomas A

    2017-04-01

    Community-based participatory research (CBPR) seeks to conduct relevant, sustainable research that is tailored to the needs of the communities with which it is engaged through equitable collaboration between community representatives and professional researchers. Like other participatory approaches to research and planning, CBPR has been criticized for the potential to engage a biased sample of community representatives and, thereby, undermine the fundamental purpose of the approach. Moreover, the varying educational levels and areas of expertise, especially regarding science literacy, among those participating in CBPR has raised concern about the ability for true collaboration to exist within CBPR projects. This article presents findings from a qualitative study of 25 CBPR research projects and explores matters of science literacy, community representation, and the nature of CBPR. Ultimately, it is suggested that those who engage in CBPR should carefully consider the potential for biased community representation and seek to purposely and mindfully avoid any partiality.

  7. Setting up crowd science projects

    NARCIS (Netherlands)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-01-01

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or

  8. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  9. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  10. The NASA-Macquarie University Pilbara Education Project: Connecting the public to `science in the making' via virtual reality and the Internet

    Science.gov (United States)

    Oliver, C. A.; Fergusson, J.; Bruce, G.; Gaskins, T.

    2006-12-01

    A 2005 international field trip to a key Mars analogue site in Western Australia was used to create a hi-tech education resource for use internationally. The NASA-Macquarie University Pilbara Education Project aims to engage high school students and the broader general community with `science in the making'. A team of educators and communicators, including a US documentary TV crew, joined 25 geologists, microbiologists, geochemists and other experts on the field trip to the Pilbara. The education team captured scientists debating different interpretations of what appears to be the best earliest evidence of life on Earth 3.5 billion years ago in situ. Initially the project was designed as a curriculum product, but difficulties in a range of areas persuaded researchers to chart a different course. While still maintaining high schools as a primary audience, designers refocused on the possibilities outside of the school gates and beyond. The paper describes the prompt for the project, its design and the impact of testing it with end users -- the students and their teachers -- in Australia and the UK.

  11. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  12. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  13. Promoting Art through Technology, Education and Research of Natural Sciences (PATTERNS) across Wyoming, A Wyoming NSF EPSCoR Funded Project

    Science.gov (United States)

    Gellis, B. S.; McElroy, B. J.

    2016-12-01

    PATTERNS across Wyoming is a science and art project that promotes new and innovative approaches to STEM education and outreach, helping to re-contextualize how educators think about creative knowledge, and how to reach diverse audiences through informal education. The convergence of art, science and STEM outreach efforts is vital to increasing the presence of art in geosciences, developing multidisciplinary student research opportunities, expanding creative STEM thinking, and generating creative approaches of visualizing scientific data. A major goal of this project is to train art students to think critically about the value of scientific and artistic inquiry. PATTERNS across Wyoming makes science tangible to Wyoming citizens through K-14 art classrooms, and promotes novel maker-based art explorations centered around Wyoming's geosciences. The first PATTERNS across Wyoming scientific learning module (SIM) is a fish-tank sized flume that recreates natural patterns in sand as a result of fluid flow and sediment transport. It will help promotes the understanding of river systems found across Wyoming (e.g. Green, Yellowstone, Snake). This SIM, and the student artwork inspired by it, will help to visualize environmental-water changes in the central Rocky Mountains and will provide the essential inspiration and tools for Wyoming art students to design biological-driven creative explorations. Each art class will receive different fluvial system conditions, allowing for greater understanding of river system interactions. Artwork will return to the University of Wyoming for a STE{A}M Exhibition inspired by Wyoming's varying fluvial systems. It is our hope that new generations of science and art critical thinkers will not only explore questions of `why' and `how' scientific phenomena occur, but also `how' to better predict, conserve and study invaluable artifacts, and visualize conditions which allow for better control of scientific outcomes and public understanding.

  14. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  15. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  16. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  17. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  18. Making the Invisible Visible: The Oklahoma Science Project.

    Science.gov (United States)

    McCarty, Robbie; Pedersen, Jon E.

    2002-01-01

    Reports that teachers in preservice education programs still view the teaching of science much in the same traditional ways as our predecessors. "The Oklahoma Science Project (OSP) Model for Professional Development: Practicing Science Across Contexts" will build discourses and relationships that can be extended across contexts to establish…

  19. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  20. The Prison Education Project

    Science.gov (United States)

    Reese, Renford

    2017-12-01

    This article briefly compares the prison system in the United States with progressive correctional systems in the world, before pivoting to discuss the lessons learned from the author's development of the Prison Education Project (PEP). PEP has expanded educational opportunities for inmates in 12 Californian correctional facilities. With the assistance of 800 university student and faculty volunteers, PEP has serviced approximately 5,000 inmates in these facilities since 2011. By providing academic, life skills and career development programming, PEP aims to educate, empower and transform the lives of incarcerated individuals. This article is a summary of the development of PEP, examining programme outcomes and highlighting implementation, fundraising and branding strategies. The robust spirit of volunteerism is also a central component of the discussion, with the phenomenon of "reciprocal reflex" at the heart of the PEP volunteer experience. This reflex ignites the passion and gratitude of both volunteers and inmates. The volunteers learn just as much as they teach, and the inmates teach just as much as they learn. The fact that each group shows deep gratitude to the other for the learning experience creates an exciting symbiotic loop and an esprit de corps which inspires and empowers all involved. The "reciprocal reflex" leads to lifelong learning. This article captures the intricate dynamics of how PEP has evolved into the largest volunteer-based prison education programme of its kind in the United States.

  1. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  2. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  3. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  4. Nuclear Waste Education Project

    International Nuclear Information System (INIS)

    1989-01-01

    In summary, both the Atlanta and Albuquerque pilot seminars achieved the Nuclear Waste Education Project's goal of informing citizens on both the substance and the process of nuclear waste policy so that they can better participate in future nuclear waste decisions. Nuclear waste issues are controversial, and the seminars exposed the nature of the controversy, and utilized the policy debates to create lively and provocative sessions. The format and content of any citizen education curriculum must be made to fit the particular goal that has been chosen. If the Department of Energy and the LWVEF decide to continue to foster an informed dialogue among presenters and participants, the principles of controversial issues education would serve this goal well. If, however, the Department of Energy and/or the LWVEF decide to go beyond imparting information and promoting a lively discussion of the issues, towards some kind of consensus-building process, it would be appropriate to integrate more interactive sessions into the format. As one evaluator wrote, ''In-depth participation in finding solutions or establishing policy -- small group discussion'' would have been preferable to the plenary sessions that mostly were in the form of lectures and expert panel discussion. The evaluator continued by saying, ''Since these [small group discussions] would require more time commitment, they might be part of follow-up workshops focused on particular topics.''

  5. PARRISE, Promoting Attainment of Responsible Research and Innovation in Science Education, FP7 : Rethinking science, rethinking education

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; van Dam, F.W.

    The PARRISE (Promoting Attainment of Responsible Research & Innovation in Science Education) project aims at introducing the concept of Responsible Research and Innovation in primary and secondary education. It does so by combining inquiry-based learning and citizenship education with

  6. Inquiry-Based Integrated Science Education: Implementation of Local Content “Soil Washing” Project To Improve Junior High School Students’ Environmental Literacy

    Science.gov (United States)

    Syifahayu

    2017-02-01

    The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.

  7. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  8. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  9. A Coastal Citizen Science Project - How to run an international Citizen Science Project?

    Science.gov (United States)

    Kruse, K.; Knickmeier, K.; Thiel, M.; Gatta, M.

    2016-02-01

    "Searching for plastic garbage" is an international Citizen Science project that aims to participate school students in the public discussion on the topic "plastic pollution in the ocean". For this, young people apply various research methods, evaluate their data, communicate and publish their results and investigate solutions solving this problem. The project will be carried out in Chile and Germany at the same time, which allows the participating students to share and compare their results and discuss their ideas with an international partner. This takes place on the website www.save-ocean.org. The project promotes intercultural and scientific skills of the students. They get insights into scientific research, get into another culture and experiences plastic pollution as an important global problem. Since May 2015, 450 pupils aged 10 to 15 years and 20 teachers in Germany and Chile have explored the plastic garbage on beaches. Where are the largest plastic garbage deposits? Which items of plastic are mostly found in Germany and Chile? Or where does this garbage comes from? These and other research questions are being answered by an international network between students, teachers and scientists. After completing the first Citizen Science pilot study successfully in summer 2015, the entire German and Chilean coast will be explored in spring 2016 by around 2500 participating school students. The project "Searching for plastic garbage" is the first international Citizen Science project that is a cooperation between the ocean:lab of Kiel Science Factory and the "Cientificos de la Basura", a project of the department of marine biology at University Catolica del Norte in Coquimbo, Chile. The project is supported by the Cluster of Excellence "The Future Ocean", the Leibniz Institute for Science Education and Mathematics (IPN), the Ministry of School and Professional Education of Land Schleswig-Holstein and the University Catolica del Norte in Coquimbo, Chile

  10. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community

    Science.gov (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.

    2006-12-01

    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  11. Reflexivity in performative science shop projects

    OpenAIRE

    Beunen, R.; Duineveld, M.; During, R.; Straver, G.H.M.B.; Aalvanger, A.

    2012-01-01

    Science shop research projects offer possibilities for universities to engage with communities. Many science shop projects directly or indirectly intend to empower certain marginalised groups or interests within a decision-making process. In this article we argue that it is important to reflect on the role and position the researchers have in these projects. We present three science shop projects to illustrate some of the dilemmas that may arise in relation to citizen empowerment, democracy, ...

  12. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  13. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  14. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  15. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  16. The Electric Vehicle Project for High School Students in Nagoya City Science Museum : As the First Step of Global Engineering Education to Create Value from Knowledge

    OpenAIRE

    馬渕, 浩一; Mabuchi, Koichi

    2014-01-01

    This paper gives an account of "The Electric Vehicle Project", a science museum activity in cooperation with Nagoya Institute of Technology and major manufacturing companies. The project is intended to encourage Japanese high school students' interest in science and technology, based on Nagoya, Japan and Asia, the center of the manufacturing industries. The project contains three programs: 1) Students make practical lead acid batteries. 2) Students drive an electric vehicle of their own desig...

  17. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  18. The LOFAR Transients Key Science Project

    NARCIS (Netherlands)

    Stappers, B.; Fender, R.; Wijers, R.

    2009-01-01

    The Transients Key Science Project (TKP) is one of six Key Science Projects of the next generation radio telescope LOFAR. Its aim is the study of transient and variable low-frequency radio sources with an extremely broad science case ranging from relativistic jet sources to pulsars, exoplanets,

  19. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  20. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  1. Project Management in Higher Education

    Science.gov (United States)

    Alpert, Shannon Atkinson

    2011-01-01

    This study identified factors that influenced the use of project management in higher education research projects. Using a qualitative grounded theory approach that included in-depth interviews with assistant professors, the researcher examined how these individuals were using project management processes and tools and factors that enabled,…

  2. Exploring social networks of municipal science education stakeholders in Danish Science Municipalities

    DEFF Research Database (Denmark)

    von der Fehr, Ane

    development in the science and technology industry. Therefore, much effort has been invested to improve science education. The importance of school external stakeholders in development of education has been an increasingly emphasised, also in the field of science education. This has led to a growing focus......Science education development is a field of many interests and a key interest is recruitment of students who wish to pursue an education in science. This is an urgent societal demand in Denmark as well as internationally, since highly skilled science graduates are needed for the continuous...... involved in science education development. These municipal science education networks (MSE networks) were identified as important for development of science education in the SM project. Therefore, it was a key interest to explore these networks in order to investigate how the central stakeholders affected...

  3. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  4. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  5. Explore the concept of “light” and its interaction with matter: an inquiry-based science education project in primary school

    Science.gov (United States)

    Varela, P.; Costa, M. F.

    2015-04-01

    The exploration process leading to the understanding of physical phenomena, such as light and its interaction with matter, raises great interest and curiosity in children. However, in most primary schools, children rarely have the opportunity to conduct science activities in which they can engage in an enquiry process even if by the action of the teacher. In this context, we have organised several in-service teacher training courses and carried out several pedagogic interventions in Portuguese primary schools, with the aim of promoting inquiry- based science education. This article describes one of those projects, developed with a class of the third grade, which explored the curricular topic “Light Experiments”. Various activities were planned and implemented, during a total of ten hours spread over five lessons. The specific objectives of this paper are: to illustrate and analyse the teaching and learning process promoted in the classroom during the exploration of one of these lessons, and to assess children's learning three weeks after the lessons. The results suggest that children made significant learning which persisted. We conclude discussing some processes that stimulated children’ learning, including the importance of teacher questioning in scaffolding children's learning and some didactic implications for teacher training.

  6. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  7. EDUCATIONAL PROJECTS STAKEHOLDER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Юлія Юріївна ГУСЄВА

    2016-02-01

    Full Text Available An approach based on an integration of requirements breakdown structure and work breakdown structure of the project is proposed. It can complement existing methods of project stakeholders classification with the indicator of resource input, which can be defined in monetary terms. A method of requirements monitoring is proposed, which allows you to track the requirements of project stakeholders over time according to the actual amount of resources spent by analogy with the earned value method. Proposed indexes are the basis not only for monitoring but for the forecast of the project. The need of creating of a mechanism for getting baseline data taking into account the existence of different types of requirements of project stakeholders is grounded.

  8. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  9. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2017-03-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  10. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  11. Environmental Education & Ecology in a Life Science Course for Preservice K-8 Teachers Using Project Wildlife in Learning Design

    Science.gov (United States)

    Nelson, Allan

    2010-01-01

    During laboratory sessions devoted to ecology, 182 preservice K-8 teachers participated in a Project Wildlife in Learning Design (WILD) workshop. Participants rated the workshop highly, indicated they would use more inquiry-based activities, and were more interested in teaching ecology following the workshop. Post-test scores indicated an…

  12. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  13. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  14. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project

    Science.gov (United States)

    Allen, Meg; Brewer, Paul R.

    2010-01-01

    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  15. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  16. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  17. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  18. 4-H Textile Science Beginner Projects.

    Science.gov (United States)

    Scholl, Jan

    This packet contains three 4-H projects for students beginning the sewing sequence of the textile sciences area. The projects cover basics of sewing using sewing machines, more difficult sewing machine techniques, and hand sewing. Each project provides an overview of what the student will learn, what materials are needed, and suggested projects…

  19. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    Science.gov (United States)

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  20. Development and Validation of a Project Package for Junior Secondary School Basic Science

    Science.gov (United States)

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  1. The Netherlands, strengthening research in Universities of Applied Sciences: One of twelve case studies produced as part of the project on structural reform in higher education

    NARCIS (Netherlands)

    de Boer, Harry F.

    2016-01-01

    This study analyses how different types of system-level (or ‘landscape’) structural reforms in higher education have been designed and implemented in selected higher education systems. In the 12 case studies that form the core of the project, the researchers examine reforms aimed at:• Increasing

  2. Science Projects | Akron-Summit County Public Library

    Science.gov (United States)

    Hours & Locations Main Library Science & Technology Division Science Projects Science Projects Have fun with science experiments. Whether you need to do a project for a school science fair or you want to be a mad scientist, our Science Project Index and other resources can get you started. Find how

  3. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  4. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  5. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  6. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  7. Science Fiction in Education: Case Studies from Classroom Implementations

    Science.gov (United States)

    Vrasidas, Charalambos; Avraamidou, Lucy; Theodoridou, Katerina; Themistokleous, Sotiris; Panaou, Petros

    2015-01-01

    This manuscript reports on findings from the implementation of the EU project "Science Fiction in Education" (Sci-Fi-Ed). The project provides teachers with tools, training, and guidance that will assist them in enhancing their teaching, making science more attractive to students, connecting it with real-life issues such as the…

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Siegfried S Hecker. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 6 June 2006 pp 8-25 General Article. Dr Smith goes to Los Alamos - Cyril Stanley Smith, Plutonium Metallurgy, and the Manhattan Project · Srivilliputhur G ...

  9. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Syed R Hussaini. Articles written in Resonance – Journal of Science Education. Volume 15 Issue 4 April 2010 pp 351-354 Classroom. Interconversion of Fischer and Zig-Zag Projections - Learning Stereochemistry with the Help of Hands · Syed R Hussaini.

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Krushnamegh J Kunte. Articles written in Resonance – Journal of Science Education. Volume 5 Issue 3 March 2000 pp 86-97 Classroom. Project Lifescape: Butterfly Accounts · Krushnamegh J Kunte · More Details Fulltext PDF ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Srivilliputhur G Srinivasan. Articles written in Resonance – Journal of Science Education. Volume 11 Issue 6 June 2006 pp 8-25 General Article. Dr Smith goes to Los Alamos - Cyril Stanley Smith, Plutonium Metallurgy, and the Manhattan Project · Srivilliputhur G ...

  12. Research on Educational Standards in German Science Education--Towards a Model of Student Competences

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2014-01-01

    This paper gives an overview of research on modelling science competence in German science education. Since the first national German educational standards for physics, chemistry and biology education were released in 2004 research projects dealing with competences have become prominent strands. Most of this research is about the structure of…

  13. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  14. Investigating Science Interest in a Game-Based Learning Project

    Science.gov (United States)

    Annetta, Leonard; Vallett, David; Fusarelli, Bonnie; Lamb, Richard; Cheng, Meng-Tzu; Holmes, Shawn; Folta, Elizabeth; Thurmond, Brandi

    2014-01-01

    The purpose of this study was to examine the effect Serious Educational Games (SEGs) had on student interest in science in a federally funded game-based learning project. It can be argued that today's students are more likely to engage in video games than they are to interact in live, face-to-face learning environments. With a keen eye on…

  15. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  16. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  17. STEM Education Efforts in the Ares Projects

    Science.gov (United States)

    Doreswamy, Rajiv; Armstrong, Robert C.

    2010-01-01

    According to the National Science Foundation, of the more than 4 million first university degrees awarded in science and engineering in 2006, students in China earned about 21%, those in the European Union earned about 19%, and those in the United States earned about 11%. Statistics like these are of great interest to NASA's Ares Projects, which are responsible for building the rockets for the U.S. Constellation Program to send humans beyond low-Earth orbit. Science, technology, engineering, and mathematics students are essential for the long-term sustainability of any space program. Since the Projects creation, the Ares Outreach Team has used a variety of STEM-related media, methods, and materials to engage students, educators, and the general public in Constellation's mission. Like Project Apollo, the nation s exploration destinations and the vehicles used to get there can inspire students to learn more about STEM. Ares has been particularly active in public outreach to schools in Northern Alabama; on the Internet via outreach and grade-specific educational materials; and in more informal social media settings such as YouTube and Facebook. These combined efforts remain integral to America s space program, regardless of its future direction.

  18. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  19. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  20. The LOFAR Magnetism Key Science Project

    NARCIS (Netherlands)

    Anderson, James; Beck, Rainer; Bell, Michael; de Bruyn, Ger; Chyzy, Krzysztof; Eislöffel, Jochen; Enßlin, Torsten; Fletcher, Andrew; Haverkorn, Marijke; Heald, George; Horneffer, Andreas; Noutsos, Aris; Reich, Wolfgang; Scaife, Anna; the LOFAR collaboration, [No Value

    2012-01-01

    Measuring radio waves at low frequencies offers a new window to study cosmic magnetism, and LOFAR is the ideal radio telescope to open this window widely. The LOFAR Magnetism Key Science Project (MKSP) draws together expertise from multiple fields of magnetism science and intends to use LOFAR to

  1. Progress of JAERI neutron science project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    Neutron Science Project was started at Japan Atomic Energy Research Institute since 1996 for promoting futuristic basic science and nuclear technology utilizing neutrons. For this purpose, research and developments of intense proton accelerator and spallation neutron target were initiated. The present paper describes the current status of such research and developments. (author)

  2. Connecting Mathematics in Primary Science Inquiry Projects

    Science.gov (United States)

    So, Winnie Wing-mui

    2013-01-01

    Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…

  3. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  4. Enhancing Science and Mathematics Education for Child Care Providers and Preschool Teachers.

    Science.gov (United States)

    White, Jennifer Meux; Hosoume, Kimi

    The Lawrence Hall of Science (LHS), University of California at Berkeley has completed a 3-year project to develop a science and mathematics education course and science curriculum for early childhood educators. This project was in response to the need for improving the science and mathematics knowledge and teaching skills of adults who work with…

  5. 77 FR 33774 - Agency Information Collection Activities: Comment Request; Education and Human Resources Project...

    Science.gov (United States)

    2012-06-07

    ... and Human Resources Project Monitoring Clearance AGENCY: National Science Foundation. ACTION: Notice...). SUPPLEMENTARY INFORMATION: Title of Collection: Education and Human Resources Project Monitoring Clearance. OMB... States and internationally. The Directorate for Education and Human Resources (EHR), a unit within NSF...

  6. The Aeolus project: Science outreach through art.

    Science.gov (United States)

    Drumm, Ian A; Belantara, Amanda; Dorney, Steve; Waters, Timothy P; Peris, Eulalia

    2015-04-01

    With a general decline in people's choosing to pursue science and engineering degrees there has never been a greater need to raise the awareness of lesser known fields such as acoustics. Given this context, a large-scale public engagement project, the 'Aeolus project', was created to raise awareness of acoustics science through a major collaboration between an acclaimed artist and acoustics researchers. It centred on touring the large singing sculpture Aeolus during 2011/12, though the project also included an extensive outreach programme of talks, exhibitions, community workshops and resources for schools. Described here are the motivations behind the project and the artwork itself, the ways in which scientists and an artist collaborated, and the public engagement activities designed as part of the project. Evaluation results suggest that the project achieved its goal of inspiring interest in the discipline of acoustics through the exploration of an other-worldly work of art. © The Author(s) 2013.

  7. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  8. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  9. Citizens Science for Sustainability (SuScit) Project Briefing

    DEFF Research Database (Denmark)

    Eames, Malcolm; Mortensen, Jonas Egmose; Adebowale, Maria

    This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project.......This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project....

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 1. Issue front cover ... Fostering Creativity in Students A Short Synthesis Project for the Organic Chemistry Laboratory ... pp 74-76 Book Review. The Fall of a ...

  11. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  12. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  13. Expanding educational access and opportunities: The globalization and foreign direct investment of multinational corporations and their influence on STEM, project-based learning and the national science and technology fair in schools in Costa Rica

    Science.gov (United States)

    Valdez, Joaquin G.

    The purpose of this qualitative study was to examine the influence of globalization and the foreign direct investment (FDI) of multinational corporations (MNCs) on the curriculum in schools in Costa Rica. The study focused primarily on Science, Technology, Engineering and Mathematics (STEM), Project-Based Learning (PBL), 21st century skills, and the national science and technology fair. The high influx of MNCs such as Intel has changed the global and educational culture of the country increasing the number of knowledge-based workers in Costa Rica. As a result, policy changes have been instituted in education to mirror the demands of sustaining the country's global economy. This study was supported by the creation of three research questions that would attempt to answer 1) the extent that teachers implementing STEM curriculum trace their practices back to policy, globalization, and multinational corporations as well as the extent to which the economic growth of Costa Rica and STEM education are related, 2) how mandating the national science and technology fair has influenced 21st century skills through project-based learning and the use of technology by teachers and its impact on curriculum and instruction, and 3) how has the national science and technology fair policy changed the value of STEM education for students, teachers, and educational leaders. To further understand the outcome of this study, four theoretical frameworks were applied that included, Spring's theory of world educational culture, Friedman's world flatteners, Wagner's 21st century skills and partnerships for 21st century skills, and Slough and Milam's STEM project-based learning theoretical framework. Each framework was applied to support the changes to the educational system; survival skills necessary to compete in the global job market; application of 21st century skills in the classroom and in the science projects students created. A research team comprised of 14 doctoral students, led by Dr

  14. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  15. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  16. Sunray project - A long-term, nationwide educational process

    International Nuclear Information System (INIS)

    Nikula, Anneli

    2000-01-01

    The Sunray project is a nationwide educational process coordinated by the Economic Information Bureau (TaT Group) for ninth graders in Finnish comprehensive schools. The project aims at giving thorough and versatile information on radiation within the framework of various subjects (physics, biology, domestic science, history, European languages, mother tongue, health education etc.). The Sunray project covers all ninth graders of the existing 600 Finnish comprehensive schools; in all involving some 65 000 pupils. The project, which has been repeated five times, was initiated as part of the European Science and Technology week in 1995. During the first two years it was strongly linked with the science week as natural sciences were seen as a good framework for the chosen perspective. Since 1997, the project has been run as an event in its own right. The project has applied the method of processing integrated groups of themes, which is an objective of the comprehensive school system and the experimental method of science. As schools make their own decisions about the educational programmes to be adopted every semester, the project has been marketed to schools at the beginning of May. The TaT Group has arranged marketing events in some 10 localities in Finland. The Economic Information Bureau of Finland coordinates the project and in 1995-2000 the Radiation and Nuclear Safety Authority (STUK), the Finnish Energy Industries' Federation, the Finnish Electricity Association, Fortum Oyj and Teollisuuden Voima Oy have participated in the project

  17. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  18. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  19. Dissemination and Exploitation: Project Goals beyond Science

    Science.gov (United States)

    Hamann, Kristin; Reitz, Anja

    2017-04-01

    Dissemination and Exploitation are essential parts of public funded projects. In Horizon 2020 a plan for the exploitation and dissemination of results (PEDR) is a requirement. The plan should contain a clear vision on the objectives of the project in relation to actions for dissemination and potential exploitation of the project results. The actions follow the basic idea to spread the knowledge and results gathered within the project and face the challenge of how to bring the results into potentially relevant policy circle and how they impact the market. The plan follows the purpose to assess the impact of the project and to address various target groups who are interested in the project results. Simply put, dissemination concentrates on the transfer of knowledge and exploitation on the commercialization of the project. Beyond the question of the measurability of project`s impact, strategies within science marketing can serve purposes beyond internal and external communication. Accordingly, project managers are facing the challenge to implement a dissemination and exploitation strategy that ideally supports the identification of all partners with the project and matches the current discourse of the project`s content within the society, politics and economy. A consolidated plan might unite all projects partners under a central idea and supports the identification with the project beyond the individual research questions. Which applications, strategies and methods can be used to bring forward a PEDR that accompanies a project successfully and allows a comprehensive assessment of the project afterwards? Which hurdles might project managers experience in the dissemination process and which tasks should be fulfilled by the project manager?

  20. Videos Designed to Watch but Audience Required Telling stories is a cliché for best practice in videos. Frontier Scientists, a NSF project titled Science in Alaska: using Multimedia to Support Science Education stressed story but faced audience limitations. FS describes project's story process, reach results, and hypothesizes better scenarios.

    Science.gov (United States)

    O'Connell, E. A.

    2016-12-01

    Telling stories is a cliché for best practice in science videos. It's upheld as a method to capture audience attention in many fields. Findings from neurobiology research show character-driven stories cause the release of the neurochemical oxytocin in the brain. Oxytocin motivates cooperation with others and enhances a sense of empathy, in particular the ability to experience others' emotions. Developing character tension- as in our video design showcasing scientists along with their work- holds the viewers' attention, promotes recall of story, and has the potential to clearly broadcast the feelings and behaviors of the scientists. The brain chemical change should help answer the questions: Why should a viewer care about this science? How does it improve the world, or our lives? Is just a story-driven video the solution to science outreach? Answer: Not in our multi-media world. Frontier Scientists (FS) discovered in its three year National Science Foundation project titled 'Science in Alaska: using Multimedia to Support Science Education': the storied video is only part of the effort. Although FS created from scratch and drove a multimedia national campaign throughout the project, major reach was not achieved. Despite FS' dedicated web site, YouTube channel, weekly blog, monthly press release, Facebook and G+ pages, Twitter activity, contact with scientists' institutions, and TV broadcast, monthly activity on the web site seemed to plateau at about 3000 visitors to the FS website per month. Several factors hampered the effort: Inadequate funding for social media limited the ability of FS to get the word to untapped markets: those whose interest might be sparked by ad campaigns but who do not actively explore unfamiliar agencies' science education content. However, when institutions took advantage of promoting their scientists through the FS videos we saw an uptick in video views and the participating scientists were often contacted for additional stories or were

  1. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  2. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  3. Qualifying in-service education of Science Teachers (QUEST)

    DEFF Research Database (Denmark)

    Nielsen, Keld; Nielsen, Birgitte Lund; Pontoppidan, Birgitte

    The Danish QUEST-project is a large-scale (450 teachers), long-term (4 years) professional development project for science teachers. The project aims at closing the gap between the present inconsequential practice in in-service education and recent research results documenting conditions for effe......The Danish QUEST-project is a large-scale (450 teachers), long-term (4 years) professional development project for science teachers. The project aims at closing the gap between the present inconsequential practice in in-service education and recent research results documenting conditions...... and peer involvement in collaborative practices in the school science teacher group is specifically addressed and targeted throughout the project. A special way of working (the QUEST-Rhythm) has been developed to increase the degree of teacher collaboration and networking over the 4 years. The accompanying...

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  5. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  6. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  7. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  8. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  9. Open-science projects get kickstarted at CERN

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CERN is one of the host sites for the Mozilla Science Lab Global Sprint to be held on 4 and 5 June, which will see participants around the world work on projects to further open science and educational tools.   IdeaSquare will be hosting the event at CERN. The Mozilla Science Lab Global Sprint was first held in 2014 to bring together open-science practitioners and enthusiasts to collaborate on projects designed to advance science on the open web. The sprint is a loosely federated event, and CERN is participating in the 2015 edition, hosting sprinters in the hacker-friendly IdeaSquare. Five projects have been formally proposed and CERN users and staff are invited to participate in a variety of ways. A special training session will also be held to introduce the CERN community to existing open-science and collaborative tools, including ones that have been deployed at CERN. 1. GitHub Science Badges: Sprinters will work on developing a badge-style visual representation of how open a software pro...

  10. Water Integration Project Science Strategies White Paper

    International Nuclear Information System (INIS)

    Alan K. Yonk

    2003-01-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document

  11. Water Integration Project Science Strategies White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  12. Elementary and middle school science improvement project

    Science.gov (United States)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  13. Student projects in medicine: a lesson in science and ethics.

    Science.gov (United States)

    Edwards, Sarah J L

    2009-11-01

    Regulation of biomedical research is the subject of considerable debate in the bioethics and health policy worlds. The ethics and governance of medical student projects is becoming an increasingly important topic in its own right, especially in the U.K., where there are periodic calls to change it. My main claim is that there seems to be no good reason for treating student projects differently from projects led by qualified and more experienced scientists and hence no good grounds for changing the current system of ethics review. I first suggest that the educational objectives cannot be met without laying down standards of good science, whatever they may be. Weak science is unnecessary for educational purposes, and it is, in any case, unlikely to produce good researchers in the future. Furthermore, it is curious to want to change the system of ethics review specifically for students when it is the science that is at stake, and when the science now falls largely outside the ethics remit. I further show that ethics review is nevertheless important since students carry a new potential conflict of interests that warrants independent oversight which supervisory support does not offer. This potential conflict may become more morally troublesome the greater the risks to the subjects of the research, and students may impose greater risks on their subjects (relative to professional researchers) by virtue of being inexperienced, whatever the nature of the project. Pragmatic concerns may finally be allayed by organizing the current system more efficiently at critical times of the university calendar.

  14. A Didactics (Didaktik) of Theory of Science in Higher Education

    DEFF Research Database (Denmark)

    Wiberg, Merete

    A Didactics (Didaktik) of Theory of Science in Higher Education - An investigation of Student’s understanding and application of theory of science and the idea of developing a didactics of theory of science as teaching in ontological complexity The paper is a work in progress and a preparation...... not come into play as a resource for the students’ understanding and investigation of the topic they are dealing with. The idea of this research project is on the one hand to investigate how teaching in theory of science is conducted in various higher education contexts and on the other hand to discuss...... and investigation of the topic they are dealing with. The idea of this research project is on the one hand to investigate how teaching in theory of science is conducted in various higher education contexts and on the other hand to discuss the role theory of science might have in students’ striving of understanding...

  15. Democratizing science and technology education: Perspectives from the philosophy of education

    Science.gov (United States)

    Pierce, Clayton Todd

    This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the

  16. Science projects in renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  17. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  18. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  19. Expert system application education project

    Science.gov (United States)

    Gonzelez, Avelino J.; Ragusa, James M.

    1988-01-01

    Artificial intelligence (AI) technology, and in particular expert systems, has shown potential applicability in many areas of operation at the Kennedy Space Center (KSC). In an era of limited resources, the early identification of good expert system applications, and their segregation from inappropriate ones can result in a more efficient use of available NASA resources. On the other hand, the education of students in a highly technical area such as AI requires an extensive hands-on effort. The nature of expert systems is such that proper sample applications for the educational process are difficult to find. A pilot project between NASA-KSC and the University of Central Florida which was designed to simultaneously address the needs of both institutions at a minimum cost. This project, referred to as Expert Systems Prototype Training Project (ESPTP), provided NASA with relatively inexpensive development of initial prototype versions of certain applications. University students likewise benefit by having expertise on a non-trivial problem accessible to them at no cost. Such expertise is indispensible in a hands-on training approach to developing expert systems.

  20. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    Science.gov (United States)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  3. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  4. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    Science.gov (United States)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    Current reforms in science education place increasing demands on teachers and students to engage not only with scientific content but also to develop an understanding of the nature of scientific inquiry (AAAS, 1993; NRC, 1996). Teachers are expected to engage students with authentic scientific practices including posing questions, conducting observations, analyzing data, developing explanations and arguing about them using evidence. This charge is challenging for many reasons most notably the difficulty in obtaining meaningful data about complex scientific phenomena that can be used to address relevant scientific questions that are interesting and understandable to K-12 students. We believe that ocean sciences provide an excellent context for fostering scientific inquiry in the classroom. Of particular interest are the technological and scientific advances of Ocean Observing Systems, which allow scientists to continuously interact with instruments, facilities, and other scientists to explore the earth-ocean- atmosphere system remotely. Oceanographers are making long-term measurements that can also resolve episodic oceanic processes on a wide range of spatial and temporal scales crucial to resolving scientific questions related to Earth's climate, geodynamics, and marine ecosystems. The availability of a diverse array of large data sets that are easily accessible provides a unique opportunity to develop inquiry-based learning environments in which students can explore many important questions that reflect current research trends in ocean sciences. In addition, due to the interdisciplinary nature of the ocean sciences these data sets can be used to examine ocean phenomena from a chemical, physical, or biological perspective; making them particularly useful for science teaching across the disciplines. In this session we will describe some of the efforts of the Centers for Ocean Sciences Education Excellence- Mid Atlantic (COSEE MA) to develop instructional materials

  5. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  6. MUSIC EDUCATION AND MULTIMEDIA PROJECTS

    Directory of Open Access Journals (Sweden)

    Orlova Elena V.

    2013-12-01

    Full Text Available The article deals with the prerequisites of shift of music education paradigm in the XXI century, tells about emergence of new forms in the creative efforts of musicians enrolled in primary schools, and at secondary and highest education levels. Different types and genres of the multimedia creativity are considered. They were in demand by musicians at various events-contests, including Russian and international festivals and competitions in terms of which the music was called upon to play a leading role. Criteria of estimates of new forms of artistic expression are developed. The article contains some video examples given the varying multimedia projects noted by juries of several international competitions held in Moscow (Russia in 2008-2013.

  7. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  8. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  9. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  10. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  11. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  12. Factors relating to the feeling of school avoidance among elementary school children: Results from the MEXT (Ministry of Education, Culture, Sports, Science and Education) Super Shokuiku School Project.

    Science.gov (United States)

    Akimoto, Masahiro; Sekine, Michikazu; Yamada, Masaaki; Tatsuse, Takashi

    2017-01-01

    Purpose This study aims to evaluate whether lifestyle factors including media use and social and family environments are associated with elementary school children's feeling of school avoidance.Methods Total study population for this study was 2,057 children in 5 elementary schools in Takaoka city, Toyama prefecture, which participated in the MEXT Super Shokuiku School Project. A questionnaire survey was conducted in July 2014 and 1,936 students responded (Response rate: 94.1%). Of those who responded, data from 1,698 respondents were relevant for this study. The questionnaire included questions on lifestyle factors (e.g., eating habits, media use, exercise habits, and sleep), health status, and the social and family environments. Children responded to questions on lifestyle factors, health status, and feeling of school avoidance with their parents. Parents were asked to only respond to the questions on social and family environments. Logistic regression analysis was performed to evaluate whether the feeling of avoiding school, as the dependent variable, is associated with the independent variables such as social and family environment factors and lifestyle factors. The odds ratios (OR) and their 95% confidence intervals (95%CI) were calculated.Results The percentage of children who had the feeling of avoiding school was 32.2% in the study sample. In comparison with the 6 th graders, the 1 st , 3 rd , 4 th , and 5 th graders were more likely to have this feeling. Relevant adjusted ORs [95%CI] for Grades 1-5 were found to be 1.48 [1.02-2.13], 1.63 [1.10-2.42], 1.60 [1.08-2.39], and 1.56 [1.03-2.35], respectively. Other factors positively correlated with this feeling were skipping breakfast (OR 1.76, 95%CI [1.12-2.75]), daily snacking (OR 1.64, 95%CI [1.21-2.22]), watching TV for 3 hours or longer (OR 1.55, 95%CI [1.05-2.28]), video gaming for 0.5-2 hours (OR 1.37, 95%CI [1.08-1.74]), feeling sleepy (OR 1.51, 95%CI [1.14-1.99]), not feeling well upon waking up

  13. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Articles written in Resonance – Journal of Science Education. Volume 12 Issue 5 May 2007 pp 85-87 Book Review. The Dawn of the Universe · Tarun Souradeep · More Details Fulltext PDF. Volume 21 Issue 3 March 2016 pp 225-231 General Article. LIGO-India: An Indian Mega-project for Gravitational-Wave Science.

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. LIGO-India: An Indian Mega-project for Gravitational-Wave Science. Tarun Souradeep. General Article Volume 21 Issue 3 March 2016 pp 225-231. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. An Empirical Study about China: Gender Equity in Science Education.

    Science.gov (United States)

    Wang, Jianjun; Staver, John R.

    A data base representing a random sample of more than 10,000 grade 9 students in an SISS (Second IEA Science Study) Extended Study (SES), a key project supported by the China State Commission of Education in the late 1980s, was employed in this study to investigate gender equity in student science achievement in China. This empirical data analysis…

  17. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  18. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  19. Popularity and Relevance of Science Education and Scientific Literacy

    DEFF Research Database (Denmark)

    Graeber, Wolfgang; Blonder, Ron; Bolte, Claus

    2008-01-01

    A consortium of researchers from 8 European nations has successfully applied to the EU commission for funding the PARSEL (Popularity and Relevance in Science Education for Scientific Literacy) project, which aims at raising the popularity and relevance of science teaching and enhancing students...... of a range of personal and social skills (including cognitive skills associated with investigatory scientific problem solving and socio-scientific decision making) and clarify the relevancy of science education for the 21st century. This symposium will introduce and discuss the project PARSEL ideas within...

  20. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    Science.gov (United States)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  1. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  2. The creation of science projects in the physics teachers preparation

    Science.gov (United States)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.

  3. Impact of Initiatives to Implement Science Inquiry: A Comparative Study of the Turkish, Israeli, Swedish and Czech Science Education Systems

    Science.gov (United States)

    Heinz, Jana; Enghag, Margareta; Stuchlikova, Iva; Cakmakci, Gultekin; Peleg, Ran; Baram-Tsabari, Ayelet

    2017-01-01

    This empirical study investigates factors that influence the implementation of science inquiry in the education systems of Turkey, Israel, Sweden and the Czech Republic. Data was collected by means of recordings of science experts' discussions as part of an EU-funded project called Science-Teacher Education Advanced Methods (2009-2012). Results of…

  4. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 3. Method for the Drawing of Newman Projections: Understanding Newman Projections with the Help of Hands. Syed R Hussaini. Classroom Volume 17 Issue 3 March 2012 pp 291-294 ...

  6. Introductory Statistics Education and the National Science Foundation

    Science.gov (United States)

    Hall, Megan R.; Rowell, Ginger Holmes

    2008-01-01

    This paper describes 27 National Science Foundation supported grant projects that have innovations designed to improve teaching and learning in introductory statistics courses. The characteristics of these projects are compared with the six recommendations given in the "Guidelines for Assessment and Instruction in Statistics Education (GAISE)…

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  8. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  9. The PERFORM project: using performing arts to increase engagement and understanding of science.

    Science.gov (United States)

    James, Jon

    2017-04-01

    This commentary describes some of the current challenges for science education in the UK and how an EU educational project (PERFORM) is seeking to use performing arts to engage young people with science, its values and the processes of research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Scientific Knowledge and Attitude Change: The Impact of a Citizen Science Project. Research Report

    Science.gov (United States)

    Brossard, Dominique; Lewenstein, Bruce; Bonney, Rick

    2005-01-01

    This paper discusses the evaluation of an informal science education project, The Birdhouse Network (TBN) of the Cornell Laboratory of Ornithology. The Elaboration Likelihood Model and the theory of Experiential Education were used as frameworks to analyse the impact of TBN on participants' attitudes toward science and the environment, on their…

  11. Leyla and Mahmood--Emotions in Social Science Education

    Science.gov (United States)

    Blennow, Katarina

    2018-01-01

    Purpose: The paper explores what emotions do in social science education through two specific cases and discusses the relation between emotion and politicization in the subject education. Method/approach: The cases are selected from an on-going dissertation project that uses interviews, video and observations in examining how social science…

  12. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  13. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  14. 78 FR 8192 - Agency Information Collection Activities: Comment Request; Education and Human Resources Project...

    Science.gov (United States)

    2013-02-05

    ... NATIONAL SCIENCE FOUNDATION Agency Information Collection Activities: Comment Request; Education and Human Resources Project Monitoring Clearance AGENCY: National Science Foundation. ACTION: Notice... study will assess the implementation of resources, models, and technologies to determine how and why...

  15. Tailoring science education graduate programs to the needs of science educators in low-income countries

    Science.gov (United States)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  16. Implementation Science: New Approaches to Integrating Quality and Safety Education for Nurses Competencies in Nursing Education.

    Science.gov (United States)

    Dolansky, Mary A; Schexnayder, Julie; Patrician, Patricia A; Sales, Anne

    Although quality and safety competencies were developed and disseminated nearly a decade ago by the Quality and Safety Education for Nurses (QSEN) project, the uptake in schools of nursing has been slow. The use of implementation science methods may be useful to accelerate quality and safety competency integration in nursing education. The article includes a definition and description of implementation science methods and practical implementation strategies for nurse educators to consider when integrating the QSEN competencies into nursing curriculum.

  17. Cartographic science: a compendium of map projections, with derivations

    National Research Council Canada - National Science Library

    Fenna, Donald

    2007-01-01

    "From basic projecting to advanced transformations, Cartographic Science: A Compendium of Map Projections, with Derivations comprehensively explores the depiction of a curved world on a flat surface...

  18. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  19. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  20. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  1. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  2. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  3. Projects: viable alternatives in the Environmental Education?

    Directory of Open Access Journals (Sweden)

    Marcos Jose Terossi

    2011-11-01

    Full Text Available In this article we are going to develop the reflection about the projects, its genesis, its use in education and environmental education.To this end, we will promote the discussion about the so-called "method of projects" and "projects pedagogy", with a comparison between them and outlining the approach that we consider most appropriate to EA, its limits and possibilities within the critical perspective, manufacturing and emancipatory education.

  4. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  5. 77 FR 39688 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; FAFSA...

    Science.gov (United States)

    2012-07-05

    ... DEPARTMENT OF EDUCATION Notice of Proposed Information Collection Requests; Institute of Education Sciences; FAFSA Completion Project Evaluation SUMMARY: The Institute of Education Sciences (IES) at the U.S. Department of Education (ED) is conducting a rigorous study of the Free Application for Federal Student Aid...

  6. Educating Engaged Citizens: Four Projects from Ireland

    Science.gov (United States)

    O'Flaherty, Joanne; Liddy, Mags; Tansey, Lorraine; Roche, Cathy

    2011-01-01

    Purpose: This paper aims to describe the four education projects that demonstrate how Irish education provision is adapting to meet social and economic changes: Ubuntu Network working to integrate education for sustainable development (ESD) into teacher education; Community Knowledge Initiative (CKI) facilitating service learning modules at higher…

  7. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  8. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  9. Project LASER: Learning about science, engineering, and research

    Science.gov (United States)

    1990-01-01

    The number of American students entering science and engineering careers and their ranking in comparison with other countries is on the decline. This decline has alarmed Congress which, in 1987, established a Task Force on Women, Minorities, and the Handicapped in Science and Technology to define the problem and find solutions. If left unchanged, the task force has warned that the prospects for maintaining an advanced industrial society will diminish. NASA is supportive of the six goals outlined by the task force, which are paraphrase herein, and is carefully assessing its education programs to identify those offering the greatest potential for achieving the task force objectives with a reasonable range of resources. A major initiative is under way on behalf of NASA at its Marshall Space Flight Center, where highly effective features of several NASA education programs along with innovations are being integrated into a comprehensive pilot program. This program, dubbed Project LASER, is discussed.

  10. Results of Needs Assessments Related to Citizen Science Projects

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  11. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  12. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  14. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  15. Science and the city: A visual journey towards a critical place based science education

    Science.gov (United States)

    Ibrahim, Sheliza

    The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of

  16. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  18. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  19. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  20. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  1. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  2. Retrospective Review of Student Research Projects in a Canadian Master of Science in Physical Therapy Programme and the Perceived Impact on Advisors' Research Capacity, Education, Clinical Practice, Knowledge Translation, and Health Policy.

    Science.gov (United States)

    Lacey, Courtney; Scodras, Stephanie; Ardron, Julie; Sellan, Ryan; Garbaczewska, Martyna; O'Brien, Kelly K; Salbach, Nancy M

    2018-01-01

    Purpose: This study's aim was to characterize the nature of students' research conducted for a Master of Science in Physical Therapy (MScPT) degree programme at a Canadian university and evaluate the lead advisors' perspectives of its impact on their research capacity, education, clinical practice, knowledge translation, and health policy. Methods: We conducted a quantitative, cross-sectional, retrospective review of research reports from 2003 to 2014 to characterize the MScPT students' research and a quantitative, cross-sectional e-survey of lead research advisors to evaluate the impact of this research. Results: Data were abstracted from reports of 201 research projects completed between 2003 and 2014. Projects were conducted primarily in university-affiliated hospitals (41.6%) or the university's physical therapy department (41.1%), and the majority (52.5%) had a clinical focus. Of the 95 lead advisors of 201 projects, 59 advisors (response rate 62.1%) of 119 projects completed the survey questionnaire. The respondents most frequently identified clinical practice (45.1%) and advisors' research capacity (31.4%) as areas positively affected by the students' research. Conclusions: The MScPT students' research projects facilitate the conduct of extensive research internally and across affiliated hospitals. This research appears to advance not only clinical practice but also the ability of lead advisors to undertake research.

  3. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  4. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    Since 1991, the National Science Foundation has signed cooperative agreements with 26 states to undertake ambitious and comprehensive initiatives to reform science, mathematics, and technology education. Collectively, those agreements are known as the State Systemic Initiatives (SSI's). Two complimentary programs, The Urban and Rural Systemic Initiatives (USI's and RSI's), address similar reforms in the nation's largest cities and poorest rural areas. The SSI Program departs significantly from past NSF practice in several ways. The funding is for a longer term and is larger in amount, and the NSF is taking a more activist role, seeking to leverage state and private funds and promote the coordination of programs within states. The Initiatives also have a stronger policy orientation than previous NSF programs have had. The NSF strategy is a reflection of the growing and widely held view that meaningful reforms in schools are most likely to be achieved through state initiatives that set clear and ambitious learning goals and standards; align all of the available policy levers in support of reform; stimulate school-level initiatives; and mobilize human and financial resources to support these changes. Two premises underlie systemic reform: (1) all children can meet significantly higher standards if they are asked to do so and given adequate opportunities to master the content, and (2) state and local policy changes can create opportunities by giving schools strong and consistent signals about the changes in practice and performance that are expected. Because this is an enormous investment of Federal resources that is intended to bring about deep, systemic improvement in the nation's ability to teach science and mathematics effectively, the NSF has contracted with a consortium of independent evaluators to conduct a review of the program. The first of the SSI's were funded in 1991, sufficiently long ago to begin to formulate some initial impressions of their impact. Take

  5. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  6. Project management of life-science research projects: project characteristics, challenges and training needs.

    Science.gov (United States)

    Beukers, Margot W

    2011-02-01

    Thirty-four project managers of life-science research projects were interviewed to investigate the characteristics of their projects, the challenges they faced and their training requirements. A set of ten discriminating parameters were identified based on four project categories: contract research, development, discovery and call-based projects--projects set up to address research questions defined in a call for proposals. The major challenges these project managers are faced with relate to project members, leadership without authority and a lack of commitment from the respective organization. Two-thirds of the project managers indicated that they would be interested in receiving additional training, mostly on people-oriented, soft skills. The training programs that are currently on offer, however, do not meet their needs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  8. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  9. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  10. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  11. Campania Region's Educational Quality Facilities Project

    Science.gov (United States)

    Ponti, Giorgio

    2009-01-01

    This article describes the Educational Quality Facilities project undertaken by Italy's Campania Region to provide quality facilities to all of its communities basing new spaces on the "Flexible Learning Module". The objectives of the five-year project are to: build and equip new educational spaces; improve the quality of existing…

  12. PROJECT - RESOURCE MANAGEMENT OF INNOVATIONS IN EDUCATION: ANTHROPOLOGICAL PROJECTION

    Directory of Open Access Journals (Sweden)

    Galina Aleksandrovna Ignat’eva

    2015-08-01

    Full Text Available The purpose of the research was to denote a way to solve the problem of education mana-gement ΄s insufficient efficiency considered from the point of view of education opportunities to influence on the formation of mechanisms for sustainable development of society as a whole and its educational component. The concept «project-resource management of innovation in education» regarded on the basis of the anthropological project-transforming paradigm. Conceptually-categorical context presented by conceptual cluster composed of coordinated concepts «project», «resource», «educational reality», «organizational-resource potential», «project commonality». In the theoretical part of the study on the basis of analysis of the normative and exploratory approaches to educational innovations organization and management it was established the search approach ΄s leading role in the methodological substantiation of project-resource management. The study have indicated that in the presence of variable models of innovation management in education, corresponding to various predictive models of continuing education post-industrial society, project-resource management is an universal mechanism for the transition from separate innovation΄s precedents to the an authentic reality of innovative education. In the technological part of the study the main concern was to submit the project-resource management by the management goal’s system, each of which includes the specific management actions, projected results and the organizational forms. The project-resource management ΄s professional – activity context of the study showed evolution of managerial positions: an effective performer – an effective leader – strategist, implemented during the transition from directly directive management to the project management and further to the project-resource management. Based on the findings identified the key factors of initiatively-problem projects

  13. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  14. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  15. Project Work in Networked Distance Education

    DEFF Research Database (Denmark)

    Knudsen, Morten; Helbo, Jan; Jensen, Lars Peter

    2000-01-01

    devoted to courses and the other half to project work. A computer conference system, LuvitÒ provides facilities for the courses, as well as structured synchronous and asynchronous communication. Eight times per year two-day seminars are held at the university for intensive lectures, project work......Problem oriented project work has been the foundation for the educational system at Aalborg University since its start 25 years ago. The duration of each student project is one semester, and the students spend half of their time working on the project in groups of typically 5-6 persons....... As the experience since then has proven this to be a very successful innovation in higher education [1], it seems to be an obvious idea also to base our new distance educations on the project study form. Traditionally, however, distance education has been characterized by one-way communication and self...

  16. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  17. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  18. Reports on research projects in the field of reactor safety sponsored by the Federal Ministry for Education, Science, Research and Technology. Period covered: January 1 - June 30, 1997

    International Nuclear Information System (INIS)

    1997-01-01

    Within the framework of its research programme on reactor safety, the Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technology (BMBF) (Federal Ministry for Education, Science, Research and Technology) sponsors investigations into the safety of nuclear reactors. These investigations that are carried out within the framework of the programme are to provide fundamental knowledge, procedures and methods contributing to realistic safety assessments of nuclear facilities, the further development of safety technology, and the use of the potential of innovative safety-related approaches. Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) bmH, by order of the BMBF, continuously issues information on the status of such investigations by publishing semiannual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. (orig./SR) [de

  19. System design projects for undergraduate design education

    Science.gov (United States)

    Batill, S. M.; Pinkelman, J.

    1993-01-01

    Design education has received considerable in the recent past. This paper is intended to address one aspect of undergraduate design education and that is the selection and development of the design project for a capstone design course. Specific goals for a capstone design course are presented and their influence on the project selection are discussed. The evolution of a series of projects based upon the design of remotely piloted aircraft is presented along with students' perspective on the capstone experience.

  20. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  1. Impact evaluation in multicultural educational projects : case: ADAPTYKES project

    OpenAIRE

    Kuusisto, Miika

    2014-01-01

    The objective of this thesis was to examine the common evaluation concepts of the European Union’s funded projects. Such concepts inter alia are effectiveness, impacts and sustainability. The aim was to study how these are realized in multicultural educational case–project in a context, where the project is funded by the European Commission’s Leonardo DaVinci Programme. Thesis introduces two evaluation approaches, which are Logical Framework Approach and Realistic evaluation model. The fi...

  2. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  3. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  4. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  5. Engaging Latino audiences in informal science education

    Science.gov (United States)

    Bonfield, Susan B.

    Environment for the Americas (EFTA), a non-profit organization, developed a four-year research project to establish a baseline for Latino participation and to identify practical tools that would enable educators to overcome barriers to Latino participation in informal science education (ISE). Its national scope and broad suite of governmental and non-governmental, Latino and non-Latino partners ensured that surveys and interviews conducted in Latino communities reflected the cosmopolitan nature of the factors that influence participation in ISE programs. Information about economic and education levels, country of origin, language, length of residence in the US, and perceptions of natural areas combined with existing demographic information at six study sites and one control site provided a broader understanding of Latino communities. The project team's ability to work effectively in these communities was strengthened by the involvement of native, Spanish-speaking Latino interns in the National Park Service's Park Flight Migratory Bird Program. The project also went beyond data gathering by identifying key measures to improve participation in ISE and implementing these measures at established informal science education programs, such as International Migratory Bird Day, to determine effectiveness. The goals of Engaging Latino Audiences in Informal Science Education (ISE) were to 1) identify and reduce the barriers to Latino participation in informal science education; 2) provide effective tools to assist educators in connecting Latino families with science education, and 3) broadly disseminate these tools to agencies and organizations challenged to engage this audience in informal science education (ISE). The results answer questions and provide solutions to a challenge experienced by parks, refuges, nature centers, and other informal science education sites across the US. Key findings from this research documented low participation rates in ISE by Latinos, and that

  6. The Carnegie Project on the Education Doctorate

    Science.gov (United States)

    Perry, Jill Alexa

    2015-01-01

    Beginning with 21 US schools of education, the Carnegie Project on the Education Doctorate (CPED) has created a network of education faculty who are differentiating the EdD from the PhD in order to better meet the needs of their practitioner-scholar students. Their discussions center on two questions: "What are the knowledge, skills, and…

  7. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    Science.gov (United States)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  8. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  9. Understanding student participation and choice in science and technology education

    CERN Document Server

    Dillon, Justin; Ryder, Jim

    2015-01-01

    Drawing on data generated by the EU’s Interests and Recruitment in Science (IRIS) project, this volume examines the issue of young people’s participation in science, technology, engineering and mathematics education. With an especial focus on female participation, the chapters offer analysis deploying varied theoretical frameworks, including sociology, social psychology and gender studies. The material also includes reviews of relevant research in science education and summaries of empirical data concerning student choices in STEM disciplines in five European countries. Featuring both quantitative and qualitative analyses, the book makes a substantial contribution to the developing theoretical agenda in STEM education. It augments available empirical data and identifies strategies in policy-making that could lead to improved participation—and gender balance—in STEM disciplines. The majority of the chapter authors are IRIS project members, with additional chapters written by specially invited contribu...

  10. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  11. Project Work in Networked Distance Education

    DEFF Research Database (Denmark)

    Knudsen, Morten; Helbo, Jan; Jensen, Lars Peter

    2000-01-01

    -study, whereas the project study form is based on collaboration and dialogue. Consequently, successful implementation of project work in distance education requires extensive utilisation of new information and communication technology. In this paper the experiences of project work in a new Master of Industrial...... devoted to courses and the other half to project work. A computer conference system, LuvitÒ provides facilities for the courses, as well as structured synchronous and asynchronous communication. Eight times per year two-day seminars are held at the university for intensive lectures, project work......Problem oriented project work has been the foundation for the educational system at Aalborg University since its start 25 years ago. The duration of each student project is one semester, and the students spend half of their time working on the project in groups of typically 5-6 persons...

  12. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  13. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    Science.gov (United States)

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  14. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  15. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  16. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  19. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  20. Improving science education for sustainable development

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    In recent issues of noteworthy journals, natural scientists have argued for the improvement of science education [1–4]. Such pleas reflect the growing awareness that high-quality science education is required not only for sustaining a lively scientific community that is able to address global

  1. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  2. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  4. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  5. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    The National Aeronautics and Space Administration funded project, Aeronautics and Aviation Science: Careers and Opportunities has been in operation since July, 1995. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area. In its first and second years, a video series on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-9 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development in the field of science aviation and aeronautics. The four sites chosen to participate in this project were: East Boston High School, Dorchester High School, Randolph Junior-Senior High School and Malden High School. In year 3 Dorchester was unable to continue to fully participate and exited out. Danvers was added to the "core site" list in year 3. In consideration of Goals 2000, the National Science Foundation

  6. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  7. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  8. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  9. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 7. July 2013, pages 593-688. pp 593-594 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 595-595 Science Smiles. Science Smiles · Ayan Guha.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 6. June 2013, pages 495-594. pp 495-496 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 497-497 Science Smiles. Science Smiles · Ayan Guha.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 9. September 2015, pages 757-864. pp 757-758 Editorial. Editorial · Amit Roy · More Details Fulltext PDF. pp 759-759 Science Smiles. Science Smiles · Ayan Guha.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 6. June 2012, pages 527-622. pp 527-528 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 529-529 Science Smiles. Science Smiles · Ayan Guha.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  15. Quality Assurance Project Plan for Citizen Science Projects

    Science.gov (United States)

    The Quality Assurance Project Plan is necessary for every project that collects or uses environmental data. It documents the project planning process and serves as a blueprint for how your project will run.

  16. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Investigating and Stimulating Primary Teachers' Attitudes Towards Science: Summary of a Large-Scale Research Project

    Science.gov (United States)

    Walma van der Molen, Juliette; van Aalderen-Smeets, Sandra

    2013-01-01

    Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical concept of attitude, methodological flaws in…

  18. Investigating and stimulating primary teachers’ attitudes towards science: Summary of a large-scale research project

    NARCIS (Netherlands)

    Walma van der Molen, Julie Henriëtte; van Aalderen-Smeets, Sandra

    2013-01-01

    Attention to the attitudes of primary teachers towards science is of fundamental importance to research on primary science education. The current article describes a large-scale research project that aims to overcome three main shortcomings in attitude research, i.e. lack of a strong theoretical

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Converting Chair-like Transition States into Zig-Zag Projections: A Method of Drawing Stereochemical Structures. Syed R Hussaini. Classroom Volume 19 Issue 9 September 2014 pp 846-850 ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Interconversion of Fischer and Zig-Zag Projections - Learning Stereochemistry with the Help of Hands. Syed R Hussaini. Classroom Volume 15 Issue 4 April 2010 pp 351-354 ...

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Project Lifescape – An Invitation. Madhav Gadgil. Classroom Volume 4 Issue 8 August 1999 pp 80-90. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/08/0080-0090. Author Affiliations.

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 1. Fostering Creativity in Students A Short Synthesis Project for the Organic Chemistry Laboratory. Mary M Mader Charles A Liberko. General Article Volume 2 Issue 1 January 1997 pp 53-59 ...

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 1. Project Lifescape – Diseases:Paddy. R J Ranjit Daniels. Classroom Volume 5 Issue 1 January 2000 pp 93-100. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/01/0093-0100 ...

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 4. Project Lifescape – Freshwater Fishes: Catfishes. R J Ranjit Daniels. Classroom Volume 5 Issue 4 April 2000 pp 97-107. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/04/0097-0107 ...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 3. Project Lifescape - 11 Hunter Plants. Dipanjan Ghosh. Classroom Volume 8 ... Author Affiliations. Dipanjan Ghosh1. Centre of Advanced Study Department of Botany Calcutta University 35, Ballygunge Circular Road Calcutta 700019, India.

  6. French language space science educational outreach

    Science.gov (United States)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  7. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  8. Education & Collection Facility GSHP Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Joplin, Jeff [Denver Museum of Nature and Science, Denver, CO (United States)

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient

  9. European Meteorological Society and education in atmospheric sciences

    Science.gov (United States)

    Halenka, T.; Belda, M.

    2010-09-01

    EMS is supporting the exchange of information in the area of education in atmospheric sciences as one of its priority and organizing the educational sessions during EMS annual meetings as a good occasion for such an exchange. Brief thought will be given to the fate of the series of International Conferences on School and Popular Meteorological and Oceanographic Education - EWOC (Education in Weather, Ocean and Climate) and to the project oriented basis of further cooperation in education in atmospheric sciences across Europe. Another tool of EMS is the newly established and developed EDU portal of EMS. In most European countries the process of integration of education at university level was started after Bologna Declaration with the objective to have the system where students on some level could move to another school, or rather university. The goal is to achieve the compatibility between the systems and levels in individual countries to have no objections for students when transferring between the European countries. From this point of view EMS is trying to provide the information about the possibility of education in meteorology and climatology in different countries in centralised form, with uniform shape and content, but validated on national level. In most European countries the necessity of education in Science and Mathematics to achieve higher standard and competitiveness in research and technology development has been formulated after the Lisboa meeting. The European Meteorological Society is trying to follow this process with implication to atmospheric sciences. One of the important task of the EMS is the activity to promote public understanding of meteorology (and sciences related to it), and the ability to make use of it, through schools and more generally. One of the elements of EMS activity is the analysis of the position of atmospheric science in framework of curricula in educational systems of European countries as well as in more general sense, the

  10. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  11. K-12 Project Management Education: NASA Hunch Projects

    Science.gov (United States)

    Morgan, Joe; Zhan, Wei; Leonard, Matt

    2013-01-01

    To increase the interest in science, technology, engineering, and math (STEM) among high school students, the National Aeronautics and Space Administration (NASA) created the "High Schools United with NASA to Create Hardware" (HUNCH) program. To enhance the experience of the students, NASA sponsored two additional projects that require…

  12. Technological Education for the Rural Community (TERC) Project: Technical Mathematics for the Advanced Manufacturing Technician

    Science.gov (United States)

    McCormack, Sherry L.; Zieman, Stuart

    2017-01-01

    Hopkinsville Community College's Technological Education for the Rural Community (TERC) project is funded through the National Science Foundation Advanced Technological Education (NSF ATE) division. It is advancing innovative educational pathways for technological education promoted at the community college level serving rural communities to fill…

  13. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  14. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  15. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  16. Enrichment of Science Education Using Real-time Data Streams

    Science.gov (United States)

    McDonnell, J. M.; de Luca, M. P.

    2002-12-01

    For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.

  17. A Professional Development Project for Improving the Use of Information and Communication Technologies in Science Teaching

    Science.gov (United States)

    Lavonen, Jari; Juuti, Kalle; Aksela, Maija; Meisalo, Veijo

    2006-01-01

    This article describes a professional development project aiming to develop practical approaches for the integration of information and communication technologies (ICT) into science education. Altogether, 13 two-day face-to-face seminars and numerous computer network conferences were held during a three-year period. The goals for the project were…

  18. Group Organized Project Work in Distance Education

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten; Jensen, Lars Peter

    2001-01-01

    Project organized problem based learning is a successful concept for on-campus education at Aalborg University. Recently this "Aalborg concept" has been used in networked distance education as well. This paper describes the experiences from two years of Internet-mediated project work in a new...... Master of Information Technology education. The main conclusions are, that the project work is a strong learning motivator, enhancing peer collaboration, for off-campus students as well. However, the concept cannot be directly transferred to off-campus learning. The main reasons are that the students...... must communicate electronically, and that they are under a fierce time strain, studying part time and typically with a full time job and a family. In this paper, the main problems experienced with group organized project work in distance education are described, and some possible solutions are listed...

  19. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  20. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  1. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  2. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  3. MUSIC EDUCATION AND MULTIMEDIA PROJECTS

    OpenAIRE

    Orlova Elena V.

    2013-01-01

    The article deals with the prerequisites of shift of music education paradigm in the XXI century, tells about emergence of new forms in the creative efforts of musicians enrolled in primary schools, and at secondary and highest education levels. Different types and genres of the multimedia creativity are considered. They were in demand by musicians at various events-contests, including Russian and international festivals and competitions in terms of which the music was called upon to play a l...

  4. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  5. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  6. Status of Project Management Education in Pakistan

    Science.gov (United States)

    Arain, Faisal Manzoor; Tipu, Syed Awais Ahmad

    2009-01-01

    Emerging contractual delivery systems, collaborative partnerships, new management initiatives, and global product markets require professionals and students to have a broader awareness of construction methods and project management issues. This paper presents the state of the project management education in Pakistan. The analysis is based on…

  7. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    Science.gov (United States)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  8. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    Science.gov (United States)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  9. An Ecology of Science Education.

    Science.gov (United States)

    Aubusson, Peter

    2002-01-01

    Reports on a 15-month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. Uses a method of analysis in which the school science system is mapped against an ecosystem. (Author/MM)

  10. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  11. Project of intercultural education in kindergarten

    OpenAIRE

    Erman, Mojca

    2015-01-01

    Third year students have been performing in winter semester a project called intercultural education in language and ethnically heterogeneous classes. Project was performed in kindergarten Šentvid, unit Sapramiška. The purpose of this project was to raise awareness of children about acceptation or not acceptation of difference, to promote awareness of their own diversity with social games and to strengthen the ethical judgment using an inductive approach (Kroflič, 2007). I have followed and e...

  12. Evaluating Education and Science in the KSC Visitor Complex Exhibits

    Science.gov (United States)

    Erickson, Lance K.

    2000-01-01

    The continuing development of exhibits at the Kennedy Space Center's Visitor Complex is an excellent opportunity for NASA personnel to promote science and provide insight into NASA programs and projects for the approximately 3 million visitors that come to KSC annually. Stated goals for the Visitor Complex, in fact, emphasize science awareness and recommend broadening the appeal of the displays and exhibits for all age groups. To this end, this summer project seeks to evaluate the science content of planned exhibits/displays in relation to these developing opportunities and identify specific areas for enhancement of existing or planned exhibits and displays. To help expand the educational and science content within the developing exhibits at the Visitor Complex, this project was structured to implement the goals of the Visitor Center Director. To accomplish this, the exhibits and displays planned for completion within the year underwent review and evaluation for science content and educational direction. Planning emphasis for the individual displays was directed at combining the elements of effective education with fundamental scientific integrity, within an appealing format.

  13. The history and science of the Manhatten project

    International Nuclear Information System (INIS)

    Reed, Bruce Cameron

    2014-01-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  14. The history and science of the Manhatten project

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Bruce Cameron [Alma College, Alma, MI (United States). Dept. of Physics

    2014-03-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  15. Institutional projects in Educational Scientific activity

    Directory of Open Access Journals (Sweden)

    Oscar Ovidio Calzadilla Pérez

    2008-12-01

    Full Text Available Criteria are dealt, in particular, about the conceptual connotation and practice of the institutional project or the school as a particular type of educative project, because it is a developing, participative and sustainable way for the generation of the Educational and Scientific Activity aimed at the search of quality and excelence in the Cuban pedagogical context nowadays. The considerations stat ed have been lived by the authors through the “Centro Consultor para la Estimulación del Talento Verbal” Project performance in the Provincial Elementary School of Referente “Dalquis Sánchez Pupo”, in Holguin province.

  16. Project VUE: Volunteers Upholding Education.

    Science.gov (United States)

    Thurber, John C.

    This document reports on a project aimed at developing, implementing, and evaluating a plan for using volunteer classroom aides in the Palm Beach County (Florida) schools as a means for meeting various financial, human, and community needs. The desirability of a comprehensive volunteer plan was presented in a 10-point summary by an ad hoc…

  17. TIARA Education and training in accelerators science

    International Nuclear Information System (INIS)

    Falcon, S.; Marco, M.

    2012-01-01

    CIEMAT is participating in the European project, TIARA (Test Infrastructure and Accelerator Research Area), whose main objective is to facilitate and optimize the effort in R + D in the field of science and technology of the accelerators in Europe.

  18. Research in Science Education. Volume 21. Selected Refereed Papers from the Annual Conference of the Australasian Science Education Research Association (22nd, Surfers Paradise, Queensland, Australia, July 11-14, 1991).

    Science.gov (United States)

    Forgasz, Helen, Ed.

    1991-01-01

    This annual publication contains 43 research papers on a variety of issues related to science education. Topics include the following: mature-age students; teacher professional development; spreadsheets and science instruction; the Learning in Science Project and putting it into practice; science discipline knowledge in primary teacher education;…

  19. Assessing Motivations and Use of Online Citizen Science Astronomy Projects

    Science.gov (United States)

    Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole

    2018-01-01

    The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their

  20. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  1. Education for sustainable development - Resources for physics and sciences teachers

    Science.gov (United States)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  2. Closed and Open Design Projects in the Education of Engineers

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel

    1965-01-01

    The two aspects of engineering education are the teaching of science and the teaching of design. By ``design'' is meant the procedure of selecting and combining distinct elements to create complete systems which will perform useful functions. In this paper, the author describes the application of...... of this concept of design teaching at The Technical University of Denmark, after a procedure which includes a sequence of closed and open design projects in both computational and experimental laboratories...

  3. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  4. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  5. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Issue front ... Metabolic Engineering: Biological Art of Producing Useful Chemicals · Ram Kulkarni ... General Article. Is Calculus a Failure in Cryptography?

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  8. Double Star project - master science operations plan

    Science.gov (United States)

    Shen, C.; Liu, Z.

    2005-11-01

    For Double Star Project (DSP) exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2) and during the mission operating phase, the long-term and short-term master science operations plans (MSOP) were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  9. Double Star project - master science operations plan

    Directory of Open Access Journals (Sweden)

    C. Shen

    2005-11-01

    Full Text Available For Double Star Project (DSP exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2 and during the mission operating phase, the long-term and short-term master science operations plans (MSOP were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  10. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  11. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  12. Innovations in Undergraduate Science Education: Going Viral

    OpenAIRE

    Hatfull, Graham F.

    2015-01-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-yea...

  13. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  14. Passeport pour les deux infinis: an educational project in French

    Science.gov (United States)

    Arnaud, Nicolas; Descotes-Genon, Sébastien; Kerhoas-Cavata, Sophie; Paul, Jacques; Robert-Esil, Jean-Luc; Royole-Degieux, Perrine

    2016-04-01

    Passeport pour les deux infinis (;Passport for the two infinities;, in short Pass2i) is a French educational project aiming at promoting the physics of the infinitely small (particle physics) and of the infinitely big (cosmology & astrophysics) to high-school teachers and students. It is managed since 2009 by a small team of outreach experts (physicists and engineers) from the CNRS and the CEA. The Pass2i cornerstone is a reversible book - where each side explores one of the two infinities - and which is given for free to science high school teachers who request it, thanks to the support of French funding agencies. The Pass2i non-profit association wants to be a bridge between science and education: training sessions are organized for teachers, educational resources created and made available for download on the Pass2i website (http://www.passeport2i.fr).

  15. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  16. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  17. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 11. November 2016, pages 965-1062. pp 965-966 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 967-967 Science Smiles ... pp 971-983 General Article.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Issue front cover thumbnail Issue ... pp 985-1006 General Article. The Ziegler Catalysts: Serendipity or .... Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018 · More Details Abstract Fulltext PDF.

  20. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  1. Is Museum Education "Rocket Science"?

    Science.gov (United States)

    Dragotto, Erin; Minerva, Christine; Nichols, Michelle

    2006-01-01

    The field of museum education has advanced and adapted over the years to meet the changing needs of audiences as determined by new research, national policy, and international events. Educators from Chicago's Adler Planetarium & Astronomy Museum provide insight into a (somewhat) typical museum education department, especially geared for readers…

  2. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  3. Science 101: What Constitutes a Good Science Project

    Science.gov (United States)

    Robertson, Bill

    2016-01-01

    Having written columns dealing with science fairs before, Bill Robertson notes that it's been a long time since he has tackled the subject of what passes for a "science fair" in schools these days. Because science fairs have changed over the years, Robertson revisits the topic and explains the scientific method. The main focus of the…

  4. Mt. Kilimanjaro expedition in earth science education

    Science.gov (United States)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  5. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  6. Game-based Research Collaboration adapted to Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Damgaard Hansen, Sidse; Grønbæk, Kaj

    2012-01-01

    This paper presents prospects for adapting scientific discovery games to science education. In the paper a prototype of The Quantum Computing Game is presented as a working example of adapting game-based research collaboration to physics education. The game concept is the initial result of a three......-year, inter-disciplinary project “Pilot Center for Community-driven Research” at Aarhus and Aalborg University in Denmark. The paper discusses how scientific discovery games can contribute to educating students in how to work with unsolved scientific problems and creation of new scientific knowledge. Based...

  7. Freirean Pedagogy, Praxis, and Possibilities: Projects for the New Millennium. Volume 19, Critical Education Practice. Volume 1417, Garland Reference Library of Social Science.

    Science.gov (United States)

    Steiner, Stanley F., Ed.; Krank, H. Mark, Ed.; McLaren, Peter, Ed.; Bahruth, Robert E., Ed.

    This book contains 15 chapters, each by different authors, commenting and expanding on the educational philosophy and work of Paulo Freire. The following are included: "Paulo Freire's Pedagogy of Possibility" (Peter McLaren); "Studying the Media: What Makes Mainstream Media Mainstream" (Noam Chomsky); "Scientism as a Form…

  8. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  9. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  10. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  11. Good practices for educational software engineering projects

    NARCIS (Netherlands)

    van der Duim, Louwarnoud; Andersson, Jesper; Sinnema, Marco

    2007-01-01

    Recent publications indicate the importance of software engineering in the computer science curriculum. In this paper, we present the final part of software engineering education at University of Groningen in the Netherlands and Vaxjo University in Sweden, where student teams perform an industrial

  12. PROJECT CENTERED COMPETENCE RELATED EDUCATION OF ENGINEERS

    NARCIS (Netherlands)

    Ir. Peter van Kollenburg; Ing. Coert Bouten; Ir. Reinder Bakker

    2007-01-01

    ABSTRACT It has become a topic at Dutch educational institutes to feel not only responsible for improvement of theoretical and practical skills, but also of 'competences' in a wider sense. The curriculum of the Fontys University of Applied Sciences (32.000 students) and especially the Electrical and

  13. BioSIGHT: Interactive Visualization Modules for Science Education

    Science.gov (United States)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  14. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-07-01

    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  15. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  16. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    347 Impact of Theoretical Chemistry on Chemical and. Biological Sciences. Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. SERIES ARTICLES. 368 Ecology: From Individuals to Collectives. A Physicist's Perspective on Ecology. Vishwesha Guttal. 310. 368 ...

  17. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  18. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  19. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  20. Mario Bunge, Systematic Philosophy and Science Education: An Introduction

    Science.gov (United States)

    Matthews, Michael R.

    2012-10-01

    Mario Bunge was born in Argentina in 1919 and is now in his mid-90s. He studied atomic physics and quantum mechanics with Guido Beck (1903-1988), an Austrian refugee and student of Heisenberg. Additionally he studied modern philosophy in an environment that was a philosophical backwater becoming the first South American philosopher of science to be trained in science. His publications in physics, philosophy, psychology, sociology and the foundations of biology, are staggering in number, and include a massive 8-volume Treatise on Philosophy. The unifying thread of his scholarship is the constant and vigorous advancement of the Enlightenment Project, and criticism of cultural and academic movements that deny or devalue the core planks of the project: namely its naturalism, the search for truth, the universality of science, the value of rationality, and respect for individuals. At a time when specialisation is widely decried, and its deleterious effects on science, philosophy of science, educational research and science teaching are recognised, and at a time when `grand narratives' are thought both undesirable and impossible—it is salutary to appraise the fruits of one person's pursuit of the `Big' scientific and philosophical picture or grand narrative. In doing so this special issue brings together philosophers, physicists, biologists, sociologists, logicians, cognitive scientists, economists and mathematicians to examine facets of Mario Bunge's systematic philosophy and to appraise its contribution to important issues in current philosophy and, by implication, education.

  1. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  2. Combining Art and Science in "Arts and Sciences" Education

    Science.gov (United States)

    Needle, Andrew; Corbo, Christopher; Wong, Denise; Greenfeder, Gary; Raths, Linda; Fulop, Zoltan

    2007-01-01

    Two of this article's authors--an art professor and a biology professor--shared a project for advanced biology, art, nursing, and computer science majors involving scientific research that used digital imaging of the brain of the zebrafish, a newly favored laboratory animal. These contemporary and innovative teaching and learning practices were a…

  3. Innovative Project Activities in Science [From the NSTA Study of Innovative Project Activities

    Science.gov (United States)

    Science Teacher, 1975

    1975-01-01

    Describes four projects chosen as innovative project activities in science which exhibited identification of unique or novel problems and creative approaches to their solutions. Projects included a study of fish in Lake Erie, a goat raising project, an analysis of terrestrial plant ecology and soil composition, and a study of marine and wetlands…

  4. 75 FR 13265 - National Board for Education Sciences

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  5. 75 FR 53280 - National Board for Education Sciences

    Science.gov (United States)

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  6. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  7. Science Education and Education for Citizenship and Sustainable Development

    Science.gov (United States)

    Johnston, Ronald

    2011-01-01

    In the United Kingdom (UK) and Europe, the need for education for sustainable development and global citizenship has recently been emphasised. This emphasis has arguably found its major home in the social studies in higher education. Concurrently, there has been a decline in interest in "the sciences" as evidenced by a reduction in the…

  8. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  9. Project based learning for reactor engineering education

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Tsuji, Masashi; Shimazu, Yoichiro

    2009-01-01

    Trial in education of nuclear engineering in Hokkaido University has proved to be quite attractive for students. It is an education system called Project Based Learning (PBL), which is not based on education by lecture only but based mostly on practice of students in the classroom. The system was adopted four years ago. In the actual class, we separated the student into several groups of the size about 6 students. In the beginning of each class room time, a brief explanations of the related theory or technical bases. Then the students discuss in their own group how to precede their design calculations and do the required calculation and evaluation. The target reactor type of each group was selected by the group members for themselves at the beginning of the semester as the first step of the project. The reactor types range from a small in house type to that for a nuclear ship. At the end of the semester, each group presents the final design. The presentation experience gives students a kind of fresh sensation. Nowadays the evaluation results of the subject by the students rank in the highest in the faculty of engineering. Based on the considerations above, we designed the framework of our PBL for reactor engineering. In this paper, we will present some lessons learned in this PBL education system from the educational points of view. The PBL education program is supported by IAE/METI in Japan for Nuclear Engineering Education. (author)

  10. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  11. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  12. Proyectos de Educacion Migrante (Migrant Education Projects).

    Science.gov (United States)

    Gonzalez, Ramon; Garcia, Jose D.

    Written in Spanish and English for project personnel, parents, and others interested in migrant education, the booklet summarizes general concepts and requirements behind Title I-Migrant activities in Oregon, which has been allocated $4,439,341 in Title I-Migrant funds for fiscal year 1980. Following brief definitions of important terms,…

  13. International Deaf Education Teacher-Training Projects.

    Science.gov (United States)

    Moulton, Robert; Chinn, Kathleen

    2002-01-01

    This article discusses the need and challenges of developing nations regarding audiological and educational services for children who are deaf or hard-of-hearing. Stellar international programs are described. Availability and use of current computer technology is discussed and suggestions are made for international projects in audiology and deaf…

  14. The Relationship between Home Environment and Children's Dietary Behaviors, Lifestyle Factors, and Health: Super Food Education School Project by the Japanese Ministry of Education, Culture, Sports, Science and Technology.

    Science.gov (United States)

    Nakahori, Nobue; Sekine, Michikazu; Yamada, Masaaki; Tatsuse, Takashi

    2016-01-01

    Objectives The numbers of nuclear families and working women have been increasing. Such changes in the home environment may affect children's dietary behaviors, lifestyle factors, and health. This study aims to clarify the associations between the home environment and children's dietary behaviors, lifestyle factors, and health.Methods In July 2014, we questioned the students and parents of five elementary schools that joined the Super Food Education School Project in Takaoka City, Toyama Prefecture. Of 2057 subjects, 1936 (94.1%) answered and 1719 of these subjects were analyzed. In this study, the phrase "home environment" describes such terms as "mother's employment status", "family structure", "subjective economic state", "communication between parents and children", "having breakfast or supper with family", "household chores by children", "parents' awareness of food education", "regard for balanced nutrition", and "teaching table manners". We performed logistic-regression analyses using children's dietary behaviors, lifestyle factors, and health as dependent variables; the items relating to home environment were independent variables.Results Children with parents who are employed, those who do not have breakfast or supper with family, those who do not help with household chores, and those with parents who are less conscious of food education were more likely to eat fewer vegetables, to have likes and dislikes of foods, to skip breakfast, and to have snacks. Children who have little communication with their parents, who do not help with household chores, and those with parents who are less conscious of food education were less likely to exercise, sleep well, spend less time with television, and spend less time on playing videogames. Children with less affluence, those who have little communication with their parents, those who do not help with household chores, and those with parents who are less conscious of food education were less likely to have high

  15. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  16. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    232. Mahlburg's Work on Crank Functions. Ramanujan's Partitions Revisited. Nagesh Juluru and Arni S R Srinivasa Rao. REFLECTIONS. 268. The Scientific Enterprise. Science in the Modern Indian Context. V V Raman. R. R. R4. 2. 1. C r. L. R3+ rL. H. A. C. D. B. E. 244. 223. Transverse section of the ring porous wood ...

  17. Enhancing Science Education through Art

    Science.gov (United States)

    Merten, Susan

    2011-01-01

    Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…

  18. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  19. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  20. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Sketch made by Niels Bohr in 1944 to illustrate the content of his debate with Einstein on the uncertainty principle at the 6th Solvay Conference in 1930. Niels Bohr (1885–1962). Sketch by Homi Bhabha. (Courtesy: TIFR, Bombay). Front Cover. 871. Science Smiles. Ayan Guha. 876. Back Cover. 948. Classics. Biology and ...

  1. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    (Credit: M S Pavan, IISc). Adolf von Baeyer. (1835–1917). (Illustration: Subhankar Biswas). Front Cover. Science Smiles. Ayan Guha. 488. Back Cover. Inside Back Cover. Flowering Trees. Credit: R Arun Singh, IISc. 483. REFLECTIONS. 570 Ramanujan's Circle. Inspirors, Patrons and Mentors. Utpal Mukhopadhyay. 489.

  2. Primary Science Education in China

    Science.gov (United States)

    Pook, Gayle

    2013-01-01

    Consider the extent to which primary science teaching has evolved since it became a core subject in England with the introduction of the National Curriculum in 1988, and the pace at which theory-driven classroom practice has advanced. It is no wonder that, given the recent economic restructuring and boom in technological development in China,…

  3. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Refresher Course on Mountain Hydrology and. Climate Change. Science Academies' Seventy-Fifth Refresher Course in Experimental Physics. Information & Announcements. 106. 105. 108. Classics. Are we Utilizing our. Water Resources. Wisely? B P Radhakrishna. General Editorial on. Publication Ethics. 1. 93. 71.

  4. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  5. Microgravity science and applications projects and payloads

    Science.gov (United States)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  6. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  7. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  8. Report on Project Action Sheet PP05 task 3 between the U.S. Department of Energy and the Republic of Korea Ministry of Education, Science, and Technology (MEST).

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Mark Kamerer

    2013-01-01

    This report documents the results of Task 3 of Project Action Sheet PP05 between the United States Department of Energy (DOE) and the Republic of Korea (ROK) Ministry of Education, Science, and Technology (MEST) for Support with Review of an ROK Risk Evaluation Process. This task was to have Sandia National Laboratories collaborate with the Korea Institute of Nuclear Nonproliferation and Control (KINAC) on several activities concerning how to determine the Probability of Neutralization, PN, and the Probability of System Effectiveness, PE, to include: providing descriptions on how combat simulations are used to determine PN and PE; comparisons of the strengths and weaknesses of two neutralization models (the Neutralization.xls spreadsheet model versus the Brief Adversary Threat-Loss Estimator (BATLE) software); and demonstrating how computer simulations can be used to determine PN. Note that the computer simulation used for the demonstration was the Scenario Toolkit And Generation Environment (STAGE) simulation, which is a stand-alone synthetic tactical simulation sold by Presagis Canada Incorporated. The demonstration is provided in a separate Audio Video Interleave (.AVI) file.

  9. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  10. Project VISION (Very Intensive Scientific Intercurricular On-Site Education

    Science.gov (United States)

    Roig, Gustavo A.

    1999-01-01

    Project VISION (Very Intensive Scientific Intercurricular On-Site Education) is a joint effort among NASA/John F. Kennedy Space Center, Florida International University, Universidad del Turabo, Miami-Dade County Public Schools and the Caguas/Gurabo Public Schools in Puerto Rico. The project's main mission is to institutionalize change among the elementary and middle school science and math teachers at participating schools so that their students receive continuously enriched instruction in the principles of science and math through the use of hands-on and minds-on experiments called learning modules. These leaming modules incorporate the national science and math education standards provided by the National Committee on Science Education Standards and Assessments and the National Council of Teachers of Mathematics, respectively. The use of learning modules that require hands-on and minds-on activities in a classroom setting garners great enthusiasm and motivation on the part of the target students for the understanding of the lesson's underlying math and science principles. With this enthusiasm and motivation, comes acceptance, attention, participation, discipline, acquiescence, and collaboration. Additionally, the use of hands-on activities may also require learning through a gamut of senses. Not only can the student use his/her eyes and ears during these activities, but most times, they can also use their senses of touch, smell, and taste, as well as intuition. Learning is, therefore, achieved using most or all the human senses. The combination of motivation/enthusiasm and the use of multiple senses creates an ideal environment conducive to leaming at a profound level.

  11. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  12. Data Science Methodology for Cybersecurity Projects

    OpenAIRE

    Foroughi, Farhad; Luksch, Peter

    2018-01-01

    Cyber-security solutions are traditionally static and signature-based. The traditional solutions along with the use of analytic models, machine learning and big data could be improved by automatically trigger mitigation or provide relevant awareness to control or limit consequences of threats. This kind of intelligent solutions is covered in the context of Data Science for Cyber-security. Data Science provides a significant role in cyber-security by utilising the power of data (and big data),...

  13. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  14. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  15. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  16. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  17. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  18. Data Curation Education Grounded in Earth Sciences and the Science of Data

    Science.gov (United States)

    Palmer, C. L.

    2015-12-01

    This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.

  19. The NEED (National Energy Education Development) Project

    Science.gov (United States)

    Hogan, D.; Spruill, M.

    2012-04-01

    The NEED (National Energy Education Development) Project is a non-profit organization which provides a wide range of K-12 curriculum on energy education topics. The curriculum is specific for primary, elementary, intermediate and secondary levels with age appropriate activities and reading levels. The NEED Project covers a wide range of topics from wind energy, nuclear energy, solar energy, hydropower, hydrogen, fossil fuels, energy conservation, energy efficiency and much more. One of the major strengths of this organization is its Teacher Advisory Board. The curriculum is routinely revised and updated by master classroom teachers who use the lessons and serve on the advisory board. This ensures it is of the highest quality and a useful resource. The NEED Project through a variety of sponsors including businesses, utility companies and government agencies conducts hundreds of teacher professional development workshops each year throughout the United States and have even done some workshops internationally. These workshops are run by trained NEED facilitators. At the workshops, teachers gain background understanding of the energy topics and have time to complete the hands on activities which make up the curriculum. The teachers are then sent a kit of equipment after successfully completing the workshop. This allows them to teach the curriculum and have their students perform the hands on labs and activities in the classroom. The NEED Project is the largest provider of energy education related curriculum in the United States. Their efforts are educating teachers about energy topics and in turn educating students in the hope of developing citizens who are energy literate. Many of the hands on activities used to teach about various energy sources will be described and demonstrated.

  20. Future challenges in nuclear science education

    International Nuclear Information System (INIS)

    Yates, S.W.

    1993-01-01

    The role of Division of Nuclear Chemistry and Technology of the American Chemical Society in nuclear science education is reviewed, and suggestions for enhanced involvement in additional areas are presented. Possible new areas of emphasis, such as educational programs for pre-college students and non-scientific public, are discussed. Suggestions for revitalizing the position of radiochemistry laboratories in academic institutions are offered. (author) 7 refs

  1. The Pedotopia Project: A Transdisciplinary Experiment in Soil Education

    Science.gov (United States)

    Toland, A.; Wessolek, G.

    2012-04-01

    In the absence of every-day interactions with the land, a hands-on, comprehensive soil education across disciplines and ages is necessary. Soil education is usually integrated into earth science and geography curricula and only rarely into social science, arts and humanities programs. Furthermore, an emphasis on measurement and modeling in conventional classroom science often neglects aesthetic, moral and other non-quantifiable values, precluding a broader cultural context in which soil education could take place. The arts play a vital role in communicating environmental issues to the greater public and represent a dynamic approach to help students discover soil complexity in new and unexpected ways. Artistic methods have recently been introduced as pedagogical tools in soil awareness-raising programs for children and youth. Painting with soil has become an interesting new approach to soil education from Kindergarten to University levels (SZLEZAK 2008). And a growing amount of literature describes artists who have undertaken different soil issues, suggesting that such artistic focus may improve wider understanding and appreciation of soil conservation issues (FELLER et al 2010, TOLAND & WESSOLEK 2010, WAGNER 2002). How can art contribute to soil science, policy and education - both with the aim of generating greater public understanding, but also by honing creative methods to confront problems such as contamination, erosion, and urban sprawl? What artistic approaches exist to protect and restore soils as well as our relationship to the land? And how can these approaches support current soil education goals? These questions were addressed in the transdisciplinary soil seminar, "Pedotopia - Re-sourcing Urban Soils" from September 2010 to September 2011 in Berlin. A cooperation between the Technical University of Berlin's Department of Soil Protection and the Berlin University of Arts' Institute for Art in Context, the project served as a teaching experiment as well

  2. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  3. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    Science.gov (United States)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  4. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  5. Development of a Career Enhancement Training is Inherent Part of an Educational Project

    Directory of Open Access Journals (Sweden)

    Gabdrakhmanova R.G.

    2015-11-01

    Full Text Available Career enhancement training is common for teachers, yet participating in the project requires special training. Project training courses expose project objectives and allow getting necessary skills, materials and tools to determine the results. Training course have to include a content for which teachers will need to make a report. R. A. Valeeva, Ph.D., Professor, was the manager of a project “Development and testing of new modules and rules for the implementing of the basic bachelor educational program in an "Education and Pedagogy" aggregated group (psycho-pedagogical training direction, which implies academic mobility of students studying education science (non-educational training directions in the context of networking”. To implement the project, it was decided to establish close partnerships with five higher educational institutions in the country. We have developed training courses to prepare teaching and resource staff of our university, as well as our partners to strong partnership in the project execution.

  6. Duplex Design Project: Science Pilot Test.

    Science.gov (United States)

    Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

    Work is reported towards the completion of a prototype duplex-design assessment instrument for grade-12 science. The student course-background questionnaire and the pretest section of the two-stage instrument that was developed were administered to all 134 12th-grade students at St. Clairsville High School (Ohio). Based on the information obtained…

  7. Physical Science-Supplement: Project Oriented.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: No mention; appears to be for secondary grades. SUBJECT MATTER: Physical sciences for slow learners. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 units, each of which is further subdivided into several chapters. Each chapter is laid out in three columns; column headings are concepts, content, and activities.…

  8. Toward inclusive science education: University scientists' views of students,instructional practices, and the nature of science

    Science.gov (United States)

    Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.

    2002-01-01

    This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.

  9. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  10. Music Education and the Earth Sciences

    Science.gov (United States)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  11. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  12. Social Science Methods Used in the RESTORE Project

    Science.gov (United States)

    Lynne M. Westphal; Cristy Watkins; Paul H. Gobster; Liam Heneghan; Kristen Ross; Laurel Ross; Madeleine Tudor; Alaka Wali; David H. Wise; Joanne Vining; Moira. Zellner

    2014-01-01

    The RESTORE (Rethinking Ecological and Social Theories of Restoration Ecology) project is an interdisciplinary, multi-institutional research endeavor funded by the National Science Foundation's Dynamics of Coupled Natural Human Systems program. The goal of the project is to understand the links between organizational type, decision making processes, and...

  13. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Arrows in Chemistry. Abirami Lakshminarayanan. General Article Volume 15 Issue 1 January 2010 pp 51-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/01/0051-0063. Keywords.

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Use of Isotopes for Studying Reaction Mechanisms-Secondary Kinetic Isotope Effect. Uday Maitra J Chandrasekhar. Series Article Volume 2 Issue 8 August 1997 pp 18-25 ...

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electrons in Condensed Matter. T V Ramakrishnan. General Article Volume 2 Issue 12 December 1997 pp 17-32. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/12/0017-0032 ...

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 10. October 2002, pages 1-100. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Timoshenko: Father of Engineering ...

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 10. October 1998, pages 1-102. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. From Fourier Series to Fourier Transforms.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. Pythagorean Means and Carnot Machines: When Music Meets Heat. Ramandeep S Johal.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 1. January 1999, pages 1-95. pp 1-2 Editorial. Editorial ... More Details Fulltext PDF. pp 80-88 Reflections. Some Moral and Technical Consequences of Automation.

  1. Science and Higher Education in Korea.

    Science.gov (United States)

    Lee, Sungho

    The role and contribution of academic science to national development in the Republic of Korea is discussed. After an overview on the development of the Korean system of higher education, attention is directed to the national research system and its articulation with the academic system. Consideration is given to: factors that contributed to the…

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 8. August 2006, pages 1-106. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir Gilbert Thomas Walker · J Srinivasan M ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 11. November 2014, pages 971-1070. pp 971-971 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 972-973 Article-in-a-Box. Georg Cantor ...

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 14, Issue 1. January 2009, pages 1-100. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir James Lighthill · Renuka Ravindran.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 8. August 2005, pages 1-105. pp 1-1 Editorial. Editorial · Priti Shankar · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Theodore von Kármán – Rocket Scientist.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 2. February 2006, pages 1-101. pp 1-1 Editorial. Editorial · S Ramasubramanian · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. David Huffman · Priti Shankar.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 11. November 2012, pages 1019-1120. pp 1019-1019 Editorial. Editorial · Y N Srikant · More Details Fulltext PDF. pp 1022-1033 Series Article. Fascinating Organic ...

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 9, Issue 10. October 2004, pages 1-98. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. G. I. Taylor – An Amateur Scientist.

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 2, Issue 4. April 1997, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. The Chandrasekhar Limit · G Srinivasan.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 6. June 2005, pages 1-98. pp 1-1 Editorial. Editorial · Jaywant H Arakeri · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Roentgen and his Rays.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 7. July 2014, pages 585-668. pp 585-585 Editorial. Editorial · S Ranganathan · More Details Fulltext PDF. pp 586-589 Article-in-a-Box. Robert Burns Woodward ...

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 8. August 2014, pages 667-778. pp 667-667 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 668-669 Table of Contents. Table of Contents.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 12, Issue 1. January 2007, pages 1-96. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 12. December 2014, pages 1069-1210. pp 1069-1070 Editorial. Editorial · T N Guru Row Angshuman Roy Choudhury · More Details Fulltext PDF. pp 1071-1073 ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 7. July 2015, pages 571-664. pp 571-571 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 572-573 Table of Contents. Table of Contents.

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 2. February 2002, pages 1-96. pp 1-1 Editorial. Editorial · Amitabh Joshi · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Claude Elwood Shannon · Priti Shankar.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 10. October 2015, pages 863-950b. pp 863-863 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 864-865 Article-in-a-Box. Jan Hendrik Oort ...

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 9. September 2002, pages 1-102. pp 1-2 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Fritz Haber · Animesh Chakravorty.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 2. February 2011, pages 103-202. pp 103-103 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 104-104 Article-in-a-Box. A Short Biography of Israel ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 8. August 2010, pages 681-772. pp 681-681 Editorial. Editorial · G K Ananthasuresh · More Details Fulltext PDF. pp 682-683 Table of Contents. Table of Contents.