WorldWideScience

Sample records for science education participants

  1. International Science Olympiad participants' experiences and perceptions on private education

    Science.gov (United States)

    Park, Kyeong jin; Ryu, Chun-Ryol; Choi, Jinsu

    2016-04-01

    The International Science Olympiad is an international intellectual olympic in which students, aging under 20 and who have not entered university, compete using their creative problem solving skills in the field of science. Many nations participate in the Olympiad with great interest, for this competition is a global youth science contest which is also used to measure national basic science levels. However in Korea, benefits for Olympiad participants were reduced because issues were risen that the Olympiad could intensify private education. This resulted in a continuous decrease in the number of applicants, bringing national competitiveness deterioration to concern. Therefore in this study, we identified the problems by analyzing the actual conditions of Olympiad participants' private education, and sought support plans to activate Olympiad participation. For this use, we conducted a survey of 367 summer school and winter school acceptees in 9 branches. 68.9% of the students were preparing for the Olympiad by private education, and the highest percentage answered that their private education expenses were an average of 3~5 million won. Olympiad preparation took up 30~50% of all private education, showing that private education greatly influences the preparing processes for the Olympiad. Meanwhile the participants perceived that in order to reduce Olympiad-related private education, the following should be implemented priority: supply of free high-quality on-line education materials, and easy access to Olympiad related information. It was also suggested that the most effective and needed education methods were school olympiad preparation classes, on-line education expansion, and special lectures and mentoring from olympiad-experienced senior representatives. Additionally, as methods to activate Olympiad participation, it was thought that award records should be allowed to be used in college applications by enabling award records into student records and special

  2. Understanding student participation and choice in science and technology education

    CERN Document Server

    Dillon, Justin; Ryder, Jim

    2015-01-01

    Drawing on data generated by the EU’s Interests and Recruitment in Science (IRIS) project, this volume examines the issue of young people’s participation in science, technology, engineering and mathematics education. With an especial focus on female participation, the chapters offer analysis deploying varied theoretical frameworks, including sociology, social psychology and gender studies. The material also includes reviews of relevant research in science education and summaries of empirical data concerning student choices in STEM disciplines in five European countries. Featuring both quantitative and qualitative analyses, the book makes a substantial contribution to the developing theoretical agenda in STEM education. It augments available empirical data and identifies strategies in policy-making that could lead to improved participation—and gender balance—in STEM disciplines. The majority of the chapter authors are IRIS project members, with additional chapters written by specially invited contribu...

  3. Making science education meaningful for American Indian students: The effect of science fair participation

    Science.gov (United States)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  4. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  5. Understanding Student Participation and Choice in Science and Technology Education

    DEFF Research Database (Denmark)

    Ryder, Jim; Ulriksen, Lars; Bøe, Maria Vetleseter

    2015-01-01

    Many of the chapters in this volume provide reviews of the existing research literature. In this chapter we focus on what the research studies presented in this book have contributed to our understanding of students’ educational choices. The nature of these contributions is varied. Many findings...... corroborate existing research insights, or explore existing perspectives in new educational contexts or across distinct geographical and cultural settings. In some cases our work challenges prevalent accounts of students’ educational choices. This chapter has five themes: theoretical perspectives; choice...

  6. A longitudinal study of the educational and career trajectories of female participants of an urban informal science education program

    Science.gov (United States)

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2004-10-01

    The purpose of this longitudinal case study is to describe the educational trajectories of a sample of 152 young women from urban, low-income, single-parent families who participated in the Women in Natural Sciences (WINS) program during high school. Utilizing data drawn from program records, surveys, and interviews, this study also attempts to determine how the program affected the participants' educational and career choices to provide insight into the role informal science education programs play in increasing the participation of women and minorities in science, math, engineering, and technology (SMET)-related fields. Findings revealed 109 participants (93.16%) enrolled in a college program following high school completion. Careers in medical or health-related fields followed by careers in SMET emerged as the highest ranking career paths with 24 students (23.76%) and 21 students (20.79%), respectively, employed in or pursuing careers in these areas. The majority of participants perceived having staff to talk to, the job skills learned, and having the museum as a safe place to go as having influenced their educational and career decisions. These findings reflect the need for continued support of informal science education programs for urban girls and at-risk youth.

  7. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  8. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education.

    Directory of Open Access Journals (Sweden)

    Simone Branchini

    Full Text Available Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject. Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs.

  9. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education

    Science.gov (United States)

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs PMID:26200660

  10. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education.

    Science.gov (United States)

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs.

  11. Small Stories for Learning: A Sociocultural Analysis of Children's Participation in Informal Science Education

    Science.gov (United States)

    Desjardins, Elia Nelson

    2011-12-01

    This dissertation examines the ways children use language to construct scientific knowledge in designed informal learning environments such as museums, aquariums, and zoos, with particular attention to autobiographical storytelling. This study takes as its foundation cultural-historical activity theory, defining learning as increased participation in meaningful, knowledge-based activity. It aims to improve experience design in informal learning environments by facilitating and building upon language interactions that are already in use by learners in these contexts. Fieldwork consists of audio recordings of individual children aged 4--12 as they explored a museum of science and technology with their families. Recordings were transcribed and coded according to the activity (task) and context (artifact/exhibit) in which the child was participating during each sequence of utterances. Additional evidence is provided by supplemental interviews with museum educators. Analysis suggests that short autobiographical stories can provide opportunities for learners to access metacognitive knowledge, for educators to assess learners' prior experience and knowledge, and for designers to engage affective pathways in order to increase participation that is both active and contemplative. Design implications are discussed and a design proposal for a distributed informal learning environment is presented.

  12. The impact of professional development on classroom teaching for science educators participating in a long term community of practice

    Science.gov (United States)

    Jensen, Aaron C.

    Efforts to modify and improve science education in the United States have seen minimal success (Crawford, 2000; Borko & Putman, 1996; Puntambekar, Stylianou & Goldstein, 2007; Lustick, 2011). One important reason for this is the professional development that teachers go through in order to learn about and apply these new ideas is generally of poor quality and structured incorrectly for long-term changes in the classroom (Little, 1993; Fullen, 1996; Porter, 2000; Jeanpierre, Oberhauser, & Freeman, 2005). This grounded theory study explores a science community of practice and how the professional development achieved through participation in that community has effected the instruction of the teachers involved, specifically the incorporation of researched based effective science teaching instructional strategies. This study uses personal reflection papers written by the participants, interviews, and classroom observations to understand the influence that the science community of practice has had on the participants. Results indicate that participation in this science community of practice has significant impact on the teachers involved. Participants gained greater understanding of science content knowledge, incorporated effective science instructional strategies into their classroom, and were able to practice both content knowledge and strategies in a non-threatening environment thus gaining a greater understanding of how to apply them in the classrooms. These findings motivate continued research in the role that communities of practice may play in teacher professional develop and the effectiveness of quality professional development in attaining long-term, sustained improvement in science education.

  13. Science Education in Nigeria: An Examination of People's Perceptions about Female Participation in Science, Mathematics and Technology

    Science.gov (United States)

    Ogunjuyigbe, Peter O.; Ojofeitimi, Ebenezer O.; Akinlo, Ambrose

    2006-10-01

    The paper brings to focus people's perception about female involvement in science, mathematics and technology (SMT). Data for the study were obtained from a survey conducted in March, 2005 in two Local Government Areas of Osun state, Southwest Nigeria. The paper reveals that: (i) about 57% of household heads, 45.6% of mothers and 57.6% of the children are of the opinion that both boys and girls are given equal right to SMT education (ii) social forces play an important role in determining people's attitude to SMT (iii) though, parents and stakeholders perceptions about girls' participation in some professions is changing, however, socio-cultural and economic factors still determine which sex to encourage to read SMT.

  14. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    Science.gov (United States)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  15. A qualitative study of science education in nursing school: Narratives of Hispanic female nurses' sense of identity and participation in science learning

    Science.gov (United States)

    Gensemer, Patricia S.

    The purpose of this qualitative study was to learn from Hispanic nursing students regarding their experiences as participants in science learning. The participants were four female nursing students of Hispanic origin attending a small, rural community college in a southeastern state. The overarching question of this study was "In what ways does being Hispanic mediate the science-related learning and practices of nursing students?" The following questions more specifically provided focal points for the research: (1) In what ways do students perceive being Hispanic as relevant to their science education experiences? (a) What does it mean to be Hispanic in the participants' home community? (b) What has it meant to be Hispanic in the science classroom? (2) In what ways might students' everyday knowledge (at home) relate to the knowledge or ways of knowing they practice in the nursing school community? The study took place in Alabama, which offered a rural context where Hispanic populations are rapidly increasing. A series of four interviews was conducted with each participant, followed by one focus group interview session. Results of the study were re presented in terms of portrayals of participant's narratives of identity and science learning, and then as a thematic interpretation collectively woven across the individuals' narratives. Portraitures of each participant draw upon the individual experiences of the four nursing students involved in this study in order to provide a beginning point towards exploring "community" as both personal and social aspects of science practices. Themes explored broader interpretations of communities of practice in relation to guiding questions of the study. Three themes emerged through the study, which included the following: Importance of Science to Nurses, Crossing with a Nurturing and Caring Identity, and Different Modes of Participation. Implications were discussed with regard to participation in a community of practice and

  16. Public education and participation

    International Nuclear Information System (INIS)

    Kelly, J.E.

    1982-01-01

    As prescribed in Step 1 of the Public Education and Participation Process (attachment 1), industry, public interest groups, and decision-makers were briefed about the Subseabed Disposal Program. In regard to public interest groups, Drs. Hollister and Kelly were invited to present the technical and policy aspects of the Subseabed Program at a public forum in Hawaii sponsored by the Hawaii League of Women Voters, the Health Physics Society, and the East-West Center. The sponsors videotaped the forum for a film, entitled Slowly Dying Embers: Radioactive Waste and the Pacific, which will be shown on television in Hawaii. In response to requests for information about the Subseabed Program, Congressional Staff, Representatives, and Senators (attachment 2) were briefed about the Subseabed Program as legislation related to the Program moved through Congress (attachment 3). Science oriented publications also were contacted about the Program

  17. Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN

    CERN Multimedia

    Hoch, Michael

    2011-01-01

    Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN The signatories: Dr Rolf Landua Education Group Leader Professor Stanislav Dovgyi President of the Minor Academy of Science of Ukraine On the photos: Mick Storr, Marina Savino, Rolf Landua, Stanislav Dovgyi, Tetiana Hryn'Ova

  18. From the NSF: The National Science Foundation’s Investments in Broadening Participation in Science, Technology, Engineering, and Mathematics Education through Research and Capacity Building

    Science.gov (United States)

    James, Sylvia M.; Singer, Susan R.

    2016-01-01

    The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been used to increase the participation of groups underrepresented in STEM, including women, minorities, and persons with disabilities. While many are familiar with these long-standing programmatic efforts, BP is also a key component of NSF’s strategic plans, has been highlighted in National Science Board reports, and is the focus of ongoing outreach efforts. The majority of familiar BP programs, such as the Louis Stokes Alliances for Minority Participation (now 25 years old), are housed in the Directorate for Education and Human Resources. However, fellowship programs such as the Graduate Research Fellowships and Postdoctoral Research Fellowships under the Directorate for Biological Sciences (and parallel directorates in other STEM disciplines) are frequently used to address underrepresentation in STEM disciplines. The FY2016 and FY2017 budget requests incorporate funding for NSF INCLUDES, a new cross-agency BP initiative that will build on prior successes while addressing national BP challenges. NSF INCLUDES invites the use of innovative approaches for taking evidence-based best practices to scale, ushering in a new era in NSF BP advancement. PMID:27587853

  19. From the NSF: The National Science Foundation's Investments in Broadening Participation in Science, Technology, Engineering, and Mathematics Education through Research and Capacity Building.

    Science.gov (United States)

    James, Sylvia M; Singer, Susan R

    The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been used to increase the participation of groups underrepresented in STEM, including women, minorities, and persons with disabilities. While many are familiar with these long-standing programmatic efforts, BP is also a key component of NSF's strategic plans, has been highlighted in National Science Board reports, and is the focus of ongoing outreach efforts. The majority of familiar BP programs, such as the Louis Stokes Alliances for Minority Participation (now 25 years old), are housed in the Directorate for Education and Human Resources. However, fellowship programs such as the Graduate Research Fellowships and Postdoctoral Research Fellowships under the Directorate for Biological Sciences (and parallel directorates in other STEM disciplines) are frequently used to address underrepresentation in STEM disciplines. The FY2016 and FY2017 budget requests incorporate funding for NSF INCLUDES, a new cross-agency BP initiative that will build on prior successes while addressing national BP challenges. NSF INCLUDES invites the use of innovative approaches for taking evidence-based best practices to scale, ushering in a new era in NSF BP advancement. © 2016 S. M. James and S. R. Singer. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Participating in patient education

    DEFF Research Database (Denmark)

    Kristiansen, Tine Mechlenborg; Antoft, Rasmus

    2015-01-01

    point is applied in order to illustrate two central status passages taking place at the locally developed patient education programme: 1) The status passage from novice to an experienced person with chronic illness, and 2) The transformation from adolescence to adulthood living with a chronic illness......The paper builds on previous ethnographic research in Denmark focusing on the significance of participating in a locally developed patient education programme for everyday life (Kristiansen et.al. 2015). It presents a secondary analysis. Group based patient education can be understood as a health...... studies within the field of patient education and how it can enhance our understanding of the social practices at play and the identity transitions occurring as a result of the chronic illness itself and the participation at the programme. Further we reflect on potential practical implications of our...

  1. Professional Identity Development of Teacher Candidates Participating in an Informal Science Education Internship: A Focus on Drawings as Evidence

    Science.gov (United States)

    Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca

    2011-01-01

    This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The…

  2. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    Science.gov (United States)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  3. Educational background and professional participation by federal wildlife biologists: Implications for science, management, and The Wildlife Society

    Science.gov (United States)

    Schmutz, Joel A.

    2002-01-01

    Over 2,000 people are employed in wildlife biology in the United States federal government. The size of this constituency motivated me to examine the amount of formal education federal biologists have received and the extent of continuing education they undertake by reading journals or attending scientific meetings. Most federal biologists who are members of The Wildlife Society (TWS) have a graduate degree. However, one-third have only a Bachelor of Science degree, despite the current trend toward hiring people with graduate degrees. Most federal biologists are not research biologists. Numbers of journals subscribed to was positively related to educational level. Less than one-third of all wildlife biologists employed by the United States Fish and Wildlife Service are members of TWS or subscribe to any of its journals. In contrast, the majority of presenters at the TWS 2000 Annual Conference were research biologists and members of TWS. The failure of many federal wildlife biologists to read scientific literature or attend professional meetings indicates a failure to promote the importance of continuing education in the federal workplace. I identify 2 potential adverse impacts of this failing: an inability to recognize important and relevant scientific contributions and an ineffectiveness in carrying out adaptive management.

  4. Researching participation in adult education

    DEFF Research Database (Denmark)

    Kondrup, Sissel

    It is a widespread perception that the challenge of increasing participation in adult education and training has intensified due to the transformation from industrial to knowledge based societies and the transformation implies that it becomes pivotal to increase the supply of highly qualified...... labour. This has fostered an interest in examining why and how people engage in adult education, how participation and especially non-participation in adult education can be explained and how participation rates can be increased. In this paper I outline different traditions within research on recruitment...... to and participation in adult education and training focusing primarily on unskilled and low skilled workers. I present how the traditions contribute to the perception of what effects participation and argue that the existing traditions must be extended and a new framework must be applied in order to understand how...

  5. The Need for Visually Impaired Students Participation in Science ...

    African Journals Online (AJOL)

    This paper examines the counselling implication of the need for the visually impaired students' participation in science education. Descriptive research design was adopted for the study while a validated structured questionnaire tagged visually impaired students perception of science education (VISPSE) was administered ...

  6. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  7. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  8. Participation patterns in adult education

    DEFF Research Database (Denmark)

    Desjardins, Richard; Rubenson, Kjell

    2013-01-01

    This article focuses on evidence regarding cross-national patterns of participation in adult education and an interpretation of these patterns from an institutional and public policy perspective. The interpretation follows from the perspective that sustaining high and widely distributed levels...... problems that otherwise lead to underinvestment in skills and/or inequity in the distribution of access to education and training and hence skills. Hence, it is argued that institutional contexts and public policy measures condition participation patterns in adult education, and are thus worthwhile...

  9. Participation in online continuing education.

    Science.gov (United States)

    Farrell, Barbara; Ward, Natalie; Jennings, Brad; Jones, Caitlin; Jorgenson, Derek; Gubbels-Smith, Ashley; Dolovich, Lisa; Kennie, Natalie

    2016-02-01

    The ADAPT (ADapting pharmacists' skills and Approaches to maximize Patients' drug Therapy effectiveness) e-learning programme requires weekly participation in module activities and facilitated discussion to support skill uptake. In this study, we sought to describe the extent and pattern of, satisfaction with and factors affecting participation in the initial programme offering and reasons for withdrawal. Mixed methods - convergent parallel approach. Participation was examined in qualitative data from discussion boards, assignments and action plans. Learner estimations of time commitment and action plan submission rates were calculated. Surveys (Likert scale and open-ended questions) included mid-point and final, exit and participation surveys. Eleven of 86 learners withdrew, most due to time constraints (eight completed an exit survey; seven said they would take ADAPT again). Thirty-five of 75 remaining learners completed a participation survey. Although 50-60% of the remaining 75 learners actively continued participating, only 15/35 respondents felt satisfied with their own participation. Learners spent 3-5 h/week (average) on module activities. Factors challenging participation included difficulty with technology, managing time and group work. Factors facilitating participation included willingness to learn (content of high interest) and supportive work environment. Being informed of programme time scheduling in advance was identified as a way to enhance participation. This study determined extent of learner participation in an online pharmacist continuing education programme and identified factors influencing participation. Interactions between learners and the online interface, content and with other learners are important considerations for designing online education programmes. Recommendations for programme changes were incorporated following this evaluation to facilitate participation. © 2015 Royal Pharmaceutical Society.

  10. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  11. Students Inspiring Students: An Online Tool for Science Fair Participants

    Science.gov (United States)

    Seeman, Jeffrey I.; Lawrence, Tom

    2011-01-01

    One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…

  12. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  13. Use of social media and online tools for participative space education and citizen science in India: Perspectives of future space leaders

    Science.gov (United States)

    Khan, Aafaque; Sridhar, Apoorva

    2012-07-01

    The previous decade saw the emergence of internet in the new avatar popularly known as Web 2.0. After its inception, Internet (also known as Web 1.0) remained centralized and propriety controlled; the information was displayed in form of static pages and users could only browse through these pages connected via URLs (Unique Resource Locator), links and search engines. Web 2.0, on the other hand, has features and tools that allow users to engage in dialogue, interact and contribute to the content on the World Wide Web. As a Result, Social Media has become the most widely accepted medium of interactive and participative dialogue around the world. Social Media is not just limited to Social Networking; it extends from podcasts, webcasts, blogs, micro-blogs, wikis, forums to crowd sourcing, cloud storage, cloud computing and Voice over Internet Protocol. World over, there is a rising trend of using Social Media for Space Education and Outreach. Governments, Space Agencies, Universities, Industry and Organizations have realized the power of Social Media to communicate advancement of space science and technology, updates on space missions and their findings to the common man as well as to the researchers, scientists and experts around the world. In this paper, the authors intend to discuss, the perspectives, of young students and professionals in the space industry on various present and future possibilities of using Social Media in space outreach and citizen science, especially in India and other developing countries. The authors share a vision for developing Social Media platforms to communicate space science and technology, along innovative ideas on participative citizen science projects for various space based applications such as earth observation and space science. Opinions of various young students and professionals in the space industry from different parts of the world are collected and reflected through a comprehensive survey. Besides, a detailed study and

  14. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  15. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  16. Science team participation in the ARM program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1993-01-01

    This progress report discusses the Science Team participation in the Atmospheric Radiation Measurement (ARM) Program for the period of October 31, 1992 to November 1, 1993. This report summarized the research accomplishments of six papers

  17. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  18. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  19. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    Science.gov (United States)

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  20. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  1. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  2. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  3. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community

    Science.gov (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.

    2006-12-01

    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  4. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  5. The Role of Educational Leadership on Participation in the Costa Rican National Program of Science and Technology Fairs at Escuela Abraham Lincoln in the Coastal Region

    Science.gov (United States)

    Marquez, Fernando

    2016-01-01

    The purpose of this study was to identify the role that Costa Rican educational leaders play in implementing the National Program of Science and Technology Fairs (Programa Nacional de Ferias de Ciencia y Tecnologia [PRONAFECYT]) initiative. The study provides an examination of leadership practices, instructional strategies, and professional…

  6. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  7. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  8. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  9. Impacting university physics students through participation in informal science

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah D.

    2013-01-01

    Informal education programs organized by university physics departments are a popular means of reaching out to communities and satisfying grant requirements. The outcomes of these programs are often described in terms of broader impacts on the community. Comparatively little attention, however, has been paid to the influence of such programs on those students facilitating the informal science programs. Through Partnerships for Informal Science Education in the Community (PISEC) at the University of Colorado Boulder, undergraduate and graduate physics students coach elementary and middle school children during an inquiry-based science afterschool program. As part of their participation in PISEC, university students complete preparation in pedagogy, communication and diversity, engage with children on a weekly basis and provide regular feedback about the program. We present findings that indicate these experiences improve the ability of university students to communicate in everyday language and positively influence their perspectives on teaching and learning.

  10. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  11. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  12. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  13. SAYNPS Participation in Nuclear Public Education in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Thugwane, S.J. [South African Young Nuclear Professionals Society, P.O. Box 582 Pretoria 0001 (South Africa); Khathi, N.F.; Rasweswe, M.A. [South African Young Nuclear Professionals Society, P.O. Box 582 Pretoria 0001 (South Africa); South African Nuclear Energy Corporation, P.O. Box 582 Pretoria 0001 (South Africa)

    2008-07-01

    The South African Young Nuclear Professionals Society (SAYNPS) has an objective to help inform and educate the public about the importance and benefits of nuclear science and technology. In South Africa, the government hosts annual national science campaigns to promote science and technology. These include the National Science Week, Science Olympiads and Energy week. SAYNPS encourages its members to participate in these campaigns through exhibitions and schools outreach programmes. Through these campaigns, schoolteachers and learners are educated about the benefits of safe usage of nuclear technology and about different careers in the nuclear industry. Through participation in the different campaigns it was acknowledged that participation of young professionals in public education will help preserve nuclear knowledge in the country. It was concluded that public education is still a task that needs to be intensified in order for the public to know the benefits of safe usage of nuclear technology. Scope: This paper presents the role that SAYNPS has played in nuclear public education in South Africa in 2006 and 2007. (authors)

  14. SAYNPS Participation in Nuclear Public Education in South Africa

    International Nuclear Information System (INIS)

    Thugwane, S.J.; Khathi, N.F.; Rasweswe, M.A.

    2008-01-01

    The South African Young Nuclear Professionals Society (SAYNPS) has an objective to help inform and educate the public about the importance and benefits of nuclear science and technology. In South Africa, the government hosts annual national science campaigns to promote science and technology. These include the National Science Week, Science Olympiads and Energy week. SAYNPS encourages its members to participate in these campaigns through exhibitions and schools outreach programmes. Through these campaigns, schoolteachers and learners are educated about the benefits of safe usage of nuclear technology and about different careers in the nuclear industry. Through participation in the different campaigns it was acknowledged that participation of young professionals in public education will help preserve nuclear knowledge in the country. It was concluded that public education is still a task that needs to be intensified in order for the public to know the benefits of safe usage of nuclear technology. Scope: This paper presents the role that SAYNPS has played in nuclear public education in South Africa in 2006 and 2007. (authors)

  15. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  16. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  17. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  18. Widening participation in nurse education: An integrative literature review.

    Science.gov (United States)

    Heaslip, Vanessa; Board, Michele; Duckworth, Vicky; Thomas, Liz

    2017-12-01

    Widening participation into higher education is espoused within educational policy in the UK, and internationally, as a mechanism to promote equality and social mobility. As nurse education is located within higher education it has a responsibility to promote widening participation within pre-registration educational programmes. It could also be argued that the profession has a responsibility to promote equality to ensure its' workforce is as diverse as possible in order to best address the health needs of diverse populations. To undertake an integrative review on published papers exploring Widening Participation in undergraduate, pre-registration nurse education in the UK. A six step integrative review methodology was utilised, reviewing papers published in English from 2013-2016. Search of CINAHL, Education Source, MEDLINE, PsychINFO, SocINDEX, Science Direct, Business Source Complete, ERIC, British Library ETOS, Teacher Reference Centre, Informit Health Collection and Informit Humanities and Social Science Collection which highlighted 449 citations; from these 14 papers met the review inclusion criteria. Both empirical studies and editorials focusing upon widening participation in pre-registration nurse education in the UK (2013-2016) were included. Papers excluded were non UK papers or papers not focussed upon widening participation in pre-registration nursing education. Research papers included in the review were assessed for quality using appropriate critical appraisal tools. 14 papers were included in the review; these were analysed thematically identifying four themes; knowledge and identification of WP, pedagogy and WP, attrition and retention and career prospects. Whilst widening participation is a key issue for both nurse education and the wider profession there is a lack of conceptualisation and focus regarding mechanisms to both encourage and support a wider diversity of entrant. Whilst there are some studies, these focus on particular individual

  19. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  20. eParticipation for Political Education: Challenges and Opportunities

    Science.gov (United States)

    Maier-Rabler, Ursula; Neumayer, Christina

    This paper argues, that the incorporation of eParticipation into political education at schools will broaden the chances of young people for political and societal engagement and strengthen civil society of a country or state. Frustration with traditional party politics especially of the younger generation is increasing in contemporary society. Since the voting age in Austria was lowered to 16, new ways of learning for political education by utilizing information and communication technologies (ICTs) that have the potential to increase participation of young people are considered. However, Austrian young people are not yet educated in developing and expressing political perspectives and therefore not prepared for actively taking part in politics. Exemplified on the project Polipedia.at, a collaborative online textbook on political education, this paper aims to give recommendations from a social science perspective for integration of ICTs into political education in order to enhance political participation of youth.

  1. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  2. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  3. Assessing Participation in Secondary Education Quality Enhancement

    African Journals Online (AJOL)

    Assessing Participation in Secondary Education Quality Enhancement: Teachers, Parents and Communities in Cross River State. ... ailing economy, low moral values and philosophy of the end justifies the means were reasons for low parents and communities involvement in secondary education-quality improvement.

  4. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  5. Active student participation and citizenship education

    NARCIS (Netherlands)

    Veugelers, W.

    2009-01-01

    What are the possibilities for active student participation in citizenship education and how are students involved in the school as a community? We researched active student participation in schools and in out-of-school learning activities: students’ own lessons, their own school, their own

  6. What's Driving Faculty Participation in Distance Education?

    Science.gov (United States)

    Cook, Ruth Gannon; Ley, Kathryn

    2004-01-01

    This paper reviews more than a decade of investigations undertaken to determine what motivates and what discourages faculty participation in distance education. The presenters describe the evidence that faculty extrinsic and intrinsic conditions both influence willingness to participate. The researchers compare the findings of this study with…

  7. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  8. Broadening the Participation of Native Americans in Earth Science

    Science.gov (United States)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  9. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  10. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  11. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  12. Homo Politicus meets Homo Ludens: Public participation in serious life science games.

    Science.gov (United States)

    Radchuk, Olga; Kerbe, Wolfgang; Schmidt, Markus

    2017-07-01

    Public participation in science and gamification of science are two strong contemporary trends, especially in the area of emerging techno-sciences. Involvement of the public in research-related activities is an integral part of public engagement with science and technologies, which can be successfully achieved through a participatory game design. Focusing on the participatory dimension of educational games, we have reviewed a number of existing participation heuristics in light of their suitability to characterize available mobile and browser science games. We analyzed 87 games with respect to their participatory and motivational elements and demonstrated that the majority of mobile games have only basic participative features. This review of the landscape of participative science games in the domain of life sciences highlights a number of major challenges present in the design of such applications. At the same time, it reveals a number of opportunities to enhance public engagement using science games.

  13. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  14. Participation and Family Education in School: Successful Educational Actions

    Science.gov (United States)

    Garcia, Lars Bonell; Ríos, Oriol

    2014-01-01

    The research "INCLUD-ED, Strategies for Inclusion and Social Cohesion in Europe from Education" (2006-11) identified several forms of family participation that contribute to the improvement of school performance and living together in schools: participation in decision-making processes, participation in the evaluation of educational…

  15. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  16. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  17. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  18. Avoiding the Issue of Gender in Japanese Science Education

    Science.gov (United States)

    Scantlebury, Kathryn; Baker, Dale; Sugi, Ayumi; Yoshida, Atsushi; Uysal, Sibel

    2007-01-01

    This paper describes how the patriarchal structure of Japanese society and its notions of women, femininity, and gendered stereotypes produced strong cultural barriers to increasing the participation of females in science education. Baseline data on attitudes toward science and the perceptions of gender issues in science education, academic major…

  19. Basic Science Research and the Protection of Human Research Participants

    Science.gov (United States)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  20. Participant Action Research and Environmental Education

    Directory of Open Access Journals (Sweden)

    Yasmin Coromoto Requena Bolívar

    2018-02-01

    Full Text Available The committed participation of the inhabitants in diverse Venezuelan communities is fundamental in the search of solution to environmental problems that they face in the daily life; in the face of this reality, studies based on Participant Action Research were addressed, through a review and documentary analysis of four works related to community participation, carried out in the state of Lara. For this, the following question was asked: ¿What was the achievement in the solution of environmental problems in the communities, reported through the master's degree works oriented under participant action research and presented to Yacambú University in 2011-2013? A qualitative approach is used, approaching the information according to the stages suggested by Arias (2012: Search of sources, initial reading of documents, preparation of the preliminary scheme, data collection, analysis and interpretation of the information, formulation of the final scheme, introduction and conclusions, final report. It begins with the definition of the units of analysis and inquiry of the literature, through theoretical positions, concepts and contributions on: participant action research, participation and environmental education, to culminate with the analysis and interpretation of the information and the conclusions of this investigation. For the collection of the data, the bibliographic records were used with the purpose of organizing the information on the researches consulted, and of summary for the synthesis of the documents. It was concluded that, in the analyzed degree works, the purpose of the IAP was fulfilled, which consisted in the transformation of the problem-situation, which allowed the IAP to become the propitious scenario to promote environmental participation and education not formal.

  1. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  2. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  3. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  4. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  5. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  6. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  7. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  8. Midwest Science Festival: Exploring Students' and Parents' Participation in and Attitudes Toward Science.

    Science.gov (United States)

    Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M

    2016-08-01

    Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.

  9. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  10. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  11. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    , for example, the various SSI's statements of "good educational practice." Most SSI's began their initiatives by establishing clear goals for what students should know and be able to do, reflecting the emergence of a national consensus for broad standards for just about every aspect of the educational process. The concerned persons in each SSI--policy-makers, educators, mathematicians, and scientists--have not necessarily reached the same conclusions about what children should learn or even what efforts are needed to put the necessary changes in place, but they are focused on common goals as expressed locally. The recent national dialogues about goals and standards have provided the basis for a remarkably consistent image of what states--at least the SSI states--consider good educational practice. The differences that do occur across states reflect variations in demographics, geography, resources, values, and educational structure. All the states with SSI's, regardless of their primary strategy, have address the professional development of teachers. Collectively, the SSI's reported that professional development services were provided to more than 50,000 teachers during the past year, which is approximately eight percent of the public school teachers in the participating states. The number of teachers participating varied by grade level and subject matter. Some states, for example, reported reaching more than one in every five middle-school mathematics teachers, but only one in every 20 high-school mathematics teachers. Focusing SSI resources on the professional development of classroom teachers implies changing their skill levels, knowledge, and beliefs. Attitudes and perceptions of administrators also changed in the process. The challenge lies in developing a strategy that provides on-going, in-depth professional development that reaches a significant portion of those who teach mathematics and the sciences. Not only must an effective development model(s), be provided

  12. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  13. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  14. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  15. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  16. 4-H Participation and Science Interest in Youth

    Science.gov (United States)

    Heck, Katherine; Carlos, Ramona M.; Barnett, Cynthia; Smith, Martin H.

    2012-01-01

    The study reported here investigated the impacts of participation in 4-H on young people's interest and participation in science. Survey data were collected from relatively large and ethnically diverse samples of elementary and high school-aged students in California. Results indicated that although elementary-grade 4-H members are not more…

  17. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2017-03-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  18. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  19. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  20. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  1. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  2. The Factors that Affect Science Teachers' Participation in Professional Development

    Science.gov (United States)

    Roux, Judi Ann

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities

  3. Promoting Pre-college Science Education

    Science.gov (United States)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  4. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  5. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  6. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  7. Citizenship education : the feasibility of a participative approach

    NARCIS (Netherlands)

    Guerin, L. J. F.; van der Ploeg, P. A.; Sins, P. H. M.

    2013-01-01

    Background:European and national policies on citizenship education stimulate the implementation of a participative approach to citizenship education, fostering active citizenship. The reason given for fostering active citizenship is the decline of participation in political and social life

  8. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  9. Evaluation of constructivist pedagogy: Influence on critical thinking skills, science fair participation and level of performance

    Science.gov (United States)

    Foxx, Robbie Evelyn

    Science education reform, driven by a rapidly advancing technological society, demands the attention of both elementary and middle school curriculum-developers. Science education training in current standards (National Research Council [NRC] Standards 1996) emphasize inquiry, which is reported to be a basic tenet of the theory known as constructivism (NAASP, 1996; Cohen, 1988; Conley, 1993; Friedman, 1999; Newman, Marks, & Gamoran, 1996; Smerdon & Burkam 1999; Sizer 1992; Talbert & McLaughlin 1993; Tobin & Gallagher, 1987; Yager, 1991, 2000). Pedagogy focusing on the tenets of constructivist theory, at the intermediate level, can address current science standards. Many science educators believe participation in science fairs helps students develop the attitudes, skills, and knowledge that will help them to be comfortable and successful in the scientific and technological society (Czerniak, 1996). Competing in science fairs is one vehicle which allows students to apply science to societal issues, solve problems and model those things scientists do. Moreover, constructing a science fair project is suggested as being an excellent means to foster the development of concepts necessary in promoting scientific literacy (Czerniak, 1996). Research further suggests that through science fairs or other inquiry activities, students construct their knowledge with fewer misconceptions as they explore and discover the nature of science (NRC 1996). Tohn 's study (as cited in Bellipanni, 1994) stated that science fairs are a major campaign to increase student skills and to allow students a chance to have fun with science. The purpose of this research was twofold: (1) to assess science problem solving skills of students instructed using constructivist pedagogy, and (2) to explore the effects of constructivist pedagogy's influence(s) on science fair participation/placement. Students' attitudes resulting from these experiences were examined as well.

  10. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  11. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  12. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  13. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  14. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  15. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  16. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  17. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  18. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    Science.gov (United States)

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these…

  19. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  20. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  1. Citizen voices performing public participation in science and environment communication

    CERN Document Server

    Carvalho, Anabela; Doyle, Julie

    2012-01-01

    How is "participation" ascribed meaning and practised in science and environment communication? And how are citizen voices articulated, invoked, heard, marginalised or silenced in those processes? Citizen Voices takes its starting point in the so-called dialogic or participatory turn in scientific and environmental governance in which practices claiming to be based on principles of participation, dialogue and citizen involvement have proliferated. The book goes beyond the buzzword of "participation" in order to give empirically rich, theoretically informed and critical accounts of how citizen participation is understood and enacted in mass mediation and public engagement practices. A diverse series of studies across Europe and the US are presented, providing readers with empirical insights into the articulation of citizen voices in different national, cultural and institutional contexts. Building bridges across media and communication studies, science and technology studies, environmental studies and urban pl...

  2. Initiating and continuing participation in citizen science for natural history.

    Science.gov (United States)

    Everett, Glyn; Geoghegan, Hilary

    2016-07-22

    Natural history has a long tradition in the UK, dating back to before Charles Darwin. Developing from a principally amateur pursuit, natural history continues to attract both amateur and professional involvement. Within the context of citizen science and public engagement, we examine the motivations behind citizen participation in the national survey activities of the Open Air Laboratories (OPAL) programme, looking at: people's experiences of the surveys as 'project-based leisure'; their motivations for taking part and barriers to continued participation; where they feature on our continuum of engagement; and whether participation in an OPAL survey facilitated their movement between categories along this continuum. The paper focuses on a less-expected but very significant outcome regarding the participation of already-engaged amateur naturalists in citizen science. Our main findings relate to: first, how committed amateur naturalists (already-engaged) have also enjoyed contributing to OPAL and the need to respect and work with their interest to encourage broader and deeper involvement; and second, how new (previously-unengaged) and relatively new participants (casually-engaged) have gained confidence, renewed their interests, refocussed their activities and/or gained validation from participation in OPAL. Overall, we argue that engagement with and enthusiasm for the scientific process is a motivation shared by citizens who, prior to participating in the OPAL surveys, were previously-unengaged, casually-engaged or already-engaged in natural history activities. Citizen science has largely been written about by professional scientists for professional scientists interested in developing a project of their own. This study offers a qualitative example of how citizen science can be meaningful to participants beyond what might appear to be a public engagement data collection exercise.

  3. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  4. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  5. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  6. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  7. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  8. Teacher participation in science fairs as professional development in South Africa

    Directory of Open Access Journals (Sweden)

    Clement K. Mbowane

    2017-07-01

    Full Text Available This research was undertaken to understand the perceptions of the Physical Sciences teachers who participate in the South African ‘Eskom Expo for Young Scientists’, regarding the educational significance of the science fair, and the extent to which expo participation provides an opportunity for professional development. The educational significance of this article is found in its contribution to the professional identity of teachers in their roles as organisers, mentors and judges. The model of Beijaard et al. (Teach Teach Educ. 2004;20:107–128 was used to characterise the teachers’ professional identity in terms of professional knowledge, attitudes, beliefs, norms and values, as well as emotions and agency. Interviews with the Physical Sciences teachers were analysed using thematic analysis, ultimately interpreting and linking the categories of responses to the theme of professional identity. The study found that expo participation contributes to pedagogical knowledge, content knowledge (as both procedural and declarative or factual knowledge and pedagogical content knowledge. Self-efficacy beliefs were strengthened, positive attitudes were developed, and strategies of inquiry-based learning and effective methodological instruction were observed during participation, which contributed to the participants’ school-based teaching. Teachers learn both from their engagement with learners, and through networking opportunities with fellow teachers. Teachers themselves value these aspects, and consequently, science fair participation is a sustainable form of professional development. It is recommended that the opportunity for professional development that is provided by teachers’ participation in such school-level science fairs should be acknowledged and promoted by schools and fair organisers. Significance: Science expos offer professional development to participating teachers and improve learners’ academic performance.

  9. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  10. Participation in Education. ACER Research Monograph No. 30.

    Science.gov (United States)

    Williams, Trevor; And Others

    Participation in education in Australia is reported, with attention to: completion of year 12; postsecondary education; technical and further education (TAFE); apprenticeships; higher education; universities; Colleges of Advanced Education (CAEs); and degree programs. Data from two national probability samples of young people 4 years apart in age…

  11. Women's Participation in Higher Education in Japan.

    Science.gov (United States)

    Fujimura-Fanselow, Kumiko

    1985-01-01

    The choices that Japanese women make about higher education are, in part, a response to realistic expectations about the functions or rewards of education in their lives and the availability of job opportunities for educated women. Discusses traditional and changing Japanese attitudes toward sex roles, working women, and the types of employment…

  12. Engaging Latino audiences in informal science education

    Science.gov (United States)

    Bonfield, Susan B.

    Environment for the Americas (EFTA), a non-profit organization, developed a four-year research project to establish a baseline for Latino participation and to identify practical tools that would enable educators to overcome barriers to Latino participation in informal science education (ISE). Its national scope and broad suite of governmental and non-governmental, Latino and non-Latino partners ensured that surveys and interviews conducted in Latino communities reflected the cosmopolitan nature of the factors that influence participation in ISE programs. Information about economic and education levels, country of origin, language, length of residence in the US, and perceptions of natural areas combined with existing demographic information at six study sites and one control site provided a broader understanding of Latino communities. The project team's ability to work effectively in these communities was strengthened by the involvement of native, Spanish-speaking Latino interns in the National Park Service's Park Flight Migratory Bird Program. The project also went beyond data gathering by identifying key measures to improve participation in ISE and implementing these measures at established informal science education programs, such as International Migratory Bird Day, to determine effectiveness. The goals of Engaging Latino Audiences in Informal Science Education (ISE) were to 1) identify and reduce the barriers to Latino participation in informal science education; 2) provide effective tools to assist educators in connecting Latino families with science education, and 3) broadly disseminate these tools to agencies and organizations challenged to engage this audience in informal science education (ISE). The results answer questions and provide solutions to a challenge experienced by parks, refuges, nature centers, and other informal science education sites across the US. Key findings from this research documented low participation rates in ISE by Latinos, and that

  13. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  14. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  15. Citizen science on a smartphone: Participants' motivations and learning.

    Science.gov (United States)

    Land-Zandstra, Anne M; Devilee, Jeroen L A; Snik, Frans; Buurmeijer, Franka; van den Broek, Jos M

    2016-01-01

    Citizen science provides researchers means to gather or analyse large datasets. At the same time, citizen science projects offer an opportunity for non-scientists to be part of and learn from the scientific process. In the Dutch iSPEX project, a large number of citizens turned their smartphones into actual measurement devices to measure aerosols. This study examined participants' motivation and perceived learning impacts of this unique project. Most respondents joined iSPEX because they wanted to contribute to the scientific goals of the project or because they were interested in the project topics (health and environmental impact of aerosols). In terms of learning impact, respondents reported a gain in knowledge about citizen science and the topics of the project. However, many respondents had an incomplete understanding of the science behind the project, possibly caused by the complexity of the measurements. © The Author(s) 2015.

  16. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  18. Game Play Participation of Amotivated Students during Sport Education

    Science.gov (United States)

    Wallhead, Tristan L.; Garn, Alex C.; Vidoni, Carla; Youngberg, Charli

    2013-01-01

    Sport Education has embedded pedagogical strategies proposed to reduce the prevalence of amotivation in physical education. The purpose of this study was to provide an examination of the game play participation rates of amotivated students within a Sport Education season. A sample of 395 high school students participated in a season of team…

  19. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  20. Student Participation: A Democratic Education perspective

    DEFF Research Database (Denmark)

    Simovska, Venka

    2004-01-01

    The paper addresses the issue of student participation from the perspective of the health promoting schools initiative. It draws on experience from the Macedonian Network of Health Promoting Schools, and its collaboration with the Danish as well as other country networks within the European Netwo...... and token participation are presented and discussed in the paper. Underpinning values that these models endorse as important for the processes of health promotion in schools include self-determination, participation, democracy, diversity, and equity....

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  2. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  3. Adaptive IT Education through IT Industry Participation

    NARCIS (Netherlands)

    Fernando, Shantha; Dahanayake, A.; Sol, H.G.; Khosrow-Pour, M.

    2006-01-01

    Information Technology (IT) education, when adaptive to the market demand, can contribute towards the development of IT in a country. The contribution of IT education to the economic growth and sustainable development of a country is seen in the quality and spread of IT industries. It has been

  4. assessing participation in secondary education quality enhancement

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    for low parents and communities involvement in secondary education-quality improvement. It was recommended that the quality of instruction in ... concern on standard of education hinges on the quality of instruction the children are ... NTI, 2000). This implies that teachers have a duty of helping students under their care to.

  5. Did cultural and artistic education in the Netherlands increase student participation in high cultural events?

    NARCIS (Netherlands)

    Damen, M.-L.; van Klaveren, C.

    2010-01-01

    This study examines whether Cultural and Artistic Education that was implemented by the Dutch Ministry of Education, Culture and Science in 1999 caused students to participate more in high cultural events. A unique feature of the intervention was that students were free to choose the type of

  6. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  7. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  8. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  9. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  10. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  11. [Trends in participation in nonformal education in the second half of life : Increasing educational participation in retirement].

    Science.gov (United States)

    Wiest, Maja; Hoffmann, Madlain; Widany, Sarah; Kaufmann, Katrin

    2017-05-22

    Research on nonformal education often focuses on participation within employment. Participation of workers decreases with age; however, recent studies show an increase in participation in nonformal education of older workers. It remains, however, unclear if this trend spills over to retirement. In the context of social change processes, trends in nonformal educational participation are analyzed. The study addresses employment and retirement as opportunity structures and investigates their impact on educational participation in the second half of life. Predictors of educational participation are modeled in logistic regression, including interaction effects. Analyses are based on cross-sectional data of the German Ageing Survey and covers 20,129 respondents aged 40-85 years (T 1 : 1996 n = 4838; T 2 : 2002 n = 3084; T 3 : 2008 n = 6205; T 4 : 2014 n = 6002). Educational level, age, gender, employment status, region, social integration, and subjective health predict participation in nonformal education for people aged 40 to 85 years. Employment as an opportunity structure has a constant impact on participation, whereas retirees' participation increases over the course of time. The increase of retirees' participation in nonformal education is discussed in the context of social change processes and connected to theoretical und empirical research gaps with regard to educational participation in the second half of life.

  12. "But at school … I became a bit shy": Korean immigrant adolescents' discursive participation in science classrooms

    Science.gov (United States)

    Ryu, Minjung

    2013-09-01

    In reform-based science curricula, students' discursive participation is highly encouraged as a means of science learning as well as a goal of science education. However, Asian immigrant students are perceived to be quiet and passive in classroom discursive situations, and this reticence implies that they may face challenges in discourse-rich science classroom learning environments. Given this potentially conflicting situation, the present study aims to understand how and why Asian immigrant students participate in science classroom discourse. Findings from interviews with seven Korean immigrant adolescents illustrate that they are indeed hesitant to speak up in classrooms. Drawing upon cultural historical perspectives on identity and agency, this study shows how immigrant experiences shaped the participants' othered identity and influenced their science classroom participation, as well as how they negotiated their identities and situations to participate in science classroom and peer communities. I will discuss implications of this study for science education research and science teacher education to support classroom participation of immigrant students.

  13. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  14. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  15. Sexuality educators: taking a stand by participating in research

    African Journals Online (AJOL)

    Sexuality educators: taking a stand by participating in research ... and Sexually Transmitted Infections (STIs) (United Nations Educational, Scientific, .... assimilates new ideas which could assist in keeping up with what learners need from.

  16. Education and participation of women in politics. An empirical investigation

    Directory of Open Access Journals (Sweden)

    Edi Puka

    2016-12-01

    Full Text Available This article is the result of a research work on the relationship between education and politics, developed in view of literature, studies and research in sociology and political sciences. The first phase of the research will be devoted to the collection of documentation and information necessary to the historical reconstruction of the salient stages and the most important dates around which developed the "political action” of the Albanian woman. It was intended to comprehend the complex phenomenon of relationship between women and politics through a series of semi-structured interviews. The interviews were conducted in the cities of Tirana and Durres, addressed to a total sample of 46 women, aged between 18 and 60 years, randomly selected to represent the different types of political participation.The process of the exposed research is focused on the active, effective and conscious presence of women in society

  17. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  18. Educational stratification in cultural participation: Cognitive competence or status motivation?

    NARCIS (Netherlands)

    Notten, N.; Bol, Th.; van de Werfhorst, H.G.; Ganzeboom, H.B.G.

    2015-01-01

    This article examines educational stratification in highbrow cultural participation. There are two contrasting explanations of why cultural participation is stratified. The status hypothesis predicts that people come to appreciate particular forms of art because it expresses their belonging to a

  19. Educational stratification in cultural participation: cognitive competence or status motivation?

    NARCIS (Netherlands)

    Notten, N.; Lancee, B.; van de Werfhorst, H.G.; Ganzeboom, H.B.G.

    2015-01-01

    This article examines educational stratification in highbrow cultural participation. There are two contrasting explanations of why cultural participation is stratified. The status hypothesis predicts that people come to appreciate particular forms of art because it expresses their belonging to a

  20. ASPIRE: Active Societal Participation in Research and Education

    Science.gov (United States)

    Garza, C.; Parrish, J.; Harris, L.; Posselt, J.; Hatch, M.

    2017-12-01

    Active Societal Participation In Research and Education (ASPIRE) aims to cultivate a generation of geoscientists with the leadership knowledge and skills, scholarship, and material support to reframe and rebrand the geosciences as socially relevant and, thereby, to broaden participation in these fields. This generation of geoscientists will do so by bridging longstanding divides that impede access to and inclusion in the geosciences: between basic and applied science, between scholars in the academy and members of historically marginalized communities, and between the places where science is needed and the places where it is typically conducted. To bring about these types of change, we draw upon, refine, and institutionalize the working group model as the Mobile Working Group (MWG), directly referencing the need to move outside of the "ivory tower" and into the community. Led by a geoscientist with one foot in the academy and the other in the community - the Boundary Spanner - each MWG will focus on a single issue linked to a single community. ASPIRE supports multiple MWGs working across the geographic, ethnographic and "in practice" community space, as well as across the body of geoscience research and application. We hypothesize that in institutionalizing a new mode of geoscience research (MWG), learning from Boundary Spanners experiences with MWG, and refining a leadership development program from our findings, that we will have a scalable leadership tool and organizational structure that will rebrand the geosciences as socially relevant and inclusive of geoscientists from diverse backgrounds even as the "science space" of geoscience expands to incorporate in-community work.

  1. Overview of the First Forum about Informal Science Education

    Science.gov (United States)

    Lebron Santos, Mayra; Pantoja, Carmen

    2018-01-01

    The First Forum on Informal Science Education was held at the University of Puerto Rico in 2015. This Forum had the following goals:1. Gather for the first time professionals dedicated to public communication and science outreach in Puerto Rico. 2. Exchange experiences and dissemination strategies with international professional science communicators.3. Encourage a fruitful dialogue between communicators with experience in museums, the media, and the integration of sciences with the arts.4. Encourage dialogue between communicators to facilitate future collaborations.The invited speakers came from Ibero-America and addressed aspects of science communication in museums and the media, the dissemination of science through the arts, the participation of universities in informal science education and the formal education of science communicators. The participants included museum specialists, journalists, artists, outreach specialists, formal educators interested in science outreach, and college students. During the Forum special events for the public were coordinated to celebrate the International Year of Light (2015). The exhibit “Light: Beyond the Bulb” was displayed. Dr. Julieta Fierro, recipient of the prestigious Kalinga Prize for the Popularization of Science awarded by UNESCO, presented the public talk “Light in the Universe”. Dr. Inés Rodríguez Hidalgo, director of the Science Museum of Valladolid, presented the talk "O Sole Mío: An Invitation to Solar Physics". We present an overview of the forum and some critical reflections on the topics discussed.

  2. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  3. The Clam Trail: Blending Science Education, Public Art, and Tourism

    Science.gov (United States)

    Muscio, Cara; Flimlin, Gef; Bushnell, Rick

    2011-01-01

    The Barnegat Bay Shellfish Restoration's Clam Trail is an award-winning scavenger hunt that combines science education, public art, and tourism. This family adventure has participants seeking out giant painted fiberglass clams, upweller clam nurseries, and points of interest in search of science facts to record on their forms. Upon returning these…

  4. Victorian Certificate of Education: Mathematics, Science and Gender

    Science.gov (United States)

    Cox, Peter J.; Leder, Gilah C.; Forgasz, Helen J.

    2004-01-01

    Gender differences in participation and performance at "high stakes" examinations have received much public attention, which has often focused on mathematics and science subjects. This paper describes the innovative forms of assessment introduced into mathematics and science subjects within the Victorian Certificate of Education (VCE)…

  5. What Do We Mean by Science Education for Civic Engagement?

    Science.gov (United States)

    Rudolph, John L.; Horibe, Shusaku

    2016-01-01

    One of the most frequently cited goals for science education over the years has been to provide students with the understanding and skills necessary to engage in science-related civic issues. Despite the repeated insistence on the importance of this kind of democratic participation, there has been little effort in the research community either to…

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  7. Women and girls in science education: Female teachers' and students' perspectives on gender and science

    Science.gov (United States)

    Crotty, Ann

    Science is a part of all students' education, PreK-12. Preparing students for a more scientifically and technologically complex world requires the best possible education including the deliberate inclusion and full contributions of all students, especially an underrepresented group: females in science. In the United States, as elsewhere in the world, the participation of girls and women in science education and professional careers in science is limited, particularly in the physical sciences (National Academy of Sciences [NAS], 2006). The goal of this research study is to gain a better understanding of the perspectives and perceptions of girls and women, both science educators and students, related to gender and participation in science at the time of an important course: high school chemistry. There is a rich body of research literature in science education that addresses gender studies post---high school, but less research that recognizes the affective voices of practicing female science teachers and students at the high school level (Bianchini, Cavazos, & Helms, 2000; Brown & Gilligan, 1992; Gilligan, 1982). Similarly, little is known with regard to how female students and teachers navigate their educational, personal, and professional experiences in science, or how they overcome impediments that pose limits on their participation in science, particularly the physical sciences. This exploratory study focuses on capturing voices (Brown & Gilligan, 1992; Gilligan, 1982) of high school chemistry students and teachers from selected urban and suburban learning communities in public schools in the Capital Region of New York State. Through surveys, interviews, and focus groups, this qualitative study explores the intersection of the students' and teachers' experiences with regard to the following questions: (1) How do female chemistry teachers view the role gender has played in their professional and personal lives as they have pursued education, degree status, and

  8. What is `Agency'? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-03-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development of this new research agenda and to argue that there is a need for research in science education that attends to agency as a social practice. Despite increasing interest in student agency in educational research, the term 'agency' has lacked explicit operationalisation and, across the varied approaches, such as critical ethnography, ethnographies of communication, discourse analysis and symbolic interactionism, there has been a lack of coherence in its research usage. There has also been argument concerning the validity of the use of the term 'agency' in science education research. This article attempts to structure the variety of definitions of 'student agency' in science education research, identifies problems in the research related to assigning intentionality to research participants and argues that agency is a kind of discursive practice. The article also draws attention to the need for researchers to be explicit in the assumptions they rely upon in their interpretations of social worlds. Drawing upon the discursive turn in the social sciences, a definition of agency is provided, that accommodates the discursive practices of both individuals and the various functional social groups from whose activities classroom practice is constituted. The article contributes to building a focused research agenda concerned with understanding and promoting student agency in science.

  9. Participants in a medical applications meeting hosted by CERN Head of Medical Applications S. Myers with J. E. Celis, Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research and Prof. JM. Gago, President of Laboratório de Instrumentação e Física Experimental de Partículas (LIP) and Former Minister for Science, Technology and Higher Education of Portugal of the XVII Governo. Were also participating: CERN Life Science Adviser M. Dosanjh with U. Ringborg R. Lewensohn, A. Brahme, R. Moeckli, O. Jäkel and S. Pieck.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    Participants in a medical applications meeting hosted by CERN Head of Medical Applications S. Myers with J. E. Celis, Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research and Prof. JM. Gago, President of Laboratório de Instrumentação e Física Experimental de Partículas (LIP) and Former Minister for Science, Technology and Higher Education of Portugal of the XVII Governo. Were also participating: CERN Life Science Adviser M. Dosanjh with U. Ringborg R. Lewensohn, A. Brahme, R. Moeckli, O. Jäkel and S. Pieck.

  10. Investigating the Determinants of Adults' Participation in Higher Education

    Science.gov (United States)

    Owusu-Agyeman, Yaw

    2016-01-01

    This study investigates the determinants of adult learners' participation in higher education in a lifelong learning environment. The author argues that the determinants of adult learners' participation in higher education include individual demands, state and institutional policy objectives and industry-driven demands rather than demographic…

  11. Predictors of Participation and Completion in a Workplace Education Program.

    Science.gov (United States)

    Smith, Paula Sue; White, Bonnie Roe

    1997-01-01

    Responses from 351 employee participants in a workplace education program (218 completers) indicated they were mostly white, female high school graduates ages 26 to 35. Women with Test of Adult Basic Education math scores below 5.0 were less likely to complete. Those who completed higher grades in school were more likely to participate. (SK)

  12. Does Participative Decision Making Affect Lecturer Performance in Higher Education?

    Science.gov (United States)

    Sukirno, D. S.; Siengthai, Sununta

    2011-01-01

    Purpose: The relationship between participation and job performance has captured the interest of not only business researchers but also education researchers. However, the topic has not gained significant attention in the educational management research arena. The purpose of this paper is to empirically examine the impact of participation in…

  13. Understanding How Participation in Education Changes Mothers' Parenting Practices

    Science.gov (United States)

    Harding, Jessica F.; Morris, Pamela A.

    2015-01-01

    This research explores whether low-income mothers' participation in education influences a constellation of different parenting practices that are related to young children's academic outcomes. Importantly, understanding whether maternal participation in education influences mothers' parenting practices can illuminate a pathway by which increases…

  14. Estimating the Impact of Education on Political Participation

    DEFF Research Database (Denmark)

    Dinesen, Peter Thisted; Dawes, Christopher; Johanneson, Magnus

    2016-01-01

    In this study we provide new evidence on the much-discussed effect of education on political participation by utilizing the quasi-experiment of twinning. By looking at the relationship between education and participation within monozygotic (MZ) twin pairs we are able to circumvent traditional...

  15. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fancovicova, Jana; Erdogan, Mehmet; Prokop, Pavol

    2010-01-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of…

  16. An analysis of Science Olympiad participants' perceptions regarding their experience with the science and engineering academic competition

    Science.gov (United States)

    Wirt, Jennifer L.

    Science education and literacy, along with a focus on the other STEM fields, have been a center of attention on the global scale for decades. The 1950's race to space is often considered the starting point. Through the years, the attention has spread to highlight the United States' scientific literacy rankings on international testing. The ever-expanding global economy and global workplace make the need for literacy in the STEM fields a necessity. Science and academic competitions are worthy of study to determine the overall and specific positive and negative aspects of their incorporation in students' educational experiences. Science Olympiad is a national science and engineering competition that engages thousands of students each year. The purpose of this study was to analyze the perceptions of Science Olympiad participants, in terms of science learning and interest, 21st century skills and abilities, perceived influence on careers, and the overall benefits of being involved in Science Olympiad. The study sought to determine if there were any differences of perception when gender was viewed as a factor. Data was acquired through the Science Olympiad survey database. It consisted of 635 usable surveys, split evenly between males and females. This study employed a mixed methods analysis. The qualitative data allowed the individual perceptions of the respondents to be highlighted and acknowledged, while the quantitative data allowed generalizations to be identified. The qualitative and quantitative data clearly showed that Science Olympiad had an impact on the career choices of participants. The qualitative data showed that participants gained an increased level of learning and interest in science and STEM areas, 21st century skills, and overall positive benefits as a result of being involved. The qualitative data was almost exclusively positive. The quantitative data however, did not capture the significance of each researched category that the qualitative

  17. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  18. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  19. Educational Resilience as a Quadripartite Responsibility: Indigenous Peoples Participating in Higher Education via Distance Education

    Science.gov (United States)

    Willems, Julie

    2012-01-01

    Considerations of educational resilience are often linked to student participation, retention, and outcomes in distance higher education, in spite of adversity, equity issues, or "invisible fences" that students may face. This paper further develops the quadripartite model of educational resilience (Willems, 2010; Willems & Reupert,…

  20. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  1. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  2. New research on women's low participation in science and technology

    Science.gov (United States)

    Stout, Jane

    It is well known that women have historically been and continue to be grossly underrepresented in technical fields (i.e., the physical sciences, engineering, and computing). This presentation will address the following research questions: What dissuades women from entering into a technical career track, and what are women's experiences like within technical fields? At the same time, this presentation will acknowledge a shortcoming of decades of social science research and interventions designed to improve women's interest and persistence in technical fields: a narrow definition of ``women''. Given that the majority of women in colleges and universities (i.e., the typical sites of social science research) tend to be affluent and/or White, STEM education research that relies on convenience samples at colleges and universities paints a skewed picture of gender issues in technical fields. This presentation will showcase research findings that call into question conventional conceptions of gender disparities in technical fields. Specifically, the presentation will emphasize the importance of recognizing that women constitute more than their gender; women come from a diverse array of backgrounds, which no doubt play a role in the experience of being a woman in technical fields. By understanding the experiences of women from a broad array of demographics groups, the STEM education community can develop a corresponding set of strategies to recruit and retain women with diverse interests, experiences, and values (e.g., first generation versus second college students; women of different racial/ethnic backgrounds). The aim of this presentation is to promote social science research and interventions that acknowledge the nuanced experiences of diverse women in technical fields, in order to address the seemingly intractable problem of women's underrepresentation in technical fields. NSF DUE-1431112, NSF CNS-1246649.

  3. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  4. SunDial: embodied informal science education using GPS

    Directory of Open Access Journals (Sweden)

    Megan K. Halpern

    2011-06-01

    Full Text Available Science centers serve a number of goals for visitors, ideally providing experiences that are educational, social, and meaningful. This paper describes SunDial, a handheld application developed for families to use at a science center. Inspired by the idea of geocaching, the high-tech treasure hunting game that utilizes GPS technologies, SunDial asks families to use a single handheld device to locate and participate in a series of learning modules around the museum. Observations of 10 families suggest that it supports rich informal science education experiences, provides insights about families’ interaction patterns around and with single handheld devices, and demonstrates the value of navigation as an educational experience. Further, using recently released guidelines for Informal Science Education (ISE experiences to inform the design process proved valuable, tying features of the technology to educational and social goals, and giving evidence that explicit reference to these guidelines can improve ISE experiences and technologies.

  5. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  6. Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms

    Science.gov (United States)

    Crowley, S.; Warburton, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.

  7. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  8. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  10. Sustainable E-Participation through participatory experiences in education

    Directory of Open Access Journals (Sweden)

    Ursula Maier-Rabler

    2010-09-01

    Full Text Available Normal 0 21 false false false DE-AT X-NONE X-NONE The understanding of participation as a political matter has changed back and forth over the years. The latest twist back to appreciative attributions towards participation is fuelled by the development of the Internet, and especially the Social Web. Citizen participation is unanimously seen as an essential precondition for Deliberative-Collaborative eDemocracy (Petrik, 2010 enabled by Web 2.0. This paper considers participatory culture and its specific political, cultural, societal, and educational characteristics as a prerequisite for e-participation and argues that social media literacy is indispensable for e-participation to be sustainable. Young people’s affinity spaces (Jenkins, et.al., 2006 can only lay down the foundations for social media literacy, but their further development depends on education. Political Education would be well advised to adapt innovative pedagogical approaches to the acquirement of new media literacy. This paper introduces an exemplary educational tool – predominately but not exclusively for political/civic education – namely the website PoliPedia.at. Teachers can use it to deliberately create a balanced space for collaboration between Digital Immigrants and Digital Natives. PoliPedia – as a participative online tool – has the potential to facilitate participation experience in political/civic education and supports social media education. Thereby the embedding of technology in pedagogical and societal conceptualizations is crucial.

  11. Sustainable E-Participation through participatory experiences in education

    Directory of Open Access Journals (Sweden)

    Ursula Maier-Rabler

    2010-09-01

    Full Text Available The understanding of participation as a political matter has changed back and forth over the years. The latest twist back to appreciative attributions towards participation is fuelled by the development of the Internet, and especially the Social Web. Citizen participation is unanimously seen as an essential precondition for Deliberative-Collaborative eDemocracy (Petrik, 2010 enabled by Web 2.0. This paper considers participatory culture and its specific political, cultural, societal, and educational characteristics as a prerequisite for e-participation and argues that social media literacy is indispensable for e-participation to be sustainable. Young people’s affinity spaces (Jenkins, et.al., 2006 can only lay down the foundations for social media literacy, but their further development depends on education. Political Education would be well advised to adapt innovative pedagogical approaches to the acquirement of new media literacy. This paper introduces an exemplary educational tool – predominately but not exclusively for political/civic education – namely the website PoliPedia.at. Teachers can use it to deliberately create a balanced space for collaboration between Digital Immigrants and Digital Natives. PoliPedia – as a participative online tool – has the potential to facilitate participation experience in political/civic education and supports social media education. Thereby the embedding of technology in pedagogical and societal conceptualizations is crucial.

  12. The influence of motivational factors on the frequency of participation in citizen science activities

    Directory of Open Access Journals (Sweden)

    Patrícia Tiago

    2017-07-01

    Full Text Available Citizen science has become a mainstream approach to collect information and data on many different scientific subjects. In this study, we assess the effectiveness of engagement and meaningful experience of participants in citizen science projects. We use motivational measures calculated from a web survey where respondents answered questions regarding to their motivation to participate in BioDiversity4All, a Portuguese citizen science project. We adapted the intrinsic motivation inventory (IMI and considered seven categories of measurement: Interest/Enjoyment, Perceived Competence, Effort/Importance, Perceived Choice, Value/Usefulness, Project Relatedness, and Group Relatedness each of them with statements rated on a seven-point Likert scale. We received 149 survey responses, corresponding to 10.3 % of BioDiversity4All Newsletter’s receivers. We analyzed for possible differences among the categories pertaining to gender, age, level of education and level of participation in the project. Finally, we assessed the different patterns of motivation existing among the users. No statistical differences were found between genders, age classes and levels of education for the averages in any category of analysis. However, IMI categories presented different results for respondents with different levels of participation. The highest value of Interest/Enjoyment and Perceived Competence was obtained by the group of respondents that participate a lot and the lowest by the ones that never participated. Project Relatedness had the highest value for all groups except for the group that never participated. This group had completely different motivations from the other groups, showing the lowest levels in categories such as Perceived Competence, Value/Usefulness, Project Relatedness and Group Relatedness. In conclusion, the results from our work show that working deeply on people’s involvement is fundamental to increase and maintain their participation on

  13. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  15. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  16. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  17. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  18. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  19. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  20. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  1. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  2. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  3. Participants, Physicians or Programmes: Participants' educational level and initiative in cancer screening.

    Science.gov (United States)

    Willems, Barbara; Bracke, Piet

    2018-04-01

    This study is an in-depth examination of at whose initiative (participant, physician or screening programme) individuals participate in cervical, breast and colorectal cancer screening across the EU-28. Special attention is paid to (1) the association with educational attainment and (2) the country's cancer screening strategy (organised, pilot/regional or opportunistic) for each type of cancer screened. Data were obtained from Eurobarometer 66.2 'Health in the European Union' (2006). Final samples consisted of 10,186; 5443 and 9851 individuals for cervical, breast, and colorectal cancer, respectively. Multinomial logistic regressions were performed. Surprisingly, even in countries with organised screening programmes, participation in screenings for cervical, breast and colorectal cancer was most likely to be initiated by the general practitioner (GP) or the participant. In general, GPs were found to play a crucial role in making referrals to screenings, regardless of the country's screening strategy. The results also revealed differences between educational groups with regard to their incentive to participate in cervical and breast cancer screening and, to a lesser extent, in colorectal cancer screening. People with high education are more likely to participate in cancer screening at their own initiative, while people with less education are more likely to participate at the initiative of a physician or a screening programme. Albeit, the results varied according to type of cancer screening and national screening strategy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  5. Elementary science education: Dilemmas facing preservice teachers

    Science.gov (United States)

    Sullivan, Sherry Elaine

    Prospective teachers are involved in a process of induction into a culture of teaching that has rules, or codes of conduct for engaging in teaching practice. This same culture of teaching exists within a larger culture of schooling that also has values and norms for behaviors, that over time have become institutionalized. Teacher educators are faced with the challenging task of preparing preservice teachers to resolve dilemmas that arise from conflicts between the pressure to adopt traditional teaching practices of schooling, or to adopt inquiry-based teaching practices from their university methods classes. One task for researchers in teacher education is to define with greater precision what factors within the culture of schooling hinder or facilitate implementation of inquiry-based methods of science teaching in schools. That task is the focus of this study. A qualitative study was undertaken using a naturalistic research paradigm introduced by Lincoln and Guba in 1985. Participant observation, interviews, discourse analysis of videotapes of lessons from the methods classroom and written artifacts produced by prospective teachers during the semester formed the basis of a grounded theory based on inductive analysis and emergent design. Unstructured interviews were used to negotiate outcomes with participants. Brief case reports of key participants were also written. This study identified three factors that facilitated or hindered the prospective teachers in this research success in implementing inquiry-based science teaching in their field placement classrooms: (a) the culture of teaching/teacher role-socialization, (b) the culture of schooling and its resistance to change, and (c) the culture of teacher education, especially in regards to grades and academic standing. Some recommendations for overcoming these persistent obstacles to best practice in elementary science teaching include: (a) preparing prospective teachers to understand and cope with change

  6. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  7. Strategies for improving participation in diabetes education. A qualitative study.

    Directory of Open Access Journals (Sweden)

    Ingmar Schäfer

    Full Text Available OBJECTIVE: Diabetes mellitus is highly prevalent and can lead to serious complications and mortality. Patient education can help to avoid negative outcomes, but up to half of the patients do not participate. The aim of this study was to analyze patients' attitudes towards diabetes education in order to identify barriers to participation and develop strategies for better patient education. METHODS: We conducted a qualitative study. Seven GP practices were purposively selected based on socio-demographic data of city districts in Hamburg, Germany. Study participants were selected by their GPs in order to increase participation. Semi-structured face-to-face interviews were conducted with 14 patients. Interviews were audiotaped and transcribed verbatim. The sample size was determined by data saturation. Data were analysed by qualitative content analysis. Categories were determined deductively and inductively. RESULTS: The interviews yielded four types of barriers: 1 Statements and behaviour of the attending physician influence the patients' decisions about diabetes education. 2 Both, a good state of health related to diabetes and physical/psychosocial comorbidity can be reasons for non-participation. 3 Manifold motivational factors were discussed. They ranged from giving low priority to diabetes to avoidance of implications of diabetes education as being confronted with illness narratives of others. 4 Barriers also include aspects of the patients' knowledge and activity. CONCLUSIONS: First, physicians should encourage patients to participate in diabetes education and argue that they can profit even if actual treatment and examination results are promising. Second, patients with other priorities, psychic comorbidity or functional limitations might profit more from continuous individualized education adapted to their specific situation instead of group education. Third, it might be justified that patients do not participate in diabetes education if

  8. Strategies for improving participation in diabetes education. A qualitative study.

    Science.gov (United States)

    Schäfer, Ingmar; Pawels, Marc; Küver, Claudia; Pohontsch, Nadine Janis; Scherer, Martin; van den Bussche, Hendrik; Kaduszkiewicz, Hanna

    2014-01-01

    Diabetes mellitus is highly prevalent and can lead to serious complications and mortality. Patient education can help to avoid negative outcomes, but up to half of the patients do not participate. The aim of this study was to analyze patients' attitudes towards diabetes education in order to identify barriers to participation and develop strategies for better patient education. We conducted a qualitative study. Seven GP practices were purposively selected based on socio-demographic data of city districts in Hamburg, Germany. Study participants were selected by their GPs in order to increase participation. Semi-structured face-to-face interviews were conducted with 14 patients. Interviews were audiotaped and transcribed verbatim. The sample size was determined by data saturation. Data were analysed by qualitative content analysis. Categories were determined deductively and inductively. The interviews yielded four types of barriers: 1) Statements and behaviour of the attending physician influence the patients' decisions about diabetes education. 2) Both, a good state of health related to diabetes and physical/psychosocial comorbidity can be reasons for non-participation. 3) Manifold motivational factors were discussed. They ranged from giving low priority to diabetes to avoidance of implications of diabetes education as being confronted with illness narratives of others. 4) Barriers also include aspects of the patients' knowledge and activity. First, physicians should encourage patients to participate in diabetes education and argue that they can profit even if actual treatment and examination results are promising. Second, patients with other priorities, psychic comorbidity or functional limitations might profit more from continuous individualized education adapted to their specific situation instead of group education. Third, it might be justified that patients do not participate in diabetes education if they have slightly increased blood sugar values only and no

  9. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  10. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  11. Mental health consumer participation in education: a structured literature review.

    Science.gov (United States)

    Arblaster, Karen; Mackenzie, Lynette; Willis, Karen

    2015-10-01

    Consumer participation in design, delivery and evaluation of occupational therapy educational programs is a recently introduced requirement for accreditation. It aligns with the principle of recovery, which underpins Australian mental health policy. Graduates' capabilities for recovery-oriented practice are thought to be enhanced through learning from consumers' lived experience. This structured literature review evaluates the current evidence for mental health consumer participation in health professional education to inform occupational therapy educators. Searches were completed in five online databases, one journal and published reading lists on the topic. Studies were included if they addressed mental health consumer participation in health professional education programs, were published in peer reviewed journals between 2000 and 2014 and were in English. Articles were critically reviewed, and analysed for key findings related to stages of the educational process and recovery-oriented practice capabilities. An emerging body of evidence for consumer participation in mental health education was identified. Studies are characterised by a lack of quality and a low to medium level of evidence. Findings relate to design, planning, delivery and evaluation of education as well as to most aspects of recovery-oriented practice. Emphases on exploratory research and proximal outcomes, and a reliance on published outcome measurement instruments designed for other purposes are key limitations in this body of evidence. This study identifies a weak evidence base for the requirement for consumer participation in occupational therapy programs, specifically related to mental health curricula. A research agenda is proposed in response. © 2015 Occupational Therapy Australia.

  12. An Earthquake Education Program with Parent Participation for Preschool Children

    Science.gov (United States)

    Gulay, Hulya

    2010-01-01

    The purpose of this study was to determine the effects of the earthquake education program which was prepared for 5 to 6 year old children and to draw attention to the importance of parent participation. The earthquake education program was applied to 93 children and 31 parents in the province of Denizli situated in the first degree seismic zone…

  13. Potential Factors Influencing Indigenous Education Participation and Achievement. Research Report

    Science.gov (United States)

    Biddle, Nicholas; Cameron, Timothy

    2012-01-01

    This report examines two sets of issues, the first being whether Indigenous Australians obtain a lower return on investment in education and training than other Australians. If they do, then this would partly explain why, in general, Indigenous participation in education and training is relatively low. The second issue is whether Indigenous…

  14. Civil Society Participation in the Governance of Educational Systems ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Donor organizations increasingly support the idea that civil society organizations should be involved in the process of national education reform. Yet despite this widespread endorsement, little is known about the quality and effectiveness of civil society participation in education reform. This project will explore the role of civil ...

  15. User Participation and Participatory Design: Topics in Computing Education.

    Science.gov (United States)

    Kautz, Karlheinz

    1996-01-01

    Discusses user participation and participatory design in the context of formal education for computing professionals. Topics include the current curriculum debate; mathematical- and engineering-based education; traditional system-development training; and an example of a course program that includes computers and society, and prototyping. (53…

  16. Participating in the UN Decade of Education for Sustainability ...

    African Journals Online (AJOL)

    This paper documents the outcomes of the consultation process on participating in the UNDESD which was led by the SADC Regional Environmental Education Programme in 2005/2006, assisted by the Rhodes University Environmental Education and Sustainability Unit and Environment Africa. The goals of the ...

  17. The Sports Participation Effect on Educational Attainment of Black Males

    Science.gov (United States)

    Harris, Paul C.

    2014-01-01

    The purpose of this study is to explore the direct, indirect, and total effects of high school sports participation on educational attainment for Black males using the Educational Longitudinal Study (2002/2006), a large, nationally representative, database. A path analysis procedure for determining underlying causal relationships between variables…

  18. Increasing Participation of Rural and Regional Students in Higher Education

    Science.gov (United States)

    Fleming, Michele J.; Grace, Diana M.

    2014-01-01

    Regional and rural students in Australia face unique challenges when aspiring to higher education. These challenges reflect systematic disadvantage experienced by rural and regional populations as a whole. In an effort to redress these inequities, and aided by the Australian Government's Higher Education Participation and Partnerships Program…

  19. Ludic prospects for science education in education home fundamental

    Directory of Open Access Journals (Sweden)

    Aline Juliana Oja-Persicheto

    2017-12-01

    Full Text Available The research scenario on science teaching in early education indicates emerging issues on the pedagogical practices developed educational level. Furthermore, although the importance of teaching science since the beginning of basic education, there is still residual and limited space of this discipline in the early years of schooling to be recognized. Allied to this complex picture, school practices has performed largely with emphasis on lectures, with reduced participation of students in their learning process. So, some investigations have been developed with the intention to subsidize the construction of pedagogical practices based on specific childhood learning of scientific concepts. Thus, the present study, theoretical in nature, aimed at discussing the main strengths of playful perspective to the work of the multidisciplinary teacher, with possible situations to be held in the school context and to contribute to children's learning in an atmosphere that encourages increasingly interest and curiosity. The literature review indicated several alternatives, and, for this text, were selected: the didactic games, the works of children's literature and theater. The analysis of the use of these resources has concluded that the ludic perspective, when planned and developed in a wise manner, may represent a key element of the teaching process that favors learning qualitatively students.

  20. Educating for Participation: Democratic Life and Performative Learning

    Science.gov (United States)

    Radaelli, Eleonora

    2015-01-01

    A democratic life is a form of associated living that requires people to participate in a pluralistic dialogue in different spheres of the civic society: government, community, and work. Higher education classes have a leading role in preparing students for participation in a democratic society; however, more could be done, in particular focusing…

  1. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  2. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  3. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.

    2015-01-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  4. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Farrell, W. M.

    2015-12-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  5. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  6. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  7. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  10. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  11. Improving science education for sustainable development

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    In recent issues of noteworthy journals, natural scientists have argued for the improvement of science education [1–4]. Such pleas reflect the growing awareness that high-quality science education is required not only for sustaining a lively scientific community that is able to address global

  12. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  13. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  15. Isotype Visualizations. A Chance for Participation & Civic Education

    Directory of Open Access Journals (Sweden)

    Eva Mayr

    2014-12-01

    Full Text Available In the 1920s, Otto Neurath proposed a method for pictorial statistics called “Isotype”. The Isotype pictorial statistics were intended to educate the broad public and enable them to participate in society. This method is reviewed with respect to its relevance and potential for information visualization nowadays. Though some aspects are outdated, the basic approach has still potential for information visualization and civic education. Possible new media applications are presented and their impact for civic education and participation is discussed.

  16. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  17. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  18. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  19. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  20. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 7. July 2013, pages 593-688. pp 593-594 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 595-595 Science Smiles. Science Smiles · Ayan Guha.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 6. June 2013, pages 495-594. pp 495-496 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 497-497 Science Smiles. Science Smiles · Ayan Guha.

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 9. September 2015, pages 757-864. pp 757-758 Editorial. Editorial · Amit Roy · More Details Fulltext PDF. pp 759-759 Science Smiles. Science Smiles · Ayan Guha.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 6. June 2012, pages 527-622. pp 527-528 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 529-529 Science Smiles. Science Smiles · Ayan Guha.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  6. The pedagogy of argumentation in science education: science teachers' instructional practices

    Science.gov (United States)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  7. Science in the Maori-Medium Curriculum: Assessment of Policy Outcomes in Putaiao Education

    Science.gov (United States)

    Stewart, Georgina

    2011-01-01

    This second research paper on science education in Maori-medium school contexts complements an earlier article published in this journal (Stewart, 2005). Science and science education are related domains in society and in state schooling in which there have always been particularly large discrepancies in participation and achievement by Maori. In…

  8. Social Relations of Science and Technology: perceptions of teachers of technical training, PARFOR course participants

    Directory of Open Access Journals (Sweden)

    Manuella Candéo

    2014-12-01

    Full Text Available We present in this paper a study on the perceptions of teachers of technical training, course participants (PARFOR National Plan for Training Teachers of Basic Education , offered by the Federal Technological University of Paraná, Campus Ponta Grossa (PG - UTFPR on the social relations of science and technology. The study conducted with 15 teachers from various disciplines. The methodological approach was quantitative research , the instrument of data collection was based questionnaire with open questions . The main results show that the vast majority of teachers had a very narrow view about science and technology , consider that the scientific and technological development always bring benefits to its own population of traditional / classic , positivist view. The need to promote reflection on social issues of science and technology in education technology in order to train professionals aware of their responsibilities as citizens in a highly technological age was observed. It is emphasized that these are recorded in the master's thesis entitled Scientific and Technological Literacy (ACT by Focus Science, Technology and Society (STS from commercial films of the University Program Graduate School of Science and Technology Tecnológica Federal do Paraná ( UTFPR Campus Ponta Grossa, Brazil.

  9. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The protagonic participation of the students since the educational comunication

    Directory of Open Access Journals (Sweden)

    Yoselin Guerrero-Aragón

    2018-03-01

    Full Text Available The pedagogical group of the first year of the pedagogical careers has verified how the teacher of Integral Practice of the Spanish Language from the class of its subject, the educational communication allows to form positive motivations towards the learning and to create the conditions psycho-pedagogical for the collective search and the joint reflections. An educational strategy is proposed to achieve protagonist participation of the students from the Integral Practice classes of the Spanish Language at the University of Sancti Spiritus Jose Marti Perez. They were applied theoretical and empirical as: inductive-deductive, analytical-synthetic and the pedagogic observation. Across participative activities in the process of education - learning in the analysis of texts has been achieved to develop the educational labor and to educate values in the students.

  11. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  12. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  13. Science, technology, engineering, and mathematics (STEM) participation among college students with an autism spectrum disorder.

    Science.gov (United States)

    Wei, Xin; Yu, Jennifer W; Shattuck, Paul; McCracken, Mary; Blackorby, Jose

    2013-07-01

    Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed.

  14. Developing a user-friendly photometric software for exoplanets to increase participation in Citizen Science

    Science.gov (United States)

    Kokori, A.; Tsiaras, A.

    2017-09-01

    Previous research on Citizen Science projects agree that Citizen Science (CS) would serve as a way of both increasing levels of public understanding of science and public participation in scientific research. Historically, the concept of CS is not new, it dates back to the 20th century when citizens where making skilled observations, particularly in archaeology, ecology, and astronomy. Recently, the idea of CS has been improved due to technological progress and the arrival of Internet. The phrase "astronomy from the chair" that is being used in the literature highlights the extent of the convenience for analysing observational data. Citizen science benefits a variety of communities, such as scientific researchers, volunteers and STEM educators. Participating in CS projects is not only engaging the volunteers with the research goals of a science team, but is also helping them learning more about specialised scientific topics. In the case of astronomy, typical examples of CS projects are gathering observational data or/and analysing them. The Holomon Photometric Software (HOPS) is a user-friendly photometric software for exoplanets, with graphical representations, statistics, models, options are brought together into a single package. It was originally developed to analyse observations of transiting exoplanets obtained from the Holomon Astronomical Station of the Aristotle University of Thessaloniki. Here, we make the case that this software can be used as part of a CS project in analysing transiting exoplanets and producing light-curves. HOPS could contribute to the scientific data analysis but it could be used also as an educational tool for learning and visualizing photometry analyses of transiting exoplanets. Such a tool could be proven very efficient in the context of public participation in the research. In recent successful representative examples such as Galaxy Zoo professional astronomers cooperating with CS discovered a group of rare galaxies by using

  15. Parent Participation in Early Childhood Education in Madagascar

    African Journals Online (AJOL)

    chifaou.amzat

    2012-12-17

    Dec 17, 2012 ... Key Words: Early childhood education; school-parents relations; parent ... Council for the Development of Social Science Research in Africa, 2012 .... employed in positions with higher pay and power than those who do not ..... on Cognitive Development among East-African Pre-School Children A Flexibly.

  16. HTA educational outreach program and change the equation participation

    Science.gov (United States)

    Gordon, Robert

    2013-05-01

    In this presentation, Hitachi High Technologies America (HTA) introduces its Educational Outreach Program and explains it's involvement with Change The Equation (CTEq), a nonprofit, nonpartisan, CEO-led initiative that is mobilizing the business community to improve the quality of science, technology, engineering and mathematics (STEM) learning in the United States.

  17. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  18. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  19. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    Science.gov (United States)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  20. Educational worth of physical education and sport participation: a ...

    African Journals Online (AJOL)

    Bailey alleged that the benefits of PESS has been made in such assertive tones that a bystander might think that nothing more can be said. Bailey and Hardman believe that it has not been proven scientifically that PESS contributes to the holistic development of the child. The present article attested the educational worth of ...

  1. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  2. Participation in a Multi-Institutional Curriculum Development Project Changed Science Faculty Knowledge and Beliefs about Teaching Science

    Science.gov (United States)

    Donovan, Deborah A.; Borda, Emily J.; Hanley, Daniel M.; Landel, Carolyn C.

    2015-01-01

    Despite significant pressure to reform science teaching and learning in K12 schools, and a concurrent call to reform undergraduate courses, higher education science content courses have remained relatively static. Higher education science faculty have few opportunities to explore research on how people learn, examine state or national science…

  3. The Revolution in Earth and Space Science Education.

    Science.gov (United States)

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  4. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  5. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  6. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  7. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  8. An Examination of Black Science Teacher Educators' Experiences with Multicultural Education, Equity, and Social Justice

    Science.gov (United States)

    Atwater, Mary M.; Butler, Malcolm B.; Freeman, Tonjua B.; Carlton Parsons, Eileen R.

    2013-12-01

    Diversity, multicultural education, equity, and social justice are dominant themes in cultural studies (Hall in Cultural dialogues in cultural studies. Routledge, New York, pp 261-274, 1996; Wallace 1994). Zeichner (Studying teacher education: The report of the AERA panel on research and teacher education. Lawrence Erlbaum Associates, Mahwah, pp 737-759, 2005) called for research studies of teacher educators because little research exists on teacher educators since the late 1980s. Thomson et al. (2001) identified essential elements needed in order for critical multiculturalism to be infused in teacher education programs. However, little is known about the commitment and experiences of science teacher educators infusing multicultural education, equity, and social justice into science teacher education programs. This paper examines twenty (20) Black science teacher educators' teaching experiences as a result of their Blackness and the inclusion of multicultural education, equity, and social justice in their teaching. This qualitative case study of 20 Black science teacher educators found that some of them have attempted and stopped due to student evaluations and the need to gain promotion and tenure. Other participants were able to integrate diversity, multicultural education, equity and social justice in their courses because their colleagues were supportive. Still others continue to struggle with this infusion without the support of their colleagues, and others have stopped The investigators suggest that if science teacher educators are going to prepare science teachers for the twenty first century, then teacher candidates must be challenged to grapple with racial, ethnic, cultural, instructional, and curricular issues and what that must mean to teach science to US students in rural, urban, and suburban school contexts.

  9. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  10. Indigenous Participation in Intercultural Education: Learning from Mexico and Tanzania

    Directory of Open Access Journals (Sweden)

    Gemma Burford

    2012-12-01

    Full Text Available Intercultural education seeks to create a forum for integrating Western scientific knowledge and indigenous knowledge to address local and global challenges such as biocultural diversity conservation, natural resource management, and social justice for indigenous peoples. Intercultural education is based on learning together with, rather than learning about or from, indigenous communities. In the best examples, problem-based learning dissolves the dichotomy between indigenous and nonindigenous, resulting in full partnerships in which participants share expertise to meet mutual needs. With reference to literature and two illustrative examples of intercultural education initiatives in Mexico and Tanzania, we present an original conceptual framework for assessing indigenous participation in intercultural education. This incorporates a new ladder of participation depth (in relation to both curriculum content and decision making alongside separate considerations of breadth, i.e., stakeholder diversity, and scope, i.e., the number of key project stages in which certain stakeholder groups are participating. The framework can be used to compare intercultural education initiatives in differing contexts and might be adaptable to other intercultural work.

  11. An Ecology of Science Education.

    Science.gov (United States)

    Aubusson, Peter

    2002-01-01

    Reports on a 15-month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. Uses a method of analysis in which the school science system is mapped against an ecosystem. (Author/MM)

  12. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  13. Mt. Kilimanjaro expedition in earth science education

    Science.gov (United States)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  14. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  15. Full-participation of students with physical disabilities in science and engineering laboratories.

    Science.gov (United States)

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  16. Motivations of participants in the citizen science of microbiomics: data from the British Gut Project.

    Science.gov (United States)

    Del Savio, Lorenzo; Prainsack, Barbara; Buyx, Alena

    2017-08-01

    The establishment of databases for research in human microbiomics is dependent on the recruitment of sufficient numbers and diversity of participants. Factors that support or impede participant recruitment in studies of this type have not yet been studied. We report the results of a survey aimed at establishing the motivations of participants in the British Gut Project, a research project that relies on volunteers to provide samples and to help fund the project. The two most frequently reported motivations for participation were altruism and solidarity. Low education levels appeared to be a recruitment obstacle. More than half of our 151 respondents said they would participate in further citizen-science projects; 38% said they would not participate in a similar project if it was for-profit or in a project that did not release data sets in repositories accessible to scientists (30%). The desire to take part in research was reported as a key motivation for participation in the British Gut Project (BGP). Such prosocial motivations can be mobilized for the establishment of large data sets for research.Genet Med advance online publication 26 January 2017.

  17. Assessing the impact participation in science journalism activities has on scientific literacy among high school students

    Science.gov (United States)

    Farrar, Cathy

    As part of the National Science Foundation Science Literacy through Science Journalism (SciJourn) research and development initiative (http://www.scijourn.org ; Polman, Saul, Newman, and Farrar, 2008) a quasi-experimental design was used to investigate what impact incorporating science journalism activities had on students' scientific literacy. Over the course of a school year students participated in a variety of activities culminating in the production of science news articles for Scijourner, a regional print and online high school science news magazine. Participating teachers and SciJourn team members collaboratively developed activities focused on five aspects of scientific literacy: placing information into context, recognizing relevance, evaluating factual accuracy, use of multiple credible sources and information seeking processes. This study details the development process for the Scientific Literacy Assessment (SLA) including validity and reliability studies, evaluates student scientific literacy using the SLA, examines student SLA responses to provide a description of high school students' scientific literacy, and outlines implications of the findings in relation to the National Research Council's A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012) and classroom science teaching practices. Scientifically literate adults acting as experts in the assessment development phase informed the creation of a scoring guide that was used to analyze student responses. Experts tended to draw on both their understanding of science concepts and life experiences to formulate answers; paying close attention to scientific factual inaccuracies, sources of information, how new information fit into their view of science and society as well as targeted strategies for information seeking. Novices (i.e., students), in contrast, tended to ignore factual inaccuracies, showed little understanding about source credibility and suggested

  18. Advancing Pre-college Science and Mathematics Education

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rick [General Atomics, San Diego, CA (United States)

    2015-05-06

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter, the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.

  19. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    Science.gov (United States)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  20. Creating a Dialogic Environment for Transformative Science Teaching Practices: Towards an Inclusive Education for Science

    Science.gov (United States)

    Reynaga-Peña, Cristina G.; Sandoval-Ríos, Marisol; Torres-Frías, José; López-Suero, Carolina; Lozano Garza, Adrián; Dessens Félix, Maribel; González Maitland, Marcelino; Ibanez, Jorge G.

    2018-01-01

    This paper focuses on the design and application of a teacher training strategy to promote the inclusive education of students with disabilities in the science classroom, through the creation of adult learning environments grounded on the principles of dialogic learning. Participants of the workshop proposal consisted of a group of twelve teachers…

  1. Understanding the situated conditions for participation in lifelong formal education

    DEFF Research Database (Denmark)

    Kondrup, Sissel

    and participation and the relation among these. I argue for the necessity of analyzing motivation as historical and social phenomena and hereby increase the awareness of the specific subjective, historical and social conditions for motivation and participation. By outlining and analyzing the work life story...... of Martin I discuss the fruitfulness of employing a concept of experience, informed by critical theory, in order to understand the ‘potential participant’ as a specific social and historical subject with certain conditions for perceiving needs and opportunities for participation in formal education...

  2. Perceptions Concerning Intergenerational Education from the Perspective of Participants

    Science.gov (United States)

    Castro, Juan Lirio; González, David Alonso; Aguayo, Immaculada Herranz; Fernández, Enrique Arias

    2014-01-01

    This article presents an evaluation of an intergenerational education experience at the University of Castilla-La Mancha (Spain). For this evaluation, following a review of the literature regarding the state of the issue, we undertake an analysis of benefits and disadvantages from the perspective of the participants. Among the benefits we find…

  3. Widening Participation in Medical Education: Challenging Elitism and Exclusion

    Science.gov (United States)

    Boursicot, Kathy; Roberts, Trudie

    2009-01-01

    In this paper, we examine issues relating to the enduring nature of elitism and exclusion in medical education by exploring the changes in social and policy influences on the admission and inclusion of women and disabled people to undergraduate medical courses and the medical profession. The widening participation imperative in the United Kingdom…

  4. PARTICIPATION OF ADULTS IN EDUCATION, A FORCE-FIELD ANALYSIS.

    Science.gov (United States)

    MILLER, HARRY L.

    VARIOUS SOCIOLOGICAL AND PSYCHOLOGICAL THEORIES RELATING TO MOTIVATION ARE POTENTIALLY USEFUL TOOLS FOR PREDICTING AND INFLUENCING ADULT EDUCATION PARTICIPATION. MASLOW'S NEED HIERARCHY IS BASED ON FUNDAMENTAL NEEDS (SURVIVAL, SAFETY, AND BELONGING), WHICH ARE NORMALLY FOLLOWED BY EGO NEEDS (RECOGNITION OR STATUS, ACHIEVEMENT, AND…

  5. Methods to study mindful awareness and participation in education

    DEFF Research Database (Denmark)

    Nielsen, Anne Maj; Svinth, Lone; Petersen, Freja Filine

    For more than a decade, a variety of techniques have been introduced in Danish educational settings to bring mindful awareness into teachers’ and students’ lives in order to increase the mental, emotional and social health of the participants. In this workshop we present five studies that address...

  6. Reeking Hypocrisy? New Labour and Widening Participation in Higher Education

    Science.gov (United States)

    Brown, Roger

    2007-01-01

    Future historians may well find as much continuity as change in government policies towards higher education between the mid-1980s and the mid-2000s. One exception, however, is likely to be widening participation (WP), which only appeared on the policy agenda after 1997. Moreover, this commitment has been sustained. In this brief survey, the…

  7. Students' Autobiographical Memory of Participation in Multiple Sport Education Seasons

    Science.gov (United States)

    Sinelnikov, Oleg A.; Hastie, Peter A.

    2010-01-01

    This study examines the recollections of the Sport Education experiences of a cohort of students (15 boys and 19 girls) who had participated in seasons of basketball, soccer and badminton across grades six through eight (average age at data collection = 15.6 years). Using autobiographic memory theory techniques, the students completed surveys and…

  8. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  9. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  10. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Issue front ... Metabolic Engineering: Biological Art of Producing Useful Chemicals · Ram Kulkarni ... General Article. Is Calculus a Failure in Cryptography?

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  13. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  14. Management Strategies in Basic Education and Participation of Parents

    Directory of Open Access Journals (Sweden)

    Johel Furguerle-Rangel

    2016-05-01

    Full Text Available In the educational process it is necessary to use management paradigms and active participation of parents. The objective was to determine the use of management strategies by the director of basic education and participation of parents in the educational process. It is a descriptive, transversal and field study, whose instrument was a questionnaire of 26 closed-questions.   The sample comprised 16 directors, 52 teachers and 62 parents. For most managers and faculty the technique of brainstorming, involvement in decision-making, continues knowledge management and radical change are crucial in the educational process of children.   But mothers and fathers believe that managerial groups do not use strategies properly except for reengineering.   The mother and fathers are mainly involved in education management but not in the learning process. It is recommended the deepening of policy management training teaching force, through continuous training provided by the government and the promotion of family participation in the teaching-learning process of children.

  15. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    Science.gov (United States)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling

  16. Innovations in Undergraduate Science Education: Going Viral

    OpenAIRE

    Hatfull, Graham F.

    2015-01-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-yea...

  17. TIARA Education and training in accelerators science

    International Nuclear Information System (INIS)

    Falcon, S.; Marco, M.

    2012-01-01

    CIEMAT is participating in the European project, TIARA (Test Infrastructure and Accelerator Research Area), whose main objective is to facilitate and optimize the effort in R + D in the field of science and technology of the accelerators in Europe.

  18. Exploring the Dialogic Space of Public Participation in Science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  19. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  20. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  1. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  2. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 11. November 2016, pages 965-1062. pp 965-966 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 967-967 Science Smiles ... pp 971-983 General Article.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Issue front cover thumbnail Issue ... pp 985-1006 General Article. The Ziegler Catalysts: Serendipity or .... Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018 · More Details Abstract Fulltext PDF.

  5. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  6. Informal science participation positively affects the communication and pedagogical skills of university physics students

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah

    2013-04-01

    Many undergraduate and graduate physics students choose to participate in an informal science program at the University of Colorado Boulder (Partnerships for Informal Science Education in the Community (PISEC)). They coach elementary and middle school students in inquiry-based physics activities during weekly, afterschool sessions. Observations from the afterschool sessions, field notes from the students, and pre/post surveys are collected. University students are also pre/post- videotaped explaining a textbook passage on a physics concept to an imagined audience for the Communications in Everyday Language assessment (CELA). We present findings from these data that indicate informal experiences improve the communication and pedagogical skills of the university student as well as positively influence their self-efficacy as scientific communicators and teachers.

  7. Is Museum Education "Rocket Science"?

    Science.gov (United States)

    Dragotto, Erin; Minerva, Christine; Nichols, Michelle

    2006-01-01

    The field of museum education has advanced and adapted over the years to meet the changing needs of audiences as determined by new research, national policy, and international events. Educators from Chicago's Adler Planetarium & Astronomy Museum provide insight into a (somewhat) typical museum education department, especially geared for readers…

  8. African Indigenous science in higher education in Uganda

    Science.gov (United States)

    Akena Adyanga, Francis

    This study examines African Indigenous Science (AIS) in higher education in Uganda. To achieve this, I use anticolonial theory and Indigenous knowledge discursive frameworks to situate the subjugation of Indigenous science from the education system within a colonial historical context. These theories allow for a critical examination of the intersection of power relations rooted in the politics of knowledge production, validation, and dissemination, and how this process has become a systemic and complex method of subjugating one knowledge system over the other. I also employ qualitative and autoethnographic research methodologies. Using a qualitative research method, I interviewed 10 students and 10 professors from two universities in Uganda. My research was guided by the following key questions: What is African Indigenous Science? What methodology would help us to indigenize science education in Uganda? How can we work with Indigenous knowledge and anticolonial theoretical discursive frameworks to understand and challenge the dominance of Eurocentric knowledge in mainstream education? My research findings revealed that AIS can be defined in multiple ways, in other words, there is no universal definition of AIS. However, there were some common elements that my participants talked about such as: (a) knowledge by Indigenous communities developed over a long period of time through a trial and error approach to respond to the social, economic and political challenges of their society. The science practices are generational and synergistic with other disciplines such as history, spirituality, sociology, anthropology, geography, and trade among others, (b) a cumulative practice of the use, interactions with and of biotic and abiotic organism in everyday life for the continued existence of a community in its' totality. The research findings also indicate that Indigenous science is largely lacking from Uganda's education curriculum because of the influence of colonial and

  9. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  10. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-01-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and…

  11. Barriers towards participation in adult education and training

    DEFF Research Database (Denmark)

    Larson, Anne; Milana, Marcella

    topics were asked what would be the most likely obstacles if they wanted to take part in education and training. The distribution of the different categories of barriers among different socio-economic groups is afterwards tested by use of logistic regression using Odds Ratios. As a result...... of the exploratory factor analysis, five categories of barriers towards participation in adult education and training is developed: Lack of time and energy; negative towards re-entering education; accessibility of learning activities; lack of support; and lack of confidence in own abilities. The factors have been......Based on exploratory factor analysis of data from a special Eurobarometer-survey dedicated to lifelong learning, different categories of reasons for not taking part in adult education and training is developed. 18.000 people living in the 15 old EU member countries in the survey were among other...

  12. The Community Seismic Network: Enabling Observations Through Citizen Science Participation

    Science.gov (United States)

    Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.

    2017-12-01

    The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently

  13. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  14. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  15. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  16. Participation in an experiential education professional development course: An analysis of the teacher experience

    Science.gov (United States)

    McNamee, Dana Crosby

    Experiential education opportunities are recommended in science classrooms but due to budget and time constraints (Cowart, 2010; Dallimore, et al., 2010; Johnson, 2007) schools often resort to simple science inquiry (Chinn, 2002). While many programs exist with the intention of providing teachers with experiential education opportunities, often these are short-term day trips that do not provide the same learning benefits that an extended program would (Gulamhussein, 2013). To help address these issues in their own classrooms, middle and high school teachers from New England voluntarily chose to participate in an experiential education professional development course. This study examined how the individuals' teaching had or had not changed as a result of their participation in this course. The question that guided this research was: * How do teachers benefit, and how do teachers perceive their students benefit, after their participation in an experiential education professional development course? . Research focused on teachers from middle and high schools across New England who completed a three-day program. Their participation in the course was entirely voluntary. The course goal was to provide teachers with the skills to be able to understand and apply experiential education pedagogy and principles in their classrooms. This interpretative phenomenological analysis found that all participating teachers had made changes to their curriculum and teaching methodologies as a result of their participation in the professional development course. While the experiential learning model (Kolb, 1984) played a significant role how the professional development was implemented during the professional development course for teachers, only portions of the experiential learning model were present when teachers implemented those lessons into their own classes. Regardless, teachers found that students had been impacted through the engagement they felt and the connections they made to

  17. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  18. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    347 Impact of Theoretical Chemistry on Chemical and. Biological Sciences. Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. SERIES ARTICLES. 368 Ecology: From Individuals to Collectives. A Physicist's Perspective on Ecology. Vishwesha Guttal. 310. 368 ...

  19. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  20. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  1. Education and Political Participation of Women: The Case of Portugal

    OpenAIRE

    David, Fátima; Morais, Joana; Abreu, Rute; Marques, Lúcia; Segura, Liliane

    2016-01-01

    This research aims to analyses the women’s participation in Portugal politics in consequence of its educational attainment. On the one hand, the Constitution of the Portuguese Republic of April 2, 1976, gives women (and men) a right to equal opportunities for school success, to access to the higher education and to better working conditions. On the other hand, the same Constitution defends, in article 9, that fundamental task of the State is to promote equality between men and women and, in a...

  2. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  3. Science Education at Riverside Middle School A Case Study

    Science.gov (United States)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and

  4. The art and science of participative problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examinations planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  5. Municipal consultants’ participation in building networks to support science teachers’ work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2013-01-01

    This paper focuses particularly on the role of municipal science consultants in developing and maintaining network activities and connections among primary school science teachers. The hypothesis is that consultants play a crucial role in supporting strategic planning, and sustaining contacts...... and activities within professional learning networks. The research is framed by a project that involved 80 primary science teachers in 20 schools. The aim of the project was to develop network activities that facilitate sustainable change of the participating schools’ collective culture and practice of science...... science consultants’ participation in supporting network activities enable the participants to share and develop teaching activities....

  6. Cultural Memory Banking in Preservice Science Teacher Education

    Science.gov (United States)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  7. The Rural Girls in Science Project: from Pipelines to Affirming Science Education

    Science.gov (United States)

    Ginorio, Angela B.; Huston, Michelle; Frevert, Katie; Seibel, Jane Bierman

    The Rural Girls in Science (RGS) program was developed to foster the interest in science, engineering, and mathematics among rural high school girls in the state of Washington. Girls served include American Indians, Latinas, and Whites. This article provides an overview of the program and its outcomes not only for the participants (girls, teachers, counselors, and schools) but the researchers. Lessons learned from and about the participants are presented, and lessons learned from the process are discussed to illustrate how RGS moved from a focus on individuals to a focus on the school. The initial guiding concepts (self-esteem and scientific pipeline) were replaced by “possible selves” and our proposed complementary concepts: science-affirming and affirming science education.

  8. 75 FR 13265 - National Board for Education Sciences

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  9. 75 FR 53280 - National Board for Education Sciences

    Science.gov (United States)

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  10. Male Saudi Arabian freshman science majors at Jazan University: Their perceptions of parental educational practices on their science achievements

    Science.gov (United States)

    Alrehaly, Essa D.

    Examination of Saudi Arabian educational practices is scarce, but increasingly important, especially in light of the country's pace in worldwide mathematics and science rankings. The purpose of the study is to understand and evaluate parental influence on male children's science education achievements in Saudi Arabia. Parental level of education and participant's choice of science major were used to identify groups for the purpose of data analysis. Data were gathered using five independent variables concerning parental educational practices (attitude, involvement, autonomy support, structure and control) and the dependent variable of science scores in high school. The sample consisted of 338 participants and was arbitrarily drawn from the science-based colleges (medical, engineering, and natural science) at Jazan University in Saudi Arabia. The data were tested using Pearson's analysis, backward multiple regression, one way ANOVA and independent t-test. The findings of the study reveal significant correlations for all five of the variables. Multiple regressions revealed that all five of the parents' educational practices indicators combined together could explain 19% of the variance in science scores and parental attitude toward science and educational involvement combined accounted for more than 18% of the variance. Analysis indicates that no significant difference is attributable to parental involvement and educational level. This finding is important because it indicates that, in Saudi Arabia, results are not consistent with research in Western or other Asian contexts.

  11. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  12. Toward inclusive science education: University scientists' views of students,instructional practices, and the nature of science

    Science.gov (United States)

    Bianchini, Julie A.; Whitney, David J.; Breton, Therese D.; Hilton-Brown, Bryan A.

    2002-01-01

    This study examined the perceptions and self-reported practices of 18 scientists participating in a yearlong seminar series designed to explore issues of gender and ethnicity in science. Scientists and seminar were part of the Promoting Women and Scientific Literacy project, a curriculum transformation and professional development initiative undertaken by science, science education, and women's studies faculty at their university. Researchers treated participating scientists as critical friends able to bring clarity to and raise questions about conceptions of inclusion in science education. Through questionnaires and semistructured interviews, we explored their (a) rationales for differential student success in undergraduate science education; (b) self-reports of ways they structure, teach, and assess courses to promote inclusion; and (c) views of androcentric and ethnocentric bias in science. Statistical analysis of questionnaires yielded few differences in scientists' views and reported practices by sex or across time. Qualitative analysis of interviews offered insight into how scientists can help address the problem of women and ethnic minorities in science education; constraints encountered in attempts to implement pedagogical and curricular innovations; and areas of consensus and debate across scientists and science studies scholars' descriptions of science. From our findings, we provided recommendations for other professional developers working with scientists to promote excellence and equity in undergraduate science education.

  13. Science Education and Education for Citizenship and Sustainable Development

    Science.gov (United States)

    Johnston, Ronald

    2011-01-01

    In the United Kingdom (UK) and Europe, the need for education for sustainable development and global citizenship has recently been emphasised. This emphasis has arguably found its major home in the social studies in higher education. Concurrently, there has been a decline in interest in "the sciences" as evidenced by a reduction in the…

  14. Factors that motivate and deter rehabilitation educators from participating in distance education.

    Science.gov (United States)

    Edwards, Yolanda V

    2004-01-01

    The major purpose of the study was to conduct exploratory research on the motivational levels of rehabilitation educators whose programs have Comprehensive Service Personnel Development (CSPD; Department of Education grant) grants targeted toward distance education. Additionally, the study attempted to identify whether significant factors existed that would inhibit faculty participation in distance education. There were three research questions to examine: (a) Do distance educators and non-distance educators differ significantly in intrinsic motivational factors? (b) Do distance educators and non-distance educators differ significantly in extrinsic motivational factors? and (c) Do distance educators and non-distance educators differ significantly in inhibiting factors? The results showed that rehabilitation faculty with CSPD grants who are distance educators are more extrinsically motivated (such as increase in salary, monetary support for participation, job security, working conditions, technical support, and requirement by department) than non-distance educators. There were no significant differences in levels between distance educators and non-distance educators that are intrinsically motivated (scholarly pursuit, personal research tool, and job satisfaction). There was no significant difference between distance educators and non-distance educators in inhibiting factors.

  15. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  16. Higher education participation in the Nordic countries 1985-2010

    DEFF Research Database (Denmark)

    Thomsen, Jens Peter; Hedman, Juha; Helland, Håvard

    2016-01-01

    not seem to be a universal remedy for narrowing the social gap in HE participation in the Nordic countries. Examining upper tertiary education by field of study, we find great disparities in selectivity, but we also find that the vast majority of fields have moved towards more equalization. However...... having unique administrative data in all four countries. We ask (i) whether HE expansion in the Nordic countries has been followed by a similar closing of the social gap in HE participation, and (ii) whether privileged groups have been able to maintain their advantage in HE participation. The results did......, prestigious professional university programmes such as law and medicine continue to favour more socially privileged children, albeit the social gap is narrowed substantially in Finland and Norway. These two countries also display the most substantial decrease in overall HE inequality....

  17. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  18. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  19. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  20. Trained in Science-Base Field: Change of Specialization among Educated Women in Malaysia

    Science.gov (United States)

    Amin, Suhaida Mohd; Satar, Nurulhuda Mohd; Yap, Su Fei

    2015-01-01

    The theoretical model for economic development states that development in science and technology is the key to increased productivity. Upon realizing this, the Malaysian government has targeted 60 to 40 per cent of students for Science to Arts field at the tertiary level of education. However the rate of participation in science-based programs…

  1. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  2. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  3. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    232. Mahlburg's Work on Crank Functions. Ramanujan's Partitions Revisited. Nagesh Juluru and Arni S R Srinivasa Rao. REFLECTIONS. 268. The Scientific Enterprise. Science in the Modern Indian Context. V V Raman. R. R. R4. 2. 1. C r. L. R3+ rL. H. A. C. D. B. E. 244. 223. Transverse section of the ring porous wood ...

  4. Enhancing Science Education through Art

    Science.gov (United States)

    Merten, Susan

    2011-01-01

    Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…

  5. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  6. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  7. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Sketch made by Niels Bohr in 1944 to illustrate the content of his debate with Einstein on the uncertainty principle at the 6th Solvay Conference in 1930. Niels Bohr (1885–1962). Sketch by Homi Bhabha. (Courtesy: TIFR, Bombay). Front Cover. 871. Science Smiles. Ayan Guha. 876. Back Cover. 948. Classics. Biology and ...

  8. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    (Credit: M S Pavan, IISc). Adolf von Baeyer. (1835–1917). (Illustration: Subhankar Biswas). Front Cover. Science Smiles. Ayan Guha. 488. Back Cover. Inside Back Cover. Flowering Trees. Credit: R Arun Singh, IISc. 483. REFLECTIONS. 570 Ramanujan's Circle. Inspirors, Patrons and Mentors. Utpal Mukhopadhyay. 489.

  9. Primary Science Education in China

    Science.gov (United States)

    Pook, Gayle

    2013-01-01

    Consider the extent to which primary science teaching has evolved since it became a core subject in England with the introduction of the National Curriculum in 1988, and the pace at which theory-driven classroom practice has advanced. It is no wonder that, given the recent economic restructuring and boom in technological development in China,…

  10. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Refresher Course on Mountain Hydrology and. Climate Change. Science Academies' Seventy-Fifth Refresher Course in Experimental Physics. Information & Announcements. 106. 105. 108. Classics. Are we Utilizing our. Water Resources. Wisely? B P Radhakrishna. General Editorial on. Publication Ethics. 1. 93. 71.

  11. Scale of Academic Emotion in Science Education: Development and Validation

    Science.gov (United States)

    Chiang, Wen-Wei; Liu, Chia-Ju

    2014-04-01

    Contemporary research into science education has generally been conducted from the perspective of 'conceptual change' in learning. This study sought to extend previous work by recognizing that human rationality can be influenced by the emotions generated by the learning environment and specific actions related to learning. Methods used in educational psychology were adopted to investigate the emotional experience of science students as affected by gender, teaching methods, feedback, and learning tasks. A multidisciplinary research approach combining brain activation measurement with multivariate psychological data theory was employed in the development of a questionnaire intended to reveal the academic emotions of university students in three situations: attending science class, learning scientific subjects, and problem solving. The reliability and validity of the scale was evaluated using exploratory and confirmatory factor analyses. Results revealed differences between the genders in positive-activating and positive-deactivating academic emotions in all three situations; however, these differences manifested primarily during preparation for Science tests. In addition, the emotions experienced by male students were more intense than those of female students. Finally, the negative-deactivating emotions associated with participation in Science tests were more intense than those experienced by simply studying science. This study provides a valuable tool with which to evaluate the emotional response of students to a range of educational situations.

  12. Science vs. Sports: Motivation and Self-Concepts of Participants in Different School Competitions

    Science.gov (United States)

    Höffler, Tim Niclas; Bonin, Victoria; Parchmann, Ilka

    2017-01-01

    Competitions are discussed as a measure to foster students' interest, especially for highly gifted and talented students. In the current study, participants of a cognitive school competition in science were compared to non-participants of the same age group (14-15) who either did not participate in any competition or who participated in a…

  13. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  14. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  15. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    Science.gov (United States)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  16. Galaxy Zoo: An Experiment in Public Science Participation

    Science.gov (United States)

    Raddick, Jordan; Lintott, C. J.; Schawinski, K.; Thomas, D.; Nichol, R. C.; Andreescu, D.; Bamford, S.; Land, K. R.; Murray, P.; Slosar, A.; Szalay, A. S.; Vandenberg, J.; Galaxy Zoo Team

    2007-12-01

    An interesting question in modern astrophysics research is the relationship between a galaxy's morphology (appearance) and its formation and evolutionary history. Research into this question is complicated by the fact that to get a study sample, researchers must first assign a shape to a large number of galaxies. Classifying a galaxy by shape is nearly impossible for a computer, but easy for a human - however, looking at one million galaxies, one at a time, would take an enormous amount of time. To create such a research sample, we turned to citizen science. We created a web site called Galaxy Zoo (www.galaxyzoo.org) that invites the public to classify the galaxies. New members see a short tutorial and take a short skill test where they classify galaxies of known types. Once they pass the test, they begin to work with the entire sample. The site's interface shows the user an image of a single galaxy from the Sloan Digital Sky Survey. The user clicks a button to classify it. Each classification is stored in a database, associated with the galaxy that it describes. The site has become enormously popular with amateur astronomers, teachers, and others interested in astronomy. So far, more than 110,000 users have joined. We have started a forum where users share images of their favorite galaxies, ask science questions of each other and the "zookeepers," and share classification advice. In a separate poster, we will share science results from the site's first six months of operation. In this poster, we will describe the site as an experiment in public science outreach. We will share user feedback, discuss our plans to study the user community more systematically, and share advice on how to work with citizen science projects to the mutual benefit of both professional and citizen scientists.

  17. Work-Life Issues and Participation in Education and Training: Support Document

    Science.gov (United States)

    Skinner, Natalie

    2009-01-01

    This document serves as a support paper to the "Work-Life Issues and Participation in Education and Training" report. This support document contains tables that show: (1) participation in education and training; (2) participation in education and training and work-life interaction; (3) future participation in education or training; (4) perceptions…

  18. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  19. The Temporality of Participation in School Science: Coordination of Teacher Control and the Pace of Students' Participation

    Science.gov (United States)

    Rocksén, Miranda

    2017-01-01

    This study investigates classroom organisation and interaction focusing on phases of activity. The detailed in-depth case study is based on video recordings of 1 science unit consisting of 11 lessons about biological evolution in a Swedish ninth-grade class (aged 15). The study illuminates the temporality of student participation as a fundamental…

  20. A Cross-grade Comparison to Examine the Context Effect on the Relationships Among Family Resources, School Climate, Learning Participation, Science Attitude, and Science Achievement Based on TIMSS 2003 in Taiwan

    Science.gov (United States)

    Chen, Shin-Feng; Lin, Chien-Yu; Wang, Jing-Ru; Lin, Sheau-Wen; Kao, Huey-Lien

    2012-09-01

    This study aimed to examine whether the relationships among family resources, school climate, learning participation, science attitude, and science achievement are different between primary school students and junior high school students within one educational system. The subjects included 4,181 Grade 4 students and 5,074 Grade 8 students who participated in TIMSS 2003 in Taiwan. Using structural equation modeling, the results showed that family resources had significant positive effects for both groups of learners. Furthermore, a context effect for the structural relationship between school climate, learning participation, and science achievement was revealed. In the primary school context, Grade 4 students who perceived positive school climate participated in school activities more actively, and had better science performance. However, in the secondary school context, learning participation had a negative impact and led to lower science achievement. The implications about this result in relation to the characteristics of the two educational contexts in Taiwan were further discussed.

  1. Bridging the Gap: The Role of Research in Science Education

    Science.gov (United States)

    Adams, M. L.; Michael, P. J.

    2001-12-01

    Teaching in K-12 science classrooms across the country does not accurately model the real processes of science. To fill this gap, programs that integrate science education and research are imperative. Teachers Experiencing Antarctica and the Arctic (TEA) is a program sponsored and supported by many groups including NSF, the Division of Elementary, Secondary, and Informal Education (ESIE), and the American Museum of Natural History (AMNH). It places teachers in partnerships with research scientists conducting work in polar regions. TEA immerses K-12 teachers in the processes of scientific investigation and enables conveyance of the experience to the educational community and public at large. The TEA program paired me with Dr. Peter Michael from the University of Tulsa to participate in AMORE (Arctic Mid-Ocean Ridge Expedition) 2001. This international mission, combining the efforts of the USCGC Healy and RV Polarstern, involved cutting-edge research along the geologically and geophysically unsampled submarine Gakkel Ridge. While in the field, I was involved with dredge operations, CTD casts, rock cataloging/ processing, and bathymetric mapping. While immersed in these aspects of research, daily journals documented the scientific research and human aspects of life and work on board the Healy. E-mail capabilities allowed the exchange of hundreds of questions, answers and comments over the course of our expedition. The audience included students, numerous K-12 teachers, research scientists, NSF personnel, strangers, and the press. The expedition interested and impacted hundreds of individuals as it was proceeding. The knowledge gained by science educators through research expeditions promotes an understanding of what research science is all about. It gives teachers a framework on which to build strong, well-prepared students with a greater awareness of the role and relevance of scientific research. Opportunities such as this provide valauble partnerships that bridge

  2. Toward solidarity as the ground for changing science education

    Science.gov (United States)

    Roth, Wolff-Michael

    2007-10-01

    In science education, reform frequently is conceived and implemented in a top-down fashion, whether teachers are required to engage in change by their principals or superintendents (through high-stakes testing and accountability measures) or by researchers, who inform teachers about alternatives they ought to implement. In this position paper on science education policy, I draw on first philosophy to argue for a different approach to reform, one that involves all stakeholders—teachers, interns, school and university supervisors, and, above all, students—who participate in efforts to understand and change their everyday praxis of teaching and learning. Once all stakeholders experience control over the shaping and changing of classroom learning (i.e., experience agency), they may recognize that they really are in it together, that is, they experience a sense of solidarity. Drawing on ethnographic vignettes, science teaching examples, and philosophical concepts, I outline how more democratic approaches to reform can be enabled.

  3. Growing Plants and Scientists: Fostering Positive Attitudes toward Science among All Participants in an Afterschool Hydroponics Program

    Science.gov (United States)

    Patchen, Amie K.; Zhang, Lin; Barnett, Michael

    2017-06-01

    This study examines an out-of-school time program targeting elementary-aged youth from populations that are typically underrepresented in science fields (primarily African-American, Hispanic, and/or English Language Learner participants). The program aimed to foster positive attitudes toward science among youth by engaging them in growing plants hydroponically (in water without soil). Participants' attitudes toward science, including anxiety, desire, and self-concept, were examined through pre-post survey data ( n = 234) over the course of an afterschool program at three separate sites. Data showed that participants' anxiety decreased and desire increased for both male and female participants over the program. Self-concept increased for female participants at all three sites but did not change significantly for male participants. Participants' first language (English or Spanish) was not a factor in attitude outcomes. The primarily positive outcomes suggest that hydroponics can be a useful educational platform for engaging participants in garden-based programming year round, particularly for settings that do not have the physical space or climate to conduct outdoor gardening. Similarities in positive attitude outcomes at the three sites despite differences in format, implementation, and instructor background experience suggest that the program is resilient to variation in context. Understanding which aspects of the program facilitated positive outcomes in the varied contexts could be useful for the design of future programs.

  4. A socially inclusive approach to user participation in higher education.

    Science.gov (United States)

    Simons, Lucy; Tee, Steve; Lathlean, Judith; Burgess, Abigail; Herbert, Lesley; Gibson, Colin

    2007-05-01

    This paper is a report of a study to evaluate the development of an innovative Service User Academic post in mental health nursing in relation to student learning and good employment practice in terms of social inclusion. Institutions providing professional mental health education are usually expected to demonstrate user involvement in the design, delivery and evaluation of their educational programmes to ensure that user voices are central to the development of clinical practice. Involvement can take many forms but not everyone values user knowledge as equal to other sources of knowledge. This can lead to users feeling exploited, rather than fully integrated in healthcare professional education processes. Development of the post discussed in this paper was stimulated and informed by an innovative example from Australia. An observational case study of the development and practice of a Service User Academic post was undertaken in 2005. Participants were purposively sampled and included the User Academic, six members of a user and carer reference group, 10 educators and 35 students. Data were collected by group discussions and interviews. Data analysis was based on the framework approach. The evaluation revealed tangible benefits for the students and the wider academic community. Most important was the powerful role model the Service User Academic provided for students. The post proved an effective method to promote service user participation and began to integrate service user perspectives within the educational process. However, the attempts to achieve socially inclusive practices were inhibited by organizational factors. The expectations of the role and unintended discriminatory behaviours had an impact on achieving full integration of the role. Furthermore, shortcomings in the support arrangements were revealed. The search for an optimum model of involvement may prove elusive, but the need to research and debate different strategies, to avoid tokenism and

  5. Modification of Nursing Education for Upgrading Nurses’ Participation: A Thematic Analysis

    Science.gov (United States)

    Aarabi, Akram; Cheraghi, Mohammad Ali; Ghiyasvandian, Shahrzad

    2015-01-01

    Background: The product of the educational nursing programs in Iran is training nurses who less have professional apprehension and commitment for participating in professional decisions. Whereas nurses especially those in high academic levels are expected to more involve in professional issues. Objective: The aim of this study was to explore Iranian nurse leaders’ experiences of making educational nursing policy with emphasizes on enhancement of nurses’ participation in professional decisions. Methods: We used a qualitative design with thematic analysis approach for data gathering and data analysis. Using purposive sampling we selected 17 experienced nurses in education and making educational nursing policies. Data gathered by open deep semi-structured face to face interviews. We followed six steps of Braun and Clarke for data analysis. Results: In order to enhance nurses’ participation in professional decisions they need to be well educated and trained to participate in community and meet community needs. The three main themes that evolved from analysis included opportunities available for training undergraduate students, challenges for PhD nurses and general deficiencies in nursing education. The second theme includes three sub-themes; namely, the PhD curriculum, PhD nurses’ attitudes and PhD nurses’ performance. Conclusions: We need for revising and directing nursing education toward service learning, community based need programs such as diabetes and driving accidents and also totally application of present educational opportunities. The specialization of nursing and the establishment of specialized nursing associations, the emphasis on teaching the science of care and reinforcing the sense of appreciation of pioneers of nursing in Iran are among the directions offered in the present study PMID:25946943

  6. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  7. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  8. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  9. Benchmarking participation of Canadian university health sciences librarians in systematic reviews

    Science.gov (United States)

    Murphy, Susan A.; Boden, Catherine

    2015-01-01

    This study describes the current state of Canadian university health sciences librarians' knowledge about, training needs for, and barriers to participating in systematic reviews (SRs). A convenience sample of Canadian librarians was surveyed. Over half of the librarians who had participated in SRs acknowledged participating in a traditional librarian role (e.g., search strategy developer); less than half indicated participating in any one nontraditional librarian role (e.g., data extractor). Lack of time and insufficient training were the most frequently reported barriers to participating in SRs. The findings provide a benchmark for tracking changes in Canadian university health sciences librarians' participation in SRs. PMID:25918485

  10. Benchmarking participation of Canadian university health sciences librarians in systematic reviews.

    Science.gov (United States)

    Murphy, Susan A; Boden, Catherine

    2015-04-01

    This study describes the current state of Canadian university health sciences librarians' knowledge about, training needs for, and barriers to participating in systematic reviews (SRs). A convenience sample of Canadian librarians was surveyed. Over half of the librarians who had participated in SRs acknowledged participating in a traditional librarian role (e.g., search strategy developer); less than half indicated participating in any one nontraditional librarian role (e.g., data extractor). Lack of time and insufficient training were the most frequently reported barriers to participating in SRs. The findings provide a benchmark for tracking changes in Canadian university health sciences librarians' participation in SRs.

  11. Evaluating a Graduate Professional Development Program for Informal Science Educators

    Science.gov (United States)

    Lake, Jeremy Paul

    This study is an examination and evaluation of the outcomes of a series of courses that I helped build to create a graduate certificate. Specifically, I wanted to evaluate whether or not the online iteration of the Informal Science Institutions Environmental Education Graduate Certificate Program truly provided the long term professional development needed to enhance the skills of the formal and informal educators participating so that they could contribute meaningfully to the improvement of science literacy in their respective communities. My role as an internal evaluator provided an extraordinary opportunity to know the intent of the learning opportunities and why they were constructed in a particular fashion. Through the combination of my skills, personal experiences both within the certificate's predecessor and as an educator, I was uniquely qualified to explore the outcomes of this program and evaluate its effectiveness in providing a long-term professional development for participants. After conducting a literature review that emphasized a need for greater scientific literacy in communities across America, it was evident that the formal education enterprise needs the support of informal educators working on the ground in myriad different settings in ways that provide science as both content and process, learning science facts and doing real science. Through a bridging of informal science educators with formal teachers, it was thought each could learn the culture of the other, making each more fluent in accessing community resources to help make these educators more collaborative and able to bridge the classroom with the outside world. This bridge promotes ongoing, lifelong learning, which in turn can help the national goal of greater scientific literacy. This study provided insight into the thinking involved in the learners' growth as they converted theory presented in course materials into practice. Through an iterative process of reviewing the course

  12. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  13. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  14. Measuring Choice to Participate in Optional Science Learning Experiences during Early Adolescence

    Science.gov (United States)

    Sha, Li; Schunn, Christian; Bathgate, Meghan

    2015-01-01

    Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…

  15. Ten years of democracy: Translating policy into practice in mathematics and science education

    Directory of Open Access Journals (Sweden)

    Kgabo Masehela

    2005-10-01

    Full Text Available This paper provides a 10-year (1994 – 2004 review of the state of mathematics and physical science education (SME in South Africa with respect to participation and performance, and its relationship with policy implementation.

  16. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  17. Heuristic and algorithmic processing in English, mathematics, and science education.

    Science.gov (United States)

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  18. Does Controversial Science Call For Public Participation? The Case Of Gmo Skepticism

    Directory of Open Access Journals (Sweden)

    Andreas Christiansen

    2017-12-01

    Full Text Available Many instances of new and emerging science and technology are controversial. Although a number of people, including scientific experts, welcome these developments, a considerable skepticism exists among members of the public. The use of genetically modified organisms (GMOs is a case in point. In science policy and in science communication, it is widely assumed that such controversial science and technology require public participation in the policy-making process. We examine this view, which we call the Public Participation Paradigm, using the case of GMOs as an example. We suggest that a prominent reason behind the call for public participation is the belief that such participation is required for democratic legitimacy. We then show that the most prominent accounts of democratic legitimacy do not, in fact, entail that public participation is required in cases of controversial science in general, or in the case of GMOs in particular.

  19. Future challenges in nuclear science education

    International Nuclear Information System (INIS)

    Yates, S.W.

    1993-01-01

    The role of Division of Nuclear Chemistry and Technology of the American Chemical Society in nuclear science education is reviewed, and suggestions for enhanced involvement in additional areas are presented. Possible new areas of emphasis, such as educational programs for pre-college students and non-scientific public, are discussed. Suggestions for revitalizing the position of radiochemistry laboratories in academic institutions are offered. (author) 7 refs

  20. Placement education pedagogy as social participation: what are students really learning?

    Science.gov (United States)

    Kell, Clare

    2014-03-01

    This paper draws on empirical fieldwork data of naturally occurring UK physiotherapy placement education to make visible how education is actually carried out and suggest what students may be learning through their placement interactions. The data challenge everyone involved in placement education design and practice to consider the values and practices students are learning to perpetuate through placement education experiences. The researcher undertook an ethnomethodologically informed ethnographic observation of naturally occurring physiotherapy placement education in two UK NHS placement sites. This study adopted a social perspective of learning to focus on the minutiae of placement educator, student and patient interaction practices during student-present therapeutic activities. Two days of placement for each of six senior students were densely recorded in real-time focussing specifically on the verbal, kinesics and proxemics-based elements of the participants' interaction practices. Repeated cycles of data analysis suggested consistent practices irrespective of the placement, educators, students or patients. The data suggest that placement education is a powerful situated learning environment in which students see, experience and learn to reproduce the physiotherapy practices valued by the local placement. Consistently, placement educators and students co-produced patient-facing activities as spectacles of physiotherapy-as-science. In each setting, patients were used as person-absent audiovisual teaching aids from which students learnt to make a case for physiotherapy intervention. The paper challenges physiotherapists and other professions using work-placement education to look behind the rhetoric of their placement documentation and explore the reality of students' learning in the field. The UK-based physiotherapy profession may wish to consider further the possible implications of its self-definition as a 'science-based healthcare profession' on its in

  1. The Culture of Translational Science Research: Participants' Stories.

    Science.gov (United States)

    Kotarba, Joseph A; Wooten, Kevin; Freeman, Jean; Brasier, Allan R

    2013-01-01

    We apply a symbolic interactionist framework and a qualitative methodology to the examination of the everyday reality of translational science research (TSR). This is a growing scientific movement that aims to facilitate the efficient application of basic research to clinical service design and delivery. We describe the emerging culture of translational research at a mid-size medical center that received a Clinical and Translational Science Award from the National Institutes of Health. The stories related by scientists, clinicians, and students in interviews indicate that they make sense of the emerging inter- and cross-disciplinary, team-oriented culture of TSR through the refinement and redefinition of the significant symbols that inform their work while they attempt to master translational research by addressing the dilemmas it produces for them and their work. We see the strength, currency, adaptability, and energy of the core self-definition of "scientist" to be significant in shaping the emerging culture of translational research. We conclude by celebrating the value of interpretive ethnography for evaluation research.

  2. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  3. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Arrows in Chemistry. Abirami Lakshminarayanan. General Article Volume 15 Issue 1 January 2010 pp 51-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/01/0051-0063. Keywords.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Use of Isotopes for Studying Reaction Mechanisms-Secondary Kinetic Isotope Effect. Uday Maitra J Chandrasekhar. Series Article Volume 2 Issue 8 August 1997 pp 18-25 ...

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electrons in Condensed Matter. T V Ramakrishnan. General Article Volume 2 Issue 12 December 1997 pp 17-32. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/12/0017-0032 ...

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 10. October 2002, pages 1-100. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Timoshenko: Father of Engineering ...

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 10. October 1998, pages 1-102. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. From Fourier Series to Fourier Transforms.

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. Pythagorean Means and Carnot Machines: When Music Meets Heat. Ramandeep S Johal.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 1. January 1999, pages 1-95. pp 1-2 Editorial. Editorial ... More Details Fulltext PDF. pp 80-88 Reflections. Some Moral and Technical Consequences of Automation.

  11. Science and Higher Education in Korea.

    Science.gov (United States)

    Lee, Sungho

    The role and contribution of academic science to national development in the Republic of Korea is discussed. After an overview on the development of the Korean system of higher education, attention is directed to the national research system and its articulation with the academic system. Consideration is given to: factors that contributed to the…

  12. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 8. August 2006, pages 1-106. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir Gilbert Thomas Walker · J Srinivasan M ...

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 11. November 2014, pages 971-1070. pp 971-971 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 972-973 Article-in-a-Box. Georg Cantor ...

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 14, Issue 1. January 2009, pages 1-100. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir James Lighthill · Renuka Ravindran.

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 8. August 2005, pages 1-105. pp 1-1 Editorial. Editorial · Priti Shankar · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Theodore von Kármán – Rocket Scientist.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 2. February 2006, pages 1-101. pp 1-1 Editorial. Editorial · S Ramasubramanian · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. David Huffman · Priti Shankar.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 11. November 2012, pages 1019-1120. pp 1019-1019 Editorial. Editorial · Y N Srikant · More Details Fulltext PDF. pp 1022-1033 Series Article. Fascinating Organic ...

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 9, Issue 10. October 2004, pages 1-98. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. G. I. Taylor – An Amateur Scientist.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 2, Issue 4. April 1997, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. The Chandrasekhar Limit · G Srinivasan.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 6. June 2005, pages 1-98. pp 1-1 Editorial. Editorial · Jaywant H Arakeri · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Roentgen and his Rays.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 7. July 2014, pages 585-668. pp 585-585 Editorial. Editorial · S Ranganathan · More Details Fulltext PDF. pp 586-589 Article-in-a-Box. Robert Burns Woodward ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 8. August 2014, pages 667-778. pp 667-667 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 668-669 Table of Contents. Table of Contents.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 12, Issue 1. January 2007, pages 1-96. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 12. December 2014, pages 1069-1210. pp 1069-1070 Editorial. Editorial · T N Guru Row Angshuman Roy Choudhury · More Details Fulltext PDF. pp 1071-1073 ...

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 7. July 2015, pages 571-664. pp 571-571 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 572-573 Table of Contents. Table of Contents.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 2. February 2002, pages 1-96. pp 1-1 Editorial. Editorial · Amitabh Joshi · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Claude Elwood Shannon · Priti Shankar.

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 10. October 2015, pages 863-950b. pp 863-863 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 864-865 Article-in-a-Box. Jan Hendrik Oort ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 9. September 2002, pages 1-102. pp 1-2 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Fritz Haber · Animesh Chakravorty.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 2. February 2011, pages 103-202. pp 103-103 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 104-104 Article-in-a-Box. A Short Biography of Israel ...

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 8. August 2010, pages 681-772. pp 681-681 Editorial. Editorial · G K Ananthasuresh · More Details Fulltext PDF. pp 682-683 Table of Contents. Table of Contents.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 11. November 2006, pages 1-98. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-4 Article-in-a-Box. Bernhard Riemann.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 10. October 2012, pages 923-1020. pp 923-923 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 924-925 Article-in-a-Box. S N De - An Appreciation.

  14. An Ethically Ambitious Higher Education Data Science

    Science.gov (United States)

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Programming Languages - A Brief Review. V Rajaraman ... V Rajaraman1 2. IBM Professor of Information Technology, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India; Hon.Professor, Supercomputer Education & Research Centre Indian Institute of Science, Bangalore 560012, India ...

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Keywords. Scalars; four-vectors; lorentz transformation; special relativity. ... Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Physical Research Laboratory. P Sharma. Information and Announcements Volume 4 Issue 7 July 1999 pp 92-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/07/0092-0096 ...

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Erwin Schrödinger, “What is Life? The Physical Aspect of the Living Cell”. N Mukunda. Book Review Volume 4 Issue 2 February 1999 pp 85-87. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 12. December 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-6 Article-in-a-Box. Isaac Newton (1642/43-1727).

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 11. November 2002, pages 1-102. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Stephen Jay Gould: A View of Life.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Fractals: A New Geometry of Nature. Balakrishnan Ramasamy T S K V Iyer P Varadharajan. Classroom Volume 2 Issue 10 October 1997 pp 62-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 23 .... pp 387-391 Book Review ... Parava: Soaring Towards New Directions in Human-Animal Relations.

  4. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 12. Jacques Monod and the Advent of the Age of Operons. R Jayaraman. General Article Volume 15 Issue 12 December 2010 pp 1084-1096. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 9. September 2016, pages 767-863. pp 767-768 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 769-772 Article in a Box. The Creative Genius: John Nash.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 11. November 1996, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Karl Popper · G Prathap · More Details ...

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 1. January 2011, pages 1-104. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Leeuwenhoek: Discoverer of the Microbial ...

  9. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 5. May 1998, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-2 Article-in-a-Box. Thermal Ionisation and the Saha Equation!

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 6; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 6, Issue 10. October 2001, pages 1- ... pp 96-97 Book Review. Call of Indian Birds – An Audio Cassette · Lt General Baljit Singh · More Details Fulltext PDF. pp 97-100 Book Review. Essentials ...

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 8 ... P G Babu · More Details Fulltext PDF. pp 56-65 Feature Article. Nature Watch - Hornbills – Giants Among the Forest Birds · T R Shankar Raman Divya Mudappa.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 4. April 2008 ... K R Y Simha Dhruv C Hoysall · More Details Fulltext PDF. pp 394-397 Think It Over. Solution to How Many Birds are Unwatched · Soubhik Chakraborty.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 15; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 5 ... pp 411-427 General Article. Bird of Passage at Four Universities - Student Days of Rudolf Peierls · G Baskaran · More Details Fulltext PDF. pp 428-433 General Article.

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 1. January 2008, pages 1-102. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. The Ribosome and the 2009 Nobel Prize in Chemistry. Laasya Samhita Umesh Varshney. General Article Volume 15 Issue 6 June 2010 pp 526-537. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 2. February 1996, pages 1-130. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Chief Editor's column - After the Eclipse.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 6. June 1999, pages 1-102. pp 1-2 Editorial. Editorial · Alladi Sitaram · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Mahalanobis and Indian Statistics · T Krishnan.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Haber Process for Ammonia Synthesis. Jayant M Modak. General Article Volume 7 Issue 9 September 2002 pp 69-77. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/09/0069-0077 ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 10. October 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Archimedes · P N Shankar.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 8, Issue 10. October 2003, pages 1-101. pp 1-1 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Satish Dhawan · Srinivas Bhogle.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 6. June 2010, pages 489-584. pp 489-490 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 491-492 Article-in-a-Box. Conrad Waddington and the ...

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 8. Detergents – Zeolites and Enzymes Excel Cleaning Power. B S Sekhon Manjeet K Sangha. General Article Volume 9 Issue 8 August 2004 pp 35-45. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 3. March 1996, pages 1-130. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-3 Article-in-a-Box. Fermat and the Minimum Principle.

  5. weaving together climate science and chemistry education

    African Journals Online (AJOL)

    Preferred Customer

    ... students, educators, and the general public, designed to help bridge the gap ... Design Principles of Visualizing and Understanding the Science of Climate ... The user is also able to examine simple models for these predictions ... Figure 6 illustrates the fluctuations in mean global temperature over an 800 ka span and.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 12. December 2002, pages 1-106. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-4 Article-in-a-Box. K. S. Krishnan – An Outstanding Scientist.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Artificial Seeds and their Applications. G V S Saiprasad. General Article Volume 6 Issue 5 May 2001 pp 39-47. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0039-0047 ...

  8. Radiation risk and science education

    International Nuclear Information System (INIS)

    Eijkelhof, H.M.C.

    1996-01-01

    Almost everywhere the topic of radioactivity is taught in the physics or chemistry classes of secondary schools. The question has been raised whether the common approach of teaching this topic would contribute to a better understanding of the risks of ionising radiation: and, if the answer is negative, how to explain and improve this situation? In a Dutch research programme which took almost ten years, answers to this question have been sought by means of analyses of newspaper reports, curriculum development, consultation with radiation experts, physics textbook analysis, interviews and questionnaires with teachers and pupils, class observations and curriculum development. Th main results of this study are presented and some recommendations given for science teaching and for communication with the public in general as regards radiation risk. (author)

  9. The Support Educational Commitee Participation in the Pedagogical Approach of an Educational Integration

    Directory of Open Access Journals (Sweden)

    Angélica Fontana-Hernández

    2010-10-01

    Full Text Available Educational services are essential to social and economical development of people, mainly to the progress of all sectors of society. Establishing actions that can promote the participation of various social groups is essential to improve their quality of life and building more respectful and fair human rights without any discrimination or exclusion. In recent years, the Costa Rican education system has undergone significant changes due to the pedagogical approach of inclusive education in which students with educational needs may require different support and specialized resources for training and development. For this, the Basic Educational Division of the Center for Teaching and Research in Education, generated a concern of investigating the participation of the Committee of Educational Support in the process of educational integration, thus, determine the functions performed in the educational context, under the rules of the 7600 Equal Opportunity Act for people with disabilities, which is the entity that corresponds to regulate access to education by identifying the support required for students with educational needs and, advice and trains, administrative staff in schools both public and private in the country. In addition, there is also a concern for exploring the role of the Special Education teacher for this Committee, as well as learning the perceptions of teachers and parents about the functions performed by the committee.

  10. What influences malaysian nurses to participate in continuing professional education activities?

    Science.gov (United States)

    Chong, Mei Chan; Sellick, Kenneth; Francis, Karen; Abdullah, Khatijah Lim

    2011-03-01

    A cross sectional descriptive study, which involved government hospitals and health clinics from Peninsular Malaysia sought to identify the continuing professional education (CPE) needs and their readiness for E-learning. This paper focuses on the first phase of that study that aimed to determine the factors that influence nurses' participation in CPE. Multistage cluster sampling was used to recruit 1,000 nurses randomly from 12 hospitals and 24 health clinics from four states in Peninsular Malaysia who agreed to be involved. The respondent rate was 792 (79.2%), of which 562 (80%) had participated in CPE in the last 12 months. Findings suggested that updating knowledge and providing quality care are the most important factors that motivate participation in CPE, with respective means of 4.34 and 4.39. All the mean scores for educational opportunity were less than 3.0. Chi-square tests were used to test the association of demographic data and CPE participation. All demographical data were significantly associated with CPE participation, except marital status. Implementation of mandatory CPE is considered an important measure to increase nurse's participation in CPE. However, effective planning that takes into consideration the learning needs of nurses is recommended. Copyright © 2011 Korean Society of Nursing Science. Published by Elsevier B.V. All rights reserved.

  11. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    Science.gov (United States)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  12. Communities of practice: Participation patterns and professional impact for high school mathematics and science teachers

    Science.gov (United States)

    Printy, Susan M.

    Improving the quality of teachers in schools is a keystone to educational improvement. New and veteran teachers alike need to enhance their content knowledge and pedagogical skills, but they must also examine, and often change, their underlying attitudes, beliefs, and values about the nature of knowledge and the abilities of students. Best accomplished collectively rather than individually, the interactions between teachers as they undertake the process of collaborative inquiry create "communities of practice." This dissertation investigates the importance of science and mathematics teachers' participation in communities of practice to their professional capabilities. The study tests the hypothesis that the social learning inherent in community of practice participation encourages teachers to learn from others with expertise, enhances teachers' sense of competence, and increases the likelihood that teachers' will use student-centered, problem-based instructional techniques aligned with national disciplinary standards. The researcher conceptualizes communities of practice along two dimensions that affect social learning: legitimate participation in activities and span of engagement with school members. Differences in teachers' subject area and the curricular track of their teaching assignment contribute to variation in teachers' participation in communities of practice along those dimensions. Using data from the National Educational Longitudinal Study, first and second follow-up, the study has two stages of multi-level analysis. The first stage examines factors that contribute to teachers' participation in communities of practice, including teachers' social and professional characteristics and school demographic and organizational characteristics. The second stage investigates the professional impact of such participation on the three outcome variables: teacher learning, teacher competence, and use of standards-based pedagogy. Hierarchical linear models provide

  13. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  14. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  15. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  16. Determinants of educational participation and gender differences in education in six Arab countries

    NARCIS (Netherlands)

    Smits, J.P.J.M.; Huisman, A.H.M.

    2013-01-01

    We study the determinants of educational participation and gender differences in education for young children in six Arab countries: Algeria, Egypt, Morocco, Syria, Tunisia and Yemen. Although these countries have made much progress in getting young children into school, school dropout after age 11

  17. Key Resources for Creating Online Nutrition Education for Those Participating in Supplemental Nutrition Assistance Program Education

    Science.gov (United States)

    Stosich, Marie C.; LeBlanc, Heidi; Kudin, Janette S.; Christofferson, Debra

    2016-01-01

    Internet-based nutrition education is becoming an important tool in serving the rural, low-income community, yet the task of creating such programming can be daunting. The authors describe the key resources used in developing an Internet-based nutrition education program for those participating in Supplemental Nutrition Assistance Program…

  18. SSC education: Science to capture the imagination

    International Nuclear Information System (INIS)

    Gadsden, T.; Kivlighn, S.

    1992-01-01

    To the great majority of Americans, science is merely a collection of facts and theories that should (for unknown reasons) be memorized and perhaps even understood in order for one to function as a responsible citizen. Few see science as a way of thinking and questioning and as an approach to learning the secrets of our world. In addition, most children and many adults have a stereotypical view of scientists as studious men in lab coats who spend all their time working alone in dark and smelly chemical or biological laboratories. The Superconducting Super Collider (SSC) totally contradicts such a perception. This great instrument is being created by thousands of scientists, engineers, business people, technicians, administrators, and others, from dozens of nations, working together to realize a shared vision to seek answers to shared questions. The SSCL also provides an opportunity to change the mistaken impressions about science and scientists that have resulted in fewer students pursuing careers in fields related to science. In addition, it will serve as a catalyst to help people understand the roles that scientific thought and inquiry can play in bettering their lives and the lives of their offspring. Recognizing this problem in our society, the creators of the SSC Laboratory made a commitment to use the SSC to improve science education. Consequently, in addition to building the world's premier high-energy physics laboratory, the SSCL has a second goal: creation of a major national and international educational resource. To achieve the latter goal, the Education Office of the SSCL is charged with using the resources of the Laboratory, both during construction and during operation, to improve education in science and mathematics at all levels (prekindergarten through post-doctorate) and for all components of our society (including the general public), in the United States and around the world

  19. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Science.gov (United States)

    2010-02-04

    ... DEPARTMENT OF EDUCATION Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications for New Awards for Fiscal....305D, 84.305E, 84.324A, 84.324B, and 84.324C. Summary: The Director of the Institute of Education...

  20. Volunteer Educators' Influence on Youth Participation and Learning in 4-H STEM Learning by Design Programs

    Science.gov (United States)

    Worker, Steven Michael

    The purpose of this study was to describe the co-construction of three 4-H STEM (science, technology, engineering, and mathematics) learning by design programs by volunteer educators and youth participants in the 4-H Youth Development Program. The programs advanced STEM learning through design, a pedagogical approach to support youth in planning, designing, and making shareable artifacts. This pedagogical approach is a special case of project-based learning, related to the practices found in the science learning through design literature as well as the making and tinkering movements. Specifically, I explored adult volunteer educators' roles and pedagogical strategies implementing the 4-H Junk Drawer Robotics curriculum (Mahacek, Worker, and Mahacek, 2011) and how that, in turn, afforded and constrained opportunities for youth to display or report engagement in design practices; learning of STEM content; strengthening tool competencies; dispositions of resilience, reciprocity, and playfulness; and psychological ownership. The curriculum targeted middle school youth with a sequence of science inquiry activities and engineering design challenges. This study employed naturalist and multiple-case study methodology relying on participant observations and video, interviews with educators, and focus groups with youth within three 4-H educational robotics programs organized by adult 4-H volunteer educators. Data collection took place in 2014 and 2015 at Santa Clara with an educator and seven youth; Solano with three educators and eight youth; and Alameda with an educator and seven youth. Data analysis revealed six discrete categories of pedagogy and interactions that I labeled as participation structures that included lecture, demonstration, learning activity, group sharing, scripted build, and design & build. These participation structures were related to the observed pedagogical practices employed by the educators. There was evidence of youth engagement in design

  1. Explainers' development of science-learner identities through participation in a community of practice

    Science.gov (United States)

    Richardson, Anne E.

    The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.

  2. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  3. Troubling an embodied pedagogy in science education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Kristensen, Liv Kondrup

    2017-01-01

    This chapter explores the idea of using an embodied pedagogy for science teaching following the mandated introduction of physical activity across all subjects in Danish primary schools. While there is research available that explores the different ways of utilizing movement in school, very little...... for the intertwined relationship between the body and mind. Based on observations that were conducted in science lessons at a Danish primary school, and from talking with the students, we examine how an embodied pedagogy in science was implemented. We explore a specific instance where a group of 14-16 year old...... of that which is available applies to science education. The argument is made that an embodied pedagogy recognises and validates the centrality of the body in learning, but it is about more than making students move. Utilising such an approach requires one to recognise that embodiment shapes interactions...

  4. Staying in the science stream: patterns of participation in A-level science subjects in the UK.

    OpenAIRE

    Smith, Emma

    2011-01-01

    This paper describes patterns of participation and attainment in A-level physics, chemistry and biology from 1961 to 2009. The A-level has long been seen as an important gateway qualification for higher level study, particularly in the sciences. This long term overview examines how recruitment to these three subjects has changed in the context of numerous policies and initiatives that seek to retain more young people in the sciences. The results show that recruitment to the pure sciences has ...

  5. Danish and German students’ reflections and recommendations to changes in their science education

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Ahrenkiel, Linda; Michelsen, Claus

    We here present a case study on students’ reflections and recommendations on their everyday science education. These recommendations come from a minority group seldom heard in science education, namely those students who are already engaged in science and science education. In November 2010...... situation in science education. The seminar was studied as a case study and data was collected by the use of questionnaires, videotaping, student presentations, field notes and interviews with some of the participants. The focus on the findings is on the students’ motives for changing their current...... a seminar was held in Sankelmark, Schleswig-Holstein, Germany. 29 upper secondary students from 4 schools (2 Danish and 2 German) attended the seminar in order to prepare some recommendations to take home to their own school. The students were asked to describe their current situation in science education...

  6. Response to science education reforms: The case of three science education doctoral programs in the United States

    Science.gov (United States)

    Gwekwerere, Yovita Netsai

    Doctoral programs play a significant role in preparing future leaders. Science Education doctoral programs play an even more significant role preparing leaders in a field that is critical to maintaining national viability in the face of global competition. The current science education reforms have the goal of achieving science literacy for all students and for this national goal to be achieved; we need strong leadership in the field of science education. This qualitative study investigated how doctoral programs are preparing their graduates for leadership in supporting teachers to achieve the national goal of science literacy for all. A case study design was used to investigate how science education faculty interpreted the national reform goal of science literacy for all and how they reformed their doctoral courses and research programs to address this goal. Faculty, graduate students and recent graduates of three science education doctoral programs participated in the study. Data collection took place through surveys, interviews and analysis of course documents. Two faculty members, three doctoral candidates and three recent graduates were interviewed from each of the programs. Data analysis involved an interpretive approach. The National Research Council Framework for Investigating Influence of the National Standards on student learning (2002) was used to analyze interview data. Findings show that the current reforms occupy a significant part of the doctoral coursework and research in these three science education doctoral programs. The extent to which the reforms are incorporated in the courses and the way they are addressed depends on how the faculty members interpret the reforms and what they consider to be important in achieving the goal of science literacy for all. Whereas some faculty members take a simplistic critical view of the reform goals as a call to achieve excellence in science teaching; others take a more complex critical view where they question

  7. Strengthening the educational value of undergraduate participation in research as part of a psychology department subject pool.

    Science.gov (United States)

    Moyer, Anne; Franklin, Nancy

    2011-03-01

    Participating in research must be an educational experience for students in order to ethically justify its inclusion as a requirement in college courses. Introductory Psychology students (N = 280) completed a written class assignment describing their research participation as a means to enhance this educational mission. Approximately half of students spontaneously mentioned something positive about the significance of the research or what they learned, with the remainder providing neutral, mixed, or negative comments. Students could articulate clearly and knowledgeably about the research in which they had participated. Such an assignment is an effective means to foster an understanding of the science of psychology.

  8. Surveying Earth Science Users: Improvements Increase Participation and Insight

    Science.gov (United States)

    Boquist, C. L.

    2006-12-01

    NASA has surveyed users of its Earth Observing System Data and Information System (EOSDIS) for three years to determine user satisfaction with its services. The survey is being conducted by Claes Fornell International (CFI) under contract with the Department of Treasury's Federal Consulting Group, Executive Agent in government for the American Customer Satisfaction Index (ACSI). The purpose of this survey is to help EOSDIS and the data centers assess current status and improve future services. Analysis of each year's results has led to refining, dropping, and adding questions that provide the basis of understanding satisfaction levels across data centers, and for functions within each center. This paper will present lessons learned in preparing the invitation and survey questions and the steps taken to make the survey easier to complete. Year three Indicators include increased participation and better identification with data center names and information services.

  9. The participation of women in education in the third world.

    Science.gov (United States)

    Bowman, M J; Anderson, C A

    1980-06-01

    In this descriptive and exploratory discussion of the participation of women in education in the 3rd world, focus is only on participation in schools. The index used is years of schooling for each sex. It provides measures of utilization. The question is how far do girls go in school, compared with boys, and what do they study. Attention is directed to the following: participation versus access; literacy and primary schooling across the generations; enrollment rates and wastage around the world (overview of enrollment rates, wastage and promotion and retardation, early marriage and schooling, ambiguities of coeducation, women's schooling in Muslim and in Latin American countries); intracountry variations in schooling of girls (spatial diffusions of schooling, sex and social selection for schooling, and the assessment of progress). The availability of educational options does not ensure their utilization, and in the less developed countries (LDCs) this distinction between provision and utilization is basic for policy. Whether schooling of a daughter is considered valuable will be influenced by perceptions of the effects of schooling on jobs, on acquisition of a "better" husband, on quality of domestic life, on the daughter's personality development, and on the well-being of her children. How girls perform in school compared with boys is affected by the same factors determining initial access. The situation regarding differences in literacy and primary schooling between men and women is presented in tables to illustrate 4 distinctive patterns of change. Sex differentials in schooling among children 6-11 are negligible in European countries and in Latin America, although the rates in Latin America are lower. In these regions only small differentials occur for ages 12-17, and sex contrasts continue to be moderate at ages 18-23. In the 3rd world the situation is different. In Asian countries (excluding Japan), the rates for 6-11 year olds are 71 and 50%, respectively

  10. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  11. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  12. Southern Africa Journal of Education, Science and Technology ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  13. Southern Africa Journal of Education, Science and Technology: Site ...

    African Journals Online (AJOL)

    Southern Africa Journal of Education, Science and Technology: Site Map. Journal Home > About the Journal > Southern Africa Journal of Education, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  14. Homi Bhabha Centre for Science Education, Tata Institute of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 2. Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research (A Deemed University). Information and Announcements Volume 22 Issue 2 February 2017 pp 189-189 ...

  15. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Editorial Board. Editorial Board. Resonance – Journal of Science Education. Chief Editor. N Sathyamurthy, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore ... Guruswamy Kumaraswamy, CSIR-National Chemical Laboratory, Pune

  16. African Journal of Educational Studies in Mathematics and Sciences ...

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Journal Home > African Journal of Educational Studies in Mathematics and Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  17. Penicillin for Education: How Cognitive Science Can Contribute to Education.

    Science.gov (United States)

    Bruer, John T.

    1995-01-01

    Education can benefit from knowledge derived from cognitive and developmental psychology. Family demographics have actually improved between 1970 and 90 and so have NAEP scores. Three innovative programs demonstrating cognitive science applications include the Teaching Number Sense elementary math program, reciprocal teaching (reading strategy),…

  18. Exploring social networks of municipal science education stakeholders in Danish Science Municipalities

    DEFF Research Database (Denmark)

    von der Fehr, Ane

    development in the science and technology industry. Therefore, much effort has been invested to improve science education. The importance of school external stakeholders in development of education has been an increasingly emphasised, also in the field of science education. This has led to a growing focus......Science education development is a field of many interests and a key interest is recruitment of students who wish to pursue an education in science. This is an urgent societal demand in Denmark as well as internationally, since highly skilled science graduates are needed for the continuous...... involved in science education development. These municipal science education networks (MSE networks) were identified as important for development of science education in the SM project. Therefore, it was a key interest to explore these networks in order to investigate how the central stakeholders affected...

  19. The Educational Function of an Astronomy Research Experience for Undergraduates Program as Described by Female Participants

    Science.gov (United States)

    Slater, Stephanie

    2010-01-01

    The long-running REU-program is tacitly intended to increase retention and provide "an important educational experience" for undergraduates, particularly women, minorities and underrepresented groups. This longitudinal, two-stage study was designed to explore the ways in which the REU acted as an educational experience for 51 women in the field of astronomy. Stage-1 consisted of an ex post facto analysis of data collected over 8 years, including multiple interviews with each participant during their REU, annual open-ended alumni surveys, faculty interviews, and extensive field notes. Four themes emerged, related to developing understandings of the nature of professional scientific work, the scientific process, the culture of academia, and an understanding of the "self." Analysis provided an initial theory that was used to design the Stage-2 interview protocol. In Stage-2, over 10 hours of interviews were conducted with 8 participants selected for their potential to disconfirm the initial theory. Results indicate that the REU provided a limited impact in terms of participants’ knowledge of professional astronomy as a largely computer-based endeavor. The REU did not provide a substantive educational experience related to the nature of scientific work, the scientific process, the culture of academia, participants' conceptions about themselves as situated in science, or other aspects of the "self,” were limited. Instead, the data suggests that these women began the REU with pre-existing and remarkably strong conceptions in these areas, and that the REU did not functional to alter those states. These conceptions were frequently associated with other mentors/scientist interactions, from middle school into the undergraduate years. Instructors and family members also served as crucial forces in shaping highly developed, stable science identities. Sustained relationships with mentors were particularly transformational. These findings motivate an ongoing research agenda

  20. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  1. Qualitative exploration of centralities in municipal science education networks

    DEFF Research Database (Denmark)

    von der Fehr, Ane; Sølberg, Jan

    2016-01-01

    This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education ar...... of science education, especially if they are aware of their own centrality and are able to use their position intentionally for the benefit of science education.......This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education...... are diverse and in order to understand how municipal stakeholders may support such development, we explored four different municipal science education networks (MSE networks) using three different measures of centrality. The centrality measures differed in terms of what kind of stakeholder functions...

  2. Educating adult females for leadership roles in an informal science program for girls

    Science.gov (United States)

    McCreedy, Dale

    The purpose of this study is to gain an understanding of and an evidentiary warrant for, how a community of practice focused on informal science learning, can engage and promote active participation that offers adult female members and the community opportunities for legitimacy and transformation. This study is a qualitative, ethnographic research study that documents how adult female volunteers, historically inexperienced and/or excluded from traditional practices of science, come to engage in science activities through an informal, community-based context that helps them to appreciate science connections in their lives that are ultimately empowering and agentic. I begin to understand the ways in which such informal contexts, often thought to be marginal to dominant educational beliefs and practices, can offer adults outside of the field of science, education, or both, an entree into science learning and teaching that facilitate female's participation in legitimate and empowering ways. Using descriptive analyses, I first identify the characteristics of peripheral and active program participants. Through phenomenological analyses, I then develop an understanding of participation in an informal science program by focusing on three adult female members' unique trajectories of participation leading to core member status. Each draws on different aspects of the program that they find most salient, illustrating how different elements can serve as motivators for participation, and support continuation along the trajectory of participation reflecting personal and political agency. Through a purposeful ethnographic case-study analysis, I then explore one core member's transformation, evidenced by her developing identities as someone who enjoys science, engages in science activities, and, enacts a role as community old timer and door opener to science learning. This study: (1) contributes to the limited knowledge base in fields of informal learning, science education, and

  3. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    Science.gov (United States)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  4. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. Discrete Event Simulation. Matthew Jacob ... Keywords. Simulation; modelling; computer programming. Author Affiliations. Matthew Jacob1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.

  5. Scientific Inquiry in Health Sciences Education

    DEFF Research Database (Denmark)

    Musaeus, Peter

    inquiry or critical thinking. Discussion: The value of this study is that it might enable educational developers to give junior faculty better guidance on teaching and specific feedback on their teaching portfolio in particular in regards to the design of learning activities that might use scientific...... in terms of a more systematic approach to higher-level thinking. Thus although participants cited one or more constructivist educational theorists, they did not express a well-articulated notion of inquiry and they provided limited concrete examples on how to design a conducive learning environment around...... inquiry as means and end in higher education....

  6. Scientist Participation in Education and Public Outreach - Using Web Tools to Communicate the Scientific Process and Engage an Audience in Understanding Planetary Science: Examples with Lunar Reconnaissance Orbiter (LRO) Data (Invited)

    Science.gov (United States)

    Petro, N. E.

    2013-12-01

    Scientists often speak to the public about their science and the current state of understanding of their field. While many talks (including those by this author) typically feature static plots, figures, diagrams, and the odd movie/animation/visualization (when technology allows), it is now possible, using the web to guide an audience through the thought process of how a scientist tackles certain questions. The presentation will highlight examples of web tools that effectively illustrate how datasets are used to address questions of lunar science. Why would a scientist use precious time during a talk to interact with data, in real time? Why not just show the results and move on? Through experience it is evident that illustrating how data is analyzed, even in a simple form, engages an audience, and demonstrates the thought process when interacting with data. While it is clear that scientists are unlikely to use such a tool to conduct science, it illustrates how a member of the public can engage with mission data. An example is discussed below. When discussing the geology of the Moon, there is an enormous volume of data that can be used to explain what we know (or think we know) and how we know it. For example, the QuickMap interface (http://www.actgate.com/home/quickmap.htm) enables interaction with a set of data (images, spectral data, topography, radar data) across the entire Moon (http://target.lroc.asu.edu/q3/). This webtool enables a speaker the opportunity (given adequate web connectivity) to talk about features, such as a crater, and show it from multiple perspectives (e.g., plan view, oblique, topographically exaggerated) in a logical flow. The tool enables illustration of topographic profiles, 3-D perspectives, and data overlays. Now, one might ask why doing this demonstration in real time is valuable, over a set of static slides. In some cases static slides are best, and doing any real time demos is unfeasible. However, guiding an engaged audience through

  7. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  8. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  9. Critical Science Education in a Suburban High School Chemistry Class

    Science.gov (United States)

    Ashby, Patrick

    To improve students' scientific literacy and their general perceptions of chemistry, I enacted critical chemistry education (CCE) in two "regular level" chemistry classes with a group of 25 students in a suburban, private high school as part of this study. CCE combined the efforts of critical science educators (Fusco & Calabrese Barton, 2001; Gilbert 2013) with the performance expectations of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013a) to critically transform the traditional chemistry curriculum at this setting. Essentially, CCE engages students in the critical exploration of socially situated chemistry content knowledge and requires them to demonstrate this knowledge through the practices of science. The purpose of this study was to gauge these students development of chemistry content knowledge, chemistry interest, and critical scientific literacy (CSL) as they engaged in CCE. CSL was a construct developed for this study that necessarily combined the National Research Center's (2012) definition of scientific literacy with a critical component. As such, CSL entailed demonstrating content knowledge through the practices of science as well as the ability to critically analyze the intersections between science content and socially relevant issues. A mixed methods, critical ethnographic approach framed the collection of data from open-ended questionnaires, focus group interviews, Likert surveys, pre- and post unit tests, and student artifacts. These data revealed three main findings: (1) students began to develop CSL in specific, significant ways working through the activities of CCE, (2) student participants of CCE developed a comparable level of chemistry content understanding to students who participated in a traditional chemistry curriculum, and (3) CCE developed a group of students' perceptions of interest in chemistry. In addition to being able to teach students discipline specific content knowledge, the implications of this study are

  10. Rural schools and democratic education. The opportunity for community participation

    Directory of Open Access Journals (Sweden)

    Antonio Bustos Jiménez

    2011-08-01

    Full Text Available In the paper the notions of participation and community empowerment in rural schools are analysed through reflection on experiences conducted in different countries. Reference is made to ducational models of participatory development which, from the viewpoint of excellence, result in increasing educational outcomes and higher rates of satisfaction among the targeted rural populations. Taking as point of departure agents which are considered potential generators of knowledge in rural areas, we examine the process of incorporating the wealth of the rural context. The difficulties that the community group usually faces for its legitimacy as a source of input in rural areas are also shown. Finally, we discuss how the teaching staff can positively contribute to their process of joining the school life.

  11. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  12. Towards Science Education for all: Teacher Support for Female ...

    African Journals Online (AJOL)

    Towards Science Education for all: Teacher Support for Female Pupils in the Zimbabwean Science Class. ... Annals of Modern Education ... One hundred female pupils studying sciences at either Ordinary or Advanced level, and 10 science teachers from 10 selected secondary schools in one province in Zimbabwe, ...

  13. Encountering Science Education's Capacity to Affect and Be Affected

    Science.gov (United States)

    Alsop, Steve

    2016-01-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science…

  14. Obama Announces Science Education Goal at White House Science Fair

    Science.gov (United States)

    Showstack, Randy

    2012-02-01

    With student participants in the second annual White House Science Fair as a backdrop, President Barack Obama announced on 7 February programs to help prepare new math and science teachers and to meet a new goal of having 1 million more U.S. college graduates in science, technology, engineering, and math (STEM) over the next decade than there would be at the current graduation rate. That goal is outlined in a report entitled “Engage to excel,” by the President's Council of Advisors on Science and Technology (PCAST), released the same day. Obama also announced several other initiatives, including a $22 million private-sector investment, led by the Carnegie Corporation of New York, to invest in STEM teacher training. After he toured the science fair projects, Obama said the science fair students “inspire” him. “What impresses me so much is not just how smart you are, but it's the fact that you recognize you've got a responsibility to use your talents in service of something bigger than yourselves,” he said. What these young people are doing is “going to make a bigger difference in the life of our country over the long term than just about anything,” adding, “We've got to emphasize how important this is and recognize these incredible young people who are doing that that I couldn't even imagine thinking about at fifth grade or eighth grade or in high school.”

  15. Learning science and science education in a new era.

    Science.gov (United States)

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  16. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  17. Fermilab Friends for Science Education | Tree of Knowledge

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Tree of Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education precollege science education programs. Prominently displayed at the Lederman Science Center is the lovely

  18. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  19. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Bala Iyer. Articles written in Resonance – Journal of Science Education. Volume 21 Issue 3 March 2016 pp 203-205 Editorial. Editorial · Bala Iyer · More Details Fulltext PDF. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current ...

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Kathy Ceceri. Articles written in Resonance – Journal of Science Education. Volume 16 Issue 9 September 2011 pp 879-880 Personal Reflections. Five Things I Learned from Richard Feynman About Science Education · Kathy Ceceri · More Details Fulltext PDF ...