WorldWideScience

Sample records for science education outreach

  1. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  2. French language space science educational outreach

    Science.gov (United States)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  3. Educational Outreach: The Space Science Road Show

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with

  4. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    Science.gov (United States)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  5. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  6. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  7. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  8. Developing Smartphone Apps for Education, Outreach, Science, and Engineering

    Science.gov (United States)

    Weatherwax, A. T.; Fitzsimmons, Z.; Czajkowski, J.; Breimer, E.; Hellman, S. B.; Hunter, S.; Dematteo, J.; Savery, T.; Melsert, K.; Sneeringer, J.

    2010-12-01

    The increased popularity of mobile phone apps provide scientists with a new avenue for sharing and distributing data and knowledge with colleagues, while also providing meaningful education and outreach products for consumption by the general public. Our initial development of iPhone and Android apps centered on the distribution of exciting auroral images taken at the South Pole for education and outreach purposes. These portable platforms, with limited resources when compared to computers, presented a unique set of design and implementation challenges that we will discuss in this presentation. For example, the design must account for limited memory; screen size; processing power; battery life; and potentially high data transport costs. Some of these unique requirements created an environment that enabled undergraduate and high-school students to participate in the creation of these apps. Additionally, during development it became apparent that these apps could also serve as data analysis and engineering tools. Our presentation will further discuss our plans to use apps not only for Education and Public Outreach, but for teaching, science and engineering.

  9. STEREO-IMPACT Education and Public Outreach: Sharing STEREO Science

    Science.gov (United States)

    Craig, N.; Peticolas, L. M.; Mendez, B. J.

    2005-12-01

    The Solar TErrestrial RElations Observatory (STEREO) is scheduled for launch in Spring 2006. STEREO will study the Sun with two spacecrafts in orbit around it and on either side of Earth. The primary science goal is to understand the nature and consequences of Coronal Mass Ejections (CMEs). Despite their importance, scientists don't fully understand the origin and evolution of CMEs, nor their structure or extent in interplanetary space. STEREO's unique 3-D images of the structure of CMEs will enable scientists to determine their fundamental nature and origin. We will discuss the Education and Public Outreach (E/PO) program for the In-situ Measurement of Particles And CME Transients (IMPACT) suite of instruments aboard the two crafts and give examples of upcoming activities, including NASA's Sun-Earth day events, which are scheduled to coincide with a total solar eclipse in March. This event offers a good opportunity to engage the public in STEREO science, because an eclipse allows one to see the solar corona from where CMEs erupt. STEREO's connection to space weather lends itself to close partnerships with the Sun-Earth Connection Education Forum (SECEF), The Exploratorium, and UC Berkeley's Center for New Music and Audio Technologies to develop informal science programs for science centers, museum visitors, and the public in general. We will also discuss our teacher workshops locally in California and also at annual conferences such as those of the National Science Teachers Association. Such workshops often focus on magnetism and its connection to CMEs and Earth's magnetic field, leading to the questions STEREO scientists hope to answer. The importance of partnerships and coordination in working in an instrument E/PO program that is part of a bigger NASA mission with many instrument suites and many PIs will be emphasized. The Education and Outreach Porgram is funded by NASA's SMD.

  10. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  11. Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2014-01-01

    Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…

  12. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    Science.gov (United States)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the

  13. Outreach Education Modules on Space Sciences in Taiwan

    Science.gov (United States)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  14. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    Science.gov (United States)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  15. Partnering to Enhance Planetary Science Education and Public Outreach Program

    Science.gov (United States)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  16. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  17. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  18. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  19. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  20. Inclusive Planetary Science Outreach and Education: a Pioneering European Experience

    Science.gov (United States)

    Galvez, A.; Ballesteros, F.; García-Frank, A.; Gil, S.; Gil-Ortiz, A.; Gómez-Heras, M.; Martínez-Frías, J.; Parro, L. M.; Parro, V.; Pérez-Montero, E.; Raposo, V.; Vaquerizo, J. A.

    2017-09-01

    Abstract Universal access to space science and exploration for researchers, students and the public, regardless of physical abilities or condition, is the main objective of work by the Space Inclusive Network (SpaceIn). The purpose of SpaceIn is to conduct educational and communication activities on Space Science in an inclusive and accessible way, so that physical disability is not an impediment for participating. SpaceIn members aim to enlarge the network also by raising awareness among individuals such as undergraduate students, secondary school teachers, and members of the public with an interest and basic knowledge on science and astronomy. As part of a pilot experience, current activities are focused on education and outreach in the field of comparative Planetary Science and Astrobiology. Themes include the similarities and differences between terrestrial planets, the role of water and its interaction with minerals on their surfaces, the importance of internal thermal energy in shaping planets and moons and the implications for the appearance of life, as we know it, in our planet and, possibly, in other places in our Solar System and beyond. The topics also include how scientific research and space missions can shed light on these fundamental issues, such as how life appears on a planet, and thus, why planetary missions are important in our society, as a source of knowledge and inspiration. The tools that are used to communicate the concepts include talks with support of multimedia and multi-sensorial material (video, audio, tactile, taste, smell) and field trips to planetary analogue sites that are accessible to most members of the public, including people with some kind of disability. The field trips help illustrate scientific concepts in geology e.g. lava formations, folds, impact features, gullies, salt plains; biology, e.g. extremophiles, halophites; and exploration technology, e.g. navigation in an unknown environment, hazard and obstacle avoidance

  1. Dialectical dividends: fostering hybridity of new pedagogical practices and partnerships in science education and outreach

    Science.gov (United States)

    Martins Gomes, Diogo; McCauley, Veronica

    2016-09-01

    Science literacy has become socially and economically very important. European countries stress that science graduates are fundamental for economic growth. Nevertheless, there is a declining student participation in science. In response, there has been a call to change the way science is taught in schools, which focuses on inquiry methods rooted in constructivism. Universities and other organisations have responded by developing outreach programmes to improve student engagement in science. Given this context, there is a necessity for research to ascertain if this new relationship between outreach and education is worthwhile. This study examines and compares primary teachers and outreach practitioners understanding and perceptions of constructivist science pedagogy, in an effort to understand the potential of a teacher-outreach partnership. For this, qualitative and quantitative methods were employed, taking a dialectic pragmatic stance. Contradicting the recurrent view, teachers and outreach providers revealed favourable views in relation to constructivism, despite recognising barriers to its implementation. These results support a partnership between teachers and outreach practitioners and the realisation of the hybrid role of each participant. The results also reveal an important dynamic in outreach access to schools. Specifically, the outreach connected teachers acted as gatekeepers by negotiating access into their colleagues classrooms.

  2. NASA Astrophysics Education and Public Outreach: The Impact of the Space Telescope Science Institute Office of Public Outreach

    Science.gov (United States)

    Smith, Denise Anne; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray; Green, Joel David

    2015-08-01

    As the science operations center for the Hubble Space Telescope and the James Webb Space Telescope, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity’s quest to understand fundamental questions about our universe and our place in it. This presentation will provide an overview of the impact of the STScI’s Office of Public Outreach’s efforts to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs.At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble’s scientific capabilities, majestic imagery, and our deep commitment to create effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  3. Innovating science communication: the structure supporting ATLAS Education & Outreach

    Science.gov (United States)

    Goldfarb, Steven; Marcelloni, Claudia; Shaw, Kate; ATLAS Experiment

    2016-04-01

    The ATLAS Education & Outreach project has, over the years, developed a strong reputation for supporting innovation. Animated event displays, musical CDs, 3d movies, 3-storey murals, photo books, data sonifications, multi-media art installations, pub slams, masterclasses, documentaries, pop-up books, LEGO® models, and virtual visits are among the many diverse methods being exploited to communicate to the world the goals and accomplishments of the ATLAS Experiment at CERN. This variety of creativity and innovation does not pop out of a vacuum. It requires underlying motivation by the collaboration to communicate with the public; freedom and encouragement to do so in a creative manner; and a support structure for developing, implementing and promoting these activities. The ATLAS Outreach project has built this support structure on a well-defined communication plan, high-quality content, and effective delivery platforms. Most importantly, implementation of the program has been based on the effective engagement of the participating institutes and other key partners, not only to leverage modest human resources and funding, but also to take advantage of the rich imagination and inspiration of a diverse, global human collaboration. We present our current plan, on-going activities, and a few more fun innovations for the future.

  4. Education and Outreach in the Life Sciences: Qualitative Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, Roberta L.; John, Lisa; Mahy, Heidi A.; Rose, Shyanika W.; Weller, Richard E.; Nelson-Wally, Anjanette

    2008-10-01

    The DOE's National Nuclear Security Agency (NNSA) asked Pacific Northwest National Laboratory (PNNL) to consider the role of individual scientists in upholding safety and security. The views of scientists were identified as being a critical component of this policy process. Therefore, scientists, managers, and representatives of Institutional Biosafety Committees (IBCs) at the national labs were invited to participate in a brief survey and a set of focus groups. In addition, three focus groups were conducted with scientists, managers, and IBC representatives to discuss some of the questions related to education, outreach, and codes of conduct in further detail and gather additional input on biosecurity and dual-use awareness at the laboratories. The overall purpose of this process was to identify concerns related to these topics and to gather suggestions for creating an environment where both the scientific enterprise and national security are enhanced.

  5. Collaboration and Near-Peer Mentoring as a Platform for Sustainable Science Education Outreach

    Science.gov (United States)

    Pluth, Michael D.; Boettcher, Shannon W.; Nazin, George V.; Greenaway, Ann L.; Hartle, Matthew D.

    2015-01-01

    Decreased funding for middle and high school education has resulted in reduced classroom time, which, when coupled with an increased focus on standardized testing, has decreased the exposure of many middle school students to hands-on science education. To help address these challenges, we developed an integrated outreach program, spanning grades…

  6. Handbook of Research on Science Education and University Outreach as a Tool for Regional Development

    Science.gov (United States)

    Narasimharao, B. Pandu, Ed.; Wright, Elizabeth, Ed.; Prasad, Shashidhara, Ed.; Joshi, Meghana, Ed.

    2017-01-01

    Higher education institutions play a vital role in their surrounding communities. Besides providing a space for enhanced learning opportunities, universities can utilize their resources for social and economic interests. The "Handbook of Research on Science Education and University Outreach as a Tool for Regional Development" is a…

  7. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  8. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  9. Microgravity Outreach and Education

    Science.gov (United States)

    Rogers, Melissa J. B.; Rosenberg, Carla B.

    2000-01-01

    The NASA Microgravity Research Program has been actively developing classroom activities and educator's guides since the flight of the First United States Microgravity Laboratory. In addition, various brochures, posters, and exhibit materials have been produced for outreach efforts to the general public and to researchers outside of the program. These efforts are led by the Microgravity Research Outreach/Education team at Marshall Space Flight Center, with classroom material support from the K-12 Educational Program of The National Center for Microgravity Research on Fluids and Combustion (NCMR), general outreach material development by the Microgravity Outreach office at Hampton University, and electronic/media access coordinated by Marshall. The broad concept of the NCMR program is to develop a unique set of microgravity-related educational products that enable effective outreach to the pre-college community by supplementing existing mathematics, science, and technology curricula. The current thrusts of the program include summer teacher and high school internships during which participants help develop educational materials and perform research with NCMR and NASA scientists; a teacher sabbatical program which allows a teacher to concentrate on a major educational product during a full school year; frequent educator workshops held at NASA and at regional and national teachers conferences; a nascent student drop tower experiment competition; presentations and demonstrations at events that also reach the general public; and the development of elementary science and middle school mathematics classroom products. An overview of existing classroom products will be provided, along with a list of pertinent World Wide Web URLs. Demonstrations of some hands on activities will show the audience how simple it can be to bring microgravity into the classroom.

  10. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  11. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    Science.gov (United States)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are charged with engaging, extending, supporting, and coordinating the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. A number of resources and opportunities for involvement are available for scientists involved in - or interested in being involved in - education or outreach. The Forums provide opportunities for earth and space scientists to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend E/PO strategic meetings. The Forums also provide professional development opportunities on a myriad of topics, from common pre-conceptions in science, to program evaluation, to delivering effective workshops. Thematic approaches, such as Earth Science Week (http://www.earthsciweek.org), and the Year of the Solar System (http://solarsystem.nasa.gov/yss) are coordinated by the Forums; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - are provided by SMD's Audience-Based Working Groups. Their findings and recommendations are made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also available is a 'one-stop shop' of SMD E/PO products and resources that can be

  12. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  13. Education and Professional Outreach as an Integrated Component of Science and Graduate Education

    Science.gov (United States)

    Staudigel, H.; Koppers, A. A.

    2007-12-01

    Education and Professional Outreach (EPO) is increasingly becoming a substantive and much needed activity for scientists. Significant efforts are expended to satisfy funding agency requirements, but such requirements may also develop into a mutually beneficial collaboration between scientists and K-16 educators with a minimal impact on science productivity. We focus here on two particularly high impact EPO opportunities, hosting of high school interns and the inclusion of an educational component to a graduate student's&pthesis work. We emphasize the importance of hands-on collaboration with teachers and teacher-educators, and the substantive benefits of highly leveraged customized internet-distribution. We will present two examples for how we integrated this K-12 EPO into our university-based science and education efforts, what types of products emerged from these activities, and how such products may be widely produced by any scientist and disseminated to the educational community. High school seniors offer a unique resource to university EPO because some of them can substantively contribute to the science, and they can be very effective peer-mentors for high and middle schools. Extended internships may be built easily into the schedule of many senior high school student programs, and we were able to involve such interns into a three-week seagoing expedition. The seniors were responsible for our EPO by maintaining a cruise website and video conferencing with their high school. They added substantially to the science outcome, through programming and participating in a range of shipboard science chores. Graduate theses may be augmented with an educational component that places the main theme of the thesis into an educational setting. We designed and supervised such a Master's graduate thesis with an educational component on the geochronology of hot spot volcanoes, including a high school lesson plan, enactment in the classroom and preparation of a wide range of web

  14. Education, outreach, and inclusive engagement: Towards integrated indicators of successful program outcomes in participatory science.

    Science.gov (United States)

    Haywood, Benjamin K; Besley, John C

    2014-01-01

    The use and utility of science in society is often influenced by the structure, legitimacy, and efficacy of the scientific research process. Public participation in scientific research (PPSR) is a growing field of practice aimed at enhancing both public knowledge and understanding of science (education outreach) and the efficacy and responsiveness of scientific research, practice, and policy (participatory engagement). However, PPSR objectives focused on "education outreach" and "participatory engagement" have each emerged from diverse theoretical traditions that maintain distinct indicators of success used for program development and evaluation. Although areas of intersection and overlap among these two traditions exist in theory and practice, a set of comprehensive standards has yet to coalesce that supports the key principles of both traditions in an assimilated fashion. To fill this void, a comprehensive indicators framework is proposed with the goal of promoting a more integrative and synergistic PPSR program development and assessment process.

  15. Community-Driven Support in the Hydrologic Sciences through Data, Education and Outreach

    Science.gov (United States)

    Clark, E.

    2015-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is a non-profit funded by the National Science Foundation to support water science research and education. As outlined in the CUAHSI Education and Outreach Strategy, our objectives are: 1) helping the member institutions communicate water science; 2) cross-disciplinary water education; 3) dissemination of research; 4) place-based water education using data services; and 5) broadening participation. Through the CUAHSI Water Data Center, online tools and resources are available to discover, download, and analyze multiple time-series water datasets across various parameters. CUAHSI supports novel graduate student research through the Pathfinder Fellowship program which has enhanced the interdisciplinary breadth of early-career research. Public outreach through the Let's Talk About Water film symposium and cyberseminar programs have proven effective in distributing research, leading to more recent development of virtual training workshops. By refining and building upon CUAHSI's existing programs, new training opportunities, collaborative projects, and community-building activities for the hydrologic sciences have come to fruition, such as the recent National Flood Interoperability Experiment with the NOAA's National Water Center.

  16. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach

    Science.gov (United States)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.

    2009-05-01

    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern

  17. NASA SMD Science Education and Public Outreach Forums: A Five-Year Retrospective

    Science.gov (United States)

    Smith, Denise A.; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie

    2014-06-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The objective is to enhance the overall coherence of SMD education and public outreach (E/PO), leading to more effective, efficient, and sustainable use of SMD science discoveries and learning experiences. We summarize progress and next steps towards achieving this goal with examples drawn from Astrophysics and cross-Forum efforts. Over the past five years, the Forums have enabled leaders of individual SMD mission and grant-funded E/PO programs to work together to place individual science discoveries and learning resources into context for audiences, conveying the big picture of scientific discovery based on audience needs. Forum-organized collaborations and partnerships extend the impact of individual programs to new audiences and provide resources and opportunities for educators to engage their audiences in NASA science. Similarly, Forum resources support scientists and faculty in utilizing SMD E/PO resources. Through Forum activities, mission E/PO teams and grantees have worked together to define common goals and provide unified professional development for educators (NASA’s Multiwavelength Universe); build partnerships with libraries to engage underserved/underrepresented audiences (NASA Science4Girls and Their Families); strengthen use of best practices; provide thematic, audience-based entry points to SMD learning experiences; support scientists in participating in E/PO; and, convey the impact of the SMD E/PO program. The Forums have created a single online digital library (NASA Wavelength, http://nasawavelength.org) that hosts all peer-reviewed SMD-funded education materials and worked with the SMD E/PO community to compile E/PO program metrics (http://nasamissionepometrics.org/). External evaluation shows the Forums are meeting their objectives. Specific examples

  18. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  19. Bringing Terra Science to the People: 10 years of education and public outreach

    Science.gov (United States)

    Riebeek, H.; Chambers, L. H.; Yuen, K.; Herring, D.

    2009-12-01

    The default image on Apple's iPhone is a blue, white, green and tan globe: the Blue Marble. The iconic image was produced using Terra data as part of the mission's education and public outreach efforts. As far-reaching and innovative as Terra science has been over the past decade, Terra education and public outreach efforts have been equally successful. This talk will provide an overview of Terra's crosscutting education and public outreach projects, which have reached into educational facilities—classrooms, museums, and science centers, across the Internet, and into everyday life. The Earth Observatory web site was the first web site designed for the public that told the unified story of what we can learn about our planet from all space-based platforms. Initially conceived as part of Terra mission outreach in 1999, the web site has won five Webby awards, the highest recognition a web site can receive. The Visible Earth image gallery is a catalogue of NASA Earth imagery that receives more than one million page views per month. The NEO (NASA Earth Observations) web site and WMS (web mapping service) tool serves global data sets to museums and science centers across the world. Terra educational products, including the My NASA Data web service and the Students' Cloud Observations Online (S'COOL) project, bring Terra data into the classroom. Both projects target multiple grade levels, ranging from elementary school to graduate school. S'COOL uses student observations of clouds to help validate Terra data. Students and their parents have puzzled over weekly "Where on Earth" geography quizzes published on line. Perhaps the most difficult group to reach is the large segment of the public that does not seek out science information online or in a science museum or classroom. To reach these people, EarthSky produced a series of podcasts and radio broadcasts that brought Terra science to more than 30 million people in 2009. Terra imagery, including the Blue Marble, have

  20. Involvement of scientists in the NASA Office of Space Science education and public outreach program

    International Nuclear Information System (INIS)

    Beck-Winchatz, Bernhard

    2005-01-01

    Since the mid-1990's NASA's Office of Space Science (OSS) has embarked on an astronomy and space science education and public outreach (E/PO) program. Its goals are to share the excitement of space science discoveries with the public, and to enhance the quality of science, mathematics and technology education, particularly at the precollege level. A key feature of the OSS program is the direct involvement of space scientists. The majority of the funding for E/PO is allocated to flight missions, which spend 1%-2% of their total budget on E/PO, and to individual research grants. This paper presents an overview of the program's goals, objectives, philosophy, and infrastructure

  1. Scientists: Get Involved in Planetary Science Education and Public Outreach! Here’s How!

    Science.gov (United States)

    Buxner, Sanlyn; Dalton, H.; Shipp, S.; CoBabe-Ammann, E.; Scalice, D.; Bleacher, L.; Wessen, A.

    2013-10-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is a team of educators, scientists, and outreach professionals funded by NASA’s Science Mission Directorate (SMD) that supports SMD scientists currently involved in E/PO - or interested in becoming involved in E/PO efforts - to find ways to do so through a variety of avenues. There are many current and future opportunities and resources for scientists to become engaged in E/PO. The Forum provides tools for responding to NASA SMD E/PO funding opportunities (webinars and online proposal guides), a one-page Tips and Tricks guide for scientists to engage in education and public outreach, and a sampler of activities organized by thematic topic and NASA’s Big Questions in planetary science. Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org); the Year of the Solar System website (http://solarsystem.nasa.gov/yss), a presentation of thematic resources that includes background information, missions, the latest in planetary science news, and educational products, for use in the classroom and out, for teaching about the solar system organized by topic - volcanism, ice, astrobiology, etc.; and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share resources and information about teaching Earth and space sciences in the undergraduate classroom, including class materials, news, funding opportunities, and the latest education research. Also recently developed, the NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker) offers an online portal to connect scientists interested in getting involved in E/PO projects - giving public talks, classroom visits, and virtual connections - with audiences. Learn more about the

  2. Three Dimensional Spherical Display Systems and McIDAS: Tools for Science, Education and Outreach

    Science.gov (United States)

    Kohrs, R.; Mooney, M. E.

    2010-12-01

    The Space Science and Engineering Center (SSEC) and Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin are now using a 3D spherical display system and their Man computer Data Access System (McIDAS)-X and McIDAS-V as outreach tools to demonstrate how scientists and forecasters utilize satellite imagery to monitor weather and climate. Our outreach program displays orbits and data coverage of geostationary and polar satellites and demonstrates how each is beneficial for the remote sensing of Earth. Global composites of visible, infrared and water vapor images illustrate how satellite instruments collect data from different bands of the electromagnetic spectrum to monitor global weather patterns 24 hours a day. Captivating animations on spherical display systems are proving to be much more intuitive than traditional 2D displays, enabling audiences to view satellites orbiting above real-time weather systems circulating the entire globe. Complimenting the 3D spherical display system are the UNIX-based McIDAS-X and Java-based McIDAS-V software packages. McIDAS is used to composite the real-time global satellite data and create other weather related derived products. Client and server techniques used by these software packages provide the opportunity to continually update the real-time content on our globe. The enhanced functionality of McIDAS-V extends our outreach program by allowing in-depth interactive 4-dimensional views of the imagery previously viewed on the 3D spherical display system. An important goal of our outreach program is the promotion of remote sensing research and technology at SSEC and CIMSS. The 3D spherical display system has quickly become a popular tool to convey societal benefits of these endeavors. Audiences of all ages instinctively relate to recent weather events which keeps them engaged in spherical display presentations. McIDAS facilitates further exploration of the science behind the weather

  3. Paired Peer Learning through Engineering Education Outreach

    Science.gov (United States)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and…

  4. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    Science.gov (United States)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science

  5. Tools for Engaging Scientists in Education and Public Outreach: Resources from NASA's Science Mission Directorate Forums

    Science.gov (United States)

    Buxner, S.; Grier, J.; Meinke, B. K.; Gross, N. A.; Woroner, M.

    2014-12-01

    The NASA Science Education and Public Outreach (E/PO) Forums support the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums foster collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. We will present tools to engage and resources to support scientists' engagement in E/PO efforts. Scientists can get connected to educators and find support materials and links to resources to support their E/PO work through the online SMD E/PO community workspace (http://smdepo.org) The site includes resources for scientists interested in E/PO including one page guides about "How to Get Involved" and "How to Increase Your Impact," as well as the NASA SMD Scientist Speaker's Bureau to connect scientists to audiences across the country. Additionally, there is a set of online clearinghouses that provide ready-made lessons and activities for use by scientists and educators: NASA Wavelength (http://nasawavelength.org/) and EarthSpace (http://www.lpi.usra.edu/earthspace/). The NASA Forums create and partner with organizations to provide resources specifically for undergraduate science instructors including slide sets for Earth and Space Science classes on the current topics in astronomy and planetary science. The Forums also provide professional development opportunities at professional science conferences each year including AGU, LPSC, AAS, and DPS to support higher education faculty who are teaching undergraduate courses. These offerings include best practices in instruction, resources for teaching planetary science and astronomy topics, and other special topics such as working with diverse students and the use of social media in the classroom. We are continually soliciting ways that we can better support scientists' efforts in effectively engaging in E/PO. Please contact Sanlyn Buxner (buxner@psi.edu) or Jennifer Grier (jgrier@psi.edu) to

  6. The Three-Pronged Approach to Community Education: An Ongoing Hydrologic Science Outreach Campaign Directed from a University Research Center

    Science.gov (United States)

    Gallagher, L.; Morse, M.; Maxwell, R. M.

    2017-12-01

    The Integrated GroundWater Modeling Center (IGWMC) at Colorado School of Mines has, over the past three years, developed a community outreach program focusing on hydrologic science education, targeting K-12 teachers and students, and providing experiential learning for undergraduate and graduate students. During this time, the programs led by the IGWMC reached approximately 7500 students, teachers, and community members along the Colorado Front Range. An educational campaign of this magnitude for a small (2 full-time employees, 4 PIs) research center required restructuring and modularizing of the outreach strategy. We refined our approach to include three main "modules" of delivery. First: grassroots education delivery in the form of K-12 classroom visits, science fairs, and teacher workshops. Second: content development in the form of lesson plans for K-12 classrooms and STEM camps, hands-on physical and computer model activities, and long-term citizen science partnerships. Lastly: providing education/outreach experiences for undergraduate and graduate student volunteers, training them via a 3-credit honors course, and instilling the importance of effective science communication skills. Here we present specific case studies and examples of the successes and failures of our three-pronged system, future developments, and suggestions for entities newly embarking on an earth science education outreach campaign.

  7. CAREER Educational Outreach: Inquiry-based Atmospheric Science Lessons for K-12 students

    Science.gov (United States)

    Courville, Z.; Carbaugh, S.; Defrancis, G.; Donegan, R.; Brown, C.; Perovich, D. K.; Richter-Menge, J.

    2011-12-01

    Climate Comics is a collaborative outreach effort between the Montshire Museum of Science, in Norwich, VT, the Cold Regions Research and Engineering Laboratory (CRREL) research staff, and freelance artist and recent graduate of the Center for Cartoon Studies in White River Junction, VT, Sam Carbaugh. The project involves the cartoonist, the education staff from the museum, and researchers from CRREL creating a series of comic books with polar science and research themes, including sea ice monitoring, sea ice albedo, ice cores, extreme microbial activity, and stories and the process of fieldwork. The aim of the comic series is to provide meaningful science information in a comic-format that is both informative and fun, while highlighting current polar research work done at the lab. The education staff at the Montshire Museum develops and provides a series of hands-on, inquiry-based activity descriptions to complement each comic book, and CRREL researchers provide science background information and reiterative feedback about the comic books as they are being developed. Here, we present the motivation for using the comic-book medium to present polar research topics, the process involved in creating the comics, some unique features of the series, and the finished comic books themselves. Cartoon illustrating ways snow pack can be used to determine past climate information.

  8. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  9. Get Involved in Education and Public Outreach! The Science Mission Directorate Science E/PO Forums Are Here to Help

    Science.gov (United States)

    Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Hsu, B. C.; Peticolas, L. M.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Education and Public Outreach (E/PO) Forums help to engage, extend, support, and coordinate the efforts of the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. The Forums have been developing toolkits and pathways to support planetary, Earth, astrophysics, and heliophysics scientists who are - or who are interested in becoming - involved in E/PO. These tools include: 1) Pathways to learn about SMD and E/PO community announcements and opportunities, share news about E/PO programs, let the E/PO community know you are interested in becoming involved, and discover education programs needing scientist input and/or support. These pathways include weekly e-news, the SMD E/PO online community workspace, monthly community calls, conferences and meetings of opportunity. 2) Portals to help you find out what education resources already exist, obtain resources to share with students of all levels - from K-12 to graduate students, - and disseminate your materials. These include E/PO samplers and toolkits (sampling of resources selected for scientists who work with students, teachers, and the public), the one-stop shop of reviewed resources from the NASA Earth and space science education portfolio NASAWavelength.org, and the online clearinghouse of Earth and space science higher education materials EarthSpace (http://www.lpi.usra.edu/earthspace). 3) Connections to education specialists who can help you design and implement meaningful E/PO programs - small to large. Education specialists can help you understand what research says about how people learn and effective practices for achieving your goals, place your

  10. Projection on a Sphere for a More Interactive Approach for Education and Outreach in Earth Sciences

    Science.gov (United States)

    Hardy, A.; King, S. D.

    2011-12-01

    Anna Hardy, Scott D. King, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 Systems that project images onto a spherical surface are relatively new, moderately priced technology that could change the way students and the general public learn about Earth Sciences. For classroom and small museum spaces, such as the Geoscience Museum at Virginia Tech, a globe of about one-meter diameter can be used. Such a system has been recently installed in our 2500 square foot museum space. With this system we are able to display many types of Earth Science data including: global sea rise, weather and climate data, plate reconstructions, and projections of planets in the solar system. Animations show phenomenon over time including motions of plates over millions of years or evolution of global weather patterns over periods of days to weeks. We are importing other deep Earth data sets including global tomographic models to the system. As an outreach tool, one advantage of this technology is that it allows visitors to view global data in its natural spherical geometry and does not require them to visualize global spherical data or models from two-dimensional maps or displays. We will report on the effectiveness of this tool at communicating concepts with both college general education students and museum guests (pre-school through adult) via general surveying. Our initial comparison will be comprehension from classes with and without access to the spherical projection system.

  11. UCLA's outreach program of science education in the Los Angeles schools.

    Science.gov (United States)

    Palacio-Cayetano, J; Kanowith-Klein, S; Stevens, R

    1999-04-01

    The UCLA School of Medicine's Interactive Multi-media Exercises (IMMEX) Project began its outreach into pre-college education in the Los Angeles area in 1993. The project provides a model in which software and technology are effectively intertwined with teaching, learning, and assessment (of both students' and teachers' performances) in the classroom. The project has evolved into a special collaboration between the medical school and Los Angeles teachers. UCLA faculty and staff work with science teachers and administrators from elementary, middle, and high schools. The program benefits ethnically and racially diverse groups of students in schools ranging from the inner city to the suburbs. The project's primary goal is to use technology to increase students' achievement and interest in science, including medicine, and thus move more students into the medical school pipeline. Evaluations from outside project evaluators (West Ed) as well as from teachers and IMMEX staff show that the project has already had a significant effect on teachers' professional development, classroom practice, and students' achievement in the Los Angeles area.

  12. Education and Public Outreach at The Pavilion Lake Research Project: Fusion of Science and Education using Web 2.0

    Science.gov (United States)

    Cowie, B. R.; Lim, D. S.; Pendery, R.; Laval, B.; Slater, G. F.; Brady, A. L.; Dearing, W. L.; Downs, M.; Forrest, A.; Lees, D. S.; Lind, R. A.; Marinova, M.; Reid, D.; Seibert, M. A.; Shepard, R.; Williams, D.

    2009-12-01

    The Pavilion Lake Research Project (PLRP) is an international multi-disciplinary science and exploration effort to explain the origin and preservation potential of freshwater microbialites in Pavilion Lake, British Columbia, Canada. Using multiple exploration platforms including one person DeepWorker submersibles, Autonomous Underwater Vehicles, and SCUBA divers, the PLRP acts as an analogue research site for conducting science in extreme environments, such as the Moon or Mars. In 2009, the PLRP integrated several Web 2.0 technologies to provide a pilot-scale Education and Public Outreach (EPO) program targeting the internet savvy generation. The seamless integration of multiple technologies including Google Earth, Wordpress, Youtube, Twitter and Facebook, facilitated the rapid distribution of exciting and accessible science and exploration information over multiple channels. Field updates, science reports, and multimedia including videos, interactive maps, and immersive visualization were rapidly available through multiple social media channels, partly due to the ease of integration of these multiple technologies. Additionally, the successful application of videoconferencing via a readily available technology (Skype) has greatly increased the capacity of our team to conduct real-time education and public outreach from remote locations. The improved communication afforded by Web 2.0 has increased the quality of EPO provided by the PLRP, and has enabled a higher level of interaction between the science team and the community at large. Feedback from these online interactions suggest that remote communication via Web 2.0 technologies were effective tools for increasing public discourse and awareness of the science and exploration activity at Pavilion Lake.

  13. New Science, New Media: An Assessment of the Online Education and Public Outreach Initiatives of The Dark Energy Survey

    OpenAIRE

    Wolf, R. C.; Romer, A. K.; Nord, B.

    2018-01-01

    We present a case study of the online education and public outreach (EPO) program of The Dark Energy Survey (DES). We believe DES EPO is unique at this scale in astronomy, as it evolved organically from scientists' volunteerism. We find that DES EPO online products reach 2,500 social media users on average per post; 94% of these users are predisposed to science-related topics. We find projects which require scientist participation and collaboration support are most successful when they capita...

  14. Perceptions of STEM-based outreach activities in secondary education

    NARCIS (Netherlands)

    Vennix, J.; den Brok, P.J.; Taconis, R.

    2017-01-01

    We investigated and compared the learning environment perceptions of students, teachers and guides who participated in Science, Technology, Engineering and Mathematics (STEM)-based outreach activities in secondary education. In outreach activities, schools and teachers work together with companies

  15. Paired peer learning through engineering education outreach

    Science.gov (United States)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  16. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  17. Education, Outreach, and Diversity Partnerships and Science Education Resources From the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Randall, D.; Denning, S.; Jones, B.; Russell, R.; Gardiner, L.; Hatheway, B.; Johnson, R. M.; Drossman, H.; Pandya, R.; Swartz, D.; Lanting, J.; Pitot, L.

    2007-12-01

    (UCAR), (5) mentoring programs engaging diverse undergraduate and graduate level students in CMMAP research through UCAR's Significant Opportunities in Atmospheric Research and Science (SOARS) Program, and (6) after school activities about clouds, climate and weather for underrepresented middle school students at the Catamount Institute. CMMAP is also enabling Windows to the Universe to continue its commitment to translate all new web pages into Spanish. This presentation will explain how resources emerging from CMMAP can be accessed and used by the entire Earth and Ocean Science educational outreach community.

  18. ARES Education and Public Outreach

    Science.gov (United States)

    Allen, Jaclyn; Galindo, Charles; Graff, Paige; Willis, Kim

    2014-01-01

    The ARES Directorate education team is charged with translating the work of ARES scientists into content that can be used in formal and informal K-12 education settings and assisting with public outreach. This is accomplished through local efforts and national partnerships. Local efforts include partnerships with universities, school districts, museums, and the Lunar and Planetary Institute (LPI) to share the content and excitement of space science research. Sharing astromaterials and exploration science with the public is an essential part of the Directorate's work. As a small enclave of physical scientists at a NASA Center that otherwise emphasizes human space operations and engineering, the ARES staff is frequently called upon by the JSC Public Affairs and Education offices to provide presentations and interviews. Scientists and staff actively volunteer with the JSC Speaker's Bureau, Digital Learning Network, and National Engineers Week programs as well as at Space Center Houston activities and events. The education team also participates in many JSC educator and student workshops, including the Pre-Service Teacher Institute and the Texas Aerospace Scholars program, with workshop presentations, speakers, and printed materials.

  19. Science Writer-At-Sea: A New InterRidge Education Outreach Project Joining Scientists and Future Journalists

    Science.gov (United States)

    Kusek, K. M.; Freitag, K.; Devey, C.

    2005-12-01

    The Science Writer-at-Sea program is one small step in a marathon need for improved coverage of science and environmental issues. It targets two significant links in the Earth science communication pipeline: marine scientists and journalists; and attempts to reconnect people with the Earth by boosting their understanding of Earth science and its relevance to society. How it works: Journalism graduate students are invited to participate in oceanographic expeditions affiliated with InterRidge, an international organization dedicated to promoting ocean ridge research. InterRidge's outreach coordinator and science writer prepares each student for the expedition experience using materials she developed based on years of at-sea reporting. The students work side-by-side with the science writer and the scientists to research and write innovative journalistic stories for a general audience that are featured on a uniquely designed multimedia website that includes videos and images. The science, journalism and public communities benefit from this cost-effective program: science research is effectively showcased, scientists benefit from interactions with journalists, science outreach objectives are accomplished; student journalists enjoy a unique hands-on, `boot camp' experience; and the website enhances public understanding of `real' Earth science reported `on scene at sea.' InterRidge completed its first pilot test of the program in August 2005 aboard a Norwegian research cruise. A student writer entering the science journalism program at Columbia University participated. The results exceeded expectations. The team discovered the world's northernmost vent fields on the cruise, which expanded the original scope of the website to include a section specifically designed for the international press. The student was inspired by the cruise, amazed at how much she learned, and said she entered graduate school with much more confidence than she had prior to the program. The site

  20. Centennial of Flight Educational Outreach

    Science.gov (United States)

    McCarthy, Marianne (Technical Monitor); Miller, Susan (Technical Monitor); Vanderpool, Celia

    2003-01-01

    The Centennial of Flight Education Outreach project worked with community partners to disseminate NASA Education materials and the Centennial of Flight CD-ROM as a vehicle to increase national awareness of NASA's Aerospace Education products, services and programs. The Azimuth Education Foundation and the Ninety Nines, an International Women Pilots Association, Inc. were chartered to conduct education outreach to the formal and informal educational community. The Dryden Education Office supported the development of a training and information distribution program that established a national group of prepared Centennial of Flight Ambassadors, with a mission of community education outreach. These Ambassadors are members of the Ninety Nines and through the Azimuth Foundation, they assisted the AECC on the national level to promote and disseminate Centennial of Flight and other educational products. Our objectives were to explore partnership outreach growth opportunities with consortium efforts between organizations. This project directly responded to the highlights of NASA s Implementation Plan for Education. It was structured to network, involve the community, and provide a solid link to active educators and current students with NASA education information. Licensed female pilots who live and work in local communities across the nation carried the link. This partnership has been extremely gratifying to all of those Ninety-Nines involved, and they eagerly look forward to further work opportunities.

  1. Educational Outreach for Astrobiology

    Science.gov (United States)

    Kadooka, M.; Meech, K.

    2009-12-01

    Astrobiology, the search for life in the universe, has fascinating research areas that can excite students and teachers about science. Its integrative nature, relating to astronomy, geology, oceanography, physics, and chemistry, can be used to encourage students to pursue physical sciences careers. Since 2004, the University of Hawaii NASA Astrobiology Institute (NAI) team scientists have shared their research with secondary teachers at our ALI’I national teacher program to promote the inclusion of astrobiology topics into science courses. Since 2007, our NAI team has co-sponsored the HI STAR program for Hawaii’s middle and high school students to work on authentic astronomy research projects and to be mentored by astronomers. The students get images of asteroids, comets, stars, and extrasolar planets from the Faulkes Telescope North located at Haleakala Observatories on the island of Maui and owned by Las Cumbres Observatory Global Telescope network. They also do real time observing with DeKalb Observatory telescope personally owned by Donn Starkey who willing allows any student access to his telescope. Student project results include awards at the Hawaii State Science Fair and the Intel International Science and Engineering Fair. We believe that research experience stimulates these students to select STEM (science, technology, engineering and mathematics) majors upon entering college so a longitudinal study is being done. Plans are underway with California and Hawaii ALI’I teachers cooperating on a joint astronomy classroom project. International collaborations with Brazil, Portugal, and Italy astronomers have begun. We envision joint project between hemispheres and crossing time zones. The establishment of networking teachers, astronomers, students and educator liaisons will be discussed.

  2. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  3. LSST: Education and Public Outreach

    Science.gov (United States)

    Bauer, Amanda; Herrold, Ardis; LSST Education and Public Outreach Team

    2018-01-01

    The Large Synoptic Survey Telescope (LSST) will conduct a 10-year wide, fast, and deep survey of the night sky starting in 2022. LSST Education and Public Outreach (EPO) will enable public access to a subset of LSST data so anyone can explore the universe and be part of the discovery process. LSST EPO aims to facilitate a pathway from entry-level exploration of astronomical imagery to more sophisticated interaction with LSST data using tools similar to what professional astronomers use. To deliver data to the public, LSST EPO is creating an online Portal to serve as the main hub to EPO activities. The Portal will host an interactive Skyviewer, access to LSST data for educators and the public through online Jupyter notebooks, original multimedia for informal science centers and planetariums, and feature citizen science projects that use LSST data. LSST EPO will engage with the Chilean community through Spanish-language components of the Portal and will partner with organizations serving underrepresented groups in STEM.

  4. Virginia Bioinformatics Institute to expand cyberinfrastructure education and outreach project

    OpenAIRE

    Whyte, Barry James

    2008-01-01

    The National Science Foundation has awarded the Virginia Bioinformatics Institute at Virginia Tech $918,000 to expand its education and outreach program in Cyberinfrastructure - Training, Education, Advancement and Mentoring, commonly known as the CI-TEAM.

  5. La Spezia and the research network for outreach and education in marine sciences.

    Science.gov (United States)

    Locritani, Marina; Furia, Stefania; Giacomazzi, Fabio; Merlino, Silvia; Mori, Anna; Nacini, Francesca; Nardi, Elisabetta; Stroobant, Mascha; Talamoni, Roberta; Zocco, Olivia

    2013-04-01

    institutions, resulting in a wealth of knowledge ready to be shared with the territory to increase economy competitiveness and raise society awareness. Marine science is a general interest topic suitable to be spread in the schools: it is multi-disciplinary and offers technological and social arguments. The Research Institutions of La Spezia deal with different fields of investigation which are complementary and integrated in a complete and effective education proposal. Results are improved by the cooperation with LABTER (Laboratorio Territoriale di Educazione Ambientale - Territory Laboratory of Environmental Education) afferent to La Spezia Municipality. This panel intends to show the activities carried out from 2009 to 2012 and resulting from the cooperation among the Research Institutions and Local Authorities to improve the education and information effectiveness in the field of marine science. Considering all the above mentioned assumptions, La Spezia is, finally, a "cultural hotspot" for marine science issues.

  6. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    2010-03-15

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  7. Freefall Research Education Outreach

    Science.gov (United States)

    1996-01-01

    Dr. Michael Wargo, program scientist for materials science at NASA headquarters, explains the math and physics principles associated with freefall research to attendees at the arnual conference of the National Council of Teachers of Mathematics.

  8. The American nuclear Society's educational outreach programme

    International Nuclear Information System (INIS)

    Zacha, N.J.

    1994-01-01

    The American Nuclear Society has an extensive program of public educational outreach in the area of nuclear science and technology. A teacher workshop program provides up to five days of hands-on experiments, lectures, field trips, and lesson plan development for grades 6-12 educators. Curriculum materials have been developed for students in grades kindergarten through grade 12. A textbook review effort provides reviews of existing textbooks as well as draft manuscripts and textbook proposals, to ensure that the information covered on nuclear science and technology is accurate and scientifically sound

  9. MRO's HiRISE Education and Public Outreach during the Primary Science Phase

    Science.gov (United States)

    Gulick, V. C.; Davatzes, A. K.; Deardorff, G.; Kanefsky, B.; Conrad, L. B.; HiRISE Team

    2008-12-01

    Looking back over one Mars year, we report on the accomplishments of the HiRISE EPO program during the primary science phase of MRO. A highlight has been our student image suggestion program, conducted in association with NASA Quest as HiRISE Image Challenges (http://quest.arc.nasa.gov/challenges/hirise/). During challenges, students, either individually or as part of a collaborative classroom or group, learn about Mars through our webcasts, web chats and our educational material. They use HiWeb, HiRISE's image suggestion facility, to submit image suggestions and include a short rationale for why their target is scientifically interesting. The HiRISE team gives priority to obtaining a sampling of these suggestions as quickly as possible so that the acquired images can be examined by the students. During the challenge, a special password-protected web site allows participants to view their returned images before they are released to the public (http://marsoweb.nas.nasa.gov/hirise/quest/). Students are encouraged to write captions for the returned images. Finished captions are then posted and highlighted on the HiRISE web site (http://hirise.lpl.arizona.edu) along with their class, teacher's name and the name of their school. Through these HiRISE challenges, students and teachers become virtual science team members, participating in the same process (selecting and justifying targets, analyzing and writing captions for acquired images), and using the same software tools as the HiRISE team. Such an experience is unique among planetary exploration EPO programs. To date, we have completed three HiRISE challenges and a fourth is currently ongoing. More than 200 image suggestions were submitted during the previous challenges and over 85 of these image requests have been acquired so far. Over 675 participants from 45 states and 42 countries have registered for the previous challenges. These participants represent over 8000 students in grades 2 through 14 and consist

  10. Education and public outreach of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.; /Natl. Tech. U., San Rafael; Snow, G.

    2005-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on recent activities and future initiatives.

  11. Dialectical Dividends: Fostering Hybridity of New Pedagogical Practices and Partnerships in Science Education and Outreach

    Science.gov (United States)

    Martins Gomes, Diogo; McCauley, Veronica

    2016-01-01

    Science literacy has become socially and economically very important. European countries stress that science graduates are fundamental for economic growth. Nevertheless, there is a declining student participation in science. In response, there has been a call to change the way science is taught in schools, which focuses on inquiry methods rooted…

  12. ESO Science Outreach Network in Poland during 2011-2013

    Science.gov (United States)

    Czart, Krzysztof

    2014-12-01

    ESON Poland works since 2010. One of the main tasks of the ESO Science Outreach Network (ESON) is translation of various materials at ESO website, as well as contacts with journalists. We support also science festivals, conferences, contests, exhibitions, astronomy camps and workshops and other educational and outreach activities. During 2011-2013 we supported events like ESO Astronomy Camp 2013, ESO Industry Days in Warsaw, Warsaw Science Festival, Torun Festival of Science and Art, international astronomy olympiad held in Poland and many others. Among big tasks there was also translation of over 60 ESOcast movies.

  13. University/Science Center Collaborations (A Science Center Perspective): Developing an Infrastructure of Partnerships with Science Centers to Support the Engagement of Scientists and Engineers in Education and Outreach for Broad Impact

    Science.gov (United States)

    Marshall, Eric

    2009-03-01

    Science centers, professional associations, corporations and university research centers share the same mission of education and outreach, yet come from ``different worlds.'' This gap may be bridged by working together to leverage unique strengths in partnership. Front-end evaluation results for the development of new resources to support these (mostly volunteer-based) partnerships elucidate the factors which lead to a successful relationship. Maintaining a science museum-scientific community partnership requires that all partners devote adequate resources (time, money, etc.). In general, scientists/engineers and science museum professionals often approach relationships with different assumptions and expectations. The culture of science centers is distinctly different from the culture of science. Scientists/engineers prefer to select how they will ultimately share their expertise from an array of choices. Successful partnerships stem from clearly defined roles and responsibilities. Scientists/engineers are somewhat resistant to the idea of traditional, formal training. Instead of developing new expertise, many prefer to offer their existing strengths and expertise. Maintaining a healthy relationship requires the routine recognition of the contributions of scientists/engineers. As professional societies, university research centers and corporations increasingly engage in education and outreach, a need for a supportive infrastructure becomes evident. Work of TryScience.org/VolTS (Volunteers TryScience), the MRS NISE Net (Nanoscale Informal Science Education Network) subcommittee, NRCEN (NSF Research Center Education Network), the IBM On Demand Community, and IEEE Educational Activities exemplify some of the pieces of this evolving infrastructure.

  14. Devious Lies: Adventures in Freelance Science Outreach

    Science.gov (United States)

    Fatland, D. R.

    2003-12-01

    Observations are given from two freelance science outreach projects undertaken by the author: Tutoring at-risk secondary students and teaching astronomy to 5th-7th graders in a camp retreat environment. Two recurring thematic challenges in these experiences are considered: First the 'Misperception Problem', the institutionalized chasm between the process of doing science and K-12 science education (wherein science is often portrayed as something distant and inaccessible, while ironically children are necessarily excellent scientists). And second the 'Engagement Problem', engaging a student's attention and energy by matching teaching material and--more importantly--teaching techniques to the student's state of development. The objective of this work is twofold: To learn how to address these two challenges and to empower the students in a manner independent of the scientific content of any particular subject. An underlying hypothesis is that confidence to problem solve (a desirable life-skill) can be made more accessible through a combination of problem solving by the student and seeing how others have solved seemingly impossible problems. This hypothesis (or agenda) compels an emphasis on critical thinking and raises the dilemma of reconciling non-directed teaching with very pointed conclusions about the verity of pseudo-science and ideas prevalent about science in popular culture. An interesting pedagogical found-object in this regard is the useful 'devious lie' which can encourage a student to question the assumption that the teacher (and by extension any professed expert) has the right answers.

  15. The role of entomology in environmental and science education: Comparing outreach methods for their impact on student and teacher content knowledge and motivation

    Science.gov (United States)

    Weeks, Faith J.

    Outreach programming can be an important way for local students and teachers to be exposed to new fields while enhancing classroom learning. University-based outreach programs are offered throughout the country, including most entomology departments as few individuals learn about insects in school and these programs can be excellent sources of entomological education, as well as models to teach environmental and science education. Each department utilizes different instructional delivery methods for teaching about insects, which may impact the way in which students and teachers understand the insect concepts presented. To determine the impact of using entomology to enhance science and environmental education, this study used a series of university-based entomology outreach programs to compare three of the most common delivery methods for their effect on teacher and student content knowledge and motivation, specifically student interest in entomology and teacher self-efficacy. Twenty fifth grade classrooms were assessed over the course of one school year. The results show that teacher knowledge significantly increased when teachers were unfamiliar with the content and when trained by an expert, and teacher self-efficacy did not decrease when asked about teaching with insects. For students, content knowledge increased for each lesson regardless of treatment, suggesting that outreach program providers should focus on working with local schools to integrate their field into the classroom through the delivery methods best suited to the needs of the university, teachers, and students. The lessons also had an impact on student interest in science and environmental education, with an overall finding that student interest increases when using insects in the classroom.

  16. You Can't Flush Science Outreach

    Science.gov (United States)

    Drobnes, Emilie; Mitchell, S. E.

    2008-05-01

    Did you know... that the writing on the bathroom wall isn't just graffiti anymore? Studies have shown that messages in unusual locations can have extraordinary impact. A growing number of companies and non-profit organizations are placing signage in unexpected venues, such as bathroom stalls, sporting arena seatbacks, gas stations, and diaper-changing areas. A 2003 study found that public response to promotional materials posted in restrooms was overwhelmingly positive, and respondents view these materials for up to two minutes instead of the 3 to 5 seconds they spend with traditional print marketing. Recall rates of content and messages are high, and researchers found bathroom signage to be 40% more effective than a typical print sign. It is often difficult to design effective education and outreach programs that reach a broader audience than a fairly self-selective one. Most of our events and projects ask audiences to come to us. This format inherently attracts a science-interested audience. So how do you reach the other half, those non-traditional learners, in an effective manner? Take the science to them! Help your message be more effective by "shocking” them with the science. Placing science, technology, engineering, and mathematical (STEM) content in unexpected venues makes it accessible, memorable, and likely to reach a captive audience that might not otherwise seek it out. The "Did You Know?” campaign brings STEM messages to underserved audiences through innovative placement. Bathroom stalls, movie theaters, and shopping malls are visited by thousands each day and provide a surprising and overlooked venue for outreach.

  17. NASA and the United States educational system - Outreach programs in aeronautics, space science, and technology

    Science.gov (United States)

    Owens, Frank C.

    1990-01-01

    The role of NASA in developing a well-educated American work force is addressed. NASA educational programs aimed at precollege students are examined, including the NASA Spacemobile, Urban Community Enrichment Program, and Summer High School Apprenticeship Program. NASA workshops and programs aimed at helping teachers develop classroom curriculum materials are described. Programs aimed at college and graduate-level students are considered along with coordination efforts with other federal agencies and with corporations.

  18. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    Science.gov (United States)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  19. The "impressionist" force of creation stories in planetary sciences education and outreach

    Science.gov (United States)

    Urban, Z.

    2014-04-01

    Any truly meaningful presentation of a planetary science topic to both pupils/students and the general public should contain three modules. First, there should be all the necessary phenomenology, detailed description of "players" (i.e., planetary bodies and the sources of external influences). Second, there should be similarly complete description of "rules" (i.e., natural forces and factors). Third, one should not forget to provide a "life story", the evolutionary background (i.e., scenarios for origin, development and probable end of relevant planetary bodies). There is nothing new in this basic classification of the material presented to the class or to the general audience. It is a summary of collective wisdom of experienced teachers as well as that of non-teacher scientists engaged in public understanding of science activities. Nevertheless, there is an important caveat in this sequence. The audience could get lost a touch with the topic. This would lead to diminished attention in both the first module (overwhelming by facts and associated numbers) and in the second one (overwhelming by the complexity of interactions). It is suggested that this could be averted by partial inversion of the above working sequence in "emergency situations". For example, if the audience is distracted by some strong influence, like crucial football/ice-hockey match or a fashion display. That means, one should not present the topical material strictly in a usual 1-2-3 style (phenomenologycausality-evolution) but in modified 3-1-2-3 style (evolution-phenomenology-causality-evolution). Of course, a very natural question arises here: Is it possible, at all, to talk or write about evolution without presenting known facts and causes and effects involved beforehand? The answer, based on a large number of trial-and-error efforts, now seems to be: Yes, it is. One should take a lesson from great painters of the second half of the 19th century who have started and then pursued systematically

  20. Building a biodiversity content management system for science, education, and outreach

    Directory of Open Access Journals (Sweden)

    C S Parr

    2006-01-01

    Full Text Available We describe the system architecture and data template design for the Animal Diversity Web (http://www.animaldiversity.org, an online natural history resource serving three audiences: 1 the scientific community, 2 educators and learners, and 3 the general public. Our architecture supports highly scalable, flexible resource building by combining relational and object-oriented databases. Content resources are managed separately from identifiers that relate and display them. Websites targeting different audiences from the same database handle large volumes of traffic. Content contribution and legacy data are robust to changes in data models. XML and OWL versions of our data template set the stage for making ADW data accessible to other systems.

  1. There's an app for that! Incorporating smartphone technology in earth science education and outreach

    Science.gov (United States)

    Wong, Vanessa NL; Gallant, Ailie JE; Tay, Adeline

    2015-04-01

    A trial field-based, e-learning activity based in a coastal suburb in inner Melbourne was established in 2013 for a first year undergraduate environmental science class at Monash University. A self-guided walking tour was developed using existing app and podcast technologies, allowing students to undertake independent fieldwork. The intended outcomes of the activity were for students to be able to contextualise climate change in a real world situation and to identify associated issues for natural and human environments. The students were provided with information on the natural landscape features, including the soils, geomorphology and vegetation, and on the projected future changes in sea level based on inundation modelling from climate projections. Students were given a field guide handbook with instructions and questions to assist them in data collection. From the data collected in the field, students undertook additional research and highlighted a series of issues surrounding sea-level rise in the area, which was then presented and assessed. Students mostly reported positively on the activity. Peer-based learning and diversity from a classroom environment were highlighted as positives. Students also responded favourably to developing their own ideas through independent data collection and learning, and to being able to visualise the impacts of climate change in the real world. This was reflected in a higher mean mark in the question on this issue in the final exam compared to the mean mark in the previous year.

  2. Planetary Education and Outreach Using the NOAA Science on a Sphere

    Science.gov (United States)

    Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.

    2011-01-01

    Science On a Sphere (SOS) is a large visualization system, developed by the National Oceanic and Atmospheric Administration (NOAH), that uses computers running Redhat Linux and four video projectors to display animated data onto the outside of a sphere. Said another way, SOS is a stationary globe that can show dynamic, animated images in spherical form. Visualization of cylindrical data maps show planets, their atmosphere, oceans, and land, in very realistic form. The SOS system uses 4 video projectors to display images onto the sphere. Each projector is driven by a separate computer, and a fifth computer is used to control the operation of the display computers. Each computer is a relatively powerful PC with a high-end graphics card. The video projectors have native XGA resolution. The projectors are placed at the corners of a 30' x 30' square with a 68" carbon fiber sphere suspended in the center of the square. The equator of the sphere is typically located 86" off the floor. SOS uses common image formats such as JPEG, or TIFF in a very specific, but simple form; the images are plotted on an equatorial cylindrical equidistant projection, or as it is commonly known, a latitude/longitude grid, where the image is twice as wide as it is high (rectangular). 2048x] 024 is the minimum usable spatial resolution without some noticeable pixelation. Labels and text can be applied within the image, or using a timestamp-like feature within the SOS system software. There are two basic modes of operation for SOS: displaying a single image or an animated sequence of frames. The frame or frames can be setup to rotate or tilt, as in a planetary rotation. Sequences of images that animate through time produce a movie visualization, with or without an overlain soundtrack. After the images are processed, SOS will display the images in sequence and play them like a movie across the entire sphere surface. Movies can be of any arbitrary length, limited mainly by disk space and can be

  3. Alliance for Sequestration Training, Outreach, Research & Education

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Hilary [Univ. of Texas, Austin, TX (United States). Inst. for Geophysics Jackson School of Geosciences

    2013-12-31

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE-FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almost 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.

  4. Nuclear Science Outreach in the World Year of Physics

    Science.gov (United States)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  5. Science Outreach in Virtual Globes; Best Practices

    Science.gov (United States)

    Treves, R. W.

    2007-12-01

    The popularity of projects such as 'Crisis in Darfur' and the IPY (International Polar Year) network link show the potential of using the rich functionality of Virtual Globes for science outreach purposes. However, the structure of outreach projects in Virtual Globes varies widely. Consider an analogy: If you pick up a science journal you immediately know where to find the contents page and what the title and cover story are meant to communicate. That is because journals have a well defined set of norms that they follow in terms of layout and design. Currently, science projects presented in virtual globes have, at best, weakly defined norms, there are little common structural elements beyond those imposed by the constraints of the virtual globe system. This is not a criticism of the science community, it is to be expected since norms take time to develop for any new technology. An example of the development of norms are pages on the web: when they first started appearing structure was unguided but over the last few years structural elements such as a left hand side navigation system and a bread crumb trail near the header have become common. In this paper I shall describe the developing norms of structure I have observed in one area of virtual globe development; Google Earth science outreach projects. These norms include text introductions, video introductions, use of folders and overlay presentation. I shall go on to examine how best to use these norms to build a clear and engaging outreach project and describe some cartographic best practices that we should also consider adopting as norms. I also will briefly explain why I think norms in science outreach aid creativity rather than limiting it despite the counter intuitive nature of this concept.

  6. Train Like an Astronaut Educational Outreach

    Science.gov (United States)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  7. Science Outreach for the Thousands: Coe College's Playground of Science

    Science.gov (United States)

    Watson, D. E.; Franke, M.; Affatigato, M.; Feller, S.

    2011-12-01

    Coe College is a private liberal arts college nestled in the northeast quadrant of Cedar Rapids, IA. Coe takes pride in the outreach it does in the local community. The sciences at Coe find enjoyment in educating the children and families of this community through a diverse set of venues; from performing science demonstrations for children at Cedar Rapids' Fourth of July Freedom Festival to hosting summer forums and talks to invigorate the minds of its more mature audiences. Among these events, the signature event of the year is the Coe Playground of Science. On the last Thursday of October, before Halloween, the science departments at Coe invite nearly two thousand children from pre elementary to high school ages, along with their parents to participate in a night filled with science demos, haunted halls, and trick-or-treating for more than just candy. The demonstrations are performed by professors and students alike from a raft of cooperative departments including physics, chemistry, biology, math, computer science, nursing, ROTC, and psychology. This event greatly strengthens the relationships between institution members and community members. The sciences at Coe understand the importance of imparting the thrill and hunger for exploration and discovery into the future generations. More importantly they recognize that this cannot start and end at the collegiate level, but the American public must be reached at younger ages and continue to be encouraged beyond the college experience. The Playground of Science unites these two groups under the common goal of elevating scientific interest in the American people.

  8. Science Festivals: Grand Experiments in Public Outreach

    Science.gov (United States)

    Hari, K.

    2015-12-01

    Since the Cambridge Science Festival launched in 2007, communities across the United States have experimented with the science festival format, working out what it means to celebrate science and technology. What have we learned, and where might we go from here? The Science Festival Alliance has supported and tracked developments among U.S. festivals, and this presentation will present key findings from three years of independent evaluation. While science festivals have coalesced into a distinct category of outreach activity, the diversity of science festival initiatives reflects the unique character of the regions in which the festivals are organized. This symposium will consider how festivals generate innovative public programming by adapting to local conditions and spur further innovation by sharing insights into such adaptations with other festivals. With over 55 annual large scale science festivals in the US alone, we will discuss the implications of a dramatic increase in future festival activity.

  9. The International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M.; Morrow, C.; Thompson, B.

    2006-12-01

    The International Heliophysical Year (IHY) will celebrate the 50th anniversary of the International Geophysical Year (IGY) and will continue its tradition of international research collaboration. The term "heliophysical" is an extension of the term "geophysical", where the Earth, Sun & Solar System are studied not as separate domains but through the universal processes governing the heliosphere. IHY represents a logical next-step, extending the studies into the heliosphere and thus including the drivers of geophysical change. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe the IHY Education and Outreach Program, how to participate and the benefits in doing so. ~

  10. Evaluation Framework for NASA's Educational Outreach Programs

    Science.gov (United States)

    Berg, Rick; Booker, Angela; Linde, Charlotte; Preston, Connie

    1999-01-01

    The objective of the proposed work is to develop an evaluation framework for NASA's educational outreach efforts. We focus on public (rather than technical or scientific) dissemination efforts, specifically on Internet-based outreach sites for children.The outcome of this work is to propose both methods and criteria for evaluation, which would enable NASA to do a more analytic evaluation of its outreach efforts. The proposed framework is based on IRL's ethnographic and video-based observational methods, which allow us to analyze how these sites are actually used.

  11. The ATLAS Education and Outreach Group

    CERN Multimedia

    M. Barnett

    With the unprecedented scale and duration of ATLAS and the unique possibilities to make groundbreaking discoveries in physics, ATLAS has special opportunities to communicate the importance and role of our accomplishments. We want to participate in educating the next generation of scientific and other leaders in our society by involving students of many levels in our research. The Education and Outreach Group has focused on producing informational material of various sorts - like brochures, posters, a film, animations and a public website - to assist the members of the collaboration in their contacts with students, teachers and the general public. Another aim is to facilitate the teaching of particle physics and particularly the role of the ATLAS Experiment by providing ideas and educational material. The Education and Outreach Group meets every ATLAS week, with an attendance of between 25 and 40 people. The meetings have become an interesting forum for education and outreach projects and new ideas. The comi...

  12. HTA educational outreach program and change the equation participation

    Science.gov (United States)

    Gordon, Robert

    2013-05-01

    In this presentation, Hitachi High Technologies America (HTA) introduces its Educational Outreach Program and explains it's involvement with Change The Equation (CTEq), a nonprofit, nonpartisan, CEO-led initiative that is mobilizing the business community to improve the quality of science, technology, engineering and mathematics (STEM) learning in the United States.

  13. NASA's Swift Education and Public Outreach Program

    Science.gov (United States)

    Cominsky, L. R.; Graves, T.; Plait, P.; Silva, S.; Simonnet, A.

    2004-08-01

    Few astronomical objects excite students more than big explosions and black holes. Gamma Ray Bursts (GRBs) are both: powerful explosions that signal the births of black holes. NASA's Swift satellite mission, set for launch in Fall 2004, will detect hundreds of black holes over its two-year nominal mission timeline. The NASA Education and Public Outreach (E/PO) group at Sonoma State University is leading the Swift E/PO effort, using the Swift mission to engage students in science and math learning. We have partnered with the Lawrence Hall of Science to create a ``Great Explorations in Math and Science" guide entitled ``Invisible Universe: from Radio Waves to Gamma Rays," which uses GRBs to introduce students to the electromagnetic spectrum and the scale of energies in the Universe. We have also created new standards-based activities for grades 9-12 using GRBs: one activity puts the students in the place of astronomers 20 years ago, trying to sort out various types of stellar explosions that create high-energy radiation. Another mimics the use of the Interplanetary Network to let students figure out the direction to a GRB. Post-launch materials will include magazine articles about Swift and GRBs, and live updates of GRB information to the Swift E/PO website that will excite and inspire students to learn more about space science.

  14. Innovation in NASA's Astrophysics Education and Public Outreach

    Science.gov (United States)

    Hasan, H.; Smith, D.

    2014-07-01

    New technology and media are being rapidly incorporated in NASA's Astrophysics Education and Public Outreach (EPO) portfolio. In addition to web pages that provide basic information on missions and links to educational sites, missions have developed Facebook and Twitter followers. Recent highlights are presented about the innovative techniques used in presenting NASA science to the public, educators and students, together with representative examples. The immense treasure trove of electronic NASA EPO material is available to the public.

  15. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    Science.gov (United States)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  16. Renewable Microgrid STEM Education & Colonias Outreach Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to encourage them to select science and engineering as a career by providing an engineering-based problem-solving experience involving renewable energy systems such as photovoltaic (PV) panels or wind turbines. All public and private schools, community colleges, and vocational training programs would be eligible for participation. The Power Microgrids High School Engineering Experience used renewable energy systems (PV and wind) to provide a design capstone experience to secondary students. The objective for each student team was to design a microgrid for the student’s school using renewable energy sources under cost, schedule, performance, and risk constraints. The students then implemented their designs in a laboratory environment to evaluate the completeness of the proposed design, which is a unique experience even for undergraduate college students. This application-based program was marketed to secondary schools in the 28th Congressional District through the Texas Education Agency’s (TEA) Regional Service Centers. Upon application, TEES identified regionally available engineers to act as mentors and supervisors for the projects. Existing curriculum was modified to include microgrid and additional renewable technologies and was made available to the schools.

  17. Utilizing a MOOC as an education and outreach tool for geoscience: case study from Tokyo Tech's MOOC on "Deep Earth Science"

    Science.gov (United States)

    Tagawa, S.; Okuda, Y.; Hideki, M.; Cross, S. J.; Tazawa, K.; Hirose, K.

    2016-12-01

    Massive open online courses (MOOC or MOOCs) have attracted world-wide attention as a new digital educational tool. However, utilizing MOOCs for teaching geoscience and for outreach activity are limited so far. Mainly due to the fact that few MOOCs are available on this topic. The following questions are usually asked before undertaking MOOC development. How many students will potentially enroll in a course and what kind of background knowledge do they have? What is the best way to market the course and let them learn concepts easily? How will the instructor or staff manage discussion boards and answer questions? And, more simply, is a MOOC an effective educational or outreach tool? Recently, Tokyo Institute of Technology (Tokyo Tech) offered our first MOOC on "Deep Earth Science" on edX, which is one of the largest worldwide MOOC platforms. This brand new course was released in the Fall of 2015 and will re-open during the winter of 2016. This course contained materials such as structure of inside of the Earth, internal temperature of the earth and how it is estimated, chemical compositions and dynamics inside the earth. Although this course mainly dealt with pure scientific research content, over 5,000 students from 156 countries enrolled and 4 % of them earned a certificate of completion. In this presentation, we will share a case study based upon what we learned from offering "Deep Earth Science". At first, we will give brief introduction of our course. Then, we want to introduce tips to make a better MOOC by focusing on 1) students' motivation on studying, scientific literacy background, and completion rate, 2) offering engaging content and utilization of surveys, and 3) discussion board moderation. In the end, we will discuss advantages of utilizing a MOOC as an effective educational tool for geoscience. We welcome your ideas on MOOCs and suggestions on revising the course content.

  18. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  19. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    Science.gov (United States)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  20. Outreach to Future Hispanic Educational Leaders.

    Science.gov (United States)

    Serafin, Ana Gil

    This paper discusses issues related to the recruitment of Hispanic-American educational leaders, focusing on the El Centro de Recursos Educativos outreach center at Northeastern Illinois University in Chicago, which began operation in Fall 1997. It examines the characteristics of successful programs for Hispanic recruitment and retention and the…

  1. 24 CFR 125.301 - Education and Outreach Initiative.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Education and Outreach Initiative... FAIR HOUSING FAIR HOUSING INITIATIVES PROGRAM § 125.301 Education and Outreach Initiative. (a) The Education and Outreach Initiative provides funding for the purpose of developing, implementing, carrying out...

  2. The Aeolus project: Science outreach through art.

    Science.gov (United States)

    Drumm, Ian A; Belantara, Amanda; Dorney, Steve; Waters, Timothy P; Peris, Eulalia

    2015-04-01

    With a general decline in people's choosing to pursue science and engineering degrees there has never been a greater need to raise the awareness of lesser known fields such as acoustics. Given this context, a large-scale public engagement project, the 'Aeolus project', was created to raise awareness of acoustics science through a major collaboration between an acclaimed artist and acoustics researchers. It centred on touring the large singing sculpture Aeolus during 2011/12, though the project also included an extensive outreach programme of talks, exhibitions, community workshops and resources for schools. Described here are the motivations behind the project and the artwork itself, the ways in which scientists and an artist collaborated, and the public engagement activities designed as part of the project. Evaluation results suggest that the project achieved its goal of inspiring interest in the discipline of acoustics through the exploration of an other-worldly work of art. © The Author(s) 2013.

  3. OUTREACH

    CERN Multimedia

    Dave Barney

    Planning for a new CMS exhibition centre, next to the CMS Centre (Meyrin), is progressing well. The two rooms that form the exhibition will be divided into an "outreach" room and an "education" room, with the main target audience for both rooms being high school students (about 80% of all visitors to CERN). A global scenario for the exhibition has been developed by the CMS Outreach team in close collaboration with Juliette Davenne (who produced the ATLAS exhibition centre). The aim is to start civil engineering work in the summer and to have the centre operational in early 2010. Preliminary plans for a second exhibition site, at point 5, are also evolving, though on a longer timescale. Recently it has become clear that there are many models of the CMS detector in various institutes around Europe and the world. If you know of such a model please let the outreach team know by dropping us a line at cms.outreach@cern.ch Indeed any ideas for exhibits and hands-on interactive de...

  4. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Sharing Best Practices

    Science.gov (United States)

    Bartolone, Lindsay; Smith, D. A.; Astrophysics Science Education, NASA; Public Outreach Forum Team

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach community in enhancing the coherence, efficiency, and effectiveness of SMD-funded education and public outreach programs. As part of this effort, the four Forums (Astrophysics, Earth Science, Heliophysics, and Planetary Science) work together to coordinate resources and opportunities that enable sharing of best practices relevant to SMD-funded education and public outreach. Efforts include collaborating with SMD-funded education and public outreach programs to identify community needs for professional development; raising awareness of the existing body of best practices and educational research; and, organizing distance learning and face-to-face professional development opportunities. Topics include best practices in navigating NASA SMD education and public outreach program requirements, social media, engaging girls in science, and student misconceptions / reasoning difficulties. Opportunities to share best practices and learn from experts are extended to the broader astronomy and astrophysics community through the annual Astronomical Society of the Pacific education and public outreach conference. Evaluation of community professional development resources and opportunities is in progress.

  5. The science of science outreach: methods to maximise audience engagement

    Science.gov (United States)

    Adamson, Kathryn; Lane, Timothy

    2016-04-01

    Effective public engagement relies on a clear understanding of public audiences; their existing knowledge base and their learning preferences. Scientific content that is effective in academic spheres is not necessarily popular in the public domain. This may be due to content (e.g. beginner level to advanced terminology); presentation style (graphical, text, multimedia); audience demographic (children to adults); and entertainment value. Over the last few years, there has been a major expansion in the quantity and quality of science outreach material. For scientists, the production of outreach material, in any form, is the first giant leap to disseminating their knowledge to broader audiences. However, there is also a need to evaluate the performance of outreach material, so that its content and delivery style can be tailored and maximised for the target audience. We examine the Google Analytics data for climate science outreach website Climatica over a 12 month period in 2015. The site publishes regular posts, which take the form of short written articles, graphics, videos, or teaching resources, on all aspects of climate science. The site is publicised via social media including Twitter and Facebook. In particular, we assess website performance, in terms of website visits and post engagement. These are examined in the context of: post topic, post style, social media engagement, and the timing of post publication/advertisement. The findings of this investigation are used to explore audience preferences and mechanisms for future post development to maximise the use of this web resource.

  6. EarthScope Education and Outreach: Accomplishments and Emerging Opportunities

    Science.gov (United States)

    Robinson, S.; Ellins, K. K.; Semken, S. C.; Arrowsmith, R.

    2014-12-01

    EarthScope's Education and Outreach (E&O) program aims to increase public awareness of Earth science and enhance geoscience education at the K-12 and college level. The program is distinctive among major geoscience programs in two ways. First, planning for education and public engagement occurred in tandem with planning for the science mission. Second, the NSF EarthScope program includes funding support for education and outreach. In this presentation, we highlight key examples of the program's accomplishments and identify emerging E&O opportunities. E&O efforts have been collaboratively led by the EarthScope National Office (ESNO), IRIS, UNAVCO, the EarthScope Education and Outreach Subcommittee (EEOSC) and PI-driven EarthScope projects. Efforts by the EEOSC, guided by an EarthScope Education and Outreach Implementation Plan that is periodically updated, focus EarthScope E&O. EarthScope demonstrated early success in engaging undergraduate students (and teachers) in its mission through their involvement in siting USArray across the contiguous U.S. Funded E&O programs such as TOTLE, Illinois EarthScope, CEETEP (for K-12), InTeGrate and GETSI (for undergraduates) foster use of freely available EarthScope data and research findings. The Next Generation Science Standards, which stress science and engineering practices, offer an opportunity for alignment with existing EarthScope K-12 educational resources, and the EEOSC recommends focusing efforts on this task. The EEOSC recognizes the rapidly growing use of mobile smart devices by the public and in formal classrooms, which bring new opportunities to connect with the public and students. This will capitalize on EarthScope's already prominent social media presence, an effort that developed to accomplish one of the primary goals of the EarthScope E&O Implementation Plan to "Create a high-profile public identity for EarthScope" and to "Promote science literacy and understanding of EarthScope among all audiences through

  7. Celebrating a history of excellence : the Federal Aviation Administration and Space Education Outreach Program.

    Science.gov (United States)

    2011-01-01

    Building on 75 years of experience, the FAAs : aviation and space education outreach : program is earning an A+ for encouraging elementary, : secondary, and even college students to study math, : science, technology, engineering, and a host of : o...

  8. Outreach and educational activities in Russia

    Science.gov (United States)

    Gritsevich, M.; Kartashova, A.

    2012-09-01

    We present an overview of the major internal as well as international meetings and events held in Russia and dedicated to the integration, development and expanding of knowledge in Planetary Research. The report is complemented by the Europlanet activities in Russia over the last year, achieved goals and lessons learned. Additionally, we highlight current problems and possible future improvements to the present educational and outreach techniques.

  9. Particle Physics Outreach to Secondary Education

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab; Johansson, K.Erik; /Stockholm U.; Young, M.Jean

    2011-11-21

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  10. Particle Physics Outreach to Secondary Education

    International Nuclear Information System (INIS)

    Bardeen, Marjorie G.; Johansson, K. Erik; Young, M. Jean

    2011-01-01

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  11. Earth Science Outreach: A Move in the Right Direction

    Science.gov (United States)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    There is concern within the Geoscience Community about the public's limited understanding of Earth Science and its fundamental contribution to society. Earth Science plays only a minor role in public school education in Ontario leaving many students to stumble upon this field of study in post-secondary institutions. As the Earth Sciences offer relevant advice for political decisions and provide excellent career opportunities, outreach is an increasingly important component of our work. Recruitment of post-secondary students after they have chosen their discipline cannot remain the sole opportunity. Outreach must be directed to potential students at an early stage of their education. High school teachers are influential, directing students towards professional careers. Therefore we are first committed to reach these teachers. We provide professional development, resources and continued support, building an enthusiastic community of educators. Specific initiatives include: a three day workshop supported by a grant from EdGEO introducing earth science exercises and local field destinations; a resource kit with minerals, rocks, fossils, mineral identification tools and manuals; a CD with prepared classroom exercises; and in-class demonstrations and field trip guiding on request. Maintaining a growing network with teachers has proven highly effective. Direct public school student engagement is also given priority. We inspire students through interaction with researchers and graduate students, hand-on exercises, and by providing opportunities to visit our department and work with our collections. Successful projects include our week-long course "School of Rock" for the Enrichment Mini-Course Program, classroom visits and presentations on the exciting and rewarding career paths in geology during Carleton University open houses. Outreach to the general public allows us to educate the wider community about the Geoheritage of our region, and initiate discussions about

  12. Young Researchers Engaged in Educational Outreach to Increase Polar Literacy

    Science.gov (United States)

    Raymond, M.; Baeseman, J.; Xavier, J.; Kaiser, B.; Vendrell-Simon, B.

    2008-12-01

    The Association of Polar Early Career Scientists (APECS) grew out of the 4th International Polar Year (IPY-4) 2007-08 and is an international and interdisciplinary organization of over 1200 undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the wider cryosphere from more than 40 countries. Our aims are to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. As potentially one of the major legacies of IPY-4, APECS members have been at the forefront of increasing scientific knowledge and public interest in the polar regions, centered around global climate change, and enhancing scientific understanding, media attention, primary and secondary school (K-12) educational programs, undergraduate institutions, and public literacy campaigns. Research and Educational Outreach activities by APECS members during IPY-4 have improved both our understanding and the communication of all aspects of the Polar Regions and the importance of their broader global connections. APECS National Committees have run Polar Contests where young researchers partnered with teachers and students to develop curriculum and activities to share their research, have participated in many field based communication exchanges and are mentoring youth to pursue careers in science, and enhancing the public perception of scientists through photo, video and museum exhibits. In cooperation with the IPY Teachers Network and the IPY IPO, APECS is developing a polar education resource book that will feature education and outreach activities by young researchers, as well as provide examples of classroom activities for teachers to incorporate polar literacy into their curriculum and a How-To guide for researchers interested in conducting education and outreach. As young researchers interactively share their excitement and

  13. Helping Scientists Become Effective Partners in Education and Outreach

    Science.gov (United States)

    Laursen, Sandra L.; Smith, Lesley K.

    2009-01-01

    How does a scientist find herself standing before a group of lively third-graders? She may be personally motivated-seeking to improve public understanding of scientific issues and the nature of science, or to see her own children receive a good science education-or perhaps she simply enjoys this kind of work [Andrews et al., 2005; Kim and Fortner, 2008]. In addition to internal motivating factors, federal funding agencies have begun to encourage scientists to participate in education and outreach (E/O) related to their research, through NASA program requirements for such activities (see ``Implementing the Office of Space Science Education/Public Outreach Strategy,'' at http://spacescience.nasa.gov/admin/pubs/edu/imp_plan.htm) and the U.S. National Science Foundation's increased emphasis on ``broader impacts'' in merit review of research proposals (see http://www.nsf.gov/pubs/2003/nsf032/bicexamples.pdf). Universities, laboratories, and large collaboratives have responded by developing E/O programs that include interaction between students, teachers, and the public in schools; after-school and summer programs; and work through science centers, planetaria, aquaria, and museums.

  14. Fourteen Years of Education and Public Outreach for the Swift Gamma-ray Burst Explorer Mission

    OpenAIRE

    Cominsky, Lynn; McLin, Kevin; Simonnet, Aurore; Team, the Swift E/PO

    2014-01-01

    The Sonoma State University (SSU) Education and Public Outreach (E/PO) group leads the Swift Education and Public Outreach program. For Swift, we have previously implemented broad efforts that have contributed to NASA's Science Mission Directorate E/PO portfolio across many outcome areas. Our current focus is on highly-leveraged and demonstrably successful activities, including the wide-reaching Astrophysics Educator Ambassador program, and our popular websites: Epo's Chronicles and the Gamma...

  15. Planetary Science Research Discoveries (PSRD): Effective Education and Outreach Website at http://www.soest.hawaii.edu/PSRdiscoveries

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2000-01-01

    Planetary Science Research Discoveries (PSRD) website reports the latest research about planets, meteorites, and other solar system bodies being made by NASA-sponsored scientists. In-depth articles explain research results and give insights to contemporary questions in planetary science.

  16. SALT: How two Norwegian Early Career Scientists made a living out of their passion for marine Science and Education, Outreach, and Communication

    Science.gov (United States)

    Rokkan Iversen, K.; Busch, K. T.

    2011-12-01

    Many Early Career Scientists (ECS) share a heart and mind for engaging in Eduaction, Outreach, and Communication (EOC) activities. They often also experience the same frustration due to the limited resources and financial incentives available to support such important projects. The story of the knowledge-based company SALT is a tale of two Norwegian ECSs with a passion for marine science and EOC living their dream - due to the support of private and public funding sources. SALT is located in the small village Svolvær, in the Lofoten Archipelago in Northern-Norway. This small company delivers services and products within research, outreach and consultancy regarding the marine environment. Situated in the very middle of one of the most productive and unique oceanic areas in the world, SALT has a first-row perspective on blue resources, possibilities and challenges. The SALT vision is to provide marine knowledge to politicians and stakeholders, as well as the general public. EOC-projects are an important and prioritized area of this vision, and SALT has taken a broad approach to set such projects into life. SALT are building commercial projects directed towards the tourist and conference industry, as well as more idealistic projects designed to educate and engage children and youth. The total EOC-portifolio of SALT, is therefore as varied as the mixture of different sources funding them. During the first year in business, SALT has proven that it is possible to get funding for innovative EOC-projects in Norway. With the support of Innovation Norway (IN), The Norwegian Research Council (NRC), The RENATE Centre, The Norwegian Centre for Science Education, Nordland County, The Confederation of Norwegian Enterprise (NHO), and an inspiring hub of creative business partners in Lofoten, SALT has managed to realize several EOC-project within a year. SALT is especially grateful that the national structures have acknowledged the importance of innovative EOC- activities also

  17. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  18. ANDRILL Education and Public Outreach: A Legacy of the IPY

    Science.gov (United States)

    Rack, F. R.; Huffman, L. T.; Reed, J.; Harwood, D. M.; Berg, M.; Diamond, J.; Fox, A.; Dahlman, L. E.; Levy, R. H.

    2009-12-01

    ANDRILL field projects during the IPY included the McMurdo Ice Shelf (MIS) and Southern McMurdo Sound (SMS) drilling projects, and the Mackay Sea Valley (MSV) and Offshore New Harbor (ONH) seismic surveys. ANDRILL's international network of scientists, engineers, students and educators work together to convey an understanding of geoscience research and the process of science to non-technical audiences. ANDRILL education and public outreach (EPO) program goals are to: (1) promote environmental and polar science literacy for all audiences; (2) develop and disseminate engaging resources for formal and informal education; (3) develop and nurture a network of polar science educators; (4) spark the curiosity of students and the general public; (5) encourage students to pursue careers in science; (6) challenge misconceptions about scientific research; (7) provide professional development opportunities for educators; and, (8) encourage inquiry teaching in science education. During the IPY, ANDRILL established partnerships with several IPY projects to enhance science literacy and promote the IPY in formal and informal education and outreach venues. ANDRILL-led initiatives include the ARISE (ANDRILL Research Immersion for Science Educators) Program, Project Iceberg, the FLEXHIBIT (FLEXible exHIBIT; in partnership with Antarctica’s Climate Secrets/IPY Engaging Antarctica), and the Project Circle. ANDRILL partnerships developed with several museums and school districts for teacher professional development workshops and a variety of public events. A polar learning community was created from the ARISE participants and their many contacts, the Project Circle participants, and interested educators who contacted ANDRILL. EPO activities are continuing in the post-IPY period with additional funding. The ARISE program has been successful in building a team of educators and a network of international collaborations across grade levels and cultures. The ANDRILL website has expanded to

  19. Education and Outreach | State, Local, and Tribal Governments | NREL

    Science.gov (United States)

    Education & Outreach Education and Outreach With support from the U.S. Department of Energy SunShot Initiative, NREL's Solar Technical Assistance Team (STAT) develops a range of education and addressing solar market barriers. Past presentations are available for the following topics: Solar 101-This

  20. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community

    Science.gov (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.

    2006-12-01

    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  1. Measurement of Bitumen Viscosity in a Room-Temperature Drop Experiment: Student Education, Public Outreach and Modern Science in One

    Science.gov (United States)

    Widdicombe, A. T.; Ravindrarajah, P.; Sapelkin, A.; Phillips, A. E.; Dunstan, D.; Dove, M. T.; Brazhkin, V. V.; Trachenko, K.

    2014-01-01

    The slow flow of a viscous liquid is a thought-provoking experiment that challenges students, academics and the public to think about some fundamental questions in modern science. In the Queensland demonstration--the world's longest-running experiment, which has earned the Ig Nobel prize--one drop of pitch takes about ten years to fall, leading to…

  2. Outreach Through Action: Using Citizen Science Pathways to Educate and Engage the Public While Collecting Real Data

    Science.gov (United States)

    Wickline, A.

    2016-02-01

    Citizens in Lewes, DE monitor local waterways by collecting physical and chemical data and checking for harmful algal blooms since 1991 through the University of Delaware Citizen Monitoring Program (UD CMP). This effort has produced lengthy time series for some sites dating back to 1991, as well as an engaged cohort of local citizens interested in coastal and estuarine processes. Though their primary goal is to monitor for conditions that could potentially be harmful to human and aquatic health, we saw an opportunity to reach out and expand their efforts by asking these citizens to sample the zooplankton community, providing more ecological context for their data. Over the past year, we have worked to engage this group through a series of talks and trainings. We explained the basics of zooplankton dynamics in our region, recruited volunteers to collect zooplankton at their sites, and worked with them to analyze their data. This small pilot project exemplifies the dual benefits of citizen science programs: collecting credible data while provided people with non-science backgrounds a chance to learn science through a hands-on project. The interactions with researchers and opportunities to work with real data offer citizens the one of the most robust science experiences, going beyond those provided by attending lab open houses or listening to talks.

  3. Impact Through Outreach and Education with Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    Heward, A.; Barrosa, M.; Miller, S.

    2015-10-01

    Since 2005, Europlanet has provided a framework to bring together Europe's fragmented planetary science community. The project has evolved through a number of phases into a self-sustaining membership organization. Now, Europlanet is launching a new Research Infrastructure (RI) funded through the European Commission's Horizon 2020 programme that, for the next four years, will provide support, services, access to facilities, new research tools and a virtual planetary observatory. Europlanet 2020 RI's Impact Through Outreach and Education (IOE) activities aim to ensure that the work of Europlanet and the community it supports is known, understood and used by stakeholders, and that their inputs are taken into account by the project. We will engage citizens, policy makers and potential industrial partners across Europe with planetary science and the opportunities that it provides for innovation, inspiration and job creation. We will reach out to educators and students, both directly and through partner networks, to provide an interactive showcase of Europlanet's activities e.g through live link-ups with scientists participating in planetary analogue field trips, educational video "shorts" and through using real planetary data from the virtual observatory in comparative planetology educational activities. We will support outreach providers within the planetary science community (e.g. schools liaison officers, press officers, social media managers and scientists active in communicating their work) through meetings and best practice workshops, communication training sessions, an annual prize for public engagement and a seed-funding scheme for outreach activities. We will use traditional and social media channels to communicate newsworthy results and activities to diverse audiences not just in Europe but also around the globe.

  4. Caffeine, HPLC, Outreach (How Can We Interest Kids in Science?)

    Science.gov (United States)

    A current challenge for the scientific community is to generate an interest in science in the general public. If we can interest our youth in science we can produce more scientists and raise awareness of science in our society. An outreach activity will be described which can be brought into the cl...

  5. Emerging Leader for Education and Outreach

    Science.gov (United States)

    Bartholow, S.

    2013-12-01

    Polar Educators International (PEI) is a global professional network for those who educate in, for, and about the polar regions. Our goal is to connect educators, scientists, and community members to share expertise around the world and to rekindle student and public engagement with global environmental change. The growing membership in over 30 countries is now recognized as a leading organization capable of fulfilling E&O goals of international science organizations and training educators to facilitate outstanding polar science and climate change education in classrooms. This session will address the importance of dedicated, high-caliber, interpersonal professional networks that are linked directly to the expert science community to better serve science goals and education in classrooms. Discover that the educators and scientists in the network are resources themselves to help you become a leader in polar and climate education; arguably our most important content at the international level.

  6. Photonics outreach and education through partnerships in Puerto Rico

    Science.gov (United States)

    Friedman, Jonathan S.; Diaz, Andres; Saltares, Roger; Luciano, Sarah; Molina, Nerivette; Martinez, Smailyn; Hernandez, Alejandro; de Jesus, Johan; Rivera, Yesenia; Capeles, Antonio; Alvear, Felipe; Lopez, Jesus; Rivera, Miguel; Saurez, Rey; Trujillo, Elsa

    2015-10-01

    As the only photonics center in Puerto Rico, the Puerto Rico Photonics Institute (PRPI) has developed education and outreach projects, partnering with other institutions and private companies to optimize the use of available resources. We present our experience, challenges, rewards, and results for the following projects: - Tours: K-12 students visit our facilities in a science tour including a presentation on the Arecibo Observatory (AO) and the Digital Planet Geodome. We present optics demonstrations and other information. In the first three months we hosted fifteen schools impacting over 1,400 students. - Outreach: We have newly active outreach and recruiting activities for Puerto Rico (PR) schools. - Teachers: With the PR Math-Science Partnership (MSP) Program, we have given a full-day workshop on optics and photonics experiments for 5th-12th grade teachers, and a master class at the annual MSP Congress. We have impacted over 500 teachers through these initiatives. - Continuing Education: We have given continuing education courses in addition to the MSP workshops. - General Public: We partner with museums in PR, the University of Turabo, and the AO Visitor Center to build optics exhibits, many developed by students. - Video: PRPI is promoting the 2015 International Year of Light, creating: 1. A short video with students and faculty from the Universidad Metropolitana (UMET) Schools of Communication and Business Administration; 2. A longer video with the production company Geoambiente. - Apps: Our website will include ray tracing and wave propagation applications, developed by UMET Computer Science students. - Capstone: Engineering students at the School of Engineering at Universidad del Turabo are developing laser pattern generators.

  7. The Education and Outreach Program of ATLAS

    CERN Multimedia

    Barnett, M.

    2006-01-01

    The ATLAS Education and Outreach (E&O) program began in 1997, but the advent of LHC has placed a new urgency in our efforts. Even a year away, we can feel the approaching impact of starting an experiment that could make revolutionary discoveries. The public and teachers are beginning to turn their attention our way, and the newsmedia are showing growing interest in ATLAS. When datataking begins, the interest will peak, and the demands on us are likely to be substantial. The collaboration is responding to this challenge in a number of ways. ATLAS management has begun consultation with experts. The official budget for the E&O group has been growing as have the contributions of many ATLAS institutions. The number of collaboration members joining these efforts has grown, and their time and effort is increasing. We are in ongoing consultation with the CERN Public Affairs Office, as well as the other LHC experiments and the European Particle Physics Outreach Group. The E&O group has expanded the scope...

  8. Potential Uses of EarthSLOT (an Earth Science, Logistics, and Outreach Terrainbase) for Education and Integration in the International Polar Year

    Science.gov (United States)

    Nolan, M.

    2004-12-01

    EarthSLOT is an internet-based, 3D, interactive terrain and data visualization system that may have many potential uses as an education and integration tool for International Polar Year projects. Recently funded by NSF's Office of Polar Programs for use in the Arctic, the global nature of the application lends itself well for use at both poles and everywhere in between. The application allows one to start with a spinning earth and zoom down to surface level. The highest resolution digital elevation models available provide the necessary 3D topographic perspective and a variety of possible high-resolution satellite and aerial imagery layers add surface realism; resolution can be down to the centimeter level for either type of data, and frequently acquired satellite imagery may be updated automatically as it arrives. Superimposed on this can be nearly any form of vector or annotation layers, such as shapefiles, polygons, point data, and 3D models (still and moving), which can be easily imported from existing GIS applications or spreadsheets. External databases can also be queried and the results served seamlessly. The entire application is served over the internet, and any connection with speeds over 300kps allows one to interactively fly with a minimum of performance lag. EarthSLOT stands for Earth Science, Logistics, and Outreach Terrainbase, targeting the user-groups of scientists, logisticians, and the public. Approved scientific users can add their own vector content to the application on their own, such that they can create their own custom applications featuring their data but using our underlying earth model with a minimum of interaction with us. For example, an oceanographer can add ship tracks or buoy locations to the model with links to data, host the link on his or her own web page, and invite collaborators to view the spatial relationship of their data to underlying bathymetry. Logisticians or program managers interested in understanding the spatial

  9. Outreach in Planetary Science: myriad ways of getting involved

    Science.gov (United States)

    Lopes, R. M. C.

    2017-12-01

    Scientists and engineers sometimes think that to do outreach and education activities well, they have to be exceptional at public speaking, writing, or interacting with children or laypeople. However, during my career in planetary science, I've been involved in and close to a myriad of ways of getting involved in E/PO and found that there is a path to involvement for every personality. Another common misconception is that doing E/PO will hurt one's career as a scientist or engineer. While many of us do not have a great deal of time to spend on E/PO, there are efficient ways of making an impact. This talk will discuss ways that I've found work for me and for colleagues and tips on finding your own niche in these activities.

  10. Overview of nuclear education and outreach program among Malaysian school students

    Science.gov (United States)

    Sahar, Haizum Ruzanna; Masngut, Nasaai; Yusof, Mohd Hafizal; Ngadiron, Norzehan; Adnan, Habibah

    2017-01-01

    This paper gives an overview of nuclear education and outreach program conducted by Agensi Nuklear Malaysia (Nuklear Malaysia) throughout its operation and establishment. Since its foundation in 1972, Nuklear Malaysia has been the pioneer and is competent in the application of nuclear science and technology. Today, Nuklear Malaysia has ventured and eventually contributed into the development of various socio-economic sectors which include but not limited to medical, industry, manufacturing, agriculture, health, radiation safety and environment. This paper accentuates on the history of education and outreach program by Nuklear Malaysia, which include its timeline and evolution; as well as a brief on education and outreach program management, involvement of knowledge management as part of its approach and later the future of Nuklear Malaysia education and outreach program.

  11. Outcomes for engineering students delivering a STEM education and outreach programme

    Science.gov (United States)

    Fitzallen, Noleine; Brown, Natalie Ruth

    2017-11-01

    University science outreach programmes are used to encourage more school students to select science, technology, engineering, and mathematics (STEM) subjects in further education and pursue science-related careers. The benefits of science outreach programmes are often espoused from the perspective of programme participants. Little attention, however, is given to what university students delivering the programmes gain from the experience. This paper seeks to illustrate the benefits of engineering students delivering STEM outreach programmes in schools. It reports on a qualitative case study of the experiences of two STEM Education and Outreach team members from a regional university in Australia. Content analysis of interview data highlighted not only the participants' motivations and perceived benefits of being involved in the STEM programme but also revealed the skills and attributes honed throughout the experience. Involvement in the STEM outreach programme resulted in the development of social and personal responsibility generic graduate attribute skills, evidenced through their motivations to be involved, the demonstration of understanding of teaching and learning, and application of science communication skills. This study demonstrates that designing and delivering STEM outreach programmes assists in the development of skills that will be beneficial when pursuing careers in engineering in the future.

  12. The Success of Podcasting as a Success for Science Outreach

    Science.gov (United States)

    Haupt, R. J.; Wheatley, P.; Padilla, A. J.; Barnhart, C. J.

    2015-12-01

    Podcasts are downloadable web-hosted audio programs (radio on demand). The medium's popularity has grown immensely since its beginning 10+ years ago. "Science and Medicine" remains a prominent category in iTunes (the most popular podcast marketplace), but is unfortunately inundated with non-scientific and dubious content (e.g. the paranormal, health fads, etc.). It seems unlikely that legitimate science content would thrive in such an environment. However, our experience as an independent science podcast shows it is possible to successfully present authentic science to a general audience and maintain popularity. Our show, Science… sort of, began in the fall of 2009, and we have since produced episodes regularly. As of July 31, 2015, our feed hosts 235 episodes, with an average ~6,700 downloads per episode, and over 1.6 million total downloads originating from all across the globe. Thanks to listener involvement and contribution, the show is financially self-sustaining. While production requires a significant time input, no external financial support from the creators or other granting agencies is needed. Traditional media outlets rely on advertisers, thus pressuring shows to produce "popular" content featuring science celebrities. In contrast, independent podcasts can interview big name science communicators, such as Dr. Neil DeGrasse Tyson, while also exploring the research of graduate students and early career scientists. This level playing field provides an unprecedented opportunity for studies to reach a global audience and share research that previously may have only be seen by those at a specialized conference or subscribed to niche journals. Further, direct public engagement helps the audience personally connect to the research and researcher. In combination with other social media platforms, podcasting is a powerful tool in the outreach arsenal, enabling one to share science directly with the world in a way that both educates and excites listeners.

  13. International Space Education Outreach: Taking Exploration to the Global Classroom

    Science.gov (United States)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  14. From the field to classrooms: Scientists and educators collaborating to develop K-12 lessons on arctic carbon cycling and climate change that align with Next Generation Science Standards, and informal outreach programs that bring authentic data to informal audiences.

    Science.gov (United States)

    Brinker, R.; Cory, R. M.

    2014-12-01

    Next Generation Science Standards (NGSS) calls for students across grade levels to understand climate change and its impacts. To achieve this goal, the NSF-sponsored PolarTREC program paired an educator with scientists studying carbon cycling in the Arctic. The data collection and fieldwork performed by the team will form the basis of hands-on science learning in the classroom and will be incorporated into informal outreach sessions in the community. Over a 16-day period, the educator was stationed at Toolik Field Station in the High Arctic. (Toolik is run by the University of Alaska, Fairbanks, Institute of Arctic Biology.) She participated in a project that analyzed the effects of sunlight and microbial content on carbon production in Artic watersheds. Data collected will be used to introduce the following NGSS standards into the middle-school science curriculum: 1) Construct a scientific explanation based on evidence. 2) Develop a model to explain cycling of water. 3) Develop and use a model to describe phenomena. 4) Analyze and interpret data. 5) A change in one system causes and effect in other systems. Lessons can be telescoped to meet the needs of classrooms in higher or lower grades. Through these activities, students will learn strategies to model an aspect of carbon cycling, interpret authentic scientific data collected in the field, and conduct geoscience research on carbon cycling. Community outreach sessions are also an effective method to introduce and discuss the importance of geoscience education. Informal discussions of firsthand experience gained during fieldwork can help communicate to a lay audience the biological, physical, and chemical aspects of the arctic carbon cycle and the impacts of climate change on these features. Outreach methods will also include novel use of online tools to directly connect audiences with scientists in an effective and time-efficient manner.

  15. Education and Outreach Opportunities in New Astronomical Facilities

    Science.gov (United States)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating

  16. Optical Science Discovery Program: Pre-College Outreach and So Much More

    Science.gov (United States)

    Deutsch, Miriam

    2010-03-01

    Recruiting and retaining women into the physical sciences is an ongoing struggle for universities, with the gap between men and women in physics remaining strong. Research shows a precipitous drop in female participation in the physical sciences around the 7th grade year of primary education, where girls begin losing interest during middle school, the drain continuing throughout high school with another significant drop at the bachelors level. To combat the loss of women in the physical sciences, the Oregon Center for Optics at the University of Oregon has created the Optical Science Discovery Program (OSDP), a precollege outreach program that targets girls in middle and high school. This program uses optical sciences as the medium through which girls explore experimental science. The program consists of a one-week intensive summer camp, a mentored monthly science club, summer internships and mentoring opportunities for camp alumni. By utilizing media often at the core of teenage life (e.g. Facebook, MySpace) we also aim to interact with program participants in a familiar and informal environment. Mentoring of OSDP activities is carried out by faculty and students of all levels. This in turn allows other education and outreach efforts at the University of Oregon to incorporate OSDP activities into their own, contributing to our broader university goals of surmounting barriers to higher education and creating a more scientifically literate populace. This talk will describe the OSDP program and its incorporation into the broader spectrum of outreach and education efforts.

  17. AGU education and public outreach programs: Empowering future Earth and space scientists

    Science.gov (United States)

    Adamec, Bethany; Asher, Pranoti

    2011-10-01

    The staff and leadership of AGU are committed to fostering excellence in Earth and space science education. While AGU's Strategic Plan does not specifically highlight primary or secondary education among its objectives, outreach in this area plays a significant role in developing and nurturing the next generation of Earth and space scientists. Several educational goals along with specific strategies will help AGU meet its goal related to workforce or talent pool development. Particular emphasis is being placed on building partnerships and collaborations that will increase the effectiveness of AGU's outreach efforts related to education.

  18. Outreach to Science Faculty and Students through Research Exhibitions

    Science.gov (United States)

    Chan, Tina; Hebblethwaite, Chris

    2014-01-01

    Penfield Library at the State University of New York at Oswego (SUNY Oswego) has a gallery exhibit space near the front entrance that is used to showcase student-faculty research and art class projects. This article features the library's outreach efforts to science faculty and students through research exhibitions. The library held an exhibition…

  19. Science Outreach through Art: A Journal Article Cover Gallery

    Science.gov (United States)

    McCullough, Ian

    2015-01-01

    Research faculty journal covers were used to create a gallery in the Science & Technology branch library at the University of Akron. The selection, presentation, and promotion process is shared along with copyright considerations and a review of galleries used for library outreach. The event and display was a great success attracting faculty…

  20. Educational Outreach at the M.I.T. Plasma Fusion Center

    Science.gov (United States)

    Censabella, V.

    1996-11-01

    Educational outreach at the MIT Plasma Fusion Center consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a new and improved C-MOD Jr, a confinement video game which helps students to discover how computers manipulate magnetic pulses to keep a plasma confined for as long as possible. Also on display will be an educational toy created by the Cambridge Physics Outlet, a PFC spin-off company. The PFC maintains a Home Page on the World Wide Web, which can be reached at http://cmod2.pfc.mit.edu/.

  1. Program Spotlight: National Outreach Network's Community Health Educators

    Science.gov (United States)

    National Outreach Network of Community Health Educators located at Community Network Program Centers, Partnerships to Advance Cancer Health Equity, and NCI-designated cancer centers help patients and their families receive survivorship support.

  2. The Education and Outreach Project of ATLAS - A New Participant in Physics Education

    International Nuclear Information System (INIS)

    Barnett, R. Michael; Johansson, K. Erik

    2006-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world. With the extraordinary possibility to make groundbreaking discoveries, the ATLAS Experiment [1] at the Large Hadron Collider at CERN can play an important role in promoting contemporary physics at school. For many years ATLAS has had a substantial collaborative Education and Outreach (E and O) project in which physicists from various parts of the world take part. When the experiment begins in 2007, students from around the world will be analyzing data using cutting-edge technology. The unprecedented collision energies of the Large Hadron Collider allow ATLAS to decode the 'events' that unfold after the head-on collisions of protons (Fig. 1). The scientific results from these events will reveal much about the basic nature of matter, energy, space, and time. Students and others will be excited as they try to find events that may be signs for dark matter, extra dimensions of space, mini-black holes, string theory, and other fundamental discoveries. Science education and outreach and the promotion of awareness and appreciation of physics research have become important tasks for the research community and should be recognized as a natural and logical part of science research and as an important link between research and society. To be successful these activities have to be done in a systematic and professional way. Leading scientists together with multimedia experts can form a powerful team with teachers and educators in disseminating physics information to school and universities. The ATLAS collaboration has fully recognized the importance of education and outreach. The ATLAS E and O project can be a model for today's large science experiments in promoting science at schools and universities

  3. The Education and Outreach Project of ATLAS - A New Participant inPhysics Education

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, R. Michael; Johansson, K. Erik

    2006-04-15

    The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world. With the extraordinary possibility to make groundbreaking discoveries, the ATLAS Experiment [1] at the Large Hadron Collider at CERN can play an important role in promoting contemporary physics at school. For many years ATLAS has had a substantial collaborative Education and Outreach (E&O) project in which physicists from various parts of the world take part. When the experiment begins in 2007, students from around the world will be analyzing data using cutting-edge technology. The unprecedented collision energies of the Large Hadron Collider allow ATLAS to decode the 'events' that unfold after the head-on collisions of protons (Fig. 1). The scientific results from these events will reveal much about the basic nature of matter, energy, space, and time. Students and others will be excited as they try to find events that may be signs for dark matter, extra dimensions of space, mini-black holes, string theory, and other fundamental discoveries. Science education and outreach and the promotion of awareness and appreciation of physics research have become important tasks for the research community and should be recognized as a natural and logical part of science research and as an important link between research and society. To be successful these activities have to be done in a systematic and professional way. Leading scientists together with multimedia experts can form a powerful team with teachers and educators in disseminating physics information to school and universities. The ATLAS collaboration has fully recognized the importance of education and outreach. The ATLAS E&O project can be a model for today's large science experiments in promoting science at schools and universities.

  4. CloudSat Education Network: Partnerships for Outreach

    Science.gov (United States)

    TeBockhorst, D.

    2014-12-01

    CloudSat Education Network (CEN): Partnerships to improve the understanding of clouds in formal and informal settings. Since The CloudSat satellite launched in 2006 the Formal and Informal education programs for the mission have been focused on bringing an understanding about the mission science and the importance of clouds, climate & weather science. This has been done by creating and strengthening partnership and collaboration within scientific and educational communities around the country and the world. Because CloudSat was formally recognized as a Earth System Science Pathfinder campaign with the GLOBE program, the CEN developed a set of field protocols for student observations that augmented the GLOBE atmosphere protocols when there was a satellite overpass. This shared process between GLOBE & CloudSat resulted in the training & creation of CEN schools that are both GLOBE schools and CloudSat schools, and also produced three GLOBE partnerships that specialize in cloud science education and outreach. In addition, the CEN has developed productive relationships with other NASA missions and EPO teams. Specifically, in collaboration with the NASA CERES mission projects S'Cool and MyNASAData, we have co-presented at NSTA conferences and with schools participating in a NASA EPOESS-funded formal education project. This collaborative work has been a very real benefit to a wide variety of audiences needing to strengthen their understanding of clouds and their roles in the earth system, and we hope will serve as a model to future missions looking to involve the public in mission science.

  5. Education Outreach Associated with Technology Transfer in a Colonia of South Texas: Green Valley Farms Science and Space Club for Middle School Aged Children in Green Valley Farms, San Benito, Texas

    Science.gov (United States)

    Potess, Marla D.; Rainwater, Ken; Muirhead, Dean

    2004-01-01

    Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications. Two households within the colonia are demonstration sites for constructed wetlands. A colonia resident and activist identified educational opportunities for colonia children as a primary goal for many colonia residents. Colonia parents view education as the door to opportunity and escape from poverty for their children. The educational outreach component of the project in Green Valley Farms was a Science and Space Club for middle-school age students. Involved parents, schoolteachers, and school administrators enthusiastically supported the monthly club meetings and activities. Each month, students participated in interactive learning experiences about water use and reuse in space and on earth. Activities increased knowledge and interest in water resource issues and in science and engineering fields. The Institute for the Development and Enrichment of Advanced Learners (IDEAL) at Texas Tech University provided full scholarships for five students from Green Valley Farms to attend the Shake Hands With Your Future camp at Texas Tech University in June 2003. The educational outreach

  6. Opportunities and Resources for Scientist Participation in Education and Public Outreach

    Science.gov (United States)

    Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.

    2012-10-01

    Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  7. Space science public outreach at Louisiana State University

    Science.gov (United States)

    Guzik, T.; Babin, E.; Cooney, W.; Giammanco, J.; Hartman, D.; McNeil, R.; Slovak, M.; Stacy, J.

    Over the last seven years the Astronomy / Astrophysics group in the Department of Physics and Astronomy of Louisiana State University has developed an exten- sive Space Science education and public outreach program. This program includes the local park district (the Recreation and Park Commission for the Parish of East Baton Rouge, BREC), the local amateur astronomer group (the Baton Rouge As- tronomical Society, BRAS), the Louisiana Arts and Science Museum (LASM), and Southern University (SU, part of the largest HBCU system in the nation). Our effort has directly led to the development of the Highland Road Park Observatory (HRPO, http://www.bro.lsu.edu/hrpo) that supports student astronomy training at LSU and SU, amateur observations and a public program for adults and children, establishment of a series of teacher professional development workshops in astronomy and physics, and the "Robots for Internet Experiences (ROBIE)" project (http://www.bro.lsu.edu/) where we have several instruments (e.g. HAM radio, radio telescope, optical tele- scopes) that can be controlled over the internet by students and teachers in the class- room along with associated lessons developed by a teacher group. In addition, this year the LASM, will be opening a new planetarium / space theater in downtown Baton Rouge, Louisiana. We are currently working to bring live views of the heavens from the HRPO telescope to audiences attending planetarium shows and will be working closely with planetarium staff to develop shows that highlight LSU astronomy / space science research. During the presentation we will provide some details about our in- dividual projects, the overall structure of our program, establishing community links and some of the lessons we learned along the way. Finally, we would like to acknowl- edge NASA, Louisiana State University, the Louisiana Systemic Initiatives Program and the Louisiana Technology Innovation Fund for their support.

  8. Advancing Ocean Science Through Coordination, Community Building, and Outreach

    Science.gov (United States)

    Benway, H. M.

    2016-02-01

    The US Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org) is a dynamic network of scientists working across disciplines to understand the ocean's role in the global carbon cycle and how marine ecosystems and biogeochemical cycles are responding to environmental change. The OCB Project Office, which is based at the Woods Hole Oceanographic Institution (WHOI), serves as a central information hub for this network, bringing different scientific disciplines together and cultivating partnerships with complementary US and international programs to address high-priority research questions. The OCB Project Office plays multiple important support roles, such as hosting and co-sponsoring workshops, short courses, working groups, and synthesis activities on emerging research issues; engaging with relevant national and international science planning initiatives; and developing education and outreach activities and products with the goal of promoting ocean carbon science to broader audiences. Current scientific focus areas of OCB include ocean observations (shipboard, autonomous, satellite, etc.); changing ocean chemistry (acidification, expanding low-oxygen conditions, etc.); ocean carbon uptake and storage; estuarine and coastal carbon cycling; biological pump and associated biological and biogeochemical processes and carbon fluxes; and marine ecosystem response to environmental and evolutionary changes, including physiological and molecular-level responses of individual organisms, as well as shifts in community structure and function. OCB is a bottom-up organization that responds to the continually evolving priorities and needs of its network and engages marine scientists at all career stages. The scientific leadership of OCB includes a scientific steering committee and subcommittees on ocean time-series, ocean acidification, and ocean fertilization. This presentation will highlight recent OCB activities and products of interest to the ocean science community.

  9. The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology): Lessons Learned from an Innovative Research-Education-Outreach Center at Colorado School of Mines

    Science.gov (United States)

    Hogue, T. S.; Blaine, A. C.; Martin, A. C.

    2016-12-01

    The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology) is a testament to the power of collaboration and innovation. WE2ST began as a partnership between ConocoPhillips (foundation gift) and the Colorado School of Mines (CSM) with the goal of fostering solutions to water-energy challenges via education, research and outreach. The WE2ST center is a training ground for the next generation of water-energy-social scientists and engineers and is a natural fit for CSM, which is known for its expertise in water resources, water treatment technologies, petroleum engineering, geosciences, and hydrology. WE2ST has nine contributing faculty researchers that combine to create a web of expertise on sustainable energy and water resources. This research benefits unconventional energy producers, water-reliant stakeholders and the general public. Areas of focus for research include water sources (quality and quantity), integrated water-energy solution viability and risk, and social-corporate responsibility. The WE2ST Center currently provides annual support for 8-9 Graduate Fellows and 13 Undergraduate Scholars. Top-tier graduate students are recruited nationally and funded similar to an NSF Graduate Research Fellowship (GRF). Undergraduate Scholars are also recruited from across the CSM campus to gain experience in faculty laboratories and on research teams. All WE2ST students receive extensive professional skills training, leadership development, communication skills training, networking opportunities in the water-energy industries, and outreach opportunities in the community. The corner stone of the WE2ST Center is a focus on communication with the public. Both in social science research teams and in general interactions with the public, WE2ST seeks to be "an honest broker" amidst a very passionate and complex topic. WE2ST research is communicated by presentations at technical conferences, talking with people at public gatherings

  10. OUTREACH

    CERN Multimedia

    E. Gibney

    Feedback from users on the new CMS Outreach web site has been very encouraging, with a large majority of people finding the new navigation scheme and content clear and easy to use. Suggestions concerning content (in particular) are always welcome. Please send them to: outreach@cern.ch Compared with the LHC startup and mass media attention of the 10th September, the Official Inauguration of the LHC on the 21st October was a relatively subdued event. Even so, many VIPs visited the CMS experimental cavern and were left feeling awed and inspired. The ceremony itself, in the SM18 area at CERN (where all the dipoles were tested) was followed by a tour around a temporary exhibition area in the same building, where pieces of CMS were on display. These were accompanied by films of the lowering operations and preliminary versions of the "virtual reality" images from Peter McReady (soon to be available on the CMS Outreach web site), both of which were well received by the audience. Many thanks to th...

  11. Outrageous Outreach — Unconventional Ways of Communicating Science

    Science.gov (United States)

    Sandu, O.; Christensen, L. L.

    2011-07-01

    The golden rule of communication, advertising, public relations and marketing is "follow your target group". In this article, we look at how this mantra is applied in science communication and public outreach. Do we really follow our target groups? Do we regularly research the behaviour, interests and preferences of the individuals behind the demographic categories? Or do we just believe that we are following them when in fact we are "preaching to the converted" — the demographic group that is already intrinsically interested in science and actively scours the science sections of the national newspapers?

  12. NCCR Chemical Biology: Interdisciplinary Research Excellence, Outreach, Education, and New Tools for Switzerland.

    Science.gov (United States)

    Sturzenegger, Susi; Johnsson, Kai; Riezman, Howard

    2011-01-01

    Funded by the Swiss National Science Foundation to promote cutting edge research as well as the advancement of young researchers and women, technology transfer, outreach and education, the NCCR (Swiss National Centre of Competence in Research) Chemical Biology is co-led by Howard Riezman, University of Geneva and Kai Johnsson, École Polytechnique Fédérale de Lausanne (EPFL).

  13. CSU's MWV Observatory: A Facility for Research, Education and Outreach

    Science.gov (United States)

    Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

    2014-01-01

    The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

  14. The UMR reactor outreach program for expanded educational utilization

    International Nuclear Information System (INIS)

    Freeman, D.; Bolon, A.

    1992-01-01

    In recent years, the University of Missouri-Rolla Reactor (UMRR) facility has been under intense financial scrutiny by the university administration; primarily due to ever-tightening budgets and declines in nuclear engineering (NE) enrollment. In response to criticisms of low utilization, the reactor staff has developed and implemented a dynamic outreach program designed to significantly increase the educational role of the facility on campus. The outreach program is based on the principle that the potential to provide service to the UMR community is far in excess of the present level of service. The program is designed to identify and inform potential users of how their courses or programs can be augmented through use of the reactor facility. The net effect of the outreach program is greater campus communication and awareness of the unique capabilities as applied to each discipline. A natural product of the outreach program should be increased research

  15. OUTREACH

    CERN Multimedia

    D. Barney

    The main emphasis for the coming months is clearly the Open Days of April 5th and 6th, in all likelihood the last opportunities that visitors will get to see the LHC underground installations. Tens of thousands of visitors are expected, especially on Sunday 6th - the Open Day for the General Public. As announced recently in a mail to the collaboration, CMS collaborators are encouraged to sign-up to be guides. If you are interested in doing this, please contact Catherine Brandt. In addition to guides, we require introductory talks to be given at point 5 and are looking for volunteers (many thanks to those of you who have already volunteered!). If you are interested, please send an email to outreach@cern.ch stating the languages you prefer and your availability on the 6th between 9am and 7pm. The CMS Outreach team has been significantly strengthened recently with the arrival of journalist Elizabeth "Lizzie" Gibney. One of her main tasks over the coming months will be to interview many of you...

  16. OUTREACH

    CERN Document Server

    E. Gibney D. Barney

    The two core activities of the Outreach group are the continued production of the CMS Times and the evolution of the Outreach web site. Although the former began life as a publication for CMS members it is increasingly being viewed by the public, as evidenced by the external subscribers (nearly 400) and the fact that it is one of the most popular sections of the web-site, with tens of thousands of hits every month. Indeed a statistical analysis of our web-site is underway and already we know that it is host to around 11000 distinct visitors per month with more than half a million pages being viewed! Recent additions to the web-site include several new "virtual reality" movies of CMS underground - ideal for presentations to the public etc. A big effort is also being made to archive the thousands of superb images of CMS taken over the years and our team have recently been interacting with the CERN "CDS" team in order to achieve this in the most efficient way possible. The CDS...

  17. Astronomy Education & Outreach in South Africa

    Science.gov (United States)

    Throop, Henry B.

    2015-11-01

    Although South Africa has evolved greatly in the 20 years since the end of apartheid, it remains a very divided country. The highest-performing students are comparable in ability to those in the US and Europe, but nearly all of these students are from priveleged Afrikaaner (European) backgrounds. The vast majority of students in the country are native African, and school standards remain very low across the country. It is common that students have no textbooks, teachers have only a high school education, and schools have no telephones and no toilets. By high school graduation, the majority of students have never used a web browser -- even students in the capital of Johannesburg. And while a few students are inspired by home-grown world-class projects such as the Square Kilometer Array (SKA) and Southern African Large Telescope (SALT), most remain unaware of their existence.Despite the poor state of education in the country, students work hard, are curious, and desire information from the outside world. Astronomy is one subject in which students in rural Africa often show exceptional interest. Perhaps astronomy serves as a 'gateway science,' linking the physically observable world with the exotic and unknown.Here I report on many visits I have made to both rural and urban schools in South Africa during the 2013-2015 period. I have interacted with thousands of grade 7-12 students at dozens of schools, as well as taught students who graduated from this system and enrolled in local universities. I will present an assessment of the state of science education in South Africa, as well as a few broader suggestions for how scientists and educators in developed countries can best make an impact in Southern Africa.

  18. How Do Engineering Attitudes Vary by Gender and Motivation? Attractiveness of Outreach Science Exhibitions in Four Countries

    Science.gov (United States)

    Salmi, Hannu; Thuneberg, Helena; Vainikainen, Mari-Pauliina

    2016-01-01

    Outreach activities, like mobile science exhibitions, give opportunities to hands-on experiences in an attractive learning environment. We analysed attitudes, motivation and learning during a science exhibition visit, their relations to gender and future educational plans in Finland, Estonia, Latvia and Belgium (N = 1210 sixth-graders). Pupils'…

  19. Revival of the "Sun Festival": An educational and outreach project

    Science.gov (United States)

    Montabone, Luca

    2016-10-01

    In ancient times, past civilisations used to celebrate both the winter and summer solstices, which represented key moments in the periodical cycle of seasons and agricultural activities. In 1904, the French astronomer Camille Flammarion, the engineer Gustave Eiffel, the science writer Wilfrid de Fonvielle and the Spanish astronomer Josep Comas i Solà decided to celebrate the summer solstice with a festival of science, art and astronomical observations opened to the public at the Eiffel tower in Paris. For ten consecutive years (1904-1914) on the day of the summer solstice, the "Sun Festival" (Fête du Soleil in French) included scientific and technological lectures and demostrations, celestial observations, music, poetry, danse, cinema, etc. This celebration was interrupted by the First World War, just to resume in Barcelona, Spain, between 1915 and 1937, and in Marseille, France, in the 1930s. It was the founders' dream to extend this celebration to all cities in France and elsewhere.It is only during the International Year of Astronomy in 2009, to our knowledge, that the "Sun Festival" was given another chance in France, thanks to the joint effort of several scientific and cultural centers (Centres de Culture Scientifique, Technique et Industrielle, CCSTI) and the timely support of the European Space Agency (ESA). In this occasion again, the festival was characterized by the combination of science, art and technological innovation around a common denominator: our Sun!We have recently revived the idea of celebrating the summer solstice with a "Sun Festival" dedicated to scientific education and outreach about our star and related topics. This project started last year in Aix-les-Bains, France, with the "Sun and Light Festival" (2015 was the International Year of Light), attended by about 100 people. This year's second edition was in Le Bourget-du-Lac, France. Following the COP21 event, the specific theme was the "Sun and Climate Festival", and we had about 250

  20. Overview of the Education and Public Outreach (EPO) program of the Caltech Tectonics Observatory

    Science.gov (United States)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2009-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past year, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries and advancements, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools. We have hosted local high school students and teachers to provide them with research experience (as part of Caltech’s “Summer Research Connection”); participated in teacher training workshops (organized by the local school district); hosted tours for local elementary school students; and brought hands-on activities into local elementary and middle school classrooms, science clubs, and science nights. We have also led local school students and teachers on geology field trips through nearby parks. In addition, we have developed education modules for undergraduate classes (as part of MARGINS program), and have written educational web articles on TO research (http://www.tectonics.caltech.edu/outreach). The presentation will give an overview of these activities and their impact on our educational program.

  1. OUTREACH

    CERN Multimedia

    David Barney

    The past three months have been very eventful for the CMS Outreach team. The majority of our efforts have concentrated on the update of the public web site at http://www.cern.ch/cmsinfo which was released to the public in time for the first LHC circulating beams. Congratulations in particular to Marzena Lapka and Lizzie Gibney for the excellent job that they have done. The layout of the new site roughly follows that of the main CERN public web site, a decision made long ago so that surfers do not feel lost when they jump from CERN to CMS. Both ALICE and LHCb also made this decision (after us!). The text of the new pages was made after interviewing many CMS collaborators, so has a very human feel to it. The site has been very well received by the community and the public/press alike. This is of course a first version so there will be more to come in the future, and comments are more than welcome. The 10th September is a date that few of us will forget. The world media (represented by nearly 300 journalists!...

  2. OUTREACH

    CERN Multimedia

    D. Barney

    The new underground visit itinerary to CMS was officially launched during the summer. Many hundreds of people from far and near have already been into the caverns and all come away feeling excited and awed. The visitors gallery on the surface has also seen some improvements, including pieces of equipment from most CMS sub-detectors. At the beginning of this CMS week the gallery will receive a further addition - a cosmic ray detector. This detector was made by high school students associated to the US "Quarknet" program and it is these students, together with Dan Karmgard (US-CMS Outreach Coordinator), who will install and commission it at point 5. The other main activity (apart from the CMS Times of course, which recently celebrated it's 1st anniversary!) is with the development of a new CMS public web site. This is needed for many reasons - not least because much of the content of the existing web site is outdated. The look and feel of the new site will be similar to that of the new CERN ...

  3. OUTREACH

    CERN Multimedia

    D. Barney

    The new underground visit itinerary to CMS was official¬ly launched during the summer. Many hundreds of people from far and near have already been into the caverns and all come away feeling excited and awed. The visitors gallery on the surface has also seen some improvements, including pieces of equipment from most CMS sub-detectors. At the beginning of this CMS week the gallery will receive a further addition - a cosmic ray detector. This detector was made by high school students associated to the US "Quarknet" program and it is these students, together with Dan Karmgard (US-CMS Outreach Coor¬dinator), who will install and commission it at point 5. The other main activity (apart from the CMS Times of course, which recently celebrated it's 1st anniversary!) is with the development of a new CMS public web site. This is needed for many reasons - not least because much of the content of the existing web site is outdated. The look and feel of the new site will be similar to tha...

  4. OUTREACH

    CERN Multimedia

    David Barney

    The highlight for CMS Outreach during the past few months was of course the CERN Open Days on 5th and 6th April. Of the 73000 people who came to CERN during that weekend more than 10000 visited CMS in the cavern, thanks to an incredible logistical effort from many members of CMS. The underground visit was only one of several activites at point 5. Others included a picture gallery (with huge thanks to Michael Hoch), an artwork corner for children, a working spark chamber and regular demonstrations of cryogenics (many thanks to Goran Perinic) and photogrammetry (thanks to Christian Lasseur et al). There were also well-attended public presentations on Particle Physics, CERN and CMS as well as a visit of "Fred" from the popular French television show "C'est pas Sorcier". A souvenir kiosk was also a popular attraction, selling CMS tee-shirts, polo-shirts, baseball caps and keyrings, amongst other items. These things are available to purchase from the CMS Secretariat in build...

  5. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    Science.gov (United States)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  6. Computer-games for gravitational wave science outreach: Black Hole Pong and Space Time Quest

    International Nuclear Information System (INIS)

    Carbone, L; Bond, C; Brown, D; Brückner, F; Grover, K; Lodhia, D; Mingarelli, C M F; Fulda, P; Smith, R J E; Unwin, R; Vecchio, A; Wang, M; Whalley, L; Freise, A

    2012-01-01

    We have established a program aimed at developing computer applications and web applets to be used for educational purposes as well as gravitational wave outreach activities. These applications and applets teach gravitational wave physics and technology. The computer programs are generated in collaboration with undergraduates and summer students as part of our teaching activities, and are freely distributed on a dedicated website. As part of this program, we have developed two computer-games related to gravitational wave science: 'Black Hole Pong' and 'Space Time Quest'. In this article we present an overview of our computer related outreach activities and discuss the games and their educational aspects, and report on some positive feedback received.

  7. Education and Outreach Programs at the Reagan Library.

    Science.gov (United States)

    Cumming, Gregory G.

    This exploration of the need and potential for education and outreach programs at the Reagan Library begins by examining factors that make the Reagan library unique, i.e., its proximity to Los Angeles and a small town setting, closeness to the Nixon Library and birthplace, and Ronald Reagan's popularity. It is noted that, since the Reagan Library…

  8. Education and public outreach in astronomy and beyond

    Science.gov (United States)

    Cominsky, Lynn R.

    2018-01-01

    Education and public outreach has evolved from being part of a scientist's duties into a distinct career path that is well-suited for astronomers. The ideal professional in this field has strong communication skills coupled with a broad research background.

  9. Twenty-first Century Space Science in The Urban High School Setting: The NASA/John Dewey High School Educational Outreach Partnership

    Science.gov (United States)

    Fried, B.; Levy, M.; Reyes, C.; Austin, S.

    2003-05-01

    A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This

  10. Holography demonstrations and workshops for science and engineering outreach

    Science.gov (United States)

    Thomas, Weston; Kruse, Kevin; Middlebrook, Christopher

    2012-10-01

    The SPIE/OSA Student Chapter at Michigan Technological University have developed demonstrations and workshops for science and engineering outreach. The practical approach to holography promotes the study of photonic related sciences in high school and college-aged students. An introduction to laser safety, optical laboratory practices, and basic laser coherence theory is given in order to first introduce the participants to the science behind the holograms. The students are then able to create a hologram of an item of their choice, personalizing the experience. By engaging directly, the students are able to see how the theory is applied and also enforces a higher level of attention from them so no mistakes are made in their hologram. Throughout the course participants gain an appreciation for photonics by learning how holograms operate and are constructed through hands on creation of their own holograms. This paper reviews the procedures and methods used in the demonstrations and workshop while examining the overall student experience.

  11. Promotion of science among youngsters: chemistry outreach initiatives at EPFL.

    Science.gov (United States)

    Moser, Farnaz

    2012-01-01

    At EPFL, a strategy for organising scientific outreach activities has been developed and a programme comprising various measures and actions elaborated to promote science and technology among youngsters, especially young girls. As part of this programme, workshops and chemistry camps are developed and carried out for children and youngsters aged from 7 to 16 years old. These workshops are adapted to the age of the participants and allow them to discover chemistry in a fascinating way and become familiar with this field, understand how useful it is to society and learn about the professions it opens up. Some of the workshops take place at EPFL and others are organised in schools in the French-speaking cantons of Switzerland during the touring campaign of a bus named 'Les sciences, ça m'intéresse !' ('Sciences Interest Me!').

  12. Astrobiology Education and Outreach: New Interdisciplinary Initiatives

    Science.gov (United States)

    Schultz, Greg

    In 1998, UCLA was selected as one of the 11 initial members (5 of which are universities) of the NASA Astrobiology Institute. Concurrently, UCLA implemented a brand new General Education cluster course, GE 70ABC: ``Evolution of the Cosmos and Life,'' which is unique for several reasons. It is (a) interdisciplinary, introducing students to both the life and physical sciences, (b) team-taught by 4 distinguished professors, and 4 advanced graduate teaching fellows, (c) offered for (150) freshmen students exclusively, and (d) a year-long sequence, incorporating lectures, laboratory/discussion sections, field trips, and in the spring quarter, small satellite seminars led by the individual instructors on topics radiating from the cluster theme. Further information about GE 70ABC can be found at the course website (http://www.ess.ucla.edu/Cluster_TOC.html) and the website for UCLA's GE cluster courses (http://www.college.ucla.edu/ge/clusters.htm). This poster will outline the GE 70 content, and describe some of the course's materials, activities, assessment, and student characteristics. Additionally, focus will be placed on the GE 70C seminar course component called ``Life In the Cosmos,'' designed and offered by the poster author for the Spring 1999 quarter. This seminar features a student-centered approach - with lecturing minimized and active learning a key objective - and addresses the extraterrestrial life debate from historical and cultural perspectives as well as the current scientific approaches in astrobiology/bioastronomy.

  13. Education and Public Outreach for NASA's EPOXI Mission.

    Science.gov (United States)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more

  14. NASA's SMD Cross-Forum Resources for Supporting Scientist Engagement in Education and Public Outreach Activities

    Science.gov (United States)

    Buxner, S.; Cobabe-Ammann, E. A.; Hsu, B. C.; Sharma, M.; Peticolas, L. M.; Schwerin, T. G.; Shipp, S. S.; Smith, D.

    2012-12-01

    Sharing the excitement of ongoing scientific discoveries is an important aspect of scientific activity for researchers. Directly engaging scientists in education and public outreach (E/PO) activities has the benefit of directly connecting the public to those who engage in scientific activities. A shortage of training in education methods, public speaking, and working with various public audiences increases barriers to engaging scientists in these types in E/PO activities. NASA's Science Mission Directorate (SMD) Education and Public forums (astrophysics, earth science, heliophysics, and planetary science) support scientists currently involved in E/PO and who are interested in becoming involved in E/PO through a variety of avenues. Over the past three years, the forums have developed a variety of resources to help engage scientists in education and public outreach. We will showcase the following resources developed through the SMD E/PO cross-forum efforts: Professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), ongoing professional development at scientific conferences to increase scientist engagement in E/PO activities, toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), toolkits to inform scientists of science education resources developed within each scientific thematic community, EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research, http://www.lpi.usra.edu/earthspace/), thematic resources for teaching about SMD science topics, and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  15. Increasing Internal Stakeholder Consensus about a University Science Center's Outreach Policies and Procedures

    Science.gov (United States)

    Fisher, Richard D.

    For decades the United States has tried to increase the number of students pursuing science, technology, engineering, and mathematics (STEM) education and careers. Educators and policy makers continue to seek strategies to increase the number of students in the STEM education pipeline. Public institutions of higher education are involved in this effort through education and public outreach (EPO) initiatives. Arizona State University opened its largest research facility, the new Interdisciplinary Science and Technology Building IV (ISTB4) in September, 2012. As the new home of the School of Earth & Space Exploration (SESE), ISTB4 was designed to serve the school's dedication to K-12 education and public outreach. This dissertation presents a menu of ideas for revamping the EPO program for SESE. Utilizing the Delphi method, I was able to clarify which ideas would be most supported, and those that would not, by a variety of important SESE stakeholders. The study revealed that consensus exists in areas related to staffing and expansion of free programming, whereas less consensus exist in the areas of fee-based programs. The following most promising ideas for improving the SESE's EPO effort were identified and will be presented to SESE's incoming director in July, 2013: (a) hire a full-time director, theater manager, and program coordinator; (b) establish a service-learning requirement obligating undergraduate SESE majors to serve as docent support for outreach programs; (c) obligate all EPO operations to advise, assist, and contribute to the development of curricula, activities, and exhibits; (d) perform a market and cost analysis of other informational education venues offering similar programming; (3) establish a schedule of fee-based planetarium and film offerings; and (f) create an ISTB4 centric, fee-based package of programs specifically correlated to K12 education standards that can be delivered as a fieldtrip experience.

  16. Health sciences library outreach to family caregivers: a call to service.

    Science.gov (United States)

    Howrey, Mary M

    2018-04-01

    This commentary discusses the information needs of family caregivers and care recipients in the United States. Health sciences library services and outreach activities that support family caregivers include: (1) advocacy, (2) resource building, and (3) programming and education. Ethical issues related to the privacy and confidentiality of clients are outlined in the commentary for information service providers. Also, continuing professional education resources are identified to assist librarians in providing high-quality information services for this special family caregiver population, such as those designed by the National Library of Medicine (NLM) through the NLM 4 Caregivers program.

  17. Health sciences library outreach to family caregivers: a call to service

    Directory of Open Access Journals (Sweden)

    Mary M. Howrey

    2018-04-01

    Full Text Available This commentary discusses the information needs of family caregivers and care recipients in the United States. Health sciences library services and outreach activities that support family caregivers include: (1 advocacy, (2 resource building, and (3 programming and education. Ethical issues related to the privacy and confidentiality of clients are outlined in the commentary for information service providers. Also, continuing professional education resources are identified to assist librarians in providing high-quality information services for this special family caregiver population, such as those designed by the National Library of Medicine (NLM through the NLM 4 Caregivers program.

  18. Assessing Informal Astronomy Education and Outreach

    Science.gov (United States)

    Bednarski, Marsha; Larsen, K.; Robinson, C.

    2008-05-01

    As astronomical organizations, science centers, and planetariums prepare new programming for the IYA, the question of assessment of such programs, both in conveying astronomical content and engaging the audience in that content, becomes increasingly important. In addition, how can target audience interests be measured in such as way as to facilitate the development of this new programming? One methodology is question cards (Stroud et al. 2007) which asks participants to physically sort a set of questions into categories such as "what I already know about,” "what I want to know more about,” and "what I am not interested in knowing more about.” When administered as a pre/post assessment, the resulting data can be utilized to make adjustments to future programming and to create new programs which better fit target audience interests and pedagogical needs. This poster discusses a modification of this methodology as 10-item questionnaire where questions such as "how will the sun die?” and "why do stars have different colors” are accompanied by four possible responses: "I know the answer,” "I want to know the answer,” "I know the answer but I want to know more,” and "I'm not interested in this question.” Data will be provided for the successes and limitations of this assessment technique as applied to three pilot programs: assessment of an existing informal astronomy education program for 7th graders, assessment of an existing planetarium show, and audience research for the planning of a future planetarium show.

  19. Do Facilitate, Don’t Demonstrate: Meaningful Engagement for Science Outreach

    Science.gov (United States)

    Gelderman, Richard

    2017-01-01

    We are encouraged to hand over the learning experience to the students who must do the learning. After the 1957 launch of Sputnik it seemed that learning by discovery would replace lectures and other forms of learning by rote. The innovative Physical Science Study Committee (PSSC), Chemical Education Materials Study (ChEMS), and Biological Sciences Curriculum Study (BSCS) provided teachers with hands-on, activity-based curriculum materials emphasizing problem solving, process skills, and creativity. Our current reforms, based on the Next Generation Science Standards, stress that learner-centered strategies need to become commonplace throughout the classrooms of our formal education system. In this presentation, we share tips on how to double check your style of interactions for science outreach, to ensure the audience is working with a facilitator rather than simply enjoying an expert’s entertaining demonstration.

  20. Education and Public Outreach: Why and How

    Science.gov (United States)

    Percy, J. R.

    2017-06-01

    (Editorial) Science is essential to our well-being - not just our economy, but our health, environment, and culture. Among the hallmarks of science, it promotes rational thinking and critical thinking, and evidence-based decision-making - all of which are essential, but often in short supply.

  1. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  2. Marshalling Corporate Resources for Public and K-12 Technical Education Outreach and Engagement

    Science.gov (United States)

    Wynne, James

    2011-03-01

    In 1988, the Education Task Force of the Business Roundtable recommended that American corporations invest in pre-college education. Prior to that date, corporate investment was targeted at higher education. IBM and other corporations responded by encouraging their employees and their corporate philanthropic organizations to develop programs aimed at enhancing pre-college education. The IBM TJ Watson Research Center initiated a Local Education Outreach program, active for these past 23 years, that marshals the resources of our science-rich institution to enhance STEM education in our local schools. We have broad and deep partnerships between the Research Center and local school districts, including New York City. We have just completed our 19th consecutive year of Family Science Saturdays, which brings 4th and 5th grade children, along with their parents, to our Research Center for hands-on workshops in topics like States of Matter, Polymer Science, Kitchen Chemistry, and Sound and Light. The workshops are staffed by IBM volunteers, assisted by local high school student ``Peer Teachers.'' Since 1990, the IBM Corporation has joined with a coalition of other companies, professional engineering societies, and government agencies to sponsor the annual Engineers Week (EWeek) campaign of technical education outreach, serving as Corporate Chair in 1992, 2001, and 2008. In recent years, we have annually recruited around 5000 IBM volunteers to reach out to more than 200,000 K-12 students in order to increase their awareness and appreciation of technical careers and encourage them to continue their studies of STEM (science, technology, engineering, and mathematics). The speaker, who helped found the APS Forum on Education (FED) and served as FED Councillor for 8 years, will review these and other programs for Public and K-12 Technical Education Outreach and Engagement.

  3. Hobbits, Hogwarts, and the Heavens: The use of fantasy literature and film in astronomy outreach and education

    Science.gov (United States)

    Larsen, Kristine

    2011-06-01

    Due in part to recent (and ongoing) film adaptations, the fantasy series of C.S. Lewis (The Chronicles of Narnia), J.K. Rowling (Harry Potter), Philip Pullman (His Dark Materials), and J.R.R. Tolkien (The Silmarillion, The Hobbit, and The Lord of the Rings) are being introduced to a new audience. Many astronomers and astronomy educators are unaware of the wide variety of astronomical references contained in each series, and the myriad possible uses of these works in astronomy education and outreach. This paper highlights activities which educators, planetariums, and science centers have already developed to utilise these works in their education and outreach programs.

  4. Fostering science communication and outreach through video production in Dartmouth's IGERT Polar Environmental Change graduate program

    Science.gov (United States)

    Hammond Wagner, C. R.; McDavid, L. A.; Virginia, R. A.

    2013-12-01

    Dartmouth's NSF-supported IGERT Polar Environmental Change graduate program has focused on using video media to foster interdisciplinary thinking and to improve student skills in science communication and public outreach. Researchers, educators, and funding organizations alike recognize the value of video media for making research results more accessible and relevant to diverse audiences and across cultures. We present an affordable equipment set and the basic video training needed as well as available Dartmouth institutional support systems for students to produce outreach videos on climate change and its associated impacts on people. We highlight and discuss the successes and challenges of producing three types of video products created by graduate and undergraduate students affiliated with the Dartmouth IGERT. The video projects created include 1) graduate student profile videos, 2) a series of short student-created educational videos for Greenlandic high school students, and 3) an outreach video about women in science based on the experiences of women students conducting research during the IGERT field seminar at Summit Station and Kangerlussuaq, Greenland. The 'Science in Greenland--It's a Girl Thing' video was featured on The New York Times Dot Earth blog and the Huffington Post Green blog among others and received international recognition. While producing these videos, students 1) identified an audience and created story lines, 2) worked in front of and behind the camera, 3) utilized low-cost digital editing applications, and 4) shared the videos on multiple platforms from social media to live presentations. The three video projects were designed to reach different audiences, and presented unique challenges for content presentation and dissemination. Based on student and faculty assessment, we conclude that the video projects improved student science communication skills and increased public knowledge of polar science and the effects of climate change.

  5. Outreach Programmes for Education and Training: Contributions from the International Cartographic Association

    Science.gov (United States)

    Cartwright, W. E.; Fairbairn, D.

    2012-07-01

    Organisations like the International Cartographic Association champion programmes that develop and deliver education and training to cartographers and geospatial scientists, globally. This can be in the form of traditional university and training college programmes, short courses for professional and technical members of mapping agencies and as outreach initiatives to transfer knowledge about the discipline and its contemporary practices. Through its international community, the ICA undertakes the transfer of knowledge about cartography and GI Science by publishing books and special editions of journals and running workshops. Colleagues from the ICA community conduct these workshops on a volunteer basis, generally with the support of the national member organisation of ICA or the national mapping body. For example, the ICA promotes the generation of extensive publications, generally through its Commissions and Working Groups. The publications include books, journals and the ICA Newsletter. Outreach activities are especially pertinent to up skill colleagues from developing countries. Specialist programmes can be offered for professional and 'everyday' map users (from adults to children). The ICA can assist with its current programmes, designed to embrace professional and non-professional cartographers alike. This paper will address how education and outreach programmes can be supported by international associations, by offering programmes independently, or in partnership with sister associations and national and regional organisations and societies. As well, the paper will address the need to deliver education and outreach programmes not to just the professional international community, but also to map users and citizen map publishers.

  6. Guerilla Science: Outreach at music and art festival

    Science.gov (United States)

    Rosin, Mark

    2012-10-01

    Guerilla Science a non-profit science education organization that, since 2007, has brought live events to unconventional venues for science, such as music festivals, art galleries, banquets, department stores and theaters. Guerilla Science sets science free by taking it out of the lab and into the traditional domains of the arts. By producing events that mix science with art, music and play, they create unique opportunities for adult audiences to experience science in unorthodox ways, such as interactive events, games, live experiments, demonstrations and performances by academics, artists, musicians, actors, and professional science communicators. Much of Guerilla Science's work has focused on astrophysical and terrestrial plasmas, and this presentation will provide an overview of Guerilla Science's work in this area. Guerilla Science has produced over twenty events, receiving international media coverage, and directly reached over fifteen thousand members of the public.

  7. Public Outreach Guerilla Style: Just Add Science to Existing Events

    Science.gov (United States)

    Gelderman, Richard

    2016-01-01

    We report on a campaign to use the visual appeal of astronomy as a gateway drug to inject public outreach into settings where people aren't expecting an encounter with science. Our inspiration came from the team at guerillascience.org, who have earned a reputation for creating, at sites around the world, "experiences and events that are unexpected, thought-provoking, but, above all, that delight and entertain." Our goal is to insert astronomy into existing festivals of music, culture, and art; county and state fairs; sporting events; and local farmer's markets. With volunteers and near-zero budgets, we have been able to meaningfully engage with audience members who would never willingly attend an event advertised as science related. By purposefully relating astronomy to the non-science aspects of the event that caused the audience members to attend, new learning experiences are created that alter the often negative pre-conceived notions about science that many of them held before our encounter.

  8. Resources for Education and Outreach Activities discussion session

    CERN Document Server

    Barney, David; The ATLAS collaboration; Bourdarios, Claire; Kobel, Michael; Kourkoumelis, Christine; Melo, Ivan; Rangel-Smith, Camila; Alexopoulos, Angelos

    2015-01-01

    Over the past few years a variety of resources have been developed, by individuals and groups, to support Education & Outreach activities in particle physics. Following short (five-minute) presentations by six speakers, a discussion session allowed the audience to go further in depth in activities they found particularly interesting. This paper presents brief overviews from each of the six speakers, followed by a summary of the ensuing discussion

  9. Building Community: A 2005 Conference for Education and Public Outreach Professionals

    Science.gov (United States)

    Slater, T. F.; Bennett, M.; Garmany, K.

    2004-12-01

    In support of the Astronomical Society of the Pacific's (ASP) mission to increase the understanding and appreciation of astronomy, the ASP will host an international meeting in September 14-16, 2005 in Tucson focused on building and supporting a vibrant and connected community of individuals and groups engaged in educational and public outreach (EPO) in the disciplines of astronomy, astrobiology, space, and earth science. This conference is specially designed for individuals who are bringing the excitement of astronomy to non-astronomers. This community of science communicators includes: NASA and NSF-funded EPO program managers, developers, evaluators, PIOs, and others who support outreach efforts by government agencies and commercial industries; Scientists working with or assigned to EPO programs or efforts; Individuals working in formal science education: K-14 schools/colleges and minority-serving institutions as faculty or curriculum developers; Informal educators working in widely diverse settings including science centers, planetariums, museums, parks, and youth programs; Amateur astronomers involved in or interested in engaging children and adults in the excitement of astronomy; Public outreach specialists working in observatories, visitor centers, public information offices, and in multimedia broadcasting and journalism. The conference goals are to improve the quality and increase the effective dissemination of EPO materials, products, and programs through a multi-tiered professional development conference utilizing: Visionary plenary talks; Highly interactive panel discussions; Small group workshops and clinics focused on a wide range of EPO topics including evaluation and dissemination, with separate sessions for varying experience levels; Poster and project exhibition segments; Opportunities to increase program leveraging through structured and unstructured networking sessions; and Individual program action planning sessions. There will both separate and

  10. NASA Astrophysics E/PO: The Impact of the Space Telescope Science Institute Office of Public Outreach

    Science.gov (United States)

    Smith, Denise A.; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray

    2015-01-01

    As the science operations center for Hubble and Webb, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity's quest to understand fundamental questions about our universe and our place in it. With the 25th anniversary of Hubble's launch and deployment approaching in April 2015, this presentation will provide an overview of the impact of the STScI's Office of Public Outreach's programs to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs. At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble's scientific capabilities and majestic imagery, together with a deep commitment to creating effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  11. Evaluation of Changes in Ghanaian Students' Attitudes Towards Science Following Neuroscience Outreach Activities: A Means to Identify Effective Ways to Inspire Interest in Science Careers.

    Science.gov (United States)

    Yawson, Nat Ato; Amankwaa, Aaron Opoku; Tali, Bernice; Shang, Velma Owusua; Batu, Emmanuella Nsenbah; Asiemoah, Kwame; Fuseini, Ahmed Denkeri; Tene, Louis Nana; Angaandi, Leticia; Blewusi, Isaac; Borbi, Makafui; Aduku, Linda Nana Esi; Badu, Pheonah; Abbey, Henrietta; Karikari, Thomas K

    2016-01-01

    The scientific capacity in many African countries is low. Ghana, for example, is estimated to have approximately twenty-three researchers per a million inhabitants. In order to improve interest in science among future professionals, appropriate techniques should be developed and employed to identify barriers and correlates of science education among pre-university students. Young students' attitudes towards science may affect their future career choices. However, these attitudes may change with new experiences. It is, therefore, important to evaluate potential changes in students' attitudes towards science after their exposure to experiences such as science outreach activities. Through this, more effective means of inspiring and mentoring young students to choose science subjects can be developed. This approach would be particularly beneficial in countries such as Ghana, where: (i) documented impacts of outreach activities are lacking; and (ii) effective means to develop scientist-school educational partnerships are needed. We have established an outreach scheme, aimed at helping to improve interaction between scientists and pre-university students (and their teachers). Outreach activities are designed and implemented by undergraduate students and graduate teaching assistants, with support from faculty members and technical staff. Through this, we aim to build a team of trainee scientists and graduates who will become ambassadors of science in their future professional endeavors. Here, we describe an approach for assessing changes in junior high school students' attitudes towards science following classroom neuroscience outreach activities. We show that while students tended to agree more with questions concerning their perceptions about science learning after the delivery of outreach activities, significant improvements were obtained for only two questions, namely "I enjoy science lessons" and "I want to be a scientist in the future." Furthermore, there was a

  12. An Analog Rover Exploration Mission for Education and Outreach

    Science.gov (United States)

    Moores, John; Campbell, Charissa L.; Smith, Christina L.; Cooper, Brittney A.

    2017-10-01

    This abstract describes an analog rover exploration mission designed as an outreach program for high school and undergraduate students. This program is used to teach them about basic mission control operations, how to manage a rover as if it were on another planetary body, and employing the rover remotely to complete mission objectives. One iteration of this program has been completed and another is underway. In both trials, participants were shown the different operation processes involved in a real-life mission. Modifications were made to these processes to decrease complexity and better simulate a mission control environment in a short time period (three 20-minute-long mission “days”). In the first run of the program, participants selected a landing site, what instruments would be on the rover - subject to cost, size, and weight limitations - and were randomly assigned one of six different mission operations roles, each with specific responsibilities. For example, a Science Planner/Integrator (SPI) would plan science activities whilst a Rover Engineer (RE) would keep on top of rover constraints. Planning consisted of a series of four meetings to develop and verify the current plan, pre-plan the next day's activities and uplink the activities to the “rover” (a human colleague). Participants were required to attend certain meetings depending upon their assigned role. To conclude the mission, students viewed the site to understand any differences between remote viewing and reality in relation to the rover. Another mission is currently in progress with revisions from the earlier run to improve the experience. This includes broader roles and meetings and pre-selecting the landing site and rover. The new roles are: Mission Lead, Rover Engineer and Science Planner. The SPI role was previously popular so most of the students were placed in this category. The meetings were reduced to three but extended in length. We are also planning to integrate this program

  13. F*** Yeah Fluid Dynamics: On science outreach and appealing to broad audiences

    Science.gov (United States)

    Sharp, Nicole

    2015-11-01

    Sharing scientific research with general audiences is important for scientists both in terms of educating the public and in pursuing funding opportunities. But it's not always apparent how to make a big splash. Over the past five years, fluid dynamics outreach blog FYFD has published more than 1300 articles and gained an audience of over 215,000 readers. The site appeals to a wide spectrum of readers in both age and field of study. This talk will utilize five years' worth of site content and reader feedback to examine what makes science appealing to general audiences and suggest methods researchers can use to shape their work's broader impact.

  14. Developing an Education and Public Outreach (EPO) program for Caltech's Tectonics Observatory

    Science.gov (United States)

    Kovalenko, L.; Jain, K.; Maloney, J.

    2012-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past four years, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) inspire students to learn Earth Sciences, particularly tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools and community colleges. Our work toward these goals includes hosting local high school teachers and students each summer for six weeks of research experience (as part of Caltech's "Summer Research Connection"); organizing and hosting an NAGT conference aimed at Geoscience teachers at community colleges; participating in teacher training workshops (organized by the local school district); hosting tours for K-12 students from local schools as well as from China; and bringing hands-on activities into local elementary, middle, and high school classrooms. We also lead local school students and teachers on geology field trips through nearby canyons; develop education modules for undergraduate classes (as part of MARGINS program); write educational web articles on TO research (http://www.tectonics.caltech.edu/outreach/highlights/), and regularly give presentations to the general public. This year, we started providing content expertise for the development of video games to teach Earth Science, being created by GameDesk Institute. And we have just formed a scientist/educator partnership with a 6th grade teacher, to help in the school district's pilot program to incorporate new national science standards (NSTA's Next Generation Science Standards, current draft), as well as use Project-Based Learning. This presentation gives an overview of these activities.

  15. Public Outreach and Educational Experiences in Mexico and Latin American communities in California

    Science.gov (United States)

    Andres De Leo-Winkler, Mario; Canalizo, Gabriela; Pichardo, Barbara; Arias, Brenda

    2015-08-01

    I have created and applied diverse methods in public outreach at National Autonomous Univerisity of Mexico (UNAM) since 2001.A student-led volunteer astronomical club has been created, the biggest in Mexico. We serve over 10,000 people per year. We have created public outreach activities for the general audience: archeo-astronomical outings, scientific movie debates, conferences, courses, public telescope viewings. We have also worked with juvenile delinquents to offer them scientific opportunities when released from jail.I've also created and worked the social media for the Institute of Astronomy UNAM, which is currently the biggest social media site on astronomy in Spanish in the world. I've created and organized a mass photo exhibition (over 1 million people served) for the Institute of Astronomy, UNAM which was citizen-funded through an online platform, the first of its kind in the country. Together with my colleages, we created workshops on astronomy for children with the Mexican's government funding.I've participated in several radio and television programs/capsules designed to bring astronomy to the general audience, one in particular ("Astrophysics for Dummies") was very successful in nation-wide Mexican radio.I am currently applying all experiences to develop a new public outreach project on astronomy for the University of California - Riverside and its on-campus and surrounding Latin American communities. We are offering new workshops for blind and deaf children. We want to integrate the Latino community to our outreach activities and offer science in their language in a simple and entertaining fashion. We have also successfully applied astrophotography as a course which brings social-science and arts undergraduate students into natural sciences.Sharing experiences, success and failure stories will help new and experienced educators and public outreach professionals learn and better from past experiences.

  16. Engaging high school students as plasma science outreach ambassadors

    Science.gov (United States)

    Wendt, Amy; Boffard, John

    2017-10-01

    Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.

  17. CMS Open Data for Education and Outreach

    CERN Document Server

    Villegas Garcia, Edith Natalia

    2017-01-01

    The CMS Collaboration recently published open access data sets for the data that was collected over the years 2010 and 2011. Using these sets of data different educational applications were developed for some data analysis tools, using particle physics exercises. Histograms of invariant mass were plotted and particles could be identified from them. The tools used include LibreOffice calc software, Microsoft Office Excel, the R programming language and pandas package for Python.

  18. Promoting Strategic STEM Education Outreach Programming Using a Systems-Based STEM-EO Model

    Science.gov (United States)

    Ward, Annmarie R.

    2015-01-01

    In this paper a STEM Education Outreach (STEM-EO) Model for promoting strategic university outreach programming at Penn State University to the benefit of university, school district and community stakeholders is described. The model considers STEM-EO as a complex system involving overarching learning goals addressed within four outreach domains…

  19. Educational Outreach Efforts at the NNDC

    International Nuclear Information System (INIS)

    Holden, N.E.

    2014-01-01

    Isotopes and nuclides are important in our everyday life. The general public and most students are never exposed to the concepts of stable and radioactive isotopes/nuclides. The National Nuclear Data Center (NNDC) is involved in an international project to develop a Periodic Table of the Isotopes for the educational community to illustrate the importance of isotopes and nuclides in understanding the world around us. This effort should aid teachers in introducing these concepts to students from the high school to the graduate school level

  20. A Tale of Two scientists and their Involvement in Education & Outreach

    Science.gov (United States)

    McDonnell, J.

    2004-12-01

    Many scientists, when faced with developing an education and outreach plan for their research proposals, are unclear on what kinds of impacts they can have on broader non scientist audiences. Many scientists feel their only options are to develop a website or invite a teacher to get involved in their sampling or research cruises. Scientists, who are constrained by time and resources, are not aware of the range of education and outreach options available to them and of the great value their involvement can bring to the public. In an recent survey at the National Science Foundation sponsored ORION conference (January 2004), respondents stated that the greatest public benefits to having scientists involved in public education are (1) that they can present the benefits and relevance of research (26%), (2) focus awareness on environmental issues (26%), (3) serve as models for teachers and motivators for children (25%) and (4) increase public understanding, awareness and appreciation of science (about 22%). As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (MACOSEE), the Institute of Marine & Coastal Sciences (IMCS) at Rutgers University is dedicated to helping scientists and educators realize the benefits of working together to advance ocean discovery and make known the vital role of the ocean in our lives. A website called "Scientist Connection" (www.macosee.net) was developed to help busy scientists choose a role in education and outreach that will make the most of their talent and time. The goal of the web site is to help scientists produce a worthwhile education project that complements and enriches their research. In this session, the author will present two case studies that demonstrate very different but effective approaches to scientist's involvement in education and outreach projects. In the first case, we will chronicle how a team of biologists and oceanographers in the Rutgers University, Coastal Ocean Observation Laboratory (or

  1. In-house training, formal education and public outreach

    International Nuclear Information System (INIS)

    Willis, Y.A.

    1992-01-01

    This paper assumes that a stronger national commitment to public education on nuclear energy and, most particularly radioactive waste management, it needed to overcome public resistance to nuclear projects. Effective public education must become the superordinate goal uniting industry, government, professional societies, national laboratories and the educational community. Since instruction is labor intensive, we must search for more cost effective ways of achieving results. Therefore, this paper proposes: Collaborative training and educational strategies involving as many of the stakeholders as possible; and Innovative tools to improve the credibility, quality and cost effectiveness of education. This win-win approach can reduce the collective expenditures through cost-sharing, as well as the sharing of resources and products. It can close gaps in both in-house training and formal education. Finally, in public outreach, the joint approach addresses the politics of sponsorship by providing checks and balances, and thus improving credibility and public acceptance

  2. Developing Web-based Tools for Collaborative Science and Public Outreach

    Science.gov (United States)

    Friedman, A.; Pizarro, O.; Williams, S. B.

    2016-02-01

    With the advances in high bandwidth communications and the proliferation of social media tools, education & outreach activities have become commonplace on ocean-bound research cruises. In parallel, advances in underwater robotics & other data collecting platforms, have made it possible to collect copious amounts of oceanographic data. This data then typically undergoes laborious, manual processing to transform it into quantitative information, which normally occurs post cruise resulting in significant lags between collecting data and using it for scientific discovery. This presentation discusses how appropriately designed software systems, can be used to fulfill multiple objectives and attempt to leverage public engagement in order to compliment science goals. We will present two software platforms: the first is a web browser based tool that was developed for real-time tracking of multiple underwater robots and ships. It was designed to allow anyone on board to view or control it on any device with a web browser. It opens up the possibility of remote teleoperation & engagement and was easily adapted to enable live streaming over the internet for public outreach. While the tracking system provided context and engaged people in real-time, it also directed interested participants to Squidle, another online system. Developed for scientists, Squidle supports data management, exploration & analysis and enables direct access to survey data reducing the lag in data processing. It provides a user-friendly streamlined interface that integrates advanced data management & online annotation tools. This system was adapted to provide a simplified user interface, tutorial instructions and a gamified ranking system to encourage "citizen science" participation. These examples show that through a flexible design approach, it is possible to leverage the development effort of creating science tools to facilitate outreach goals, opening up the possibility for acquiring large volumes of

  3. Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

    Science.gov (United States)

    Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team

    2013-04-01

    During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by

  4. A Modern Explorer's Journey - using events for innovative multipurpose educational outreach

    Science.gov (United States)

    Lilja Bye, Bente

    2014-05-01

    Earth observations are important across the specter of geo-sciences. The Group on Earth Observations (GEO) is coordinating efforts to build a Global Earth Observation System of Systems, or GEOSS. The lack of dedicated funding to support specific Science &Technology activities in support of GEOSS is one of the most important obstacles to engaging the Science &Technology communities in its implementation. Finding resources to outreach and capacity building is likewise a challenge. The continuation of GEO and GEOSS rely on political support which again is influenced by public opinions. The GEO Ministerial Summit in 2014 was an event that both needed visibility and represented an opportunity to mobilize the GEO community in producing outreach and educational material. Through the combined resources from two of GEO tasks in the GEO work plan, a multipurpose educational outreach project was planned and executed. This project addressed the following issues: How can the GEO community mobilize resources for its work plan projects in the Societal Benefit Area Water? How can we produce more educational and capacity building material? How can the GEO community support the GEO secretariat related to public relations (material and otherwise) Based on activities described in the GEO work plan, a showcase video and online campaign consisting on a series of webinars were developed and produced. The video and webinars were linked through a common reference: the water cycle. Various aspects of the water cycle ranging from general to more technical and scientific education were covered in the webinars, while the video called A Modern Explorer's Journey focused on story telling with a more emotional appeal. The video was presented to the Ministers at the GEO Ministerial Summit and distributed widely to the GEO community and through social media and articles (as embedded YouTube and more). A discussion of challenges and successes of this event-based educational outreach project will be

  5. Promoting seismology education and research via the IRIS Education and Public Outreach Program

    Science.gov (United States)

    Taber, J. J.; Bravo, T. K.; Dorr, P. M.; Hubenthal, M.; Johnson, J. A.; McQuillan, P.; Sumy, D. F.; Welti, R.

    2015-12-01

    The Incorporated Research Institutions for Seismology's Education and Public Outreach (EPO) program is committed to advancing awareness and understanding of seismology and geophysics, while inspiring careers in the Earth sciences. To achieve this mission, IRIS EPO combines content and research expertise of consortium membership with educational and outreach expertise of IRIS staff to create a portfolio of programs, products, and services that target a range of audiences, including grades 6-12 students and teachers, undergraduate and graduate students, faculty, and the general public. IRIS also partners with UNAVCO and other organizations in support of EarthScope where the facilities are well-suited for sustained engagement of multiple audiences. Examples of research-related EPO products and services include the following resources. Tools developed in collaboration with IRIS Data Services provide public and educational access to data, and to a suite of data products. Teachers can stream seismic data from educational or research sensors into their classroom, and the Active Earth Monitor display, designed for visitor centers, universities and small museums, provides views of recent data along with animations that explain seismology concepts, and stories about recent research. Teachable Moment slide sets, created in collaboration with the University of Portland within 24 hours of major earthquakes, provide interpreted USGS tectonic maps and summaries, animations, visualizations, and other event-specific information so educators can explore newsworthy earthquakes with their students. Intro undergraduate classroom activities have been designed to introduce students to some grand challenges in seismological research, while our Research Experiences for Undergraduates program pairs students with seismology researchers throughout the Consortium and provides the opportunity for the students to present their research at a national meeting. EPO activities are evaluated via a

  6. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  7. The National Climate Assessment: A Treasure Trove for Education, Communications and Outreach

    Science.gov (United States)

    McCaffrey, M.; Berbeco, M.; Connolly, R.; Niepold, F., III; Poppleton, K. L. I.; Cloyd, E.; Ledley, T. S.

    2014-12-01

    Required by Congress under the Global Change Act of 1990 to inform the nation on the findings of current climate research, the Third U.S. National Climate Assessment (NCA), released in May 2014, is a rich resource for climate change education, communications and outreach (ECO). Using a website design with mobile applications in mind, NCA takes advantage of mobile learning technology which is revolutionizing how, when and where learning occurs. In an effort to maximize the "teachable moments" inherent in the assessment, a community of experts from the National Center for Science Education and the CLEAN Network, working under the auspices of the National Climate Assessment Network (NCAnet) Education Affinity Group, have developed a series of NCA Learning Pathways that match key NCA messages and resources with reviewed educational materials and trusted online information sources, thereby adding pedagogical depth to the assessment. The NCA Learning Pathways, which focus on the regional chapters of the report, are designed make climate change science more local, human, relevant and, if properly framed by educators and communicators, hopeful for learners. This paper touches on the challenges and opportunities of infusing climate education, communications and outreach into curriculum and society, and details the development and content of NCA Learning Pathways, which are available online through NOAA's Climate.gov website: http://www.climate.gov/teaching

  8. The Engagement of Engineers in Education and Public Outreach: Beginning the Conversation

    Science.gov (United States)

    Grier, J.; Buxner, S.; Vezino, B.; Shipp, S. S.

    2014-12-01

    The Next Generation Science Standards (NGSS) are a new set of K-12 science standards that have been developed through a collaborative, state-led process. Based on the National Research Council (NRC) 'Framework for K-12 Education,' the NGSS are designed to provide all students with a coherent education possessing both robust content and rigorous practice. Within these standards is an enhanced emphasis on the intersection between science and engineering. The focus is not only on asking questions and finding answers (science) but also in identifying and designing solution to problems (engineering.) The NASA SMD (Science Mission Directorate) Education and Public Outreach (E/PO) Forums have been working with space scientists for many years to assist with their engagement in E/PO efforts, thus supporting the needs of previous science standards. In order to properly address the needs of NGSS, this conversation is being expanded to include engineers. Our initial efforts include a series of semi-structured interviews with a dozen engineers involved in different aspects of space science and mission development. We will present the responses from the survey and compare this information to our knowledge base about space scientists, their needs, attitudes, and understandings of E/PO. In addition to a new emphasis on engineering in the NGSS, we also consider engineering habits of mind such as systems thinking, creativity, optimism, collaboration, communication, and attention to ethical considerations as described by an NRC policy document for engineering education. Using the overall results, we will consider strategies, further ideas for investigation, and possible steps for going forward with this important aspect of including engineering in education and outreach programming.

  9. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    Science.gov (United States)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This

  10. Science Outreach and the Religious Public: The Source Makes All the Difference

    Science.gov (United States)

    Davidson, G. R.; Hill, C.; Wolgemuth, K.

    2017-12-01

    Public resistance to well established scientific understanding has been a persistent problem in the US. Decades of improved educational materials, upgraded K-12 standards, and several successful court battles to curb anti-science influences did little to change the percentage of Americans resistant to even considering the evidence for subjects such as evolution or ancient Earth history. Research in the social sciences suggests that one reason has been a failure to recognize the importance of the source of information. Studies have documented that people are more receptive to challenging viewpoints when the advocate (the source) is recognized as a member of their own group or "tribe." The personal worldview or group-identity of an expert can determine how willing an audience is to consider the argument, much more so than the expert's scientific credentials. For a religious audience, this means that the quality of educational materials and the strength of an argument may be irrelevant if delivered by someone known to be dismissive of fundamental religious beliefs. In contrast, significant inroads have been realized with the religious public when scientists of faith have taken a pro-science message to members of their own religious affiliations. Encouraging stories are coming from outreach efforts of organizations and programs such as BioLogos, American Scientific Affiliation, Solid Rock Lectures, and AAAS Dialogue on Science, Ethics, and Religion. Secular scientists interested in outreach can benefit greatly by keeping a short list of resources (blogs, books, speakers) by religious scientists advocating for the legitimacy of modern science, or by directly teaming with scientists of faith. A recent example from our own efforts includes an 11 author book, The Grand Canyon, Monument to an Ancient Earth, aimed primarily at the Christian public to explain why Noah's flood does not explain the planet's complex geology. Eight authors are Christians and three are not.

  11. Mobile and Web Game Development: Using Videogames as an Educational and Outreach Tool

    Science.gov (United States)

    Jaime, Fernando I.

    2012-01-01

    Few tools reach out to capture the imagination and interests of children like video games do. As such, the development of educational applications that foster young minds' interest in science and technology become of the utmost importance. To this end, I spent my summer internship developing outreach and educational applications in conjunction with JPL's Space Place team. This small, but dedicated, team of people manages three NASA websites that focus on presenting science and technology information in such a manner that young children can understand it and develop an interest in the subjects. Besides the websites, with their plethora of educational content presented through hands-on activities, games and informative articles, the team also creates and coordinates the distribution of printed material to museums, astronomy clubs and a huge network of educators.

  12. The Intersection of NASA Astrophysics Education and Public Outreach and Higher Education: A Special Interest Group Meeting

    Science.gov (United States)

    Sharma, M.; Smith, D.; Schultz, G.; Bianchi, L.; Blair, W.

    2011-09-01

    This paper presents highlights from a group discussion on how the NASA Science Mission Directorate (SMD) education and public outreach (EPO) community could better support undergraduate astronomy education through EPO products and resources - current and future - targeted at the college level. The discussion was organized by the SMD Astrophysics EPO Forum through a Special Interest Group Meeting at the 2010 ASP Annual Meeting in Boulder. Our session took advantage of the simultaneous presence of EPO professionals and the Cosmos in the Classroom participants to seek out diverse perspectives on and experiences in higher education.

  13. Soil Science Society of America - K-12 Outreach

    Science.gov (United States)

    Lindbo, David L.; Loynachan, Tom; Mblia, Monday; Robinson, Clay; Chapman, Susan

    2013-04-01

    The Soil Science Society of America created its K12 Committee in 2006 in part to compliment the Dig It! The Secrets of Soil exhibit that opened in July 2008 at the Smithsonian's Institution's Nation Museum of Natural History (of which SSS was a founding sponsor). The committee's work began quickly with a website designed to provide resources for K12 teachers. The first accomplishments included reviewing and posting links to web based information already available to teachers. These links were sorted by subject and grade level to make it easier for teachers to navigate the web and find what they needed quickly. Several presentations and lessons designed for K12 teachers were also posted at this time. Concurrent with this effort a subcommittee review and organized the national teaching standards to show where soils could fit into the overall K12 curriculum. As the website was being developed another subcommittee developed a soils book (Soil! Get the Inside Scoop, 2008) to further compliment the Dig It! exhibit. This was a new endeavor for SSSA having never worked with the non-academic audience in developing a book. Peer-reviews of this book included not only scientist but also students in order to make sure the book was attractive to them. Once the book was published and the website developed it became clear more outreach was needed. SSSA K12 Committee has attended both the National Science Teachers Association (since 2008) the USA Science and Engineering Festival (since 2010) with exhibits and workshops. It has cooperated and contributed to the American Geologic Institutes' Earth Science Week materials with brochures and lesson plans and with National Association of Conservation Districts by providing peer-review and distribution of materials. The most recent developments from the committee include a web redesign that is more student and teacher friendly, the development of a peer-review system to publish K12 Lesson Plans, and finally the publication of a new soils

  14. Astronomers Who Write Science Fiction: Using SF as a Form of Astronomy Outreach

    Science.gov (United States)

    Fraknoi, Andrew

    2017-01-01

    In a recent survey, I have identified 21 living professional astronomers who write science fiction, plus a yet uncounted number of physicists. Many of the science fiction stories by this group involve, as you might imagine, reasonable extrapolation from current scientific ideas and discoveries. These stories, some of which are available free on the Web or are collected in inexpensive anthologies, represented a method of astronomy outreach to which relatively little attention has been paid. I will list the authors identified in the survey and provide a representative list of their stories or novels, organized by astronomical topic. I will also discuss how written SF (and SF films based on ideas by scientists, such as Kip Thorne's "Interstellar") can be used in general education classes and public programs. Scientists do not need to cede the field to wizards, dragons, and zombies! (Note: The author is included in the list of 21, having published two short stories in two different anthologies recently.)

  15. Challenges and Opportunities for Using Crowd-Sourced Air Pollution Measurements for Education and Outreach

    Science.gov (United States)

    Stanier, C. O.; Dong, C.; Janechek, N. J.; Bryngelson, N.; Schultz, P.; Heimbinder, M.

    2017-12-01

    As part of the CLE4R air quality education project, the University of Iowa has been working with AirBeam low-cost consumer-grade fine particulate matter (PM2.5) sensors in educational and outreach settings, both in K-12 environments and in informal settings such as science days and technology fairs. Users are attracted to the AirBeam device, in part, because of the easy creation of crowd-sourced maps of air pollution. With over 1000 AirBeam devices in use, extensive measurements are now available at aircasting.org. The AirBeam sensor is a portable, low-cost sensor which measures light scattering due to aerosols as a single bin converting the detected signal to a particle count and uses a calibration fit to estimate particle mass. The AirBeam is able to detect particle sizes of 0.5 - 2.5 µm, concentrations up to 400 µg m-3, and with a time resolution of 1 s. A corresponding Android device is used to visualize, record, and upload measured data to a community website (aircasting.org) that maps the spatial and temporal resolved data. The non-profit vendor's website constructs crowdsourced maps of air quality, environmental, and meteorological variables. As of April 1st, 2017, through the CLE4R project, 109 people had used the AirBeam sensors for educational purposes, for a total of 271 person hours. In the poster, we will explain the outreach that was done, and share best practices for education and outreach using consumer-grade PM sensors. Strengths and needed improvements to the technology for these outreach, education, and classroom uses will also be detailed. Sources of particles that can be artificially generated for educational use, including authentic smoke, spray smoke, and various dust sources will be enumerated. For use in K-12 classrooms, requirements for robust startup, operation, and ease-of-use are high. Mapping of concentrations is a desirable attribute but adds additional sources of failure to the hardware-software system used for education/outreach.

  16. Tracking global change at local scales: Phenology for science, outreach, conservation

    Science.gov (United States)

    Sharron, Ed; Mitchell, Brian

    2011-06-01

    A Workshop Exploring the Use of Phenology Studies for Public Engagement; New Orleans, Louisiana, 14 March 2011 ; During a George Wright Society Conference session that was led by the USA National Phenology Network (USANPN; http://www.usanpn.org) and the National Park Service (NPS), professionals from government organizations, nonprofits, and higher-education institutions came together to explore the possibilities of using phenology monitoring to engage the public. One of the most visible effects of global change on ecosystems is shifts in phenology: the timing of biological events such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. These shifts are already occurring and reflect biological responses to climate change at local to regional scales. Changes in phenology have important implications for species ecology and resource management and, because they are place-based and tangible, serve as an ideal platform for education, outreach, and citizen science.

  17. Summative Evaluation Findings from the Interstellar Boundary Explorer (IBEX) Education and Public Outreach Program

    Science.gov (United States)

    Bartolone, L.; Nichols-Yehling, M.; Davis, H. B.; Davey, B.

    2014-07-01

    The Interstellar Boundary Explorer mission includes a comprehensive Education and Public Outreach (EPO) program in heliophysics that is overseen and implemented by the Adler Planetarium and evaluated by Technology for Learning Consortium, Inc. Several components of the IBEX EPO program were developed during the prime phase of the mission that were specifically designed for use in informal institutions, especially museums and planetaria. The program included a widely distributed planetarium show with accompanying informal education activities, printed posters, lithographs and other resources, funding for the development of the GEMS Space Science Sequence for Grades 6-8 curriculum materials, development of the IBEX mission website, development of materials for people with special needs, participation in the Heliophysics Educator Ambassador program, and support for the Space Explorers Afterschool Science Club for Chicago Public Schools. In this paper, we present an overview of the IBEX EPO program summative evaluation techniques and results for 2008 through 2012.

  18. Take Me Out to the Ball Game: Science Outreach to Non-traditional Audiences

    Science.gov (United States)

    Norsted, B. A.

    2010-08-01

    Science outreach often targets audiences that are already interested in science and are looking for related educational experiences for themselves or their families. The University of Wisconsin Geology Museum (UWGM) with funding from the NASA Astrobiology Institute (NAI) is targeting unique venues and thereby new audiences who may not typically seek out science outreach events. With this goal in mind, in June, 2009 the UWGM and NAI sponsored an "Astrobiology Night at the Ballpark" at the Madison Mallards Ballpark, the local Madison, Wisconsin minor league baseball venue. At the game, 6,250 attendees were exposed to current NASA-funded astrobiology research being conducted at the University of Wisconsin-Madison. Fans were greeted at the gate by volunteers passing out a nine-card pack of extremophile trading cards, each of which featured a different extremophile group (e.g. halophiles, cryophiles, and barophiles). Next, participants could interact with project scientists, graduate students and museum staff at four exploration stations, where each station highlighted astrobiology themes (i.e. extremophiles, banded iron formation, earth's oldest rocks, earth's oldest fossils). Before the game began, the video board on the field was used to broadcast short NASA videos about recent Mars missions as well as the search for life in space. Additionally, inning breaks were used as fun opportunities to engage fans through an "Alien vs. Kids" tug-of-war as well as the distribution of Frisbees with an astrobiology timeline printed on them. Engaging the broader public at a non-science venue is a means to breaking down perceived barriers between scientists and the general public. We found Mallards fans to be receptive and ready to connect with our science themes. Tapping into a new audience also builds a larger awareness of our museum and University, expanding our impact in the community.

  19. Making the Case: Workforce, Education, Public Outreach and Communications as Mission-Critical Activities

    Science.gov (United States)

    Squires, Gordon K.; Brewer, Janesse; Dawson, Sandra; Program Organizing Committee "Making the Case" workshop 2017

    2018-01-01

    Increasingly, next-generation science projects will never see first light, or will lose their “right to operate” if they are unable to be responsive to emerging societal values and interests. Science projects with a robust and professional Workforce, Education, Public Outreach and Communications (WEPOC) architecture are able to engage and welcome public discourse about science, trade-offs, and what it means to be a good neighbor in a community. In this talk I will update the latest WEPOC efforts for TMT & NASA projects at Caltech/IPAC, and highlight how WEPOC has entered the critical path for many large, international science projects. I will also present a draft working document being developed by many of the world's largest astronomy and high-energy physics WEPOC leaders as an outcome from a "Making the Case" conference held at Caltech in spring 2017.

  20. Solar System Samples for Research, Education, and Public Outreach

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Kascak, A.; Tobola, K.; Galindo, C.; Allen, C.

    2011-01-01

    In the next two years, during the NASA Year of the Solar System, spacecraft from NASA and our international partners will; encounter a comet, orbit asteroid 4 Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories, and their continued study provides incredibly valuable "ground truth" to complement space exploration missions. Extensive information about these unique materials, as well as actual lunar samples and meteorites, are available for display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach.

  1. Transportation Engineering Education and Outreach Program Designed for the Collegiate Level. Final Report.

    Science.gov (United States)

    Kuhn, Beverly T.

    The Transportation Engineering Education and Outreach Program was organized to develop and disseminate educational and outreach materials that would encourage students in colleges, universities, and technical schools to select transportation as a career path and to attract more students into transportation graduate programs. The research…

  2. Astrobiology outreach and the nature of science: the role of creativity.

    Science.gov (United States)

    Fergusson, Jennifer; Oliver, Carol; Walter, Malcolm R

    2012-12-01

    There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research-related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science.

  3. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  4. Mini-med school for Aboriginal youth: experiential science outreach to tackle systemic barriers

    Directory of Open Access Journals (Sweden)

    Rita I. Henderson

    2015-12-01

    Full Text Available Introduction: Addressing systemic barriers experienced by low-income and minority students to accessing medical school, the University of Calgary's Cumming School of Medicine has spearheaded a year-round, mini-med school outreach initiative for Aboriginal students. Method: Junior and senior high school youth generally attend the half-day program in classes or camps of 15–25, breaking into small groups for multisession activities. Undergraduate medical education students mentor the youth in stations offering experiential lessons in physical examination, reading x-rays, and anatomy. All resources from the medical school are offered in-kind, including a pizza lunch at midday, whereas community partners organize transportation for the attendees. Results: Opening the medical school and its resources to the community offers great benefits to resource-constrained schools often limited in terms of science education resources. The model is also an effort to address challenges among the medical professions around attracting and retaining students from underserved populations. Conclusion: The prospect of increasing admission rates and successful completion of medical education among students from marginalized communities poses a real, though difficult-to-measure, possibility of increasing the workforce most likely to return to and work in such challenging contexts. A mini-medical school for Aboriginal youth highlights mutual, long-term benefit for diverse partners, encouraging medical educators and community-based science educators to explore the possibilities for deepening partnerships in their own regions.

  5. Communicating Earth Science Through Music: The Use of Environmental Sound in Science Outreach

    Science.gov (United States)

    Brenner, C.

    2017-12-01

    The need for increased public understanding and appreciation of Earth science has taken on growing importance over the last several decades. Human society faces critical environmental challenges, both near-term and future, in areas such as climate change, resource allocation, geohazard threat and the environmental degradation of ecosystems. Science outreach is an essential component to engaging both policymakers and the public in the importance of managing these challenges. However, despite considerable efforts on the part of scientists and outreach experts, many citizens feel that scientific research and methods are both difficult to understand and remote from their everyday experience. As perhaps the most accessible of all art forms, music can provide a pathway through which the public can connect to Earth processes. The Earth is not silent: environmental sound can be sampled and folded into musical compositions, either with or without the additional sounds of conventional or electronic instruments. These compositions can be used in conjunction with other forms of outreach (e.g., as soundtracks for documentary videos or museum installations), or simply stand alone as testament to the beauty of geology and nature. As proof of concept, this presentation will consist of a musical composition that includes sounds from various field recordings of wind, swamps, ice and water (including recordings from the inside of glaciers).

  6. Muggles, Meteoritic Armor, and Menelmacar: Using Fantasy Series in Astronomy Education and Outreach

    Science.gov (United States)

    Larsen, K.; Bednarski, M.

    2008-11-01

    Due in part to recent (and ongoing) film adaptations, the fantasy series of C.S. Lewis (The Chronicles of Narnia), J.K. Rowling (Harry Potter), Philip Pullman (His Dark Materials), and J.R.R. Tolkien (The Silmarillion, The Hobbit, and The Lord of the Rings) are being introduced to a new audience of young (and not so young) readers. Many astronomers and astronomy educators are unaware of the wide variety of astronomical references contained in each series. The first portion of this workshop will introduce participants to these references, and highlight activities which educators, planetariums, and science centers have already developed to utilize these works in their education and outreach programs. In the second segment of the workshop, participants will develop ideas for activities and materials relevant to their individual circumstances, including standards-based education materials.

  7. NASA Astrophysics Education and Public Outreach: Engaging Educators and Students in Exploring the Cosmic Frontier

    Science.gov (United States)

    Lawton, Brandon L.; Eisenhamer, Bonnie; Smith, Denise Anne; Jirdeh, Hussein; Summers, Frank; Darnell, John T.; Ryer, Holly

    2015-08-01

    NASA’s Frontier Fields is an ambitious three-year Great Observatories program that will expand our understanding of galaxy formation and evolution in the early universe. The program includes six deep-field observations of strong-lensing galaxy clusters that will be taken in parallel with six deep “blank fields.” The observations allow astronomers to look deeper into the universe than ever before, and potentially uncover galaxies that are as much as 100 times fainter than what the telescopes can typically observe. The Frontier Fields science program is ideal for informing audiences about scientific advances and topics in STEM. The study of galaxy properties, statistics, optics, and Einstein’s theory of general relativity naturally leverages off of the science returns of the Frontier Fields program. As a result, the Space Telescope Science Institute’s Office of Public Outreach (OPO) has initiated an E/PO project to follow the progress of the Frontier Fields.For over two decades, the Hubble E/PO program has sought to bring the wonders of the universe to the education community, the youth, and the public, and engage audiences in the adventure of scientific discovery. Program components include standards-based curriculum-support materials, exhibits and exhibit components, professional development workshops, and direct interactions with scientists. We are also leveraging our new social media strategy to bring the science program to the public in the form of an ongoing blog. The main underpinnings of the program’s infrastructure are scientist-educator development teams, partnerships, and an embedded program evaluation component. OPO is leveraging this existing infrastructure to bring the Frontier Fields science program to the education community and the public in a cost-effective way.This talk features the goals and current status of the Frontier Fields E/PO program, with a particular emphasis on our education goals and achievements. We also highlight OPO

  8. Research and Education: Planning an Effective Outreach Program in Balance with a Research Career

    Science.gov (United States)

    Connolly, Brian

    2002-04-01

    As scientific scholars and educators we are in a position to make a difference in outreach efforts to elementary and high school students as well as the general public, in addition to mentoring undergraduate and doctoral students. Outreach is a major component of the CAREER grant, the Lederman fellowship, as well as the primary focus of the Young Physicists Outreach Panel (YPOP). As recipients of these awards, and participants in YPOP, we would like to share our insights with the audience. The talk will cover the topics of YPOP, the Lederman Fellowship, and the CAREER grant. The Lederman Fellowship is awarded in recognition of Leon Lederman's legacy as an educator, where the fellows participate in educational/outreach programs of their choice. The NSF makes the CAREER awards to junion faculty. Outreach is of fundamental importance in these grants, with a 40 percent weight attached to the outreach and education component of the proposal. The speakers, a graduate student, a post-doctoral research fellow, and an Assistant Professor, will describe the educational/outreach activities they have been involved in, and discuss how outreach can be integrated into a career in physics research.

  9. The Role of the Modern Planetarium as an Effective Tool in Astronomy Education and Public Outreach

    Science.gov (United States)

    Albin, Edward F.

    2016-01-01

    As the planetarium approaches its 100th anniversary, today's planetarium educator must reflect on the role of such technology in contemporary astronomy education and outreach. The projection planetarium saw "first light" in 1923 at the Carl Zeiss factory in Jena, Germany. During the 20th century, the concept of a star projector beneath a dome flourished as an extraordinary device for the teaching of astronomy. The evolution of digital technology over the past twenty years has dramatically changed the perception / utilization of the planetarium. The vast majority of modern star theaters have shifted entirely to fulldome digital projection systems, abandoning the once ubiquitous electromechanical star projector altogether. These systems have evolved into ultra-high resolution theaters, capable of projecting imagery, videos, and any web-based media onto the dome. Such capability has rendered the planetarium as a multi-disciplinary tool, broadening its educational appeal to a wide variety of fields -- including life sciences, the humanities, and even entertainment venues. However, we suggest that what is at the heart of the planetarium appeal is having a theater adept at projecting a beautiful / accurate star-field. To this end, our facility chose to keep / maintain its aging Zeiss V star projector while adding fulldome digital capability. Such a hybrid approach provides an excellent compromise between presenting state of the art multimedia while at the same time maintaining the ability to render a stunning night sky. In addition, our facility maintains two portable StarLab planetariums for outreach purposes, one unit with a classic electromechanical star projector and the other having a relatively inexpensive fulldome projection system. With a combination of these technologies, it is possible for the planetarium to be an effective tool for astronomical education / outreach well into the 21st century.

  10. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    Science.gov (United States)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  11. Public Interaction and Educational Outreach on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Benson, A.; Riding, Y.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public, which in turn resulted in

  12. Public Interaction and Educational Outreach on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    A. Benson; Y. Riding

    2002-11-14

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada as the nation's first long-term geologic repository site for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than twenty years of scientific study and intense public interaction and outreach. This paper describes public interaction and outreach challenges faced by the U.S. Department of Energy's (DOE) Yucca Mountain Project in the past and what additional communication strategies may be instituted following the July 2002 approval by the U.S. Congress to develop the site as the nation's first long-term geologic repository for spent nuclear fuel and high-level radioactive waste. The DOE public involvement activities were driven by two federal regulations--the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. Because the Department anticipated and later received much public interest in this high-profile project, the agency decided to go beyond regulatory-required public involvement activities and created a broad-based program that implemented far-reaching public interaction and outreach tactics. Over the last two decades, DOE informed, educated, and engaged a myriad of interested local, national, and international parties using various traditional and innovative approaches. The Yucca Mountain Project's intensive public affairs initiatives were instrumental in involving the public

  13. Cure4Kids for Kids: school-based cancer education outreach.

    Science.gov (United States)

    Van Kirk Villalobos, Aubrey; Quintana, Yuri; Ribeiro, Raul C

    2012-01-01

    In 2006, St. Jude Children's Research Hospital created Cure4Kids for Kids, a school-based outreach program. The objectives of this community education program are to teach about cancer and healthy lifestyles and to inspire an interest in science and health-related careers. A multidisciplinary team of St. Jude and outside experts developed and pilot tested age-appropriate educational materials and activities with 4th grade students. Eight schools and more than 800 children have participated in the program since 2006. Teachers and students have demonstrated a very positive response to the program for it being both fun and educational. Cure4Kids for Kids resources have been collected into a teacher's kit and are now freely available online at www.cure4kids.org/kids.

  14. Utilizing Science Outreach to Foster Professional Skills Development in University Students

    Science.gov (United States)

    Eng, Edward; Febria, Catherine

    2011-01-01

    Students seek unique experiences to obtain and enhance professional development skills and to prepare for future careers. Through the Let's Talk Science Partnership Program (LTSPP), a voluntary science outreach program at University of Toronto Scarborough, students are given the opportunity to continually improve on skills which include: the…

  15. Discover Science Initiative, outreach and professional development at the University of California, Irvine

    Science.gov (United States)

    Pestana, Jill; Earthman, James

    Discover Science Initiative (DSI) is an unprecedented success in the Southern Californian community by reaching out to over 5,000 participants through eight hands-on workshops on topics from fungi to the physics of light, and two large events in the past year. The DSI vision is to provide an avenue for University of California, Irvine (UCI) students and faculty from all departments to engage with the local community through workshops and presentations on interdisciplinary, state-of-the-art STEM research unique to UCI. DSI provides professional development opportunities for diverse students at UCI, while providing outreach at one of the most popular educational centers in Southern California, the Discovery Cube, which hosts over 400,000 guests each year. In DSI, students engage in peer-to-peer mentoring with guidance from the UCI School of Education in designing workshops, leading meetings, and managing teams. Also, students practice science communication, coached by certified communications trainers. Students involved in DSI learn important skills to complement their academic degrees, and stay motivated to pursue their career goals. Support for DSI is from Diverse Educational and Doctoral Experience (DECADE) at UCI.

  16. Virtual Knowledge Production within a Physician Educational Outreach Program

    Directory of Open Access Journals (Sweden)

    Bruce Carleton

    2011-03-01

    Full Text Available This paper describe the impacts and lessons learned of using conferencing technologies to support knowledge production activities within an academic detailing group. A three year case study was conducted in which 20 Canadian health professionals collaborated on developing educational outreach materials for family physicians. The groups communicated in face-to-face, teleconferencing, and web-conferencing environments. Data was collected over three years (2004-2007 and consisted of structured interviews, meeting transcripts, and observation notes. The analysis consisted of detailed reviews and comparisons of the data from the various sources. The results revealed several key findings on the on the impacts of conferencing technologies on knowledge production activities of academic detailers. The study found that: 1 The rigid communication structures of web-conferencing forced group members to introduce other tools for communication 2 Group discussions were perceived to be more conducive in face-to-face meetings and least conducive teleconferencing meetings; 3 Web-conferencing had an impact on information sharing; 4 Web-conferencing forces group interaction “within the text”. The study demonstrates the impacts and lessons learned of academic detailing groups collaborating at a distance to produce physician education materials. The results can be used as the bases for future research and as a practical guide for collaborative academic detailing groups working within a virtual collaborative and educational environment.

  17. Visualizing Time Projection Chamber Data for Education and Outreach

    Science.gov (United States)

    Crosby, Jacob

    2017-09-01

    The widespread availability of portable computers in the form of smartphones provides a unique opportunity to introduce scientific concepts to a broad audience, for the purpose of education, or for the purpose of sharing exciting developments and research. Unity, a free game development platform, has been used to develop a program to visualize 3-D events from a Time Projection Chamber (TPC). The program can be presented as a Virtual Reality (VR) application on a smartphone, which can serve as a standalone demonstration for interested individuals, or as a resource for educators. An interactive experience to watch nuclear events unfold demonstrates the principles of particle detection with a TPC, as well as providing information about the particles present. Different kinds of reactions can be showcased. The current state of tools within this program for outreach and educational purposes will be highlighted and presented in this poster, along with key design concerns and optimizations necessary for running an interactive VR app. The events highlighted in this program are from the S πRIT TPC, but the program can be applied to other 3-D detectors. This work is supported by the U.S. Department of Energy under Grant Nos. DE-SC0014530, DE-NA0002923 and US NSF under Grant No. PHY-1565546.

  18. The National Eclipse Weather Experiment: use and evaluation of a citizen science tool for schools outreach.

    Science.gov (United States)

    Portas, Antonio M; Barnard, Luke; Scott, Chris; Harrison, R Giles

    2016-09-28

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  19. Exploring new possibilities of astronomy education and outreach

    Science.gov (United States)

    Fukushima, Kodai

    2015-08-01

    I investigate the influences of astronomy education and outreach activities on people in order to explore their potential benefits and contribution to society. This research is based on the astronomy education lessons I gave to 287 senior high school and junior high school students in Cambodia in November 2013. Before and after my lesson, I asked them to answer my questionnaires in Khmer, where they could also write free descriptions. Sentences in their free descriptions translated into Japanese are analyzed by means of a text mining method. By converting text data to various numbers using a text mining method, it is possible for us to do statistical analysis. I counted the number of question sentences and computed their rate with respect to the total number of sentences. The rate of question sentences in 9th and 12th grade students are 39% and 9%, respectively. This shows 9th grade students wonder why and how more frequently and appear to be more stimulated in their curiosity than 12th grade students. I counted the frequency of words in the free descriptions and examined high frequency words, to take a broad view of the characteristics of free description. The word ''world'' is the fourth highest frequency word among 369 words following the three words, ''the universe'', ''the earth'', and ''a star'', which frequently appear in the lesson in astronomy. The most sentences including the word “world” described amazement at the existence of so vast unknown world outside of what they had known until then. The frequency of sentences including the word ''world'' of 12th grade students is much higher (45%) than that (18%) of 9th grade students. A significant fraction of 12th grade students appears to have had a strong impact and changed their views of the world. It is found that my lesson and related activities inspired intellectual curiosity in many students, especially in 9th grade students. It is also found that a significant fraction of 12th grade students appear

  20. Education and outreach using the falcon telescope network

    Science.gov (United States)

    Gresham, Kimberlee C.; Palma, Christopher; Polsgrove, Daniel E.; Chun, Francis K.; Della-Rose, Devin J.; Tippets, Roger D.

    2016-12-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. The diversity of the users implies a wide variety of observing interests, and thus the FTN collects images on diverse objects, including satellites, galactic and extragalactic objects, and objects popular for education and public outreach. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA. Currently, there are five Falcon telescopes installed, two in Colorado and one each in Pennsylvania, Chile, and Australia. These five telescopes are in various stages of operational capability but all are remotely operable via a remote desktop application. The FTN team has conducted STEM First Light Projects for three of the U.S. observatories, soliciting proposals from middle and high school students and teachers that suggest and then become what is observed as official STEM first-light objects. Students and teachers learn how to write and submit a proposal as well as how telescopes operate and take data, while university-level students at the U.S. Air Force Academy and The Pennsylvania State University learn how to evaluate proposals and provide feedback to the middle and high school students and teachers. In this paper, we present the current status of the FTN, details of and lessons

  1. Space Science Outreach in the Virtual World of Second Life

    Science.gov (United States)

    Crider, Anthony W.; International Spaceflight Museum

    2006-12-01

    The on-line "game" of Second Life allows users to construct a highly detailed and customized environment. Users often pool talents and resources to construct virtual islands that focus on their common interest. One such group has built the International Spaceflight Museum, committed to constructing and displaying accurate models of rockets, spacecraft, telescopes, and planetariums. Current exhibits include a Saturn V rocket, a Viking lander on Mars, Spaceship One, the New Horizons mission to the Kuiper Belt, and a prototype of the Orion crew exploration vehicle. This museum also hosts public lectures, shuttle launch viewings, and university astronomy class projects. In this presentation, I will focus on how space science researchers and educators may take advantage of this new resource as a means to engage the public.

  2. Selling the Great American Eclipse: An Education and Public Outreach Retrospective

    Science.gov (United States)

    Nordgren, T.

    2017-12-01

    The August 21, 2017 total solar eclipse was the single largest public scientific outreach event of the last several decades. The astronomical community, from organizations like to the American Astronomical Society, to government agencies such as NASA, to the nation-wide amateur astronomy community all worked to raise awareness of this unique event that would be visible to every single inhabitant of the United States. This outreach, like the event itself, was unique in requiring education on not just the science of the event, but the societal nature as well. This included such variety of subjects as: 1) eye safety for millions of individuals, 2) the importance of traveling to totality, 3) transportation issues over mass travel to regions in totality, 3) lodging, food, and logistics information for communities in totality, 4) governmental emergency response, and much more. I interview a number of communities, city managers, event planners, and national park rangers after the eclipse to identify what were the most important education and outreach information they received leading up to the event to assess what we in the astronomical community did that was most effective and what could have been done better in retrospect. In particular, I look at the use of the solar eclipse "travel poster" campaign I designed for event organizers, chambers of commerce, universities, and national and state parks in the four years leading up to the eclipse. How were they used and were they effective in raising the public's awareness of community events across the country? The lessons learned will be important for planning for the next eclipse that touches the U.S. in less than seven years from now on April 8, 2024.

  3. Geoscience Education and Public Outreach AND CRITERION 2: MAKING A BROADER IMPACT

    Science.gov (United States)

    Marlino, M.; Scotchmoor, J. G.

    2005-12-01

    The geosciences influence our daily lives and yet often go unnoticed by the general public. From the moment we listen to the weather report and fill-up our cars for the daily commute, until we return to our homes constructed from natural resources, we rely on years of scientific research. The challenge facing the geosciences is to make explicit to the public not only the criticality of the research whose benefits they enjoy, but also to actively engage them as partners in the research effort, by providing them with sufficient understanding of the scientific enterprise so that they become thoughtful and proactive when making decisions in the polling booth. Today, there is broad recognition within the science and policy community that communication needs to be more effective, more visible, and that the public communication of the scientific enterprise is critical not only to its taxpayer support, but also to maintenance of a skilled workforce and the standard of living expected by many Americans. In 1997, the National Science Board took the first critical step in creating a cultural change in the scientific community by requiring explicit consideration of the broader impacts of research in every research proposal. The so-called Criterion 2 has catalyzed a dramatic shift in expectations within the geoscience community and an incentive for finding ways to encourage the science research community to select education and public outreach as a venue for responding to Criterion 2. In response, a workshop organized by the University of California Museum of Paleontology and the Digital Library for Earth System Education (DLESE) was held on the Berkeley campus May 11-13, 2005. The Geoscience EPO Workshop purposefully narrowed its focus to that of education and public outreach. This workshop was based on the premise that there are proven models and best practices for effective outreach strategies that need to be identified and shared with research scientists. Workshop

  4. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    Science.gov (United States)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  5. NASA IceBridge and PolarTREC - Education and Outreach Partnership

    Science.gov (United States)

    Bartholow, S.; Warburton, J.; Beck, J.; Woods, J. E.

    2015-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. PolarTREC has worked specifically with OIB for 3 years and looking forward to ongoing collaboration. PolarTREC brings U.S. K­12 educators and polar researchers together through an innovative teacher research experience model. Participating teachers spend 3-6 weeks in the field with research teams conducting surveys and collecting data on various aspects of polar science. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfill a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Working with OIB has opened up the nature of science for the participating teachers. In developing the long-term relationship with OIB teams, teachers can now share (1) the diversity of training, backgrounds, and interests of OIB scientists, (2) identify the linkages between Greenlandic culture and community and cryospheric science and evidence of climate change, (3) network with Danish and Greenlandic educators on the mission (4) gain access to the full spectrum of a science project - development, implementation, analysis, networking, and dissemination of information. All aspects help these teachers become champions of NASA science and educational leaders in their communities. Evaluation data shows that PolarTREC has clearly achieved it goals with the OIB partnership and suggests that linking teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their

  6. What Do Subject Matter Experts Have to Say about Participating in Education and Outreach?

    Science.gov (United States)

    Manning, Colleen; NASA's Universe of Learning Team

    2018-01-01

    NASA’s Universe of Learning partners wish to actively engage with Subject Matter Experts (scientists and engineers) throughout the design, development, and delivery of products, programs, and professional development. In order to ensure these engagement efforts aligned with the needs of Subject Matter Experts, the external evaluators conducted an online survey. The subject pool included the scientists and engineers employed at the partner organizations as well as other scientists and engineers affiliated with NASA’s Astrophysics missions and research programs. This presentation will describe scientists’/engineers’ interest in various types of education/outreach, their availability to participate in education/outreach, factors that would encourage their participation in education/outreach, and the preparation and support they have for participation in education/outreach.

  7. Amateur Radio on the International Space Station (ARISS) - the First Educational Outreach Program on ISS

    Science.gov (United States)

    Conley, C. L.; Bauer, F. H.; Brown, D.; White, R.

    2002-01-01

    ) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. By June 2002 over 65 schools have been selected from 10 countries for scheduled contacts with the orbiting ISS crews. Ten or more students at each school ask the astronauts questions. The nature of these contacts embodies the primary goal of the ARISS program -- to excite students' interest in science, technology and amateur radio. This paper will discuss the educational outreach capabilities of ARISS, some of the challenges that the ARISS-international team of volunteers overcame to bring this first educational activity on ISS into operation, and its plans for the future. It will also summarize the networking opportunities which expand each school contact, including local school media events, WorldCom support, MSNBC coverage, and internet access. In addition, educational outreach is extended through joint projects with IMAX-3D, Space Center Houston teacher training, and NASA internet activities.

  8. Space Scientists in Education and Public Outreach: A Summary of NASA Resources for Effective Engagement

    Science.gov (United States)

    Grier, Jennifer A.; Buxner, Sanlyn; Schneider, Nick; Meinke, Bonnie; Shipp, Stephanie

    2015-11-01

    The NASA Education and Public Outreach (E/PO) Forums developed and provided resources for scientists through a five-year cooperative agreement. Through this work, the Fourms have supported scientists who are involved in E/PO and who wish to become involved. Forums have conducted interviews, facilitated education oral and poster sessions, provided ‘Help Desks’ for more information, curated activities, as well as produced guides, pamphlets, and tips sheets. Our interviews with over 30 planetary scientists allowed us to identify needs and target gaps in resources, ensuring we could provide scientists with effective support and products. Interviews were conducted in collaboration with the AAS Division of Planetary Sciences, with the goal of better understanding scientists’ requirements, barriers, attitudes, and perception of education and outreach work. We collected information about how scientists were engaged in E/PO activities (or not), what support they did or did not have, what resources they used in their efforts, and what resources they would like to have to support and improve their E/PO engagement. The Forums have convened and/or supported E/PO oral and poster sessions at a variety of annual meetings. These sessions allowed scientists to network, share lessons learned, and become aware of new resources and products. These meetings included the DPS, AAS, LPSC, AGU, ASP, IAU, and more. ‘Help Desks’ were offered to allow scientists the chance to have extended one-on-one conversations with E/PO providers in order to share their programs, and learn how to become involved. These have been particularly popular with early career scientists looking to extend their E/PO efforts. A host of education activities developed by the space science community have been archived at the NASA site “Wavelength” (nasawavelength.org). Special lists have been curated to allow scientists to easily target those activities that fit their particular needs, from engineering to

  9. Experiential Posters: Theatrical and Improvisational Tools Aid in Science Museum Outreach

    Directory of Open Access Journals (Sweden)

    Verónica A. Segarra

    2014-07-01

    Full Text Available We frequently use diagrams or animations to reveal to others biological phenomena that are both invisible to the naked eye and difficult to conceptualize.  But these didactic tools fall short in that they generally do not provide feedback or interaction with the user, nor adapt easily to the user’s needs and abilities.  Adaptability to the user’s educational level and needs is critical to catalyze effective learning, especially when the new content is highly complex in nature.  The need for adaptability is key in museum learning environments, where the student audience is very diverse in age and academic training.  We are rethinking the way we go about representing biological processes to general audiences, particularly highly complex topics such as those found in neuroscience.  We have experimented with the concept of using (what we are calling “experiential posters” in the context of museum educational experiences to represent processes in neuroscience in a way that is more accessible to the general public.  An experiential poster is an installation that uses props and staging to provide the user or learner an opportunity to “act out” the sequence of events and the flow of materials in a biological process of interest.  We describe the use of an “experiential poster” to meet specific learning objectives.  We also discuss the potential for its use in service learning and science outreach education.

  10. Planning a New Education and Outreach Program Based on Past Experiences

    Science.gov (United States)

    Prescott, W. H.; Eriksson, S. C.

    2004-12-01

    ' in the science community by recruiting and educating a diverse group of future geodesy researchers? Plan a program and then allocate resources toward the plan. No organization has enough resources (people, money, science) to do everything. There is a common misperception that outreach is easy and cheap. When doing E & O, put enough money into the budgets to support the planned work. Science drives an E & O program but must be designed to meet the needs of the chosen audiences. Science is fascinating to scientists, but perhaps not to a communications freshman, or a secondary student whose primary interest is cars, or the teacher whose state is going evaluate her teaching on students' test scores. What captivates and gives people the desire to learn? Collaboration is important but is not easy. Collaboration builds upon different strengths and extends resources. However, professions and individuals commonly have different ways of working, different languages, and different reward systems. An E & O program must establish `ways of working' to facilitate collaboration and communication. Many scientists acknowledge the value of E & O, but it often loses out to other priorities. The increased number of scientists who are now interested in E & O is a direct correlation with funding agencies' demand that there be some well articulated, broader impacts of science. Good E & O is difficult and is not just a `pick-`up activity.

  11. Practices and promises of Facebook for science outreach: Becoming a "Nerd of Trust".

    Science.gov (United States)

    McClain, Craig R

    2017-06-01

    Arguably, the dissemination of science communication has recently entered a new age in which science must compete for public attention with fake news, alternate facts, and pseudoscience. This clash is particularly evident on social media. Facebook has taken a prime role in disseminating fake news, alternate facts, and pseudoscience, but is often ignored in the context of science outreach, especially among individual scientists. Based on new survey data, scientists appear in large Facebook networks but seldom post information about general science, their own scientific research, or culturally controversial topics in science. The typical individual scientist's audience is large and personally connected, potentially leading to both a broad and deep engagement in science. Moreover, this media values individual expertise, allowing scientists to serve as a "Nerd of Trust" for their online friend and family networks. Science outreach via social media demands a renewed interest, and Facebook may be an overlooked high-return, low-risk science outreach tool in which scientists can play a valuable role to combat disinformation.

  12. Practices and promises of Facebook for science outreach: Becoming a “Nerd of Trust”

    Science.gov (United States)

    2017-01-01

    Arguably, the dissemination of science communication has recently entered a new age in which science must compete for public attention with fake news, alternate facts, and pseudoscience. This clash is particularly evident on social media. Facebook has taken a prime role in disseminating fake news, alternate facts, and pseudoscience, but is often ignored in the context of science outreach, especially among individual scientists. Based on new survey data, scientists appear in large Facebook networks but seldom post information about general science, their own scientific research, or culturally controversial topics in science. The typical individual scientist’s audience is large and personally connected, potentially leading to both a broad and deep engagement in science. Moreover, this media values individual expertise, allowing scientists to serve as a “Nerd of Trust” for their online friend and family networks. Science outreach via social media demands a renewed interest, and Facebook may be an overlooked high-return, low-risk science outreach tool in which scientists can play a valuable role to combat disinformation. PMID:28654674

  13. Practices and promises of Facebook for science outreach: Becoming a "Nerd of Trust".

    Directory of Open Access Journals (Sweden)

    Craig R McClain

    2017-06-01

    Full Text Available Arguably, the dissemination of science communication has recently entered a new age in which science must compete for public attention with fake news, alternate facts, and pseudoscience. This clash is particularly evident on social media. Facebook has taken a prime role in disseminating fake news, alternate facts, and pseudoscience, but is often ignored in the context of science outreach, especially among individual scientists. Based on new survey data, scientists appear in large Facebook networks but seldom post information about general science, their own scientific research, or culturally controversial topics in science. The typical individual scientist's audience is large and personally connected, potentially leading to both a broad and deep engagement in science. Moreover, this media values individual expertise, allowing scientists to serve as a "Nerd of Trust" for their online friend and family networks. Science outreach via social media demands a renewed interest, and Facebook may be an overlooked high-return, low-risk science outreach tool in which scientists can play a valuable role to combat disinformation.

  14. Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada

    Science.gov (United States)

    Karagatzides, Jim D.; Kozlovic, Daniel R.; De Iuliis, Gerry; Liberda, Eric N.; General, Zachariah; Liedtke, Jeff; McCarthy, Daniel D.; Gomez, Natalya; Metatawabin, Daniel; Tsuji, Leonard J. S.

    2011-01-01

    We connected youth of the Mushkegowuk Territory (specifically Fort Albany First Nation) with environmental science and technology mentors in an outreach program contextualized to subarctic Ontario that addressed some of the environmental concerns identified by members of Fort Albany First Nation. Most activities were community-based centering on…

  15. Astronomy for Astronomical Numbers - Education and Public Outreach with Massive Open Online Classes

    Science.gov (United States)

    Impey, C.; Buxner, S.; Wenger, M.; Formanek, M.

    2015-12-01

    Massive Open Online Classes (MOOCs) represent a powerful new mode of education and public outreach. While early hype has often given way to disappointment over the typically low completion rates, retaining the interest of free-choice learners is always a challenge, and the worldwide reach and low cost of of these online classes is a democratizing influence in higher education. We have used providers Udemy and Coursera to reach over 60,000 adults with an astronomy course that covers the recent research results across the subject from comets to cosmology. In addition to measures of participation, completion, and performance, we have administered surveys of the learners that measure science literacy, attitudes towards science and technology, and sources of information about science. Beyond the usual core of video lectures and quizzes, we have used peer reviewed writing assignments, observing project, and citizen science to create a richer learning environment. Research on MOOCs is still in its early stages, but we hope to learn what factors contribute most to student engagement and completion in these online settings.

  16. Lasers, penguins, and polar bears: Novel outreach and education approaches for NASA's ICESat-2 mission

    Science.gov (United States)

    Casasanto, Valerie A.; Campbell, Brian; Manrique, Adriana; Ramsayer, Kate; Markus, Thorsten; Neumann, Thomas

    2018-07-01

    NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, will provide an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas that have experienced significant change in recent years. It is key to communicate why we are measuring these areas and their importance. ICESat-2 science data will provide much-needed answers to climate change questions such as, "Is the ice really melting in the polar regions?" and "What does studying Earth's frozen regions tell us about our changing climate?" In this paper, lessons-learned and novel techniques for engaging and educating all audiences in the mission will be discussed, such as including results of a unique collaboration with art design school the Savannah College of Art Design (SCAD) to create fun and exciting products such as animated characters and interactive stories. Future collaborations with wildlife researchers, a new citizen science program in collaboration with GLOBE, and evidence from other STEAM (Science, Technology, Engineering, Arts, Math) education approaches will also be detailed in this paper.

  17. Astrobiology Outreach and the Nature of Science: The Role of Creativity

    Science.gov (United States)

    Oliver, Carol; Walter, Malcolm R.

    2012-01-01

    Abstract There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research–related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science. Key Words: Science education—School science—Creativity—Nature and processes of science—Attitudes—Astrobiology. Astrobiology 12, 1143–1153. PMID:23134090

  18. Development of an Integrated Education/Training based Nuclear Outreach Model

    International Nuclear Information System (INIS)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon

    2013-01-01

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences

  19. Development of an Integrated Education/Training based Nuclear Outreach Model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences.

  20. NASA Langley Research Center outreach in astronautical education

    Science.gov (United States)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  1. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    Science.gov (United States)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  2. The Efforts of the American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee to Use NASA Research in Education and Outreach

    Science.gov (United States)

    Bering, E. A., III; Dusenbery, P.; Gross, N. A.; Johnson, R.; Lopez, R. E.; Lysak, R. L.; Moldwin, M.; Morrow, C. A.; Nichols-Yehling, M.; Peticolas, L. M.; Reiff, P. H.; Scherrer, D. K.; Thieman, J.; Wawro, M.; Wood, E. L.

    2017-12-01

    The American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee (AGU SPA-EPO Committee) was established in 1990 to foster the growth of a culture of outreach and community engagement within the SPA Section of the AGU. The SPA was the first AGU Section to establish an EPO Committee. The Committee has initiated several key Section EPO programs that have grown to become Union programs. NASA sponsored research is central to the mission of the SPE-EPO. Programs highlighting NASA research include the Student Paper Competition, Exploration Station, a precursor to the GIFT workshops, the Student mixer, and more. The Committee played a key role in coordinating the AGU's outreach activities relating to the International Heliophysical Year in 2007-2008. This paper will review the triumphs, the failures, and the lessons learned about recruiting colleagues to join with us from the last quarter century of effort.

  3. The Swift MIDEX Education and Public Outreach Program

    Science.gov (United States)

    Feigelson, E. D.; Cominsky, L. R.; Whitlock, L. A.

    1999-12-01

    The Swift satellite is dedicated to an understanding of gamma-ray bursts, the most powerful explosions in the Universe since the Big Bang. A multifaceted E/PO program associated with Swift is planned. Web sites will be constructed, including sophisticated interactive learning environments for combining science concepts with with exploration and critical thinking for high school students. The award-winning instructional television program "What's in the News?", produced by Penn State Public Broadcasting and reaching several million 4th-7th graders, will create a series of broadcasts on Swift and space astronomy. A teachers' curricular guide on space astronomy will be produced by UC-Berkeley's Lawrence Hall of Science as part of their highly successful GEMS guides promoting inquiry-based science education. Teacher workshops will be conducted in the Appalachian region and nationwide to testbed and disseminate these products. We may also assist the production of gamma-ray burst museum exhibits. All aspects of the program will be overseen by a Swift Education Committee and assessed by a professional educational evaluation firm. This effort will be supported by the NASA Swift MIDEX contract to Penn State.

  4. Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes

    Science.gov (United States)

    Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.

    2014-12-01

    Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.

  5. Geological research for public outreach and education in Lithuania

    Science.gov (United States)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    exposition at the Museum of Erratic Boulders in NW Lithuania is being rearranged for educational purposes, to show the major rock types and their origins more clearly. A new exhibition is supplemented with computer portals presenting geological processes, geological quizzes, animations etc. Magmatism, metamorphism, sedimentation and other geological processes are demonstrated using erratic boulders brought by glaciers from Scandinavia and northern Russia. A part of the exhibition is devoted to glaciation processes and arrival of ice sheets to Lithuania. Visitors are able to examine large erratic boulder groups in a surrounding park and to enjoy beautiful environment. The exhibition also demonstrates mineral resources of Lithuania, different fossils and stones from a human body. In all cases it was recognised that a lack of geological information limits the use of geology for public outreach. Ongoing scientific research is essential in many places as well as a mediator's job for interpreting the results of highly specialised research results and to adapt them for public consumption.

  6. Creative Building Design for Innovative Earth Science Teaching and Outreach (Invited)

    Science.gov (United States)

    Chan, M. A.

    2009-12-01

    Earth Science departments can blend the physical “bricks and mortar” facility with programs and educational displays to create a facility that is a permanent outreach tool and a welcoming home for teaching and research. The new Frederick Albert Sutton building at the University of Utah is one of the first LEED (Leadership in Energy and Environmental Design) certified Earth Science buildings in the country. Throughout the structure, creative architectural designs are combined with sustainability, artful geologic displays, and community partnerships. Distinctive features of the building include: 1) Unique, inviting geologic designs such as cross bedding pattern in the concrete foundation; “a river runs through it” (a pebble tile “stream” inside the entrance); “confluence” lobby with spectacular Eocene Green River fossil fish and plant walls; polished rock slabs; and many natural stone elements. All displays are also designed as teaching tools. 2) Student-generated, energy efficient, sustainable projects such as: solar tube lights, xeriscape & rock monoliths, rainwater collection, roof garden, pervious cement, and energy monitoring. 3) Reinforced concrete foundation for vibration-free analytical measurements, and exposed lab ceilings for duct work and infrastructure adaptability. The spectacular displays for this special project were made possible by new partnerships within the community. Companies participated with generous, in-kind donations (e.g., services, stone flooring and slabs, and landscape rocks). They received recognition in the building and in literature acknowledging donors. A beautiful built environment creates space that students, faculty, and staff are proud of. People feel good about coming to work, and they are happy about their surroundings. This makes a strong recruiting tool, with more productive and satisfied employees. Buildings with architectural interest and displays can showcase geology as art and science, while highlighting

  7. Astronomy4Kids: Extending STEM learning to the youngest student through an online educational outreach program

    Science.gov (United States)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Astronomy4Kids is an online video series aimed at filling the void of effective and engaging education tools within early childhood learning. Much discussion and research has been conducted on the significance of early learning, with general trends showing significant benefits to early introductions to language, mathematics, and general science concepts. Ultimately, when ideas are introduced to a child at a young age, that child is better prepared for when the concept is re-introduced in its entirety later. National agencies—such as the AAS and NSF—have implemented Science, Technology, Engineering, and Math (STEM) initiatives to expand learning in these areas. However, despite these many resources, the education outreach available to the youngest learners (under the age of 8 or those from pre-school to about 2nd-grade) is seriously lacking. Astronomy4Kids was created to bridge this gap and provide succinct, creative-learning videos following the principles of Fred Rogers, the founder of preschool education video. We present ways to incorporate the freely accessible YouTube videos within various classroom ages and discuss how to use simple activities to promote physics, astronomy, and math learning. Current development, video statistics, and future work will be discussed. The freely accessible videos can be found at www.astronomy4kids.net.

  8. Pathway to STEM: Using Outreach Initiatives as a Method of Identifying, Educating and Recruiting the Next Generation of Scientists and Engineers

    Science.gov (United States)

    Ortiz-Arias, Deedee; Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon

    2017-10-01

    The Princeton Plasma Physics Laboratory (PPPL) uses a host of outreach initiatives to inform the general population: the Young Women's Conference, Science Bowl, Science Undergraduate Laboratory Internship, My Brother's Keeper, a variety of workshops for university faculty and undergraduate students, public and scheduled lab tours, school and community interactive plasma science demonstrations. In addition to informing and educating the public about the laboratory's important work in the areas of Plasma and Fusion, these outreach initiatives, are also used as an opportunity to identify/educate/recruit the next generation of the STEM workforce. These programs provide the laboratory with the ability to: engage the next generation at different paths along their development (K-12, undergraduate, graduate, professional), at different levels of scientific content (science demonstrations, remote experiments, lectures, tours), in some instances, targeting underrepresented groups in STEM (women and minorities), and train additional STEM educators to take learned content into their own classrooms.

  9. Integration of Research Into Science-outreach (IRIS): A Video and Web-based Approach

    Science.gov (United States)

    Clay, P. L.; O'Driscoll, B.

    2013-12-01

    The development of the IRIS (Integration of Research Into Science-outreach) initiative is aimed at using field- and laboratory- based videos and blog entries to enable a sustained outreach relationship between university researchers and local classrooms. IRIS seeks to communicate complex, cutting-edge scientific research in the Earth and Planetary sciences to school-aged children in a simple and interesting manner, in the hope of ameliorating the overall decline of children entering into science and engineering fields in future generations. The primary method of delivery IRIS utilizes is the media of film, ';webinars' and blog entries. Filmed sequences of laboratory work, field work, science demos and mini webinars on current and relevant material in the Earth and Planetary sciences are ';subscribed' to by local schools. Selected sequences are delivered in 20-30 minute film segments with accompanying written material. The level at which the subject matter is currently geared is towards secondary level school-aged children, with the purpose of inspiring and encouraging curiosity, learning and development in scientific research. The video broadcasts are supplemented by a hands-on visit 1-2 times per year by a group of scientists participating in the filmed sequences to the subscribing class, with the objective of engaging and establishing a natural rapport between the class and the scientists that they see in the broadcasts. This transgresses boundaries that traditional 'one off' outreach platforms often aren't able to achieve. The initial results of the IRIS outreach initiative including successes, problems encountered and classroom feedback will be reported.

  10. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  11. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  12. Epoxi Has Its Sights On Hartley; Our Sights Are On Education And Public Outreach

    Science.gov (United States)

    Feaga, Lori M.; EPOXI E/PO Team

    2010-10-01

    The Deep Impact eXtended Investigation (DIXI) of NASA's EPOXI Discovery Program continues its thematic investigation of comets with a flyby of comet 103P/Hartley 2 on November 4, 2010. During the approach, encounter, and departure phase of the mission, the remaining instruments on the Deep Impact spacecraft will further explore the properties of comets. Ultimately, the planetary science community wants to better understand the diversity between comets and how these protoplanetary building blocks have evolved throughout their history in the Solar System. A goal of EPOXI Education and Public Outreach (E/PO) is to share in the excitement of comet science and their potential to preserve details of our origins. The DIXI E/PO team has been publicizing the flyby at many events across the US. The E/PO program is focused on a hands-on approach to learning about comets and their place in the Solar System. Many of the activities available on our website (epoxi.umd.edu) have been adapted from existing education materials and encompass results from several cometary missions. A newly developed and released educational activity called Comparing Comets has been implemented successfully in classrooms. The activity encourages students to make observations, interpretations and think like scientists for the day. The activity guides students through a scientific comparative analysis of two previously visited cometary nuclei, Tempel 1 and Wild 2, a process similar to that which the DIXI science team members will be undertaking when the spacecraft arrives at Hartley 2 and captures images of another comet. Comparing Comets includes audio files from scientists that gives the students and educators insight into the type of data that can be obtained by a mission and the methods that observational astronomers employ when deriving real scientific results from data.

  13. Explaining Earths Energy Budget: CERES-Based NASA Resources for K-12 Education and Public Outreach

    Science.gov (United States)

    Chambers, L. H.; Bethea, K.; Marvel, M. T.; Ruhlman, K.; LaPan, J.; Lewis, P.; Madigan, J.; Oostra, D.; Taylor, J.

    2014-01-01

    Among atmospheric scientists, the importance of the Earth radiation budget concept is well understood. Papers have addressed the topic for over 100 years, and the large Clouds and the Earth's Radiant Energy System (CERES) science team (among others), with its multiple on-orbit instruments, is working hard to quantify the details of its various parts. In education, Earth's energy budget is a concept that generally appears in middle school and Earth science curricula, but its treatment in textbooks leaves much to be desired. Students and the public hold many misconceptions, and very few people have an appreciation for the importance of this energy balance to the conditions on Earth. More importantly, few have a correct mental model that allows them to make predictions and understand the effect of changes such as increasing greenhouse gas concentrations. As an outreach element of the core CERES team at NASA Langley, a multi-disciplinary group of scientists, educators, graphic artists, writers, and web developers has been developing and refining graphics and resources to explain the Earth's Energy budget over the last few decades. Resources have developed through an iterative process involving ongoing use in front of a variety of audiences, including students and teachers from 3rd to 12th grade as well as public audiences.

  14. Ecological monitoring: Outreach to educators in the community

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, J.A.; Haarmann, T.K.; Foxx, T.S.

    1997-04-01

    Reporting Environmental Data was a one-week institute for elementary and middle school teachers and principals. Participants gained insight into Los Alamos National Laboratory`s environmental monitoring programs through performing monitoring in the field. A teacher educator collaborated with a plant ecologist, an entomologist, and two master teachers to provide this institute. During the institute, there were field experiences with forest and insect sampling followed by research and summarizing results. The goals for the institute were all met. These included the following: have scientists lead field experiences with forest and insect sampling which mirror their actual laboratory practices; create understanding of the scope of the environmental monitoring program at Los Alamos National Laboratory; establish links between the professional standards for science and mathematics education and institute activities, use computer technology as both a research tool and to produce a technical summary; create educational environments. Los Alamos National Laboratory is very interested in continually improving communication with the surrounding community, especially when that communication deals with environmental surveillance. The summer institute was an effective way to involve teachers in hands-on experiences with environmental monitoring. This, in turn, taught those educators about the extent of environmental monitoring. Now those teachers are using their experiences to develop curriculum for students.

  15. An urban area minority outreach program for K-6 children in space science

    Science.gov (United States)

    Morris, P.; Garza, O.; Lindstrom, M.; Allen, J.; Wooten, J.; Sumners, C.; Obot, V.

    The Houston area has minority populations with significant school dropout rates. This is similar to other major cities in the United States and elsewhere in the world where there are significant minority populations from rural areas. The student dropout rates are associated in many instances with the absence of educational support opportuni- ties either from the school and/or from the family. This is exacerbated if the student has poor English language skills. To address this issue, a NASA minority university initiative enabled us to develop a broad-based outreach program that includes younger children and their parents at a primarily Hispanic inner city charter school. The pro- gram at the charter school was initiated by teaching computer skills to the older chil- dren, who in turn taught parents. The older children were subsequently asked to help teach a computer literacy class for mothers with 4-5 year old children. The computers initially intimidated the mothers as most had limited educational backgrounds and En- glish language skills. To practice their newly acquired computer skills and learn about space science, the mothers and their children were asked to pick a space project and investigate it using their computer skills. The mothers and their children decided to learn about black holes. The project included designing space suits for their children so that they could travel through space and observe black holes from a closer proxim- ity. The children and their mothers learned about computers and how to use them for educational purposes. In addition, they learned about black holes and the importance of space suits in protecting astronauts as they investigated space. The parents are proud of their children and their achievements. By including the parents in the program, they have a greater understanding of the importance of their children staying in school and the opportunities for careers in space science and technology. For more information on our overall

  16. The Delicate Balance between Research, Teaching and Outreach: A Case Study of Physicists in K-12 Education

    Science.gov (United States)

    Leslie-Pelecky, Diandra

    2003-04-01

    Recent calls from a variety of sectors including some funding agencies and professional societies encourage physicists to take a more active interest in the education of K-12 students and their teachers. Although there are a broad range of possible activities, finding time to participate is always a challenge for the researcher. How does the busy physicist ensure that the time devoted to education or outreach activities produces meaningful results without adversely affecting his or her research program? Project Fulcrum, a NSF-funded program that teams science and math graduate students at the University of Nebraska-Lincoln with 4th -8th grade teachers in the Lincoln Public Schools, presents a case study of how research scientists can be meaningfully involved with K-12 education. Project Fulcrum's preliminary results indicate that the impact scientists have in the classroom goes far beyond providing expertise in physics, and turns out to be very different than originally anticipated. There are a wide variety of models for involvement in education and outreach that cover a broad span of time and energy commitments. Careful project choice, establishing administrative infrastructure, collaborating with other departments and colleges, and involving colleagues can optimize the impact-made-to-time-spent ratio. Challenges such as project evaluation, overcoming the negative attitudes of some physicists towards anything not related to research, and ensuring that participants get appropriate credit for their efforts will also be discussed. The conclusion will address the personal and professional rewards of involvement in education and outreach. This work is funded by the National Science Foundation (NSF-DGE0086358). The author wishes to acknowledge the contributions of co-PIs G. Buck, S. Kirby, R. Kirby and P. Dussault, and all of the Project Fulcrum Fellows and Teachers.

  17. Public outreach: Multitudes attend the Night of Science

    CERN Multimedia

    2006-01-01

    The Night of Science, which took place in the parc de la Perle du Lac in Geneva last weekend, was a great success, with 30000 visitors attending according to the organisers. Many curious people flocked to the stands and animations until late on Saturday night and all afternoon on Sunday. The CERN stand (photo) received a great amount of interest from participants. Both kids and adults discovered the activities of the Laboratory and the data-processing revolution initiated by CERN, from the Web to the Computing Grid. Hats off to the CERN collaborators in the Communication Group and IT Department who made this event a success.

  18. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    Science.gov (United States)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  19. Effective Practices for Evaluating Education and Public Outreach Programs

    Science.gov (United States)

    Wilkerson, S.

    2013-12-01

    Stephanie Baird Wilkerson, PhD Carol Haden EdD Magnolia Consulting,LLC Education and public outreach (EPO) program developers and providers seeking insights regarding effective practices for evaluating EPO activities programs benefit from understanding why evaluation is critical to the success of EPO activities and programs, what data collection methods are appropriate, and how to effectively communicate and report findings. Based on our extensive experience evaluating EPO programs, we will share lessons learned and examples of how these practices play out in actual evaluation studies. EPO program developers, providers, and evaluators must consider several factors that influence which evaluation designs and data collection methods will be most appropriate, given the nature of EPO programs. Effective evaluation practices of EPO programs take into account a program's phase of development, duration, and budget as well as a program's intended outcomes. EPO programs that are just beginning development will have different evaluation needs and priorities than will well-established programs. Effective evaluation practices consider the 'life' of a program with an evaluation design that supports a program's growth through various phases including development, revision and refinement, and completion. It would be premature and inappropriate to expect the attainment of longer-term outcomes of activities during program development phases or early stages of implementation. During program development, EPO providers should clearly define program outcomes that are feasible and appropriate given a program's scope and expected reach. In many respects, this directly relates to the amount of time, or duration, intended audiences participate in EPO programs. As program duration increases so does the likelihood that the program can achieve longer-term outcomes. When choosing which outcomes are reasonable to impact and measure, program duration should be considered. Effective evaluation

  20. The impact of a Latino outreach project on science museums: A program evaluation focused on institutional change

    Science.gov (United States)

    Castaneda, Mario E.

    The purpose of this program evaluation was to determine the impact of the Community Science Festivals Project on the science museums that participated. This project, also known as Celebra la Ciencia (CLC), was a federally funded effort to engage the Latino communities throughout the United States in activities promoting appreciation of the importance of science education. The festivals brought together various educational, community, and scientific organizations that collaborated in producing community-hosted interactive educational events to which students and their families were invited. The evaluation takes the form of a qualitative study based on interviews of key individuals at 1 museum in each of the 5 festival cities. The evaluation focuses on the museums' changes in: (a) their view of their roles as involving the Latino population in their service area, (b) publicity efforts aimed at the Latino population, (c) outreach toward the Latino population, and (d) accommodation of Latinos within the museums. The results for each site are listed separately then are discussed jointly. Implications for practice include the following: (a) intensive and long-term programming, as opposed to one-time events, are likely more effective for creating direct impact on student achievement, although the festivals had many positive effects; (b) funding for smaller organizations (or individual departments within larger organization) seemed to have a more observable impact, enabling them to create Latino-oriented advertising, outreach, and accommodations that would not have been possible otherwise; and (c) Spanish-language media was an effective advertising tool, especially radio, but use of public service announcements should be monitored to ensure that they are aired at times that are effective for reaching the target audience. Recommendations for future studies are made.

  1. Spaceflight-relevant stem education and outreach: Social goals and priorities

    Science.gov (United States)

    Caldwell, Barrett S.

    2015-07-01

    This paper is based on a presentation and conference proceedings paper given at the 65th International Astronautical Congress. The paper addresses concerns in education and public outreach (EPO) in science, technology, engineering and mathematics (STEM). The author serves as a Director of a US statewide NASA-funded Space Grant Consortium, with responsibilities to coordinate funding for undergraduate scholarships, graduate fellowships, and program awards. Space Grant is a national NASA network of STEM EPO programs including over 1000 higher education, outreach center, science museum, local government, and corporate partners. As a Space Grant Director, the author interacts with a variety of levels of STEM literacy and sophistication among members of the public. A number of interactions highlight the need for STEM EPO leaders to speak directly to a variety of social goals and priorities. Spaceflight is largely seen as an appealing and potentially desirable STEM application. However, members of the public are often unclear and ill-informed regarding relative expense, relative benefit, and relative breadth of domains of expertise that are relevant to the spaceflight enterprise. In response (and resulting in further disconnects between STEM specialists and the public), focused STEM professionals frequently over-emphasize their own technical specialty and its priority in general because of its importance to that professional. These potential divides in the attempt to share and connect STEM related goals and priorities are discussed as an elaboration of invitations to discuss spacefaring in "futures forum" contexts. Spaceflight can be seen as addressing a combination of "actualization" and "aspirational" goals at social and societal levels. Maslow's hierarchy of needs distinguishes between "basic needs" and "actualization" as a higher-order need. Another aspect of spaceflight is aspirational-it speaks to hopes and desires for levels of flexibility and capability at the

  2. The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    Science.gov (United States)

    Drobnes, Emilie; Littleton, A.; Pesnell, William D.; Beck, K.; Buhr, S.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2013-01-01

    We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society.

  3. Eclipse Megamovie: Solar Discoveries, Education, and Outreach through Crowdsourcing 2017 Eclipse Images

    Science.gov (United States)

    Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Johnson, C.; Zevin, D.; Krista, L. D.; Bender, M.; Mcintosh, S. W.; Konerding, D.; Koh, J.; Pasachoff, J.; Lorimore, B.; Jiang, G.; Storksdieck, M.; Yan, D.; Shore, L.; Fraknoi, A.; Filippenko, A.

    2016-12-01

    Since 2011, a team of solar scientists, eclipse chasers, education and outreach professionals, and film makers have been working to explore the possibility of gathering images from the public during the 2017 eclipse across the United States, to be used for scientific research, education, and enhancing the public's experience of the eclipse. After years of testing the initial ideas, engaging new organizations, and exploring new technologies, our team has developed a blueprint for this project. There are three main goals for this effort: 1. to learn more about the dynamic non-equilibrium processes in the corona and lower atmosphere of the Sun, 2. to educate the public about space physics, 3. provide different levels of engagement opportunities for an interested public, and 4. to understand how these various levels of engagement with a major scientific phenomena allow people to develop deeper personal connections to Science, Technology, Engineering, and Mathematics (STEM). We will meet these goals by training 1000 volunteers to take scientifically valid images and donate the images to this project, while also allowing the general public to share their images as well. During the Aug 21, 2017 eclipse, we will analyze these images in real-time to produce public-generated movies showing the corona of the Sun during totality from thousands of people. These movies will be disseminated in near real-time (on the order of 10s of minutes) to other eclipse programs, news organizations, and to the general public. Meanwhile, images collected during and after the eclipse will be available to scientists and the public for research purposes. To further engage the public, video clips, film, and a documentary will be produced prior and after the event. A science education research team will work alongside the team to understand how the project supports deeper connections to the eclipse experience.

  4. Optical aurora detectors: using natural optics to motivate education and outreach

    Science.gov (United States)

    Shaw, Joseph A.; Way, Jesse M.; Pust, Nathan J.; Nugent, Paul W.; Coate, Hans; Balster, Daniel

    2009-06-01

    Natural optical phenomena enjoy a level of interest sufficiently high among a wide array of people to provide ideal education and outreach opportunities. The aurora promotes particularly high interest, perhaps because of its relative rarity in the areas of the world where most people live. A project is being conducted at Montana State University to use common interest and curiosity about auroras to motivate learning and outreach through the design and deployment of optical sensor systems that detect the presence of an auroral display and send cell phone messages to alert interested people. Project participants learn about the physics and optics of the aurora, basic principles of optical system design, radiometric calculations and calibrations, electro-optical detectors, electronics, embedded computer systems, and computer software. The project is moving into a stage where it will provide greatly expanded outreach and education opportunities as optical aurora detector kits are created and disbursed to colleges around our region.

  5. Active Galactic Videos: A YouTube Channel for Astronomy Education and Outreach

    Science.gov (United States)

    Calahan, Jenny; Gibbs, Aidan; Hardegree-Ullman, Melody; Hardegree-Ullman, Michael; Impey, Chris David; Kevis, Charlotte; Lewter, Austin; Mauldin, Emmalee; McKee, Carolyn; Olmedo, Alejandro; Pereira, Victoria; Thomas, Melissa; Wenger, Matthew

    2018-01-01

    Active Galactic Videos is an astronomy-focused YouTube channel run by a team at the University of Arizona. The channel both produces astronomy-focused educational content for public audiences and opens a window into the world of professional astronomy by showcasing the work done at Steward Observatory and in Southern Arizona. The channel is mainly run by undergraduate students from a variety of backgrounds including: astronomy, education, film, music, english, and writing. In addition to providing educational content for public audiences, this project provides opportunities for undergraduate students to learn about astronomy content, general astronomy pedagogy, as well as science communication. This is done through developing the practical skills needed to take on the challenge of creating effective and engaging videos. Students write, film, score, direct, and edit each video while conscious of how each piece can affect the teaching/storytelling of the concept at hand. The team has produced various styles of video: presentational, interviews, musical/poetic, tours, and documentaries. In addition to YouTube, the Active Galactic Videos team maintains a social media presence on Facebook, Twitter, and Instagram. These help to widely distribute the content as well as to publicize the main Youtube channel. In addition to providing an overview of our educational work, we present 51 videos, or two year's, worth of online analytics that we are using to better understand our audience, to examine what videos have been popular and successful, and how people are accessing our content. We will present our experience in order to help others learn about improving astronomy education online, as well as astronomy communication and outreach in general.We acknowledge the Howard Hughes Medical Institute for grant support of this and related education initiatives

  6. Scientists as role models in space science outreach

    Science.gov (United States)

    Alexander, D.

    The direct participation of scientists significantly enhances the impact of any E/PO effort. This is particularly true when the scientists come from minority or traditionally under-represented groups and, consequently, become role models for a large number of students while presenting positive counter-examples to the usual stereotypes. In this paper I will discuss the impact of scientists as role models through the successful implementation of a set of space physics games and activities, called Solar Week. Targetted at middle-school girls, the key feature of Solar Week is the "Ask a Scientist" section enabling direct interaction between participating students and volunteer scientists. All of the contributing scientists are women, serving as experts in their field and providing role models to whom the students can relate. Solar Week has completed four sessions with a total of some 140 edcuators and 12,000+ students in over 28 states and 9 countries. A major success of the Solar Week program has been the ability of the students to learn more about the scientists as people, through online biographies, and to discuss a variety of topics ranging from science, to careers and common hobbies.

  7. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    Science.gov (United States)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  8. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    Science.gov (United States)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing

  9. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  10. 78 FR 47419 - Requirements for the OSHA Training Institute Education Centers Program and the OSHA Outreach...

    Science.gov (United States)

    2013-08-05

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2009-0022] Requirements for the OSHA Training Institute Education Centers Program and the OSHA Outreach Training Program...) Requirements AGENCY: Occupational Safety and Health Administration (OSHA), U.S. Department of Labor. ACTION...

  11. 77 FR 21067 - Funding Opportunity Title: Risk Management Education and Outreach Partnerships Program

    Science.gov (United States)

    2012-04-09

    ..., crop insurance, marketing contracts, and other existing and emerging risk management tools.'' For the... Management or other similar topics. Legal: Legal and Succession Planning or other similar topics; Marketing... Management Education and Outreach Partnerships Program Announcement Type: Announcement of Availability of...

  12. Use of Prezi Software to Support and Expand Extension Outreach and Education

    Science.gov (United States)

    Elnakib, Sara

    2018-01-01

    Working with innovative technologies helps Extension professionals promote, enhance, and expand outreach. Innovative software, for example, can support educators in creating presentations that better accommodate various types of learners and appeal to new audiences. This article highlights one such technology: Prezi. Prezi is a free software…

  13. Augmenting Research, Education, and Outreach with Client-Side Web Programming.

    Science.gov (United States)

    Abriata, Luciano A; Rodrigues, João P G L M; Salathé, Marcel; Patiny, Luc

    2018-05-01

    The evolution of computing and web technologies over the past decade has enabled the development of fully fledged scientific applications that run directly on web browsers. Powered by JavaScript, the lingua franca of web programming, these 'web apps' are starting to revolutionize and democratize scientific research, education, and outreach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessing the Long-Term Impacts of Water Quality Outreach and Education Efforts on Agricultural Landowners

    Science.gov (United States)

    Jackson-Smith, Douglas B.; McEvoy, Jamie P.

    2011-01-01

    We assess the long-term effectiveness of outreach and education efforts associated with a water quality improvement project in a watershed located in northern Utah, USA. Conducted 15 years after the original project began, our research examines the lasting impacts of different extension activities on landowners' motivations to participate and…

  15. Models for Information Assurance Education and Outreach: A Report on Year 1 Implementation

    Science.gov (United States)

    Wang, Jianjun

    2013-01-01

    On September 22, 2012, NSF announced its decision to fund a three-year project, "Models for Information Assurance Education and Outreach" (MIAEO). In the first year of grant operation, MIAEO has invited 18 high school students, two K-12 teachers, and two CSUB student assistants to conduct research explorations in the fields of…

  16. Overview of the First Forum about Informal Science Education

    Science.gov (United States)

    Lebron Santos, Mayra; Pantoja, Carmen

    2018-01-01

    The First Forum on Informal Science Education was held at the University of Puerto Rico in 2015. This Forum had the following goals:1. Gather for the first time professionals dedicated to public communication and science outreach in Puerto Rico. 2. Exchange experiences and dissemination strategies with international professional science communicators.3. Encourage a fruitful dialogue between communicators with experience in museums, the media, and the integration of sciences with the arts.4. Encourage dialogue between communicators to facilitate future collaborations.The invited speakers came from Ibero-America and addressed aspects of science communication in museums and the media, the dissemination of science through the arts, the participation of universities in informal science education and the formal education of science communicators. The participants included museum specialists, journalists, artists, outreach specialists, formal educators interested in science outreach, and college students. During the Forum special events for the public were coordinated to celebrate the International Year of Light (2015). The exhibit “Light: Beyond the Bulb” was displayed. Dr. Julieta Fierro, recipient of the prestigious Kalinga Prize for the Popularization of Science awarded by UNESCO, presented the public talk “Light in the Universe”. Dr. Inés Rodríguez Hidalgo, director of the Science Museum of Valladolid, presented the talk "O Sole Mío: An Invitation to Solar Physics". We present an overview of the forum and some critical reflections on the topics discussed.

  17. AFSPC Innovation and Science and Technology Outreach to Industry and Academia

    Science.gov (United States)

    Sanchez, Merri J.; Dills, Anthony N.; Chandler, Faith

    2016-01-01

    The U.S. Air Force is taking a strategic approach to ensuring that we are at the cutting edge of science and technology. This includes fostering game-changing approaches and technologies that are balanced with operational needs. The security of the Nation requires a constant pursuit of science, technical agility, and a rapid adoption of innovation. This includes pursuits of game-changing technologies and domains that perhaps we cannot even imagine today. This paper highlights the Air Force Space Command (AFSPC) collaboration and outreach to other government agencies, military and national laboratories, industry, and academia on long term science and technology challenges. In particular we discuss the development of the AFSPC Long Term Science and Technology Challenges that include both space and cyberspace operations within a multi-domain environment and the subsequent Innovation Summits.

  18. Educational and Community Outreach Efforts by the United States Polar Rock Repository during the International Polar Year

    Science.gov (United States)

    Grunow, A.; Codispoti, J. E.

    2010-12-01

    The US Polar Rock Repository (USPRR) houses more than 19,000 rock samples from polar regions and these samples are made available to the scientific, educational and museum community. The USPRR has been active in promoting polar earth science to educational and community groups. During the past year, outreach efforts reached over 12,000 people. The USPRR outreach involve tours of the facility, school presentations, online laboratory exercises, working with the Columbus Metro Parks, teaching at summer camps, teaching special geology field assignments at the middle school level, as well as offering an ‘Antarctic Rock Box’ that contains representative samples of the three types of rocks, minerals, fossils, and books and activities about geology and Antarctica. The rock box activities have been designed and reviewed by educators and scientists to use as an educational supplement to the Earth Science course of study. The activities have been designed around the Academic Content Standards: k-12 Science manual published by the Ohio Department of Education to ensure that the activities and topics are focused on those mandated by the state of Ohio. The USPRR website has a Virtual Web Antarctic Expedition with many activities for Middle to High School age students. The students learn about how to plan a field season, safety techniques, how to make a remote field camp, identify what equipment is needed, learn about the different transportation choices, weather issues, understanding GPS, etc. Educational and community networks have been built in part, by directly contacting individuals at an institution and partnering with them on educational outreach. The institutions have been very interested in doing this because it brings scientists to the classroom and to the public. This type of outreach has also served as an opening for children to consider possible career choices in science that they may not have considered before. In many of the presentations, a female geologist

  19. Education and public outreach during the spring equinox, 2012

    Science.gov (United States)

    Zueck, S. L.; Lara, A.

    2012-12-01

    We organized for third occasion a solar physics activities during the spring equinox of 2012. On March 20 a group of researchers and their graduate students, amateur astronomers and educators all of them members of the Universidad Nacional Autónoma de México (UNAM) went to a beautiful village named Tepoztlan, Morelos, located 30 minutes from the City and Mexico. We give lectures and install solar telescopes in the garden of the former convent of Tepoztlan near a mountain considered sacred. During the equinox day the mountain is climbed by thousands of individuals to catch solar energy that they consider vital, specially during a year that many of them consider the end of a era. Through media and advertisements we invite visitors to our free event. We expected to hear different assumptions about our closest star, the Sun, and interact with different socio-cultural views at the same time that we presented our concepts of science in a every day language.

  20. Clear Resin Casting of Arthropods of Medical Importance for Use in Educational and Outreach Activities

    Science.gov (United States)

    Bejcek, Justin R; Curtis-Robles, Rachel; Riley, Michael; Brundage, Adrienne; Hamer, Gabriel L

    2018-01-01

    Abstract Arthropod-related morbidity and mortality represent a major threat to human and animal health. An important component of reducing vector-borne diseases and injuries is training the next generation of medical entomologists and educating the public in proper identification of arthropods of medical importance. One challenge of student training and public outreach is achieving a safe mounting technique that allows observation of morphological characteristics, while minimizing damage to specimens that are often difficult to replace. Although resin-embedded specimens are available from commercial retailers, there is a need for a published protocol that allows entomologists to economically create high-quality resin-embedded arthropods for use in teaching and outreach activities. We developed a detailed protocol using readily obtained equipment and supplies for creating resin-embedded arthropods of many species for use in teaching and outreach activities. PMID:29718496

  1. A Shark's Eye View of the Ocean Floor: Integration of Oceanographic Research with Educational Outreach

    Science.gov (United States)

    Moser, K.; Harpp, K. S.; Ketchum, J. T.; Espinoza, E.; Penaherrera, C.; Banks, S.; Fornari, D. J.; Geist, D.; Mittelstaedt, E. L.; R/v Melville Mv1007 Flamingo Cruise Scientific Party

    2010-12-01

    We have developed an interdisciplinary outreach program in which students will use the geological findings of the recent R/V Melville MV1007 Cruise to answer important questions in the Galápagos Archipelago. The cruise surveyed the seafloor between the Galápagos Platform and the Galápagos Spreading Center. Data collected from this cruise include observations using remote mapping instruments (MR1 sidescan sonar, EM122 multibeam bathymetry, and towed digital camera), dredged rock samples, gravity data, and magnetic data. The primary goal of this expedition was to gain a better understanding of the magmatic and volcanic processes that form the Galápagos seamounts and islands as well as provide information about the interaction between mantle plumes and mid-ocean ridges. The designed outreach program is intended to improve the integration of education and research by making our recent research findings understandable to students and others outside the field. The final product is an interdisciplinary, web-based resource accessible to the general public but targeted specifically for high school students enrolled in earth science courses. This resource begins by using a series of hands-on exploratory exercises to teach students about the origin of the geological features in the study area, with a focus on seamounts and submarine volcanism. Fundamental geoscience skills addressed in the curricular materials include using latitude and longitude, reading geologic maps and interpreting images of the seafloor, and calculating seafloor spreading rates, among others. Through a sequence of increasingly sophisticated exercises grounded in Bloom’s Taxonomy of Learning, students practice their skills by interpreting bathymetric maps, exploring the distribution of submarine volcanism in the Galápagos, and investigating plume-ridge interaction. Students use these geological concepts to address important biological questions in the Galápagos, primarily the distribution of

  2. Recovery Act - An Interdisciplinary Program for Education and Outreach in Transportation Electrification

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl [Michigan Technological Univ., Houghton, MI (United States); Bohmann, Leonard [Michigan Technological Univ., Houghton, MI (United States); Naber, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Beard, John [Michigan Technological Univ., Houghton, MI (United States); Passerello, Chris [Michigan Technological Univ., Houghton, MI (United States); Worm, Jeremy [Michigan Technological Univ., Houghton, MI (United States); Chen, Bo [Michigan Technological Univ., Houghton, MI (United States); Allen, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Weaver, Wayne [Michigan Technological Univ., Houghton, MI (United States); Hackney, Stephen [Michigan Technological Univ., Houghton, MI (United States); Keith, Jason [Michigan Technological Univ., Houghton, MI (United States); Meldrum, Jay [Michigan Technological Univ., Houghton, MI (United States); Mork, Bruce [Michigan Technological Univ., Houghton, MI (United States)

    2013-01-30

    1) How the project adds to the education of engineering students in the area of vehicle electrification: This project created and implemented a significant interdisciplinary curriculum in HEV engineering that includes courses focused on the major components (engines, battery cells, e-machines, and power electronics). The new curriculum, rather uniquely, features two new classes and two new labs that emphasize a vehicle level integration of a hybrid electric powertrain that parallels the vehicle development process used by the OEMs - commercial grade software is used to design a hybrid electric vehicle, hardware-in-the-loop testing is performed on each component until the entire powertrain is optimized, the calibration is flashed to a vehicle, ride-and-drives are executed including on board data acquisition. In addition, nine existing courses were modified by adding HEV material to the courses. 2) The educational effectiveness and economic feasibility of the new curriculum: The new courses are offered at both the undergraduate and graduate levels. They are listed across the college in mechanical, chemical, electrical, and materials science and engineering. They are offered both on campus and to distance learning students. Students across the college of engineering and at all degree levels are integrating these courses into their degree programs. Over the three year project the course enrollments on-campus has totaled 1,249. The distance learning enrollments has totaled 315. With such robust enrollments we absolutely expect that these courses will be in the curriculum for the long run. 3) How the project is otherwise of benefit to the public: One outcome of the project is the construction of the Michigan Tech Mobile Lab. Two complete HEV dynamometer test cells, and four work stations are installed in the 16.2 meter Mobile Laboratory and hauled by a class 8 truck. The Mobile Lab is used to teach the university courses. It is also used to deliver short courses to

  3. Plate Boundary Observatory Infrastructure and Data Products in Education and Outreach

    Science.gov (United States)

    Eriksson, S. C.; Barbour, K.; Lee, E.

    2005-12-01

    As one of three major components of NSF's EarthScope program, the Plate Boundary Observatory (PBO) encourages the integration of research and education. Informing various communities about the current work of PBO and the scientific discoveries related to the use of this instrumentation has contributed to the success of PBO during the first two years of the EarthScope project. UNAVCO(PBO), IRIS (USArray), and the EarthScope project office work together to integrate Education and Outreach (E&O) opportunities into a program that is greater than the sum of its parts and yet maintains the identity of each organization. Building and maintaining the PBO website, documenting and archiving activities of PBO, providing short courses for professional development of scientists using EarthScope data, and developing higher level data products with an appropriate educational framework are a few of the activities that provide both challenges and opportunities. The internet, particularly the World Wide Web, has become the primary tool for disseminating information to various audiences. The primary goals of the PBO website are to provide current information on the progress of GPS and Strainmeter facility construction; to provide access to different levels of data products; and to facilitate networking with and among scientists. Challenges for the PBO website include publishing current stories on installation projects while coordinating with field engineers on a regular basis; providing near to real time updates and maintaining quality assurance processes; and defining personnel requirements for a maintaining a dynamic website. Currently, archived photographs, web diaries, and numerous web highlights document PBO's success and provide a visual record of PBO's accomplishments and behind-the-scene activities over the last two years. The community charged PBO with increasing the number of scientists using its data. UNAVCO does this by providing short courses for professional development

  4. VISL: A Virtual Ice Sheet Laboratory For Outreach and K-12 Education

    Science.gov (United States)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.; Moore, J.; Dunn, S.; Perez, G.

    2015-12-01

    We present an update on our developing Virtual Ice Sheet Laboratory (VISL). Geared to K-12 classrooms and the general public, VISL's main goal is to improve climate literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. VISL will allow users to perform guided experiments using the Ice Sheet System Model (ISSM), a state-of-the-art ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine that simulates the near-term evolution of the ice sheets on Greenland and Antarctica. VISL users will access ISSM via a graphical interface that can be launched from a web browser on a computer, tablet or smart phone. Users select climate conditions and run time by moving graphic sliders then watch how a given region evolves in time under those conditions. Lesson plans will include conceptual background, instructions for table top experiments related to the concepts addressed in a given lesson, and a guide for performing model experiments and interpreting their results. Activities with different degrees of complexity will aim for consistency with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12), although they will not be labeled as such to encourage a broad user base. Activities will emphasize the development of physical intuition and critical thinking skills, understanding conceptual and computational models, as well as observation recording, concept articulation, hypothesis formulation and testing, and mathematical analysis. At our present phase of development, we seek input from the greater science education and outreach communities regarding VISL's planned content, as well as additional features and topic areas that educators and students would find useful.

  5. @OceanSeaIceNPI: Positive Practice of Science Outreach via Social Media

    Science.gov (United States)

    Meyer, A.; Pavlov, A.; Rösel, A.; Granskog, M. A.; Gerland, S.; Hudson, S. R.; King, J.; Itkin, P.; Negrel, J.; Cohen, L.; Dodd, P. A.; de Steur, L.

    2016-12-01

    As researchers, we are keen to share our passion for science with the general public. We are encouraged to do so by colleagues, journalists, policy-makers and funding agencies. How can we best achieve this in a small research group without having specific resources and skills such as funding, dedicated staff, and training? How do we sustain communication on a regular basis as opposed to the limited lifetime of a specific project? The emerging platforms of social media have become powerful and inexpensive tools to communicate science for various audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. A small group of oceanographers, sea ice, and atmospheric scientists at the Norwegian Polar Institute have been running their social media science outreach for two years @OceanSeaIceNPI. Here we share our successful experience of developing and maintaining a researcher-driven outreach through Instagram, Twitter and Facebook. We present our framework for sharing responsibilities within the group to maximize effectiveness. Each media channel has a target audience for which the posts are tailored. Collaboration with other online organizations and institutes is key for the growth of the channels. The @OceanSeaIceNPI posts reach more than 4000 followers on a weekly basis. If you have questions about our @OceanSeaIceNPI initiative, you can tweet them with a #ask_oceanseaicenpi hashtag anytime.

  6. Celebrating 24 years of Public Outreach of Science and Engineering in Portland Oregon

    Science.gov (United States)

    Bristol, Terry

    2012-02-01

    There have been several core strategies in our highly successful 24-year Science, Technology and Society outreach program. However, the strategy for each season is also dynamic, requiring innovation and novel coalitions. As Bob Dylan put it so succinctly, ``He not busy being born is busy dying.'' Public outreach programs - as the Chautauquas of the past - should be positioned in the cultural milieu along with the opera, symphony and theatre. Support for the enterprise needs to be a broad and diverse coalition, based ideally on the creative formation of win-win relationship. You want people to see your success as their success: ``Together we can enhance the intellectual environment in ways that none of us could do alone.'' Being multi-disciplinary presents challenges but has considerable advantages. For instance, enlightened managers of established organizations recognize the value of exposing their employees to a diversity of problem solving approaches. Instead of inviting speakers for one large lecture we now invite them to be Resident Scholars for two-three days and develop a range of additional smaller public engagements. Science and engineering topics must be relevant - placed in the broader Science, Technology and Society framework. We avoid ``gee-whiz'' in favor of what stimulates reflection on who we are, where we came from, and our role in the universe. I will briefly review how we have survived and thrived and, finally, what I see as future trends and opportunities.

  7. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  8. Particle Physics Outreach

    CERN Document Server

    Goldfarb, Steven; The ATLAS collaboration

    2018-01-01

    Outreach activities by the LHC experiments are reported. The importance of public support for the LHC programme is highlighted, and possibilities for scientists to be actively involved in outreach and educational programmes are presented.

  9. The SDO Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    Science.gov (United States)

    Drobnes, E.; Littleton, A.; Pesnell, W. D.; Buhr, S.; Beck, K.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2011-01-01

    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete efforts implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs. The SDO E/PO team has put forth much effort in the past few years to increase our cohesiveness by adopting common goals and increasing the amount of overlap between our programs. In this paper, we outline the context and overall philosophy for our combined programs, present a brief overview of all SDO E/PO programs along with more detailed highlight of a few key programs, followed by a review of our results up to date. Concluding is a summary of the successes, failures, and lessons learned that future missions can use as a guide, while further incorporating their own content to enhance the public's knowledge and appreciation of NASA?s science and technology as well as its benefit to society.

  10. UNAVCO's Education and Community Engagement Program: Evaluating Five years of Geoscience Education and Community Outreach

    Science.gov (United States)

    Charlevoix, D. J.; Dutilly, E.

    2017-12-01

    In 2013, UNAVCO, a facility co-sponsored by the NSF and NASA, received a five-year award from the NSF: Geodesy Advancing Geosciences and EarthScope (GAGE). Under GAGE, UNAVCO's Education and Community Engagement (ECE) program conducts outreach and education activities, in essence broader impacts for the scientific community and public. One major challenge of this evaluation was the breadth and depth of the dozens of projects conducted by the ECE program under the GAGE award. To efficiently solve this problem of a large-scale program evaluation, we adopted a deliberative democratic (DD) approach that afforded UNAVCO ECE staff a prominent voice in the process. The evaluator directed staff members to chose the projects they wished to highlight as case studies of their finest broader impacts work. The DD approach prizes inclusion, dialogue, and deliberation. The evaluator invited ECE staff to articulate qualities of great programs and develop a case study of their most valuable broader impacts work. To anchor the staff's opinion in more objectivity than opinion, the evaluator asked each staff member to articulate exemplary qualities of their chosen project, discuss how these qualities fit their case study, and helped staff to develop data collection systems that lead to an evidence-based argument in support of their project's unique value. The results of this evaluation show that the individual ECE work areas specialized in certain kinds of projects. However, when viewed at the aggregate level, ECE projects spanned almost the entire gamut of NSF broader impacts categories. Longitudinal analyses show that since the beginning of the GAGE award, many projects grew in impact from year 1 to year 5. While roughly half of the ECE projects were prior work projects, by year five at least 33% of projects were newly developed under GAGE. All selected case studies exemplified how education and outreach work can be productively tied to UNAVCO's core mission of promoting geodesy.

  11. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  12. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  13. The New England Space Science Initiative in Education (NESSIE)

    Science.gov (United States)

    Waller, W. H.; Clemens, C. M.; Sneider, C. I.

    2002-12-01

    Founded in January 2002, NESSIE is the NASA/OSS broker/facilitator for education and public outreach (E/PO) within the six-state New England region. NESSIE is charged with catalyzing and fostering collaborations among space scientists and educators within both the formal and informal education communities. NESSIE itself is a collaboration of scientists and science educators at the Museum of Science, Harvard-Smithsonian Center for Astrophysics, and Tufts University. Its primary goals are to 1) broker partnerships among space scientists and educators, 2) facilitate a wide range of educational and public outreach activities, and 3) examine and improve space science education methods. NESSIE's unique strengths reside in its prime location (the Museum of Science), its diverse mix of scientists and educators, and its dedicated board of advisors. NESSIE's role as a clearinghouse and facilitator of space science education is being realized through its interactive web site and via targeted meetings, workshops, and conferences involving scientists and educators. Special efforts are being made to reach underserved groups by tailoring programs to their particular educational needs and interests. These efforts are building on the experiences of prior and ongoing programs in space science education at the Museum of Science, the Harvard-Smithsonian Center for Astrophysics, Tufts University, and NASA.

  14. EarthScope's Education, Outreach, and Communications: Using Social Media from Continental to Global Scales

    Science.gov (United States)

    Bohon, W.; Frus, R.; Arrowsmith, R.; Fouch, M. J.; Garnero, E. J.; Semken, S. C.; Taylor, W. L.

    2011-12-01

    Social media has emerged as a popular and effective form of communication among all age groups, with nearly half of Internet users belonging to a social network or using another form of social media on a regular basis. This phenomenon creates an excellent opportunity for earth science organizations to use the wide reach, functionality and informal environment of social media platforms to disseminate important scientific information, create brand recognition, and establish trust with users. Further, social media systems can be utilized for missions of education, outreach, and communicating important timely information (e.g., news agencies are common users). They are eminently scaleable (thus serving from a few to millions of users with no cost and no performance problem), searchable (people are turning to them more frequently as conduits for information), and user friendly (thanks to the massive resources poured into the underlying technology and design, these systems are easy to use and have been widely adopted). They can be used, therefore, to engage the public interactively with the EarthScope facilities, experiments, and discoveries, and continue the cycle of discussions, experiments, analysis and conclusions that typify scientific advancement. The EarthScope National Office (ESNO) is launching an effort to utilize social media to broaden its impact as a conduit between scientists, facilities, educators, and the public. The ESNO will use the opportunities that social media affords to offer high quality science content in a variety of formats that appeal to social media users of various age groups, including blogs (popular with users 18-29), Facebook and Twitter updates (popular with users ages 18-50), email updates (popular with older adults), and video clips (popular with all age groups). We will monitor the number of "fans" and "friends" on social media and networking pages in order to gauge the increase in the percentage of the user population visiting the

  15. Education and Outreach for Breast Imaging and Breast Cancer Patients

    National Research Council Canada - National Science Library

    Farria, Dione

    2003-01-01

    .... This project evaluated the impact of visual educational aids during biopsy consent on patient understanding of the biopsy procedure, patient satisfaction with the biopsy experience, and patient anxiety...

  16. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  17. A critical evaluation of science outreach via social media: its role and impact on scientists.

    Science.gov (United States)

    McClain, Craig; Neeley, Liz

    2014-01-01

    The role of scientists in social media and its impact on their careers are not fully explored.  While policies and best practices are still fluid, it is concerning that discourse is often based on little to no data, and some arguments directly contradict the available data.  Here, we consider the relevant but subjective questions about science outreach via social media (SOSM), specifically: (1) Does a public relations nightmare exist for science?; (2) Why (or why aren't) scientists engaging in social media?; (3) Are scientists using social media well?; and (4) Will social media benefit a scientist's career? We call for the scientific community to create tangible plans that value, measure, and help manage scientists' social media engagement.

  18. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  19. Educational and Public Outreach Strategies in Anticipation of the 2017 U.S. Total Solar Eclipse

    Science.gov (United States)

    Fulco, C.

    2015-12-01

    Those who have experienced a total solar eclipse will travel to every corner of the Earth to observe one, such is its spectacular nature. So it is fortunate indeed to have this remarkable event come to the U.S. in less than two years, with its path of totality from Oregon to South Carolina within a day's drive for most of the nation's population. The date of the 21 August 2017 "Great American Eclipse" is rapidly approaching, and with focus on science literacy in U.S. schools greater than ever, educational and public outreach (EPO) must begin in earnest to maximize the scientific and educational benefits from this rare event. As every location in the U.S. will observe at least a partial eclipse, having EPO strategies in place ensures that the greatest number of students and other observers throughout the country will: a) be aware of and prepared for this event, b) observe (and record) it safely and knowledgeably, and c) gain an increased awareness of the natural world. The need for teachers to promote scientific literacy through curriculum is critical for this event. Despite an increased presence of technology in the classroom, more rigorous educational learning standards and virtually instantaneous access to information, data show that science illiteracy in U.S. schools and in the general population is still widespread. In addition, much fear, ignorance and confusion continue to surround eclipses. Many school districts plan to keep students indoors during the eclipse, while the media can be expected to instruct the public to do the same, thus depriving would-be observers of an unforgettable and most likely a once-in-a-lifetime experience. It would be a tragedy on many levels if this eclipse were not viewed, recorded and remembered live and outdoors--not indoors watching on media--by as many persons as possible. Proper EPO strategies performed with ample lead time can ensure that the 2017 U.S. Total Solar Eclipse will be a success from coast-to-coast, and with it, a

  20. Integrating Research, Education, Outreach and Communication Through Storytelling: A Case Study in Progress

    Science.gov (United States)

    McCaffrey, M. S.; Ledley, T.; Manduca, C.; Salmon, R.

    2006-12-01

    In order to provide a meaningful context for non-technical users to be able to decipher and comprehend research data, it is necessary to provide background into the process involved. Storytelling can provide the narrative description that brings data alive by showing the 'Who' (providing human interest, education and training background, and career opportunities information), 'What' (focusing on discipline, field of study, research questions, and significance), 'Where' (geographic location(s), logistics involved in getting there, and elevation or depth), 'When' (time(s) of day, year data collected, and temporal scale data focus on), 'Why' (why is the data important intellectually as well as in the broader, societal context) and especially the 'How' (what tools, technology, mathematics, and statistics are used to collect, archive, and analyze data). The upcoming International Polar Year (IPY), running from March 2007 to March 2009, builds on prior polar research and IPYs, and offers a unique opportunity to showcase the process of data collection and analysis in a compelling human context. Internationally, the IPY Education, Outreach and Communication (EOC) subcommittee is seeking to integrate the EOC continuum and when appropriate repurpose information about specific research projects. For example, descriptions of projects designed initially for media purposes may also serve as the "at a glance" overview of a project that can then link to more detailed narrative descriptions of the projects, augmented with video and audio clips, web-links to related background information and relevant curriculum, and ultimately to the data itself, well scaffolded with relevant supporting materials and tools. In the United States, plans are underway for developing a suite of data stories that provide the narrative background of a project and can be used in museum kiosks and other informal science settings, data sheets, that provide teachers with an overview of the data, and

  1. Assessing the Impact of Peer Educator Outreach on the Likelihood and Acceleration of Clinic Utilization among Sex Workers.

    Science.gov (United States)

    Krishnamurthy, Parthasarathy; Hui, Sam K; Shivkumar, Narayanan; Gowda, Chandrasekhar; Pushpalatha, R

    2016-01-01

    Peer-led outreach is a critical element of HIV and STI-reduction interventions aimed at sex workers. We study the association between peer-led outreach to sex workers and the time to utilize health facilities for timely STI syndromic-detection and treatment. Using data on the timing of peer-outreach interventions and clinic visits, we utilize an Extended Cox model to assess whether peer educator outreach intensity is associated with accelerated clinic utilization among sex workers. Our data comes from 2705 female sex workers registered into Pragati, a women-in-sex-work outreach program, and followed from 2008 through 2012. We analyze this data using an Extended Cox model with the density of peer educator visits in a 30-day rolling window as the key predictor, while controlling for the sex workers' age, client volume, location of sex work, and education level. The principal outcome of interest is the timing of the first voluntary clinic utilization. More frequent peer visit is associated with earlier first clinic visit (HR: 1.83, 95% CI, 1.75-1.91, p educator outreach. Peer outreach density is associated with increased likelihood of-and shortened duration to-clinic utilization among female sex workers, suggesting potential staff resourcing implications. Given the observational nature of our study, however, these findings should be interpreted as an association rather than as a causal relationship.

  2. Education for public health in Europe and its global outreach

    Science.gov (United States)

    Bjegovic-Mikanovic, Vesna; Jovic-Vranes, Aleksandra; Czabanowska, Katarzyna; Otok, Robert

    2014-01-01

    Introduction At the present time, higher education institutions dealing with education for public health in Europe and beyond are faced with a complex and comprehensive task of responding to global health challenges. Review Literature reviews in public health and global health and exploration of internet presentations of regional and global organisations dealing with education for public health were the main methods employed in the work presented in this paper. Higher academic institutions are searching for appropriate strategies in competences-based education, which will increase the global attractiveness of their academic programmes and courses for continuous professional development. Academic professionals are taking advantage of blended learning and new web technologies. In Europe and beyond they are opening up debates about the scope of public health and global health. Nevertheless, global health is bringing revitalisation of public health education, which is recognised as one of the core components by many other academic institutions involved in global health work. More than ever, higher academic institutions for public health are recognising the importance of institutional partnerships with various organisations and efficient modes of cooperation in regional and global networks. Networking in a global setting is bringing new opportunities, but also opening debates about global harmonisation of competence-based education to achieve functional knowledge, increase mobility of public health professionals, better employability and affordable performance. Conclusions As public health opportunities and threats are increasingly global, higher education institutions in Europe and in other regions have to look beyond national boundaries and participate in networks for education, research and practice. PMID:24560263

  3. The ATS Web Page Provides "Tool Boxes" for: Access Opportunities, Performance, Interfaces, Volume, Environments, "Wish List" Entry and Educational Outreach

    Science.gov (United States)

    1999-01-01

    This viewgraph presentation gives an overview of the Access to Space website, including information on the 'tool boxes' available on the website for access opportunities, performance, interfaces, volume, environments, 'wish list' entry, and educational outreach.

  4. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  5. Farzana's Journey: A Children's Book for Research-based, Educational Outreach in Remote Communities of Bangladesh

    Science.gov (United States)

    Peters, C.; Hornberger, G. M.; Machado, M.

    2017-12-01

    Academics are encouraged to integrate their environmental research with education and societal outreach, but the methods of doing so can be transient and insubstantial. Here, we use a children's book to create a sustainable relationship with vulnerable communities in Bangladesh. Farzana's Journey is a children's book based on current multidisciplinary Vanderbilt University research on the coupling and coevolution of the physical and human systems in coastal Bangladesh. Written, illustrated, and freely distributed in the Bengali-language, the book is a place-based tool to teach rural Bangladesh communities about the natural world and disseminate our scientific findings. The narrative follows a young girl, Farzana, who must walk a long distance to fetch her family's water. Her usual journey develops into an adventure as she meets a variety of animal characters, who relay a story about her ever-changing environment and the subsequent human adaptation. After exploring environmental topics, such as geomorphology, water availability, and climate, Farzana appreciates the uniqueness of her local environment and the adaptations of her ancestors and future generations. Through the development and distribution of the book, we encouraged dialogue, collaboration, and public outreach with scientists, artists, and students concerned with enhancing educational and social opportunity in rural communities. We also ensure a tangible tie through the book itself after the culmination of the research project. The book achieves the primary goal of sparking children's curiosity in the local environment, while also demonstrating an effective means for sustainable educational outreach with impoverished, remote communities.

  6. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  7. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  8. State of Global Pediatric Neurosurgery Outreach: Survey by the International Education Subcommittee

    Science.gov (United States)

    Davis, Matthew C.; Rocque, Brandon G.; Singhal, Ash; Ridder, Tom; Pattisapu, Jogi V.; Johnston, James M.

    2017-01-01

    Object Neurosurgical services are increasingly recognized as essential components of surgical care worldwide. Degree of interest among neurosurgeons regarding international work, and barriers to involvement in global neurosurgical outreach, are largely unexplored. We distributed a survey to members of the AANS/CNS Joint Section on Pediatric Neurosurgery to assess the state of global outreach among its members and identify barriers to involvement. Methods An internet-based questionnaire was developed by the International Education Subcommittee of the AANS/CNS Joint Section on Pediatric Neurosurgery, and distributed to pediatric neurosurgeons via the AANS/CNS Joint Section email contact list. Participants were surveyed on involvement in global neurosurgical outreach, geographic location, nature of participation, and barriers to further involvement. Results A 35.3% response rate was obtained, with 116 respondents completed the survey. 61% performed or taught neurosurgery in a developing country, 49% traveling at least annually. Africa was the most common region (54%), followed by South America (30%), through 29 separate organizing entities. Hydrocephalus was the most commonly treated condition (88%), followed by spinal dysraphism (74%) and tumor (68%). Most respondents obtained follow-up through communication from local surgeons (77%). 71% believed the international experience improved their practice, and 74% were very or extremely interested in working elsewhere. Interference with current practice (61%), cost (44%), and difficulty identifying international partners (43%) were the most commonly cited barriers to participation. Conclusion Any coordinated effort to expand global neurosurgical capacity begins with appreciation for the current state of outreach efforts. Increasing participation in global outreach will require addressing both real and perceived barriers to involvement. Creation and curation of a centralized online database of ongoing projects to facilitate

  9. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  10. No Child Left Behind and Outreach to Families and Communities: The Perspectives of Exemplary African-American Science Teachers

    Science.gov (United States)

    Coats, Linda T.; Xu, Jianzhong

    2013-01-01

    This qualitative study examines the perspectives of eight exemplary African-American science teachers toward No Child Left Behind (NCLB) Act and their outreach to families and communities in the context of the USA. Data revealed that whereas these exemplary teachers applauded the general intent of NCLB, they were concerned with its overemphasis on…

  11. Public Education and Outreach Through Full-Dome Video Technology

    Science.gov (United States)

    Pollock, John

    2009-03-01

    My long-term goal is to enhance public understanding of complex systems that can be best demonstrated through richly detailed computer graphic animation displayed with full-dome video technology. My current focus is on health science advances that focus on regenerative medicine, which helps the body heal itself. Such topics facilitate science learning and health literacy. My team develops multi-media presentations that bring the scientific and medical advances to the public through immersive high-definition video animation. Implicit in treating the topics of regenerative medicine will be the need to address stem cell biology. The topics are clarified and presented from a platform of facts and balanced ethical consideration. The production process includes communicating scientific information about the excitement and importance of stem cell research. Principles of function are emphasized over specific facts or terminology by focusing on a limited, but fundamental set of concepts. To achieve this, visually rich, biologically accurate 3D computer graphic environments are created to illustrate the cells, tissues and organs of interest. A suite of films are produced, and evaluated in pre- post-surveys assessing attitudes, knowledge and learning. Each film uses engaging interactive demonstrations to illustrate biological functions, the things that go wrong due to disease and disability, and the remedy provided by regenerative medicine. While the images are rich and detailed, the language is accessible and appropriate to the audience. The digital, high-definition video is also re-edited for presentation in other ``flat screen'' formats, increasing our distribution potential. Show content is also presented in an interactive web space (www.sepa.duq.edu) with complementing teacher resource guides and student workbooks and companion video games.

  12. The PACA Project: Creating Synergy Between Observing Campaigns, Outreach and Citizen Science

    Science.gov (United States)

    Yanamandra-Fisher, Padma

    2017-04-01

    The PACA (Pro-Am Collaborative Astronomy) Project's primary goal is to develop and build synergy between professional and amateur astronomers from observations in the many aspects of support of missions and campaigns. To achieve this, the PACA has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanded to include (i) polarimetric exploration of solar system objects with small apertures and (ii) in collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse, engage many levels of informal audiences using interactive social media to participate in the campaign. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The final stage of the PACA ecosystem is the integration of these components into publications. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects and new partnerships in all three categories.

  13. Rock Around the World: International Outreach for Scientific Education Using Infrared Spectroscopy

    Science.gov (United States)

    Rogers, L. D.; Klug, S. L.; Christensen, P. R.; Rogers, T. A.; Daub, G.

    2005-12-01

    Since the creation of the Rock Around the World (RATW) program in January 2004, we have received 6,861 (to date) rocks from children and adults alike from around the world. RATW is an educational outreach device to inspire and teach children about science. In addition, the accumulation of almost 7,000 rock samples has exponentially expanded the Arizona State University earth-based rock library into a large collection of samples useful for scientific investigation of Earth and Mars. This library currently supports research that is being conducted by the Mars Global Surveyor Thermal Emission Spectrometer (TES), the Mars Odyssey Thermal Emission Imaging System (THEMIS) and the two Mini-Thermal Emission Spectrometer (Mini-TES) instruments that are onboard the Mars Exploration Rovers. Currently, we have 3 undergraduate students working on the RATW project. As each rock sample arrives, appropriate information that was received with the sample is entered into our web-based RATW database. The information received with the rock sample is directly input into the RATW website. The information is publicly available for each sample at http://ratw.asu.edu. The sample is photographed, and then sent to the spectrometer for analysis. Once the spectrum is taken, calibration is performed. Then the sample is filed away in our rock archive room. Our website has several interactive tools which enhance the learning process. These tools include an interactive world map where the visitor can click on a rock location and preview all of the rocks sent from that geographical area of the world. In addition RATW has also put four virtual mineral libraries online. This enables any visitor to the RATW website to deconvolve or "unmix" their spectrum to see the mineral composition, using the same techniques that scientists use on the TES, THEMIS, and mini-TES data. The 6,861 rock samples we have received have been very geographically widespread. Participants have sent rocks from such places as

  14. Evaluation of a statewide science inservice and outreach program: Teacher and student outcomes

    Science.gov (United States)

    Lott, Kimberly Hardiman

    Alabama Science in Motion (ASIM) is a statewide in-service and outreach program designed to provide in-service training for teachers in technology and content knowledge. ASIM is also designed to increase student interest in science and future science careers. The goals of ASIM include: to complement, enhance and facilitate implementation of the Alabama Course of Study: Science, to increase student interest in science and scientific careers, and to provide high school science teachers with curriculum development and staff development opportunities that will enhance their subject-content expertise, technology background, and instructional skills. This study was conducted to evaluate the goals and other measurable outcomes of the chemistry component of ASIM. Data were collected from 19 chemistry teachers and 182 students that participated in ASIM and 6 chemistry teachers and 42 students that do not participate in ASIM using both surveys and student records. Pre-treatment Chi-Square tests revealed that the teachers did not differ in years of chemistry teaching experience, major in college, and number of classes other than chemistry taught. Pre-treatment Chi-Square tests revealed that the students did not differ in age, ethnicity, school classification, or school type. The teacher survey used measured attitudes towards inquiry-based teaching, frequency of technology used by teacher self-report and perceived teaching ability of chemistry topics from the Alabama Course of Study-Science. The student surveys used were the Test of Science Related Attitudes (TOSRA) and a modified version of the Test of Integrated Process Skills (TIPS). The students' science scores from the Stanford Achievement Test (SAT-9) were also obtained from student records. Analysis of teacher data using a MANOVA design revealed that participation in ASIM had a significantly positive effect on teacher attitude towards inquiry-based teaching and the frequency of technology used; however, there was no

  15. Build Your Own Particle Detector. Education and outreach through ATLAS LEGO models and events

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220289; The ATLAS collaboration

    2016-01-01

    To support the outreach activities of ATLAS institutes and to grasp people’s attention in science exhibitions and during public events, a very detailed model of the experiment built entirely out of LEGO bricks as well as an outreach programme using LEGO bricks to get people to think about particle detectors and involve them into a conversation about particle physics in general have been created. A large LEGO model, consisting of about 9500 pieces, has been exported to more than 55 ATLAS institutes and has been used in numerous exhibitions to explain the proportion and composition of the experiment to the public. As part of the Build Your Own Particle Detector programme (byopd.org) more than 15 events have been conducted, either involving a competition to design and build the best particle detector from a random pile of pieces or to take part in the construction of one of the large models, as part of a full day outreach event. Recently, miniature models of all four main LHC experiments, that will be used at ...

  16. Earth Science Pipeline: Enhancing Diversity in the Geosciences Through Outreach and Research

    Science.gov (United States)

    McGill, S. F.; Fryxell, J. E.; Smith, A. L.; Leatham, W. B.; Brunkhorst, B. J.

    2004-12-01

    Our efforts to increase diversity in the geosciences have been directed towards pre-college students and their teachers as well as towards undergraduate students. We made presentations about the geosciences and careers in geosciences at local schools, and we invited school groups to visit our campus (located near the San Andreas fault) for hands-on activities related to Earth Science. We also led field trips for high school students to other areas of geologic interest in southern California. We hired undergraduate students, including several from under-represented groups, from both our introductory and upper-division geology courses to help with these outreach activities. During 2001-2004, we conducted 169 outreach sessions that involved over 12,000 contact hours with about 5700 students, mostly middle and high school students. The majority (about 74%) of the students participating in these activities were from ethnic groups that are under-represented in the geosciences. Ninety per cent of the students said they would like to go on another field trip like the one they took to our department. At many outreach events we conducted a pre- and post-survey in which we asked students to what extent they agreed with the statement: "It would be fun to be a geologist." The pre-surveys indicated that 42% of the students either agreed or strongly agreed with the statement before participating in the outreach event. After participating, 61% of the students agreed or strongly agreed with the statement. We have also offered summer field trips and research opportunities for high school teachers. In order to attract and retain undergraduate students to the geology major, we have recruited undergraduate students from under-represented groups (and high school teachers) to participate in various research projects. The two largest projects are (1) geologic mapping and monitoring of volcanoes on the island of Dominica, in the Lesser Antilles and (2) using the Global Positioning System

  17. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  18. Seeing is believing: an educational outreach activity on disinfection practices

    Directory of Open Access Journals (Sweden)

    Tetu Isabelle

    2008-02-01

    Full Text Available Abstract Background Skin and soft-tissue infections are very common among persons who inject drugs. They occur when microbes pass under the protective layer of the skin and proliferate. This happens when harm reduction recommendations such as skin aseptia before injection and sterile injection equipment usage are not properly followed. Methods A group of active drug users involved in a health promotion project as peer educators were asked about their formation needs. To address their inquiries concerning skin and soft-tissue infections, we devised with them a series of workshops touching upon common infections, the microflora, and microbial transmission. Results Participants learned to identify common infections and how to properly react in case of an abscess, cellulitis or phlebitis. They saw microscopic objects, found out about the high prevalence of microbes in their environment and on their skin, and could appreciate the efficiency of different washing and disinfection techniques. They visualized how easily microbes can spread from person to person and from contaminated objects to persons. Conclusion In the weeks following this activity, some participants demonstrated and reported healthy behavioural changes regarding their own injection practices. Furthermore, they shared their newfound knowledge and began enforcing its application among people they inject drugs with. Most participants greatly appreciated this activity and valued it as being highly efficient and tangible. Note: A French version of this paper is available on the Journal's web site [see Additional file 1]. Additional File 1 Article en Français (article in French. Une version française de l'article a été préparée par les auteurs. Elle est disponible à partir du site Web du Harm Reduction Journal. Click here for file

  19. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  20. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  1. The Aula Espazio Gela Observatory: A tool for Solar System Education and Outreach

    Science.gov (United States)

    Rojas, J. F.; Perez-Hoyos, S.; Hueso, R.; Mendikoa, I.; Sanchez-Lavega, A.

    2011-10-01

    We present a summary of the activities undertaken over the first year of operations of the "Aula Espazio Gela Observatory", with teaching and astronomy outreach purposes. The observatory belongs to the Universidad del País Vasco and is a fundamental part of the "Master en Ciencia y Tecnología Espacial" (Space Science and Technology master). It is an urban observatory with the dome located on the roof of the School of Engineering at the Universidad del Pais Vasco in Bilbao (Spain).

  2. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  3. Using EarthScope Construction of the Plate Boundary Observatory to Provide Locally Based Experiential Education and Outreach

    Science.gov (United States)

    Jackson, M.; Eriksson, S.; Barbour, K.; Venator, S.; Mencin, D.; Prescott, W.

    2006-12-01

    EarthScope is an NSF-funded, national science initiative to explore the structure and evolution of the North American continent and to understand the physical processes controlling earthquakes and volcanoes. This large-scale experiment provides locally based opportunities for education and outreach which engage students at various levels and the public. UNAVCO is responsible for the Plate Boundary Observatory (PBO) component of EarthScope. PBO includes the installation and operations and maintenance of large networks of Global Positioning Satellite (GPS), strainmeter, seismometer, and tiltmeter instruments and the acquisition of satellite radar imagery, all of which will be used to measure and map the smallest movements across faults, the magma movement inside active volcanoes and the very wide areas of deformation associated with plate tectonic motion. UNAVCO, through its own education and outreach activities and in collaboration with the EarthScope E&O Program, uses the PBO construction activities to increase the understanding and public appreciation of geodynamics, earth deformation processes, and their relevance to society. These include programs for public outreach via various media, events associated with local installations, a program to employ students in the construction of PBO, and development of curricular materials by use in local schools associated with the EarthScope geographic areas of focus. PBO provides information to the media to serve the needs of various groups and localities, including interpretive centers at national parks and forests, such as Mt. St. Helens. UNAVCO staff contributed to a television special with the Spanish language network Univision Aquí y Ahora program focused on the San Andreas Fault and volcanoes in Alaska. PBO participated in an Education Day at the Pathfinder Ranch Science and Outdoor Education School in Mountain Center, California. Pathfinder Ranch hosts two of the eight EarthScope borehole strainmeters in the Anza

  4. The GeoBus project: a mobile Earth science outreach project for secondary schools in the UK

    Science.gov (United States)

    Robinson, R. A.; Roper, K. A.; Macfarlane, D.; Pike, C.

    2013-12-01

    GeoBus is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews. It is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (high) schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. These linkages are important for introducing career opportunities in Earth sciences. Since its launch, GeoBus has visited over 140 different schools across the length and breadth of Scotland. Over 20,000 pupils will have been involved in practical hands-on Earth science learning activities by December 2013, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run workshops, field excursions and Enterprise Challenges. GeoBus provides 16 workshops which can be adapted for different learning levels. Workshops are 50 to 80 minute sessions for up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. The Enterprise Challenges are half or full day sessions for up to 100 pupils. Current topics are Drilling for Oil, Renewable Energy, a Journey to Mars and Scotland

  5. Role of Public Outreach in the University Science Mission: Publishing K-12 Curriculum, Organizing Tours, and Other Methods of Engagement

    Science.gov (United States)

    Dittrich, T. M.

    2015-12-01

    Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C

  6. Design, implementation and evaluation of transnational collaborative programmes in astronomy education and public outreach

    NARCIS (Netherlands)

    Rodrigues dos Santos Russo, Pedro Miguel

    2015-01-01

    This thesis presents a study of how science can most effectively be used to engage and educate the global public and specifically describes the role of astronomy in doing this. Astronomy has a special place in the field of science education and public engagement with science. It has great appeal for

  7. Using Mixed Methods and Collaboration to Evaluate an Education and Public Outreach Program (Invited)

    Science.gov (United States)

    Shebby, S.; Shipp, S. S.

    2013-12-01

    Traditional indicators (such as the number of participants or Likert-type ratings of participant perceptions) are often used to provide stakeholders with basic information about program outputs and to justify funding decisions. However, use of qualitative methods can strengthen the reliability of these data and provide stakeholders with more meaningful information about program challenges, successes, and ultimate impacts (Stern, Stame, Mayne, Forss, David & Befani, 2012). In this session, presenters will discuss how they used a mixed methods evaluation to determine the impact of an education and public outreach (EPO) program. EPO efforts were intended to foster more effective, sustainable, and efficient utilization of science discoveries and learning experiences through three main goals 1) increase engagement and support by leveraging of resources, expertise, and best practices; 2) organize a portfolio of resources for accessibility, connectivity, and strategic growth; and 3) develop an infrastructure to support coordination. The evaluation team used a mixed methods design to conduct the evaluation. Presenters will first discuss five potential benefits of mixed methods designs: triangulation of findings, development, complementarity, initiation, and value diversity (Greene, Caracelli & Graham, 2005). They will next demonstrate how a 'mix' of methods, including artifact collection, surveys, interviews, focus groups, and vignettes, was included in the EPO project's evaluation design, providing specific examples of how alignment between the program theory and the evaluation plan was best achieved with a mixed methods approach. The presentation will also include an overview of different mixed methods approaches and information about important considerations when using a mixed methods design, such as selection of data collection methods and sources, and the timing and weighting of quantitative and qualitative methods (Creswell, 2003). Ultimately, this presentation will

  8. Educational outreach to general practitioners reduces children's asthma symptoms: a cluster randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Sladden Michael

    2007-09-01

    Full Text Available Abstract Background Childhood asthma is common in Cape Town, a province of South Africa, but is underdiagnosed by general practitioners. Medications are often prescribed inappropriately, and care is episodic. The objective of this study is to assess the impact of educational outreach to general practitioners on asthma symptoms of children in their practice. Methods This is a cluster randomised trial with general practices as the unit of intervention, randomisation, and analysis. The setting is Mitchells Plain (population 300,000, a dormitory town near Cape Town. Solo general practitioners, without nurse support, operate from storefront practices. Caregiver-reported symptom data were collected for 318 eligible children (2 to 17 years with moderate to severe asthma, who were attending general practitioners in Mitchells Plain. One year post-intervention follow-up data were collected for 271 (85% of these children in all 43 practices. Practices randomised to intervention (21 received two 30-minute educational outreach visits by a trained pharmacist who left materials describing key interventions to improve asthma care. Intervention and control practices received the national childhood asthma guideline. Asthma severity was measured in a parent-completed survey administered through schools using a symptom frequency and severity scale. We compared intervention and control group children on the change in score from pre-to one-year post-intervention. Results Symptom scores declined an additional 0.84 points in the intervention vs. control group (on a nine-point scale. p = 0.03. For every 12 children with asthma exposed to a doctor allocated to the intervention, one extra child will have substantially reduced symptoms. Conclusion Educational outreach was accepted by general practitioners and was effective. It could be applied to other health care quality problems in this setting.

  9. Space Science in Project SMART: A UNH High School Outreach Program

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  10. Leveraging High Resolution Topography for Education and Outreach: Updates to OpenTopography to make EarthScope and Other Lidar Datasets more Prominent in Geoscience Education

    Science.gov (United States)

    Kleber, E.; Crosby, C. J.; Arrowsmith, R.; Robinson, S.; Haddad, D. E.

    2013-12-01

    The use of Light Detection and Ranging (lidar) derived topography has become an indispensable tool in Earth science research. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be represented at sub-meter resolution and in three dimensions. In addition to its high value for scientific research, lidar derived topography has tremendous potential as a tool for Earth science education. Recent science education initiatives and a community call for access to research-level data make the time ripe to expose lidar data and derived data products as a teaching tool. High resolution topographic data fosters several Disciplinary Core Ideas (DCIs) of the Next Generation Science Standards (NGS, 2013), presents respective Big Ideas of the new community-driven Earth Science Literacy Initiative (ESLI, 2009), teaches to a number National Science Education Standards (NSES, 1996), and Benchmarks for Science Literacy (AAAS, 1993) for science education for undergraduate physical and environmental earth science classes. The spatial context of lidar data complements concepts like visualization, place-based learning, inquiry based teaching and active learning essential to teaching in the geosciences. As official host to EarthScope lidar datasets for tectonically active areas in the western United States, the NSF-funded OpenTopography facility provides user-friendly access to a wealth of data that is easily incorporated into Earth science educational materials. OpenTopography (www.opentopography.org), in collaboration with EarthScope, has developed education and outreach activities to foster teacher, student and researcher utilization of lidar data. These educational resources use lidar data coupled with free tools such as Google Earth to provide a means for students and the interested public to visualize and explore Earth's surface in an interactive manner not possible with most other remotely sensed imagery. The

  11. Fostering Outreach, Education and Exploration of the Moon Using the Lunar Mapping & Modeling Portal

    Science.gov (United States)

    Dodge, K.; Law, E.; Malhotra, S.; Chang, G.; Kim, R. M.; Bui, B.; Sadaqathullah, S.; Day, B. H.

    2014-12-01

    The Lunar Mapping and Modeling Portal (LMMP)[1], is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.). Originally designed as a mission planning tool for the Constellation Program, LMMP has grown into a generalized suite of tools facilitating a wide range of activities in support of lunar exploration including public outreach, education, lunar mission planning and scientific research. LMMP fosters outreach, education, and exploration of the Moon by educators, students, amateur astronomers, and the general public. These efforts are enhanced by Moon Tours, LMMP's mobile application, which makes LMMP's information accessible to people of all ages, putting opportunities for real lunar exploration in the palms of their hands. Our talk will include an overview of LMMP and a demonstration of its technologies (web portals, mobile apps), to show how it serves NASA data as commodities for use by advanced visualization facilities (e.g., planetariums) and how it contributes to improving teaching and learning, increasing scientific literacy of the general public, and enriching STEM efforts. References:[1] http://www.lmmp.nasa.gov

  12. I Love My Sun: An Educational Space Weather Outreach Tool for Children and Senior People

    Science.gov (United States)

    Tulunay, Yurdanur; Tulunay, Ersin

    2014-05-01

    In the present day society, there is a vital need for setting up education and outreach activities in the Space Weather field for creating a healthy environment for the proper development of Space Weather markets along with the fundamental and applied research activities. It is important to educate children about the important role that the Sun has in their lives. This presentation gives an educational outreach tool entitled "I Love My Sun" that has been developed for school children in the approximate age group 7 through 11 years. Its main objective is to make children aware of space weather, the Sun, Sun-Earth relations and how they, the children, are part of this global picture. Children are given a lecture about the Sun; this is preceded and followed by the children drawing a picture of the Sun. The activity was initiated by Y. Tulunay in Ankara, Turkey as national project in the context of the 50th anniversary of Space Age and IHY activities. Since then it has been extended into a spatial (Europe) and temporal dimensions. A metric has been developed to facilitate an objective evaluation of the outcomes of the Events. In this presentation, the background behind the "I Love My Sun" initiative is given and it is described how to perform an "I Love My Sun" event. Impressions and main results from the case studies are given. As a new extension, preliminary examples are also given concerning senior people.

  13. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  14. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    Directory of Open Access Journals (Sweden)

    Julio Saucedo-Morales

    2013-05-01

    Full Text Available We discuss the importance of small solar observatories for EPO (Education and Public Outreach, mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO. We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects.

  15. Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    Science.gov (United States)

    Saucedo-Morales Julio; Loera-González, Pablo

    2013-05-01

    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects.

  16. Assessing the Impact of Peer Educator Outreach on the Likelihood and Acceleration of Clinic Utilization among Sex Workers.

    Directory of Open Access Journals (Sweden)

    Parthasarathy Krishnamurthy

    Full Text Available Peer-led outreach is a critical element of HIV and STI-reduction interventions aimed at sex workers. We study the association between peer-led outreach to sex workers and the time to utilize health facilities for timely STI syndromic-detection and treatment. Using data on the timing of peer-outreach interventions and clinic visits, we utilize an Extended Cox model to assess whether peer educator outreach intensity is associated with accelerated clinic utilization among sex workers.Our data comes from 2705 female sex workers registered into Pragati, a women-in-sex-work outreach program, and followed from 2008 through 2012. We analyze this data using an Extended Cox model with the density of peer educator visits in a 30-day rolling window as the key predictor, while controlling for the sex workers' age, client volume, location of sex work, and education level. The principal outcome of interest is the timing of the first voluntary clinic utilization.More frequent peer visit is associated with earlier first clinic visit (HR: 1.83, 95% CI, 1.75-1.91, p < .001. In addition, 18% of all syndrome-based STI detected come from clinic visits in which the sex worker reports no symptoms, underscoring the importance of inducing clinic visits in the detection of STI. Additional models to test the robustness of these findings indicate consistent beneficial effect of peer educator outreach.Peer outreach density is associated with increased likelihood of-and shortened duration to-clinic utilization among female sex workers, suggesting potential staff resourcing implications. Given the observational nature of our study, however, these findings should be interpreted as an association rather than as a causal relationship.

  17. Scientist Participation in Education and Public Outreach - Using Web Tools to Communicate the Scientific Process and Engage an Audience in Understanding Planetary Science: Examples with Lunar Reconnaissance Orbiter (LRO) Data (Invited)

    Science.gov (United States)

    Petro, N. E.

    2013-12-01

    Scientists often speak to the public about their science and the current state of understanding of their field. While many talks (including those by this author) typically feature static plots, figures, diagrams, and the odd movie/animation/visualization (when technology allows), it is now possible, using the web to guide an audience through the thought process of how a scientist tackles certain questions. The presentation will highlight examples of web tools that effectively illustrate how datasets are used to address questions of lunar science. Why would a scientist use precious time during a talk to interact with data, in real time? Why not just show the results and move on? Through experience it is evident that illustrating how data is analyzed, even in a simple form, engages an audience, and demonstrates the thought process when interacting with data. While it is clear that scientists are unlikely to use such a tool to conduct science, it illustrates how a member of the public can engage with mission data. An example is discussed below. When discussing the geology of the Moon, there is an enormous volume of data that can be used to explain what we know (or think we know) and how we know it. For example, the QuickMap interface (http://www.actgate.com/home/quickmap.htm) enables interaction with a set of data (images, spectral data, topography, radar data) across the entire Moon (http://target.lroc.asu.edu/q3/). This webtool enables a speaker the opportunity (given adequate web connectivity) to talk about features, such as a crater, and show it from multiple perspectives (e.g., plan view, oblique, topographically exaggerated) in a logical flow. The tool enables illustration of topographic profiles, 3-D perspectives, and data overlays. Now, one might ask why doing this demonstration in real time is valuable, over a set of static slides. In some cases static slides are best, and doing any real time demos is unfeasible. However, guiding an engaged audience through

  18. Optics outreach activities with elementary school kids from public education in Mexico

    Science.gov (United States)

    Viera-González, P.; Sánchez-Guerrero, G.; Ruiz-Mendoza, J.; Cárdenas-Ortiz, G.; Ceballos-Herrera, D.; Selvas-Aguilar, R.

    2014-09-01

    This work shows the results obtained from the "O4K" Project supported by International Society for Optics and Photonis (SPIE) and the Universidad Autonoma de Nuevo Leon (UANL) through its SPIE Student Chapter and the Dr. Juan Carlos Ruiz-Mendoza, outreach coordinator of the Facultad de Ciencias Fisico Matematicas of the UANL. Undergraduate and graduate students designed Optics representative activities using easy-access materials that allow the interaction of children with optics over the exploration, observation and experimentation, taking as premise that the best way to learn Science is the interaction with it. Several activities were realized through the 2011-2013 events with 1,600 kids with ages from 10 to 12; the results were analyzed using surveys. One of the principal conclusions is that in most of the cases the children changed their opinions about Sciences in a positive way.

  19. The Science of a Sundae: Using the Principle of Colligative Properties in Food Science Outreach Activities for Middle and High School Students

    Science.gov (United States)

    Wickware, Carmen L.; Day, Charles T.C.; Adams, Michael; Orta-Ramirez, Alicia; Snyder, Abigail B.

    2017-01-01

    The opportunities for outreach activities for professionals and academics in food science are extensive, as too are the range of participants' experience levels and platforms for delivery. Here, we present a set of activities that are readily adaptable for a range of students (ages 10 to 18) in multiple platforms (demonstration table and hands-on…

  20. Convalescence care for seniors of lower Manhattan: an interdisciplinary outreach, rehabilitation, and education model.

    Science.gov (United States)

    Moroz, Alex; Schoeb, Veronika; Fan, Grace; Vitale, Kenneth; Lee, Mathew

    2004-03-01

    The purpose of this study was to test the efficacy of an interdisciplinary geriatric outreach, rehabilitation, and education program for seniors. Community-dwelling Chinese seniors in lower Manhattan were recruited through outreach activities (17 educational workshops, three community health fairs, media interviews) and community physician referrals to offer rehabilitation services. The instrument administered at entry and exit included questions about pain intensity, quality of life, activities of daily living (ADLs), and an assessment of a variety of intrinsic and extrinsic barriers to life participation. The sample included 70 seniors (53 women) with a mean age of 70.5 +/- 7.48 years (range 60-93 years old) of whom 86% were Cantonese-speaking Chinese. The barriers-to-life participation assessment revealed cultural, communication, transportation, and physical environmental barriers as well as insufficient financial resources. Thirty-four patients who completed the program showed a significant improvement in quality of life. Patients' reports reflected a high degree of satisfaction with the program. Interdisciplinary team-oriented patient care, including a physiatrist, social worker, and rehabilitation staff, may result in good outcomes and high patient satisfaction in ambulatory community seniors.

  1. Desert Research and Technology Studies (DRATS) 2010 Education and Public Outreach (EPO)

    Science.gov (United States)

    Paul, Heather L.

    2013-10-01

    The Exploration Systems Mission Directorate, Directorate Integration Office conducts analog field test activities, such as Desert Research and Technology Studies (DRATS), to validate exploration system architecture concepts and conduct technology demonstrations. Education and Public Outreach (EPO) activities have been a part of DRATS missions in the past to engage students, educators, and the general public in analog activities. However, in 2010, for the first time, EPO was elevated as a principal task for the mission and metrics were collected for all EPO activities. EPO activities were planned well in advance of the mission, with emphasis on creating a multitude of activities to attract students of all ages. Web-based and social media interaction between August 31 and September 14, 2010 resulted in 62,260 DRATS Flickr views; 10,906 views of DRATS videos on YouTube; 1,483 new DRATS Twitter followers; and a 111% increase in DRATS Facebook fan interactions. Over 7,000 outreach participants were directly involved in the DRATS 2010 analog mission via student visitations at both the integrated dry-runs prior to the field mission and during the field mission; by participating in live, interactive webcasts and virtual events; and online voting to determine a traverse site as part of the NASA initiative for Participatory Exploration (PE).

  2. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  3. Evolving Perspectives on Astronomy Education and Public Outreach in Hawai'i

    Science.gov (United States)

    Kimura, Ka'iu; Slater, T.; Hamilton, J.; Takata, V.

    2012-01-01

    For the last several decades, well meaning astronomers and educators have worked diligently to provide astronomy education experiences to Native Hawaiians and visitors across all the islands. Much of the early education and public outreach (EPO) work was based on a philosophical perspective based on the notion of, "if we just make them aware of how wonderful astronomy is, then everyone will naturally support the development of astronomy in the islands.” In support of this goal, numerous teacher workshops were delivered and the first generation of the Maunakea Observatories Visitors’ Center was developed and funded. These projects were most frequently developed using Mainland thinking, in a Mainland style, with a Mainland agenda. Consequently, these efforts often failed to create even moderate impacts, whether in educational settings, or in terms of public outreach. In recent years, our understanding of effective EPO has evolved. This evolution has led to a shift in the locus of control, from the Mainland to the Islands; and in content, from "astronomy only” to "astronomy as part of the whole.” We have come to understand that successfully transformative EPO requires intertwining astronomy with teaching about culture, language and context. In response, the `Imiloa Astronomy Center was expanded to convolve historical and modern astronomy with Hawaiian culture and language. Moreover, the most successful astronomy EPO programs in the islands have been redesigned to reflect meaningful collaborations of schools, businesses, and the larger community that situate astronomy as part of a larger educational work of honoring the traditions of the past while simultaneously transforming the future. This evolution in thinking may serve as a model for the astronomy community's interaction with other regional communities.

  4. Educational outreach and collaborative care enhances physician's perceived knowledge about Developmental Coordination Disorder.

    Science.gov (United States)

    Gaines, Robin; Missiuna, Cheryl; Egan, Mary; McLean, Jennifer

    2008-01-24

    Developmental Coordination Disorder (DCD) is a chronic neurodevelopmental condition that affects 5-6% of children. When not recognized and properly managed during the child's development, DCD can lead to academic failure, mental health problems and poor physical fitness. Physicians, working in collaboration with rehabilitation professionals, are in an excellent position to recognize and manage DCD. This study was designed to determine the feasibility and impact of an educational outreach and collaborative care model to improve chronic disease management of children with DCD. The intervention included educational outreach and collaborative care for children with suspected DCD. Physicians were educated by and worked with rehabilitation professionals from February 2005 to April 2006. Mixed methods evaluation approach documented the process and impact of the intervention. Physicians: 750 primary care physicians from one major urban area and outlying regions were invited to participate; 147 physicians enrolled in the project. Children: 125 children were identified and referred with suspected DCD. The main outcome was improvement in knowledge and perceived skill of physicians concerning their ability to screen, diagnose and manage DCD. At baseline 91.1% of physicians were unaware of the diagnosis of DCD, and only 1.6% could diagnose condition. Post-intervention, 91% of participating physicians reported greater knowledge about DCD and 29.2% were able to diagnose DCD compared to 0.5% of non-participating physicians. 100% of physicians who participated in collaborative care indicated they would continue to use the project materials and resources and 59.4% reported they would recommend or share the materials with medical colleagues. In addition, 17.6% of physicians not formally enrolled in the project reported an increase in knowledge of DCD. Physicians receiving educational outreach visits significantly improved their knowledge about DCD and their ability to identify and

  5. All mirrors are magic mirrors. A different view: Perspectives on science outreach from the children's book world.

    Science.gov (United States)

    Young, K. R.

    2006-12-01

    I have met no scientists who are not superheroes -- particularly geologists and ocean scientists! -- worthy of action photos and writeups of their deeds of derring-do, whether it's wrestling a CTD up from the ocean floor, building a pool to demonstrate a sea turtle's navigation at sea, or analyzing the effects of an earthquake. Scientists, in discussing their work, are not likely to share much about themselves -- their experiences, adventures, fears, delights, even details of drudgery. But leaving these things out of your story is a grievous omission for kids who, more than anything, need stories -- but also need life applications and role models. Being able to understand what aspect of your work should be conveyed to kids -- little kids, big kids, college kids, and parents -- can make a difference to your funding, the public face of your discipline, and the future of science. The focus of my presentation is people -- in schools, museums, aquaria, the media, and my field, children's book publishing -- who are trying to change the effects of dreary science fairs, the nerdy stereotype of scientists, and the lack of understanding that scientists have incredible adventures, live and work in incredible places, and are, in fact, incredibly creative, exciting, interesting and inspiring. What are these people doing to open the window into your life as a scientist? How can scientists contribute more to the goal of a better bridge? Through examples of what is being done -- programs, practices, publications -- I shall convey ways scientists can meet media and education opportunities that come their way, and how they may create additional opportunities through new approaches to outreach.

  6. The Nautilus Exploration Program: Utilizing Live Ocean Exploration as a Platform for STEM Education and Outreach

    Science.gov (United States)

    Fundis, A.; Cook, M.; Sutton, K.; Garson, S.; Poulton, S.; Munro, S.

    2016-02-01

    By sparking interest in scientific inquiry and engineering design at a young age through exposure to ocean exploration and innovative technologies, and building on that interest throughout students' educational careers, the Ocean Exploration Trust (OET) aims to motivate more students to be lifelong learners and pursue careers in STEM fields. Utilizing research conducted aboard Exploration Vessel Nautilus, the ship's associated technologies, and shore-based facilities at the University of Rhode Island — including the Graduate School of Oceanography and the Inner Space Center — we guide students to early career professionals through a series of educational programs focused on STEM disciplines and vocational skills. OET also raises public awareness of ocean exploration and research through a growing online presence, live streaming video, and interactions with the team aboard the ship 24 hours a day via the Nautilus Live website (www.nautiluslive.org). Annually, our outreach efforts bring research launched from Nautilus to tens of millions worldwide and allow the public, students, and scientists to participate in expeditions virtually from shore. We share the Nautilus Exploration Program's strategies, successes, and lessons learned for a variety of our education and outreach efforts including: 1) enabling global audiences access to live ocean exploration online and via social media; 2) engaging onshore audiences in live and interactive conversations with scientists and engineers on board; 3) engaging young K-12 learners in current oceanographic research via newly developed lessons and curricula; 4) onshore and offshore professional development opportunities for formal and informal educators; 5) programs and authentic research opportunities for high school, undergraduate, and graduate students onshore and aboard Nautilus; and 6) collaborative opportunities for early career and seasoned researchers to participate virtually in telepresence-enabled, interdisciplinary

  7. Science outreach on tap: insights and practices from three years ofDartmouth Science Pubs.

    Science.gov (United States)

    Hawley, R. L.; Serrell, N.; Tobery, C. E.; Riordan, S. A.

    2015-12-01

    The "Cafe Scientifique" (or "Science Cafe") has existed around theworld for decades. In an informal setting, one or more scientistsengage with a lay audience, typically over refreshments of some kind.These Science Cafes have taken many formats and taken place in manyvenues. Some feature a single presenter, some multiple; somecongregate in large venues, some small; some restrict the use of thepowerpoint slides, some do not.Our team at Dartmouth has hosted "Science Pubs" for three years. OurScience Pub takes place in a local pub, from 5-7pm on a weekday once amonth. We choose a theme for a pub and select three presenters. Thecomposition of our panel varies, but we generally have at least onefaculty member and one "less-academic" member, such as a town plannerwhen discussing hurricanes or an organic farmer when discussingpesticides. Often we include a graduate student in the panel. ThePub takes place in three "acts": 1) the presenters each give a briefintroduction to thier take on the topic, usually 10-15 minutes,extemporaneous with no slides, 2) the "wedding reception" phase, whichis a break during which the presenters circulate to the pub tables,answering questions and chatting with the attendees informally, and 3)reconvening for a more 'formal' question and answer period duringwhich the presenters answer questions from the audience.Here, we outline the format that makes up a Dartmouth Science Pub andshare insignts and lessons learned. Among many findings, we havelearned: 1) a group of three presenters makes for a lively discussion,as often presenters 'riff' off one another's points, 2) it is cruicalto have a facilitator, to 'run the show', freeing the sciencepresenters to concentrate on thier audience engagement, and 3) a shortmeeting ahead of time with the presenters is simple and very importantin creating a smooth event, and serves to help the presenters 'codeswitch' and adapt language, in lieu of a formal 'training'.

  8. Community outreach and education: key components of the Salix consortium's willow biomass project

    International Nuclear Information System (INIS)

    Volk, T.A.; Edick, S.; Brown, S.; Downing, M.

    1999-01-01

    This project facilitates the commercialization of willow biomass crops as a locally grown source of renewable energy. The challenge is to simultaneously optimize production and utilization technology, develop farmer interest and crop acreage, and establish stable and reliable markets. The participation of farmers and landowners, businesses, and local and regional governments in the process is essential for success. A three-phased approach elicits this participation: focused outreach and education, active involvement of potential producers of willow biomass crops, and the development of a user-friendly economic and business model that can be used by a variety of stakeholders. Barriers to commercialization have been identified, such as misconceptions about the production system and crop, assurances of a stable and reliable market for the material, and indications that the equipment and infrastructure to grow and process willow biomass crops are in place. Outreach efforts have specifically addressed these issues. As a result target audiences' responses have changed from passive observation to inquiries and suggestions for active participation. This shift represents a significant step towards the goal of making willow biomass crops a viable source of locally produced fuel. (author)

  9. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  10. The use of student-driven video projects as an educational and outreach tool

    Science.gov (United States)

    Bamzai, A.; Farrell, W.; Klemm, T.

    2014-12-01

    With recent technological advances, the barriers to filmmaking have been lowered, and it is now possible to record and edit video footage with a smartphone or a handheld camera and free software. Students accustomed to documenting their every-day experiences for multimedia-rich social networking sites feel excited and creatively inspired when asked to take on ownership of more complex video projects. With a small amount of guidance on shooting primary and secondary footage and an overview of basic interview skills, students are self-motivated to identify the learning themes with which they resonate most strongly and record their footage in a way that is true to their own experience. The South Central Climate Science Center (SC-CSC) is one of eight regional centers formed by the U.S. Department of the Interior in order to provide decision makers with the science, tools, and information they need to address the impacts of climate variability and change on their areas of responsibility. An important component of this mission is to innovate in the areas of translational science and science communication. This presentation will highlight how the SC-CSC used student-driven video projects to document our Early Career Researcher Workshop and our Undergraduate Internship for Underrepresented Minorities. These projects equipped the students with critical thinking and project management skills, while also providing a finished product that the SC-CSC can use for future outreach purposes.

  11. The Impact of STEM Outreach Programs in Addressing Teacher Efficacy and Broader Issues in STEM Education

    Science.gov (United States)

    Myszkal, Philip Ian

    This study explores the potential of the Outreach Workshops in STEM (OWS) to affect Science, Technology, Engineering, and Mathematics (STEM) teachers' content knowledge, self-efficacy, and pedagogical approaches, as well as its viability as a potential form of professional development (PD). The data for the thesis is taken from a larger longitudinal study looking at the potential of OWS to influence middle school students' and teachers' attitudes and beliefs around STEM. The study employs a mixed-methods design, utilizing surveys, open-ended questions, interviews, and observations. The findings show that there were no significant changes in teachers' content knowledge, confidence, or pedagogical approaches. However, the majority of participants reported that they learned new teaching ideas and considered the workshops to be an effective PD opportunity.

  12. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  13. JunoCam Images of Jupiter: Science from an Outreach Experiment

    Science.gov (United States)

    Hansen, C. J.; Orton, G. S.; Caplinger, M. A.; Ravine, M. A.; Rogers, J.; Eichstädt, G.; Jensen, E.; Bolton, S. J.; Momary, T.; Ingersoll, A. P.

    2017-12-01

    The Juno mission to Jupiter carries a visible imager on its payload primarily for outreach, and also very useful for jovian atmospheric science. Lacking a formal imaging science team, members of the public have volunteered to process JunoCam images. Lightly processed and raw JunoCam data are posted on the JunoCam webpage at https://missionjuno.swri.edu/junocam/processing. Citizen scientists download these images and upload their processed contributions. JunoCam images through broadband red, green and blue filters and a narrowband methane filter centered at 889 nm mounted directly on the detector. JunoCam is a push-frame imager with a 58 deg wide field of view covering a 1600 pixel width, and builds the second dimension of the image as the spacecraft rotates. This design enables capture of the entire pole of Jupiter in a single image at low emission angle when Juno is 1 hour from perijove (closest approach). At perijove the wide field of view images are high-resolution while still capturing entire storms, e.g. the Great Red Spot. Juno's unique polar orbit yields polar perspectives unavailable to earth-based observers or most previous spacecraft. The first discovery was that the familiar belt-zone structure gives way to more chaotic storms, with cyclones grouped around both the north and south poles [1, 2]. Recent time-lapse sequences have enabled measurement of the rotation rates and wind speeds of these circumpolar cyclones [3]. Other topics are being investigated with substantial, in many cases essential, contributions from citizen scientists. These include correlating the high resolution JunoCam images to storms and disruptions of the belts and zones tracked throughout the historical record. A phase function for Jupiter is being developed empirically to allow image brightness to be flattened from the subsolar point to the terminator. We are studying high hazes and the stratigraphy of the upper atmosphere, utilizing the methane filter, structures illuminated

  14. University of Georgia: Birthplace of public higher education in America

    Science.gov (United States)

    ; Colleges Agricultural and Environmental Sciences Arts and Sciences Business Ecology Education Engineering Sciences Outreach Programs Odum School of Ecology Outreach Programs College of Education Outreach Programs and networking EOO/AA FERPA Compliance, ethics and reporting hotline Board of Regents Giving to UGA

  15. The International Polar Year in Portugal: A New National Polar Programme and a Major Education and Outreach project

    Science.gov (United States)

    Mendes-Victor, L.; Vieira, G.; Xavier, J.; Canario, A.

    2008-12-01

    Before the International Polar Year, in Portugal polar research was conducted by a very small group of scientists integrated in foreign projects or research institutions. Portugal was not member of the Scientific Committee for Antarctic Research (SCAR), the European Polar Board (EPB), neither a subscriber of the Antarctic Treaty. In 2004 Portuguese Polar researchers considered the IPY as an opportunity to change this situation and organized the national Committee for the IPY. The objectives were ambitious: to answer the aforementioned issues in defining and proposing a National Polar Programme. In late 2008, close to the end of the IPY, the objectives were attained, except the Antarctic Treaty signature that is, however, in an advanced stage, having been approved by consensus at the National Parliament in early 2007. Portugal joined SCAR in July 2006, the EPB in 2007 and a set of 5 Antarctic research projects forming the roots of the National Polar Programme (ProPolar) have been approved by the Foundation for Science and Technology (FCT-MCTES). Scientifically, the IPY can already be considered a major success in Portugal with an improvement in polar scientific research, in the number of scientists performing field work in the Antarctic, organizing polar science meetings and producing an expected increase in the number of polar science peer- reviewed papers. The Portuguese IPY scientific activities were accompanied by a major education and outreach project funded by the Agencia Ciência Viva (MCTES): LATITUDE60! Education for the Planet in the IPY. This project lead by the universities of Algarve, Lisbon and by the Portuguese Association of Geography Teachers is heavily interdisciplinary, programmed for all ages, from kindergarten to adults, and hoped to bring together scientists and society. LATITUDE60! was a major success and focussed on showing the importance of the polar regions for Earth's environment, emphasising on the implications of polar change for

  16. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  17. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    Science.gov (United States)

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  18. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  19. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  20. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    Science.gov (United States)

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  1. Communicating with the business community. A hospital launches two outreach efforts to educate community leaders.

    Science.gov (United States)

    Lofgren, C; Schieffer, T

    1994-10-01

    Several years ago the management of Saint Francis Medical Center in Peoria, IL, decided that, with healthcare issues becoming increasingly complex, the hospital needed to find ways to share information with its community. Saint Francis's outreach effort began in 1991 with the launching of a Leadership Roundtable. Under its auspices, local leaders in business, finance, government, education, religion, and the media gather once a month to hear hospital staff members outline some aspect of healthcare or healthcare reform. A question-and-answer period follows. In 1993 James Moore, a Saint Francis administrator, began writing a monthly column on healthcare reform for a business publication that serves central Illinois. Moore's column explains to businesspeople how various healthcare reform proposals could affect them. With the column, as with the Leadership Roundtable, Saint Francis has strengthened its communication with the community.

  2. Marketing University Outreach Programs.

    Science.gov (United States)

    Foster, Ralph S., Jr., Ed.; And Others

    A collection of 12 essays and model program descriptions addresses issues in the marketing of university extension, outreach, and distance education programs. They include: (1) "Marketing and University Outreach: Parallel Processes" (William I. Sauser, Jr. and others); (2) "Segmenting and Targeting the Organizational Market"…

  3. Using biomedical engineering and "hidden capital" to provide educational outreach to disadvantaged populations.

    Science.gov (United States)

    Drazan, John F; Scott, John M; Hoke, Jahkeen I; Ledet, Eric H

    2014-01-01

    A hands-on learning module called "Science of the Slam" is created that taps into the passions and interests of an under-represented group in the fields of Science, Technology, Engineering and Mathematics (STEM). This is achieved by examining the use of the scientific method to quantify the biomechanics of basketball players who are good at performing the slam dunk. Students already have an intrinsic understanding of the biomechanics of basketball however this "hidden capital" has never translated into the underlying STEM concepts. The effectiveness of the program is rooted in the exploitation of "hidden capital" within the field of athletics to inform and enhance athletic performance. This translation of STEM concepts to athletic performance provides a context and a motivation for students to study the STEM fields who are traditionally disengaged from the classic engineering outreach programs. "Science of the Slam" has the potential to serve as a framework for other researchers to engage under-represented groups in novel ways by tapping into shared interests between the researcher and disadvantaged populations.

  4. Multitasking in academia: Effective combinations of research, education and public outreach illustrated by a volcanic ash warning system

    Science.gov (United States)

    Bye, B. L.; Plag, H.

    2011-12-01

    Science permeates our society. Its role and its perceived importance evolves with time. Scientists today are highly specialized, yet society demands they master a variety of skills requiring not only a number of different competencies but also a broad mindset. Scientists are subjected to a meritocracy in terms of having to produce scientific papers. Peer-reviewed scientific publications used to be sufficient to meet the various laws and regulations with respect to dissemination of scientific results. This has dramatically changed; both expressed directly through public voices (such as in the climate change discourses), but also by politicians and policy makers. In some countries research funding now comes with specific requirements concerning public outreach that go way beyond peer-reviewed publications and presentation at scientific conferences. Science policies encourage multidisciplinary cooperation and scientific questions themselves often cannot be answered without knowledge and information from several scientific areas. Scientists increasingly need to communicate knowledge and results in more general terms as well as educating future generations. A huge challenge lies in developing the knowledge, human capacity and mindset that will allow an individual academician to contribute to education, communicate across scientific fields and sectors in multidisciplinary cross sectoral cooperations and also reach out to the general public while succeeding within the scientific meritocracy. We demonstrate how research, education and communication within and outside academia can effectively be combined through a presentation of the International Airways Volcano Watch that encompasses an operational volcanic ash warning system for the aviation industry. This presentation will show the role of science throughout the information flow, from basic science to the pilots' decision-making. Furthermore, it will illustrate how one can connect specific scientific topics to societal

  5. The IRIS Education and Outreach Program: Providing access to data and equipment for educational and public use

    Science.gov (United States)

    Taber, J.; Toigo, M.; Bravo, T. K.; Hubenthal, M.; McQuillan, P. J.; Welti, R.

    2009-12-01

    The IRIS Education and Outreach Program has been an integral part of IRIS for the past 10 years and during that time has worked to advance awareness and understanding of seismology and earth science while inspiring careers in geophysics. The focus on seismology and the use of seismic data has allowed the IRIS E&O program to develop and disseminate a unique suite of products and services for a wide range of audiences. One result of that effort has been increased access to the IRIS Data Management System by non-specialist audiences and simplified use of location and waveform data. The Seismic Monitor was one of the first Web-based tools for observing near-real-time seismicity. It continues to be the most popular IRIS web page, and thus it presents aspects of seismology to a very wide audience. For individuals interested in more detailed ground motion information, waveforms can be easily viewed using the Rapid Earthquake Viewer, developed by the University of South Carolina in collaboration with IRIS E&O. The Seismographs in Schools program gives schools the opportunity to apply for a low-cost educational seismograph and to receive training for its use in the classroom. To provide better service to the community, a new Seismographs in Schools website was developed in the past year with enhanced functions to help teachers improve their teaching of seismology. The site encourages schools to make use of seismic data and communicate with other educational seismology users throughout the world. Users can view near-real-time displays of other participating schools, upload and download data, and use the “find a teacher” tool to contact nearby schools that also may be operating seismographs. In order to promote and maintain program participation and communication, the site features a discussion forum to encourage and support the growing global community of educational seismograph users. Any data that is submitted to the Seismographs in Schools Website is also accessible

  6. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  7. Light: A Spectrum of Utility, the 2014-2015 Society of Physics Students Science Outreach Catalyst Kit

    Science.gov (United States)

    Sellers, Mark; Louis-Jean, Kearns; Society of Physics Students Collaboration; National Institute of Standards; Technology Collaboration

    2015-03-01

    The Science Outreach Catalyst Kit (SOCK) is a set of activities and demonstrations designed to bolster the outreach programs of undergraduate Society of Physics Students (SPS) chapters, creating the framework for a lasting outreach program. Targeted for students ranging from kindergarten to high school, the SOCK allows students to actively engage in hands-on activities that teach them scientific skills and allow them to exercise their natural curiosity. The 2014-2015 SOCK united themes from the 2014 International Year of Crystallography and the 2015 International Year of Light to explore how light is used as a tool every day. This presentation will discuss the contents of the SOCK, which contains a large assortment of materials, such as diffraction glasses, polarizers, ultraviolet flashlights, etc. and describe the research and development of the activities. Each activity explores a different light phenomenon, such as diffraction, polarization, reflection, or fluorescence. These activities will promote critical thinking and analysis of data. This work was supported by the Society of Physics Students summer intern program and by the National Institute of Standards and Technology.

  8. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  9. Space-Hotel Early Bird - An Educational and Public Outreach Approach

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    education and public outreach can be combined and how a cooperation among an association, the industry and academia can work successfully. Representatives of the DGLR and the academia developed a method to spread space related knowledge in a short time to a motivated working group. The project was a great success in the sense to involve other disciplines in space related topics by interdisciplinary work and in the sense of public and educational outreach. With more than 2.3 million contacts the DGLR e.V. promoted space and the vision of living (in) space to the public. The task of the paper is mainly to describe the approach and the experience made related to the organization, lectures, financing and outreach efforts in respect to similar future international outreach activities, which are planned for the 54th International Astronautical Congress in Bremen/Germany. www.spacehotel.org

  10. Choose Your Own Adventure: Designing an Environment that Supports NASA Scientists' Goals in Education, Outreach, and Inreach

    Science.gov (United States)

    DeWitt, S.

    2015-12-01

    What is your communication goal? That is the opening question asked in NASA's first agency-wide science communication leadership development program. Many scientists know what they want to communicate, some know to whom they'd like to communicate, but few can clearly express why they want to do it. So what? First, being clear about one's goal is critical in being able to measure success. Second, when asked to think critically about communication goals, some scientists may shift their communication behaviors and practices to better achieve those goals. To that end, NASA has designed a deep learning experience for scientists (and engineers and others) to: critically examine their communication goals; learn techniques for getting to know their intended audience; and develop and apply specific communication skills to a project of their choice. Participants in this program come into the classroom with projects that span a wide spectrum including: formal and informal education, public outreach, media interviews, public speaking, stakeholder briefings, and internal awareness-building. Through expert advisors, professional coaches and peer networks, this program provides a supportive environment for individuals to workshop their project in the classroom and receive feedback before, during, and after the project is complete. This program also provides an opportunity for scientists and other participants to learn more about communication at NASA, and to directly influence the agency's science communication culture through action learning. In this presentation, I will summarize NASA's dual-design science communication leadership development program and present some lessons-learned, participant feedback and evaluation data from the initial course offerings.

  11. Comprehensive outreach, prevention education, and skin cancer screening for Utah ski resorts.

    Science.gov (United States)

    Varedi, Amir; Secrest, Aaron M; Harding, Garrett; Maness, Lori; Branson, Donna; Smith, Kristi; Hull, Christopher M

    2018-02-15

    Outdoor recreation can lead to substantial sun exposure. Employees of outdoor recreation establishments with extended time outdoors have amplified cumulative exposure to ultraviolet (UV) radiation and an increased risk of skin cancer. The "Sun Safe on the Slopes" program was created by Huntsman Cancer Institute at the University of Utah and the Utah Cancer Action Network to address increased UV exposure and skin cancer risk with free skin cancer screenings, outreach, and prevention education to local ski resorts. Herein, we describe the processes and barriers to implementation of a ski resort skin screening and education program and our 5-year report of the experience and screening data. Nine free skin cancer screenings were held at Utah ski resorts between 2011 and 2016, resulting in the presumptive diagnosis of 38 skin cancers (9.6%) in 394 participants. Behavioral data collected from participants indicates suboptimal sun safety practices, including underuse of sunscreen and protective clothing. Ski resort employees who experience sun exposure during peak hours at high altitudes and UV reflection from the snow are at an increased risk of skin cancer. These data indicate a need for emphasis on sun safety education and screening and can serve as a model for future endeavors.

  12. NCRP Program Area Committee 7: Radiation Education, Risk Communication, Outreach, and Policy.

    Science.gov (United States)

    Becker, S M; Locke, P A

    2016-02-01

    Recognizing the central importance of effective communication, education, and policy across all of the domains of radiation safety and radiation protection, the National Council on Radiation Protection and Measurements (NCRP) established a new committee in 2013. Program Area Committee 7 (PAC 7) was created to develop projects and provide guidance on "Radiation Education, Risk Communication, Outreach, and Policy." After identifying individuals with relevant expertise who were willing to serve, the Committee held its inaugural meeting in 2014. In 2015, the Committee increased its membership and began carrying out an expanded program of activities. One area of activity has involved providing input and feedback on risk communication issues to NCRP and other agencies. Another area of work has involved liaising with other NCRP committees (e.g., Council Committee 1 and PAC 3) to help incorporate psychosocial and risk communication issues into projects. Future efforts of NCRP's newest PAC are expected to include the development of authoritative reports and commentaries dealing with critical issues and challenges in radiation risk communication, education, and policy.

  13. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  14. Education of the Pierre Auger Observatory: The Cinema as a Tool in Science Education.

    Science.gov (United States)

    Garcia, B.; Raschia, C.

    2006-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, astrophysics in general, and associated technologies. This report focuses on recent activities and future initiatives and, especially, on a very recent professional production of two educative videos for children between 6 and 11 years: "Messengers of Space" (18 min), and for general audiences: "An Adventure of the Mind" (20 min). The use of new resources, as 2D- and 3D-animation, to teach and learn in sciences is also discussed.

  15. NASA Wavelength: A Digital Library for Earth and Space Science Education

    Science.gov (United States)

    Schwerin, T.; Peticolas, L. M.; Bartolone, L. M.; Davey, B.; Porcello, D.

    2012-12-01

    The NASA Science Education and Public Outreach Forums have developed a web-based information system - NASA Wavelength - that will enable easy discovery and retrieval of thousands of resources from the NASA Earth and space science education portfolio. The beta system is being launched fall 2012 and has been developed based on best-practices in the architecture and design of Web-based information systems. The design style and philosophy emphasize simple, reusable data and services that facilitate the free-flow of data across systems. The primary audiences for NASA Wavelength are STEM educators (K-12, higher education and informal education) as well as scientists, education and public outreach professionals who work with k-12, higher education and informal education.

  16. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  17. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  18. Education and Public Outreach and Engagement at NASA's Analog Missions in 2012

    Science.gov (United States)

    Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.

    2013-01-01

    Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate

  19. Nucleosynthesis outreach slides

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-03

    The purpose of this report is to explain s- and r-process nucleosynthesis to the general public at outreach events, specifically in a Planetarium show at the Pajarito Environmental Education Center in Los Alamos.

  20. Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership

    Science.gov (United States)

    Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.

    2012-12-01

    This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.

  1. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  2. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  3. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    Science.gov (United States)

    Jennings, Mallory A.

    2013-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientists, and the general public. This is so important to NASA s future that it is one of the agency s strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in achieving this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  4. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  5. A Day in the Life of an Industrial Hearing Conservationist: A Template for Successful Career Education and Outreach Presentations

    Science.gov (United States)

    Cooper, Beth A.

    1997-01-01

    Whether in a classroom setting or at a local community meeting, opportunities for providing descriptive and positive information about our professions to an audience unfamiliar with acoustics, noise control or hearing conservation often call for alternatives to technical demonstrations that illustrate principles of acoustics or noise control. More importantly, successful outreach presentations must convey images of our day-to-day activities and the challenges we address, many of which are non-technical. One successful approach to career outreach presentations makes use of a collection of photo slides featuring the speaker, his colleagues, customers and workplaces to vividly illustrate the specific job tasks, people and environment of the speaker's job or career. Against this fluid and multi-dimensional visual backdrop, an accompanying script addresses the main theme. A comprehensive photo slide collection may be established gradually, often by making use of and adding to technical and personal slides already in the speaker's possession. Slide collections are portable, easily and quickly reconfigured for back-to-back or spontaneous engagements, and they are well suited to speaking opportunities where technical presentations or demonstrations are not practical or appropriate. A carefully chosen sequence of photo slides minimizes the need for speaker's notes, as each photo itself provides a visual prompt. Although photo slide presentations are appropriate to a variety of outreach and professional settings, the specific illustrative and explanatory material presented here illustrates their application in career education outreach activities, using industrial hearing conservation as an example.

  6. What Researchers Should Know and be Able to do When Contemplating Involvement in Education and Outreach

    Science.gov (United States)

    Ridky, R. W.

    2004-12-01

    At some point in their careers, many researchers are motivated to share what they have learned with a wider audience. As their studies mature, and national awareness for more effective integration of research and education intensifies, researchers are increasingly directing efforts toward informal and pre-college educational sectors. Each initiative comes with good intentions, but many fall short of intended benefit. Quality education and outreach programs develop from the same precepts that shape research programs of high professional standing. A researcher is most likely to make useful contributions when they are willing and able to implement familiar research principles to broader educational endeavors. As with research endeavors, principles of significance, literacy, design, feasibility, analysis and dissemination need to be regarded as essential indicators of education program quality. It is helpful to provide researchers who are contemplating more active educational involvement with more than casual understanding of the purposes underlying their pending contributions. Such understanding is premised on the tenet that education and research are always in the public service and therefore inextricably bound at all levels. Both research and education have, as their ultimate goal, enhanced scientific literacy of the citizenry. By example, it can be shown that the best-supported programs, within government and academia, recognize that the way they translate knowledge and make it available to scientific organizations and the public is critical to their intrinsic societal value and level of support. As education conjures up a host of operational meanings arising from one's own values and experiences, the knowledge researchers bring to pre-college and informal educational settings is often based on personal experience rather than on education research, practice and policy. Researchers may believe that because they spent 13 years in school, an additional 4 years at a

  7. Space Weather Outreach: Connection to STEM Standards

    Science.gov (United States)

    Dusenbery, P. B.

    2008-12-01

    Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.

  8. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 10: Communication, Education, and Outreach

    OpenAIRE

    Bardeen, M.; Cronin-Hennessy, D.; Barnett, R. M.; Bhat, P.; Cecire, K.; Cranmer, K.; Jordan, T.; Karliner, I.; Lykken, J.; Norris, P.; White, H.; Yurkewicz, K.

    2014-01-01

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 10, on Communication, Education, and Outreach, discusses the resources and issues for the communication of information about particle physics to teachers and students, to scientists in other fields, to policy makers, and to the general public.

  9. Outreach and education to ensure a clean energy future for all - 59339

    International Nuclear Information System (INIS)

    Hess, Susan M.

    2012-01-01

    As the nuclear industry continues to grow throughout the world, we find that support from government officials, local business leaders and the general public is becoming more and more important. In order to help raise awareness and inform these various publics, AREVA expanded upon a best practice from its worldwide operations and recently established a Community Advisory Council in the United States. The member organizations represent a variety of grassroots and minority organizations from across the United States and are active in various ways in local, state and federal arenas. AREVA's objective for the Council is simple - listen to concerns, engage in dialogue and raise awareness about the intrinsic link existing between energy, CO 2 emissions, global warming, and economic growth, so these same people can make decisions when it comes to energy sources in the future. We want our members to help us better understand their communities, listen to their concerns and answer their questions openly and honestly. AREVA understands that this outreach and education are just the first steps toward helping clean energy sources grow. We must maintain regular dialog and operate in a safe manner, because in the long run, it is these community members who will ensure energy security for the country. And it is only by working together as an industry that we can ensure a safe, clean air future for generations to come, no matter where in the world we live. (authors)

  10. Mid-term evaluation of the Climate Change Action Fund : Public education and outreach (PEO) Block

    International Nuclear Information System (INIS)

    2001-11-01

    In February 1998, the Government of Canada established the Climate Change Action Fund (CCAF) to assist Canada in meeting its commitments under the Kyoto Protocol for the reduction of greenhouse gas emissions. The CCAF managed a budget of 150 million dollars over three years, and the Public Education and Outreach (PEO) Block was allocated 30 million dollars of that total for its operations. Its mandate was to increase public awareness and understanding on the topic of climate change, as well as providing the required information to effect reductions in the emissions of greenhouse gases and adapt to climate change. An evaluation into this program was conducted, and it covered the period September 2000 to January 20, 2001. To date, 152 projects have been approved, which represents an investment of approximately 17.5 million dollars. Approximately 6 million dollars have been spent on the awareness component, while government communication activities used approximately 3.1 million dollars. Staff and project management fees in support of the program account for the remaining funds. This report addressed the performance to date in meeting the objectives, and also included recommendations for improved effectiveness. PEO files and records, a report entitled Interim review of the Climate Change Action Fund PEO Program, interviews with Departmental representatives, and interviews with external stakeholder groups formed the basis for the findings and recommendations. It was determined that future direction represents the most critical issue facing the PEO block. 1 tab

  11. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  12. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  13. Enhancing Student Employability through Ethics-Based Outreach Activities and Open Educational Resources

    Science.gov (United States)

    Lewis, David I.

    2011-01-01

    This paper reports on how science communication final year undergraduate research projects and educational internships can be utilised to provide opportunities for students to develop and utilise key employability skills. In the current difficult economic climate, the report "Working towards your future: Making the most of your time in higher…

  14. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  15. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  16. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  17. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  18. The University of Delaware Carlson International Polar Year Events: Collaborative and Educational Outreach

    Science.gov (United States)

    Nelson, F. E.; Bryant, T.; Wellington, P.; Dooley, J.; Bird, M.

    2008-12-01

    efforts on behalf of the University among public funding agencies, private foundations, and prominent Delaware corporations. The Carlson project includes public lectures and receptions, interdisciplinary seminars, films, art exhibitions, and other events to promote knowledge about the polar regions. The series is co-sponsored by the UD Center for International Studies, the UD Office of the Provost, all of UD's seven Colleges, and the American Geographical Society. The University's Office of Communications and Marketing is involved in all events through a wide variety of media. Educational outreach is achieved through the University's Academy of Lifelong Learning, the State of Delaware's Department of Education, and K-12 curricular efforts coordinated by a teacher with extensive field experience in Antarctica.

  19. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  20. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  1. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  2. Geoheritage + dark cultural heritage= dark geo-cultural heritage. A platform for effective outreach and education?

    Science.gov (United States)

    Riede, Felix

    2017-04-01

    In cultural heritage studies the term 'dark heritage' - defined as the tangible remains of now unwanted, unsavoury, uncomfortable or unpleasant pasts - has attracted much attention. It has been noted that despite the problematic nature of 'dark heritage' sites (e.g. Auschwitz, Chernobyl, Robben Island), these attract large number of visitors and so serve as effective platforms of addressing the attendant issues. Consequently, many theoretical, conceptual and empirical studies of such 'dark heritage' sites have been conducted. In studies of geoheritage, however, most effort has so far been placed on unproblematic sites. In this paper, I suggest that previous work on dark cultural heritage could be wedded to the emerging notion of geoheritage to more directly address the dark side of geoheritage - or rather geo-cultural heritage - sites. This is particularly pertinent when it comes to sites of past natural hazards that have affected human communities, and to sites of environmentally destructive resource extraction. I draw on two examples (the Laacher See eruption 13ka BP in Germany and the former lignite mine of Søby in Denmark) to illustrate the approach and to make the argument that the insights of cultural heritage studies should be brought to bear on geoheritage matters. By bringing humans into the equation, education and outreach related to, for instance, natural hazards and the consequences of mining attain and increased degree of immediacy. Such an interdisciplinary coupling of geological and cultural heritage is particularly relevant in relation to the problems surrounding the Anthropocene and its associated proposition that humans are now an ecological and geological force in themselves.

  3. To have your citizen science cake and eat it? Delivering research and outreach through Open Air Laboratories (OPAL).

    Science.gov (United States)

    Lakeman-Fraser, Poppy; Gosling, Laura; Moffat, Andy J; West, Sarah E; Fradera, Roger; Davies, Linda; Ayamba, Maxwell A; van der Wal, René

    2016-07-22

    The vast array of citizen science projects which have blossomed over the last decade span a spectrum of objectives from research to outreach. While some focus primarily on the collection of rigorous scientific data and others are positioned towards the public engagement end of the gradient, the majority of initiatives attempt to balance the two. Although meeting multiple aims can be seen as a 'win-win' situation, it can also yield significant challenges as allocating resources to one element means that they may be diverted away from the other. Here we analyse one such programme which set out to find an effective equilibrium between these arguably polarised goals. Through the lens of the Open Air Laboratories (OPAL) programme we explore the inherent trade-offs encountered under four indicators derived from an independent citizen science evaluation framework. Assimilating experience from the OPAL network we investigate practical approaches taken to tackle arising tensions. Working backwards from project delivery to design, we found the following elements to be important: ensuring outputs are fit for purpose, developing strong internal and external collaborations, building a sufficiently diverse partnership and considering target audiences. We combine these 'operational indicators' with four pre-existing 'outcome indicators' to create a model which can be used to shape the planning and delivery of a citizen science project. Our findings suggest that whether the proverb in the title rings true will largely depend on the identification of challenges along the way and the ability to address these conflicts throughout the citizen science project.

  4. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    Science.gov (United States)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  5. The impact of face-to-face educational outreach on diarrhoea treatment in pharmacies.

    Science.gov (United States)

    Ross-Degnan, D; Soumerai, S B; Goel, P K; Bates, J; Makhulo, J; Dondi, N; Sutoto; Adi, D; Ferraz-Tabor, L; Hogan, R

    1996-09-01

    Private pharmacies are an important source of health care in developing countries. A number of studies have documented deficiencies in treatment, but little has been done to improve practices. We conducted two controlled trials to determine the efficacy of face-to-face educational outreach in improving communication and product sales for cases of diarrhoea in children in 194 private pharmacies in two developing countries. A training guide was developed to enable a national diarrhoea control programme to identify problems and their causes in pharmacies, using quantitative and qualitative research methods. The guide also facilitates the design, implementation, and evaluation of an educational intervention, which includes brief one-on-one meetings between diarrhoea programme educators and pharmacists/owners, followed by one small group training session with all counter attendants working in the pharmacies. We evaluated the short-term impact of this intervention using a before-and-after comparison group design in Kenya, and a randomized controlled design in Indonesia, with the pharmacy as unit of analysis in both countries (n = 107 pharmacies in Kenya; n = 87 in Indonesia). Using trained surrogate patients posing as mothers of a child under five with diarrhoea, we measured sales of oral rehydration salts (ORS); sales of antidiarrhoeal agents; and history-taking and advice to continue fluids and food. We also measured knowledge about dehydration and drugs to treat diarrhoea among Kenyan pharmacy employees after training. Major discrepancies were found at baseline between reported and observed behaviour. For example, 66% of pharmacy attendants in Kenya, and 53% in Indonesia, reported selling ORS for the previous case of child diarrhoea, but in only 33% and 5% of surrogate patient visits was ORS actually sold for such cases. After training, there was a significant increase in knowledge about diarrhoea and its treatment among counter attendants in Kenya, where these

  6. Fermilab Education Office - Contacts

    Science.gov (United States)

    Search The Office of Education and Public Outreach: Contacts All telephone numbers require area code Presentations for Presenters 840-3094 Office of Education and Public Outreach Spencer Pasero spasero@fnal.gov Education Office 840-3076 Fermilab Friends for Science Education General Questions Susan Dahl sdahl@fnal.gov

  7. "Dark Skies, Bright Kids" -- Astronomy Education and Outreach in Rural Virginia

    Science.gov (United States)

    Zasowski, Gail; Johnson, K.; Beaton, R.; Carlberg, J.; Czekala, I.; de Messieres, G.; Drosback, M.; Filipetti, C.; Gugliucci, N.; Hoeft, A.; Jackson, L.; Lynch, R.; Romero, C.; Sivakoff, G.; Whelan, D.; Wong, A.

    2010-01-01

    In the hills of central Virginia, the extraordinarily dark nighttime skies of southern Albemarle County provide a natural outdoor classroom for local science education. Until recently, this rural area lacked the financial and educational support to take full advantage of this rare and valuable natural resource. With funds provided by the NSF, a team of volunteers from the University of Virginia introduced a new program this fall called "Dark Skies - Bright Kids," which promotes science education at the elementary school level through a wide range of activities. The program volunteers (comprising undergraduate and graduate students, postdocs, and faculty) have sought to develop a coherent schedule of fun and educational activities throughout the semester, with emphases on hands-on learning and critical thinking. For example, students learn about the constellations by making star-wheels, about rocketry by building and launching rockets, and about comets by assembling miniature analogs. Additional activities include stories about the scientific and cultural history of astronomy, visits by professional astronomers and popular book authors, and astronomy-themed exercises in art, music, and physical education. These projects are designed to make astronomy, and by extension all science, accessible and appealing to each student. Family involvement is important in any educational environment, particularly at the elementary school level. To include the students' families and the larger community in "Dark Skies," we hold weekly telescope observing sessions at the school. Here, all interested parties can come together to hear what the students are learning and view astronomical objects through a small telescope. We hope that this well-received program will soon expand to other disadvantaged schools in the area. The "Dark Skies" team is proud and excited to have an impact on the scientific literacy of the students in these starry-skied communities!

  8. Cycle for Science: An informal outreach program connecting K-12 students with renewable energy and physics through miniature 3D-printed, solar-powered bicycles

    Science.gov (United States)

    Woods-Robinson, R.; Case, E.

    2017-12-01

    Engaging communities with renewable energy is key to fighting climate change. Cycle for Science, an innovative STEM outreach organization, has reached more than 3,000 K-12 students across the United States by bringing early-career female scientists into classrooms to teach basic physics and solar energy engineering through hands-on, DIY science activities. We designed a fleet of miniature, 3D-printed, solar-powered bicycles called "Sol Cycles" to use as teaching tools. Traveling by bicycle, Cycle for Science has brought them to rural and urban communities across the U.S. in two major efforts so far: one traversing the country (2015), and one through central California (2017). The program involves (1) introducing the scientists and why they value science, (2) running a skit to demonstrate how electrons and photons interact inside the solar panel, (3) assembling the Sol Cycles, (4) taking students outdoors to test the effects of variables (e.g. light intensity) on the Sol Cycles' movement, (5) and debriefing about the importance of renewable energy. In addition to physics and solar energy, the lessons teach the scientific process, provide tactile engagement with science, and introduce a platform to engage students with climate change impacts. By cycling to classrooms, we provide positive examples of low-impact transportation and a unique avenue for discussing climate action. It was important that this program extend beyond the trips, so the lesson and Sol Cycle design are open source to encourage teachers and students to play, change and improve the design, as well as incorporate new exercises (e.g. could you power the bicycle by wind?). Additionally, it has been permanently added to the XRaise Lending Library at Cornell University, so teachers across the world can implement the lesson. By sharing our project at AGU, we aim to connect with other scientists, educators, and concerned citizens about how to continue to bring renewable energy lessons into classrooms.

  9. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  10. Raising Awareness in Science Education for Women (RAISE-W)

    Science.gov (United States)

    Faherty, Jacqueline K.; Holford, M.

    2014-01-01

    Raising Awareness in Science Education for Women (RAISE-W) is a 501c non profit corporation whose mission is to aid in increasing and retaining the number of women - especially underrepresented females - engaged in scientific teaching and research. Initiated by a Protein Chemist and an Astronomer, our ultimate goal has been to develop informational tools and create innovative outreach programs for women across all STEM fields. At present RAISE-W is recruiting women at the undergraduate, graduate, and early career stages to participate in a unique, 1-year, executive coaching program modeled after those used in the business sector.

  11. CERN as a Non-School Resource for Science Education

    CERN Document Server

    Ellis, Jonathan Richard

    2000-01-01

    As a large international research laboratory, CERN feels it has a special responsibility for outreach, and has many activities directed towards schools, including organized visits, an on-site museum, hands-on experiments, a Summer intern programme for high-school teachers, lecture series and webcasts. Ongoing activities and future plans are reviewed, and some ideas stimulated by this workshop are offered concerning the relevance of CERN's experience to Asia, and the particular contribution that CERN can make as a non-school resource for science education.

  12. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  13. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  14. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  15. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    Science.gov (United States)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking

  16. Women in science & engineering scholarships and summer camp outreach programs : year 6.

    Science.gov (United States)

    2012-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  17. Continuing Evaluation of S'COOL, an Educational Outreach Project Focused on NASA's CERES Program

    Science.gov (United States)

    Chambers, L. H.; Costulis, P. K.; Young, D. F.; Detweiler, P. T.; Sepulveda, R.; Stoddard, D. B.

    2002-12-01

    The Students' Cloud Observations On-Line (S'COOL) project began in early 1997 with 3 participating teachers acting as test sites. In the nearly 6 years since then, S'COOL has grown by leaps and bounds. Currently over 1250 sites in 61 countries are registered to participate. On the face of it, this seems like a huge success. However, to ensure that this effort continues to be useful to educators, we continue to use a variety of evaluation methods. S'COOL is a modest outreach effort associated with the Clouds and the Earth's Radiant Energy System (CERES) instrument of NASA's Earth Observing System. For most of its existence S'COOL has been run on the part-time efforts of a couple of CERES scientists, one or two web and database specialists, and a teacher-in-residence. Total funding for the project has never exceeded \\$300,000 per year, including everyone's time. Aside from the growth in registered participants, the number of cloud observations is also tracked. 6,500 were submitted in the past year, averaging about 20 per actively participating class, for a total of over 15,000 observations to date. S'COOL participation has always been at the discretion of the teacher; we do not require a set number of observations. Due to various difficulties with CERES data processing, only about 1,000 satellite matches to the observations are currently in the S'COOL database. However, examination of these matches has already provided some useful information about the problem of cloud detection from space. Less objective information is provided by extensive surveys of teachers attending our summer teacher workshops (run for 4 years and reaching 78 teachers so far), the on-line EDCATS survey run by NASA HQ which we ask our teachers to fill out annually, and day-to-day interaction with teachers - whether participants, conference attendees, or other interested educators. A new survey instrument is being designed (the last participant survey was in Fall 2000) and will be administered

  18. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  19. Outreach activities on light science and technology at TecnOpto-UMH during the International Year of Light

    Science.gov (United States)

    Sánchez-López, María. del Mar; García-Martínez, Pascuala; Espinosa, Rocío.; Carnicer, Jesús; Arias, Julia; Moreno, Ignacio

    2016-09-01

    TecnOpto is a group of researchers and teachers with interests in Optics and Photonics, located at the University Miguel Hernández (UMH) of Elche (Spain). Here we report on our outreach activities carried out during the International Year of Light - 2015. They include experiments and demonstrations at elementary and secondary schools, seminars and exhibitions at the university, and the activity named the "Classroom for the Experience", targeted to elder people. We also report on our participation in the science fair in Elche and in the launching of "the Room of Light", a complete new section of the MUDIC science museum devoted to light and optics. MUDIC is located in the UMH campus of Orihuela, and receives visitors from all over the region, mainly young students from elementary and secondary schools. Finally, we report on the exhibition "Women in Light Science and Light Technologies" which was organized by members of our group in collaboration with RSEF - the Spanish Royal Physical Society and SEDOPTICA - the Spanish Optical Society and sponsored by SPIE. This exhibition consisting of twelve posters on relevant women scientists was inaugurated in the XI Spanish Meeting on Optics and has travelled around many universities and cultural centers in Spain. A summary of the contents, participation and developing of all these activities is presented.

  20. Building a Communication, Education, an Outreach Program for the ShakeAlert National Earthquake Early Warning Program - Recommendations for Public Alerts Via Cell Phones

    Science.gov (United States)

    DeGroot, R. M.; Long, K.; Strauss, J. A.

    2017-12-01

    The United States Geological Survey (USGS) and its partners are developing the ShakeAlert Earthquake Early Warning System for the West Coast of the United States. To be an integral part of successful implementation, ShakeAlert engagement programs and materials must integrate with and leverage broader earthquake risk programs. New methods and products for dissemination must be multidisciplinary, cost effective, and consistent with existing hazards education and communication efforts. The ShakeAlert Joint Committee for Communication, Education, and Outreach (JCCEO), is identifying, developing, and cultivating partnerships with ShakeAlert stakeholders including Federal, State, academic partners, private companies, policy makers, and local organizations. Efforts include developing materials, methods for delivery, and reaching stakeholders with information on ShakeAlert, earthquake preparedness, and emergency protective actions. It is essential to develop standards to ensure information communicated via the alerts is consistent across the public and private sector and achieving a common understanding of what actions users take when they receive a ShakeAlert warning. In February 2017, the JCCEO convened the Warning Message Focus Group (WMFG) to provide findings and recommendations to the Alliance for Telecommunications Industry Solutions on the use of earthquake early warning message content standards for public alerts via cell phones. The WMFG represents communications, education, and outreach stakeholders from various sectors including ShakeAlert regional coordinators, industry, emergency managers, and subject matter experts from the social sciences. The group knowledge was combined with an in-depth literature review to ensure that all groups who could receive the message would be taken into account. The USGS and the participating states and agencies acknowledge that the implementation of ShakeAlert is a collective effort requiring the participation of hundreds of

  1. Pieces of Other Worlds - Enhance YSS Education and Public Outreach Events with Extraterrestrial Samples

    Science.gov (United States)

    Allen, C.

    2010-12-01

    During the Year of the Solar System spacecraft will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories. Extensive information about these unique materials, as well as actual lunar samples and meteorites, is available for display and education. The Johnson Space Center (JSC) curates NASA's extraterrestrial samples to support research, education, and public outreach. At the current time JSC curates five types of extraterrestrial samples: Moon rocks and soils collected by the Apollo astronauts Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) “Cosmic dust” (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet and interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. He will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets

  2. The National Space Biomedical Research Institute's education and public outreach program: Working toward a global 21st century space exploration society

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.; Moreno, Nancy P.

    2011-05-01

    Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships. A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that "a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action". [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships. This paper describes select EPOP projects and makes the case for using innovative, emerging information

  3. Preliminary Results from a Survey of DPS Scientist’s Attitudes, Activities and Needs in Education and Public Outreach

    Science.gov (United States)

    Grier, Jennifer A.; Buxner, Sanlyn; Schneider, Nick

    2014-11-01

    The NASA SMD Planetary Sciences Forum, in partnership with the AAS DPS Education officer has conducted a semi-structured series of interviews with two-dozen DPS members to ascertain: the nature E/PO activities pursued by scientists, what resources and professional development opportunities are needed by scientists, how to increase the impact of scientists’ E/PO efforts, scientists’ concerns and questions regarding E/PO, and what we can do to identify opportunities to address these issues, both from the SMD and DPS perspectives. Members were contacted by phone, and responded to a loose script of questions over a time span of 20 to 90 minutes, depending on the individual. Members were chosen to represent a variety of career experience, home institutions and affiliations, and level of involvement with E/PO. Questions included: What is your level of involvement in E/PO? What sort of professional development or resources would you like to have to increase the efficiency of your E/PO efforts? What barriers to E/PO involvement have you encountered? How do you use social media in your E/PO efforts, if at all? What are your motivations for involvement in E/PO? etc. Our results are consistent with previous research conducted regarding this issue, but they do offer insight specific to the nature of DPS members and their views about E/PO. We will present a subset of these results, the opportunities they present, and the responses of both the PS Forum and the DPS. Based on this survey, the SMD PS Forum was able to identify specific new resources needed by scientists, and therefore developed the brief-one page guides, “The Quick Introduction to Education and Public Outreach,” and “Making the Most of Your E/PO Time - Increasing Your Efficiency and Impact.” Further resources and professional development opportunities will be developed as the data continue to be reviewed. This data collection effort is ongoing. If you would like to become involved, contact Jennifer

  4. Developing Science Communication in Africa: Undergraduate and Graduate Students should be Trained and Actively Involved in Outreach Activity Development and Implementation.

    Science.gov (United States)

    Karikari, Thomas K; Yawson, Nat Ato; Quansah, Emmanuel

    2016-01-01

    Despite recent improvements in scientific research output from Africa, public understanding of science in many parts of the continent remains low. Science communication there is faced with challenges such as (i) lack of interest among some scientists, (ii) low availability of training programs for scientists, (iii) low literacy rates among the public, and (iv) multiplicity of languages. To address these challenges, new ways of training and motivating scientists to dialogue with non-scientists are essential. Developing communication skills early in researchers' scientific career would be a good way to enhance their public engagement abilities. Therefore, a potentially effective means to develop science communication in Africa would be to actively involve trainee scientists (i.e., undergraduate and graduate students) in outreach activity development and delivery. These students are often enthusiastic about science, eager to develop their teaching and communication skills, and can be good mentors to younger students. Involving them in all aspects of outreach activity is, therefore, likely to be a productive implementation strategy. However, science communication training specifically for students and the involvement of these students in outreach activity design and delivery are lacking in Africa. Here, we argue that improving the training and involvement of budding scientists in science communication activities would be a good way to bridge the wide gap between scientists and the African public.

  5. A Pilot Astronomy Outreach Project in Bangladesh

    Science.gov (United States)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of

  6. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  7. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  8. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  9. Training pharmacists to deliver a complex information technology intervention (PINCER) using the principles of educational outreach and root cause analysis.

    Science.gov (United States)

    Sadler, Stacey; Rodgers, Sarah; Howard, Rachel; Morris, Caroline J; Avery, Anthony J

    2014-02-01

    To describe the training undertaken by pharmacists employed in a pharmacist-led information technology-based intervention study to reduce medication errors in primary care (PINCER Trial), evaluate pharmacists' assessment of the training, and the time implications of undertaking the training. Six pharmacists received training, which included training on root cause analysis and educational outreach, to enable them to deliver the PINCER Trial intervention. This was evaluated using self-report questionnaires at the end of each training session. The time taken to complete each session was recorded. Data from the evaluation forms were entered onto a Microsoft Excel spreadsheet, independently checked and the summary of results further verified. Frequencies were calculated for responses to the three-point Likert scale questions. Free-text comments from the evaluation forms and pharmacists' diaries were analysed thematically. All six pharmacists received 22 h of training over five sessions. In four out of the five sessions, the pharmacists who completed an evaluation form (27 out of 30 were completed) stated they were satisfied or very satisfied with the various elements of the training package. Analysis of free-text comments and the pharmacists' diaries showed that the principles of root cause analysis and educational outreach were viewed as useful tools to help pharmacists conduct pharmaceutical interventions in both the study and other pharmacy roles that they undertook. The opportunity to undertake role play was a valuable part of the training received. Findings presented in this paper suggest that providing the PINCER pharmacists with training in root cause analysis and educational outreach contributed to the successful delivery of PINCER interventions and could potentially be utilised by other pharmacists based in general practice to deliver pharmaceutical interventions to improve patient safety. © 2013 The Authors. IJPP © 2013 Royal Pharmaceutical Society.

  10. Landforms in Lidar: Building a Catalog of Digital Landforms for Education and Outreach

    Science.gov (United States)

    Kleber, E.; Crosby, C.; Olds, S. E.; Arrowsmith, R.

    2012-12-01

    Lidar (Light Detection and Ranging) has emerged as a fundamental tool in the earth sciences. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be spatially represented in at sub-meter resolution and in three dimensions. While the growing availability of lidar has led to numerous new scientific findings, these data also have tremendous value for earth science education. The study of landforms is an essential and basic element of earth science education that helps students to grasp fundamental earth system processes and how they manifest themselves in the world around us. Historically students are introduced to landforms and related processes through diagrams and images seen in earth science textbooks. Lidar data, coupled with free tools such as Google Earth, provide a means to allow students and the interested public to visualize, explore, and interrogate these same landforms in an interactive manner not possible in two-dimensional remotely sensed imagery. The NSF-funded OpenTopography facility hosts data collected for geologic, hydrologic, and biological research, covering a diverse range of landscapes, and thus provides a wealth of data that could be incorporated into educational materials. OpenTopography, in collaboration with UNAVCO, are developing a catalog of classic geologic landforms depicted in lidar. Beginning with textbook-examples of features such as faults and tectonic landforms, dunes, fluvial and glacial geomorphology, and natural hazards such as landslides and volcanoes, the catalog will be an online resource for educators and the interested public. Initially, the landforms will be sourced from pre-existing datasets hosted by OpenTopography. Users will see an image representative of the landform then have the option to download the data in Google Earth KMZ format, as a digital elevation model, or the original lidar point cloud file. By providing the landform in a range of

  11. Strategies for Engaging NASA Earth Scientists in K-12 Education and Public Outreach

    Science.gov (United States)

    Meeson, Blanche W.; Gabrys, Robert E.

    2001-01-01

    Engagement of the Earth Science research community in formal education at the kindergarten through high school level and in various aspects of informal education and in professional development of practitioners in related fields has been and continues to be a challenge. A range of approaches is being used and new ones are constantly being tried. Fundamental to our strategies is an understanding of the priorities, skills, academic experiences, motivation, rewards and work experiences of most scientists. It is within this context that efforts to engage a scientist in education efforts are attempted. A key strategy is to limit our requests to activities where the scientist's contribution of time and expertise can have the most impact. Don't waste the scientist's time! Time is one of their most prized resources, it is extremely valuable to you, and to them, we treat their time like a treasured resource. The clearer a scientist's role, their unique contribution and the finite nature of their effort, the more likely they are to participate. It is critical that commitments made to scientists are kept. If they want and can do more, great! Don't expect or assume more will be forthcoming. Another approach that we use is to create periodic venues that, among other things, serve to identify individuals who have an interest or inclination to con , tribute to education efforts. Once identified we strive to determine their interests so that we can make the best match between their interests and the needs of the education program or efforts. In this way, we try to make the best use of their time while engaging them in efforts which will be personally rewarding, and will further the overall education objectives. In addition, we try to make it easier for scientists to participate by providing focused training, such as development of their interviewing skills, and exposure to key concepts, knowledge and skills which are well known among educators but are not common knowledge among

  12. 1 Outreach, Education and Domestic Market Enhancement 2 Export Promotion and Assistance

    Energy Technology Data Exchange (ETDEWEB)

    Geothermal Energy Association

    2004-03-15

    Geothermal Energy Association supports the US geothermal industry in its efforts to bring more clean geothermal energy on-line throughout the world. Activities designed to accomplish this goal include: (1) developing and maintaining data bases, web pages, (2) commissioning of special studies and reports, (3) preparing, printing and distributing brochures and newsletters, (4) developing exhibits and displays, and participating in trade shows, (5) designing, producing and disseminating audio-video materials, (6) monitoring and coordinating programs carried out by US DOE and other Federal agencies, (7) holding workshops to facilitate communication between researchers and industry and to encourage their recognition of emerging markets for geothermal technology, (8) attending conferences, making speeches and presentation, and otherwise interacting with environmental and other renewable energy organizations and coalitions, (9) hosting events in Washington, DC and other appropriate locations to educate Federal, State and local representatives, environmental groups, the news media, and other about the status and potential of geothermal energy, (10) conducting member services such as the preparation and distribution of a member newsletter related to operating and maintaining s useful and viable association, and (11) performing similar kinds of activities designed to inform others about geothermal energy. The activities of the export promotion aim to assist industry in accomplishing the goal of successfully penetrating and developing energy in country with existing geothermal resources and a desire to develop them. Activities including in export promotion are: (1)needs analysis and assessment involve monitoring the progress of developing markets and projects overseas and working with US industry to determine what future activities by GEA would be of greatest assistance, (2) outreach includes the preparation and dissemination of brochures and videos for foreign professionals

  13. Outreach Programmes Using the Triple Helix Model to Encourage Interest in Science and Technology among Underrepresented Youth

    Science.gov (United States)

    Karmokar, Sangeeta; Shekar, Aruna

    2018-01-01

    Science and Technology entrepreneurship is one of the requirements of the new millennium, an era called digital society and globalization. Entrepreneurship is considered an agent of growth, wealth creation and development of society. Although New Zealand has experienced a rapid growth of education and research in Science and Technology areas, the…

  14. Astronomy4Kids: A new, online, STEM-focused, video education outreach program

    Science.gov (United States)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Recent research indicates significant benefits of early childhood introductions to language, mathematics, and general science concepts. Specifically, a child that is introduced to a concept at a young age is more prepared to receive it in its entirety later. Astronomy4Kids was created to bring science, technology, engineering, and math (STEM) concepts to the youngest learners (those under the age of eight, or those from pre-school to about second-grade). The videos are presented in a succinct, one-on-one manner, and provide a creative learning environment for the viewers. Following the preschool education video principles established by Fred Rogers, we hope to give young children access to an expert astronomer who can explain things simply and sincerely. We believe presenting the material in this manner will make it engaging for even the youngest scholar and available to any interested party. The videos can be freely accessed at www.astronomy4kids.net.

  15. Opportunities for Space Science Education Using Current and Future Solar System Missions

    Science.gov (United States)

    Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.

    2010-12-01

    The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a

  16. Results from an Evaluation of the Georgia Colorectal Cancer Control Program's Community Education and Outreach Events, 2013.

    Science.gov (United States)

    Woodruff, Rebecca C; Hermstad, April; Honeycutt, Sally; Brown, Melody; Kegler, Michelle C

    2017-06-01

    Although public health practitioners commonly use community education and outreach events to promote cancer screening, the effectiveness of this strategy remains unclear. This study evaluated 23 outreach events, conducted as part of the Georgia Colorectal Cancer Control Program. Of the estimated 1778 individuals who attended these events, those ages 50-75 were eligible to participate in a telephone survey 3 months after attending an event. Surveys measured colorectal cancer (CRC) risk status, CRC screening history at the time of the event, seeking or obtaining CRC screening at 3-month follow-up, and participants' knowledge of their CRC screening status. Of the 335 individuals contacted for this evaluation, 185 completed the survey. Eighty participants (43.2 %) were at elevated risk for CRC and 99 participants (53.5 %) were at average risk. Of the 99 average-risk participants, the majority (n = 69) were not due for CRC screening at the time they attended an event because they had previously received screening within the recommended time intervals. Thirty average-risk participants were due for CRC screening, either because they had never been screened before (n = 19) or because they were due for rescreening (n = 11). Approximately half of these 30 participants who were due for screening either sought (n = 6, 20.0 %) or obtained screening (n = 8, 26.7 %) 3 months following the event. Community education and outreach events may play an important role in motivating participants to seek or obtain CRC screening, but unless priority audiences are identified and recruited, events may attract people who are already compliant with CRC screening.

  17. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  18. Experiential learning for education on Earth Sciences

    Science.gov (United States)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  19. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  20. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  1. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  2. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  3. Reuniting the Solar System: Integrated Education and Public Outreach Projects for Solar System Exploration Missions and Programs

    Science.gov (United States)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri

    2003-01-01

    The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.

  4. Unraveling the Geologic History of Antarctica Through the Study of Sediment and Rock Cores: The ANDRILL Education and Public Outreach Experience.

    Science.gov (United States)

    Rack, F. R.; Huffman, L.; Berg, M.; Levy, R.; Harwood, D.; Lacy, L.

    2007-12-01

    ANDRILL (ANtarctic geological DRILLing) is a multinational collaboration involving more than 250 scientists from Germany, Italy, New Zealand and the United States. The ANDRILL Program has mobilized scientists, technicians, drillers, engineers, students and educators from four member nations to bring world-class science into focus and provide in-depth immersive experiences to educators through the ARISE (ANDRILL Research Immersion for Science Educators) Program and Project Iceberg. During two seasons of scientific drilling, encompassing the McMurdo Ice Shelf (MIS) Project and the Southern McMurdo Sound (SMS) Project, 15 educators have been immersed in ANDRILL science and have participated in both learning and teaching experiences. Blogs, video journals, images and other resources were generated and distributed online to teachers, students and the general public through the ANDRILL website as part of Project Iceberg, which was used as a unifying theme for the outreach effort. The video journals chronicled the journey from Lincoln, Nebraska to Antarctica and introduced viewers to many aspects of the ANDRILL program in an engaging manner. An accompanying guide provided background information, discussion starters, and engaging activities for students and adults alike. Subtitles in German and Italian were used on each of the video journals in addition to the English narrative, and the resulting product was entitled, ANDRILL: A REAL WORLD GEOSCIENCE ADVENTURE. The primary objective was to introduce teachers, students, and the general public to Antarctica and the ANDRILL Program, and to provide preliminary insights into the following questions: How do scientists from around the world come together in the coldest, windiest, driest place on Earth to uncover the secrets that have been shrouded beneath the ice for millions of years? What secrets do the rocks record? How can I join the journey to learn more about Antarctica and ANDRILL?

  5. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    Science.gov (United States)

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  6. It's not that Education and Outreach