WorldWideScience

Sample records for science conceptions problems

  1. Designing problem-based curricula: The role of concept mapping in scaffolding learning for the health sciences

    Directory of Open Access Journals (Sweden)

    Susan M. Bridges

    2015-03-01

    Full Text Available While the utility of concept mapping has been widely reported in primary and secondary educational contexts, its application in the health sciences in higher education has been less frequently noted. Two case studies of the application of concept mapping in undergraduate and postgraduate health sciences are detailed in this paper. The case in undergraduate dental education examines the role of concept mapping in supporting problem-based learning and explores how explicit induction into the principles and practices of CM has add-on benefits to learning in an inquiry-based curriculum. The case in postgraduate medical education describes the utility of concept mapping in an online inquiry-based module design. Specific attention is given to applications of CMapTools™ software to support the implementation of Novakian concept mapping in both inquiry-based curricular contexts.

  2. Science Club--A Concept

    Science.gov (United States)

    Wegner, Claas; Issak, Nicole; Tesch, Katharina; Zehne, Carolin

    2016-01-01

    The following article presents a concept of a science club which was developed by two master's students as a part of their thesis and which has been developed and improved ever since. The extra-curricular concept emphasises pupils' individuality through focusing on problem based leaning, station learning, and mixed age groups. Having joined the…

  3. Karl Popper's Conception of Metaphysics and its Problems

    Directory of Open Access Journals (Sweden)

    Cláudia Ribeiro

    2014-08-01

    Full Text Available http://dx.doi.org/10.5007/1808-1711.2014v18n2p209 In this paper I intend to thoroughly analyse Karl Popper’s relation to metaphysics. I start with his first writings, where he states the differences between science, pseudoscience and metaphysics. I then describe how his thoughts on the subject evolved to culminate in his reflection on metaphysical research programmes and the need for a revival of natural philosophy. A major concern is Popper’s famous testability criterion to set apart science from non-science. I point at the problems of the conception of metaphysics as non-testable theories (which are similar to the problems of the conception of metaphysics as theories involving unobservables and, in order to avoid these problems, I propose to retain nothing but the traditional conception of metaphysics as the general theories about the nature of the world. This leads me to the conclusion that science is not only an empirical task but also, and in a very important sense, a speculative one.

  4. The art and science of problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    2005-01-01

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examination's planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  5. The art and science of participative problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examinations planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  6. Information in Our World: Conceptions of Information and Problems of Method in Information Science

    Science.gov (United States)

    Ma, Lai

    2012-01-01

    Many concepts of information have been proposed and discussed in library and information science. These concepts of information can be broadly categorized as empirical and situational information. Unlike nomenclatures in many sciences, however, the concept of information in library and information science does not bear a generally accepted…

  7. Technology in the curriculum: A vehicle for the development of children's understanding of science concepts through problem solving

    Science.gov (United States)

    Jane, Beverley; Smith, Leanne

    1992-12-01

    This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools of The Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. ‘Technology Studies’ in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990)

  8. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  9. Exploring Corn-Ethanol As A Complex Problem To Teach Sustainability Concepts Across The Science-Business-Liberal Arts Curriculum

    Science.gov (United States)

    Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.

    2012-12-01

    The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various

  10. Threshold Concepts in the Development of Problem-solving Skills

    Directory of Open Access Journals (Sweden)

    Shelly Wismath

    2015-03-01

    Full Text Available Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course. These changes can be posited to reveal three underlying threshold concepts in the evolution and establishment of students’ problem-solving skills.

  11. Politicizing science: conceptions of politics in science and technology studies.

    Science.gov (United States)

    Brown, Mark B

    2015-02-01

    This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.

  12. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    Science.gov (United States)

    Atar, Hakan Yavuz

    teachers NOS conceptions. Developing desired understanding of nature of science conceptions and having an adequate experience with inquiry learning is especially important for science teachers because science education literature suggests that the development of teachers' nature of science conceptions is influenced by their experiences with inquiry science (Akerson et. al. 2000) and implementation of science lessons reflect teachers' NOS conceptions (Abd-EL-Khalick & Boujaoude, 1997; Matson & Parsons, 1998; Rosenthal, 1993; Trowbridge, Bybee & Powell, 2000; Turner & Sullenger, 1999). Furthermore, the impediments to successful integration of inquiry based science instruction from teachers' perspective are particularly important, as they are the implementers of inquiry based science education reform. The purpose of this study is to understand the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices in their classrooms and how this relationship impedes or contributes to the implementation of inquiry based science education reform efforts. The participants of this study were in-service teachers who were accepted into the online Masters Program in science education program at a southern university. Three online courses offered in the summer semester of 2005 constituted the research setting of this study: (1) Special Problems in the Teaching of Secondary School Science: Nature of Science & Science Teaching, (2) Curriculum in Science Education, and (3) Colloquium. Multiple data sources were used for data triangulation (Miles & Huberman, 1984; Yin, 1994) in order to understand the relationship between participants' NOS views and their conceptions and beliefs about inquiry-based science teaching. The study revealed that the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices is far from being simple and linear. Data suggests that the teachers' sophistication of NOS conceptions influence their perception of

  13. Brazilian science teachers conceptions about the world situation

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Vital dos Santos Abib

    2000-09-01

    Full Text Available Recognizing the urgent need of a scientific education thet would provide for citizen participation in decision making regarding problems that affect our survival, this paper reports teachers perceptions about problems that affect the future of human kind and life in our planet. Taking as reference recent studies which approach this issue globally, we analyse science teachers conceptions concerning the present world situation. Results show a fragmentary character and an insufficient conscientization of the extent and serioussness of the problems. This finding points at the need of formative actions that would provide teachers with a more adequate perspection of those problems and of possible solutions.

  14. Problem-Based Learning in the Physical Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  15. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-08-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.

  16. The life of concepts: Georges Canguilhem and the history of science.

    Science.gov (United States)

    Schmidgen, Henning

    2014-01-01

    Twelve years after his famous Essay on Some Problems Concerning the Normal and the Pathological (1943), the philosopher Georges Canguilhem (1904-1995) published a book-length study on the history of a single biological concept. Within France, his Formation of the Reflex Concept in the Seventeenth and Eighteenth Centuries (1955) contributed significantly to defining the "French style" of writing on the history of science. Outside of France, the book passed largely unnoticed. This paper re-reads Canguilhem's study of the reflex concept with respect to its historiographical and epistemological implications. Canguilhem defines concepts as complex and dynamic entities combining terms, definitions, and phenomena. As a consequence, the historiography of science becomes a rather complex task. It has to take into account textual and contextual aspects that develop independently of individual authors. In addition, Canguilhem stresses the connection between conceptual activities and other functions of organic individuals in their respective environments. As a result, biological concepts become tied to a biology of conceptual thinking, analogical reasoning, and technological practice. The paper argues that this seemingly circular structure is a major feature in Canguilhem's philosophical approach to the history of the biological sciences.

  17. [Conception of the history of science in the interpretation of Bogdan Suchodolski].

    Science.gov (United States)

    Lietz, Natalia

    2011-01-01

    In the article is presented the conception of the history of science in the interpretation of Bogdan Suchodolski. Having described the conception of the history of science created by George Sarton (1884-1956), whose thought was influenced by positivistic philosophy of August Comte, the idea of the history of science of Johan Nordstr6m (1891-1967), who was inspired by the system of Wilhelm Dilthey, and the materialistic conception of the history of science, which was represented, among others, by John Desmond Bernal (1901-1971), the author is making an attempt at revealing to what extent Bogdan Suchodolski was inspired by the above-mentioned visions of the history of science. Having defined the history of science as the history of scientific activity of people and their consciousness formed by the activity, Bogdan Suchodolski applied in the field of his own conception of the history of science the ideas that were put forward by German thinkers and philosophers, and were connected with a way of understanding culture as the constant development of national awareness, which can be exemplified with different dimensions of culture. Undoubtedly, identifying the history of Polish science with constitutive element of the history of national culture and paying attention to the conceptions tending not only to explaining, but also understanding phenomena, B. Suchodolski was influenced by Alfred Vierkandt's and Wilhelm Dilthey's thought. The present article includes several reflections on the conception of the history of science, which was created by B. Suchodolski. Among others, we can find here detailed information on how B. Suchodolski understood: the history of science, its subject, aim and methodology; its status in modern social consciousness and as the history of truth; relations between history of science and theory of science and scientific policy, history of science and the problem of unity and diversity of scientific thinking, history of science and ideas, history of

  18. Conceptual and procedural knowledge community college students use when solving a complex science problem

    Science.gov (United States)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  19. Explorers of the Universe: Metacognitive Tools for Learning Science Concepts

    Science.gov (United States)

    Alvarez, Marino C.

    1998-01-01

    Much of school learning consists of rote memorization of facts with little emphasis on meaningful interpretations. Knowledge construction is reduced to factual knowledge production with little regard for critical thinking, problem solving, or clarifying misconceptions. An important role of a middle and secondary teacher when teaching science is to aid students' ability to reflect upon what they know about a given topic and make available strategies that will enhance their understanding of text and science experiments. Developing metacognition, the ability to monitor one's own knowledge about a topic of study and to activate appropriate strategies, enhances students' learning when faced with reading, writing and problem solving situations. Two instructional strategies that can involve students in developing metacognitive awareness are hierarchical concept mapping, and Vee diagrams. Concept maps enable students to organize their ideas and reveal visually these ideas to others. A Vee diagram is a structured visual means of relating the methodological aspects of an activity to its underlying conceptual aspect in ways that aid learners in meaningful understanding of scientific investigations.

  20. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  1. Applied data-centric social sciences concepts, data, computation, and theory

    CERN Document Server

    Sato, Aki-Hiro

    2014-01-01

    Applied data-centric social sciences aim to develop both methodology and practical applications of various fields of social sciences and businesses with rich data. Specifically, in the social sciences, a vast amount of data on human activities may be useful for understanding collective human nature. In this book, the author introduces several mathematical techniques for handling a huge volume of data and analysing collective human behaviour. The book is constructed from data-oriented investigation, with mathematical methods and expressions used for dealing with data for several specific problems. The fundamental philosophy underlying the book is that both mathematical and physical concepts are determined by the purposes of data analysis. This philosophy is shown throughout exemplar studies of several fields in socio-economic systems. From a data-centric point of view, the author proposes a concept that may change people’s minds and cause them to start thinking from the basis of data. Several goals underlie ...

  2. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  3. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  4. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-01-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive…

  5. Problem solving - an interactive active method for teaching the thermokinetic concept

    Directory of Open Access Journals (Sweden)

    Odochian Lucia

    2014-07-01

    Full Text Available The paper describes a strategy that uses problem solving to teach the thermokinetic concept, based on student’s previously established proficiency in thermochemistry and kinetics. Chemistry teachers often use this method because it ensures easy achievement of both formative and informative science skills. This teaching strategy is tailored for students that prove special intellectual resources, Olympiad participants and to those who find chemistry a potential professional route

  6. Concept mapping instrumental support for problem solving

    NARCIS (Netherlands)

    Stoyanov, S.; Stoyanov, Slavi; Kommers, Petrus A.M.

    2008-01-01

    The main theoretical position of this paper is that it is the explicit problem-solving support in concept mapping software that produces a stronger effect in problem-solving performance than the implicit support afforded by the graphical functionality of concept mapping software. Explicit

  7. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  8. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  9. The self-concept of chiropractic students as science students

    Science.gov (United States)

    Shields, Robert F.

    2005-01-01

    Abstract Purpose To determine the self-concepts of chiropractic students as science students and if any personal variable affect their self-concepts. Participants Students in their first trimester and eighth trimester at the Los Angeles College of Chiropractic during the 1993 academic year (n=158). Methods Peterson-Yaakobi Q-Sort, National Assessment of Educational Progress, two-tailed T-test, one way analysis of variance and Spearman-rho correlation. Results The majority of students have positive self- concepts as science students and although there was a difference between the 2 trimesters, it was not significant. As a group they generally had less exposure to science compared to undergraduates from a selected science program. Variables of socio-economic status, undergraduate major, and highest completed level of education did not statistically affect their self-concept. Conclusion Chiropractic students had the self-concept that enables them to subscribe to the philosophical foundations of science and better engage in basic sciences and, later, science-based clinical research. Knowledge of this self- concept can be used in the development of a more rigorous basic science curricula and clinical research programs at chiropractic colleges with the ultimate goal of providing a more firm scientifically based foundation for the profession. PMID:19674649

  10. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the

  11. The concept of competence and its relevance for science, technology, and mathematics education

    DEFF Research Database (Denmark)

    Ropohl, Mathias; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    . In contrast to earlier ed-ucational goals that focused more on basic skills and knowledge expectations, competences are more functionally oriented. They involve the ability to solve complex problems in a particular context, e.g. in vocational or everyday situations. In science, technology, and mathematics...... education, the concept of competence is closely linked to the concept of literacy. Apart from these rather cognitive and af-fective perspectives influenced by the need to assess students’ achievement of de-sired learning goals in relation to their interest and motivation, the perspectives of the concept...

  12. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    Science.gov (United States)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  13. What conceptions of science communication are espoused by science research funding bodies?

    Science.gov (United States)

    Palmer, Sarah E; Schibeci, Renato A

    2014-07-01

    We examine the conceptions of science communication, especially in relation to "public engagement with science" (PES), evident in the literature and websites of science research funding bodies in Europe, North America, South America, Asia and Oceania, and Africa. The analysis uses a fourfold classification of science communication to situate these conceptions: professional, deficit, consultative and deliberative. We find that all bodies engage in professional communication (within the research community); however, engagement with the broader community is variable. Deficit (information dissemination) models still prevail but there is evidence of movement towards more deliberative, participatory models.

  14. Science, Technology and Innovation: Concepts, Theory and Policy

    OpenAIRE

    Zehra Taşkın; Güleda Doğan

    2016-01-01

    This study is a review of the book entitled “Science, Technology and Innovation: Concepts, Theory and Policy”. In the converging world, the book is an important contribution not only for the field of economy, but also information science which includes information-economy concepts.

  15. On problems in defining abstract and metaphysical concepts--emergence of a new model.

    Science.gov (United States)

    Nahod, Bruno; Nahod, Perina Vukša

    2014-12-01

    Basic anthropological terminology is the first project covering terms from the domain of the social sciences under the Croatian Special Field Terminology program (Struna). Problems that have been sporadically noticed or whose existence could have been presumed during the processing of terms mainly from technical fields and sciences have finally emerged in "anthropology". The principles of the General Theory of Terminology (GTT), which are followed in Struna, were put to a truly exacting test, and sometimes stretched beyond their limits when applied to concepts that do not necessarily have references in the physical world; namely, abstract and metaphysical concepts. We are currently developing a new terminographical model based on Idealized Cognitive Models (ICM), which will hopefully ensure a better cross-filed implementation of various types of concepts and their relations. The goal of this paper is to introduce the theoretical bases of our model. Additionally, we will present a pilot study of the series of experiments in which we are trying to investigate the nature of conceptual categorization in special languages and its proposed difference form categorization in general language.

  16. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  17. Basic concepts in social sciences I

    NARCIS (Netherlands)

    Hoede, C.

    2000-01-01

    In this paper the results are given of an investigation into concepts from Economics, Organization Theory, Political Science, Psychology and Sociology. The goal of this investigation was to find out whether there is a set of concepts that may be considered to be basic to all these five social

  18. Concept Analysis and the Advance of Nursing Knowledge: State of the Science.

    Science.gov (United States)

    Rodgers, Beth L; Jacelon, Cynthia S; Knafl, Kathleen A

    2018-04-24

    Despite an overwhelming increase in the number of concept analyses published since the early 1970s, there are significant limitations to the impact of this work in promoting progress in nursing science. We conducted an extensive review of concept analyses published between 1972 and 2017 to identify patterns in analysis and followed this with exploration of an exemplar related to the concept of normalization to demonstrate the capabilities of analysis for promoting concept development and progress. Scoping review of peer-reviewed literature published in the Cumulative Index to Nursing and Allied Health Literature (CINAHL) in which the terms "concept analysis," "concept clarification," and "concept derivation" appeared in any part of the reference. The original search returned 3,489 articles. This initial pool was refined to a final sample of 958 articles published in 223 journals and addressing 604 concepts. A review of citations of the original analysis of the concept of normalization resulted in 75 articles selected for closer examination of the process of concept development. Review showed a clear pattern of repetition of analysis of the same concept, growth in number of published analyses, preponderance of first authors with master's degrees, and 43 distinct descriptions of methods. Review of the 75 citations to the normalization analysis identified multiple ways concept analysis can inform subsequent research and theory development. Conceptual work needs to move beyond the level of "concept analysis" involving clear linkage to the resolution of problems in the discipline. Conceptual work is an important component of progress in the knowledge base of a discipline, and more effective use of concept development activities are needed to maximize the potential of this important work. It is important to the discipline that we facilitate progress in nursing science on a theoretical and conceptual level as a part of cohesive and systematic development of the discipline

  19. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    Science.gov (United States)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  20. An analysis of the concept of teaching in elementary school science education

    Science.gov (United States)

    Seatter, Carol Eunice Scarff

    The problem for this thesis arises directly from several years of observation of science classrooms in British Columbia. The troubling phenomenon seen within numerous classrooms, taught by teachers claiming to be constructivist teachers, involved teachers fostering the idea that children can think about science in terms of their own ideas, that is, that children can think about science in common-sense terms. In the many cases I have observed, teachers justify this practice on the grounds of constructivist theory. However, this kind of "constructivist teaching" does not, in my opinion, lead to scientific reasoning. My argument begins with the premise that the development of scientific reasoning in children is necessary for science education. I will argue that the currently popular "constructivist" movement has significant potential to fail in producing scientific reasoning in children, as did its predecessor, the "discovery learning" movement of the 1960s. The incommensurable differences between scientific and common-sense reasoning are presented and discussed. This thesis examines constructivist theory in terms of its potential to hinder the development of scientific reasoning in children. Two features of the constructivist writings are examined: those which pertain to the nature of science, and those relating to the concept of teaching. A chapter on the logic of scientific inquiry is central to the thesis, as it describes and explains the concepts, forms of explanation and truth criteria unique to the discipline of science. The epistemological foundations of science education are discussed in terms of the realist/instrumentalist debate. The thesis argues in favor of a sophisticated realist view of knowledge, such as those offered by Hacking and Matthews who take into account Hanson's "theory-laden" observation without falling prey to a naive realist view. Reasoning in science is compared with children's common-sense reasoning in an attempt to further understand

  1. THE CONCEPT OF SENCE IN THE WORLD, METAPHYSICS AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Michal Sicinski

    2007-01-01

    Full Text Available The notion of objective sense is commonly used in various contexts, and is also frequently misused. It has been often criticised in the context of natural sciences during the last 200 years - the period of positivistically oriented science. In the ancient Greek philosophy the problem of Nature possessing its own sense was stressed, and from the problem the first germs of science started in the Ionic and Pythagorean schools. Contrary to that, Aristotelean approach initiated the positivist tradition which banned from science the question of Nature as possessing an internal sense, and the scholastics introduced a concept of Nature's sense being not intrinsic but granted to it by the divine action. The mathematisation of physics caused that the the divine action started to be interpreted as "mathematical", and in consequence, the sense of Nature was seen as expressed by mathematics. Later on, this mathematically expressed sense of Nature, as seen in physical theories, started to be perceived as independent from God and having not much to as supernatural: inside the mathematical science there was no place for any anthropomorphic Creators.Recently, however when in the newest physics the mathematical structures have already been perceived not only as a language but also as a kind of ultimate reality, a place for quasi-religious feeling of mystery hidden in these structures has been welcome. It means that within the field of modern physical theories there is no place for the traditional religious concepts, but there is a place for a kind of mystics of objective mathematics in the Pythagorean style, related to the modern "new spirituality" mysticism.The situation is completely different in the area of less mathematised branches like biology. The tensions between science and religion are strong there, and the alternative is as follows: traditional religiousness versus traditional atheism, but not a neutral science separated from religion versus a non

  2. Problems in Teaching the Topic of Redox Reactions: Actions and Conceptions of Chemistry Teachers

    Science.gov (United States)

    de Jong, Onno; Acampo, Jeannine; Verdonk, Adri

    Although there is growing interest in studies of teachers' actions and conceptions, little is known about content-related teaching problems arising in science classrooms. This article presents a case study of problems which can occur when teaching the topic of redox reactions to Grade 11 students. Two chemistry teachers, a senior and a junior teacher, were involved in the study. Their reflective comments on the teaching problems were also investigated. Research data were obtained from classroom observations and audiotaped recordings of classroom practice. After the lessons, we conducted semistructured interviews with the teachers. The teaching problems are reported in terms of teaching activities causing difficulties for students in considering new conceptions to be necessary, intelligible, plausible, or fruitful. Analyses of the teachers' comments on these teaching activities clarifies a number of reasons why they acted as they did. It can be concluded that teachers' scientific expertise is an important source of difficulties when teaching redox reactions. Implications for an improvement of current chemistry classroom practice and content-related teacher training are offered.Received: 11 April 1994; Revised: 5 June 1995;

  3. Threshold concepts as barriers to understanding climate science

    Science.gov (United States)

    Walton, P.

    2013-12-01

    Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider

  4. Manned expedition to Mars: concepts & problems.

    Science.gov (United States)

    Strogonova, L B; Leonid, G

    1991-01-01

    In this article presents general concept of interplanetary spacecraft and bio-medical aspect of long interplanetary flight, the problems of technical supply for their solving. Presents version of the programme of the flight to Mars. This paper discusses the main specific factors of the flight: after long duration of being in the microgravity state, the men are subjected to the pressure of lineary and shock overload, augmented radiation, caused by crossing Earth radiation belts possible solar flares and the influence of galactic space radiation, and etc. The concept biomedical problems and technical supply for their solving are schematic reflected in tables 1, 2, 3, 4.

  5. Manned expedition to Mars: Concepts & problems

    Science.gov (United States)

    Strogonova, Liubov B.; Leonid, Gorshkov

    In this article presents general concept of interplanetary spacecraft and bio-medical aspect of long interplanetary flight, the problems of technical supply for their solving. Presents version of the programme of the flight to Mars. This paper dicusses the main specific factors of the flight: - after long duration of being in the microgravity state, the men are subjected to the pressure of lineary and shoch overload, - angmented radiation, caused by crossing Earth radiation belts possible solar brares and the influence of galactic space radiation, and etc. The concept biomedical problems and technical supply for their solving are schematic reflected in tables 1,2,3,4.

  6. The Nature of Science in Science Curricula: Methods and Concepts of Analysis

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2013-01-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically…

  7. Using Concept Maps in Political Science

    Science.gov (United States)

    Chamberlain, Robert P.

    2015-01-01

    Concept mapping is a pedagogical technique that was developed in the 1970s and is being used in K-12 and postsecondary education. Although it has shown excellent results in other fields, it is still rare in political science. In this research note, I discuss the implementation and testing of concept mapping in my Advanced Introduction to…

  8. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    Science.gov (United States)

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  9. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  10. The effects of a shared, Intranet science learning environment on the academic behaviors of problem-solving and metacognitive reflection

    Science.gov (United States)

    Parker, Mary Jo

    This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female

  11. THE EFFECT OF PROBLEM SOLVING LEARNING MODEL BASED JUST IN TIME TEACHING (JiTT ON SCIENCE PROCESS SKILLS (SPS ON STRUCTURE AND FUNCTION OF PLANT TISSUE CONCEPT

    Directory of Open Access Journals (Sweden)

    Resha Maulida

    2017-11-01

    Full Text Available The purpose of this study was to determine the effect of Problem Solving learning model based Just in Time Teaching (JiTT on students' science process skills (SPS on structure and function of plant tissue concept. This research was conducted at State Senior High School in South Tangerang .The research conducted using the quasi-experimental with Nonequivalent pretest-Postest Control Group Design. The samples of this study were 34 students for experimental group and 34 students for the control group. Data was obtained using a process skill test instrument (essai type that has been tested for its validity and reliability. Result of data analysis by ANACOVA, show that there were significant difference of postest between experiment and control group, by controlling the pretest score (F = 4.958; p <0.05. Thus, the problem-solving learning based on JiTT proved to improve students’ SPS. The contribution of this treatment in improving the students’ SPS was 7.2%. This shows that there was effect of problem solving model based JiTT on students’ SPS on the Structure and function of plant tissue concept.

  12. Weight, Mass, and Gravity: Threshold Concepts in Learning Science

    Science.gov (United States)

    Bar, Varda; Brosh, Yaffa; Sneider, Cary

    2016-01-01

    Threshold concepts are essential ideas about the natural world that present either a barrier or a gateway to a deep understanding of science. Weight, mass, and gravity are threshold concepts that underpin students' abilities to understand important ideas in all fields of science, embodied in the performance expectations in the Next Generation…

  13. Impact of problem finding on the quality of authentic open inquiry science research projects

    Science.gov (United States)

    Labanca, Frank

    2008-11-01

    Problem finding is a creative process whereby individuals develop original ideas for study. Secondary science students who successfully participate in authentic, novel, open inquiry studies must engage in problem finding to determine viable and suitable topics. This study examined problem finding strategies employed by students who successfully completed and presented the results of their open inquiry research at the 2007 Connecticut Science Fair and the 2007 International Science and Engineering Fair. A multicase qualitative study was framed through the lenses of creativity, inquiry strategies, and situated cognition learning theory. Data were triangulated by methods (interviews, document analysis, surveys) and sources (students, teachers, mentors, fair directors, documents). The data demonstrated that the quality of student projects was directly impacted by the quality of their problem finding. Effective problem finding was a result of students using resources from previous, specialized experiences. They had a positive self-concept and a temperament for both the creative and logical perspectives of science research. Successful problem finding was derived from an idiosyncratic, nonlinear, and flexible use and understanding of inquiry. Finally, problem finding was influenced and assisted by the community of practicing scientists, with whom the students had an exceptional ability to communicate effectively. As a result, there appears to be a juxtaposition of creative and logical/analytical thought for open inquiry that may not be present in other forms of inquiry. Instructional strategies are suggested for teachers of science research students to improve the quality of problem finding for their students and their subsequent research projects.

  14. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  15. The effect of an outdoor setting on the transfer of earth science concepts

    Science.gov (United States)

    Simmons, Jerry Marvin

    The ability of students to transfer concepts learned in school to future learning and employment settings is critical to their academic and career success. Concept transfer can best be studied by defining it as a process rather than an isolated event. Preparation for future learning (PFL) is a process definition of transfer which recognizes the student's ability to draw from past experiences, make assumptions, and generate potential questions and strategies for problem resolution. The purpose of this study was to use the PFL definition of concept transfer to examine whether a knowledge-rich outdoor setting better prepares students for future learning of science concepts than the classroom setting alone does. The research hypothesis was that sixth-grade students experiencing a geology-rich outdoor setting would be better prepared to learn advanced earth science concepts than students experiencing classroom learning only. A quasi-experimental research design was used for this study on two non-equivalent, self-contained sixth-grade rural public school classes. After a pretest was given on prior geology knowledge, the outdoor treatment group was taken on a geology-rich field excursion which introduced them to the concepts of mineral formation and mining. The indoor treatment group received exposure to the same concepts in the classroom setting via color slides and identification of mineral specimens. Subsequently, both groups received direct instruction on advanced concepts about mineral formation and mining. They were then given a posttest, which presented the students with a problem-solving scenario and questions related to concepts covered in the direct instruction. A t-test done on pretest data revealed that the indoor treatment group had previously learned classroom geology material significantly better than the outdoor treatment group had. Therefore an analysis of covariance was performed on posttest data which showed that the outdoor treatment group was better

  16. Assessing Student Knowledge of Chemistry and Climate Science Concepts Associated with Climate Change: Resources to Inform Teaching and Learning

    Science.gov (United States)

    Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy

    2017-01-01

    Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…

  17. Preservice Science Teachers' Beliefs about Astronomy Concepts

    Science.gov (United States)

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…

  18. Science and technology related global problems: An international survey of science educators

    Science.gov (United States)

    Bybee, Rodger W.; Mau, Teri

    This survey evaluated one aspect of the Science-Technology-Society theme, namely, the teaching of global problems related to science and technology. The survey was conducted during spring 1984. Two hundred sixty-two science educators representing 41 countries completed the survey. Response was 80%. Findings included a ranking of twelve global problems (the top six were: World Hunger and Food Resources, Population Growth, Air Quality and Atmosphere, Water Resources, War Technology, and Human Health and Disease). Science educators generally indicated the following: the science and technology related global problems would be worse by the year 2000; they were slightly or moderately knowledgeable about the problems; print, audio-visual media, and personal experiences were their primary sources of information; it is important to study global problems in schools; emphasis on global problems should increase with age/grade level; an integrated approach should be used to teach about global problems; courses including global problems should be required of all students; most countries are in the early stages of developing programs including global problems; there is a clear trend toward S-T-S; there is public support for including global problems; and, the most significant limitations to implementation of the S-T-S theme (in order of significance) are political, personnel, social, psychological, economic, pedagogical, and physical. Implications for research and development in science education are discussed.

  19. Validating concepts of mental disorder: precedents from the history of science.

    Science.gov (United States)

    Miller, Robert

    2014-10-01

    A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for "frontiersmen" (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today's debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.

  20. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  1. Relative Effects of Problem-Solving and Concept Mapping ...

    African Journals Online (AJOL)

    Relative Effects of Problem-Solving and Concept Mapping Instructional ... mapping strategies are also discussed and their significance and importance to students. ... development of problem solving skills before the end of SSCE Programmebr ...

  2. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  3. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  4. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    Science.gov (United States)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  5. BANKING ETHICS: MAIN CONCEPTIONS AND PROBLEMS

    Directory of Open Access Journals (Sweden)

    VALENTINA FETINIUC

    2014-10-01

    Full Text Available Banking ethics is a specialized set of ethical standards and rules that should be followed in the activities of financial institutions and employees of the banking sector. But despite the simplicity of the definition, in the modern world, this concept becomes complex and ambiguous. The importance of studying this subject is defined by the fact that the ethical behavior of the bank and bank employees promotes banking. At present there are several conceptions of banking ethics: general ethics, regulated ethics and ethical bank. The most common practice is to regulate internal and external relations of banks and bank workers with ethical codes. At the same time, studies show the existence of problems in the banking standards of ethics, which negatively affects the financial institution. This article is intended to reflect main tendencies and problems of banking ethics at international level and experience of Republic of Moldova in this field.

  6. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  7. Assessment of primary school students’ level of understanding the concepts of 2nd grade life sciences course based on different variables

    Directory of Open Access Journals (Sweden)

    Altıntaş Gülşen

    2016-01-01

    Full Text Available The course of Life Sciences is one of the pivot courses taught in the first three years of primary school. Ensuring children get to know their environment and gain correct information related to their problems by making them investigate their natural and socio-cultural environment as well as providing them with necessary information, skills and behaviors for environmental adaptation are among the main purposes of Life Sciences course. The concepts to be instilled in students in line with these purposes are important. Since concepts are mostly intellectual and non-physical, they can only exist tangibly through examples. This study aims to assess Primary School Students’ Level of Understanding the Concepts of 2nd Grade Life Sciences Course Based on Different Variables. 17 concepts included in the 2nd Grade Life Sciences course within the subject of School Excitement were addressed within the study, and students were requested to define and exemplify these concepts. A total of 102 students from five different primary schools of upper-middle and lower socioeconomic classes located in Manisa and Istanbul were included in the study in line with the intentional maximum diversity sample selection. The answers given by students for each concept were categorized and analyzed in terms of liking or disliking home, school, technology and the course of Life Sciences.

  8. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  9. Mass Media Influences on Public Conceptions of Social Problems

    Science.gov (United States)

    Hubbard, Jeffrey C.; And Others

    1975-01-01

    Explores possible relationships between the mass media of communication and social problems by three-way comparisons between the incidence of social problems suggested in media portrayals, conceptions of the incidence of these problems held by the public, and the relative frequency of such problems reflected in statistics accumulated by official…

  10. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    Science.gov (United States)

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  11. Students’ conceptions and problem-solving ability on topic chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Diawati, Chansyanah, E-mail: chansyanahd@yahoo.com [Program Studi Pendidikan Kimia Jurusan PMIPA FKIP, Universitas Lampung, Jl. Prof. Dr. Soemantri Brodjonegoro No. 1 Gedung Meneng, Bandar Lampung35145 (Indonesia)

    2016-02-08

    The enthalpy concept and its change were introduced to describe the forms of internal energy transfer in chemical reactions. Likewise, the concepts of exothermic and endothermic reactions introduced as a consequence of heat transfer form. In the heat measurement process at constant pressure, work is often ignored. The exothermic or endothermic reactions, usually only based on the increase or decrease of the reaction temperature, without associated with the internal energy. Depictions of enthalpy and its change assumed closely related to students’ problem-solving ability. Therefore, the study to describe pre-service chemistry teacher student’s conceptions and problem-solving ability on topic chemical thermodynamics has been done. This research was a case study of chemical education course in Provinsi Lampung. The subjects of this study were 42 students who attend the chemical thermodynamics course. Questions about exothermic and endothermic reactions, enthalpy and its change, as well as internal energy and its change were given in the form of an essay exam questions. Answers related to conception qualitatively categorized, while problem solving answers were scored and assessed. The results showed that, in general, students were having problems in enthalpy and describe the changes in the form of heat and work. The highest value of problem solving ability obtained 26.67 from the maximum value of 100. The lowest value was 0, and the average value was 14.73. These results show that the problem-solving ability of pre-service chemistry teacher students was low. The results provide insight to researchers, and educators to develop learning or lab work on this concept.

  12. Students’ conceptions and problem-solving ability on topic chemical thermodynamics

    International Nuclear Information System (INIS)

    Diawati, Chansyanah

    2016-01-01

    The enthalpy concept and its change were introduced to describe the forms of internal energy transfer in chemical reactions. Likewise, the concepts of exothermic and endothermic reactions introduced as a consequence of heat transfer form. In the heat measurement process at constant pressure, work is often ignored. The exothermic or endothermic reactions, usually only based on the increase or decrease of the reaction temperature, without associated with the internal energy. Depictions of enthalpy and its change assumed closely related to students’ problem-solving ability. Therefore, the study to describe pre-service chemistry teacher student’s conceptions and problem-solving ability on topic chemical thermodynamics has been done. This research was a case study of chemical education course in Provinsi Lampung. The subjects of this study were 42 students who attend the chemical thermodynamics course. Questions about exothermic and endothermic reactions, enthalpy and its change, as well as internal energy and its change were given in the form of an essay exam questions. Answers related to conception qualitatively categorized, while problem solving answers were scored and assessed. The results showed that, in general, students were having problems in enthalpy and describe the changes in the form of heat and work. The highest value of problem solving ability obtained 26.67 from the maximum value of 100. The lowest value was 0, and the average value was 14.73. These results show that the problem-solving ability of pre-service chemistry teacher students was low. The results provide insight to researchers, and educators to develop learning or lab work on this concept

  13. Science concept learning by English as second language junior secondary students

    Science.gov (United States)

    Lai, Pui-Kwong; Lucas, Keith B.; Burke, Ed V.

    1995-03-01

    Recent Chinese migrant students from Taiwan studying science in two Australian secondary schools were found to explain the meanings of selected science concept labels in English by translating from Chinese. The research strategy involved interviewing the students concerning their recognition and comprehension of the science concept labels firstly in Chinese and then in English. Mean recognition and comprehension scores were higher in Chinese than in English, with indications that Chinese language and science knowledge learnt in Chinese deteriorated with increasing time of residence in Australia. Rudimentary signs of the students being able to switch between Chinese and English knowledge bases in science were also found. Implications for teaching science to ESL students and suggestions for further research are discussed.

  14. A Comparison of Key Concepts in Data Analytics and Data Science

    Science.gov (United States)

    McMaster, Kirby; Rague, Brian; Wolthuis, Stuart L.; Sambasivam, Samuel

    2018-01-01

    This research study provides an examination of the relatively new fields of Data Analytics and Data Science. We compare word rates in Data Analytics and Data Science documents to determine which concepts are mentioned most often. The most frequent concept in both fields is "data." The word rate for "data" is more than twice the…

  15. Concept mapping as learning tool in problem-oriented learning

    NARCIS (Netherlands)

    Fürstenau, B.; Kneppers, L.; Sánchez, J.; Cañas, A.J.; Novak, J.D.

    2010-01-01

    In two studies we investigated whether concept mapping or summary writing is more effective in supporting students’ learning from authentic problems in the field of business. We interpret concept mapping and summary writing as elaboration tools aiming at helping students to understand new

  16. The problem of automatic identification of concepts

    International Nuclear Information System (INIS)

    Andreewsky, Alexandre

    1975-11-01

    This paper deals with the problem of the automatic recognition of concepts and describes an important language tool, the ''linguistic filter'', which facilitates the construction of statistical algorithms. Certain special filters, of prepositions, conjunctions, negatives, logical implication, compound words, are presented. This is followed by a detailed description of a statistical algorithm allowing recognition of pronoun referents, and finally the problem of the automatic treatment of negatives in French is discussed [fr

  17. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  18. A concept for global optimization of topology design problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi

    2006-01-01

    We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...... on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...

  19. Parental influences on students' self-concept, task value beliefs, and achievement in science.

    Science.gov (United States)

    Senler, Burcu; Sungur, Semra

    2009-05-01

    The aim of this study was twofold: firstly, to investigate the grade level (elementary and middle school) and gender effect on students' motivation in science (perceived academic science self-concept and task value) and perceived family involvement, and secondly to examine the relationship among family environment variables (fathers' educational level, mothers' educational level, and perceived family involvement), motivation, gender and science achievement in elementary and middle schools. Multivariate Analysis of Variance (MANOVA) showed that elementary school students have more positive science self-concept and task value beliefs compared to middle school students. Moreover, elementary school students appeared to perceive more family involvement in their schooling. Path analyses also suggested that family involvement was directly linked to elementary school students' task value and achievement. Also, in elementary school level, significant relationships were found among father educational level, science self-concept, task value and science achievement. On the other hand, in middle school level, family involvement, father educational level, and mother educational level were positively related to students' task value which is directly linked to students' science achievement. Moreover, mother educational level contributed to science achievement through its effect on self-concept.

  20. Future Science Teachers' Understandings of Diffusion and Osmosis Concepts

    Science.gov (United States)

    Tomazic, Iztok; Vidic, Tatjana

    2012-01-01

    The concepts of diffusion and osmosis cross the disciplinary boundaries of physics, chemistry and biology. They are important for understanding how biological systems function. Since future (pre-service) science teachers in Slovenia encounter both concepts at physics, chemistry and biology courses during their studies, we assessed the first-,…

  1. The Enhancement of Students’ Skill in Classifying and Concept Mastery in Salt Hydrolysis Material Through Problem Solving Learning Model

    OpenAIRE

    Safitri, Esty Indriyani; Rosilawati, Ila; Efkar, Tasviri

    2012-01-01

    The purpose of this research is to find out effectiveness of problem solving learning model on salt hydrolysis material in improve the skill of classifying and concept mastery. The population of the research was all students in XI science class in SMAN I Way Jepara number in 120 students. The samples were 30 students in XI science 3 class and 30 students in XI science 4 that have equal academic abilities. This research was a quasi experiment using non equivalent (pretest-postest) control grou...

  2. The Problems of Realizing the Innovative Potential of Science and Mechanisms for their Solution

    Directory of Open Access Journals (Sweden)

    Ianchenko Zinayida B.

    2017-06-01

    Full Text Available The aim of the article is revealing reasons for the low payoff of science in terms of the effectiveness of the research activity and demand for its results in economic spheres, identifying problems in the innovation activity of research institutions and reasons for their arising, searching for fundamental approaches to the development of a strategy and mechanisms for realization of the innovative potential of science to strengthen its position in the real sector. The study used general scientific methods, including: systems approach — to systematize the problems of the innovation activity of research institutions; methods of theoretical generalization — to study the theoretical principles of the scientific and innovation activity; methods of analysis and synthesis — to search for fundamental approaches to the development of mechanisms for realization of the innovative potential of science. The used concepts of scientific activity and innovations are generalized. The author’s definition of the term “innovation” is proposed. The main reasons of the minor impact of science on the economy are systematized, the mechanisms for their elimination are offered. Based on the comprehensive analysis of the reasons for losing by science its impact on the economy, the ways of realizing the innovative potential of science are improved. The results of the research can be used in reforming domestic scientific research institutions.

  3. Concept Learning versus Problem Solving: Is There a Difference?

    Science.gov (United States)

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  4. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  5. Physics Problems Based on Up-to-Date Science and Technology.

    Science.gov (United States)

    Folan, Lorcan M.; Tsifrinovich, Vladimir I.

    2007-03-01

    We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.

  6. 492 Study Habit, Self-Concept and Science Achievement of Public ...

    African Journals Online (AJOL)

    Nekky Umera

    student study habit and self-concept combined together and singularly predicted science ... Study skills are fundamental to academic success. A student who ... Motivation to engage or not in a task is significantly determined by self- concept or ...

  7. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    International Nuclear Information System (INIS)

    Plusnin, N I; Lazarev, G I

    2008-01-01

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok

  8. Information science and its core concepts

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2013-01-01

    One often encounters disagreements in information science (IS) (or library and information science, LIS), even disagreements about what might seem rather trivial questions. Such disagreements range from the designation of the field to questions such as whether IS is an academic discipline or not...... terminological hygiene” may account for some of the disagreements, but basically the problem is seen as a lack of sufficient strong centripetal tendencies keeping the field together....

  9. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    The purpose of this research was to develop descriptive accounts of precollege students' conceptions of the nature of science from two project-based classrooms, and track those conceptions over the course of an academic year. A model of the nature of science was developed and served as the criterion by which students' beliefs were evaluated. The model distinguishes between two major categories of science, the nature of the scientific enterprise and the nature of scientific knowledge. Five students were selected from each class and interviewed individually for 30-45 minutes each, six times over the year. Data from semi-structured, formal interviewing consisted of audio-recorded interviews which were transcribed verbatim. All passages were coded using codes which corresponded to the premises of the model of the nature of science. Passages in the transcripts were interpreted to develop a summary of the students' conceptions over the year. Qualitative methodologies, especially formal interviewing in conjunction with participant observation, were effective for uncovering students' conceptions of the nature of science, adding to the knowledge base in this field. The research design of the current study was a significant factor in explaining the inconsistencies seen between findings from this study and the literature. This study finds that participants at both classroom sites held fully formed conceptions of the nature of science for approximately 40 percent of the premises across the model. For two-thirds of the elements which comprise the premises, participants held full understandings. Participants held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Most participants had difficulty distinguishing between science and non-science and held poor understandings of the role of questions in science. Students' beliefs generally remained unchanged over the year. When their conceptions did evolve, project

  10. Bayesian solutions for food science problems?

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2004-01-01

    This paper starts with an overview of some typical food-science problems. In view of the development of safe and healthy food, the use of mathematical models in food science is much needed and the use of statistics is therefore indispensable. Because of the biological variability in the raw

  11. Non-Determinism: An Abstract Concept in Computer Science Studies

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  12. Threshold Concepts in the Development of Problem-Solving Skills

    Science.gov (United States)

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  13. How Role Play Addresses the Difficulties Students Perceive when Writing Reflectively about the Concepts They are Learning in Science

    Science.gov (United States)

    Millar, Susan

    A fundamental problem which confronts Science teachers is the difficulty many students experience in the construction, understanding and remembering of concepts. This is more likely to occur when teachers adhere to a Transmission model of teaching and learning, and fail to provide students with opportunities to construct their own learning. Social construction, followed by individual reflective writing, enables students to construct their own understanding of concepts and effectively promotes deep learning. This method of constructing knowledge in the classroom is often overlooked by teachers as they either have no knowledge of it, or do not know how to appropriate it for successful teaching in Science. This study identifies the difficulties which students often experience when writing reflectively and offers solutions which are likely to reduce these difficulties. These solutions, and the use of reflective writing itself, challenge the ideology of the Sydney Genre School, which forms the basis of the attempt to deal with literacy in the NSW Science Syllabus. The findings of this investigation support the concept of literacy as the ability to use oral and written language, reading and listening to construct meaning. The investigation demonstrates how structured discussion, role play and reflective writing can be used to this end. While the Sydney Genre School methodology focuses on the structure of genre as a prerequisite for understanding concepts in Science, the findings of this study demonstrate that students can use their own words to discuss and write reflectively as they construct scientific concepts for themselves. Social construction and reflective writing can contribute to the construction of concepts and the development of metacognition in Science. However, students often experience difficulties when writing reflectively about scientific concepts they are learning. In this investigation, students identified these difficulties as an inability to understand

  14. Evolution of managerial problems from the perspective of management science

    Directory of Open Access Journals (Sweden)

    Marek Szarucki

    2015-12-01

    Full Text Available Managerial problems and the process of their solving play an important role both in the theory of management science and practice of organisations’ functioning. There is a gap in the literature related to the evolution of management problems in the context of the methodological approaches to solve them. The main goal of this paper was to analyse the evolution of the managerial problems from the perspective of management science and to present dominant methodological approaches for problem solving. Based on the extensive literature analysis in the discipline of management science, the evolution of the managerial problems was described with relation to the sixteen streams of management science. The author reviewed the selected classifications of the management theory as well as proposed his own perspective, which took into account managerial problems and their evolution over time. Moreover, there was presented an attempt to depict sources of management problems from the historical perspective within the methodological approaches of management science. Despite the broad view on management problems presented in this paper, such perspective gives a good ground for developing new more specific problem classifications, addressing different facets of managerial problems.

  15. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  16. Crowd science and engineering: concept and research framework

    Directory of Open Access Journals (Sweden)

    Yueting Chai

    2017-03-01

    Full Text Available Purpose – The synthetic application and interaction of/between the internet, Internet of Things, cloud computing, big data, Industry 4.0 and other new patterns and new technologies shall breed future Web-based industrial operation system and social operation management patterns, manifesting as a crowd cyber eco-system composed of multiple interconnected intelligent agents (enterprises, individuals and governmental agencies and its dynamic behaviors. This paper aims to explore the basic principles and laws of such a system and its behavior. Design/methodology/approach – The authors propose the concepts of crowd science and engineering (CSE and expound its main content, thus forming a research framework of theories and methodologies of crowd science. Findings – CSE is expected to substantially promote the formation and development of crowd science and thus lay a foundation for the advancement of Web-based industrial operation system and social operation management patterns. Originality/value – This paper is the first one to propose the concepts of CSE, which lights the beacon for the future research in this area.

  17. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  18. Concepts of modern science: the textbook for undergraduate academic / under total. ed. by S.A. Lebedev. 4th ed. M.: Publisher Yurayt, 2015. 374 pp.

    Directory of Open Access Journals (Sweden)

    Nikolai I. Gubanov

    2015-11-01

    Full Text Available The article review the 4th edition of the well-proven in teaching in local high schools textbook concepts of modern education. The book is written by a group of philosophers and natural scientists of Moscow State University named after M.V. Lomonosov. Lead Author and editor of a textbook made by well-known Russian specialist in the history and philosophy of science Lebedev S.A. Textbook prepared in accordance with the relevant requirements of the Federal state educational standard of higher education. Revealed the following topics: the unity of science and the humanities, the physical picture of the world in its development, the concept of space, time and determinism, the main content of synergy, the concept of modern chemistry, biology, ecology, geography, geology, systematic approach. The content of the textbook is based on an analysis of the dynamics and the current state of natural science and its methodological and philosophical problems. The authors relied on the evaluation and interpretation of the concepts of modern science outstanding foreign and domestic scientists. In the presentation of all the above concepts in the textbook of modern science permeates thought complex, contradictory and historically volatile nature of natural science, the close relationship between the natural sciences to the needs, demands and potential of spiritual and material culture of his time.

  19. Data-Intensive Science meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    Science.gov (United States)

    Ramachandran, Rahul; Word, Andrea; Nair, Udasysankar

    2014-01-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. For example, challenges in the teaching and learning of atmospheric science can be traced to threshold concepts in fluid dynamics. In particular, Dynamic Meteorology is one of the most challenging courses for graduate students and undergraduates majoring in Atmospheric Science. Dynamic Meteorology introduces threshold concepts - those that prove troublesome for the majority of students but that are essential, associated with fundamental relationships between forces and motion in the atmosphere and requiring the application of basic classical statics, dynamics, and thermodynamic principles to the three dimensionally varying atmospheric structure. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of dataintensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow

  20. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  1. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  2. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  3. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  4. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  5. Computing as Empirical Science – Evolution of a Concept

    Directory of Open Access Journals (Sweden)

    Polak Paweł

    2016-12-01

    Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.

  6. Problem-based learning versus traditional science instruction: Achievement and interest in science of middle grades minority females

    Science.gov (United States)

    Mungin, Rochelle E.

    This quantitative study examined science interest and achievement of middle school minority females in both traditional science classes and Problem-based Learning (PBL) science classes. The purpose of this study was to determine if there is a significant difference between traditional teaching and the PBL teaching method. The researcher also looked for a significant relationship between interest in science and achievement in science. This study used survey data from parents of female middle school science students to measure student interest in science concepts. The population of interest for this study was 13--15 year old eighth grade females from various racial make-ups such as, African American, Hispanic, Bi-racial, Asian, and Other Pacific Islander. Student achievement data was retrieved from the 8th grade science fall common assessed benchmark exam of both test groups. The results of the survey along with the benchmark data was to shed light on the way adolescent females learn and come to embrace science. The findings may provide guidance for science educators seeking to reach their minority female students and guide their achievement levels higher than before. From the results of the t-test and Pearson correlation test of this study, it can be concluded that while this study did not show a significant difference in academic achievement or interest between the two teaching styles, it revealed that interest in science has a positive role to play in the academic success of minority girls in science. The practical implications for examining these issues are to further the research on solutions for closing the minority and gender achievement gaps. The results of this study have implications for researchers as well as practitioners in the field of education.

  7. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    Science.gov (United States)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  8. The relationship of attitudes toward science, cognitive style, and self-concept to achievement in chemistry at the secondary school level

    Science.gov (United States)

    Kirk, Gerald Richard

    There is currently a crisis in science education in the United States. This statement is based on the National Science Foundation's report stating that the nation's students, on average, still rank near the bottom in science and math achievement internationally. This crisis is the background of the problem for this study. This investigation studied learner variables that were thought to play a role in teaching chemistry at the secondary school level, and related them to achievement in the chemistry classroom. Among these, cognitive style (field dependence/independence), attitudes toward science, and self-concept had been given considerable attention by researchers in recent years. These variables were related to different competencies that could be used to measure the various types of achievement in the chemistry classroom at the secondary school level. These different competencies were called academic, laboratory, and problem solving achievement. Each of these chemistry achievement components may be related to a different set of learner variables, and the main purpose of this study was to investigate the nature of these relationships. Three instruments to determine attitudes toward science, cognitive style, and self-concept were used for data collection. Teacher grades were used to determine chemistry achievement for each student. Research questions were analyzed using Pearson Product Moment Correlation Coefficients and t-tests. Results indicated that field independence was significantly correlated with problem solving, academic, and laboratory achievement. Educational researchers should therefore investigate how to teach students to be more field independent so they can achieve at higher levels in chemistry. It was also true that better attitudes toward the social benefits and problems that accompany scientific progress were significantly correlated with higher achievement on all three academic measures in chemistry. This suggests that educational researchers

  9. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  10. Children’s social self-concept and internalizing problems: the influence of peers and teachers.

    Science.gov (United States)

    Spilt, Jantine L; van Lier, Pol A C; Leflot, Geertje; Onghena, Patrick; Colpin, Hilde

    2014-01-01

    This study aimed to understand how relationships with peers and teachers contribute to the development of internalizing problems via children’s social self-concept. The sample included 570 children aged 7 years 5 months (SD = 4.6 months). Peer nominations of peer rejection, child-reported social self-concept, and teacher-reported internalizing problems were assessed longitudinally in the fall and spring of Grades 2 and 3. Teacher reports of support to the child were assessed in Grade 2. Results showed that peer rejection impeded children’s social self-concept, which in turn affected the development of internalizing problems. Partial support was found for individual (but not classroom-level) teacher support to buffer the adverse effects of peer problems on children’s self-concept, thereby mitigating its indirect effects on internalizing problems.

  11. SKILL OF TEACHER CANDIDATES IN INTEGRATING THE CONCEPT OF SCIENCE WITH LOCAL WISDOM

    Directory of Open Access Journals (Sweden)

    Parmin -

    2015-11-01

    Full Text Available Learning science is not limited to reviewing the concepts, but strengthens the identity of a nation that has a diversity of cultures. Science learning objectives that have been set in Indonesia, including the student is able to apply the science wisely, to maintain and preserve the cultural survival. The study aims to measure students' ability to relate concepts of science with local knowledge to use mind maps compiled individually. The results showed that 85% of teacher candidates are able to determine the relationship of science and local knowledge correctly. The ability to link the two domains, through the literature review, observation and interviews.

  12. The problem of bio-concepts: biopolitics, bio-economy and the political economy of nothing

    Science.gov (United States)

    Birch, Kean

    2017-12-01

    Scholars in science and technology studies—and no doubt other fields—have increasingly drawn on Michel Foucault's concept of biopolitics to theorize a variety of new `bio-concepts'. While there might be some theoretical value in such exercises, many of these bio-concepts have simply replaced more rigorous—and therefore time-consuming—analytical work. This article provides a (sympathetic) critique of these various bio-concepts, especially as they are applied to the emerging `bio-economy'. In so doing, the article seeks to show that the analysis of the bio-economy could be better framed as a political economy of nothing. This has several implications for science education, which are raised in the article.

  13. What Are the Roles that Children's Drawings Play in Inquiry of Science Concepts?

    Science.gov (United States)

    Chang, Ni

    2012-01-01

    This study was designed to identify the roles that drawing played in the process of children's acquisition of science concepts. Seventy pre-service teachers through four semesters from a Midwest University in the USA developed lesson plans on science concepts and then taught them to 70 young children ages 4-7, respectively. This experience was…

  14. A Cognitive Model for Problem Solving in Computer Science

    Science.gov (United States)

    Parham, Jennifer R.

    2009-01-01

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…

  15. Numerical problems in physics

    CERN Document Server

    Singh, Devraj

    2015-01-01

    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  16. The Problem of Understanding of Nature in Exact Science

    Directory of Open Access Journals (Sweden)

    Leo Näpinen

    2014-10-01

    Full Text Available In this short inquiry I would like to defend the statement that exact science deals with the explanation of models, but not with the understanding (comprehending of nature. By the word ‘nature’ I mean nature as physis (as a self-moving and self-developing living organism to which humans also belong, not nature as natura naturata (as a nonevolving creature created by someone or something. The Estonian philosopher of science Rein Vihalemm (2008 has shown with his conception of phi-science (φ-science that exact science is itself an idealized model or theoretical object derived from Galilean mathematical physics.

  17. Threshold Concepts in the Development of Problem-solving Skills

    OpenAIRE

    Shelly Wismath; Doug Orr; Bruce MacKay

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called Problems and Puzzles, which introduced students to the theory and practice of problem solving via puzzles. Based on classroom observation and other qualitative data collected over three semesters, we have identified three significant changes in student behaviour at specific points in the course....

  18. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    Science.gov (United States)

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three…

  19. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  20. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  1. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  2. Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning

    Science.gov (United States)

    Novak, Joseph D.

    2005-03-01

    This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.

  3. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  4. Reducing the drop-out rate of a technical oriented course by introducing Problem Based Learning – a first concept

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2011-04-01

    Full Text Available At the University of Applied Sciences (UAS Technikum Wien one of the most difficult courses in the Bachelor degree program of Computer Science is “Database Systems and Database Design”. Together with “Advanced Computer Programming”, this course accounts for the high drop-out rate in the degree program. For this reason, this course was chosen for a redesign, in line with the research project QUADRO (Measures to increase quality of teaching and to reduce drop-out rates promoted by the City of Vienna – MA 27 (EU strategy and promote economic development. As the authors have already gained experience in Problem Based Learning (PBL, they saw an opportunity to improve students’ database knowledge by changing the teaching method to Problem Based Learning (PBL. The proposed paper first explains the current situation, identifies its drawbacks and difficulties. In a second step, it describes the new method, shows the students’ feedback after the first semester and the resulting changes in the concept.

  5. Effects of Concept Mapping and Problem Solving Instructional ...

    African Journals Online (AJOL)

    The aim of the study was to determine the effect of concept mapping and problem solving instructional strategies on secondary school students' learning outcomes in Chemistry. The study adopted pre-test, post-test, control group quasiexperimental design, using a 3×2×2 factorial matrix. Two null hypotheses were tested at ...

  6. Data-Intensive Science Meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    Science.gov (United States)

    Ramachandran, R.; Nair, U. S.; Word, A.

    2014-12-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of data-intensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical

  7. Investigating the Interrelationships among Conceptions of, Approaches to, and Self-Efficacy in Learning Science

    Science.gov (United States)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…

  8. Using Forensic Science Problems as Teaching Tools

    Science.gov (United States)

    Duncan, Kanesa; Daly-Engel, Toby

    2006-01-01

    The desire to observe and understand the natural world is strong in young children, but high school students often consider science irrelevant to their daily lives. Therefore, as teachers of older age groups, the authors constantly struggle to engage students in scientific exploration so they can master concepts and appreciate the nature of…

  9. The influence of role-specific self-concept and sex-role identity on career choices in science

    Science.gov (United States)

    Baker, Dale R.

    Despite much effort on the part of educators the number of females who choose science careers remains low. This research focuses on two factors which may be influencing females in their choice of careers. These factors are role-specific self-concept in science and self perception in terms of stereotypical masculine and feminine characteristics. In addition logical ability and mathematics and science courses were also examined as factors in career choice. Females preferring science related careers and females preferring nontraditional careers such as police, military and trades were found to have a positive role-specific self-concept and a masculine perception of themselves. Females preferring traditional careers such as teacher or hairdresser had a poor role-specific self-concept and a more feminine perception of themselves. Males as a group were found to have a more positive role-specific self-concept than females. Logical ability was also related to a science career preference for both males and females. Males expected to take more higher level math courses than females, while females preferring science careers expected to take the most higher level science courses.

  10. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  11. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    Science.gov (United States)

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  12. Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    The study investigated the relationship between students self-concept andtheir academic performance in Basic Science. It further examines genderdifference in students performance. The study adopted ex-post factorresearch design and made use of 300 students all from Public Schools. Theadapted Version of ...

  13. The effects of collaborative concept mapping on the achievement, science self-efficacy and attitude toward science of female eighth-grade students

    Science.gov (United States)

    Ledger, Antoinette Frances

    This study sought to examine whether collaborative concept mapping would affect the achievement, science self-efficacy and attitude toward science of female eighth grade science students. The research questions are: (1) Will the use of collaborative concept mapping affect the achievement of female students in science? (2) Will the use of collaborative concept mapping affect the science self-efficacy of female students? (3) Will the use of collaborative concept mapping affect the attitudes of females toward science? The study was quasi-experimental and utilized a pretest-posttest design for both experimental and control groups. Eighth grade female and male students from three schools in a large northeastern school district participated in this study. The achievement test consisted of 10 multiple choice and two open-response questions and used questions from state-wide and national assessments as well as teacher-constructed items. A 29 item Likert type instrument (McMillan, 1992) was administered to measure science self-efficacy and attitude toward science. The study was of 12 weeks duration. During the study, experimental group students were asked to perform collaborative concept map construction in single sex dyads using specific terms designated by the classroom teacher and the researcher. During classroom visitations, student perceptions of collaborative concept mapping were collected and were used to provide insight into the results of the quantitative data analysis. Data from the pre and posttest instruments were analyzed for both experimental and control groups using t-tests. Additionally, the three teachers were interviewed and their perceptions of the study were also used to gain insight into the results of the study. The analysis of data showed that experimental group females showed significantly higher gains in achievement than control group females. An additional analysis of data showed experimental group males showed significantly greater gains in

  14. The Science Operations Concept for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Frew, D.

    2014-04-01

    The ExoMars 2016 Science Operations Centre (SOC) based at the European Space Astronomy Centre is responsible for coordinating the science planning activities for the Trace Gas Orbiter. Science planning will involve all members of the ExoMars 2016 science ground segment (SGS), namely the SOC at ESAC, the Russian SOC at IKI, the orbiter instrument teams and the science management of the 2016 mission represented by the science working team (SWT) that is chaired by the project scientist. The science operations concept for the mission builds on the legacy inherited from previous ESA planetary missions, in particular from Mars Express for the core plan validation aspects and from the Smart-1 lunar mission for the opportunity analysis and longterm planning approach. Further concept drivers have been derived from the ExoMars 2016 mission profile in the areas of orbit predictability, instrument design and the usage of TGO as a relay for surface assets including the ExoMars 2018 rover. This paper will give an over view of the entire uplink planning process as it is conducted over 3 distinct planning cycles. The Long Term Plan (LTP) establishes the baseline science plan and demonstrates the operational feasibility of meeting the mission science goals formulated by the science working team (SWT) at science management level. The LTP has a planning horizon of 6 months. Each month of the baseline science plan is refined with the instrument teams within the Medium Term Plan (MTP) to converge on a frozen attitude request and resource envelopes for all of the observations in the plan. During the Short Term Planning cycle the SOC will iterate with the teams to finalise the commanding for all of the observations in the plan for the coming week. The description of the uplink planning process will focus on two key areas that are common to all of the planning cycles mentioned above: • Science Plan Abstraction: Interacting with the science plan at the appropriate level of abstraction to

  15. Promoting Creative Thinking and Expression of Science Concepts among Elementary Teacher Candidates through Science Content Movie Creation and Showcasing

    Science.gov (United States)

    Hechter, Richard P.; Guy, Mark

    2010-01-01

    This article reports the phases of design and use of video editing technology as a medium for creatively expressing science content knowledge in an elementary science methods course. Teacher candidates communicated their understanding of standards-based core science concepts through the creation of original digital movies. The movies were assigned…

  16. Problem-based learning in a health sciences librarianship course.

    Science.gov (United States)

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  17. An Introduction to Optimal Control Problems in Life Sciences and Economics From Mathematical Models to Numerical Simulation with MATLAB®

    CERN Document Server

    Anita, Sebastian; Capasso, Vincenzo

    2011-01-01

    Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB(R) programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook a

  18. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  19. Concept Mapping as a Tool to Develop and Measure Students' Understanding in Science

    Science.gov (United States)

    Tan, Sema; Erdimez, Omer; Zimmerman, Robert

    2017-01-01

    Concept maps measured a student's understanding of the complexity of concepts, and interrelationships. Novak and Gowin (1984) claimed that the continuous use of concept maps increased the complexity and interconnectedness of students' understanding of relationships between concepts in a particular science domain. This study has two purposes; the…

  20. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  1. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  2. The ChlorOut concept. A method to reduce alkali-related problems during combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan [ChlorOut AB c/o Vattenfall AB, Nykoeping (Sweden); Wollner, Lothar [Boehringer Ingelheim Pharma GmbH und Co. KG, Ingelheim am Rhein (Germany); Berg, Magnus [ChlorOut AB c/o Vattenfall AB, Stockholm (Sweden)

    2013-06-01

    Combustion of biomass with a high content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. Ammonium sulphate is a part of the ChlorOut concept which is applied in a range of commercial boilers. This concept is based on dosing of sulphate-containing additives to the flue gases and a unique measurement device for on-line measurement of gaseous alkali chlorides called IACM (in-situ alkali chloride monitor). The focus of the present paper is on evaluation of long-term experiences from two full-scale boilers. The operational problems with deposit formation and superheater corrosion decreased in these boilers after installing the ChlorOut concept. (orig.)

  3. The Concept Drift Problem in Android Malware Detection and Its Solution

    Directory of Open Access Journals (Sweden)

    Donghui Hu

    2017-01-01

    Full Text Available Currently, the Android platform is the most popular mobile platform in the world and holds a dominant share in the mobile device market. With the popularization of the Android platform, large numbers of Android malware programs have begun to emerge on the Internet, and the sophistication of these programs is developing rapidly. While many studies have already investigated Android malware detection through machine learning and have achieved good results, most of these are based on static data sources and fail to consider the concept drift problem resulting from the rapid growth in the number of Android malware programs and normal Android applications, as well as rapid technological advancement in the Android environment. To address this problem, this work proposes a solution based on an ensemble classifier. This ensemble classifier is based on a streaming data-based Naive Bayes classifier. Android malware has identifiable feature utilization tendencies. On this basis, feature selection algorithm is introduced into the ensemble classifier, and a sliding window is maintained inside the ensemble classifier. Based on the performance of the subclassifiers inside the sliding window, the ensemble classifier makes dynamic adjustments to address the concept drift problem in Android malware detection. The experimental results from the proposed method demonstrate that it can effectively address the concept drift problem in Android malware detection in a streaming data environment.

  4. Learning of science concepts within a traditional socio-cultural ...

    African Journals Online (AJOL)

    The learning of science concepts within a traditional socio-cultural environment were investigated by looking at: 1) the nature of \\"cognitive border crossing\\" exhibited by the students from the traditional to the scientific worldview, and 2) whether or not three learning theories / hypotheses: border crossing, collaterality, and ...

  5. The effects of three concept mapping strategies on seventh-grade students' science achievement at an urban middle school

    Science.gov (United States)

    Dosanjh, Navdeep Kaur

    2011-12-01

    There is great concern over students' poor science achievement in the United States. Due to the lack of science achievement, students are not pursing science related careers resulting in an increase in outsourcing to other countries. Learning strategies such as concept mapping may ameliorate this situation by providing students with tools that encourage meaningful learning. The purpose of this quasi-experimental study was to measure the effects of three concept mapping learning strategies (concept identifying, proposition identifying, student generated) on urban middle school students' understanding of the circulatory system. Three intact classes of seventh-grade students were assigned to one of the three concept mapping strategies. The students were given a pretest on the circulatory system then learned and used their respective concept mapping strategies while learning about the circulatory system. At the conclusion of the study, students' science achievement was measured by performance on an achievement test and rubric scores of their respective concept identifying, proposition identifying, and student generated concept maps. The results of the study suggest that all three of the concept mapping strategies are effective in increasing students' science achievement. Additionally, the moderate significant correlations between the posttest and concept map scores of the current study established that concept maps are a useful measure of student knowledge. Lastly, the results of the current study also suggest that the concept identifying mapping strategy may be a useful scaffold in instructing students how to develop student generated concept maps.

  6. Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts

    Science.gov (United States)

    Marzocchi, Alison S.

    2016-01-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…

  7. Concept mapping and text writing as learning tools in problem-oriented learning

    NARCIS (Netherlands)

    Fürstenau, B.; Kneppers, L.; Dekker, R.; Cañas, A.J.; Novak, J.D.; Vanhaer, J.

    2012-01-01

    In two studies we investigated whether concept mapping or summary writing better support students while learning from authentic problems in the field of business. We interpret concept mapping and summary writing as elaboration tools aiming at helping students to understand new information, and to

  8. Identification and Analysis of Student Conceptions Used To Solve Chemical Equilibrium Problems.

    Science.gov (United States)

    Voska, Kirk W.; Heikkinen, Henry W.

    2000-01-01

    Identifies and quantifies the chemistry conceptions used by students when solving chemical equilibrium problems requiring application of LeChatelier's Principle, and explores the feasibility of designing a paper and pencil test to accomplish these purposes. Eleven prevalent incorrect student conceptions about chemical equilibrium were identified…

  9. The Relationship between Science Achievement and Self-Concept among Gifted Students from the Third International Earth Science Olympiad

    Science.gov (United States)

    Chang, Chun-Yen; Lin, Pei-Ling

    2017-01-01

    This study investigated the relationship between gifted students' academic self-concept (ASC) and academic achievement (AC) in earth science with internationally representative high-school students from the third International Earth Science Olympiad (IESO) held in Taiwan in 2009. The results of regression analysis indicated that IESO students' ASC…

  10. Adolescents' Emotion Regulation Strategies, Self-Concept, and Internalizing Problems

    Science.gov (United States)

    Hsieh, Manying; Stright, Anne Dopkins

    2012-01-01

    This study examined the relationships among adolescents' emotion regulation strategies (suppression and cognitive reappraisal), self-concept, and internalizing problems using structural equation modeling. The sample consisted of 438 early adolescents (13 to 15 years old) in Taiwan, including 215 boys and 223 girls. For both boys and girls,…

  11. Reaching Nonscience Students through Science Fiction

    Science.gov (United States)

    Smith, Donald A.

    2009-01-01

    In 2006 I had the chance to design a physics course for students not majoring in scientific fields. I chose to shape the course around science fiction, not as a source for quantitative problems but as a means for conveying important physics concepts. I hoped that, by encountering these concepts in narratives, students with little or no science or…

  12. Transforming "Ecosystem" from a Scientific Concept into a Teachable Topic: Philosophy and History of Ecology Informs Science Textbook Analysis

    Science.gov (United States)

    Schizas, Dimitrios; Papatheodorou, Efimia; Stamou, George

    2017-04-01

    This study conducts a textbook analysis in the frame of the following working hypothesis: The transformation of scientific knowledge into school knowledge is expected to reproduce the problems encountered with the scientific knowledge itself or generate additional problems, which may both induce misconceptions in textbook users. Specifically, we describe four epistemological problems associated with how the concept of "ecosystem" is elaborated within ecological science and we examine how each problem is reproduced in the biology textbook utilized by Greek students in the 12th grade and the resulting teacher and student misunderstandings that may occur. Our research demonstrates that the authors of the textbook address these problems by appealing simultaneously to holistic and reductionist ideas. This results in a meaningless and confused depiction of "ecosystem" and may provoke many serious misconceptions on the part of textbook users, for example, that an ecosystem is a system that can be applied to every set of interrelated ecological objects irrespective of the organizational level to which these entities belong or how these entities are related to each other. The implications of these phenomena for science education research are discussed from a perspective that stresses the role of background assumptions in the understanding of declarative knowledge.

  13. Building Science and Technology Solutions for National Problems

    International Nuclear Information System (INIS)

    Bishop, Alan R.

    2012-01-01

    The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

  14. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    Science.gov (United States)

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  15. The problems of thermohydraulics of prospective fast reactor concepts

    International Nuclear Information System (INIS)

    Sedov, A.A.

    2000-01-01

    In this report the main requirements to fast reactors in system of future multicomponent Nuclear Power with closed U-Pu fuel cycle are regarded. The peculiarities of different liquid-metal (sodium and lead-alloyed) coolants as well as the thermohydraulics problems of prospective fast reactors (FR) concepts are discussed. (author)

  16. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  17. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  18. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  19. Adolescents' Motivation to Select an Academic Science-Related Career: The Role of School Factors, Individual Interest, and Science Self-Concept

    Science.gov (United States)

    Taskinen, Päivi H.; Schütte, Kerstin; Prenzel, Manfred

    2013-01-01

    Many researchers consider a lacking interest in science and the students' belief that science is too demanding as major reasons why young people do not strive for science-related careers. In this article, we first delineated a theoretical framework to investigate the importance of interest, self-concept, and school factors regarding students'…

  20. Making Learning Last: Teachers' Long-Term Retention of Improved Nature of Science Conceptions and Instructional Rationales

    Science.gov (United States)

    Mulvey, Bridget K.; Bell, Randy L.

    2017-01-01

    Despite successful attempts to improve learners' nature of science (NOS) conceptions through explicit, reflective approaches, retention of improved conceptions is rarely addressed in research. The issue of context for NOS instruction has implications for this retention. Whether to contextualise has been the question occupying science educators'…

  1. Two-year study relating adolescents' self-concept and gender role perceptions to achievement and attitudes toward science

    Science.gov (United States)

    Handley, Herbert M.; Morse, Linda W.

    To assess the developmental relationship of perceptions of self-concept and gender role identification with adolescents' attitudes and achievement in science, a two-year longitudinal study was conducted. A battery of instruments assessing 16 dimensions of self-concept/gender role identifications was employed to predict students' achievement and attitudes toward science. Specific behaviors studied included self-concept in school and science and mathematics, attitudes toward appropriate gender roles in science activities and careers, and self-perceptions of masculine and feminine traits. One hundred and fifty-five adolescents, enrolled, respectively, in the seventh and eighth grades, participated in the study. Through Fisher z transformations of correlation coefficients, differences in relationships between these two sets of variables were studied for males and females during the two years. Results indicated that students' self-concepts/gender role perceptions were related to both achievement and attitudes toward science, but more related to attitudes than achievement. These relationships became more pronounced for students as they matured from seventh to eighth graders.

  2. Conceptual Blending Monitoring Students' Use of Metaphorical Concepts to Further the Learning of Science

    Science.gov (United States)

    Fredriksson, Alexandra; Pelger, Susanne

    2018-03-01

    The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.

  3. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    Science.gov (United States)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  4. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  5. Relationship of sex, achievement, and science self-concept to the science career preferences of black students

    Science.gov (United States)

    Jacobowitz, Tina

    Science career preferences of junior high school-aged students, while not stable predictors of ultimate career choice, do serve to direct and maintain individuals along the paths to careers in science. In this study, factors relevant to science career preferences of black eighth grade students were investigated. This issue is of particular import to blacks since they are severely underrepresented in the scientific fields. The sample consisted of 113 males and 148 females in an inner city junior high school. The Science Career Preference Scale, the Peabody Picture Vocabulary Test, and the Self-Concept of Ability Scale (Form B-Science) were administered. Mathematics and science grades were obtained from class rating sheets. Treatment of the data involved multiple regression analysis according to a hierarchical model. Results showed that of all the independent variables, sex was the strongest predictor of science career preferences, accounting for 25% of the criterion variance. The findings suggest that early adolescent science career preferences are related more to interests that are consonant with sex-role considerations than realistic assessment of mathematics or science achievement.

  6. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    Science.gov (United States)

    Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian

    2015-04-01

    Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the

  7. Exploring teacher's perceptions of concept mapping as a teaching strategy in science: An action research approach

    Science.gov (United States)

    Marks Krpan, Catherine Anne

    In order to promote science literacy in the classroom, students need opportunities in which they can personalize their understanding of the concepts they are learning. Current literature supports the use of concept maps in enabling students to make personal connections in their learning of science. Because they involve creating explicit connections between concepts, concept maps can assist students in developing metacognitive strategies and assist educators in identifying misconceptions in students' thinking. The literature also notes that concept maps can improve student achievement and recall. Much of the current literature focuses primarily on concept mapping at the secondary and university levels, with limited focus on the elementary panel. The research rarely considers teachers' thoughts and ideas about the concept mapping process. In order to effectively explore concept mapping from the perspective of elementary teachers, I felt that an action research approach would be appropriate. Action research enabled educators to debate issues about concept mapping and test out ideas in their classrooms. It also afforded the participants opportunities to explore their own thinking, reflect on their personal journeys as educators and play an active role in their professional development. In an effort to explore concept mapping from the perspective of elementary educators, an action research group of 5 educators and myself was established and met regularly from September 1999 until June 2000. All of the educators taught in the Toronto area. These teachers were interested in exploring how concept mapping could be used as a learning tool in their science classrooms. In summary, this study explores the journey of five educators and myself as we engaged in collaborative action research. This study sets out to: (1) Explore how educators believe concept mapping can facilitate teaching and student learning in the science classroom. (2) Explore how educators implement concept

  8. Influence of Precollege Experience on Self-Concept among Community College Students in Science, Mathematics, and Engineering

    Science.gov (United States)

    Starobin, Soko S.; Laanan, Frankie Santos

    Female and minority students have historically been underrepresented in the field of science, mathematics, and engineering at colleges and universities. Although a plethora of research has focused on students enrolled in 4-year colleges or universities, limited research addresses the factors that influence gender differences in community college students in science, mathematics, and engineering. Using a target population of 1,599 aspirants in science, mathematics, and engineering majors in public community colleges, this study investigates the determinants of self-concept by examining a hypothetical structural model. The findings suggest that background characteristics, high school academic performance, and attitude toward science have unique contributions to the development of self-concept among female community college students. The results add to the literature by providing new theoretical constructs and the variables that predict students' self-concept.

  9. Origins Space Telescope: Science Case and Design Reference Mission for Concept 1

    Science.gov (United States)

    Meixner, Margaret; Cooray, Asantha; Pope, Alexandra; Armus, Lee; Vieira, Joaquin Daniel; Milam, Stefanie N.; Melnick, Gary; Leisawitz, David; Staguhn, Johannes G.; Bergin, Edwin; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The science case for OST covers four themes: Tracing the Signature of Life and the Ingredients of Habitable Worlds; Charting the Rise of Metals, Dust and the First Galaxies, Unraveling the Co-evolution of Black Holes and Galaxies and Understanding Our Solar System in the Context of Planetary System Formation. Using a set of proposed observing programs from the community, we estimate a design reference mission for OST mission concept 1. The mission will complete significant programs in these four themes and have time for other programs from the community. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu.

  10. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  11. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts

    International Nuclear Information System (INIS)

    Castellini, O. M.; Walejko, G. K.; Holladay, C. E.; Theim, T. J.; Zenner, G. M.; Crone, W. C.

    2007-01-01

    Researchers are faced with challenges when addressing the public on concepts and applications associated with nanotechnology. The goal of our work was to understand the public's knowledge of nanotechnology in order to identify appropriate starting points for dialog. Survey results showed that people lack true understanding of concepts associated with atoms and the size of the nanoscale regime. Such gaps in understanding lead to a disappointing lack of communication between researchers and the public concerning fundamental concepts in nanoscale science and engineering. Strategies are offered on how scientists should present their research when engaging the public on nanotechnology topics

  12. Problems and Prospects of Science Education in Bangladesh

    Science.gov (United States)

    Choudhury, Shamima K.

    2009-04-01

    Scientific and technological know-how, not the amount of natural resources, determines the development of a country. Bangladesh, with insignificant natural resources and a huge population on a small piece of land, can be developed through scientific and technological means. Whereas it was once the most sought-after subject at secondary and postsecondary levels, science is losing its appeal in an alarming shift of choice. Problems in science education and possible solutions for Bangladesh, which has limited resources for encouraging science education, are presented.

  13. Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-01-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…

  14. Science of invention patent

    International Nuclear Information System (INIS)

    Park, Yeong Taek; Park, Su Dong

    1999-02-01

    This book tells science of invention patent about new way of invention and creative solution for problems, basic conception of TRIZ, resolution of physical contradictory and technical contradictory, development of system and types of evolution, change of thinking for solving the problems, analysis of structure for problem solution, problem solution using scientific phenomenon and effect, use of standard solution and algorithm of creative problem solution.

  15. Is problem-based learning a quality approach to education in health sciences?

    Science.gov (United States)

    Kwan, C Y

    2001-07-01

    The Faculty of Health Sciences at McMaster University has pioneered, experimented and finally excelled in the application of problem-based learning (PBL) as an entire medical curriculum for the past 35 years. However, the general practice of PBL by other medical schools around the globe has progressed slowly. In theory, PBL as an educational philosophy has long been considered as a quality cognitive concept and was adopted by many medical schools via curriculum reform to improve students' learning attitude. In practice, what is the experimental evidence for PBL meeting the expectation of a quality education in health sciences? How do we differentiate problems associated with PBL philosophy per se from those associated with the ways PBL are handled and implemented? I will address these questions from the perspective of the assessment of performance of students, graduates and practising physicians from the PBL track compared to those from the conventional track based on literature information. Ample evidence suggests that PBL is superior in producing more compassionate physicians and graduates with lifelong learning and leadership quality. But, some educators and administrators are still skeptical that the benefits from PBL may be too marginal to justify the resources required in sustaining it. In this presentation, the assessment of PBL, in both theoretical and practical terms, will be discussed using McMaster PBL as a convenient example because of its relatively long history in practising PBL in medical education.

  16. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    Science.gov (United States)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  17. Conceptual and Procedural Knowledge Community College Students Use when Solving Science Problems

    Science.gov (United States)

    Eibensteiner, Janice L.

    2012-01-01

    Successful science students have mastered their field of study by being able to apply their learned knowledge and problem solving skills on tests. Problem solving skills must be used to figure out the answer to many classes of questions. What this study is trying to determine is how students solve complex science problems in an academic setting in…

  18. Examining the Big-Fish-Little-Pond Effect on Students' Self-Concept of Learning Science in Taiwan Based on the TIMSS Databases

    Science.gov (United States)

    Liou, Pey-Yan

    2014-08-01

    The purpose of this study is to examine the relationship between student self-concept and achievement in science in Taiwan based on the big-fish-little-pond effect (BFLPE) model using the Trends in International Mathematics and Science Study (TIMSS) 2003 and 2007 databases. Hierarchical linear modeling was used to examine the effects of the student-level and school-level science achievement on student self-concept of learning science. The results indicated that student science achievement was positively associated with individual self-concept of learning science in both TIMSS 2003 and 2007. On the contrary, while school-average science achievement was negatively related to student self-concept in TIMSS 2003, it had no statistically significant relationship with student self-concept in TIMSS 2007. The findings of this study shed light on possible explanations for the existence of BFLPE and also lead to an international discussion on the generalization of BFLPE.

  19. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  20. Elementary Teacher's Conceptions of Inquiry Teaching: Messages for Teacher Development

    Science.gov (United States)

    Ireland, Joseph E.; Watters, James J.; Brownlee, Jo; Lupton, Mandy

    2012-02-01

    This study explored practicing elementary school teacher's conceptions of teaching in ways that foster inquiry-based learning in the science curriculum (inquiry teaching). The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience-centered conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centered conception where teachers focused on engaging students with challenging problems; and (c) The Question-centered conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development, with enhanced outcomes for engaging students in Science.

  1. Amplification of the concept of erroneous meaning in psychodynamic science and in the consulting room.

    Science.gov (United States)

    Brookes, Crittenden E

    2007-01-01

    Previous papers dealt with the concept of psyche as that dynamic field which underlies the subjective experience of mind. A new paradigm, psychodynamic science, was suggested for dealing with subjective data. The venue of the psychotherapeutic consulting room is now brought directly into science, expanding the definition of psychotherapy to include both humanistic and scientific elements. Certain concepts were introduced to amplify this new scientific model, including psyche as hypothetical construct, the concept of meaning as replacement for operational validation in scientific investigation, the synonymity of meaning and insight, and the concept of synchronicity, together with the meaning-connected affect of numinosity. The presence of unhealthy anxiety as the conservative ego attempts to preserve its integrity requires a deeper look at the concept of meaning. This leads to a distinction between meaning and erroneous meaning. The main body of this paper amplifies that distinction, and introduces the concept of intolerance of ambiguity in the understanding of erroneous meanings and their connection with human neurosis.

  2. Study Habit, Self-Concept and Science Achievement of Public and ...

    African Journals Online (AJOL)

    This study compared study habit, self-concept and science achievement of students in public and private junior secondary schools in Ogun State, Nigeria. Twelve secondary schools were randomly selected from Egba and Ijebu divisions of the state. A sample of three hundred and sixty (360) students participated in the ...

  3. A systematic review of concept mapping-based formative assessment processes in primary and secondary science education

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Stevenson, Matt P.; Bentsen, Peter

    2017-01-01

    assessment: firstly, concept mapping should be constructed in teaching, preferably on repeated occasions. Secondly, concept mapping should be carried out individually if personal understanding is to be elicited; however, collaborative concept mapping might foster discussions valuable for developing students......’ understanding and for activating them as instructional resources and owners of their own learning. Thirdly, low-directed mapping seems most suitable for formative assessment. Fourthly, technology-based or peer assessments are useful strategies likely to reduce the load of interpretation for the educator......In this paper, we present and discuss the results of a systematic review of concept mapping-based interventions in primary and secondary science education. We identified the following recommendations for science educators on how to successfully apply concept mapping as a method for formative...

  4. Current Crisis in Science Education? Women in Science and Problems for the Behavioral Scientists. Some Perspectives of a Physicist.

    Science.gov (United States)

    Dresselhaus, Mildred S.

    A number of problems exist in society which require the cooperation of physical and social scientists. One of these problems is the current crisis in science education. There are several aspects to this problem, including the declining interest of students in math and science at a time when functioning in our society requires more, not less,…

  5. Changing Preservice Science Teachers' Views of Nature of Science: Why Some Conceptions May Be More Easily Altered than Others

    Science.gov (United States)

    Mesci, Gunkut; Schwartz, Renee' S.

    2017-01-01

    The purpose of this study was to assess preservice teachers' views of Nature of Science (NOS), identify aspects that were challenging for conceptual change, and explore reasons why. This study particularly focused on why and how some concepts of NOS may be more easily altered than others. Fourteen preservice science teachers enrolled in a NOS and…

  6. Teaching science problem solving: an overview of experimental work

    NARCIS (Netherlands)

    Taconis, R.; Ferguson-Hessler, M.G.M.; Broekkamp, H.

    2001-01-01

    The traditional approach to teaching science problem solving is having the students work individually on a large number of problems. This approach has long been overtaken by research suggesting and testing other methods, which are expected to be more effective. To get an overview of the

  7. The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter

    Science.gov (United States)

    Kurniati, D. R.; Rohman, I.

    2018-05-01

    This study aims to analyze the concepts and science process skills in bomb calorimeter experiment as a basis for developing the virtual laboratory of bomb calorimeter. This study employed research and development method (R&D) to gain the answer to the proposed problems. This paper discussed the concepts and process skills analysis. The essential concepts and process skills associated with bomb calorimeter are analyze by optimizing the bomb calorimeter experiment. The concepts analysis found seven fundamental concepts to be concerned in developing the virtual laboratory that are internal energy, burning heat, perfect combustion, incomplete combustion, calorimeter constant, bomb calorimeter, and Black principle. Since the concept of bomb calorimeter, perfect and incomplete combustion created to figure out the real situation and contain controllable variables, in virtual the concepts displayed in the form of simulation. Meanwhile, the last four concepts presented in the form of animation because no variable found to be controlled. The process skills analysis detect four notable skills to be developed that are ability to observe, design experiment, interpretation, and communication skills.

  8. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    Science.gov (United States)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve

  9. Excel 2016 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical physical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand physical science problems. Practice problems are provided at the end of each chapter with their s...

  10. Excel 2016 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Environmental Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapte...

  11. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    Science.gov (United States)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  12. Survey of stress, anxiety, depression and self-concept of students of Fasa University of medical sciences, 2010

    Directory of Open Access Journals (Sweden)

    Majid Najafi Kalyani

    2013-09-01

    Full Text Available Background & Objectives: Studying periods in university is very important for students. Because of the problems, this period is usually accompanied with mental status changes of students. The aim of this study was the assessment of psychological variables (stress, anxiety and depression and self-concept of students. Materials & Methods: In this cross-sectional study, all the students studying at Fasa University of Medical Sciences in the academic year 89-88 were selected through census sampling method. The DASS-21 was used to assess stress, anxiety and depression of students and in order to evaluate the status of their self-concept; the Carl Rogers questionnaire was used. Data analysis was performed with SPSS software using descriptive and inferential statistics (t test, ANOVA, Chi square and Pearson correlation. Results: The results of this study showed that 76% of students had stress, 56.4% anxiety and 53.1% depression, and 69/3% had weak or negative self-concepts. There was a statistically significant correlation between high stress, anxiety and depression with negative self-concept (P<0.001.Conclusion: High stress, anxiety and depression and also a significant correlation between increased stress, anxiety and depression with negative and weak self-concept of students were found. It is necessary to devote more careful attention to mental health issues of students and have appropriate interventions.

  13. Students’ understanding and application of the area under the curve concept in physics problems

    Directory of Open Access Journals (Sweden)

    Dong-Hai Nguyen

    2011-06-01

    Full Text Available This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving the area under the curve concept. We found that only a few students could recognize that the concept of area under the curve was applicable in physics problems. Even when students could invoke the area under the curve concept, they did not necessarily understand the relationship between the process of accumulation and the area under a curve, so they failed to apply it to novel situations. We also found that when presented with several graphs, students had difficulty in selecting the graph such that the area under the graph corresponded to a given integral, although all of them could state that “the integral equaled the area under the curve.” The findings in this study are consistent with those in previous mathematics education research and research in physics education on students’ use of the area under the curve.

  14. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  15. Conceptions of the Nature of Science Held by Undergraduate Pre-Service Biology Teachers in South-West Nigeria

    Science.gov (United States)

    Adedoyin, A. O.; Bello, G.

    2017-01-01

    This study investigated the conceptions of the nature of science held by pre-service undergraduate biology teachers in South-West, Nigeria. Specifically, the study examined the influence of their gender on their conceptions of the nature of science. The study was a descriptive research of the survey method. The population for the study comprised…

  16. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  17. Open science, e-science and the new technologies: Challenges and old problems in qualitative research in the social sciences

    Directory of Open Access Journals (Sweden)

    Ercilia García-Álvarez

    2012-12-01

    Full Text Available Purpose: As well as introducing the articles in the special issue titled "Qualitative Research in the Social Sciences", this article reviews the challenges, problems and main advances made by the qualitative paradigm in the context of the new European science policy based on open science and e-Science and analysis alternative technologies freely available in the 2.0 environment and their application to fieldwork and data analysis. Design/methodology: Theoretical review. Practical implications: The article identifies open access technologies with applications in qualitative research such as applications for smartphones and tablets, web platforms and specific qualitative data analysis software, all developed in both the e-Science context and the 2.0 environment. Social implications: The article discusses the possible role to be played by qualitative research in the open science and e-Science context and considers the impact of this new context on the size and structure of research groups, the development of truly collaborative research, the emergence of new ethical problems and quality assessment in review processes in an open environment. Originality/value: The article describes the characteristics that define the new scientific environment and the challenges posed for qualitative research, reviews the latest open access technologies available to researchers in terms of their main features and proposes specific applications suitable for fieldwork and data analysis.

  18. Philosophical conceptions of the self: implications for cognitive science.

    Science.gov (United States)

    Gallagher

    2000-01-01

    Several recently developed philosophical approaches to the self promise to enhance the exchange of ideas between the philosophy of the mind and the other cognitive sciences. This review examines two important concepts of self: the 'minimal self', a self devoid of temporal extension, and the 'narrative self', which involves personal identity and continuity across time. The notion of a minimal self is first clarified by drawing a distinction between the sense of self-agency and the sense of self-ownership for actions. This distinction is then explored within the neurological domain with specific reference to schizophrenia, in which the sense of self-agency may be disrupted. The convergence between the philosophical debate and empirical study is extended in a discussion of more primitive aspects of self and how these relate to neonatal experience and robotics. The second concept of self, the narrative self, is discussed in the light of Gazzaniga's left-hemisphere 'interpreter' and episodic memory. Extensions of the idea of a narrative self that are consistent with neurological models are then considered. The review illustrates how the philosophical approach can inform cognitive science and suggests that a two-way collaboration may lead to a more fully developed account of the self.

  19. An Investigation of Problem-Solving Skills of Preservice Science Teachers

    Science.gov (United States)

    Bahtiyar, Asiye; Can, Bilge

    2016-01-01

    Advancements in science and technology have created problems for some people who have difficulties adapting to the new environment. Improving problem solving skills of these people is very important for them to so have the ability to cope with new problems. From the education perspective, it is believed that teachers should help students by not…

  20. Study of graduate curriculum in the radiological science: problems and suggestions

    International Nuclear Information System (INIS)

    Ko, Seong Jin; Kim, Hwa Gon; Kang, Se Sik; Park, Byeong Rae; Kim, Chang Soo

    2006-01-01

    Currently, Educational program of radiological science is developed in enormous growth, our educational environments leading allied health science education program in the number of super high speed medical industry. Radiological science may be the fastest growing technologies in our medical department today. In this way, Medical industry fields converged in the daily quick, the fact that department of radiological science didn't discharged ones duties on current educational environments. The curriculum of radiological technologists that play an important part between skill and occupation's education as major and personality didn't performed one's part most effectively on current medical environments and digital radiological equipment interface. We expect improvement and suggestion to grow natural disposition as studies in the graduate of radiological science. Therefore, in this paper, current curriculum of radiological science are catched hold of trend and problems on digital radiology environments, on fact the present state of problems, for Graduate program of radiological science, graduate courses of MS and ph.D. are suggested a reform measure of major education curriculum introduction

  1. Knowledge acquisition process as an issue in information sciences

    Directory of Open Access Journals (Sweden)

    Boris Bosančić

    2016-07-01

    Full Text Available The paper presents an overview of some problems of information science which are explicitly portrayed in literature. It covers the following issues: information explosion, information flood and data deluge, information retrieval and relevance of information, and finally, the problem of scientific communication. The purpose of this paper is to explain why knowledge acquisition, can be considered as an issue in information sciences. The existing theoretical foundation within the information sciences, i.e. the DIKW hierarchy and its key concepts - data, information, knowledge and wisdom, is recognized as a symbolic representation as well as the theoretical foundation of the knowledge acquisition process. Moreover, it seems that the relationship between the DIKW hierarchy and the knowledge acquisition process is essential for a stronger foundation of information sciences in the 'body' of the overall human knowledge. In addition, the history of both the human and machine knowledge acquisition has been considered, as well as a proposal that the DIKW hierarchy take place as a symbol of general knowledge acquisition process, which could equally relate to both human and machine knowledge acquisition. To achieve this goal, it is necessary to modify the existing concept of the DIKW hierarchy. The appropriate modification of the DIKW hierarchy (one of which is presented in this paper could result in a much more solid theoretical foundation of the knowledge acquisition process and information sciences as a whole. The theoretical assumptions on which the knowledge acquisition process may be established as a problem of information science are presented at the end of the paper. The knowledge acquisition process does not necessarily have to be the subject of epistemology. It may establish a stronger link between the concepts of data and knowledge; furthermore, it can be used in the context of scientific research, but on the more primitive level than conducting

  2. The concept 'environment' in exergy analysis Some special cases

    International Nuclear Information System (INIS)

    Serova, E.N.; Brodianski, V.M.

    2004-01-01

    The concept 'environment' is of considerable importance in present-day engineering thermodynamics. Introduction of this concept in operation brings not only simplification of the methods of solving classical thermodynamic problems, but also gives the exergy method which forms the major new part of thermodynamics, including some parts of biology, economics and other fields of science. But practice shows that it is necessary to define the concept 'environment' more precisely in some cases

  3. Problems in the Study of the Concepts of Underlying Categories

    Directory of Open Access Journals (Sweden)

    Guzel R. Faizova

    2017-10-01

    Full Text Available This paper considers the concepts of underlying categories. The economic good is one of such categories. In this regard, we considered such characteristics of an economic good as utility, value, and cost. The public goods, which are the goods that can benefit society and have two distinctive features, are an important category as well. In this regard, we characterized the characteristics and features of public goods and identified the main problems in this category. At present, the actual problem faced by the state is the production and evaluation of the effectiveness of public goods. The difficulty is that it is impossible to accurately determine the production volume of goods necessary for the society. Assessment of the effectiveness of the state activities requires the development of special tools. The existing legislatively defined methods have a number of shortcomings and do not allow obtaining an objective picture. Financing of most public goods occurs at the expense of the state, so it is very important to ensure and increase the efficiency of their spending at the moment. Public-private partnership is the most promising tool for better satisfying the needs of the population. The main goal of this work is to identify and discuss the main characteristics of the concepts of underlying categories and explain possible problems, issues faced by the state and the society.

  4. Semio-Linguistic Creative Actualization of the Concept “Information About the Future” in the Science Fiction Discourse

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Olyanich

    2015-11-01

    Full Text Available The article deals with the cognitive category of "semio-linguistic creativity", that serves as a tool for implification of the concept "Information about the future" in the science fiction discourse. The correlation between the categories of future and information is studied in semio-linguistic aspect; the conceptual core, internal and external zones of the concept "Information about the future" are explored in connection with the concepts "Future", "Myths" and "Expectations" that are viewed as belonging to the science fiction discourse. The following issues are considered: coordination between axiological and imaginative spheres of the concept "Information about the future"; the mechanism of transforming information from present and past into the future by means of literary imagination, which is aimed at constructing the imaginary hyper-reality with the use of concepts that belong to contemporary reality; it is stated that such activity lays the basis for multiple forecasts. After the analysis of the novels by Vasily Golovachev, a famous Russian science fiction writer, the authors present their interpretation of the process of science-fiction discourse unfolding that involves groups of signs from the following semio-linguistic clusters (The Man as a species; Food; Space, Earth, their semantic content is directly related to the needs of the future. The proposed algorithm of analysis may be applied to studying other semio-linguistic clusters: "Habitat," "Communications", "Social Environment", "Transport", "Technology", that may explicate the concept "Information about the future".

  5. Further Understanding of the Food Safety Problem

    Institute of Scientific and Technical Information of China (English)

    Xingxing; MEI; Zhongchao; FENG; Pinghua; HE; Yawen; GAO; Yuqin; DAI

    2015-01-01

    Frequent occurrence of food quality and safety proves that it is not effective to solve the Problem only from mechanism and supervision mechanism. Instead,it may expand solution ideas from external environment inducing changes of social institutions. Edible agricultural products are raw materials of foods,so their quality and safety are decisive for food quality and safety. Combining with concept of quality and safety of edible agricultural products,from social economy,science,technology and culture,environment cognition,this paper made a further understanding of food quality and safety. It found that the quality and safety of domestic edible agricultural products are not completely resulted from human factor,and not completely quality and safety problem in practical sense. Design of problem solutions should consider such external factors as economic level and consumption concept,dual character of science and technology,cultural quality of the masses,and moral trait of the masses,and enhance matching of building of regulation tools with external environment.

  6. The radioactive waste management concept: problem definition and solving in Latvia

    International Nuclear Information System (INIS)

    Dreimanis, A.; Shatrovska, D.

    2003-01-01

    Development of radioactive waste (RW) management concept is treated as a key component of a general process - elaboration of the overall RW management strategy for a certain country/region. We present indication of possible solutions for crucial RW management problems for Latvia being in the same time rather generic for other countries. The importance of the Concept for Latvia follows from the planned decommissioning of the Salaspils Research Reactor (SRR) and from the recommended further upgrading of RW management organization in conditions of limited resources.The aim of this Concept is to stimulate the development of advanced, environmentally sound and population friendly system of RW management, in accord with the fair social system for the protection of human health and the environment, in line of international recommendations.The Concept foresees solutions for the safe management of RW for the period 2003-2010. The main problems to be analysed and solved in the Concept: 1.The increase of the RW quantity and a lack of the sufficient storage space. In addition to the traditional producers of RW such as medicine, industry, and science, there are two major operators in Latvia that have significantly increase the yearly amount of RW for disposal in recent years and will do so in nearest future - disposal off of the SRR decommissioning waste in the existing near-surface LILW-SL RW repository, which dictates the need for its enlargement. 2. The safety of the existent repository. To ensure protection of population and environment (including the Baltic sea) from exposure and radioactive contamination, proper measures shall be taken. The safety of RW repository should be upgraded via building long-term cover, according to recommendations of safety assessment (SA) by consortium CASSIOPEA. 3. Construction of a long term storage and the geological disposal site. Safe isolation of long-lived RW can be achieved by storage in the geological disposal site only, thereby; a

  7. Connecting Knowledge Domains : An Approach to Concept Learning in Primary Science and Technology Education

    NARCIS (Netherlands)

    Koski, M.

    2014-01-01

    In order to understand our dependency on technology and the possible loss of control that comes with it, it is necessary for people to understand the nature of technology as well as its roots in science. Learning basic science and technology concepts should be a part of primary education since it

  8. Analysis of chemical concepts as the basic of virtual laboratory development and process science skills in solubility and solubility product subject

    Science.gov (United States)

    Syafrina, R.; Rohman, I.; Yuliani, G.

    2018-05-01

    This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.

  9. [ORGANIZATIONAL COMMITMENT AND WORK ENGAGEMENT - THEORETICAL CONCEPTIONS AND TERMINOLOGICAL PROBLEMS].

    Science.gov (United States)

    Łaguna, Mariola; Mielniczuk, Emilia; Żaliński, Adam; Wałachowska, Karolina

    2015-01-01

    Engagement in professional activities and positive attitudes towards an organization are of significant importance to functioning and health of employees. Studies analysing the phenomena of employees' engagement and their relations with an organization undergo a dynamic development in both international and Polish research. Two theoretical conceptions: organizational commitment (by Meyer and Allen) and work engagement (by Schaufeli and Bakker) have become prominent in the field. They capture 2 similar, albeit distinct constructs. In English-language journals academics concentrate on theoretical and empirical analyses of similarities and differences between the 2 concepts, while in Polish publications scholars also have to deal with the issue of the original term translation. The problem lies mostly in Polish nomenclature of the dimensions proposed in both of these conceptions. Lack of common translations for different studies may cause confusion in this area of research. In the paper authors present a review of Polish translations of terms used in the discussed conceptions and a linguistic analysis of terms, both in English and in Polish. Authors provide solutions which could help to clarify terminology in Polish-language publications concerning organizational commitment and work engagement. This allows for further development of research in this field.

  10. Investigation of Preservice Science Teachers' Comprehension of the Star, Sun, Comet and Constellation Concepts

    Science.gov (United States)

    Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan

    2017-01-01

    The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…

  11. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    Science.gov (United States)

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  12. The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts

    NARCIS (Netherlands)

    Bos, Floor/Floris; Terlouw, C.; Pilot, Albert

    2009-01-01

    In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental

  13. The Concept of Ideology in Analysis of Fundamental Questions in Science Education

    Science.gov (United States)

    Säther, Jostein

    The use of the concept of `ideology' in interpretation of science education curricula, textbooks and various practises is reviewed, and examples are given by referring to Norwegian curricula and textbooks. The term is proposed to be used in a broad sense about any kind of action-oriented theory based on a system of ideas, or any attempt to approach politics in the light of a system of ideas. Politics in this context is about shaping of education, and is related to forces (i.e., hypothetical impacts of idea systems) which may legitimise, change, or criticise social practices. The focus is (although not in every case) on the hidden, unconscious and critical aspects. The notion ideological aspects is proposed to be related to metaphysical-ontological, epistemological and axiological claims and connotations. Examples of educational issues concerning e.g., aims, compartmentalisation, integration, and fundamentally different ideas about truth, learning and man are mentioned. Searching for a single and unifying concept for the discussing of all of science education's fundamental questions seems however in vain. Therefore a wide range of concepts seems necessary to deepen our understanding of ``the fundamental questions''.

  14. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    Science.gov (United States)

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  15. Preparing new nurses with complexity science and problem-based learning.

    Science.gov (United States)

    Hodges, Helen F

    2011-01-01

    Successful nurses function effectively with adaptability, improvability, and interconnectedness, and can see emerging and unpredictable complex problems. Preparing new nurses for complexity requires a significant change in prevalent but dated nursing education models for rising graduates. The science of complexity coupled with problem-based learning and peer review contributes a feasible framework for a constructivist learning environment to examine real-time systems data; explore uncertainty, inherent patterns, and ambiguity; and develop skills for unstructured problem solving. This article describes a pilot study of a problem-based learning strategy guided by principles of complexity science in a community clinical nursing course. Thirty-five senior nursing students participated during a 3-year period. Assessments included peer review, a final project paper, reflection, and a satisfaction survey. Results were higher than expected levels of student satisfaction, increased breadth and analysis of complex data, acknowledgment of community as complex adaptive systems, and overall higher level thinking skills than in previous years. 2011, SLACK Incorporated.

  16. The Role of Drawing in Young Children's Construction of Science Concepts

    Science.gov (United States)

    Chang, Ni

    2012-01-01

    It has been observed that many young children like making marks on paper and that they enjoy the activity. It is also known that children's drawings are vehicles for expression and communication. Therefore, it would be logical and reasonable for teachers to incorporate children's drawings into building science concepts. To demonstrate how drawings…

  17. The Impact of a Summer Institute on Inservice Early Childhood Teachers' Knowledge of Earth and Space Science Concepts

    Science.gov (United States)

    Sackes, Mesut; Trundle, Kathy Cabe; Krissek, Lawrence A.

    2011-01-01

    This study investigated inservice PreK to Grade two teachers' knowledge of some earth and space science concepts before and after a short-term teacher institute. A one-group pre-test-post-test design was used in the current study. Earth science concepts targeted during the professional development included properties of rocks and soils, and the…

  18. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-05-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the quantitative data while a conceptually clustered matrix classified the open-ended responses. The country effect could explain 3-12 % of the variances of subjectivity, empirical testability and diverse methods, but it was not significant for the concepts of tentativeness and socio-cultural embeddedness of science. The open-ended responses showed that students believed scientific theories change due to errors or discoveries. Students regarded empirical evidence as undeniable and objective although they acknowledged experiments depend on theories or scientists' knowledge. The open responses revealed that national situations and curriculum content affected their views. For our future democratic citizens to gain scientific literacy, science curricula should include currently acknowledged NOS concepts and should be situated within societal and cultural perspectives.

  19. Geography оf Economic Science: Problem Setting

    Directory of Open Access Journals (Sweden)

    Alexander Nikolaevich Demyanenko

    2014-03-01

    Full Text Available The article is devoted to geography of economic science, which is, according to the authors, a kind of a «gray zone», where concepts and methods of science of science, economic geography and economy cross. The authors proceeded from the following methodological prerequisites: 1 the production of economic knowledge is the activity, the scope and the results of which can be measured fairly accurately; 2 the structure of economic science can be presented not only as a sectoral, thematic, institutional, but also as a spatial. As an information base of research the authors used E-library resources which are relevant to the authors that have published the results of studies in Economics and related disciplines in the scientific journals. At the initial stage of the research, the authors focused on the economists who are employees of scientific research organizations (academic institutions, universities and research institutes that are located within the Russian Far East, as well as researchers from other regions of Russia, who have published articles in the Far Eastern scientific journals. Preliminary results of the study show following: 1 the high level of A.N. Demyanenko, N.A. Demyanenko PE No. 1 2014 territorial concentration (85% of all publications belongs to research organizations of Khabarovsk and Vladivostok; 2 the high level of information concentration (up to 90% of all publications belongs to Far Eastern journals. Mostly this is due to the fragmentation of economic scientific community

  20. Do Science and Technology Teachers and Pre-Service Primary Teachers Have Different Thoughts about Concept Maps in Science and Technology Lessons?

    Science.gov (United States)

    Karakuyu, Yunus

    2011-01-01

    The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…

  1. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Science.gov (United States)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  2. The Pre-Service Science Teachers' Mental Models for Concept of Atoms and Learning Difficulties

    Science.gov (United States)

    Kiray, Seyit Ahmet

    2016-01-01

    The purpose of this study is to reveal the pre-service science teachers' difficulties about the concept of atoms. The data was collected from two different sources: The Draw an Atom Test (DAAT) and face-to-face interviews. Draw an atom test (DAAT) were administered to the 142 science teacher candidates. To elaborate the results, the researcher…

  3. Concepts, Perception and the Dual Process Theories of Mind

    Directory of Open Access Journals (Sweden)

    Marcello Frixione

    2014-12-01

    Full Text Available In this article we argue that the problem of the relationships between concepts and perception in cognitive science is blurred by the fact that the very notion of concept is rather confused. Since it is not always clear exactly what concepts are, it is not easy to say, for example, whether and in what measure concept possession involves entertaining and manipulating perceptual representations, whether concepts are entirely different from perceptual representations, and so on. As a paradigmatic example of this state of affairs, we will start by taking into consideration the distinction between conceptual and nonconceptual content. The analysis of such a distinction will lead us to the conclusion that concept is a heterogeneous notion. Then we shall take into account the so called dual process theories of mind; this approach also points to concepts being a heterogeneous phenomenon: different aspects of conceptual competence are likely to be ascribed to different types of systems. We conclude that without a clear specification of what concepts are, the problem of the relationships between concepts and perception is somewhat ill-posed.

  4. The Bobath concept in contemporary clinical practice.

    Science.gov (United States)

    Graham, Julie Vaughan; Eustace, Catherine; Brock, Kim; Swain, Elizabeth; Irwin-Carruthers, Sheena

    2009-01-01

    Future development in neurorehabilitation depends upon bringing together the endeavors of basic science and clinical practice. The Bobath concept is widely utilized in rehabilitation following stroke and other neurological conditions. This concept was first developed in the 1950s, based on the neuroscience knowledge of those times. The theoretical basis of the Bobath concept is redefined based on contemporary neuroscience and rehabilitation science. The framework utilized in the Bobath concept for the analysis of movement and movement dysfunction is described. This framework focuses on postural control for task performance, the ability to move selectively, the ability to produce coordinated sequences of movement and vary movement patterns to fit a task, and the role of sensory input in motor behaviour and learning. The article describes aspects of clinical practice that differentiate this approach from other models of practice. Contemporary practice in the Bobath concept utilizes a problem-solving approach to the individual's clinical presentation and personal goals. Treatment is focused toward remediation, where possible, and guiding the individual towards efficient movement strategies for task performance. The aim of this article is to provide a theoretical framework on which future research into the Bobath concept can be based.

  5. DECISION SUPPORT CONCEPT TO MANAGEMENT OF CONSTRUCTION PROJECTS - PROBLEM OF CONSTRUCTION SITE SELECTION

    Directory of Open Access Journals (Sweden)

    Nikša Jajac

    2013-02-01

    Full Text Available The aim of this paper is to present Decision Support Concept (DSC for management of construction projects. Focus of our research is in application of multicritera methods (MCM to decision making in planning phase of construction projects (related to the problem of construction sites selection. The problem is identified as a significant one from many different aspects such as economic aspect, civil engineering aspect, etc. what indicates the necessity for evaluation of multiple sites by several different criteria. Therefore, DSC for construction site selection based on PROMETHEE method is designed. In order to define the appropriate criteria, their weights and preference functions for the concept, three groups of stakeholders are involved (investors, construction experts and experts for real estate market in its design. AHP method has been used for determination of criteria weights. The model has been tested on the problem of site selection for construction of residential-commercial building in four largest cities in Croatia.

  6. Problem-Based Learning in the Life Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  7. The Enhancement of Communication Skill and Prediction Skill in Colloidal Concept by Problem Solving Learning

    OpenAIRE

    Anggraini, Agita Dzulhajh; Fadiawati, Noor; Diawati, Chansyanah

    2012-01-01

    Accuracy educators in selecting and implementing learning models influence students' science process skills. Models of learning that can be applied to improve science process skills and tend constructivist among athers learning model of problem solving. This research was conducted to describe the effectiveness of the learning model of problem solving in improving communication skills and prediction skills. Subjects in this research were students of high school YP Unila Bandar Lampung Even ...

  8. Symposium Connects Government Problems with State of the Art Network Science Research

    Science.gov (United States)

    2015-10-16

    Symposium Connects Government Problems with State-of-the- Art Network Science Research By Rajmonda S. Caceres and Benjamin A. Miller Network...the US Gov- ernment, and match these with the state-of-the- art models and techniques developed in the network science research community. Since its... science has grown significantly in the last several years as a field at the intersec- tion of mathematics, computer science , social science , and engineering

  9. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  10. Ecological Factors Influencing Emotional/Behavioral Problems and Self-Concept in Adolescents from Low-Income Families in South Korea.

    Science.gov (United States)

    Baek, Suyon; Yoo, Haewon

    2017-09-01

    In this study, we examined emotional/behavioral problems and self-concept in adolescents from low-income families in Korea; additionally, we identified ecological factors associated with these traits. This descriptive study employed an ecological model to analyze data from the Korean Children and Youth Panel Survey. A nationwide stratified multistage cluster sampling methodology was used. Overall, 2534 first-year middle school students were included in the survey, and the survey was conducted from 2010 to 2016. Hierarchical multiple regression models were generated. The mean score of emotional/behavioral problem has been changed from 2.20 (2011), 2.15 (2013), to 2.11 (2015) out of 4, and the mean score of self-concept has been changed from 2.73 (2012), 2.73 (2014), to 2.77 (2015) out of 4. Factors that influenced emotional/behavioral problems and self-concept among adolescents were health perception and academic achievement (only associated with self-concept) at the intrapersonal level and parenting style, peer attachment (only associated with self-concept), and relationships with teachers at the interpersonal level. These results may be used to inform the development of interventions designed to decrease emotional/behavioral problems and improve positive self-concept in adolescents from low-income families.

  11. Activities in KURRI. Aim to realize the concept of 'Kumatori science park'

    International Nuclear Information System (INIS)

    Shiroya, S.

    2007-01-01

    In Kyoto University Research Reactor Institute (KURRI), activities for the dissemination of knowledge on radiation and atomic energy are considered to be important to realize the future plan based on the conception of Kumatori science park', which will open to the world with roots in the neighboring area. Activities include technical tours of facilities in KURRI, science experiments for kids, lectures on fruits of research for public, courses of reactor physics experiments for the graduate and under-graduate students majoring nuclear engineering, and so on. (author)

  12. Preservice Science Teachers’ Levels of Associating The Concept of Gas Pressure with Everyday Life

    Directory of Open Access Journals (Sweden)

    Aybüke Pabuçcu

    2016-10-01

    Full Text Available Through this research, it was aimed to investigate how pre-service science teachers’ use their knowledge about the concept of gas pressure in explaining some examples from everyday life. The research was carried out with 33 freshmen pre-service science teachers. The data in the research were collected through five formative assessment probes. The students were asked to work in small groups to complete the questions. Groups’ discussions were recorded. Groups’ written responses were classified in five different categories: sound understanding, partial understanding, specific misconception, no understanding, and no response. Data under these categories were given as percentages in a table. The sum of students’ responses in sound understanding and partial understanding are in the range of 37.5% and 62.5%. Results revealed that students had difficulty in understanding the gases concepts and associating these concepts with everyday life events. Moreover, many misconceptions and misuse of the ideal gas equation were determined in the students’ explanations.

  13. Teaching creativity and inventive problem solving in science.

    Science.gov (United States)

    DeHaan, Robert L

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property. The creative process can be explained by reference to increasingly well-understood cognitive skills such as cognitive flexibility and inhibitory control that are widely distributed in the population. I explore the relationship between creativity and the higher-order cognitive skills, review assessment methods, and describe several instructional strategies for enhancing creative problem solving in the college classroom. Evidence suggests that instruction to support the development of creativity requires inquiry-based teaching that includes explicit strategies to promote cognitive flexibility. Students need to be repeatedly reminded and shown how to be creative, to integrate material across subject areas, to question their own assumptions, and to imagine other viewpoints and possibilities. Further research is required to determine whether college students' learning will be enhanced by these measures.

  14. Influence of Particle Theory Conceptions on Pre-Service Science Teachers' Understanding of Osmosis and Diffusion

    Science.gov (United States)

    AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye

    2015-01-01

    This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…

  15. The problem of information an introduction to information science

    CERN Document Server

    Raber, Douglas

    2003-01-01

    Information can be conceptualized in two fundamentally yet contradictory ways_it appears in the world as both a physical and a cognitive phenomenon. The dilemma information specialists face is similar to that of physicists who must cope with light as both a wave and a particle. Unlike physics, however, information science has yet to develop a unified theory that unites the contradictory conceptions of its essential theoretical object.

  16. [Problems of world outlook and methodology of science integration in biological studies].

    Science.gov (United States)

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  17. Applying design thinking concepts to rejuvenate the discipline of operations research/ management science

    CSIR Research Space (South Africa)

    Viljoen, NM

    2009-10-01

    Full Text Available problems, thereby bridging the gap between Management Science and Management Consulting. Instead of flogging the proponents of the Management Science domain for losing touch with reality through their “mathematical masturbation" (Ackoff [1]), Corbett...

  18. Concept of hegemony in contemporary geopolitical science

    Directory of Open Access Journals (Sweden)

    M. A. Shepyelyev

    2017-07-01

    Full Text Available The article discusses the main conceptual approaches to understanding the nature and patterns of functioning and development of hegemony in international relations. Analysed the contribution to the development of research hegemony in international relations, which has made the school world-system analysis. According to its founder F. Braudel, the hegemony of the world is a manifestation of inequality, the latter reveals the structural realities that are approved very slowly, very slowly disappear. The concept of a follower of Fernand Braudel, Emmanuel Wallerstein, according to which the hegemony reflects the ability of a particular state to make one part of the international system to its customers, and the second - to drive into a defensive position. The development of the «modern world-system» is defined by Wallerstein changes hegemony. Wallerstein argues that the State has the ability to create a stable geopolitical system of unequal social division of powers, which are part of the normal functioning of the capitalist world-economy. It is also noted that the pattern of ups and downs of world leaders - hegemony - are considered in the research of many scientists, including George Modelski. He develops a theory about hundred-year cycle of global leadership, using the term «selection» to describe the process of competition and the adoption of this role. Among the concepts of hegemony also highlighted the Charles Krauthammer’s conception of monopolarity, on which the present geopolitical structure of the world after the «cold war» - one pole of world power , consisting of the United States as the top of the industrial West. Analyzed the  Piter Taylor’s conception of global hegemony, which distinguishes the competitive and non-competitive era, successive, and the Nail Ferguson’s conception of imperialism. The paper shows that the problem of hegemony in the 70-th years passed from the purely theoretical plane into practical politics

  19. The Effects of Problem Solving Applications on the Development of Science Process Skills, Logical Thinking Skills and Perception on Problem Solving Ability in the Science Laboratory

    Science.gov (United States)

    Seyhan, Hatice Güngör

    2015-01-01

    This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…

  20. IS THE INQUIRY-BASED SCIENCE EDUCATION THE BEST?

    Directory of Open Access Journals (Sweden)

    Milan Kubiatko

    2016-10-01

    Full Text Available The science education is fighting with a relatively big problem. Many academicians, teachers and also laic society are still perceiving difficulty in understanding of concepts from science subject and lack of interest about this group of subjects. In the past the teaching process was very formal focused on the memorizing of the facts without any deeper understanding of the processes in the nature. Pupils and students knew all definitions about concepts in the science subjects, but practical application was on the low level. The academicians, teachers and other people interested in the science education were eager to change system of education.

  1. THE EFFECT OF CONCEPT MAPPING ON CONCEPT LEARNING IN SCIENCE

    OpenAIRE

    岡, 直樹; 今永, 久美子

    2012-01-01

    An experiment was conducted to investigate the effects of concept map completion tasks on concept learning in the primary schoolchildren. The participants were to insert some of the suitable concepts (concept group) or link labeles (link label group) or both of them (concept/link label group) into the blanks to make up the map wholly. It was revealed that the results of the concept group and the concept/link label group were better than the link label group. These results were discussed in te...

  2. Examination of Pre-Service Science Teachers' Activities Using Problem Based Learning Method

    Science.gov (United States)

    Ekici, Didem Inel

    2016-01-01

    In this study, both the activities prepared by pre-service science teachers regarding the Problem Based Learning method and the pre-service science teachers' views regarding the method were examined before and after applying their activities in a real class environment. 69 pre-service science teachers studying in the 4th grade of the science…

  3. Software Usability: Concepts, Attributes and Associated Health Problems

    Directory of Open Access Journals (Sweden)

    Grīnberga Sabīne

    2016-10-01

    Full Text Available Digital technologies have opened a large set of opportunities for new electronic services (e-commerce, e-health, e-studies etc.. There are many considerations that need to be made when programmers are building new application software or system software. The software needs to be attractive enough that people want to look at it. It also needs to contain all necessary information that developers want to share with their readers (customers, users in order to help them achieve the objective for which they came to their website, use their software, or interact with their teaching packages. The oversupply of e-services products has created a need for usability research and development. “Usability means making products and systems easier to use, and matching them more closely to user needs and requirements”. Usability is a key concept of the human-computer interface and is concerned with making computer systems easy to learn and easy to use through a user-centered design process. The in-depth understanding of usability concepts and processes are critical for large-scale acceptance of new e-services and knowledge productivity. Poorly designed software can be extremely annoying to users. Smith and Mayes state that „usability is now recognised as a vital determining factor in the success of any new computer system or computer-based service”. Studies have shown that the main health problems of computer users are repetitive strain injuries, visual discomfort and stress-related disorders. Beside other risk factors, such as poor workstation design, uncomfortable work postures, long hours of computer use every day, stress, etc., also poor design and usability of the computer systems, as well as computer technical problems, add to the pressure felt by the user, which may in turn cause stress-related disorders.

  4. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  5. FINANCING OF SCIENCE ADVANCEMENT IN UKRAINE: EXISTENT PROBLEMS AND PROSPECTS OF THEIR SOLUTIONFINANCING OF SCIENCE ADVANCEMENT IN UKRAINE: EXISTENT PROBLEMS AND PROSPECTS OF THEIR SOLUTION

    Directory of Open Access Journals (Sweden)

    Tetiana Bogolib

    2016-11-01

    Full Text Available Science plays an important role of development of national economies of developed countries. Postindustrial society, society of knowledge is a society where scientific discoveries, scientific research results ensure economic growth, economic stability, economic exuberance. In such a society not goods, not movable and real property and not natural resources, including power, put together the main society wealth, but scientific discoveries, new knowledge. Countries, which gain primary income from scientific discoveries and high technologies, are prosperous in the modern world. The purpose of study. A solution of science problems in the modern world should become an important direction of a state’s attention to providing national security. Weakening of academic and technological as well as technological potential of the country, research reduction, mass closure of research institutes and centres, several-ford reduction in the volume of funding of science, outflow of specialists and intellectual property abroad for the last three years menace Ukraine with a loss of advanced positions in the world, degradation of knowledge-intensive industries, strengthening of external technological dependence and undermining of its defensive capacity. Such a situation predetermined the topic of our research, its main purpose – identification of problems of science financing and determination of ways to solve them. Research methods. When writing the article, a set of methods and approaches was used that allowed realizing a conceptual unity of the research. Dialectical, system, structural methods are used for the analysis of financing of the science advancement in Ukraine, existent problems of the science financing are generalized with the help of comparative and factorial methods; ways for improving financing of the science advancement are determined by using methods of scientific abstraction, synthesis, functional analysis. The results of the study. In Ukraine

  6. Sound. Physical Science in Action. Teacher's Manual and Workbook.

    Science.gov (United States)

    Chan, Janis Fisher; Friedland, Mary

    The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…

  7. Philosophy and the front line of science.

    Science.gov (United States)

    Pernu, Tuomas K

    2008-03-01

    According to one traditional view, empirical science is necessarily preceded by philosophical analysis. Yet the relevance of philosophy is often doubted by those engaged in empirical sciences. I argue that these doubts can be substantiated by two theoretical problems that the traditional conception of philosophy is bound to face. First, there is a strong normative etiology to philosophical problems, theories, and notions that is dfficult to reconcile with descriptive empirical study. Second, conceptual analysis (a role that is typically assigned to philosophy) seems to lose its object of study if it is granted that terms do not have purely conceptual meanings detached from their actual use in empirical sciences. These problems are particularly acute to the current naturalistic philosophy of science. I suggest a more concrete integration of philosophy and the sciences as a possible way of making philosophy of science have more impact.

  8. The profile of problem-solving ability of students of distance education in science learning

    Science.gov (United States)

    Widiasih; Permanasari, A.; Riandi; Damayanti, T.

    2018-05-01

    This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.

  9. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  10. Excel 2013 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching physical sciences statistics effectively. Similar to the previously published Excel 2010 for Physical Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2013 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their ...

  11. Excel 2016 for social science statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2016-01-01

    This book shows the capabilities of Microsoft Excel in teaching social science statistics effectively. Similar to the previously published Excel 2013 for Social Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical social science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in social science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Social Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in ...

  12. Innovative method by design-around concepts with integrating the algorithm for inventive problem solving

    International Nuclear Information System (INIS)

    Chen, Wang Chih; Chen Jahau Lewis

    2014-01-01

    The work proposes a new design tool that integrates design-around concepts with the algorithm for inventive problem solving (Russian acronym: ARIZ). ARIZ includes a complete procedure for analyzing problems and related resource, resolving conflicts and generating solutions. The combination of ARIZ and design-around concepts and understanding identified principles that govern patent infringements can prevent patent infringements whenever designers innovate, greatly reducing the cost and time associated with the product design stage. The presented tool is developed from an engineering perspective rather than a legal perspective, and so can help designers easily to prevent patent infringements and succeed in innovating by designing around. An example is used to demonstrate the proposed method.

  13. Analysing the problems of science teachers that they encounter while teaching physics education

    Directory of Open Access Journals (Sweden)

    Cihat Demir

    2015-12-01

    Full Text Available Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters encountered by science teachers during the teaching of physics and to provide them with solutions. The study group consisted of 50 science teachers who worked in Diyarbakır and Batman over the period of 2014 - 2015. This research is a descriptive study carried out by content analysis. In this study, semi-structured interview have been used along with qualitative research methods. According to the research findings, the top problems that the physics teachers encountered in physics lesson while processing the topics were laboratory problems. Some solutions have been introduced for science teachers in order to help them provide a better physics education.

  14. Is Information Science an Anomalous State of Knowledge

    DEFF Research Database (Denmark)

    Hollnagel, E.

    1980-01-01

    it is not necessary for sciences which concern themselves with behavioral phenomena which have a prior description in natural language. It is further argued that information science should be more interested in uncertainty than in information, and it is shown how the Anomalous State of Knowledge (ASK) paradigm may......This paper looks at some of the problems in information science from the experience with similar problems in psycho logy. The apparent need for a set of rigorous definitions of the basic concepts is discussed, and it is argued that although this is necessary for the natural sciences...... be used to describe itself, hence also informa tion science. It is finally concluded that by turning to problems of uncertainty and lack of information, rather than information, information science may avoid many of the mistakes made by psychology....

  15. Academic and Nonacademic Validating Agents on Latinas Mathematics and Science Self Concept A Quantitative Study Utilizing the High School Longitudinal Study of 2009

    Science.gov (United States)

    Garza, Jennifer M.

    The purpose of this study is to inform and further the discussion of academic (i.e. teachers and school counselors) and non-academic (i.e. parents, family, friends, etc.) validating agents on Latina students' mathematics and science self-concepts. This study found a relationship between Latina students' interactions with academic and non-academic validating agents and their math and science self-concept at the K-12 level. Through the review of the literature the researcher addresses identifiable factors and strategies that inform the field of education in the areas of validation theory, family characteristics, and access to STEM fields for Latina students. The researcher used an established instrument designed, administered, and validated through the National Center for Education Statistics (NCES). For purposes of this study, a categorical subset of participants who self-identified as being a Latina student was used. As a result, the total subset number in this study was N=1,882. To determine if academic and non-academic validating agents had an observable statistically significant relationship with Latina students' math and science self-concept, a series of one-way ANOVAs were calculated to compare differences in students' math and science self-concept based on academic and non-academic validating agents for the weighted sample of Latinas for the HLS:09 survey. A path analysis was also employed to assess the factors involved in Latina students' math and science self-concepts. The findings are consistent with previous research involving the influence that academic and non-academic validating agents have on the math and science self-concept of Latina students. The results indicated that students who had teachers that believed in the students, regardless of family background, social economic status or home environment influences had higher math and science self concepts than those who did not. Similarly, it was found that students who had counselors that set high

  16. Science As A Second Language: Acquiring Fluency through Science Enterprises

    Science.gov (United States)

    Shope, R.; EcoVoices Expedition Team

    2013-05-01

    Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. EcoVoices takes students on field research expeditions within an urban natural area, the San Gabriel River Discovery Center. This project engages students in science enterprises focused on understanding ecosystems, ecosystem services, and the dynamics of climate change. A sister program, EcoVoces, has been launched in Mexico, in collaboration with the Universidad Loyola del Pacífico. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change: Explore { Diagnose, Design, Discuss } Use. 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Mimedia de la Ciencia, participatory enactment of science concepts using techniques of mime and improvisational theater. BACKGROUND: Science has become a vehicle for teaching reading, writing, and other communication skills, across the curriculum. This new emphasis creates renewed motivation for Scientists and Science Educators to work collaboratively to explore the common ground between acquiring science understanding and language acquisition theory. Language Acquisition is an informal process that occurs in the midst of

  17. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  18. Communist heritage tourism and red tourism : concepts, development and problems

    OpenAIRE

    Caraba, Cosmin Ciprian

    2011-01-01

    "Communist heritage tourism and red tourism: concepts, development and problems. The second part of the 20th century has been marked by the competition between capitalism and communism. The “Autumn of Nations” put an end to the Eastern Bloc, but each former communist country in Central and Eastern Europe still possesses heritage sites reminding of the communist period. These heritage sites are turning into major tourist attractions, being sought by western tourists. Halfway around the worl...

  19. Conceptions of the Nature of Science--Are They General or Context Specific?

    Science.gov (United States)

    Urhahne, Detlef; Kremer, Kerstin; Mayer, Juergen

    2011-01-01

    The study investigates the relationship between general and context-specific conceptions of the nature of science (NOS). The categorization scheme by Osborne et al. (J Res Sci Teach 40:692-720, "2003") served as the theoretical framework of the study. In the category "nature of scientific knowledge", the certainty, development, simplicity,…

  20. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    International Nuclear Information System (INIS)

    Franz, S

    2004-01-01

    Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare - and often catastrophic - events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent

  1. Traitements didactiques preventifs d'un type de conceptions erronees en sciences physiques chez des eleves du secondaire

    Science.gov (United States)

    Blondin, Andre

    Dans un contexte constructiviste, les connaissances anterieures d'un individu sont essentielles a la construction de nouvelles connaissances. Quelle qu'en soit la source (certaines de ces connaissances ont ete elaborees en classe, d'autres ont ete elaborees par interaction personnelle de l'individu avec son environnement physique et social), ces connaissances, une fois acquises, constituent les matieres premieres de l'elaboration des nouvelles conceptions de cet individu. Generalement, cette influence est consideree comme positive. Cependant, dans un milieu scolaire ou l'apprentissage de certaines conceptions enchassees dans un programme d'etudes et enterinees par l'ensemble d'une communaute est obligatoire, certaines connaissances anterieures peuvent entraver la construction des conceptions exigees par la communaute. La litterature abonde de tels exemples. Cependant, certaines connaissances anterieures, en soi tout a fait conformes a l'Heritage, peuvent aussi, parce qu'utilisees de facon non pertinente, entraver la construction d'une conception exigee par la communaute. Ici, la litterature nous donne peu d'exemples de ce type, mais nous en fournirons quelques-uns dans le cadre theorique, et ce sera un d'entre eux qui servira de base a nos propos. En effet, une grande proportion d'eleves inscrits a un cours de sciences physiques de la quatrieme secondaire, en reponse a un probleme deja solutionne durant l'annee et redonne lors d'un examen sommatif, "Pourquoi la Lune nous montre-t-elle toujours la meme face?", attribue principalement la cause de ce phenomene a la rotation de la Terre sur son axe. En tant que responsable de l'enseignement de ce programme d'etudes, plusieurs questions nous sont venues a l'esprit, entre autres, comment, dans un contexte constructiviste, est-il possible de reduire chez un eleve, l'impact de cette connaissance anterieure dans l'elaboration de la solution et ainsi prevenir la construction d'une conception erronee? Nous avons teste nos

  2. Eight statements on environmental research in the social sciences

    International Nuclear Information System (INIS)

    Prittwitz, V.

    1985-01-01

    Social science research on environmental problems has two main tasks: (1) to provide critical practice-oriented contributions to present and threatening environmental problems, and (2) to draw the humans-and-nature problematique into social science concepts and theoretical frameworks. In this paper, the prerequisites for achieving both tasks as well as the theoretical, political, and institutional aspects that affect them are discussed. The focus of the discussion is the interdependence between practical problem solving and development of theory. (orig.) [de

  3. Introduction: contexts and concepts of adaptability and plasticity in 20th-century plant science.

    Science.gov (United States)

    Baranski, Marci; Peirson, B R Erick

    2015-04-01

    Nowhere is the problem of understanding the complex linkages between organisms and their environments more apparent than in the science of plants. Today, efforts by scientists to predict and manage the biological consequences of shifting global and regional climates depend on understanding how organisms respond morphologically, physiologically, and behaviorally to changes in their environments. Investigating organismal "adaptability" (or "plasticity") is rarely straightforward, prompting controversy and discourse among and between ecologists and agricultural scientists. Concepts like agro-climatic adaptation, phenotypic plasticity, and genotype-environment interaction (GxE) are key to those debates, and their complex histories have imbued them with assumptions and meanings that are consequential but often opaque. This special section explores the diverse ways in which organismal adaptability has been conceptualized and investigated in the second half of the 20th century, and the multifarious political, economic, environmental, and intellectual contexts in which those conceptions have emerged and evolved. The papers in this section bring together perspectives from the histories of agriculture, population ecology, evolutionary theory, and plant physiology, cutting across Asian, North American, and British contexts. As a whole, this section highlights not only the diversity of meanings of "adaptability" and "plasticity," but also the complex linkages between those meanings, the scientific practices and technologies in which they are embedded, and the ends toward which those practices and technologies are employed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. International Science Education: A Study of UNESCO Science Education Improvement Projects in Selected Anglophone Countries of Africa: Project Problems.

    Science.gov (United States)

    Nichter, Richard

    1984-01-01

    Discusses some of the problems faced by technical advisors implementing projects for the improvement of science education in Africa and reasons for these problems. Problem areas considered include underdevelopment, underestimating the process, finances, personality conflict and motivation, and opposition from key groups. (A list of major UNESCO…

  5. Strategic Approaches to Trading Science Objectives Against Measurements and Mission Design: Mission Architecture and Concept Maturation at the Jet Propulsion Laboratory

    Science.gov (United States)

    Case, K. E.; Nash, A. E., III

    2017-12-01

    Earth Science missions are increasingly challenged to improve our state of the art through more sophisticated hypotheses and inclusion of advanced technologies. However, science return needs to be constrained to the cost environment. Selectable mission concepts are the result of an overlapping Venn diagram of compelling science, feasible engineering solutions, and programmatic acceptable costs, regardless of whether the science investigation is Earth Venture or Decadal class. Since the last Earth Science and Applications Decadal Survey released in 2007, many new advanced technologies have emerged, in instrument, SmallSat flight systems, and launch service capabilities, enabling new mission architectures. These mission architectures may result in new thinking about how we achieve and collect science measurements, e.g., how to improve time-series measurements. We will describe how the JPL Formulation Office is structured to integrate methods, tools, and subject matter experts to span the mission concept development lifecycle, and assist Principal Investigators in maturing their mission ideas into realizable concepts.

  6. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  7. Children's Social Self-Concept and Internalizing Problems: The Influence of Peers and Teachers

    Science.gov (United States)

    Spilt, Jantine L.; van Lier, Pol A. C.; Leflot, Geertje; Onghena, Patrick; Colpin, Hilde

    2014-01-01

    This study aimed to understand how relationships with peers and teachers contribute to the development of internalizing problems via children's social self-concept. The sample included 570 children aged 7 years 5 months (SD = 4.6 months). Peer nominations of peer rejection, child-reported social self-concept, and teacher-reported…

  8. Is normal science good science?

    Directory of Open Access Journals (Sweden)

    Adrianna Kępińska

    2015-09-01

    Full Text Available “Normal science” is a concept introduced by Thomas Kuhn in The Structure of Scientific Revolutions (1962. In Kuhn’s view, normal science means “puzzle solving”, solving problems within the paradigm—framework most successful in solving current major scientific problems—rather than producing major novelties. This paper examines Kuhnian and Popperian accounts of normal science and their criticisms to assess if normal science is good. The advantage of normal science according to Kuhn was “psychological”: subjective satisfaction from successful “puzzle solving”. Popper argues for an “intellectual” science, one that consistently refutes conjectures (hypotheses and offers new ideas rather than focus on personal advantages. His account is criticized as too impersonal and idealistic. Feyerabend’s perspective seems more balanced; he argues for a community that would introduce new ideas, defend old ones, and enable scientists to develop in line with their subjective preferences. The paper concludes that normal science has no one clear-cut set of criteria encompassing its meaning and enabling clear assessment.

  9. Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning.

    Science.gov (United States)

    Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-03-01

    The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.

  10. Evolution of the Concept of "Human Capital" in Economic Science

    Science.gov (United States)

    Perepelkin, Vyacheslav A.; Perepelkina, Elena V.; Morozova, Elena S.

    2016-01-01

    The relevance of the researched problem is determined by transformation of the human capital into the key economic resource of development of the postindustrial society. The purpose of the article is to disclose the content of evolution of the human capital as a scientific concept and phenomenon of the economic life. The leading approach to the…

  11. State of the science of maternal-infant bonding: a principle-based concept analysis.

    Science.gov (United States)

    Bicking Kinsey, Cara; Hupcey, Judith E

    2013-12-01

    to provide a principle-based analysis of the concept of maternal-infant bonding. principle-based method of concept analysis for which the data set included 44 articles published in the last decade from Pubmed, CINAHL, and PyschINFO/PsychARTICLES. literature inclusion criteria were English language, articles published in the last decade, peer-reviewed journal articles and commentary on published work, and human populations. after a brief review of the history of maternal-infant bonding, a principle-based concept analysis was completed to examine the state of the science with regard to this concept. The concept was critically examined according to the clarity of definition (epistemological principle), applicability of the concept (pragmatic principle), consistency in use and meaning (linguistic principle), and differentiation of the concept from related concepts (logical principle). Analysis of the concept revealed: (1) Maternal-infant bonding describes maternal feelings and emotions towards her infant. Evidence that the concept encompasses behavioural or biological components was limited. (2) The concept is clearly operationalised in the affective domain. (3) Maternal-infant bonding is linguistically confused with attachment, although the boundaries between the concepts are clearly delineated. despite widespread use of the concept, maternal-infant bonding is at times superficially developed and subject to confusion with related concepts. Concept clarification is warranted. A theoretical definition of the concept of maternal-infant bonding was developed to aid in the clarification, but more research is necessary to further clarify and advance the concept. nurse midwives and other practitioners should use the theoretical definition of maternal-infant bonding as a preliminary guide to identification and understanding of the concept in clinical practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers

    OpenAIRE

    Prasart Nuangchalerm

    2009-01-01

    Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice science teachers approaching socioscientific issues-based teaching. The activities in classroom emphasized on peer discussion about science and social ref...

  13. Home | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    “I propose this evening to speak to you on a new kind of radiation or light ... While various research institutes and colleges celebrate the national science day in ... The talk explored the concepts of isoperimetric problems – how circles with the ...

  14. "small problems, Big Trouble": An Art and Science Collaborative Exhibition Reflecting Seemingly small problems Leading to Big Threats

    Science.gov (United States)

    Waller, J. L.; Brey, J. A.

    2014-12-01

    "small problems, Big Trouble" (spBT) is an exhibition of artist Judith Waller's paintings accompanied by text panels written by Earth scientist Dr. James A. Brey and several science researchers and educators. The text panels' message is as much the focus of the show as the art--true interdisciplinarity! Waller and Brey's history of art and earth science collaborations include the successful exhibition "Layers: Places in Peril". New in spBT is extended collaboration with other scientists in order to create awareness of geoscience and other subjects (i.e. soil, parasites, dust, pollutants, invasive species, carbon, ground water contaminants, solar wind) small in scale which pose significant threats. The paintings are the size of a mirror, a symbol suggesting the problems depicted are those we increasingly need to face, noting our collective reflections of shared current and future reality. Naturalistic rendering and abstract form in the art helps reach a broad audience including those familiar with art and those familiar with science. The goal is that gallery visitors gain greater appreciation and understanding of both—and of the sober content of the show as a whole. "small problems, Big Trouble" premiers in Wisconsin April, 2015. As in previous collaborations, Waller and Brey actively utilize art and science (specifically geoscience) as an educational vehicle for active student learning. Planned are interdisciplinary university and area high school activities linked through spBT. The exhibition in a public gallery offers a means to enhance community awareness of and action on scientific issues through art's power to engage people on an emotional level. This AGU presentation includes a description of past Waller and Brey activities: incorporating art and earth science in lab and studio classrooms, producing gallery and museum exhibitions and delivering workshops and other presentations. They also describe how walking the paths of several past earth science

  15. Clinical Correlations as a Tool in Basic Science Medical Education

    Directory of Open Access Journals (Sweden)

    Brenda J. Klement

    2016-01-01

    Full Text Available Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1 Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2 Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3 Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4 Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5 Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills.

  16. Developing Physics Concepts through Hands-On Problem Solving: A Perspective on a Technological Project Design

    Science.gov (United States)

    Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi

    2012-01-01

    In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…

  17. Concepts of combinatorial optimization

    CERN Document Server

    Paschos, Vangelis Th

    2014-01-01

    Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management.  The three volumes of the Combinatorial Optimization series aim to cover a wide range  of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization.Concepts of Combinatorial Optimization, is divided into three parts:- On the complexity of combinatorial optimization problems, presenting basics about worst-case and randomi

  18. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    Science.gov (United States)

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    Science.gov (United States)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the

  20. Analysis Science Process Skills Content in Chemistry Textbooks Grade XI at Solubility and Solubility Product Concept

    Directory of Open Access Journals (Sweden)

    Bayu Antrakusuma

    2017-12-01

    Full Text Available The aim of this research was to determine the analysis of science process skills in textbooks of chemistry grade XI in SMA N 1 Teras, Boyolali. This research used the descriptive method. The instruments were developed based on 10 indicators of science process skills (observing, classifying, finding a conclusion, predicting, raising the question, hypothesizing, planning an experiment, manipulating materials, and equipment, Applying, and communicating. We analyzed 3 different chemistry textbooks that often used by teachers in teaching. The material analyzed in the book was solubility and solubility product concept in terms of concept explanation and student activity. The results of this research showed different science process skill criteria in 3 different chemistry textbooks. Book A appeared 50% of all aspects of science process skills, in Book B appeared 80% of all aspects of science process skills, and in Book C there was 40% of all aspects of the science process skills. The most common indicator in all books was observing (33.3%, followed by prediction (19.05%, classifying (11.90%, Applying (11.90% , planning experiments (9.52%, manipulating materials and equipment (7.14%, finding conclusion (4.76%, communicating (2.38%. Asking the question and hypothesizing did not appear in textbooks.

  1. Two-Level Solutions to Exponentially Complex Problems in Glass Science

    DEFF Research Database (Denmark)

    Mauro, John C.; Smedskjær, Morten Mattrup

    Glass poses an especially challenging problem for physicists. The key to making progress in theoretical glass science is to extract the key physics governing properties of practical interest. In this spirit, we discuss several two-level solutions to exponentially complex problems in glass science....... Topological constraint theory, originally developed by J.C. Phillips, is based on a two-level description of rigid and floppy modes in a glass network and can be used to derive quantitatively accurate and analytically solvable models for a variety of macroscopic properties. The temperature dependence...... that captures both primary and secondary relaxation modes. Such a model also offers the ability to calculate the distinguishability of particles during glass transition and relaxation processes. Two-level models can also be used to capture the distribution of various network-forming species in mixed...

  2. Phase Transitions in Combinatorial Optimization Problems Basics, Algorithms and Statistical Mechanics

    CERN Document Server

    Hartmann, Alexander K

    2005-01-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary

  3. On performing concepts during science lectures

    Science.gov (United States)

    Pozzer-Ardenghi, Lilian; Roth, Wolff-Michael

    2007-01-01

    When lecturing, teachers make use of both verbal and nonverbal communication. What is called teaching, therefore, involves not only the words and sentences a teacher utters and writes on the board during a lesson, but also all the hands/arms gestures, body movements, and facial expressions a teacher performs in the classroom. All of these communicative modalities constitute resources that are made available to students for making sense of and learning from lectures. Yet in the literature on teaching science, these other means of communication are little investigated and understood - and, correspondingly, they are undertheorized. The purpose of this position paper is to argue for a different view of concepts in lectures: they are performed simultaneously drawing on and producing multiple resources that are different expressions of the same holistic meaning unit. To support our point, we provide examples from a database of 26 lectures in a 12th-grade biology class, where the human body was the main topic of study. We analyze how different types of resources - including verbal and nonverbal discourse and various material artifacts - interact during lectures. We provide evidence for the unified production of these various sense-making resources during teaching to constitute a meaning unit, and we emphasize particularly the use of gestures and body orientations inside this meaning unit. We suggest that proper analyses of meaning units need to take into account not only language and diagrams but also a lecturer's pointing and depicting gestures, body positions, and the relationships between these different modalities. Scientific knowledge (conceptions) exists in the concurrent display of all sense-making resources, which we, following Vygotsky, understand as forming a unit (identity) of nonidentical entities.

  4. Organizational commitment and work engagement – Theoretical conceptions and terminological problems

    Directory of Open Access Journals (Sweden)

    Mariola Łaguna

    2015-06-01

    Full Text Available Engagement in professional activities and positive attitudes towards an organization are of significant importance to functioning and health of employees. Studies analysing the phenomena of employees’ engagement and their relations with an organization undergo a dynamic development in both international and Polish research. Two theoretical conceptions: organizational commitment (by Meyer and Allen and work engagement (by Schaufeli and Bakker have become prominent in the field. They capture 2 similar, albeit distinct constructs. In English-language journals academics concentrate on theoretical and empirical analyses of similarities and differences between the 2 concepts, while in Polish publications scholars also have to deal with the issue of the original term translation. The problem lies mostly in Polish nomenclature of the dimensions proposed in both of these conceptions. Lack of common translations for different studies may cause confusion in this area of research. In the paper we present a review of Polish translations of terms used in the discussed conceptions. We also present a linguistic analysis of terms, both in English and in Polish. We provide solutions which could help to clarify terminology in Polish-language publications concerning organizational commitment and work engagement. This allows for further development of research in this field. Med Pr 2015;66(2:277–284

  5. Politics of prevention: The emergence of prevention science.

    Science.gov (United States)

    Roumeliotis, Filip

    2015-08-01

    This article critically examines the political dimension of prevention science by asking how it constructs the problems for which prevention is seen as the solution and how it enables the monitoring and control of these problems. It also seeks to examine how prevention science has established a sphere for legitimate political deliberation and which kinds of statements are accepted as legitimate within this sphere. The material consists of 14 publications describing and discussing the goals, concepts, promises and problems of prevention science. The analysis covers the period from 1993 to 2012. The analysis shows that prevention science has established a narrow definition of "prevention", including only interventions aimed at the reduction of risks for clinical disorders. In publications from the U.S. National Institute of Drug Abuse, the principles of prevention science have enabled a commitment to a zero-tolerance policy on drugs. The drug using subject has been constructed as a rational choice actor lacking in skills in exerting self-control in regard to drug use. Prevention science has also enabled the monitoring and control of expertise, risk groups and individuals through specific forms of data gathering. Through the juxtaposition of the concepts of "objectivity" and "morality", prevention science has constituted a principle of delineation, disqualifying statements not adhering to the principles of prevention science from the political field, rendering ethical and conflictual dimensions of problem representations invisible. The valorisation of scientific accounts of drugs has acted to naturalise specific political ideals. It simultaneously marginalises the public from the public policy process, giving precedence to experts who are able to provide information that policy-makers are demanding. Alternative accounts, such as those based on marginalisation, poverty or discrimination are silenced within prevention science. Copyright © 2015 Elsevier B.V. All rights

  6. Excel 2013 for social sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach social science statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical social science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in social science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Social Science Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formul...

  7. Excel 2010 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmental sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental sciences problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2010 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Eac...

  8. Excel 2013 for environmental sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach environmentall sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses.  Its powerful computational ability and graphical functions make learning statistics much easier than in years past.  However, Excel 2013 for Environmental Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chap...

  9. Labor Economics and Sociology of Labor: Demarkation Problem

    Directory of Open Access Journals (Sweden)

    S N Lebedev

    2011-06-01

    Full Text Available The article deals with important economic and sociological problems taking into account their relevance to economics and sociology of labor as two independent sciences. The author suggests some demarcation boundaries of the concepts relevant to contemporary life within these two disciplines.

  10. Children's social self-concept and internalizing problems: The influence of peers and teachers

    NARCIS (Netherlands)

    Spilt, J.L.; van Lier, P.A.C.; Leflot, G.; Onghena, P.; Colpin, H.

    2014-01-01

    This study aimed to understand how relationships with peers and teachers contribute to the development of internalizing problems via children's social self-concept. The sample included 570 children aged 7 years 5 months (SD = 4.6 months). Peer nominations of peer rejection, child-reported social

  11. Perceptions of Pre-Service Social Sciences Teachers Regarding the Concept of "Geography" by Mind Mapping Technique

    Science.gov (United States)

    Ozturk Demirbas, Cagri

    2013-01-01

    The objective of this study is to present the perceptions of preservice social sciences teachers regarding the concept of geography. In the study, the study group consists of 46 preservice social sciences teachers, who receive education at Ahi Evran University. The data were collected in December, 2010. Mind maps were used as data collection tools…

  12. Modern Social Science Concepts, Proportionate Reciprocity, Modesty, and Democracy

    Directory of Open Access Journals (Sweden)

    Gerasimos T. SOLDATOS

    2014-06-01

    Full Text Available Proportionate Reciprocity, Modesty, and Democracy, are the key concepts in Aristotle’s economics of exchange. The following correspondence of these concepts with modern social science may be contemplated: (a Ideally, reciprocal justice in bilateral bargaining to minimize expenditure given utility levels results in Pareto-efficient, envy-free, equitable outcomes. (b Practically, bargaining under the threat or actual recontracting may act as a surrogate of reciprocal justice, leading to an N-person contract topology. (c But, recontracting is subject to practical limitations too, in which case near-reciprocal justice/general equilibrium outcomes may be fostered if, as a surrogate of recontracting, modesty in interaction is exhibited in an evolutionarily-stable-strategy fashion. (d That is, incomplete recontracting amounts to asymmetric agent-type information, which in turn lays the ground for injustices; the same lack of information prevents rectificatory justice from being efficient and hence, modesty can be efficient only if it operates as a social norm and hence, only in a modest polity, which can be no other than democracy.

  13. Beyond Science and Technology: The need to incorporate Environmental Ethics to solve Environmental Problems

    Directory of Open Access Journals (Sweden)

    Fesseha Mulu

    2018-01-01

    Full Text Available The emergence and development of science and technology has been critical in improving the lives of mankind. It helps mankind to cope with a number of manmade and natural challenges and disasters. Science cannot totally diminish the level of human dependency on nature; but, with the existing availability of natural resources, science has increased our productivity. However, science and technology can also have its own negative impacts on the natural environment. For the purpose of increasing productivity and satisfying human needs, humans have been egoistically exploiting nature but disregarding the effects of their activities on nature. Science has also been trying its level best to mitigate the negative effects that results from mankind’s exploitation of nature. However, science alone is incapable of solving all environmental problems. This desk research employs secondary sources of data, and argues that environmental ethics should come to the fore in order to address the gap left by science with regard to resolving environmental problems that mankind faces today.

  14. An introduction to the philosophy of science

    CERN Document Server

    Staley, Kent W

    2014-01-01

    This book guides readers by gradual steps through the central concepts and debates in the philosophy of science. Using concrete examples from the history of science, Kent W. Staley shows how seemingly abstract philosophical issues are relevant to important aspects of scientific practice. Structured in two parts, the book first tackles the central concepts of the philosophy of science, such as the problem of induction, falsificationism, and underdetermination, and important figures and movements, such as the logical empiricists, Thomas Kuhn, and Paul Feyerabend. The second part turns to contemporary debates in the philosophy of science, such as scientific realism, explanation, the role of values in science, the different views of scientific inference, and probability. This broad yet detailed overview will give readers a strong grounding whilst also providing opportunities for further exploration. It will be of particular interest to students of philosophy, the philosophy of science, and science. Read more at h...

  15. Knowledge representation and communication with concept maps in teacher training of science and technology

    Directory of Open Access Journals (Sweden)

    Pontes Pedrajas, Alfonso

    2012-01-01

    Full Text Available This paper shows the development of an educational innovation that we have made in the context of initial teacher training for secondary education of science and technology. In this educational experience computing resources and concept maps are used to develop teaching skills related to knowledge representation, oral communication, teamwork and practical use of ICT in the classroom. Initial results indicate that future teachers value positively the use of concept maps and computer resources as useful tools for teacher training.

  16. Seeking Missing Pieces in Science Concept Assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch Analysis

    Science.gov (United States)

    Ding, Lin

    2014-01-01

    Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses.…

  17. Determining Science Student Teachers' Cognitive Structure on the Concept of "Food Chain"

    Science.gov (United States)

    Çinar, Derya

    2015-01-01

    The current study aims to determine science student teachers' cognitive structure on the concept of food chain. Qualitative research method was applied in this study. Fallacies detected in the pre-service teachers' conceptual structures are believed to result in students' developing misconceptions in their future classes and will adversely affect…

  18. Seeking a rapprochement between anthropology and the cognitive sciences: a problem-driven approach.

    Science.gov (United States)

    Whitehouse, Harvey; Cohen, Emma

    2012-07-01

    Beller, Bender, and Medin question the necessity of including social anthropology within the cognitive sciences. We argue that there is great scope for fruitful rapprochement while agreeing that there are obstacles (even if we might wish to debate some of those specifically identified by Beller and colleagues). We frame the general problem differently, however: not in terms of the problem of reconciling disciplines and research cultures, but rather in terms of the prospects for collaborative deployment of expertise (methodological and theoretical) in problem-driven research. For the purposes of illustration, our focus in this article is on the evolution of cooperation. Copyright © 2012 Cognitive Science Society, Inc.

  19. [Ethics, science and utilitarianism].

    Science.gov (United States)

    Ribeiro, T

    1997-11-01

    We begin this article with the distinction between Deontology, Moral and Ethics. We also review the concept and the relevance of Bioethics, as the "science of survival", and as part of Ethics, a section of Philosophy. We tried to answer two further questions considering the role of Science in orienting Ethics, or the possible place of utilitarianism in controlling Ethics. The author discusses some new aspects of the doctor/patient relationship, and their evolution in the last 100 years, as well as the relations between patients and Health care institutions. Some ethical problems were also raised related to the beginning and the end of life. Finally the author reflects on the difficulties of defining ethical concepts in the near future.

  20. A conceptual change analysis of nature of science conceptions: The deep roots and entangled vines of a conceptual ecology

    Science.gov (United States)

    Johnston, Adam Thomas

    This research used theories of conceptual change to analyze learners' understandings of the nature of science (NOS). Ideas regarding the NOS have been advocated as vital aspects of science literacy, yet learners at many levels (students and teachers) have difficulty in understanding these aspects in the way that science literacy reforms advocate. Although previous research has shown the inadequacies in learners' NOS understandings and have documented ways by which to improve some of these understandings, little has been done to show how these ideas develop and why learners' preexisting conceptions of NOS are so resistant to conceptual change. The premise of this study, then, was to describe the nature of NOS conceptions and of the conceptual change process itself by deeply analyzing the conceptions of individual learners. Toward this end, 4 individuals enrolled in a physical science course designed for preservice elementary teachers were selected to participate in a qualitative research study. These individuals answered questionnaires, surveys, direct interview questions, and a variety of interview probes (e.g., critical incidents, responses to readings/videos, reflections on coursework, card sorting tasks, etc.) which were administered throughout the duration of a semester. By utilizing these in-depth, qualitative probes, learners' conceptions were not only assessed but also described in great detail, revealing the source of their conceptions as well as identifying many instances in which a learner's directly stated conception was contradictory to that which was reflected by more indirect probes. As a result of this research, implications regarding NOS conceptions and their development have been described. In addition, various descriptions of conceptual change have been further refined and informed. Especially notable, the influence of a learner's conceptual ecology and its extrarational influences on conceptual change have been highlighted. It is argued that

  1. Problems of applied geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, L N

    1983-01-01

    The concept of applied geochemistry was introduced for the first time by A. Ye. Fersman. He linked the branched and complicated questions of geochemistry with specific problems of developing the mineral and raw material base of our country. Geochemical prospecting and geochemistry of mineral raw materials are the most important sections of applied geochemistry. This now allows us the right to view applied geochemistry as a sector of science which applies geochemical methodology, set of geochemical methods of analysis, synthesis, geological interpretation of data based on laws governing theoretical geochemistry to the solution of different tasks of geology, petrology, tectonics, stratigraphy, science of minerals and other geological sciences, and also the technology of mineral raw materials, interrelationships of man and nature (ecogeochemistry, technogeochemistry, agrogeochemistry). The main problem of applied geochemistry, geochemistry of ore fields is the prehistory of ore formation. This is especially important for metallogenic and forecasting constructions, for an understanding of the reasons for the development of fields and the detection of laws governing their distribution, their genetic links with the general geological processes and the products of these processes.

  2. Identification of problems of implementation of Lean concept in the SME sector

    Directory of Open Access Journals (Sweden)

    Ulewicz Robert

    2016-03-01

    Full Text Available The article presents identification of problems during the implementation of Lean concept in small and medium-sized enterprises in Poland. Although the Lean methodology is recognized all over the world as one of the best and most effective ways to improve the functioning of enterprises, in Polish conditions exist serious problems with its implementation. Development of small and medium-sized enterprises is regarded as one of the measures of economic growth and a sign of healthy competition. The needs of the economy and the limited resources characterizing this enterprise sector imply the need to adjust its capacities to the requirements of the turbulent environment. In the analysis of problems there were used the results of questionnaire surveys conducted among representatives of the companies participating in the largest Lean conference in Central Europe.

  3. Analyzing the Use of Concept Maps in Computer Science: A Systematic Mapping Study

    Science.gov (United States)

    dos Santos, Vinicius; de Souza, Érica F.; Felizardo, Katia R; Vijaykumar, Nandamudi L.

    2017-01-01

    Context: concept Maps (CMs) enable the creation of a schematic representation of a domain knowledge. For this reason, CMs have been applied in different research areas, including Computer Science. Objective: the objective of this paper is to present the results of a systematic mapping study conducted to collect and evaluate existing research on…

  4. Social Situation of Development: Parents Perspectives on Infants-Toddlers' Concept Formation in Science

    Science.gov (United States)

    Sikder, Shukla

    2015-01-01

    The social situation of development (SSD) specific to each age determines regularly the whole picture of the child's life. Therefore, we need to learn about the whole context surrounding children relevant to their development. The focus of the study is to understand parent's views on infant-toddler's science concept formation in the family…

  5. A Universal Concept for Robust Solving of Shortest Path Problems in Dynamically Reconfigurable Graphs

    Directory of Open Access Journals (Sweden)

    Jean Chamberlain Chedjou

    2015-01-01

    Full Text Available This paper develops a flexible analytical concept for robust shortest path detection in dynamically reconfigurable graphs. The concept is expressed by a mathematical model representing the shortest path problem solver. The proposed mathematical model is characterized by three fundamental parameters expressing (a the graph topology (through the “incidence matrix”, (b the edge weights (with dynamic external weights’ setting capability, and (c the dynamic reconfigurability through external input(s of the source-destination nodes pair. In order to demonstrate the universality of the developed concept, a general algorithm is proposed to determine the three fundamental parameters (of the mathematical model developed for all types of graphs regardless of their topology, magnitude, and size. It is demonstrated that the main advantage of the developed concept is that arc costs, the origin-destination pair setting, and the graph topology are dynamically provided by external commands, which are inputs of the shortest path solver model. This enables high flexibility and full reconfigurability of the developed concept, without any retraining need. To validate the concept developed, benchmarking is performed leading to a comparison of its performance with the performances of two well-known concepts based on neural networks.

  6. Teaching scientific concepts through simple models and social communication techniques

    International Nuclear Information System (INIS)

    Tilakaratne, K.

    2011-01-01

    For science education, it is important to demonstrate to students the relevance of scientific concepts in every-day life experiences. Although there are methods available for achieving this goal, it is more effective if cultural flavor is also added to the teaching techniques and thereby the teacher and students can easily relate the subject matter to their surroundings. Furthermore, this would bridge the gap between science and day-to-day experiences in an effective manner. It could also help students to use science as a tool to solve problems faced by them and consequently they would feel science is a part of their lives. In this paper, it has been described how simple models and cultural communication techniques can be used effectively in demonstrating important scientific concepts to the students of secondary and higher secondary levels by using two consecutive activities carried out at the Institute of Fundamental Studies (IFS), Sri Lanka. (author)

  7. The Sociology and Social Science of ‘Evil’: Is the Conception of Pedophilia ‘Evil’?

    OpenAIRE

    Javaid, A

    2015-01-01

    This paper approaches 'evil' from sociological and social science perspectives, using them to increase our insight into the concept of 'evil' since they have long neglected direct analyses of 'evil'. For example, sociology has focused on questions of the good, treating its other as an absence or a residual category. Durkheim suggested to avoid using common sense categorisations, without exploring their social construction as social fact. Therefore, because 'evil' is a common sense conception,...

  8. Concept mapping improves academic performance in problem solving questions in biochemistry subject.

    Science.gov (United States)

    Baig, Mukhtiar; Tariq, Saba; Rehman, Rehana; Ali, Sobia; Gazzaz, Zohair J

    2016-01-01

    To assess the effectiveness of concept mapping (CM) on the academic performance of medical students' in problem-solving as well as in declarative knowledge questions and their perception regarding CM. The present analytical and questionnaire-based study was carried out at Bahria University Medical and Dental College (BUMDC), Karachi, Pakistan. In this analytical study, students were assessed with problem-solving questions (A-type MCQs), and declarative knowledge questions (short essay questions), and 50% of the questions were from the topics learned by CM. Students also filled a 10-item, 3-point Likert scale questionnaire about their perception regarding the effectiveness of the CM approach, and two open-ended questions were also asked. There was a significant difference in the marks obtained in those problem-solving questions, which were learned by CM as compared to those topics which were taught by the traditional lectures (pacademic performance in problem solving but not in declarative knowledge questions. Students' perception about the effectiveness of CM was overwhelmingly positive.

  9. Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis

    Science.gov (United States)

    Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying

    2012-01-01

    This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…

  10. Order Theory in Environmental Sciences

    DEFF Research Database (Denmark)

    Sørensen, P. B.; Brüggemann, R.; Lerche, D. B.

    This is the proceeding from the fifth workshop in Order Theory in Environ-mental Science. In this workshop series the concept of Partial Order Theory is development in relation to application and the use is tested based on specific problems. The Partial Order Theory will have a potential use...

  11. Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students

    Science.gov (United States)

    Bugdayci, Ilkay; Zahit Selvi, H.

    2017-12-01

    One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.

  12. Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics

    Science.gov (United States)

    Corry, Leo

    2018-04-01

    The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932. This article is part of the theme issue `Hilbert's sixth problem'.

  13. Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics.

    Science.gov (United States)

    Corry, Leo

    2018-04-28

    The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  14. Life sciences laboratory breadboard simulations for shuttle

    Science.gov (United States)

    Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.

    1975-01-01

    Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.

  15. Relations between Young Students' Strategic Behaviours, Domain-Specific Self-Concept, and Performance in a Problem-Solving Situation

    Science.gov (United States)

    Dermitzaki, Irini; Leondari, Angeliki; Goudas, Marios

    2009-01-01

    This study aimed at investigating the relations between students' strategic behaviour during problem solving, task performance and domain-specific self-concept. A total of 167 first- and second-graders were individually examined in tasks involving cubes assembly and in academic self-concept in mathematics. Students' cognitive, metacognitive, and…

  16. Marginal Teachers from the Eyes of School Principals: Concept, Problems and Management Strategies

    Science.gov (United States)

    Erdogan, Cetin; Demirkasimoglu, Nihan

    2016-01-01

    This research aimed to determine how Turkish principals define marginal teachers and which strategies they use to deal with them. Within this purpose, the following points are examined: (a) the concept of marginal teacher, (b) the underlying reasons for marginal teacher behaviors, (c) the problems marginal teachers cause in school settings, (d)…

  17. Do natural science experiments influence public attitudes towards environmental problems?

    International Nuclear Information System (INIS)

    Wallner, A.; Hunziker, M.; Kienast, F.

    2003-01-01

    We investigated the significance of risk assessment studies in the public discussion on CO 2 emissions. Politicians and representatives from the public were interviewed by using the social-science technique of qualitative in-depth interviews. Three different types of attitudes towards natural science were found among politicians. Depending on which attitude a politician holds, risk assessment studies can have an impact on his/her readiness to support environmental policy measures. Regarding lay people, key factors affecting the acceptance of environmental policy measures are knowledge of environmental problems, their impacts on ecosystems or human health as well as direct personal perception of those impacts. Since direct perception is not always possible in everyday life, natural science experiments might be a means for successfully mediating this lacking perception. (author)

  18. Use of Technology-Assisted Techniques of Mind Mapping and Concept Mapping in Science Education: A Constructivist Study

    Science.gov (United States)

    Balim, Ali Günay

    2013-01-01

    The study aims to investigate the effects of using mind maps and concept maps on students' learning of concepts in science courses. A total of 51 students participated in this study which used a quasi-experimental research design with pre-test/post-test control groups. The constructivist-inspired study was carried out in the sixth-grade science…

  19. Inquiry Science Learning and Teaching: a Comparison Between the Conceptions and Attitudes of Pre-service Elementary Teachers in Hong Kong and the United States

    Science.gov (United States)

    Lee, Yeung Chung; Lee, Carole Kwan-Ping; Lam, Irene Chung-Man; Kwok, Ping Wai; So, Winnie Wing-Mui

    2018-01-01

    International studies of science education, such as the Trends in Mathematics and Science Study (TIMSS), have revealed considerable national disparities in students' achievements in science education. The results have prompted many nations to compare their science education systems and practices to those of others, to gain insights for improvement. Teacher training and professional development are key educational components that have not attracted as much attention as they deserve in international comparative studies. This study compares the conceptions and attitudes of pre-service elementary teachers (PSETs) in Hong Kong and the United States with respect to inquiry science learning and teaching at the beginning of the semester before the start of the science methods course. PSETs' conceptions and attitudes in the two countries were compared by means of a questionnaire with both Likert-type and open-ended questions. Quantitative data were analyzed using exploratory factor analysis and inferential statistics, while qualitative data were analyzed through the systematic categorization of PSETs' responses into broad themes and subthemes to reflect patterns in their conceptions of and attitudes toward inquiry science learning and teaching. The results revealed a complex interplay between PSETs' conceptions of and attitudes toward inquiry science learning and teaching. The results shed light on the effects of sociocultural contexts and have important implications for the design of science methods courses.

  20. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  1. Using the History of Research on Sickle Cell Anemia to Affect Preservice Teachers' Conceptions of the Nature of Science.

    Science.gov (United States)

    Howe, Eric M.

    This paper examines how using a series of lessons developed from the history of research on sickle cell anemia affects preservice teacher conceptions of the nature of science (NOS). The importance of a pedagogy that has students do science through an integral use of the history of science is effective at enriching students' NOS views is presented.…

  2. Self-esteem and illness self-concept in emerging adults with Type 1 diabetes: Long-term associations with problem areas in diabetes.

    Science.gov (United States)

    Luyckx, Koen; Rassart, Jessica; Aujoulat, Isabelle; Goubert, Liesbet; Weets, Ilse

    2016-04-01

    This long-term prospective study examined whether illness self-concept (or the degree to which chronic illness becomes integrated in the self) mediated the pathway from self-esteem to problem areas in diabetes in emerging adults with Type 1 diabetes. Having a central illness self-concept (i.e. feeling overwhelmed by diabetes) was found to relate to lower self-esteem, and more treatment, food, emotional, and social support problems. Furthermore, path analyses indicated that self-esteem was negatively related to both levels and relative changes in these problem areas in diabetes over a period of 5 years. Illness self-concept fully mediated these associations. © The Author(s) 2014.

  3. Application of calorimetry and thermodynamics to critical problems in materials science

    International Nuclear Information System (INIS)

    Atake, Tooru

    2009-01-01

    Calorimetry and thermodynamic studies have long been playing a very important role in the research fields of fundamental science and technology. Some topics and examples of thermodynamics studies are given, and the details are explained on the basis of the present author's experience, focusing attention to application of adiabatic calorimetry and thermodynamics to solve critical problems in materials science: (1) condensed gas calorimetry and third law entropy, (2) phase transition and polymorphism in simple molecular crystals, (3) incommensurate phase transitions, (4) particle size effects on the phase transitions in ferroelectric/ferroelastic crystals, (5) relaxor ferroelectrics and multi-ferroics, and some other topics in materials science and technology

  4. Cognitive patterns of neuroanatomy concepts: Knowledge organizations that emerge from problem solving versus information gathering

    Science.gov (United States)

    Weidner, Jeanne Margaret O'malley

    2000-10-01

    This study was motivated by some of the claims that are found in the literature on Problem-Based Learning (PBL). This instructional technique, which uses case studies as its primary instructional tool, has been advanced as an alternative to traditional instruction in order to foster more meaningful, integrative learning of scientific concepts. Several of the advantages attributed to Problem-Based Learning are that it (1) is generally preferred by students because it appears to foster a more nurturing and enjoyable learning experience, (2) fosters greater retention of knowledge and concepts acquired, and (3) results in increased ability to apply this knowledge toward solving new problems. This study examines the differences that result when students learn neuroanatomy concepts under two instructional contexts: problem solving vs. information gathering. The technological resource provided to students to support learning under each of these contexts was the multimedia program BrainStorm: An Interactive Neuroanatomy Atlas (Coppa & Tancred, 1995). The study explores the influence of context with regard to subjects' performance on objective post-tests, organization of knowledge as measured by Pathfinder Networks, differential use of the multimedia software and discourse differences emerging from the transcripts. The findings support previous research in the literature that problem-solving results in less knowledge acquisition in the short term, greater retention of material over time, and a subjects' preference for the method. However, both the degree of retention and preference were influenced by subjects' prior knowledge of the material in the exercises, as there was a significant difference in performance between the two exercises: for the exercise about which subjects appeared to have greater background information, memory decay was less, and subject attitude toward the problem solving instructional format was more favorable, than for the exercise for which subjects

  5. Fundamental Concepts in Biophysics Volume 1

    CERN Document Server

    Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume I: Fundamental Concepts in Biophysics Editor Thomas Jue, PhD In Fundamental Concepts in Biophysics, prominent professors have established a foundation for the study of biophysics related to the following topics: Mathematical Methods in Biophysics Quantum Mechanics Basic to Biophysical Methods Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes Fluorescence Spectroscopy Elec...

  6. Basic Definitions and Concepts of Systems Approach, Mathematical Modeling and Information Technologies in Sports Science

    Directory of Open Access Journals (Sweden)

    А. Лопатьєв

    2017-09-01

    Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes.  Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.

  7. [Conception of health: space-earth].

    Science.gov (United States)

    Ushakov, I B; Orlov, O I; Baevskiĭ, R M; Bersen'ev, E Iu; Chernikova, A G

    2013-01-01

    In article the new approach to an estimation of a health state of cosmonauts, sportsmen, pilots, drivers, operators, persons of dangerous trades is considered. It has been created and developed in Institute of biomedical problems of the Russian Academy of Sciences under the direction of academician A.I. Grigoriev. Results of works of last decade, by the Program of Presidium of the Russian Academy of Sciences carried out at support of "Fundamental sciences--are submited to medicine". The new system for an estimation of a functional states of an organism at stressful influences in submitted. The methodology of remote studying of influence of ecological factors on health which has begun a new scientific--practical direction--to telemedical ecology is created. In conclusion of the article it is discussed questions of the further introduction of new concept of health and technologies prenosological diagnostics in practice of public health services.

  8. An Empirical Study of Relationships between Student Self-Concept and Science Achievement in Hong Kong

    Science.gov (United States)

    Wang, Jianjun; Oliver, Steve; Garcia, Augustine

    2004-01-01

    Positive self-concept and good understanding of science are important indicators of scientific literacy endorsed by professional organizations. The existing research literature suggests that these two indicators are reciprocally related and mutually reinforcing. Generalization of the reciprocal model demands empirical studies in different…

  9. Holistic Mathematics Instruction: Interactive Problem Solving and Real Life Situations Help Learners Understand Math Concepts.

    Science.gov (United States)

    Archambeault, Betty

    1993-01-01

    Holistic math focuses on problem solving with numbers and concepts. Whole math activities for adults include shopping for groceries, eating in restaurants, buying gas, taking medicine, measuring a room, estimating servings, and compiling a family cookbook. (SK)

  10. BOOK REVIEW: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    Science.gov (United States)

    Franz, S.

    2004-10-01

    Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare---and often catastrophic---events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent

  11. A study of elementary teachers' conceptions of nature of science and their beliefs about the developmental appropriateness and importance of nature of science throughout a professional development program

    Science.gov (United States)

    Adibelli, Elif

    This qualitative study aimed to explore the changes in elementary science teachers' conceptions of nature of science (NOS) and their beliefs about the developmental appropriateness and importance of NOS after participating in an academic, year-long professional development program (PDP) as well as the factors facilitating these changes. The PDP consisted of two phases. In the first phase, the participants received NOS training designed with an explicit-reflective instructional approach. In the second phase, the participants implemented several NOS training activities in their classrooms. Four elementary science teachers who volunteered and completed all components of the PDP (i.e., the NOS training and the NOS teaching) comprised the participants of the present study. A multiple-embedded case study design was employed to explore the changes in the elementary science teachers' conceptions of NOS and their beliefs about the developmental appropriateness and importance of NOS. The study data were collected from multiple sources. The primary data sources included (a) Views of Nature of Science Elementary School Version 2 (VNOS-D2) questionnaire (Lederman & Khishfe, 2002), (b) Ideas about Science for Early Elementary (K-4) Students questionnaire (Sweeney, 2010), and (c) follow-up semi-structured interviews. The secondary data sources included videotaping of meetings with teachers, reflective field notes, and artifacts produced by teachers and their students. Data were analyzed using Yin's (1994, 2003) analytic tactics of pattern matching, explanation building, and cross-case synthesis. The findings of the study revealed that the elementary science teachers showed gradual, but substantial changes in their conceptions, and beliefs about the developmental appropriateness and importance of the NOS aspects over the course of participation in the PDP. Moreover, the participants identified nine components in the PDP that facilitated these changes in their conceptions, and

  12. A Comparative Study of Hawaii Middle School Science Student Academic Achievement

    Science.gov (United States)

    Askew Cain, Peggy

    The problem was middle-grade students with specific learning disabilities (SWDs) in reading comprehension perform less well than their peers on standardized assessments. The purpose of this quantitative comparative study was to examine the effect of electronic concept maps on reading comprehension of eighth grade students with SWD reading comprehension in a Hawaii middle school Grade 8 science class on the island of Oahu. The target population consisted of Grade 8 science students for school year 2015-2016. The sampling method was a purposeful sampling with a final sample size of 338 grade 8 science students. De-identified archival records of grade 8 Hawaii standardized science test scores were analyzed using a one way analysis of variance (ANOVA) in SPSS. The finding for hypothesis 1 indicated a significant difference in student achievement between SWDs and SWODs as measured by Hawaii State Assessment (HSA) in science scores (p reading comprehension. Recommendations for practice were for educational leadership and noted: (a) teachers should practice using concept maps with SWDs as a specific reading strategy to support reading comprehension in science classes, (b) involve a strong focus on vocabulary building and concept building during concept map construction because the construction of concept maps sometimes requires frontloading of vocabulary, and (c) model for teachers how concept maps are created and to explain their educational purpose as a tool for learning. Recommendations for future research were to conduct (a) a quantitative comparative study between groups for academic achievement of subtests mean scores of SWDs and SWODs in physical science, earth science, and space science, and (b) a quantitative correlation study to examine relationships and predictive values for academic achievement of SWDs and concept map integration on standardized science assessments.

  13. Spatial Foundations of Science Education: The Illustrative Case of Instruction on Introductory Geological Concepts

    Science.gov (United States)

    Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.

    2011-01-01

    To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…

  14. Using "Slowmation" to Enable Preservice Primary Teachers to Create Multimodal Representations of Science Concepts

    Science.gov (United States)

    Hoban, Garry; Nielsen, Wendy

    2012-01-01

    Research has identified the value of students constructing their own representations of science concepts using modes such as writing, diagrams, 2-D and 3-D models, images or speech to communicate meaning. "Slowmation" (abbreviated from "Slow Animation") is a simplified way for students, such as preservice teachers, to make a narrated animation…

  15. Exploring the Relationship between Secondary Science Teachers' Subject Matter Knowledge and Knowledge of Student Conceptions While Teaching Evolution by Natural Selection

    Science.gov (United States)

    Lucero, Margaret M.; Petrosino, Anthony J.; Delgado, Cesar

    2017-01-01

    The fundamental scientific concept of evolution occurring by natural selection is home to many deeply held alternative conceptions and considered difficult to teach. Science teachers' subject matter knowledge (SMK) and the pedagogical content knowledge (PCK) component of knowledge of students' conceptions (KOSC) can be valuable resources for…

  16. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    Science.gov (United States)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  17. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  18. CSI-Chocolate Science Investigation and the Case of the Recipe Rip-Off: Using an Extended Problem-Based Scenario to Enhance High School Students' Science Engagement

    Science.gov (United States)

    Marle, Peter D.; Decker, Lisa; Taylor, Victoria; Fitzpatrick, Kathleen; Khaliqi, David; Owens, Janel E.; Henry, Renee M.

    2014-01-01

    This paper discusses a K-12/university collaboration in which students participated in a four-day scenario-based summer STEM (science, technology, engineering, and mathematics) camp aimed at making difficult scientific concepts salient. This scenario, Jumpstart STEM-CSI: Chocolate Science Investigation (JSCSI), used open- and guided-inquiry…

  19. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    Science.gov (United States)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  20. The Research as Natural Sciences Teaching Strategy: Pedagogical Conceptions of Secondary Education Teachers at Instituto Pedagógico Nacional

    Directory of Open Access Journals (Sweden)

    Dayana Milena Bejarano Muñoz

    2017-01-01

    Full Text Available This text is a look to the research as a transformation and generation axis of knowledge among middle school students, based on the analysis of teachers’ pedagogical conceptions at Instituto Pedagógico Nacional around natural sciences research and teaching. A qualitative methodology from the interpretive approach was implemented, which allowed, from case study, to establish pedagogical conceptions of secondary education teachers in natural sciences about research. In addition, pedagogical elements are proposed about inclusion of school research in secondary education as natural sciences teaching strategy, which contributes to the construction and transformation of educational experiences. As a conclusion, teachers’ trend of conceptions was towards positivism, which is part of disciplinary and quantitative researches, looking at science from the application of scientific method. Even though, pedagogical interpretive and critical-social current begins to be included, by socializing quantitative findings obtained generating social changes from the intervention with the community. Likewise, teachers recognize the academic, social, interpersonal and working benefits obtained in a research process, such as generating and deepening of knowledge, monitoring of methodical processes in search of information and data collection, interpretation and reasoning about phenomena, and critical development from their daily lives, all leading students to be actors of transformation processes from their own interest.

  1. Application of the group-theoretical method to physical problems

    OpenAIRE

    Abd-el-malek, Mina B.

    1998-01-01

    The concept of the theory of continuous groups of transformations has attracted the attention of applied mathematicians and engineers to solve many physical problems in the engineering sciences. Three applications are presented in this paper. The first one is the problem of time-dependent vertical temperature distribution in a stagnant lake. Two cases have been considered for the forms of the water parameters, namely water density and thermal conductivity. The second application is the unstea...

  2. Teaching and Learning Science in the 21st Century: Challenging Critical Assumptions in Post-Secondary Science

    Directory of Open Access Journals (Sweden)

    Amanda L. Glaze

    2018-01-01

    Full Text Available It is widely agreed upon that the goal of science education is building a scientifically literate society. Although there are a range of definitions for science literacy, most involve an ability to problem solve, make evidence-based decisions, and evaluate information in a manner that is logical. Unfortunately, science literacy appears to be an area where we struggle across levels of study, including with students who are majoring in the sciences in university settings. One reason for this problem is that we have opted to continue to approach teaching science in a way that fails to consider the critical assumptions that faculties in the sciences bring into the classroom. These assumptions include expectations of what students should know before entering given courses, whose responsibility it is to ensure that students entering courses understand basic scientific concepts, the roles of researchers and teachers, and approaches to teaching at the university level. Acknowledging these assumptions and the potential for action to shift our teaching and thinking about post-secondary education represents a transformative area in science literacy and preparation for the future of science as a field.

  3. Science Shops

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    1999-01-01

    The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented.......The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented....

  4. Pre-Service Science Teachers' Reflective Thinking Skills toward Problem Solving

    Science.gov (United States)

    Can, Sendil

    2015-01-01

    The purpose of the present study is to investigate the pre-service science teachers' reflective thinking skills toward problem solving and the effects of gender, grade level, academic achievement, type of graduated high school and father and mother's education level on these skills. The study was conducted through the survey method with the…

  5. The Development of a Scientific Motive: How Preschool Science and Home Play Reciprocally Contribute to Science Learning

    Science.gov (United States)

    Gomes, Judith; Fleer, Marilyn

    2017-07-01

    There are a growing number of studies that have examined science learning for preschool children. Some research has looked into children's home experiences and some has focused on transition, practices, routines, and traditions in preschool contexts. However, little attention has been directed to the relationship between children's learning experiences at preschool and at home, and how this relationship can assist in the development of science concepts relevant to everyday life. In drawing upon Hedegaard's (Learning and child development, 2002) cultural-historical conception of motives and Vygotsky's (The collected works of L.S. Vygotsky: problems of general psychology, 1987) theory of everyday and scientific concept formation, the study reported in this paper examines one child, Jimmy (4.2 years), and his learning experiences at home and at preschool. Data gathering featured the video recording of 4 weeks of Jimmy's learning in play at home and at preschool (38.5 h), parent questionnaire and interviews, and researcher and family gathered video observations of home play with his parents (3.5 h). Findings show how a scientific motive develops through playful everyday learning moments at home and at preschool when scientific play narratives and resources are aligned. The study contributes to a more nuanced understanding of the science learning of young children and a conception of pedagogy that takes into account the reciprocity of home and school contexts for learning science.

  6. Concepts of formal concept analysis

    Science.gov (United States)

    Žáček, Martin; Homola, Dan; Miarka, Rostislav

    2017-07-01

    The aim of this article is apply of Formal Concept Analysis on concept of world. Formal concept analysis (FCA) as a methodology of data analysis, information management and knowledge representation has potential to be applied to a verity of linguistic problems. FCA is mathematical theory for concepts and concept hierarchies that reflects an understanding of concept. Formal concept analysis explicitly formalizes extension and intension of a concept, their mutual relationships. A distinguishing feature of FCA is an inherent integration of three components of conceptual processing of data and knowledge, namely, the discovery and reasoning with concepts in data, discovery and reasoning with dependencies in data, and visualization of data, concepts, and dependencies with folding/unfolding capabilities.

  7. 資優生科學自我概念與科學成就之縱貫研究 Longitudinal Study of Gifted Students’Science Self-Concept and Science Achievement

    Directory of Open Access Journals (Sweden)

    侯雅齡 Ya-Ling Hou

    2013-06-01

    Full Text Available 本研究目的主要在探討資優生學業自我概念與學業成就的發展,以及兩者之間的關係,研究對象為高雄市16 所國中381 名資優生,由八年級至九年級每半年蒐集一次資料,採固定樣本四波次的追蹤調查。在資料分析部分,使用了多變量潛在成長模式及交互延宕模式,來瞭解資優生科學自我概念與科學成就之間的關係。結果發現,資優生科學自我概念的發展呈現非線性的下降,科學成就的發展呈現線性成長;科學自我概念與科學成就之間有顯著的中度正相關,但是科學自我概念的發展與科學成就的發展並無顯著關聯;從交互延宕模式中,資優生科學自我概念與科學成就的因果關係,呈現科學自我概念顯著影響科學成就的自我彰顯(self-enhancement)關係;在性別的差異部分,男生與女生在科學成就表現與發展情形,皆無明顯差異,但是在科學自我概念上,資優女生顯著低於資優男生。最後本研究亦根據研究結果提出在教育實務與未來繼續研究的建議。 This study investigated the development of the science self-concept and science achievement of 381 gifted adolescent students in 16 junior high schools in Kaohsiung who were enrolled in classes ranging from Grade eight, first semester, to Grade nine, second semester, through repeated assessments. Structural equation modeling with latent growth curve models and a cross-lagged panel model were used to analyze the four waves of gifted students’ data. The results of this study showed that the gifted students experience an increase in science achievement during the junior high school period. Furthermore, students were shown to have a declining science self-concept in middle years, followed by an increase that began in and continued beyond Grade nine, second semester. A positive relationship was found between the students’ science self-concept

  8. The analysis of normative requirements to materials of PWR components, basing on LBB concepts

    International Nuclear Information System (INIS)

    Anikovsky, V.V.; Karzov, G.P.; Timofeev, B.T.

    1997-01-01

    The paper discusses the advisability of the correction of Norms to solve in terms of material science the Problem: how the normative requirements to materials must be changed in terms of the concept open-quotes leak before breakclose quotes (LBB)

  9. The analysis of normative requirements to materials of PWR components, basing on LBB concepts

    Energy Technology Data Exchange (ETDEWEB)

    Anikovsky, V.V.; Karzov, G.P.; Timofeev, B.T. [CRISM Prometey, St. Petersburg (Russian Federation)

    1997-04-01

    The paper discusses the advisability of the correction of Norms to solve in terms of material science the Problem: how the normative requirements to materials must be changed in terms of the concept {open_quotes}leak before break{close_quotes} (LBB).

  10. The Impact of Video Case Content on Preservice Elementary Teachers' Decision-Making and Conceptions of Effective Science Teaching

    Science.gov (United States)

    Olson, Joanne K.; Bruxvoort, Crystal N.; Vande Haar, Andrea J.

    2016-01-01

    Little is known about how the content of a video case influences what preservice teachers learn about science teaching. This study was designed to determine the impact of two different video cases on preservice elementary teachers' conceptions of multiple aspects of effective science teaching, with one video selected to focus attention on the role…

  11. Genetics problem solving and worldview

    Science.gov (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  12. Metaphoric Perceptions of the Students of the Sports Sciences Faculty Regarding the Concept of Fair-Play

    Science.gov (United States)

    Çaglayan, Hakan Salim; Gül, Özgür

    2017-01-01

    The objective of this study is to reveal the perceptions of the students of the sports sciences faculty regarding the concept of "Fair-Play" by means of metaphors. 275 students [male[subscript (n = 173)], female [subscript (n = 102)

  13. Explaining how the mind works: on the relation between cognitive science and philosophy.

    Science.gov (United States)

    Trigg, Jonathan; Kalish, Michael

    2011-04-01

    In this paper, we argue that under certain prevalent interpretations of the nature and aims of cognitive science, theories of cognition generate a forced choice between a conception of cognition which depends on the possibility of a private language, and a conception of cognition which depends on mereological confusions. We argue, further, that this should not pose a fundamental problem for cognitive scientists since a plausible interpretation of the nature and aims of cognitive science is available that does not generate this forced choice. The crucial difference between these interpretations is that on the one hand the aim of theories of cognition is to tell us what thinking (etc.) is, and on the other it is to tell us what is causally necessary if an intelligent creature is to be able to think. Our argument draws heavily on a Wittgensteinian conception of philosophy in which no philosophical theory can explain what thinking, perceiving, remembering, etc. are, either. The positive, strictly therapeutic, purpose of a philosophy of cognitive science should be to show that, since the traditional problems which constitute the philosophy of mind are chimerical, there is nothing for philosophical theorizing in cognitive science to achieve. Copyright © 2011 Cognitive Science Society, Inc.

  14. Future Low Temperature Plasma Science and Technology: Attacking Major Societal Problems by Building on a Tradition of Scientific Rigor

    Science.gov (United States)

    Graves, David

    2014-10-01

    Low temperature plasma (LTP) science is unequivocally one of the most prolific areas for varied applications in modern technology. For example, plasma etching technology is essential for reliably and rapidly patterning nanometer scale features over areas approaching one square meter with relatively inexpensive equipment. This technology enabled the telecommunication and information processing revolution that has transformed human society. I explore two concepts in this talk. The first is that the firm scientific understanding of LTP is and has been the enabling feature of these established technological applications. And the second is that LTP technology is poised to contribute to several emerging societal challenges. Beyond the important, ongoing applications of LTP science to problems of materials processing related to energy generation (e.g. thin film solar cell manufacture), there are novel and less well known potential applications in food and agriculture, infection control and medicine. In some cases, the potentially low cost nature of the applications in so compelling that they can be thought of as examples of frugal innovation. Supported in part by NSF and DoE.

  15. Seven propositions of the science of improvement: exploring foundations.

    Science.gov (United States)

    Perla, Rocco J; Provost, Lloyd P; Parry, Gareth J

    2013-01-01

    The phrase "Science of Improvement" or "Improvement Science" is commonly used today by a range of people and professions to mean different things, creating confusion to those trying to learn about improvement. In this article, we briefly define the concepts of improvement and science, and review the history of the consideration of "improvement" as a science. We trace key concepts and ideas in improvement to their philosophical and theoretical foundation with a focus on Deming's System of Profound Knowledge. We suggest that Deming's system has a firm association with many contemporary and historic philosophic and scientific debates and concepts. With reference to these debates and concepts, we identify 7 propositions that provide the scientific and philosophical foundation for the science of improvement. A standard view of the science of improvement does not presently exist that is grounded in the philosophical and theoretical basis of the field. The 7 propositions outlined here demonstrate the value of examining the underpinnings of improvement. This is needed to both advance the field and minimize confusion about what the phrase "science of improvement" represents. We argue that advanced scientists of improvement are those who like Deming and Shewhart can integrate ideas, concepts, and models between scientific disciplines for the purpose of developing more robust improvement models, tools, and techniques with a focus on application and problem solving in real world contexts. The epistemological foundations and theoretical basis of the science of improvement and its reasoning methods need to be critically examined to ensure its continued development and relevance. If improvement efforts and projects in health care are to be characterized under the canon of science, then health care professionals engaged in quality improvement work would benefit from a standard set of core principles, a standard lexicon, and an understanding of the evolution of the science of

  16. Framing the ecosystem concept through a longitudinal study of developments in science and policy.

    Science.gov (United States)

    Aggestam, Filip

    2015-08-01

    This paper examines how scientific literature and policy documents frame the ecosystem concept and how these frames have shaped scientific dialogue and policy making over time. This was achieved by developing a frame typology, as a basis for organizing relevant value expressions, to assess how different frames have altered perspectives of the ecosystem concept. The frame typology and analysis is based on a semi-grounded and longitudinal document analysis of scientific literature and policy documents using the ecosystem concept. Despite changing discourses and public priorities (e.g., cultural constructs of biodiversity) both science and policy documents are characterized by stable value systems that have not changed substantially since the 1930s. These value systems were defined based on ethical principles that delineate 6 core frames: humans first, dual systems, eco-science, eco-holism, animals first, and multicentrism. Specific crises (e.g., climate change) and cross-disciplinary uptake and re-uptake of, for example, the ecosystem services concept, have brought new perspectives to the forefront of public discourse. These developments triggered changes in the core frames that, rather than being value based, are based on how the ecosystem is conceptualized under fixed value systems and over time. Fourteen subframes were developed to reflect these longitudinal changes. There are as such clear framing effects in both scientific literature and in policy. Ecosystem research is for instance often characterized by unstated value judgments even though the scientific community does not make these explicit. In contrast, policy documents are characterized by clear value expressions but are principally management driven and human centered. © 2015 Society for Conservation Biology.

  17. Investigating Pre-Service Science Teachers' Critical Thinking Dispositions and Problem Solving Skills in Terms of Different Variables

    Science.gov (United States)

    Yenice, Nilgun

    2011-01-01

    This study was conducted to examine pre-service science teachers' critical thinking dispositions and problem solving skills based on gender, grade level and graduated high school variables. Also relationship between pre-service science teachers' critical thinking dispositions and problem solving skills was examined based on gender, grade level and…

  18. The Effects of Computer-Aided Concept Cartoons and Outdoor Science Activities on Light Pollution

    Science.gov (United States)

    Aydin, Güliz

    2015-01-01

    The purpose of this study is to create an awareness of light pollution on seventh grade students via computer aided concept cartoon applications and outdoor science activities and to help them develop solutions; and to determine student opinions on the practices carried out. The study was carried out at a middle school in Mugla province of Aegean…

  19. The Cognitive Science of Learning: Concepts and Strategies for the Educator and Learner.

    Science.gov (United States)

    Weidman, Joseph; Baker, Keith

    2015-12-01

    Education is the fundamental process used to develop and maintain the professional skills of physicians. Medical students, residents, and fellows are expected to learn considerable amounts of information as they progress toward board certification. Established practitioners must continue to learn in an effort to remain up-to-date in their clinical realm. Those responsible for educating these populations endeavor to teach in a manner that is effective, efficient, and durable. The study of learning and performance is a subdivision of the field of cognitive science that focuses on how people interpret and process information and how they eventually develop mastery. A deeper understanding of how individuals learn can empower both educators and learners to be more effective in their endeavors. In this article, we review a number of concepts found in the literature on learning and performance. We address both the theoretical principles and the practical applications of each concept. Cognitive load theory, constructivism, and analogical transfer are concepts particularly beneficial to educators. An understanding of goal orientation, metacognition, retrieval, spaced learning, and deliberate practice will primarily benefit the learner. When these concepts are understood and incorporated into education and study, the effectiveness of learning is significantly improved.

  20. `Models of' versus `Models for'. Toward an Agent-Based Conception of Modeling in the Science Classroom

    Science.gov (United States)

    Gouvea, Julia; Passmore, Cynthia

    2017-03-01

    The inclusion of the practice of "developing and using models" in the Framework for K-12 Science Education and in the Next Generation Science Standards provides an opportunity for educators to examine the role this practice plays in science and how it can be leveraged in a science classroom. Drawing on conceptions of models in the philosophy of science, we bring forward an agent-based account of models and discuss the implications of this view for enacting modeling in science classrooms. Models, according to this account, can only be understood with respect to the aims and intentions of a cognitive agent (models for), not solely in terms of how they represent phenomena in the world (models of). We present this contrast as a heuristic— models of versus models for—that can be used to help educators notice and interpret how models are positioned in standards, curriculum, and classrooms.

  1. The Concept of ''Disability'' in Architecture as a Power and Ideology Problem

    Directory of Open Access Journals (Sweden)

    Selma Saltoğlu

    2016-07-01

    Full Text Available The concept of disability, which is well accepted around the world and seem to be a statement of positive discrimination at first, requires to become a current issue as an equality problem in architecture and society today. In fact, the definition of disability and its intellectual basis are major and still invisibile obstacles to obtain equal rights for everyone regarding architectural accessibility and participation in social life. In this study, the intellectual basis of the concept of disability in social understanding has been explored to identify the main problem. It has been realised that this understanding, which is to be seen also in architectural practices, has occured as an issue of power and ideology. On one hand, the society itself generates the definitions, classifies people and creates hegemony based on consent, and on the other hand speaks up for resolving the problems caused by this classifications with a total inactivity. Strong ideologies, which ignore the problems of existing definitions, forms absolute truths and minds unable to question. Therefore, the definition of “disabled” becomes approved by the entire society, although it does not include inseperable parts of society such as children, patients or elderly. These ideologies result in a communal power created by free will insted of enforcement. In this manner, even individuals classified as “disabled” accept the legitimacy of this authority. However, existing of such an accepted definiton causes otherizing and ignorance in society. It also affects architectural perception and plays a significant role in creating isolation projects such as “disabled-friendly houses” or “libraries for disabled”. These projects show that people defined as “disabled” are the dark subconsciousness of society willing to be forgotten. When it is realised that the unity of differences creates the society, the classification will be forgotten, environments and mentallities

  2. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  3. Critical Phenomena in Natural Sciences Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    CERN Document Server

    Sornette, Didier

    2006-01-01

    Concepts, methods and techniques of statistical physics in the study of correlated, as well as uncorrelated, phenomena are being applied ever increasingly in the natural sciences, biology and economics in an attempt to understand and model the large variability and risks of phenomena. This is the first textbook written by a well-known expert that provides a modern up-to-date introduction for workers outside statistical physics. The emphasis of the book is on a clear understanding of concepts and methods, while it also provides the tools that can be of immediate use in applications. Although this book evolved out of a course for graduate students, it will be of great interest to researchers and engineers, as well as to post-docs in geophysics and meteorology.

  4. On the relevance of Gibson's affordance concept for geographical information science (GISc).

    Science.gov (United States)

    Jonietz, David; Timpf, Sabine

    2015-09-01

    J. J. Gibson's concept of affordances has provided a theoretical basis for various studies in geographical information science (GISc). This paper sets out to explain its popularity from a GISc perspective. Based on a short review of previous work, it will be argued that its main contributions to GISc are twofold, including an action-centered view of spatial entities and the notion of agent-environment mutuality. Using the practical example of pedestrian behavior simulation, new potentials for using and extending affordances are discussed.

  5. A Problem-Based Learning Scenario That Can Be Used in Science Teacher Education

    Science.gov (United States)

    Sezgin Selçuk, Gamze

    2015-01-01

    The purpose of this study is to introduce a problem-based learning (PBL) scenario that elementary school science teachers in middle school (5th-8th grades) can use in their in-service training. The scenario treats the subjects of heat, temperature and thermal expansion within the scope of the 5th and 6th grade science course syllabi and has been…

  6. Excel 2013 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems.  Practice problems are provided at the end of each chapter with their solutions in an appendix.  Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.  Includes 164 illustrations in color Suitable for undergraduates or graduate student Prof. Tom Quirk is currently a Professor of Marketing at The Walker School of Business and Technology at Webster University in St....

  7. Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review

    Science.gov (United States)

    Jin, Jun

    2014-01-01

    Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for

  8. Educational technologies in problem-based learning in health sciences education: a systematic review.

    Science.gov (United States)

    Jin, Jun; Bridges, Susan M

    2014-12-10

    As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education

  9. Reproducibility of Psychological Experiments as a Problem of Post-Nonclassical Science

    Directory of Open Access Journals (Sweden)

    Vachkov I.V.,

    2016-04-01

    Full Text Available A fundamental project on reproducibility carried out in the USA by Brian Nosek in 2015 (the Reproducibility Project revealed a serious methodological problem in psychology: the issue of replication of psycho- logical experiments. Reproducibility has been traditionally perceived as one of the basic principles of the scientific method. However, methodological analysis of the modern post-nonclassical stage in the development of science suggests that this might be a bit too uncompromising as applied to psychology. It seems that the very criteria of scientific research need to be reconsidered with regard to the specifics of post-nonclassical science, and, as the authors put it, as a result, reproducibility might lose its key status or even be excluded at all. The reviewed problem and the proposed ways of coping with it are of high importance to research and practice in psychology as they define the strategies for organizing, conducting and evaluating experimental research.

  10. Goethe's Conception of "Experiment as Mediator" and Implications for Practical Work in School Science

    Science.gov (United States)

    Park, Wonyong; Song, Jinwoong

    2018-03-01

    There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.

  11. Some geomedical problems in relation to soil science

    International Nuclear Information System (INIS)

    Laag, J.

    1988-01-01

    Geomedicine may be defined as the science dealing with the influence of ordinary environmental factors on geographical distribution of health problems in man and animals. An important group of geomedical problems is connected to nutrition. These problems may either be caused by deficiency or surplus of certain matters. Many questions concerning the pollution of nature are classified under the latter group Radioactive pollutants are regarded as important special occurrences under this group. In order to be able to solve complicated geomedical problems, knowledge is needed on the circulation processes rocks-soils-water-plants-animals-man, and waste products back to the soils. The registration of locations of different radioactive elements can give basic material for special geomedical conclusions. Many chemical reactions in which radioactive matter are involved, depend on properties of the soils. Humus and clay minerals have, generally speaking, a high capacity for the absorbtion of soluble matter, but great variations occur. The reactions of radioactive isotopes supplied from the atmosphere, depend on properties of the soil. Radioactive substances are leached relatively rapidly from a soil with low absorption capacity, and may thus be taken away from the circulation in which terrestrial plants, animals and man take part. If the substances is strongly absorbed (fixed), they can also to some extent be withdrawn from the circulation processes

  12. Problem- and case-based learning in science: an introduction to distinctions, values, and outcomes.

    Science.gov (United States)

    Allchin, Douglas

    2013-01-01

    Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge.

  13. NASA's Gravitational - Wave Mission Concept Study

    Science.gov (United States)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  14. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-01-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the…

  15. Science Education as Public and Social Wealth: The Notion of Citizenship from a European Perspective

    Science.gov (United States)

    Siatras, Anastasios; Koumaras, Panagiotis

    2013-01-01

    In this paper, (a) we present a framework for developing a science content (i.e., science concepts, scientific methods, scientific mindset, and problem-solving strategies for socio-scientific issues) used to design the new Cypriot science curriculum aiming at ensuring a democratic and human society, (b) we use the previous framework to explore the…

  16. The Pitfalls of a Tool-based Science and the Promise of a Problem-focused Science

    Directory of Open Access Journals (Sweden)

    Patrick E. McKnight

    2011-05-01

    Full Text Available Our present social sciences are at risk of losing sight of their primary purpose: the goal of reducing uncertainty. For years social scientists have drifted slowly toward the routine of employing of accepted methodological, conceptual, and analytical tools rather than engaging in problem oriented inquiry. Scientific contributions are reviewed in accordance to their compliance with the routine application of tools rather than focusing on their ability to problem-solve for a wider population. Researchers in every area of psychology for instance now insist on using methods such as random assignment and control groups, as well as data analytic procedures such as null hypothesis significance testing without regard to their relevance. A problem-focused inquiry would not dictate the routine use of any particular tool but rather the judicious application of tools when deemed appropriate. The following article describes  the current situation in the framework contrasting toolbased and problem-focused inquiry and offers several insights that may create a more balanced and fruitful approach to scientific inquiry. DOI: 10.2458/azu_jmmss.v1i2.99

  17. Science Education for Students with Special Needs

    Science.gov (United States)

    Villanueva, Mary Grace; Taylor, Jonte; Therrien, William; Hand, Brian

    2012-01-01

    Students with special needs tend to show significantly lower achievement in science than their peers. Reasons for this include severe difficulties with academic skills (i.e. reading, math and writing), behaviour problems and limited prior understanding of core concepts background knowledge. Despite this bleak picture, much is known on how to…

  18. A Study on Teaching Gases to Prospective Primary Science Teachers through Problem-Based Learning

    Science.gov (United States)

    Senocak, Erdal; Taskesenligil, Yavuz; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to compare the achievement of prospective primary science teachers in a problem-based curriculum with those in a conventional primary science teacher preparation program with regard to success in learning about gases and developing positive attitudes towards chemistry. The subjects of the study were 101 first year…

  19. Computer Graphics for Student Engagement in Science Learning.

    Science.gov (United States)

    Cifuentes, Lauren; Hsieh, Yi-Chuan Jane

    2001-01-01

    Discusses student use of computer graphics software and presents documentation from a visualization workshop designed to help learners use computer graphics to construct meaning while they studied science concepts. Describes problems and benefits when delivering visualization workshops in the natural setting of a middle school. (Author/LRW)

  20. Divertors for helical devices: Concepts, plans, results and problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2003-01-01

    With LHD and W7-X stellarator development is now taking a large leap forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control, and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large stellarators were carefully prepared in smaller scale devices like Heliotron E, CHS and W7-AS. While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller scale experiments like Heliotron-J, CHS and NCSX will be used for the further development of divertor concepts. The two divertor configurations that are presently being investigated, are the helical and the island divertor, as well as the local island divertor (LID), which was successfully demonstrated on CHS and just went into operation on LHD. Presently, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor which will allow quasi continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi steady-state operating scenario in a newly found high density H-mode operating regime, which benefits from high energy and extremely low impurity confinement times, with edge radiation levels of up to 90 % and sufficient neutral compression in the subdivertor region (> 10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios and toroidal asymmetries due to symmetry breaking error fields, etc. will be discussed. (orig.)

  1. Divertors for Helical Devices: Concepts, Plans, Results, and Problems

    International Nuclear Information System (INIS)

    Koenig, R.; Grigull, P.; McCormick, K.

    2004-01-01

    With Large Helical Device (LHD) and Wendelstein 7-X (W7-X), the development of helical devices is now taking a large step forward on the path to a steady-state fusion reactor. Important issues that need to be settled in these machines are particle flux and heat control and the impact of divertors on plasma performance in future continuously burning fusion plasmas. The divertor concepts that will initially be explored in these large machines were prepared in smaller-scale devices like Heliotron E, Compact Helical System (CHS), and Wendelstein 7-AS (W7-AS). While advanced divertor scenarios relevant for W7-X were already studied in W7-AS, other smaller-scale experiments like Heliotron-J, CHS, and National Compact Stellarator Experiment will be used for the further development of divertor concepts. The two divertor configurations that are being investigated are the helical and the island divertor, as well as the local island divertor, which was successfully demonstrated on CHS and just went into operation on LHD. At present, on its route to a fully closed helical divertor, LHD operates in an open helical divertor configuration. W7-X will be equipped right from the start with an actively cooled discrete island divertor that will allow quasi-continuous operation. The divertor design is very similar to the one explored on W7-AS. For sufficiently large island sizes and not too long field line connection lengths, this divertor gives access to a partially detached quasi-steady-state operating scenario in a newly found high-density H-mode operating regime, which benefits from high energy and low impurity confinement times, with edge radiation levels of up to 90% and sufficient neutral compression in the subdivertor region (>10) for active pumping. The basic physics of the different divertor concepts and associated implementation problems, like asymmetries due to drifts, accessibility of essential operating scenarios, toroidal asymmetries due to symmetry breaking error fields

  2. The Territorial Trap and The Problem of Non-territorialized Groups

    Directory of Open Access Journals (Sweden)

    Mireille Marcia Karman

    2016-12-01

    Full Text Available This article aims to argue that territory is ahistorical concept rather than a constant one in explaining political conception of state and other political entities. Referring to liberalism and political realism, territory has been one of the core concepts in the study of political science. This paper will then elaborate the concept of territoriality and its problem in the era of globalization, which will also describe the existence of territory of non-state actor in private and public sphere. At the end of this article, I will outline the possibility to have a different reaction against the threat of non-state actor when the notion of territory is not taken for granted anymore.

  3. The effects of using concept mapping as an artifact to engender metacognitive thinking in first-year medical students' problem-based learning discussions: A mixed-methods investigation

    Science.gov (United States)

    Shoop, Glenda Hostetter

    Attention in medical education is turning toward instruction that not only focuses on knowledge acquisition, but on developing the medical students' clinical problem-solving skills, and their ability to critically think through complex diseases. Metacognition is regarded as an important consideration in how we teach medical students these higher-order, critical thinking skills. This study used a mixed-methods research design to investigate if concept mapping as an artifact may engender metacognitive thinking in the medical student population. Specifically the purpose of the study is twofold: (1) to determine if concept mapping, functioning as an artifact during problem-based learning, improves learning as measured by scores on test questions; and (2) to explore if the process of concept mapping alters the problem-based learning intragroup discussion in ways that show medical students are engaged in metacognitive thinking. The results showed that students in the problem-based learning concept-mapping groups used more metacognitive thinking patterns than those in the problem-based learning discussion-only group, particularly in the monitoring component. These groups also engaged in a higher level of cognitive thinking associated with reasoning through mechanisms-of-action and breaking down complex biochemical and physiologic principals. The students disclosed in focus-group interviews that concept mapping was beneficial to help them understand how discrete pieces of information fit together in a bigger structure of knowledge. They also stated that concept mapping gave them some time to think through these concepts in a larger conceptual framework. There was no significant difference in the exam-question scores between the problem-based learning concept-mapping groups and the problem-based learning discussion-only group.

  4. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  5. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study.

    Science.gov (United States)

    Nuhfer, Edward B; Cogan, Christopher B; Kloock, Carl; Wood, Gregory G; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W

    2016-03-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  6. [Pollution-ecological problems of old industrial and mining areas and future research prospects].

    Science.gov (United States)

    Zhou, Qixing

    2005-06-01

    Environmental pollution and its solicitation in ecological problems of old industrial and mining areas have become a worldwide technological puzzle restricting sustainable economic and social development. But, the definition and category of old industrial and mining areas is still disputed as an important concept. In this paper, the concept of old industrial and mining area was discussed in theory, and, proceeded with analyzing the complexity of current situation and environmental pollution problems of old industrial and mining areas in China, more keystone attention was paid to the secondary pollution problems from old industrial and mining areas as an important frontier of science. On the basis of expounding the complexity and characters of environmental pollution in old industrial and mining areas, it was suggested that as two key scientific problems in environmental sciences and ecology, the formation mechanisms and control technology of secondary pollution in old industrial and mining areas and the responses of new-type diseases to environmental pollution based on molecular ecotoxicology should be systematically studied on the national scale, and be an important component of environmental protection strategy in China in the future.

  7. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    Science.gov (United States)

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being. © 2016 The Hastings Center.

  8. Using Concept Maps for Nursing Education in Iran: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Morteza Ghojazadeh

    2014-05-01

    Full Text Available Introduction: Considering the importance, complexity, and problems in nursing education, using efficient and new methods in nursing education seems to be necessary. One of the most important of these methods which has received attention in recent years is the use of concept maps. Therefore, the aim of this study was systematic review of studies conducted in this field. Methods: Required information for this systematic review study was collected using keywords of concept map, learning, retention, nursing education, critical thinking skill, and Iran and their English synonyms in data bases of Iranmedex, Magiran, Science Direct, PubMed, Google scholar, Medlib, and SID. No time limitation was considered for searching articles. Articles published in Farsi and English have been searched. Results: Results show that concept maps have a significant effect on improving critical thinking of learners. Compared to other educational methods such as lectures; using concept maps show higher efficiency in deep and meaningful learning. Besides, concept maps have a significant effect on learning (relationship of theory and practice, improvement of clinical experiences, organizing concepts, and self-regulation. Conclusion: According to the importance of nursing education and its available problems on one hand, and the use and applicability of concept maps on the other hand (as well as ignorance about this educational method, it seems necessary to plan for the development of using concept maps in educational nursing.

  9. Conserving Our Environment. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 13.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit focuses on: (1) basic ecological and conservation concepts; (2) problems and complexities of…

  10. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    Science.gov (United States)

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  11. Conceptions of schizophrenia as a problem of nerves: a cross-cultural comparison of Mexican-Americans and Anglo-Americans.

    Science.gov (United States)

    Jenkins, J H

    1988-01-01

    This paper explores indigenous conceptions of psychosis within family settings. The cultural categories nervios and 'nerves', as applied by Mexican-American and Anglo-American relatives to family members diagnosed with schizophrenia, are examined. While Mexican-Americans tended to consider nervios an appropriate interpretation of the problem, Anglo-Americans explicitly dismissed the parallel English term 'nerves'. Anglo-American relatives were likely to consider the problem as 'mental' in nature, often with specific reference to psychiatric diagnostic labels such as 'schizophrenia'. Although variations in conceptions appear related to both ethnicity and socioeconomic status, significant cultural differences were observed independent of socioeconomic status. These results raise questions concerning contemporary anthropological views that psychosis is conceptualized in substantially similar ways cross-culturally, and underscore the need for more contextualized understanding of the meaning and application of indigenous concepts of mental disorder. The paper concludes with a discussion of psychocultural meanings associated with ethnopsychiatric labels for schizophrenia and their importance for the social and moral status of patients and their kin.

  12. Science Curriculum Components Favored by Taiwanese Biology Teachers

    Science.gov (United States)

    Lin, Chen-Yung; Hu, Reping; Changlai, Miao-Li

    2005-09-01

    The new 1-9 curriculum framework in Taiwan provides a remarkable change from previous frameworks in terms of the coverage of content and the powers of teachers. This study employs a modified repertory grid technique to investigate biology teachers' preferences with regard to six curriculum components. One hundred and eighty-five in-service and pre-service biology teachers were asked to determine which science curriculum components they liked and disliked most of all to include in their biology classes. The data show that the rank order of these science curriculum components, from top to bottom, was as follows: application of science, manipulation skills, scientific concepts, social/ethical issues, problem-solving skills, and the history of science. They also showed that pre-service biology teachers, as compared with in-service biology teachers, favored problem-solving skills significantly more than manipulative skills, while in-service biology teachers, as compared with pre-service biology teachers, favored manipulative skills significantly more than problem-solving skills. Some recommendations for ensuring the successful implementation of the Taiwanese 1-9 curriculum framework are also proposed.

  13. The Science Shop for Physics: an interface between practical problems in society and physical knowledge

    Science.gov (United States)

    van den Berg, G. P.

    1998-03-01

    Since some 20 years most Dutch universities have one or more science shops. Central shops handle research questions for all disciplines. Specialized shops are part of a department of chemistry or medicine, history, social science, etc. The shops have evolved rather differently, but their main mission still is to help social groups that lack money and have no easy access to scientific knowledge, e.g. neighbourhood, environmental, third world or patient groups. Most also help non-commercial organizations such as schools, trade unions or local authorities. Low-cost help can be provided because students do the work as part of their training, mainly in student projects (literature search, practical work, graduation, etc.). A total staff of 80, helped by 600 students, 250 voluntary and 50 paid researchers, handle 1500 questions resulting in 300 reports (estimated figures 1995). Science shops for physics (`Physics Shop', PS) have to deal with practical problems, generally involving classical physics. Major topics are noise, vibration, radiation, indoor climate and energy: most of the work lies in estimating/measuring relevant parameters, assessing impact, seeking solutions. The 3 Dutch PS's have developed in different directions. One is run entirely by students and deals with small, concrete problems. The second PS is managed by a co-ordinator who mediates between client groups and physics staff members who assist students in small and larger projects. The third has a lot of in-house expertise, and the shop staff is in direct contact with client groups as well as students who work in the PS itself. In questions submitted to the PS it is not always immediately clear what to do or how to do it because of the non-scientific phrasing of the problems and problems include non-physical (e.g. technical, health or legal) aspects. Also, difficulties in solving the problems are typically not in the underlying physics, but in the lack of accurate data and of control of the complex

  14. On the Origin of Hobbes’s Conception of Language: The Literary Culture of English Renaissance Humanism

    Directory of Open Access Journals (Sweden)

    Sergio H. Orozco-Echeverri

    2012-12-01

    Full Text Available Hobbes' education in the literary culture of English Renaissance humanism has been overlooked as an important tradition in understanding his position in Early Modern Philosophy. Against the traditional readings of Hobbes' conception of language as a sequel to Medieval nominalism, I will argue that Hobbes' education in the literary culture of Renaissance humanism and his subsequent developments in this tradition would have allowed him to consider philosophical problems raised by new science in an original way and, thus, to introduce his innovative conception of language as the core of his solution to the problem of social and natural orders.

  15. Seeking missing pieces in science concept assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch analysis

    Directory of Open Access Journals (Sweden)

    Lin Ding

    2014-02-01

    Full Text Available Discipline-based science concept assessments are powerful tools to measure learners’ disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA has been broadly used to gauge student conceptions of key electricity and magnetism (E&M topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students’ overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I. While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.

  16. Seeking missing pieces in science concept assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch analysis

    Science.gov (United States)

    Ding, Lin

    2014-02-01

    Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students' overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I). While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.

  17. Science Literacy: Concepts, Contexts, and Consequences

    Science.gov (United States)

    Snow, Catherine E., Ed.; Dibner, Kenne A., Ed.

    2016-01-01

    Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science--whether using knowledge or creating it--necessitates some level of familiarity with the enterprise and…

  18. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  19. Using a Scientific Paper Format to Foster Problem-Based, Cohort-Learning in Undergraduate Environmental Science

    Science.gov (United States)

    Wagner, T.; Langley-Turnbaugh, S. J.; Sanford, R.

    2006-01-01

    The Department of Environmental Science at the University of Southern Maine implemented a problem-based, cohort-learning curriculum for undergraduate environmental science majors. The curriculum was based on a five-course sequence patterned after the outline of a scientific paper. Under faculty guidance, students select local environmental…

  20. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  1. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  2. Competence of matric physical science teachers in some basic problem-solving strategies

    Directory of Open Access Journals (Sweden)

    Mailoo Selvaratnam

    2011-01-01

    Full Text Available The National Curriculum Statement for matric physical science places strong emphasis on the development of critical thinking and reasoning abilities of pupils. The successful implementation of this curriculum therefore requires teachers who are competent in the cognitive (intellectual skills and strategies needed for learning science effectively. Testing of teachers’ competence in this aspect is therefore important. I therefore analysed teachers’ answers to questions that were carefully designed to test competence in some basic intellectual strategies that are important for problem solving in physical science courses. A total of 73 matric physical science teachers, from about 50 Dinaledi schools in the North West and KwaZulu-Natal provinces in South Africa, were tested in five intellectual strategies: clear representation of problems, identifying and focusing on the goal, identification and use of relevant principles, use of equations for deductions and proceeding step-by-step with the solution. The teachers’ competence was poor in all the intellectual strategies tested. About 60% (the average performance in all 13 questions used for testing of teachers tested were unable to solve the questions correctly. An important objective of the curriculum is the development of critical thinking, scientific reasoning and strategies of pupils. This study shows that the achievement of this objective will be seriously handicapped because of the lack of competence of many teachers in intellectual strategies. There is therefore a need to train teachers in order to increase their competence in this aspect.

  3. Validity and Reliability in Social Science Research

    Science.gov (United States)

    Drost, Ellen A.

    2011-01-01

    In this paper, the author aims to provide novice researchers with an understanding of the general problem of validity in social science research and to acquaint them with approaches to developing strong support for the validity of their research. She provides insight into these two important concepts, namely (1) validity; and (2) reliability, and…

  4. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  5. Formation of ecological and legal science: resource aspect and its integration problems

    Directory of Open Access Journals (Sweden)

    А. П. Гетьман

    2016-04-01

    Full Text Available Problem setting. Social and environmental issues of waste management facing society relatively recently, but showed a tendency to expand and deepen, which in turn caused the necessity of formation of effective policy in this area. Recent research and publications analysis. Some aspects of the present stage of the formation of environmental law and its relationship to nature and resources law, structural and systemic connections was studied by various researchers in the context of environmental policy and legislation analysis, regulation of wildlife relationships, expanding the scope of regulation of resource. In particular, they can mark out V. Andreytsev, A. Getman, M. Krasnova, N. Malisheva and others. However, comprehensive studies of this policy is currently not available. Paper objective. The purpose of the article is a theoretical analysis of the current state of environmental law, the formation of the next stage of development of natural resource relationships, their expansion and transformation into a resource (ecologic and resource in order to adequately respond to the differentiation and complexity of structural and systemic linkages. Paper main body. The development and dynamics of the environmental, natural resources legislation is largely driven by global and European processes and requires constant updating in order to overcome gaps, timely and adequate response to contemporary challenges, changes in value paradigms and so forth. One of these problems is the development of traditional branches of law and directions research that, in turn, raises the question of substantive content, structural and systemic links of these areas of law. Any delay in the establishment of the theoretical and methodological and scientific and legal framework for a new legal phenomena in the framework of ecological and legal science creates the preconditions for the expansion of research not only to them but also in relation to the already well

  6. Can Pollution Problems Be Effectively Solved by Environmental Science and Technology? An Analysis of Critical Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    It is currently believed that science and technology can provide effective solutions to most, if not all, environmental problems facing western industrial societies. The validity of this optimistic assumption is highly questionable for at least three reasons: First, current mechanistic, reductionist science is inherently incapable of providing the complete and accurate information which is required to successfully address environmental problems. Second, both the conservation of mass principle and the second law of thermodynamics dictate that most remediation technologies - while successful in solving specific pollution problems - cause unavoidable negative environmental impacts elsewhere or in the future. Third, it is intrinsically impossible to design industrial processes that have no negative environmental impacts. This follows not only from the entropy law but also from the fact that any generation of energy is impossible without negative environmental consequences. It can therefore be concluded that science and technology have only very limited potential in solving current and future environmental problems. Consequently, it will be necessary to address the root cause of environmental deterioration, namely the prevailing materialistic values that are the main driving force for both overpopulation and overconsumption. The long-term protection of the environment is therefore not primarily a technical problem but rather a social and moral problem that can only be solved by drastically reducing the strong influence of materialistic values.

  7. Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics

    Science.gov (United States)

    Hartmann, Alexander K.; Weigt, Martin

    2005-10-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.

  8. Editorial: Challenges of Social Science Literacy

    Directory of Open Access Journals (Sweden)

    Birgit Weber

    2010-12-01

    Full Text Available Since international tests compare the performance of students in different subjects, the issue of literacy in the social science subject is becoming more pressing. The successes and failures in international tests influence the national education policies considerably. First, the inclusion of subjects in international comparisons has consequences for their importance. Second, the race in the Olympics of education leads to an increasing focus on the output of educational processes, also measured in the central exams. Social Sciences can refuse to take part in the national comparison studies with the price of losing much more importance; they can participate with the danger of undermining their goals. This raises a lot of questions: What competences students need in this social world to reason about it und to act responsibly? What is the foundation of concepts from social science students need for guidance and understanding their place and role as an individual in society? The social science disciplines, as sociology, political science and economics in a narrow sense, history, law and geography in a broader sense, supported by philosophy, pedagogy and psychology are able to select them for educational purposes or determine such educational aims. This Journal wants to resume und discuss competences and core con¬cepts for political and economic teaching and learning as Social Science Literacy”. Contributions in this issue do not only discuss and recommend competences and core concepts from a domain specific political or economic point of view, but also from an interdisciplinary or psychological point of view. They analyse preconditions and interdependencies as well as obstacles und problems of development and diagnosis core concepts and competences of Social Science Literacy.

  9. Scaffolding the Science: Problem Based Strategies for Teaching Interdisciplinary Undergraduate Research Methods

    Science.gov (United States)

    Keebaugh, Alaine; Darrow, Lyndsey; Tan, David; Jamerson, Heather

    2009-01-01

    Previous research has highlighted the effectiveness of Problem-Based Learning (PBL) in multiple disciplinary settings, including medicine, teacher education, business, allied health, and the social sciences. Yet interdisciplinary educators have very little information about how to implement PBL in classrooms where multiple disciplines are…

  10. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    Science.gov (United States)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  11. Science and philosophy in Deleuze

    Directory of Open Access Journals (Sweden)

    Krtolica Igor

    2015-01-01

    Full Text Available Deleuze will not wait until he had completed his works to frame and formulate a theory on the relation between philosophy and science. The first articulations of this question are already present as early as the 1950s and 1960s in the studies on Bergson and Nietzsche, and then in Difference and repetition as well as in The Logic of Sense. It is also true that this question will be specifically developed in 1991 in What Is Philosophy? But throughout his work, the main thrust would proceed. This issue, it seems, comprises three main aspects: in the first place, in a polemic against the neo-Kantian epistemological legacy, it primarily consists in denying the critical definition of philosophy as being a ‘reflection on scientific knowledge’ to replace it by a conception drawn from Bergson’s expressionist ontology that places science and philosophy on both sides of the being; secondly, in an attempt to restore the concept of dialectics, it consists in making the dialectics of ideas the communal sphere of both science and philosophy; thirdly, aiming to specify every form of thinking, it consists in shaping how each expresses its ideas or its problems with its own signs. These three aspects, it seems, can frame the overall conception Deleuze formed of the link between science and philosophy. We shall successively analyze them, exclusively considering the first period of Deleuze’s work, which is to say the pre-guattarian publications.

  12. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study

    Directory of Open Access Journals (Sweden)

    Edward B. Nuhfer

    2015-12-01

    Full Text Available After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs, we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI. In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a first-generation student, b English as a native language, and c interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  13. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study†

    Science.gov (United States)

    Nuhfer, Edward B.; Cogan, Christopher B.; Kloock, Carl; Wood, Gregory G.; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W.

    2016-01-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders. PMID:27047612

  14. THE CONCEPT OF COMPETITIVE ADVANTAGES. LOGIC, SOURCES AND DURABILITY

    OpenAIRE

    Cegliński, Paweł

    2017-01-01

    Purpose: The main purpose of this article is to present theoretical assumptions of the concept of competitive advantages and main problems connected with the same. Most of all, the article outlines issues, which are presently discussed in the field of management sciences, including sources of competitive advantages, causal ambiguity and character of durability of competitive advantages in the contemporary turbulent business environment. In the author’s opinion, the issues have a great signifi...

  15. Business transactions and standards. Towards a system of concepts and a method for early problem identification in standard implementation projects

    NARCIS (Netherlands)

    Rukanova, B.D.

    2005-01-01

    To summarize, with respect to research question one we constructed a system of concepts, while in answer to research question two we proposed a method of how to apply this system of concepts in practice in order to identify potential problems in early stages of standard implementation projects.

  16. Student-generated illustrations and written narratives of biological science concepts: The effect on community college life science students' achievement in and attitudes toward science

    Science.gov (United States)

    Harvey, Robert Christopher

    The purpose of this study was to determine the effects of two conceptually based instructional strategies on science achievement and attitudes of community college biological science students. The sample consisted of 277 students enrolled in General Biology 1, Microbiology, and Human Anatomy and Physiology 1. Control students were comprised of intact classes from the 2005 Spring semester; treatment students from the 2005 Fall semester were randomly assigned to one of two groups within each course: written narrative (WN) and illustration (IL). WN students prepared in-class written narratives related to cell theory and metabolism, which were taught in all three courses. IL students prepared in-class illustrations of the same concepts. Control students received traditional lecture/lab during the entire class period and neither wrote in-class descriptions nor prepared in-class illustrations of the targeted concepts. All groups were equivalent on age, gender, ethnicity, GPA, and number of college credits earned and were blinded to the study. All interventions occurred in class and no group received more attention or time to complete assignments. A multivariate analysis of covariance (MANCOVA) via multiple regression was the primary statistical strategy used to test the study's hypotheses. The model was valid and statistically significant. Independent follow-up univariate analyses relative to each dependent measure found that no research factor had a significant effect on attitude, but that course-teacher, group membership, and student academic characteristics had a significant effect (p < .05) on achievement: (1) Biology students scored significantly lower in achievement than A&P students; (2) Microbiology students scored significantly higher in achievement than Biology students; (3) Written Narrative students scored significantly higher in achievement than Control students; and (4) GPA had a significant effect on achievement. In addition, given p < .08: (1

  17. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  18. Concept analysis and the building blocks of theory: misconceptions regarding theory development.

    Science.gov (United States)

    Bergdahl, Elisabeth; Berterö, Carina M

    2016-10-01

    The purpose of this article is to discuss the attempts to justify concepts analysis as a way to construct theory - a notion often advocated in nursing. The notion that concepts are the building blocks or threads from which theory is constructed is often repeated. It can be found in many articles and well-known textbooks. However, this notion is seldom explained or defended. The notion of concepts as building blocks has also been questioned by several authors. However, most of these authors seem to agree to some degree that concepts are essential components from which theory is built. Discussion paper. Literature was reviewed to synthesize and debate current knowledge. Our point is that theory is not built by concepts analysis or clarification and we will show that this notion has its basis in some serious misunderstandings. We argue that concept analysis is not a part of sound scientific method and should be abandoned. The current methods of concept analysis in nursing have no foundation in philosophy of science or in language philosophy. The type of concept analysis performed in nursing is not a way to 'construct' theory. Rather, theories are formed by creative endeavour to propose a solution to a scientific and/or practical problem. The bottom line is that the current style and form of concept analysis in nursing should be abandoned in favour of methods in line with modern theory of science. © 2016 John Wiley & Sons Ltd.

  19. Interdisciplinary Approaches at Institutions of Higher Education: Teaching Information Systems Concepts to Students of Non-Computer Science Programs

    Directory of Open Access Journals (Sweden)

    Roland Schwald

    2011-07-01

    Full Text Available The aim of this paper is to present a curriculum development concept for teaching information systems content to students enrolled in non-computer science programs by presenting examples from the Business Administration programs at Albstadt-Sigmaringen University, a state university located in Southern Germany. The main focus of this paper therefore is to describe this curriculum development concept. Since this concept involves two disciplines, i.e. business administration and computer science, the author argues that it is necessary to define the roles of one discipline for the other and gives an example on how this could be done. The paper acknowledges that the starting point for the development of a curriculum such as one for a business administration program will be the requirements of the potential employers of the graduates. The paper continues to recommend the assignment of categorized skills and qualifications, such as knowledge, social, methodological, and decision making skills to the different parts of the curricula in question for the development of such a curriculum concept. After the mapping of skills and courses the paper describes how specific information systems can be used in courses, especially those with a specific focus on methodological skills. Two examples from Albstadt-Sigma-ringen University are being given. At the end of the paper the author explains the implications and limitations of such a concept, especially for programs that build on each other, as is the case for some Bachelor and Master programs. The paper concludes that though some elements of this concept are transferable, it is still necessary that every institution of higher education has to take into consideration its own situation to develop curricula concepts. It provides recommendations what issues every institution should solve for itself.

  20. Clinical caring science as a scientific discipline.

    Science.gov (United States)

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  1. Sound Science

    Science.gov (United States)

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  2. THE ANALYSIS OF THE LOGIC CONTENTS WITH ACTUAL VOLUME OF CONCEPTS “PROFESSIONAL DEVELOPMENT”, „PROFESSIONAL BECOMING”, OF RESEARCH THE PROBLEM OF FUTURE TEACHER OF PHYSICAL CULTURE PROF. DEVELOPMENT IN THE CONDITIONS OF INFORMATIVE-EDUC. SPACE OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Yurii V. Drahniev

    2011-02-01

    Full Text Available In the article the comparative analysis of leading concepts „professional development”, „professional becoming” of research of problem of professional development of future teacher of physical culture is given in the conditions of informative educational space of Ukraine. It is grounded, that concepts play an important role both in science and in everyday practice. It is specified, that professional development must have a specific orientation of future professional activity with the use of computer, be characterized by the use of information technologies in the process of professional preparation, determine the maintenance of educational professional program taking into account informatization of higher education system.

  3. Science modelling in pre-calculus: how to make mathematics problems contextually meaningful

    Science.gov (United States)

    Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen

    2011-04-01

    'Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum' (National Council of Teachers of Mathematics (NCTM), Principles and Standards for School Mathematics, NCTM, Reston, VA, 2000). Commonly used pre-calculus textbooks provide a wide range of application problems. However, these problems focus students' attention on evaluating or solving pre-arranged formulas for given values. The role of scientific content is reduced to provide a background for these problems instead of being sources of data gathering for inducing mathematical tools. Students are neither required to construct mathematical models based on the contexts nor are they asked to validate or discuss the limitations of applied formulas. Using these contexts, the instructor may think that he/she is teaching problem solving, where in reality he/she is teaching algorithms of the mathematical operations (G. Kulm (ed.), New directions for mathematics assessment, in Assessing Higher Order Thinking in Mathematics, Erlbaum, Hillsdale, NJ, 1994, pp. 221-240). Without a thorough representation of the physical phenomena and the mathematical modelling processes undertaken, problem solving unintentionally appears as simple algorithmic operations. In this article, we deconstruct the representations of mathematics problems from selected pre-calculus textbooks and explicate their limitations. We argue that the structure and content of those problems limits students' coherent understanding of mathematical modelling, and this could result in weak student problem-solving skills. Simultaneously, we explore the ways to enhance representations of those mathematical problems, which we have characterized as lacking a meaningful physical context and limiting coherent student understanding. In light of our discussion, we recommend an alternative to strengthen the process of teaching mathematical modelling - utilization

  4. An Achievement Degree Analysis Approach to Identifying Learning Problems in Object-Oriented Programming

    Science.gov (United States)

    Allinjawi, Arwa A.; Al-Nuaim, Hana A.; Krause, Paul

    2014-01-01

    Students often face difficulties while learning object-oriented programming (OOP) concepts. Many papers have presented various assessment methods for diagnosing learning problems to improve the teaching of programming in computer science (CS) higher education. The research presented in this article illustrates that although max-min composition is…

  5. The Description of Problems Relating to Analogies Used in Science and Technology Textbooks

    Directory of Open Access Journals (Sweden)

    Rahmi YAĞBASAN

    2008-01-01

    Full Text Available The aim of this study was to determine the problems concerning the use of analogies ingeneral and analogies used in primary school science and technology lessons inparticular. In this study, descriptive method was used. 4th, 5th, and 8th classes Scienceand Technology course books; 7 th, 8 th classes Science Books were used as a source.Analogies in the course books were classified according to the literature and theproblems found related to the analogies are pointed out in the study. In this study itwas seen that eighty-nine analogies were used in Science and Technology and inScience course books. These analogies were used in descending order as 8, 4, 6, 7, 5class groups. Also it was seen that these analogies were generally at simple andpictorial analogies.

  6. ACTUAL PROBLEMS OF THE THEORY OF QUALITY

    Directory of Open Access Journals (Sweden)

    V. P. Panasyuk

    2016-01-01

    Full Text Available The aim of the publication is the analysis of the place and the role of scientific categories and application of the concept of «quality» as a threepronged science of quality, quality management, quality assessment in contemporary global processes, as well as applied aspects with regard to the adoption of specific management decisions.Methods. Methodology of interdisciplinary approach to the analysis of the "quality" category is used; the methods of theoretical analysis, synthesis and generalization.Analysis of the «quality» of the concept is carried out in conjunction with the global processes and trends in the economy, the crisis in the world, due to the emerging new technological order. The theoretical foundation that can be laid at the base of the further development of the theory of quality and making the qualitative nature of the reforms in the social sphere and the economic sphere is considered in details.Results. The tendencies, risks, problems and suggestions on the practical application of some or other quality concepts, approaches to enforcement are signified. The author's vision of the future development direction, associated with quality, including in international breaking is given.Scientific novelty consists in determining of qualitology potential applied to solve complex theoretical and practical problems, its place and role among emerging new classification of classical and non-classical sciences. The promising directions of the quality theory in relation to the economy, social sphere, education are identified.Practical significance. The proposed recommendations on use of ideas for management approaches reconsideration, organization of research and training in the field of quality.

  7. Formative science and indicial science: epistemological proposal for information science

    Directory of Open Access Journals (Sweden)

    Eliany Alvarenga de Araújo

    2006-07-01

    Full Text Available Epistemological reflections on the Information Science as scientific field that if structure in the context of modern science, in theoretical and methodological terms and technologies of the information in applied terms. Such configuration made possible the sprouting of this science; however we consider that the same one will not guarantee to this science the full development as field of consistent and modern knowledge. Modern Science, while scientific practical vision and meets depleted and the information technologies are only auto-regulated mechanisms that function according to principles of automatisms. To leave of these considerations we propols the concept of Formative Science (Bachelard, 1996 and the Indiciario Paradigm (1991 with epistemological basis for the Information Science. The concept of formative science if a base on the principles of tree states of the scientific spirit and the psychological condition of the scientific progress and the indiciario paradigm it considers the intuição (empirical and rational as methodological base to make it scientific.

  8. Application of the proton induced X-ray emission (PIXE) technique to the study of problems in forensic science

    International Nuclear Information System (INIS)

    Sen, S.; Varier, K.M.; Mehta, G.K.; Sen, P.; Panigrahi, N.

    1981-01-01

    The PIXE technique has been successfully applied to study crime related problems in forensic science. The experimental arrangements and various practical problems involved are discussed. Consistency and reproducibility checks are presented. The results from the gun-shot residue profiles of the associated elements about the bullet hole obtained for various firing distances showed that the sensitivity of the PIXE technique could play a vital role in forensic science in assigning the distance from the gun to the victim and identifying the type of bullet used. PIXE runs on other forensic related specimens demonstrate its usefulness in indetification and evaluation of vital parameters related to a crime. The reliability and the importance of the PIXE method in solving criminal and related problems in forensic science are discussed. (orig.)

  9. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  10. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  11. Engineering Design in the Primary School: Applying STEM Concepts to Build an Optical Instrument

    Science.gov (United States)

    King, Donna; English, Lyn D.

    2016-01-01

    Internationally there is a need for research that focuses on STEM (Science, Technology, Engineering and Mathematics) education to equip students with the skills needed for a rapidly changing future. One way to do this is through designing engineering activities that reflect real-world problems and contextualise students' learning of STEM concepts.…

  12. Extending family nursing: concepts from positive psychology.

    Science.gov (United States)

    Skerrett, Karen

    2010-11-01

    This article identifies the burgeoning field of positive psychology as an important extension to the knowledge base of family nursing. Representing a new emphasis from the traditional social and human sciences, which have largely focused on problem- and deficit-based approaches, positive psychology focuses on optimal functioning and is an ideal complement to the strengths-based orientation of family nursing. Domains of positive psychology are presented and exemplars of supporting research offered. Finally, suggestions are given for ways to apply concepts from positive psychology to family nursing practice, research, and education.

  13. Analysis of expert validation on developing integrated science worksheet to improve problem solving skills of natural science prospective teachers

    Science.gov (United States)

    Widodo, W.; Sudibyo, E.; Sari, D. A. P.

    2018-04-01

    This study aims to develop student worksheets for higher education that apply integrated science learning in discussing issues about motion in humans. These worksheets will guide students to solve the problem about human movement. They must integrate their knowledge about biology, physics, and chemistry to solve the problem. The worksheet was validated by three experts in Natural Science Integrated Science, especially in Human Movement topic. The aspects of the validation were feasibility of the content, the construction, and the language. This research used the Likert scale to measure the validity of each aspect, which is 4.00 for very good validity criteria, 3.00 for good validity criteria, 2.00 for more or less validity criteria, and 1.00 for not good validity criteria. Data showed that the validity for each aspect were in the range of good validity and very good validity criteria (3.33 to 3.67 for the content aspect, 2.33 to 4.00 for the construction aspect, and 3.33 to 4.00 for language aspect). However, there was a part of construction aspect that needed to improve. Overall, this students’ worksheet can be applied in classroom after some revisions based on suggestions from the validators.

  14. Encyclopedia of Complexity and Systems Science

    CERN Document Server

    Meyers, Robert A

    2009-01-01

    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...

  15. Data science in R a case studies approach to computational reasoning and problem solving

    CERN Document Server

    Nolan, Deborah

    2015-01-01

    Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts approach a problem and reason about different ways of implementing solutions. The book's collection of projects, comprehensive sample solutions, and follow-up exercises encompass practical topics pertaining to data processing, including: Non-standar

  16. Influence of Perceived Parental Rearing on Adolescent Self-Concept and Internalizing and Externalizing Problems in Japan

    Science.gov (United States)

    Nishikawa, Saori; Sundbom, Elisabet; Hagglof, Bruno

    2010-01-01

    We examined the associations between perceived parental rearing, attachment style, self-concept, and mental health problems among Japanese adolescents. About 193 high school students (143 boys and 50 girls, mean = 16.4) completed a set of self-report questionnaires including EMBU-C (My Memories of Child Upbringing for Children), AQC (Attachment…

  17. 3. THE NATIONAL ACADEMIC UNCONSCIOUS IN QUESTION. HISTORY OF CONCEPTS, HISTORICAL SEMANTICS, CRITICAL SOCIOLOGY OF LEXICAL USAGE WITHIN THE SOCIAL SCIENCES

    Directory of Open Access Journals (Sweden)

    Olivier Christin

    2013-08-01

    Full Text Available A few years ago, together with Franz Schultheis, of the University of Saint-Gallen and coordinator of the social sciences network ESSE, we chose to study the international circulation of the categories and concepts that are in use in European social sciences. With the publication of the Dictionnaire des concepts  nomades (“Dictionary of nomadic concepts”, that includes only a small number of quite lengthy entries, what we tried to propose were not ready-made solutions, or vademecums for the comparative academic, but a series of questions, or rather the means to ask crucial questions for anyone who practises history, political science, history of economic ideas, or comparative sociology. We did so with two considerations in mind: one political, and the other academic, both of which I will evoke in turn in this paper.

  18. El concepto de pena, ¿Un aspecto incontrovertido en su teoría?/The concept of penalty, do something uncontroversial in it’s theory?

    Directory of Open Access Journals (Sweden)

    Gabriel Rodríguez Pérez De Agreda (Cuba

    2009-08-01

    Full Text Available Se elige el concepto de pena como el objeto de nuestro análisis. Sabemos que un estudio que pretenda abarcar toda la problemática que engloba este “pacífico” tema nos obligaría a comenzar por una concienzuda mirada al concepto en sí, a su papel en las ciencias, a su conformación, a su naturaleza particular (ciencias naturales o ciencias sociales, etcétera, pero una empresa tal rebasa las propuestas de un artículo, no obstante, en aras de la claridad en lo que abordamos, haremos giros puntuales al problema de los conceptos en sí. We choose the concept of penalty as the object of our analysis. Knowing that a study that tries to cover all the problems that includes this “peaceful” topic would force us to start with a thorough look at the concept itself, its role in science, to its formation, to its particular nature (natural sciences or social sciences, etc, but a company exceeds such proposals for an article, however, for the sake of clarity in what you are dealing with. We will make specific turns to the problem of the concepts themselves.

  19. Replacing textbook problems with lab experiences

    Science.gov (United States)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  20. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  1. Peningkatan Keterampilan Bertanya Dan Menjawab Pertanyaan Melalui Model Pembelajaran Problem Solving

    OpenAIRE

    Saputra, Rendi; Diawati, Chansyanah; Rudibyani, Ratu Betta

    2013-01-01

    The aim of this research is to describe the effectiveness of the learning model of problem solving in reaction rate concept to improving asking and answering question skill which includes the answering question and cite the example skill. The effectiveness of the learning model of problem solving in this research indicated the presence of n-Gain difference significant between the control and a experiment class. The population this research is all students of class XI Science SMAN 7 Bandar...

  2. Social science literature on the environment: review and prospects for energy studies. A preliminary literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, P.

    1975-01-01

    Much of the social science literature on environment is of recent origin and represents the response of the social science research community to a complex societal problem in which technology is a major factor. Energy represents another such problem to which the social science research community is now turning its attention. Because energy problems and environment problems have some similarities and because energy-conversion processes have large effects on the environment, a review of the social science literature on environment was undertaken. The purposes of this review are as follows: (1) to study the possible utility in energy research of some of the concepts developed in social science research on the environment; (2) to study the possible utility in energy research of some of the methodologies utilized in social science research on the environment; and (3) to study the extent to which the results of social science research on the environment have contributed to the development of policy. The first two items above receive major attention in this preliminary literature survey. 50 references.

  3. Distance learning, problem based learning and dynamic knowledge networks.

    Science.gov (United States)

    Giani, U; Martone, P

    1998-06-01

    This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.

  4. Control theory in physics and other fields of science concepts, tools and applications

    CERN Document Server

    Schulz, Michael

    2006-01-01

    This book covers systematically and in a simple language the mathematical and physical foundations of controlling deterministic and stochastic evolutionary processes in systems with a high degree of complexity. Strong emphasis is placed on concepts, methods and techniques for modelling, assessment and the solution or estimation of control problems in an attempt to understand the large variability of these problems in several branches of physics, chemistry and biology as well as in technology and economics. The main focus of the book is on a clear physical and mathematical understanding of the dynamics and kinetics behind several kinds of control problems and their relation to self-organizing principles in complex systems. The book is a modern introduction and a helpful tool for researchers, engineers as well as post-docs and graduate students interested in an application oriented control theory and related topics.

  5. Identification and analysis of student conceptions used to solve chemical equilibrium problems

    Science.gov (United States)

    Voska, Kirk William

    This study identified and quantified chemistry conceptions students use when solving chemical equilibrium problems requiring the application of Le Chatelier's principle, and explored the feasibility of designing a paper and pencil test for this purpose. It also demonstrated the utility of conditional probabilities to assess test quality. A 10-item pencil-and-paper, two-tier diagnostic instrument, the Test to Identify Student Conceptualizations (TISC) was developed and administered to 95 second-semester university general chemistry students after they received regular course instruction concerning equilibrium in homogeneous aqueous, heterogeneous aqueous, and homogeneous gaseous systems. The content validity of TISC was established through a review of TISC by a panel of experts; construct validity was established through semi-structured interviews and conditional probabilities. Nine students were then selected from a stratified random sample for interviews to validate TISC. The probability that TISC correctly identified an answer given by a student in an interview was p = .64, while the probability that TISC correctly identified a reason given by a student in an interview was p=.49. Each TISC item contained two parts. In the first part the student selected the correct answer to a problem from a set of four choices. In the second part students wrote reasons for their answer to the first part. TISC questions were designed to identify students' conceptions concerning the application of Le Chatelier's principle, the constancy of the equilibrium constant, K, and the effect of a catalyst. Eleven prevalent incorrect conceptions were identified. This study found students consistently selected correct answers more frequently (53% of the time) than they provided correct reasons (33% of the time). The association between student answers and respective reasons on each TISC item was quantified using conditional probabilities calculated from logistic regression coefficients. The

  6. Concept-Cartoons as a Tool to Evoke and Analyze Pupils Judgments in Social Science Education

    Directory of Open Access Journals (Sweden)

    Felix Fenske

    2011-10-01

    Full Text Available The following contribution makes an effort to place the concept-cartoon-method into the context of social science education. Concept-cartoons (CCs enable teachers to use the everyday life experiences and individual thoughts of the pupils as a positive enrichment tool within the learning processes. In this context, CCs are very suitable to function as a method to gain information about both the existing mental conceptions and the individual political judgment strategies. Through this, it is possible to put everyday life concepts and scientific knowledge in a constructive relationship, which finally enhances new learning objectives. First the article highlights the relevance of pupils’ and teachers` concepts for judgment processes. On this basis the method of CCs is introduced and evaluated.Der folgende Artikel beschäftigt sich mit den Möglichkeiten des methodischen Einsatzes von Concept-Cartoons im Rahmen sozialwissenschaftlichen Unterrichts. Als Instrumentarium zur Diagnose von Schülervorstellungen und individuellen Urteilsstrategien, bieten Comic-Cartoons den Lehrkräften die Möglichkeit, den Unterricht entlang dieser lernrelevanten Perspektiven zu gestalten. Durch die konstruktive Verknüpfung von Alltagskonzepten und Fachkonzepten können auf diese Weise neue Chancen für nachhaltige Lehr- und Lernprozesse erschlossen werden. Innerhalb dieses Beitrags wird zunächst die Bedeutung von Schülervorstellungen und vorfachlichen Urteilsstrategien für wirksamen sozialwissenschaftlichen Unterricht geklärt. Im Anschluss erfolgt eine Einführung in die Methode „Concept-Cartoons“. Abschließend werden exemplarisch drei von den Autoren gestaltete Cartoons vorgestellt.

  7. Prevalence of menstrual problems and their association with psychological stress in young female students studying health sciences

    Directory of Open Access Journals (Sweden)

    Nazish Rafique

    2018-01-01

    Full Text Available Objectives: To identify the prevalence of various menstrual problems in young females studying health sciences and to identify their association with academic stress. Methods: This was a cross-sectional study, conducted in the health colleges of Immam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia between February 2015 and February 2016. Seven hundred and thirty-eight female students aged 18-25 years anonymously completed menstrual problem identification and perceived stress scale questionnaire. The data was analyzed using the Statistical Package for Social Sciences version 16.0. Results: Ninety-one percent of the students were suffering from some kind of menstrual problem. The different menstrual problems reported, and their incidences included irregular menstruation (27%, abnormal vaginal bleeding (9.3%, amenorrhea (9.2%, menorrhagia (3.4%, dysmenorrhea (89.7%, and premenstrual symptoms (46.7%. High perceived stress (HPS was identified in 39% of the students. A significant positive correlation was found between HPS and menstrual problems. Students with HPS had 4 times, 2 times, and 2.8 times increased odds ratio for experiencing amenorrhea, dysmenorrhea, and premenstrual syndrome (p less than 0.05. Conclusion: The most prevalent menstrual problems (dysmenorrhea and premenstrual symptoms in the target population were strongly associated with stress. Therefore, it is recommended that health science students should be provided with early psychological and gynecological counselling to prevent future complications.

  8. Charting a path for health sciences librarians in an integrated information environment.

    Science.gov (United States)

    Jones, C J

    1993-10-01

    Changes in the health information environment present a major challenge to health sciences librarians. To successfully meet this challenge, librarians must apply the concepts of informal, self-directed, lifelong learning to their own carers. The Joint Commission on Accreditation of Healthcare Organizations is creating an integrated information environment in health care organizations. The health sciences librarian brings unique knowledge and skills to this environment. The reference technique, a methodology that closely parallels other problem-solving approaches such as the physician's diagnostic technique, equips librarians with the conceptual skills to develop creative solutions to information management problems. Each health sciences librarian must assume responsibility for extending professional skills and abilities and demonstrating them in the workplace.

  9. Tannery and Duhem on the concept of a system in the history of philosophy and history of science

    DEFF Research Database (Denmark)

    Catana, Leo

    2011-01-01

    historical disciplines, creating the impression that they were mutually independent. Modern commentators have tended to take these declarations at face value. This article argues that Tannery and Duhem, some of the first historians of science, transferred historiographical concepts from history of philosophy...

  10. A New Concept for Atmospheric Reentry Optimal Guidance: An Inverse Problem Inspired Approach

    Directory of Open Access Journals (Sweden)

    Davood Abbasi

    2013-01-01

    Full Text Available This paper presents a new concept for atmospheric reentry online optimal guidance and control using a method called MARE G&C that exploits the different time scale featured by reentry dynamics. The new technique reaches a quasi-analytical solution and simplified computations, even considering both lift-to-drag ratio and aerodynamic roll as control variables; in addition, the paper offers a solution for the challenging path constraints issue, getting inspiration from the inverse problem methodology. The final resulting algorithm seems suitable for onboard predictive guidance, a new need for future space missions.

  11. Examining the Big-Fish-Little-Pond Effect on Students' Self-Concept of Learning Science in Taiwan Based on the TIMSS Databases

    Science.gov (United States)

    Liou, Pey-Yan

    2014-01-01

    The purpose of this study is to examine the relationship between student self-concept and achievement in science in Taiwan based on the big-fish-little-pond effect (BFLPE) model using the Trends in International Mathematics and Science Study (TIMSS) 2003 and 2007 databases. Hierarchical linear modeling was used to examine the effects of the…

  12. SCWR Concept in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    An increase in the efficiency of NPPs with light-water reactors through ‘nuclear’ steam superheating was one of the problems solved in the field of nuclear power industry. The commissioning of the Beloyarsk NPP, Units 1&2 with the channel-type reactor in the sixties of the 20th century showed the potential of realization of this idea and the necessity to solve a series of problems in technology and materials science. The NPP operation experience, elaboration and operational experience of steam superheating channels are extremely important in choosing the ways of design development of Generation IV reactors with supercritical pressure coolant water. The first technical proposal on a supercritical water cooled reactor of vessel type made in Russia in 1986 was the design of a two-circuit reactor plant (RP). The concept of the two-circuit RP of integrated type VVER-SCP-I with electric power of 500 MW was proposed in 1990. The design activities on these projects were performed at OKB GIDROPRESS and the analyses were carried out at the RRC Kurchatov Institute. The State Science Center of the Russian Federation Institute of Physics and Power Engineering (SSC RF IPPE) has been performing the computational studies of a single-circuit RP VVER-SCP since 2001. In 2006 OKB GIDROPRESS launched the design effort and computational analyses to corroborate the design of a single loop RP.

  13. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  14. Engagement as a Threshold Concept for Science Education and Science Communication

    Science.gov (United States)

    McKinnon, Merryn; Vos, Judith

    2015-01-01

    Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…

  15. Communicating Science: The Special Problems of Reporting Scientific Enquiry in the Media.

    Science.gov (United States)

    Goodfield, June

    The relationship of reporters, scientists, and the public is explored in this paper. Recent issues that have triggered a demand for a new kind of science writer are noted as including society's increased interest in health care, in problems of the environment, the ethics of genetic engineering, and other issues concerning the autonomy of the…

  16. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    Science.gov (United States)

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  17. Mobilizing science and technology to address the problems of the world's poor

    International Nuclear Information System (INIS)

    Sachs, J.

    2001-01-01

    Full text: Writing in The Economist of 15 February this year, Prof. Sachs raised several points that are relevant to any discussion of technical co-operation for sustainable development. He urges a stronger emphasis on the transfer of appropriate technology, and supports expanded roles for United Nations organizations in helping to solve the problems of the world's poorest countries. Here are some excerpts: 'A(n)...important challenge, as yet mainly unrecognised, is that of mobilising global science and technology to address the crises of public health, agricultural productivity, environmental degradation and demographic stress confronting these countries (i.e., the 42 so-called Highly Indebted Poor Countries - HIPCs, ed.) In part this will require that the wealthy governments enable the grossly underfinanced and underempowered United Nations institutions to become vibrant and active partners of human development.' The conditions in many HIPCs are worsening dramatically, even as global science and technology create new surges of wealth and well-being in richer countries. The problem is that, for myriad reasons, the technological gains in wealthy countries do not readily diffuse to the poorest ones....Research and development of new technologies are overwhelmingly directed at rich-country problems. To the extent that the poor face distinctive challenges, science and technology must be directed purposefully towards them (emphasis added). In today's global set-up, that rarely happens....Currently, the international system fails to meet the technological needs of the world's poorest.' Prof. Sachs has been one of the few development economists to consistently remind us that most of the world's poor live under vastly different environmental conditions - mainly tropical climates with their often unique disease agents and agricultural factors - than most of the rich. He points out that sustainable development is not possible unless the underlying ecological constraints are

  18. The idea of human prehistory: the natural sciences, the human sciences, and the problem of human origins in Victorian Britain.

    Science.gov (United States)

    Goodrum, Matthew R

    2012-01-01

    The idea of human prehistory was a provocative and profoundly influential new notion that took shape gradually during the nineteenth century. While archaeology played an important role in providing the evidence for this idea many other sciences such as geology, paleontology, ethnology, and physical anthropology all made critical contributions to discussions about human prehistory. Many works have explored the history of prehistoric archaeology but this paper examines the conceptual content of the idea of "human prehistory" as it developed in the British scientific community. Both the natural and the human sciences contributed to what was in fact a complex collection of individual elements that together constituted the prevailing idea of human prehistory, although there were other competing conceptions of human prehistory endorsed by various scientists and critics of the new view of early human history.

  19. State and Perspectives of Research in Bulgaria: Problems and Weacknesses in Science Policy [In Bulgarian

    Directory of Open Access Journals (Sweden)

    B.V. Toshev

    2014-12-01

    Full Text Available The current status of the Bulgarian research sector is analyzed. There are alarming trends both in the system of higher education as well as in the research organizations; some of them are listed. The main problems and weaknesses of the educational and research policy in Bulgaria are under the critic. Phenomena as mcdonaldization of higher education, mass higher education, integration processes in science of XXth century, the transition from the normal to post-normal science, appearance and development of surrogate science, increasing the number of marginal scientific sources, are considered in details. The basic normative science documents are considered and their weak features are exhibited.

  20. Practical-oriented teaching of gifted youth in the field of natural sciences

    Science.gov (United States)

    Khalikova, F. D.; Gilmanshina, S. I.

    2017-09-01

    In the article it is presenteds the author’s concept of practice-oriented teaching of gifted adolescents to natural-science subjects on the example of chemistry. The main provisions of the concept are substantiated, on the basis of which individual educational trajectories have been developed. The essence of practice-oriented learning is revealed. Particular emphasis is placed on the formation of practical experience in applying theoretical knowledge to solve specific problems.

  1. A Study of the Relationship Between Nurses’ Professional Self-Concept and Professional Ethics in Hospitals Affiliated to Jahrom University of Medical Sciences, Iran

    Science.gov (United States)

    Parandavar, Nehleh; Rahmanian, Afifeh; Jahromi, Zohreh Badiyepeymaie

    2016-01-01

    Background: Commitment to ethics usually results in nurses’ better professional performance and advancement. Professional self-concept of nurses refers to their information and beliefs about their roles, values, and behaviors. The objective of this study is to analyze the relationship between nurses’ professional self-concept and professional ethics in hospitals affiliated to Jahrom University of Medical Sciences. Methods: This cross sectional-analytical study was conducted in 2014. The 270 participants were practicing nurses and head-nurses at the teaching hospitals of Peimanieh and Motahari in Jahrom University of Medical Science. Sampling was based on sencus method. Data was collected using Cowin's Nurses’ self-concept questionnaire (NSCQ) and the researcher-made questionnaire of professional ethics. Results: The average of the sample's professional self-concept score was 6.48±0.03 out of 8. The average of the sample's commitment to professional ethics score was 4.08±0.08 out of 5. Based on Pearson's correlation test, there is a significant relationship between professional ethics and professional self-concept (P=0.01, r=0.16). Conclusion: In view of the correlation between professional self-concept and professional ethics, it is recommended that nurses’ self-concept, which can boost their commitment to ethics, be given more consideration. PMID:26573035

  2. A Study of the Relationship Between Nurses' Professional Self-Concept and Professional Ethics in Hospitals Affiliated to Jahrom University of Medical Sciences, Iran.

    Science.gov (United States)

    Parandavar, Nehleh; Rahmanian, Afifeh; Badiyepeymaie Jahromi, Zohreh

    2015-07-31

    Commitment to ethics usually results in nurses' better professional performance and advancement. Professional self-concept of nurses refers to their information and beliefs about their roles, values, and behaviors. The objective of this study is to analyze the relationship between nurses' professional self-concept and professional ethics in hospitals affiliated to Jahrom University of Medical Sciences. This cross sectional-analytical study was conducted in 2014. The 270 participants were practicing nurses and head-nurses at the teaching hospitals of Peimanieh and Motahari in Jahrom University of Medical Science. Sampling was based on sencus method. Data was collected using Cowin's Nurses' self-concept questionnaire (NSCQ) and the researcher-made questionnaire of professional ethics. The average of the sample's professional self-concept score was 6.48±0.03 out of 8. The average of the sample's commitment to professional ethics score was 4.08±0.08 out of 5. Based on Pearson's correlation test, there is a significant relationship between professional ethics and professional self-concept (P=0.01, r=0.16). In view of the correlation between professional self-concept and professional ethics, it is recommended that nurses' self-concept, which can boost their commitment to ethics, be given more consideration.

  3. A Comparative Study of the Professional and Curricular Conceptions of the Secondary Education Science Teacher in Spain

    Science.gov (United States)

    del Pozo, Martin R.; Martinez-Aznar, M.; Rodrigo, M.; Varela, P.

    2004-01-01

    This article presents a comparison between the professional and curricular conceptions of two samples of secondary education science teachers in Spain, who differed in their years of teaching experience and in whether or not they had participated in a long-duration scientific-pedagogical refresher course. Using the data from their responses to a…

  4. ‘Sometimes They Are Fun and Sometimes They Are Not’: Concept Mapping with English Language Acquisition (ELA and Gifted/Talented (GT Elementary Students Learning Science and Sustainability

    Directory of Open Access Journals (Sweden)

    Katrina Marzetta

    2018-01-01

    Full Text Available This study presents an ‘education for sustainability’ curricular model which promotes science learning in an elementary classroom through equity pedagogy. A total of 25 fourth-grade students from an urban, public school in Denver, Colorado participated in this mixed-methods study where concept maps were used as a tool for describing and assessing students’ understanding of ecosystem interactions. Concept maps provide a more holistic, systems-based assessment of science learning in a sustainability curriculum. The concept maps were scored and analyzed using SPSS to investigate potential differences in learning gains of English Language Acquisition (ELA and Gifted/Talented (GT students. Interviews were conducted after the concept maps were administered, then transcribed and inductively coded to generate themes related to science learning. Interviews also encouraged students to explain their drawings and provided a more accurate interpretation of the concept maps. Findings revealed the difference between pre- and post-concept map scores for ELA and GT learners were not statistically significant. Students also demonstrated an increased knowledge of ecosystem interactions during interviews. Concept maps, as part of an education for sustainability curriculum, can promote equity by providing diverse learners with different—yet equally valid—outlets to express their scientific knowledge.

  5. Comments from the Science Education Directorate, National Science Foundation: CAUSE, ISEP, and LOCI: Three-Program Approach to College-Level Science Improvement. II. Patterns and Problems.

    Science.gov (United States)

    Erickson, Judith B.; And Others

    1980-01-01

    Discusses patterns resulting from the monitor of science education proposals which may reflect problems or differing perceptions of NSF. Discusses these areas: proposal submissions from two-year institutions and social and behavioral scientists, trends in project content at the academic-industrial interface and in computer technology, and…

  6. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    Science.gov (United States)

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  7. Development, Implementation, and Outcomes of an Equitable Computer Science After-School Program: Findings from Middle-School Students

    Science.gov (United States)

    Mouza, Chrystalla; Marzocchi, Alison; Pan, Yi-Cheng; Pollock, Lori

    2016-01-01

    Current policy efforts that seek to improve learning in science, technology, engineering, and mathematics (STEM) emphasize the importance of helping all students acquire concepts and tools from computer science that help them analyze and develop solutions to everyday problems. These goals have been generally described in the literature under the…

  8. Evolution of the concept of drug-related problems: outcomes as the focus / Evolución del concepto de problemas relacionados con medicamentos:resultados como el centro del nuevo paradigma

    Directory of Open Access Journals (Sweden)

    Fernandez-Llimos F

    2005-12-01

    Full Text Available Objective: To review the concept of drug-related problems and drug therapy problems, and its relationship with other concepts, like medication negative outcomes.Methods: Primary articles were identified through a MEDLINE search (1966 to September 2004; reference cites from the articles found provided additional resource material. Retrieved and selected papers were reviewed and relevant information was included.Results: the term drug-related problem has been widely used in literature, not always representing a simple concept. Process (causes and outcomes (effects had been mixed under different DRP definitions and classifications. Drug therapy problems, medicine-related problems and medication related problems are other terms used to define the same unclear concept. The idea of actual and potential problems was created to act on preventing the effect of these problems. This paper suggests the use of commonly accepted biomedical terms, and put these concepts into recognized models and paradigms (namely, SPO and ECHO. Also the name of medication negative clinical outcomes is proposed.Conclusions: Any medication negative clinical outcome can be assigned to a single definition and classification. A Systematic identification tool has been shown to be effective in detecting each and every one of the negative clinical outcomes in patient pharmacotherapy.

  9. Problem-Based Learning in the Earth and Space Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2017-01-01

    If you've ever asked yourself whether problem-based learning (PBL) can bring new life to both your teaching and your students' learning, here's your answer: Yes. This all-in-one guide will help you engage your students in scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios will prompt K-12 students…

  10. Investigation of virtual reality concept based on system analysis of conceptual series

    Science.gov (United States)

    Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.

    2018-05-01

    The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.

  11. Facets of systems science

    CERN Document Server

    Klir, George J

    1991-01-01

    This book has a rather strange history. It began in Spring 1989, thirteen years after our Systems Science Department at SUNY -Binghamton was established, when I was asked by a group of students in our doctoral program to have a meeting with them. The spokesman of the group, Cliff Joslyn, opened our meeting by stating its purpose. I can closely paraphrase what he said: "We called this meeting to discuss with you, as Chairman of the Department, a fundamental problem with our systems science curriculum. In general, we consider it a good curriculum: we learn a lot of concepts, principles, and methodological tools, mathematical, computational, heuristic, which are fundamental to understanding and dealing with systems. And, yet, we learn virtually nothing about systems science itself. What is systems science? What are its historical roots? What are its aims? Where does it stand and where is it likely to go? These are pressing questions to us. After all, aren't we supposed to carry the systems science flag after we ...

  12. Social balance as a satisfiability problem of computer science.

    Science.gov (United States)

    Radicchi, Filippo; Vilone, Daniele; Yoon, Sooeyon; Meyer-Ortmanns, Hildegard

    2007-02-01

    Reduction of frustration was the driving force in an approach to social balance as it was recently considered by Antal [T. Antal, P. L. Krapivsky, and S. Redner, Phys. Rev. E 72, 036121 (2005)]. We generalize their triad dynamics to k-cycle dynamics for arbitrary integer k. We derive the phase structure, determine the stationary solutions, and calculate the time it takes to reach a frozen state. The main difference in the phase structure as a function of k is related to k being even or odd. As a second generalization we dilute the all-to-all coupling as considered by Antal to a random network with connection probability wcomputer science. The phase of social balance in our original interpretation then becomes the phase of satisfaction of all logical clauses in the satisfiability problem. In common to the cases we study, the ideal solution without any frustration always exists, but the question actually is as to whether this solution can be found by means of a local stochastic algorithm within a finite time. The answer depends on the choice of parameters. After establishing the mapping between the two classes of models, we generalize the social-balance problem to a diluted network topology for which the satisfiability problem is usually studied. On the other hand, in connection with the satisfiability problem we generalize the random local algorithm to a p-random local algorithm, including a parameter p that corresponds to the propensity parameter in the social balance problem. The qualitative effect of the inclusion of this parameter is a bias towards the optimal solution and a reduction of the needed simulation time.

  13. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  14. Definition of life law and the situation with problems of China's life jurisprudence.

    Science.gov (United States)

    Liu, Changqiu

    2008-12-01

    Life law is a new conception brought by the development of modern life science and biotechnology. There are many different ideas on the conception of life law in academy. The definition of life law should be footed on the domain of bioethics. Based on bioethics, life law is a group of legislations which are enacted or acknowledged by the state and implemented by the state compulsively with the goal of regulating all types of relations revolving the survival as well as terminal of human beings and some other creatures which play important roles in the maintenance of human's life and health. There are many problems in China's study on science of life law, which need paying special attention to by China's scholars.

  15. Biosemiotic Transdisciplinary Concept of Information for Global Exchange

    DEFF Research Database (Denmark)

    Brier, Søren

    2014-01-01

    Living organisms can be described from a natural scientific as well as a phenomenologicalhermeneutical humanistic type of knowledge system. Organism’s genes and physiology as well as their experiences, learning capability and social role have causal influence on their behavior. As such the general...... study of embodied life falls between the traditional organizations of subject areas grouped in Snows two cultures of sciences and humanities. A central problem is that this two-culture-view lacks a common epistemological and ontological framework. My view is that If we want to define a universal concept...

  16. Acid rain science and politics in Japan: a history of knowledge and action toward sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Ken Wilkening

    2004-07-01

    This is a pioneering work in environmental and Asian history as well as an in-depth analysis of the influence of science on domestic and international environmental politics. The book is composed of the following chapters. Chapter 2 introduces the general set of concepts used to analyze the science-politics nexus. These concepts are employed in the remainder of the book to track and explain the relationship between science and policy related to the acid deposition problem in Japan. Chapter 3 discusses nature, culture, and the acid deposition problem in Japan. It begins with a brief introduction to the acid deposition problem in general. It continues with an overview of elements of Japan's natural environment and culture that are relevant to its acid deposition problems. This is followed by a quick sketch of the history of science in Japan, which in turn serves as a preamble for describing in the final section the environmental and acid deposition chronologies used to organize analysis of Japan's acid deposition history. The swath of history between 1868 and the present (circa 2000) is divided into five environmental eras and six acid deposition periods. Chapters 4-9 discuss in detail each of the six acid deposition periods. Chapter 10 synthesizes and summarizes what was learned in the process of analyzing Japan's acid deposition history, and draws lessons that might be applied to the challenge of creating sustainable societies in Japan, Asia, and the rest of the world. An appendix describes the present state of acid deposition science in Japan.

  17. A Critical Review on the Concept of Social Technology

    Directory of Open Access Journals (Sweden)

    Bettina Leibetseder

    2013-08-01

    Full Text Available Purpose—A critical analysis of the term social technology from a social science point of view.Design/Methodology/Approach—Review of the term “social technology” from a social science point of perspective in connection to the study of governmentality and power in a Foucauldian way.Findings—The article covers the perspective that social technology provides social science knowledge for a purpose. Such a notion allows an in depth debate about the meaning of social order in modern societies. Establishing distinctive techniques now forms the basis of the modern state and governance. Social technology forms the basis of governmental decisions; it allows for a use of social theories and methods for a purpose in politics and introduces a specific conception of power between the individual and public powers. Therefore, it alters government in three ways: It provides expert power to define solutions for social problems based on social science knowledge. It transforms government. Social technology exemplifies a support system for an ordered method of the way of government, it allows for the conduct of others and self based on scientific expertise. It can define new areas of problems in need of a change of government.Research limitations/implications—Consequently, social technology requests a critical analysis using a governmental approach. Such an approach focuses on problems on the governed subject and how governing works and why it has evolved in that way towards the subject and what kind of ideas and thinking lies within the discourse.Research type—general review.

  18. The development of a digital logic concept inventory

    Science.gov (United States)

    Herman, Geoffrey Lindsay

    Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to

  19. Concept theory

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2009-01-01

      Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......, evaluate and use such systems. Based on "a post-Kuhnian view" of paradigms this paper put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism and pragmatism...

  20. Science Shops - a concept for community based learning

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Hende, Merete

    2001-01-01

    Experience from science shops show that besides assisting citizen groups, science shops can also contribute to the development of university curricula and research. The paper is based on an investigation of the impact of science shops on university curricula and research through a questionnaire...... sent out to science shops and through follow-up interviews with employees from nine different university based science shops. These science shops had in the questionnaire indicated that the science shop in one way or the other has had impact on university curricula and/or research. This paper focuses...... on the impact on university curricula. The case studies have been supplemented with articles and reports. The analysis has focused on the kind of impact, which the science shops have reported, and has tried to relate the impact to the local history of the science shop. One direct impact on the curricula...

  1. Creativity, Problem Solving and Innovative Science: Insights from History, Cognitive Psychology and Neuroscience

    Science.gov (United States)

    Aldous, Carol R.

    2007-01-01

    This paper examines the intersection between creativity, problem solving, cognitive psychology and neuroscience in a discussion surrounding the genesis of new ideas and innovative science. Three creative activities are considered. These are (a) the interaction between visual-spatial and analytical or verbal reasoning, (b) attending to feeling in…

  2. Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines

    Science.gov (United States)

    English, Lyn D.; Hudson, Peter; Dawes, Les

    2013-01-01

    Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…

  3. Could HPS Improve Problem-Solving?

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  4. Improving learning with science and social studies text using computer-based concept maps for students with disabilities.

    Science.gov (United States)

    Ciullo, Stephen; Falcomata, Terry S; Pfannenstiel, Kathleen; Billingsley, Glenna

    2015-01-01

    Concept maps have been used to help students with learning disabilities (LD) improve literacy skills and content learning, predominantly in secondary school. However, despite increased access to classroom technology, no previous studies have examined the efficacy of computer-based concept maps to improve learning from informational text for students with LD in elementary school. In this study, we used a concurrent delayed multiple probe design to evaluate the interactive use of computer-based concept maps on content acquisition with science and social studies texts for Hispanic students with LD in Grades 4 and 5. Findings from this study suggest that students improved content knowledge during intervention relative to a traditional instruction baseline condition. Learning outcomes and social validity information are considered to inform recommendations for future research and the feasibility of classroom implementation. © The Author(s) 2014.

  5. Changing concepts of geologic structure and the problem of siting nuclear reactors: examples from Washington State

    International Nuclear Information System (INIS)

    Tabor, R.W.

    1986-01-01

    The conflict between regulation and healthy evolution of geological science has contributed to the difficulties of siting nuclear reactors. On the Columbia Plateau in Washington, but for conservative design of the Hanford reactor facility, the recognition of the little-understood Olympic-Wallowa lineament as a major, possibly still active structural alignment might have jeopardized the acceptability of the site for nuclear reactors. On the Olympic Peninsula, evolving concepts of compressive structures and their possible recent activity and the current recognition of a subducting Juan de Fuca plate and its potential for generating great earthquakes - both concepts little-considered during initial site selection - may delay final acceptance of the Satsop site. Conflicts of this sort are inevitable but can be accommodated if they are anticipated in the reactor-licensing process. More important, society should be increasing its store of geologic knowledge now, during the current recess in nuclear reactor siting

  6. Environmental consciousness and education relationship: Determination of how environment-based concepts are placed in Turkish science curricula

    Energy Technology Data Exchange (ETDEWEB)

    Oezmen, H. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Primary Education; Karamustafaoglu, O. [Amasya Univ. (Turkey). Dept. of Primary Education

    2006-12-15

    generations. During the last decades the trend for environmental protection has expanded in various areas including education. Paraskevopoulos et.al. (1998) state that (a) if people are aware of the need for and the ways of protecting the environment they will act to preserve it, (b) schools should assume responsibility for educating about environmental protection and (c) environmental education can be effective as a part of a school curriculum. Increased concern about the environment has paralleled the development of environmental education in the world. With this regard, both developed and developing countries have taken this reality into consideration in designing curricula for all schools. Some arrangements have also been made in science education curricula in Turkey as a developing country in last decades. Of the various subjects taught in secondary schools, science is often perceived as one that can make a significant contribution to environmental education (Ko and Lee, 2003). Therefore, our primarily aim in this study is to determine how the Turkish science curricula contain environmental concepts after some of the attempts on environmental issues in the world were presented. There have been steady developments of national and international declarations relevant to environmental issues. The first attempt in this regard was the Stockholm Declaration recognized the interdependency between humanity and the environment. The most important results emerged from the declaration were to provide fundamental right to freedom, equality and adequate conditions of life in an environment and to improve the environment for present and future generations (UNESCO, 1972). In addition, this declaration stated the need of environmental education from grade school to adulthood. After this first attempt, a number of similar assemblies were made. In these meetings, some decisions were taken for environmental issues in local and global scale. These meetings are given in Table 1

  7. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  8. Female and male communication in co-operative problem solving in high school science

    NARCIS (Netherlands)

    Harskamp, Egbert; Dhig, Ning; Tremante, A; Welsch, F; Malpica, F

    2007-01-01

    Empirical evidence is presented that males working in mixed-gender dyads on science problems do better than their female partners. This is not the case when males and females work in same gender dyads. There is a difference in communication style in mixed gender dyads in comparison with same gender

  9. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  10. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    Science.gov (United States)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    the Martian surface and presented their results in the end. Extensive handouts and high-quality print material supplemented face-to-face exercises. For the future we plan to expand our workshop concepts, to give students the possibility of conducting a week-long internship with our Planetary Sciences research group.

  11. The Grand Challenges Discourse: Transforming Identity Work in Science and Science Policy.

    Science.gov (United States)

    Kaldewey, David

    2018-01-01

    This article analyzes the concept of "grand challenges" as part of a shift in how scientists and policymakers frame and communicate their respective agendas. The history of the grand challenges discourse helps to understand how identity work in science and science policy has been transformed in recent decades. Furthermore, the question is raised whether this discourse is only an indicator, or also a factor in this transformation. Building on conceptual history and historical semantics, the two parts of the article reconstruct two discursive shifts. First, the observation that in scientific communication references to "problems" are increasingly substituted by references to "challenges" indicates a broader cultural trend of how attitudes towards what is problematic have shifted in the last decades. Second, as the grand challenges discourse is rooted in the sphere of sports and competition, it introduces a specific new set of societal values and practices into the spheres of science and technology. The article concludes that this process can be characterized as the sportification of science, which contributes to self-mobilization and, ultimately, to self-optimization of the participating scientists, engineers, and policymakers.

  12. Can biosemiotics be a "science" if its purpose is to be a bridge between the natural, social and human sciences?

    Science.gov (United States)

    Brier, Søren

    2015-12-01

    Central to the attempt to develop a biosemiotics has been the discussion of what it means to be scientific. In Marcello Barbieri's latest argument for leaving Peircean biosemiotics and creating an alternative code-biology the definition of what it means to be scientific plays a major role. For Barbieri "scientific knowledge is obtained by building machine-like models of what we observe in nature". Barbieri interestingly claims that - in combination with the empirical and experimental basis - mechanism is virtually equivalent to the scientific method. The consequences of this statement seem to be that the optimal type of knowledge science can produce about living system is to model them as machines. But the explicit goal of a Peircean semiotically based biosemiotics is (also) to model living systems as cognitive and communicative systems working on the basis of meaning and signification. These two concepts are not part of the mechanistic models of natural science today, not even of cognitive science. Barbieri tries to solve this problem by introducing a new concept of biological meaning that is separate from the Peircean biosemiotics and then add Peirce's semiotics on top. This article argues why this view is inconsistent on the grounds that Peirce's semiotic paradigm only gives meaning in its pragmaticist conception of a fallibilist view of science, which again is intrinsic connected to its non-mechanistic metaphysics of Tychism, Synechism and Agapism. The core of the biosemiotic enterprise is to establish another type of trans- and interdisciplinary wissenschaft than the received view of "science". Copyright © 2015. Published by Elsevier Ltd.

  13. RESEARCH ON THE PROBLEMS OF interaction BETWEEN SCIENCE AND RELIGION IN UNIVERSITY COURSE OF PHILOSOPHY (BASED ON WORKS BY RUSSIAN RELIGIOUS THINKERS

    Directory of Open Access Journals (Sweden)

    Aleksey I. Belkin

    2016-03-01

    Full Text Available Introduction: the article explores the interrelations between science and religion in the context of shaping integrated world outlook of future specialists in the framework of the competence-based approach. Axiological and ethical aspects of the interaction between the two major branches of human culture are considered using the example of works by Russian religious thinkers: Archbishop Luke (V. F. Voyno-Yasenetsky, V. S. Soloviev, N. A. Berdyaev. Materials and Methods: materials and methods: the study employed the method of original sources, i. e. works by N. A. Berdyaev, V. F. Voino-Yasenetsky, V. S. Solovyov, considering the problems of interaction between science and religion. The method of original sources was combined with methods of analysis, synthesis and generalisation. Results: attention is paid to different approaches to addressing this problem over the historical development of human thought. When analysing the works by V. S. Solovyov emphasis is made on the concept of integral knowledge, considering the true knowledge as a result of the interaction of rational, empirical and mystical aspects. Much attention is paid to the interpretation of Archbishop Luke’s thoughts (V. F. Voyno-Yasenetsky who advocated theoretically and practically the idea of the synthesis of the knowledge and belief in their inextricable link to the genuine scientific and philosophical works. When discussing N. A. Berdyaev’s ideas the focus is on the critical analysis of the three types of relationships between science and religion, established in human culture: 1 supremacy of knowledge and denial of faith, 2 supremacy of faith and denial of knowledge, and 3 the dualism of knowledge and faith. The article also gives a thorough account of the philosopher’s idea about the synthesis of knowledge, faith and intuition that contradicts traditional approach. The article presents the arguments of modern science about the importance of interaction between religious

  14. The Implementation of Problem-Solving Based Laboratory Activities to Teach the Concept of Simple Harmonic Motion in Senior High School

    Science.gov (United States)

    Iradat, R. D.; Alatas, F.

    2017-09-01

    Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.

  15. Problem-Based Learning in K-8 Mathematics and Science Education: A Literature Review

    Science.gov (United States)

    Merritt, Joi; Lee, Mi Yeon; Rillero, Peter; Kinach, Barbara M.

    2017-01-01

    This systematic literature review was conducted to explore the effectiveness of problem-based and project-based learning (PBL) implemented with students in early elementary to grade 8 (ages 3-14) in mathematics and science classrooms. Nine studies met the following inclusion criteria: (a) focus on PBL, (b) experimental study, (c) kindergarten to…

  16. An Exploration of the Use of Eye-Gaze Tracking to Study Problem-Solving on Standardized Science Assessments

    Science.gov (United States)

    Tai, Robert H.; Loehr, John F.; Brigham, Frederick J.

    2006-01-01

    This pilot study investigated the capacity of eye-gaze tracking to identify differences in problem-solving behaviours within a group of individuals who possessed varying degrees of knowledge and expertise in three disciplines of science (biology, chemistry and physics). The six participants, all pre-service science teachers, completed an 18-item…

  17. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  18. Enhancement of problem solving ability of high school students through learning with real engagement in active problem solving (REAPS) model on the concept of heat transfer

    Science.gov (United States)

    Yulindar, A.; Setiawan, A.; Liliawati, W.

    2018-05-01

    This study aims to influence the enhancement of problem solving ability before and after learning using Real Engagement in Active Problem Solving (REAPS) model on the concept of heat transfer. The research method used is quantitative method with 35 high school students in Pontianak as sample. The result of problem solving ability of students is obtained through the test in the form of 3 description questions. The instrument has tested the validity by the expert judgment and field testing that obtained the validity value of 0.84. Based on data analysis, the value of N-Gain is 0.43 and the enhancement of students’ problem solving ability is in medium category. This was caused of students who are less accurate in calculating the results of answers and they also have limited time in doing the questions given.

  19. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    Science.gov (United States)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to

  20. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their