WorldWideScience

Sample records for science communication science

  1. The sciences of science communication.

    Science.gov (United States)

    Fischhoff, Baruch

    2013-08-20

    The May 2012 Sackler Colloquium on "The Science of Science Communication" brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs.

  2. The Science of Science Communication and Protecting the Science Communication Environment

    Science.gov (United States)

    Kahan, D.

    2012-12-01

    Promoting public comprehension of science is only one aim of the science of science communication and is likely not the most important one for the well-being of a democratic society. Ordinary citizens form quadrillions of correct beliefs on matters that turn on complicated scientific principles they cannot even identify much less understand. The reason they fail to converge on beliefs consistent with scientific evidence on certain other consequential matters—from climate change to genetically modified foods to compusory adolescent HPV vaccination—is not the failure of scientists or science communicators to speak clearly or the inability of ordinary citizens to understand what they are saying. Rather, the source of such conflict is the proliferation of antagonistic cultural meanings. When they become attached to particular facts that admit of scientific investigation, these meanings are a kind of pollution of the science communication environment that disables the faculties ordinary citizens use to reliably absorb collective knowledge from their everyday interactions. The quality of the science communication environment is thus just as critical for enlightened self-government as the quality of the natural environment is for the physical health and well-being of a society's members. Understanding how this science communication environment works, fashioning procedures to prevent it from becoming contaminated with antagonistic meanings, and formulating effective interventions to detoxify it when protective strategies fail—those are the most critical functions science communication can perform in a democratic society.

  3. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  4. Communicating knowledge in science, science journalism and art

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    Richter. The specialized knowledge about the image is communicated in three very different contexts with three very different outcomes. The paper uses Niklas Luhmann's system theory to describe science, science journalism, and art as autonomous social subsystems of communication. Also, Luhmann's notions...... of irritation and interference are employed to frame an interpretation of the complex relations between communicating knowledge about the image in science, science journalism, and art. Even though the functional differentiation between the communication systems of science, science journalism, and art remains...... that Richter's Erster Blick ends up questioning the epistemological and ontological grounds for communication of knowledge in science and in science journalism....

  5. Delivering effective science communication: advice from a professional science communicator.

    Science.gov (United States)

    Illingworth, Sam

    2017-10-01

    Science communication is becoming ever more prevalent, with more and more scientists expected to not only communicate their research to a wider public, but to do so in an innovative and engaging manner. Given the other commitments that researchers and academics are required to fulfil as part of their workload models, it is unfair to be expect them to also instantly produce effective science communication events and activities. However, by thinking carefully about what it is that needs to be communicated, and why this is being done, it is possible to develop high-quality activities that are of benefit to both the audience and the communicator(s). In this paper, I present some practical advice for developing, delivering and evaluating effective science communication initiatives, based on over a decade of experience as being a professional science communicator. I provide advice regarding event logistics, suggestions on how to successfully market and advertise your science communication initiatives, and recommendations for establishing effective branding and legacy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Fascinating! Popular Science Communication and Literary Science Fiction

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2017-01-01

    Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines, ......, popular science communication with science fiction features might be expected to serve a similar purpose. Only, it is far from obvious that it actually works that way.......Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines...

  7. Communicating Your Science

    Science.gov (United States)

    Young, C. A.

    2016-12-01

    Effective science communication can open doors, accelerate your career and even make you a better scientist. Part of being an effective and productive scientist means being an effective science communicator. The scientist must communicate their work in talks, posters, peer-reviewed papers, internal reports, proposals as well as to the broader public (including law makers). Despite the importance of communication, it has traditionally not been part of our core training as scientists. Today's science students are beginning to have more opportunities to formally develop their science communication skills. Fortunately, new and even more established scientists have a range of tools and resources at their disposal. In this presentation, we will share some of these resources, share our own experiences utilizing them, and provide some practical tools to improve your own science communication skills.

  8. Science communication as political communication

    Science.gov (United States)

    Scheufele, Dietram A.

    2014-01-01

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389

  9. Science communication as political communication.

    Science.gov (United States)

    Scheufele, Dietram A

    2014-09-16

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science.

  10. Perspectives of Science Communication Training Held by Lecturers of Biotechnology and Science Communication

    Science.gov (United States)

    Edmondston, Joanne; Dawson, Vaille

    2014-01-01

    Science communication training for undergraduate science students has been recommended to improve future scientists' ability to constructively engage with the public. This study examined biotechnology lecturers' and science communication lecturers' views of science communication training and its possible inclusion in a biotechnology degree course…

  11. Portraying Real Science in Science Communication

    Science.gov (United States)

    van Dijk, Esther M.

    2011-01-01

    In both formal and informal settings, not only science but also views on the nature of science are communicated. Although there probably is no singular nature shared by all fields of science, in the field of science education it is commonly assumed that on a certain level of generality there is a consensus on many features of science. In this…

  12. NASA science communications strategy

    Science.gov (United States)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  13. The sciences of science communication

    OpenAIRE

    Fischhoff, Baruch

    2013-01-01

    The May 2012 Sackler Colloquium on “The Science of Science Communication” brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; a...

  14. Open Science: a first step towards Science Communication

    Science.gov (United States)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  15. Communicating Science

    Science.gov (United States)

    Holland, G. J.; McCaffrey, M. S.; Kiehl, J. T.; Schmidt, C.

    2010-12-01

    We are in an era of rapidly changing communication media, which is driving a major evolution in the modes of communicating science. In the past, a mainstay of scientific communication in popular media was through science “translators”; science journalists and presenters. These have now nearly disappeared and are being replaced by widespread dissemination through, e.g., the internet, blogs, YouTube and journalists who often have little scientific background and sharp deadlines. Thus, scientists are required to assume increasing responsibility for translating their scientific findings and calibrating their communications to non-technical audiences, a task for which they are often ill prepared, especially when it comes to controversial societal issues such as tobacco, evolution, and most recently climate change (Oreskes and Conway 2010). Such issues have been politicized and hi-jacked by ideological belief systems to such an extent that constructive dialogue is often impossible. Many scientists are excellent communicators, to their peers. But this requires careful attention to detail and logical explanation, open acknowledgement of uncertainties, and dispassionate delivery. These qualities become liabilities when communicating to a non-scientific audience where entertainment, attention grabbing, 15 second sound bites, and self assuredness reign (e.g. Olson 2009). Here we report on a program initiated by NCAR and UCAR to develop new approaches to science communication and to equip present and future scientists with the requisite skills. If we start from a sound scientific finding with general scientific consensus, such as the warming of the planet by greenhouse gases, then the primary emphasis moves from the “science” to the “art” of communication. The art cannot have free reign, however, as there remains a strong requirement for objectivity, honesty, consistency, and above all a resistance to advocating particular policy positions. Targeting audience

  16. Science Communication in Denmark

    DEFF Research Database (Denmark)

    Busch, Henrik

    2005-01-01

    This paper was presented during the author?s visit at the Faculty of Human Development of the University of Kobe . The paper is intended to provide the knowledge about science communication in the Nordic countries (in particular in Denmark). The focus in the paper is on (i) examples of new...... and innovative modes of science communication in Denmark and (ii) educational programs for science communicators. Furthermore, emphasis is on the pedagogical ideas behind the initiatives, rather than on thorough descriptions of structures, curricula and evaluations of the projects....

  17. Communicating science in social settings.

    Science.gov (United States)

    Scheufele, Dietram A

    2013-08-20

    This essay examines the societal dynamics surrounding modern science. It first discusses a number of challenges facing any effort to communicate science in social environments: lay publics with varying levels of preparedness for fully understanding new scientific breakthroughs; the deterioration of traditional media infrastructures; and an increasingly complex set of emerging technologies that are surrounded by a host of ethical, legal, and social considerations. Based on this overview, I discuss four areas in which empirical social science helps clarify intuitive but sometimes faulty assumptions about the social-level mechanisms of science communication and outline an agenda for bench and social scientists--driven by current social-scientific research in the field of science communication--to guide more effective communication efforts at the societal level in the future.

  18. New Roles for Scientists and Science Societies to Improve Science Communication

    Science.gov (United States)

    Schneider, S. H.

    2008-12-01

    Should North American Scientists and Science Societies continue with current communication programs or is there a need for expanded and or altered roles in Science Communication? If current practices are working, why is discourse outside of science societies so often misinformed and distorted on environmental change issues that are clearly defined and described within the science community? Climate change is one example there is virtual unanimity and overwhelming evidence from the scientific community that the Earth is warming rapidly and humans are an important cause, but there is confusion in the media and the public, in part due to disinformation campaigns by greenhouse gas polluters and privately funded "Think Tanks." A summary discussion will be presented that addresses many of the ideas and issues brought forward by colleagues in science, science communication and education. Scientists and Science Societies must re-establish objectivity in science information communication to educators, the media and the public. Recommendations on directions will be a key outcome of this presentation.

  19. Communicating science: professional, popular, literary

    National Research Council Canada - National Science Library

    Russell, N

    2010-01-01

    ... patterns of communication among scientists, popular communication to the public and science in literature and drama. This three-part framework shows how historical and cultural factors operate in today's complex communication landscape, and should be actively considered when designing and evaluating science communication. Ideal for students and p...

  20. Science Communication in Teacher Personal Pronouns

    Science.gov (United States)

    Oliveira, Alandeom W.

    2011-09-01

    In this study, I explore how personal pronouns used by elementary teachers during science inquiry discussions communicate science and frame teacher-student-science relations. A semiotic framework is adopted wherein teacher pronominal choices are viewed as symbolically expressing cognitive meanings (scientific thinking, forms of expression, and concepts) and indexically communicating social meanings (hidden messages about social and personal aspects of science-human agency, science membership, and gender). Through the construction of interactional maps and micro-ethnographic analysis of classroom video-recordings, I focus specifically on participant examples (oral descriptions of actual or hypothetical situations wherein the teacher presents herself and/or her students as characters to illustrate topics under discussion). This analysis revealed that the teacher use of the generalised you communicated to the students how to mean scientifically (i.e. to speak like a scientist), while I communicated scientific ways of thinking and reasoning. Furthermore, teacher pronouns communicated the social nature of science (NOS) (e.g. science as a human enterprise) as well as multiple teacher-student-science relational frames that were inclusive of some students (mainly boys) but excluded girls (i.e. positioned them as science outsiders). Exclusive use of he was taken as indicative of a gender bias. It is argued that science teachers should become more aware of the range of personal pronouns available for science instruction, their advantages and constraints for science discussions, their potential as instructional tools for humanising and personalising impersonal science curricula as well as the risk of 'NOS' miscommunication.

  1. Science communication a practical guide for scientists

    CERN Document Server

    Bowater, Laura

    2012-01-01

    Science communication is a rapidly expanding area and meaningful engagement between scientists and the public requires effective communication. Designed to help the novice scientist get started with science communication, this unique guide begins with a short history of science communication before discussing the design and delivery of an effective engagement event. Along with numerous case studies written by highly regarded international contributors, the book discusses how to approach face-to-face science communication and engagement activities with the public while providing tips to avoid potential pitfalls. This book has been written for scientists at all stages of their career, including undergraduates and postgraduates wishing to engage with effective science communication for the first time, or looking to develop their science communication portfolio.

  2. Communicating science in social settings

    Science.gov (United States)

    Scheufele, Dietram A.

    2013-01-01

    This essay examines the societal dynamics surrounding modern science. It first discusses a number of challenges facing any effort to communicate science in social environments: lay publics with varying levels of preparedness for fully understanding new scientific breakthroughs; the deterioration of traditional media infrastructures; and an increasingly complex set of emerging technologies that are surrounded by a host of ethical, legal, and social considerations. Based on this overview, I discuss four areas in which empirical social science helps clarify intuitive but sometimes faulty assumptions about the social-level mechanisms of science communication and outline an agenda for bench and social scientists—driven by current social-scientific research in the field of science communication—to guide more effective communication efforts at the societal level in the future. PMID:23940341

  3. Successful Climate Science Communication Strategies

    Science.gov (United States)

    Sinclair, P.

    2016-12-01

    In the past decade, efforts to communicate the facts of global change have not successfully moved political leaders and the general public to action. In response, a number of collaborative efforts between scientists and professional communicators, writers, journalists, bloggers, filmmakers, artists and others have arisen seeking to bridge that gap. As a result, a new cadre of science-literate communicators, and media-savvy scientists have made themselves visible across diverse mainstream, traditional, and social media outlets. Because of these collaborations, in recent years, misinformation, and disinformation have been successfully met with accurate and credible rebuttals within a single news cycle.Examples of these efforts is the Dark Snow Project, a science/communication collaboration focusing initially on accelerated arctic melt and sea level rise, and the Climate Science Rapid Response team, which matches professional journalists with appropriate science experts in order to respond within a single news cycle to misinformation or misunderstandings about climate science.The session will discuss successful examples and suggest creative approaches for the future.

  4. Scientists' understanding of public communication of science and technology

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt; Kjaer, Carsten Rahbæk; Dahlgaard, Jørgen

    Background Research into the field of science communication has tended to focus on public understanding of science or on the processes of science communication itself, e.g. by looking at science in the media. Few studies have explored how scientists understand science communication. At present...... and technical sciences see science communication. We wanted to map their general interest in using different media of science communication as well as their active participation in current science communication. Moreover, we wanted to find out what they think about future of science communication, and what...... science communication. Results Our respondents indicated interest in doing science communication through media aimed at a broader public. In particular, news media surfaced as the most attractive media of public communication. The respondents preferred to be in charge of science communication themselves...

  5. NASA/MSFC/NSSTC Science Communication Roundtable

    Science.gov (United States)

    Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.

  6. Crisis Communication (Handbooks of Communication Science Vol. 23)

    DEFF Research Database (Denmark)

    Johansen, Winni

    Vol. 23 - The Handbook of Communication Science General editors: Peter J. Schultz and Paul Cobley......Vol. 23 - The Handbook of Communication Science General editors: Peter J. Schultz and Paul Cobley...

  7. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  8. Communication Regulatory Science: Mapping a New Field.

    Science.gov (United States)

    Noar, Seth M; Cappella, Joseph N; Price, Simani

    2017-12-13

    Communication regulatory science is an emerging field that uses validated techniques, tools, and models to inform regulatory actions that promote optimal communication outcomes and benefit the public. In the opening article to this special issue on communication and tobacco regulatory science, we 1) describe Food and Drug Administration (FDA) regulation of tobacco products in the US; 2) introduce communication regulatory science and provide examples in the tobacco regulatory science realm; and 3) describe the special issue process and final set of articles. Communication research on tobacco regulatory science is a burgeoning area of inquiry, and this work advances communication science, informs and potentially guides the FDA, and may help to withstand legal challenges brought by the tobacco industry. This research has the potential to have a major impact on the tobacco epidemic and population health by helping implement the most effective communications to prevent tobacco initiation and increase cessation. This special issue provides an example of 10 studies that exemplify tobacco regulatory science and demonstrate how the health communication field can affect regulation and benefit public health.

  9. Science comics as tools for science education and communication: a brief, exploratory study

    Directory of Open Access Journals (Sweden)

    M. Tatalovic

    2009-11-01

    Full Text Available Comics are a popular art form especially among children and as such provide a potential medium for science education and communication. In an attempt to present science comics in a museum exhibit I found many science themed comics and graphic books. Here I attempt to provide an overview of already available comics that communicate science, the genre of ‘science comics’. I also provide a quick literature review for evidence that comics can indeed be efficiently used for promoting scientific literacy via education and communication. I address the issue of lack of studies about science comics and their readers and suggest some possible reasons for this as well as some questions that could be addressed in future studies on the effect these comics may have on science communication.

  10. Identifying Relevant Anti-Science Perceptions to Improve Science-Based Communication: The Negative Perceptions of Science Scale

    Directory of Open Access Journals (Sweden)

    Melanie Morgan

    2018-04-01

    Full Text Available Science communicators and scholars have struggled to understand what appears to be increasingly frequent endorsement of a wide range of anti-science beliefs and a corresponding reduction of trust in science. A common explanation for this issue is a lack of science literacy/knowledge among the general public (Funk et al. 2015. However, other possible explanations have been advanced, including conflict with alternative belief systems and other contextual factors, and even cultural factors (Gauchat 2008; Kahan 2015 that are not necessarily due to knowledge deficits. One of the challenges is that there are limited tools available to measure a range of possible underlying negative perceptions of science that could provide a more nuanced framework within which to improve communication around important scientific topics. This project describes two studies detailing the development and validation of the Negative Perceptions of Science Scale (NPSS, a multi-dimensional instrument that taps into several distinct sets of negative science perceptions: Science as Corrupt, Science as Complex, Science as Heretical, and Science as Limited. Evidence for the reliability and validity of the NPSS is described. The sub-dimensions of the NPSS are associated with a range of specific anti-science beliefs across a broad set of topic areas above and beyond that explained by demographics (including education, sex, age, and income, political, and religious ideology. Implications for these findings for improving science communication and science-related message tailoring are discussed.

  11. What conceptions of science communication are espoused by science research funding bodies?

    Science.gov (United States)

    Palmer, Sarah E; Schibeci, Renato A

    2014-07-01

    We examine the conceptions of science communication, especially in relation to "public engagement with science" (PES), evident in the literature and websites of science research funding bodies in Europe, North America, South America, Asia and Oceania, and Africa. The analysis uses a fourfold classification of science communication to situate these conceptions: professional, deficit, consultative and deliberative. We find that all bodies engage in professional communication (within the research community); however, engagement with the broader community is variable. Deficit (information dissemination) models still prevail but there is evidence of movement towards more deliberative, participatory models.

  12. Science communication in European projects

    International Nuclear Information System (INIS)

    Vachev, Boyko; Stamenov, Jordan

    2009-01-01

    Science communication in several resent successful projects of Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences (INRNE, BAS) from the 5th and 6th Framework Programmes of EC is presented: the joint INRNE, BAS project with JRC of EC (FP5 NUSES) and two subsequent Centre of Excellence projects (FP5 HIMONTONET and FP6 BEOBAL) are considered. Innovations and traditional forms development and application are discussed. An overview of presentation and communication of INRNE, BAS contribution to Bulgarian European Project is made. Good practices have been derived. Keywords: Science communication, European projects, Innovations

  13. Between understanding and appreciation. Current science communication in Denmark

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  14. Scientific Communication and the Nature of Science

    Science.gov (United States)

    Nielsen, Kristian H.

    2013-01-01

    Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be…

  15. Ocean Science Video Challenge Aims to Improve Science Communication

    Science.gov (United States)

    Showstack, Randy

    2013-10-01

    Given today's enormous management and protection challenges related to the world's oceans, a new competition calls on ocean scientists to effectively communicate their research in videos that last up to 3 minutes. The Ocean 180 Video Challenge, named for the number of seconds in 3 minutes, aims to improve ocean science communication while providing high school and middle school teachers and students with new and interesting educational materials about current science topics.

  16. Students Explaining Science--Assessment of Science Communication Competence

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2013-01-01

    Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is…

  17. Fairness in Knowing: Science Communication and Epistemic Justice.

    Science.gov (United States)

    Medvecky, Fabien

    2017-09-22

    Science communication, as a field and as a practice, is fundamentally about knowledge distribution; it is about the access to, and the sharing of knowledge. All distribution (science communication included) brings with it issues of ethics and justice. Indeed, whether science communicators acknowledge it or not, they get to decide both which knowledge is shared (by choosing which topic is communicated), and who gets access to this knowledge (by choosing which audience it is presented to). As a result, the decisions of science communicators have important implications for epistemic justice: how knowledge is distributed fairly and equitably. This paper presents an overview of issues related to epistemic justice for science communication, and argues that there are two quite distinct ways in which science communicators can be just (or unjust) in the way they distribute knowledge. Both of these paths will be considered before concluding that, at least on one of these accounts, science communication as a field and as a practice is fundamentally epistemically unjust. Possible ways to redress this injustice are suggested.

  18. Science comics as tools for science education and communication: a brief, exploratory study

    OpenAIRE

    M. Tatalovic

    2009-01-01

    Comics are a popular art form especially among children and as such provide a potential medium for science education and communication. In an attempt to present science comics in a museum exhibit I found many science themed comics and graphic books. Here I attempt to provide an overview of already available comics that communicate science, the genre of ‘science comics’. I also provide a quick literature review for evidence that comics can indeed be efficiently used for promoting scientific li...

  19. Science communication: Bridging the gap between theory and practise

    CERN Multimedia

    2001-01-01

    The 6th Public Communication of Science and Technology network conference will be held at CERN on 1-3 Febraury 2001. Scientists and communication professionals will analyse the state of the art of science communication and the new perception people have about science in the media from newspapers to the Web.   Will communication be able to bridge the gap between Science and Society? What is the impact of science communication on the public? How do novel means of communications change the perception of science for the general public? These and other interesting questions will be addressed at the 6th Public Communication of Science and Technology Meeting, to be held at CERN on 1-3 February 2001. More than 250 people from all over the world are expected to attend the conference which will be an important meeting place for communication professionals covering the social, political, technical and cultural aspects of science and technology communication. Georges Boixader after Gary Larsson. The conferenc...

  20. Team science for science communication.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Strauss, Benjamin H

    2014-09-16

    Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication early on in the project. We balanced complexity and simplicity through evaluation of communication materials for user understanding and scientific content. Early user test results that overturned some of our intuitions strengthened our commitment to testing communication elements whenever possible. Finally, we did our best to negotiate external pressures through regular internal communication and willingness to compromise.

  1. Communicating Science: The Profile of Science Journalists in Spain

    Science.gov (United States)

    Cassany, Roger; Cortiñas, Sergi; Elduque, Albert

    2018-01-01

    Science journalists are mainly responsible for publicly communicating science, which, in turn, is a major indicator of the social development of democratic societies. The transmission of quality scientific information that is rigorously researched and understandable is therefore crucial, and demand for this kind of information from both…

  2. Using Social Media to Communicate Science

    Science.gov (United States)

    Bohon, W.

    2017-12-01

    Social media (SM) is a popular and ubiquitous communication method and as such offers scientists an opportunity to directly interface with the public, improve public perception of science and scientists, and combat the growing tide of scientific misunderstanding and misinformation. It's become increasingly critical for scientists to use their voice and influence to communicate science and address misinformation. More than 60% of US adults get news from SM (1) but studies find that scientists infrequently post about science (2), missing a rich opportunity to combat scientific disinformation. While it may seem like a futile exercise to educate over SM, even passive exposure to new information can change public perceptions and behavior (3). Additionally, scientists, especially early career scientists, have social networks populated largely by non-scientists (2), allowing them an opportunity to speak to an audience that already trusts and values their scientific judgment. Importantly, these networks are often ideologically and politically diverse (4). However, science communication isn't as simple as a presentation of facts, and effective science communication via SM requires both SM competence and science communication proficiency. Thus, a discussion of best practices for both topics would benefit the scientific community. The range of potential topics for discussion is broad and could include scientific storytelling, empathetic communication, crafting a message, using SM to "humanize science", tips and tricks for broad SM information dissemination and how to run an effective SM campaign. (1) Gottfried J, Shearer E. New use across social media platforms: Pew Research Center; 2016. Available from: http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/. (2) McClain, Craig R., Practices and promises of Facebook for science outreach:Becoming a "Nerd of Trust". PLOS Biology 15(6). 2017; https://doi.org/10.1371/journal.pbio.2002020(3) Messing S

  3. The Need for More Scientific Approaches to Science Communication

    Science.gov (United States)

    Sadri, S.

    2015-12-01

    Two possible goals for public science communication are: a) improving the public's in-depth understanding of the scientific subject; and b) fostering the public's belief that scientific efforts make a better world. Although (a) is often a natural target when scientists try to communicate their subject, the importance of (b) is underscored by the NSF, who investigated the "cultural authority of science" to understand science's role in policymaking. Surveys consistently find that there is a huge divergence between "knowledge" and "admiration" of science in society because science literacy has very little to do with public perception of science. However, even if both goals could be achieved, it doesn't necessarily mean that the general public will act on scientific advice. Different parts of society have different criteria for reaching judgments about how to act in their best interests. This makes the study of science communication important when controversies arise requiring public engagement. Climate change, sustainability, and water crises are only a few examples of such controversial subjects. Science communication can be designed carefully to sponsor dialogue and participation, to overcome perceptual obstacles, and to engage with stakeholders and the wider public. This study reviews work in social science that tries to answer: When is science communication necessary? What is involved in science communication? What is the role of media in effective science communication? It also reviews common recommendations for improved public engagement by scientists and science organizations. As part of this effort, I will present some portions of my science films. I will conclude with suggestions on what scientific institutions can focus on to build trust, relationships, and participation across segments of the public. Keywords: informal learning, popular science, climate change, water crisis, science communication, science films, science policy.

  4. Engagement as a Threshold Concept for Science Education and Science Communication

    Science.gov (United States)

    McKinnon, Merryn; Vos, Judith

    2015-01-01

    Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…

  5. Revolutionizing Climate Science: Using Teachers as Communicators

    Science.gov (United States)

    Warburton, J.; Crowley, S.; Wood, J.

    2012-12-01

    PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the Polar Regions. Teachers are the dynamic conduits for communicating climate science. In the PolarTREC final report, researchers found that teachers were vital in refining the language of their science and have shaped the goals of the scientific project. Program data demonstrates that science in classrooms is better understood when teachers have a full-spectrum grasp of project intricacies from defining the project, to field data collection, encountering situations for creativity and critical thinking, as well as participating in data and project analysis. Teachers' translating the authentic scientific process is integral in communicating climate science to the broader public. Teachers playing a major role in polar science revolutionize the old paradigm of "in-school learning". Through daily online journaling and forums, social media communication, live webinars with public, and professional development events, these teachers are moving beyond classrooms to communicate with society. Through teachers, climate policy can be shaped for the future by having scientifically literate students as well as assessable science. New paradigms come as teachers attain proficient levels of scientific understanding paired with the expert abilities for communication with years of experience. PolarTREC teachers are a model for new interactions peer-to-peer learning and mentorship for young scientists. Our programmatic goal is to expand the opportunities for PolarTREC teachers to share their involvement in science with additional formal and informal educators. 'Teaching the teachers' will reach exponential audiences in media, policy, and classrooms. Modeling this program, we designed and conducted a teacher training on climate science in Denali National Park. Utilizing expert university

  6. Communicating science in politicized environments.

    Science.gov (United States)

    Lupia, Arthur

    2013-08-20

    Many members of the scientific community attempt to convey information to policymakers and the public. Much of this information is ignored or misinterpreted. This article describes why these outcomes occur and how science communicators can achieve better outcomes. The article focuses on two challenges associated with communicating scientific information to such audiences. One challenge is that people have less capacity to pay attention to scientific presentations than many communicators anticipate. A second challenge is that people in politicized environments often make different choices about whom to believe than do people in other settings. Together, these challenges cause policymakers and the public to be less responsive to scientific information than many communicators desire. Research on attention and source credibility can help science communicators better adapt to these challenges. Attention research clarifies when, and to what type of stimuli, people do (and do not) pay attention. Source credibility research clarifies the conditions under which an audience will believe scientists' descriptions of phenomena rather than the descriptions of less-valid sources. Such research can help communicators stay true to their science while making their findings more memorable and more believable to more audiences.

  7. Communicating science in politicized environments

    Science.gov (United States)

    Lupia, Arthur

    2013-01-01

    Many members of the scientific community attempt to convey information to policymakers and the public. Much of this information is ignored or misinterpreted. This article describes why these outcomes occur and how science communicators can achieve better outcomes. The article focuses on two challenges associated with communicating scientific information to such audiences. One challenge is that people have less capacity to pay attention to scientific presentations than many communicators anticipate. A second challenge is that people in politicized environments often make different choices about whom to believe than do people in other settings. Together, these challenges cause policymakers and the public to be less responsive to scientific information than many communicators desire. Research on attention and source credibility can help science communicators better adapt to these challenges. Attention research clarifies when, and to what type of stimuli, people do (and do not) pay attention. Source credibility research clarifies the conditions under which an audience will believe scientists’ descriptions of phenomena rather than the descriptions of less-valid sources. Such research can help communicators stay true to their science while making their findings more memorable and more believable to more audiences. PMID:23940336

  8. Beginning science teachers' strategies for communicating with families

    Science.gov (United States)

    Bloom, Nena E.

    Science learning occurs in both formal and informal spaces. Families are critical for developing student learning and interest in science because they provide important sources of knowledge, support and motivation. Bidirectional communication between teachers and families can be used to build relationships between homes and schools, leverage family knowledge of and support for learners, and create successful environments for science learning that will support both teaching and student learning. To identify the communication strategies of beginning science teachers, who are still developing their teaching practices, a multiple case study was conducted with seven first year secondary science teachers. The methods these teachers used to communicate with families, the information that was communicated and shared, and factors that shaped these teachers' continued development of communication strategies were examined. Demographic data, interview data, observations and documentation of communication through logs and artifacts were collected for this study. Results indicated that the methods teachers had access to and used for communication impacted the frequency and efficacy of their communication. Teachers and families communicated about a number of important topics, but some topics that could improve learning experiences and science futures for their students were rarely discussed, such as advancement in science, student learning in science and family knowledge. Findings showed that these early career teachers were continuing to learn about their communities and to develop their communication strategies with families. Teachers' familiarity with their school community, opportunities to practice strategies during preservice preparation and student teaching, their teaching environment, school policies, and learning from families and students in their school culture continued to shape and influence their views and communication strategies. Findings and implications for

  9. Expectations and Beliefs in Science Communication

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2016-01-01

    communication practices, it is argued that deep beliefs may constitute drivers of hype that are particularly difficult to deal with. To participants in science communication, the discouragement of hype, viewed as a practical–ethical challenge, can be seen as a learning exercise that includes critical attention......; gene therapy was not universally hyped. Against that background, attention is directed towards another area of variation in the material: different basic assumptions about science and scientists. Exploring such culturally rooted assumptions and beliefs and their possible significance to science...

  10. Scientists and science communication: a Danish survey (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2007-03-01

    Full Text Available This paper summarizes key findings from a web-based questionnaire survey among Danish scientists in the natural sciences and engineering science. In line with the Act on Universities of 2003 enforcing science communication as a university obligation next to research and teaching, the respondents take a keen interest in communicating science, especially through the news media. However, they also do have mixed feeling about the quality of science communication in the news. Moreover, a majority of the respondents would like to give higher priority to science communication. More than half reply that they are willing to allocate up to 2% of total research funding in Denmark to science communication. Further, the respondents indicate that they would welcome a wider variety of science communication initiatives aimed at many types of target groups. They do not see the news media as the one and only channel for current science communication.

  11. The application of science communication modes in China's nuclear and radiation safety science popularization

    International Nuclear Information System (INIS)

    Cao Yali; Wang Erqi; Wang Xiaofeng; Zhang Ying

    2014-01-01

    The studies of the application of science communication theory in the nuclear and radiation safety will help to enhance the level of science popularization work in the field of nuclear and radiation safety. This paper firstly describes the definition and the evolvement process of science communication models, then analyzes the current status of the nuclear and radiation safety science popularization, finally discusses on the suitability of science communication mode of its application in the field of nuclear and radiation safety. (authors)

  12. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  13. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  14. So, You Want to be a Science Communicator?

    Science.gov (United States)

    Radzilowicz, John G.

    2009-03-01

    The late Carl Sagan opined that somehow we have managed to create a global civilization dependant on science and technology in which almost no one understands science and technology. This is an unacceptable recipe for disaster with social, political and financial implications for the future of scientific research. And so, like it or not, popular science communication, more than ever before, is an important and necessary part of the scientific enterprise. Public outreach programs, media interviews, and popular articles have become required parts of the scientist's professional repertoire. But, what does it take to be a good science communicator? What is needed to develop and deliver meaningful public outreach programs? How do you handle non-technical presentations? And, what help is available in developing the necessary skills for good popular science communication? This presentation will look at the essential components of effective science communication aimed at a broad public audience. The components of successful science communication in programs, presentations and articles will be discussed. Specific attention will be given to how university-museum partnerships can expand the reach and enhance the quality of public outreach programs.

  15. Preparing Graduate Students as Science Communicators

    Science.gov (United States)

    Knudson, K.; Gutstein, J.

    2012-12-01

    Our presentation introduces our interdisciplinary curriculum that teaches graduate students at our R-1 university to translate their research to general audiences. We also discuss the challenges we have faced and strategies we have employed to broaden graduate education at our campus to include preparation in science communication. Our "Translating Research beyond Academia" curriculum consists of three separate thematically based courses taught over the academic year: Education and Community Outreach, Science Communication and Writing, Communicating with Policy- and Decision-makers. Course goals are to provide professional development training so that graduate students become more capable professionals prepared for careers inside and outside academia while increasing the public understanding of science and technology. Open to graduate students of any discipline, each course meets weekly for two hours; students receive academic credit through a co-sponsoring graduate program. Students learn effective strategies for communicating research and academic knowledge with the media, the general public, youth, stakeholders, and decision- and policy-makers. Courses combine presentations from university and regional experts with hands-on work sessions aimed towards creating effective communications, outreach and policy plans, broader impacts statements, press releases, blogs, and policy briefs. A final presentation and reflections are required. Students may opt for further training through seminars tailored to student need. Initial results of our analyses of student evaluations and work indicate that students appreciate the interdisciplinary, problem-based approach and the low-risk opportunities for learning professional development skills and for exploring non-academic employment. Several students have initiated engaged work in their disciplines, and several have secured employment in campus science communication positions. Two have changed career plans as a direct result of

  16. clearScience: Infrastructure for Communicating Data-Intensive Science.

    Science.gov (United States)

    Bot, Brian M; Burdick, David; Kellen, Michael; Huang, Erich S

    2013-01-01

    Progress in biomedical research requires effective scientific communication to one's peers and to the public. Current research routinely encompasses large datasets and complex analytic processes, and the constraints of traditional journal formats limit useful transmission of these elements. We are constructing a framework through which authors can not only provide the narrative of what was done, but the primary and derivative data, the source code, the compute environment, and web-accessible virtual machines. This infrastructure allows authors to "hand their machine"- prepopulated with libraries, data, and code-to those interested in reviewing or building off of their work. This project, "clearScience," seeks to provide an integrated system that accommodates the ad hoc nature of discovery in the data-intensive sciences and seamless transitions from working to reporting. We demonstrate that rather than merely describing the science being reported, one can deliver the science itself.

  17. Extended cognition in science communication.

    Science.gov (United States)

    Ludwig, David

    2014-11-01

    The aim of this article is to propose a methodological externalism that takes knowledge about science to be partly constituted by the environment. My starting point is the debate about extended cognition in contemporary philosophy and cognitive science. Externalists claim that human cognition extends beyond the brain and can be partly constituted by external devices. First, I show that most studies of public knowledge about science are based on an internalist framework that excludes the environment we usually utilize to make sense of science and does not allow the possibility of extended knowledge. In a second step, I argue that science communication studies should adopt a methodological externalism and accept that knowledge about science can be partly realized by external information resources such as Wikipedia. © The Author(s) 2013.

  18. Communicating in English for Science and Technology

    DEFF Research Database (Denmark)

    Mousten, Birthe

    Communicating in English for Science and Technology covers some of the most important questions in connection with communication models, stylistics and genre conventions within the area of English used in science and technology texts. Moreover,knowledge management, terminology management...

  19. Brazilian science communication research: national and international contributions.

    Science.gov (United States)

    Barata, Germana; Caldas, Graça; Gascoigne, Toss

    2017-08-31

    Science communication has emerged as a new field over the last 50 years, and its progress has been marked by a rise in jobs, training courses, research, associations, conferences and publications. This paper describes science communication internationally and the trends and challenges it faces, before looking at the national level. We have documented science communication activities in Brazil, the training courses, research, financial support and associations/societies. By analyzing the publication of papers, dissertations and theses we have tracked the growth of this field, and compared the level of activity in Brazil with other countries. Brazil has boosted its national research publications since 2002, with a bigger contribution from postgraduate programs in education and communication, but compared to its national research activity Brazil has only a small international presence in science communication. The language barrier, the tradition of publishing in national journals and the solid roots in education are some of the reasons for that. Brazil could improve its international participation, first by considering collaborations within Latin America. International publication is dominated by the USA and the UK. There is a need to take science communication to the next level by developing more sophisticated tools for conceptualizing and analyzing science communication, and Brazil can be part of that.

  20. Science and society: a dialogue without communicators?

    Directory of Open Access Journals (Sweden)

    Nico Pitrelli

    2008-03-01

    Full Text Available To give a good public speech is art; but definitely more difficult is to organize a productive exchange of points of views between scientists, experts, non-experts and policy-makers on controversial issues such as a scenario workshop or a consensus conference. Many skills and a deep knowledge both of the topic and of the methodology are required. But this is the future of science communication, a field where the dialogical model will impose new and complex formats of communication and a new sensibility, using also the most traditional media. But are science communicators prepared for that? What is the state of the art of science communicator training?

  1. Communicating science beyond the MMJ

    African Journals Online (AJOL)

    nanotechnology, fracking, and GMOs, just to name a few hot topics of recent years. In Malawi, levels of poverty, literacy, and access to information are challenges to science communication. However, given that the majority of research conducted in Malawi is medical or social science-related and involves human subjects, ...

  2. Improving together: collaborative learning in science communication

    Science.gov (United States)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  3. Science communication in the field of fundamental biomedical research (editorial).

    Science.gov (United States)

    Illingworth, Sam; Prokop, Andreas

    2017-10-01

    The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. New practices in science communication: Roles of professionals in science and technology development

    NARCIS (Netherlands)

    Wehrmann, Caroline; Dijkstra, Anne M.

    2014-01-01

    Currently, Science Communication (SC) professionals who are working in the context of science and technology development, have various jobs at universities, government agencies, NGOs and industry. Their positions have changed in recent years, due to developments in science and technology and to

  5. Practising science communication in the information age theorising professional practices

    CERN Document Server

    Holliman, Richard

    2008-01-01

    What is the impact of open access on science communication? How can scientists effectively engage and interact with the public? What role can science communication have when scientific controversies arise? Practising science communication in the information age is a collection of newly-commissioned chapters by leading scholars and practitioners of science communication. It considers how scientists communicate with each other as part of their professional practice, critically evaluating how this forms the basis of the documenting of scientific knowledge, and investigating how open access publication and open review are influencing current practices. It also explores how science communication can play a crucial role when science is disputed, investigating the role of expertise in the formation of scientific controversy and consensus. The volume provides a theoretically informed review of contemporary trends and issues that are engaging practitioners of science communication, focusing on issues such as the norms...

  6. Science communication in regenerative medicine: Implications for the role of academic society and science policy

    Directory of Open Access Journals (Sweden)

    Ryuma Shineha

    2017-12-01

    Full Text Available It is essential to understand the hurdles, motivation, and other issues affecting scientists' active participation in science communication to bridge the gap between science and society. This study analyzed 1115 responses of Japanese scientists regarding their attitudes toward science communication through a questionnaire focusing on the field of stem cell and regenerative medicine. As a result, we found that scientists face systemic issues such as lack of funding, time, opportunities, and evaluation systems for science communication. At the same time, there is a disparity of attitudes toward media discourse between scientists and the public.

  7. Bringing values and deliberation to science communication.

    Science.gov (United States)

    Dietz, Thomas

    2013-08-20

    Decisions always involve both facts and values, whereas most science communication focuses only on facts. If science communication is intended to inform decisions, it must be competent with regard to both facts and values. Public participation inevitably involves both facts and values. Research on public participation suggests that linking scientific analysis to public deliberation in an iterative process can help decision making deal effectively with both facts and values. Thus, linked analysis and deliberation can be an effective tool for science communication. However, challenges remain in conducting such process at the national and global scales, in enhancing trust, and in reconciling diverse values.

  8. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  9. Archives: Communicate: Journal of Library and Information Science

    African Journals Online (AJOL)

    Archives: Communicate: Journal of Library and Information Science. Journal Home > Archives: Communicate: Journal of Library and Information Science. Log in or Register to get access to full text downloads.

  10. Using narratives and storytelling to communicate science with nonexpert audiences.

    Science.gov (United States)

    Dahlstrom, Michael F

    2014-09-16

    Although storytelling often has negative connotations within science, narrative formats of communication should not be disregarded when communicating science to nonexpert audiences. Narratives offer increased comprehension, interest, and engagement. Nonexperts get most of their science information from mass media content, which is itself already biased toward narrative formats. Narratives are also intrinsically persuasive, which offers science communicators tactics for persuading otherwise resistant audiences, although such use also raises ethical considerations. Future intersections of narrative research with ongoing discussions in science communication are introduced.

  11. Time for Change? Climate Science Reconsidered: Report of the UCL Policy Commission on Communicating Climate Science, 2014

    OpenAIRE

    Rapley, C. G.; De Meyer, K.; Carney, J.; Clarke, R.; Howarth, C.; Smith, N.; Stilgoe, J.; Youngs, S.; Brierley, C.; Haugvaldstad, A.; Lotto, B.; Michie, S.; Shipworth, M.; Tuckett, D.

    2014-01-01

    The UCL Policy Commission on the Communication of Climate Science, chaired by Professor Chris Rapley comprises a cross-disciplinary project group of researchers from psychology, neuroscience, science and technology studies, earth sciences and energy research. The Commission examined the challenges faced in communicating climate science effectively to policy-makers and the public, and the role of climate scientists in communication. / The Commission explored the role of climate scientists in c...

  12. Changing the Culture of Science Communication Training for Junior Scientists

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  13. Changing the Culture of Science Communication Training for Junior Scientists.

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  14. Development and Evaluation of an Undergraduate Science Communication Module

    Science.gov (United States)

    Yeoman, Kay H.; James, Helen A.; Bowater, Laura

    2011-01-01

    This paper describes the design and evaluation of an undergraduate final year science communication module for the Science Faculty at the University of East Anglia. The module focuses specifically on science communication and aims to bring an understanding of how science is disseminated to the public. Students on the module are made aware of the…

  15. The Chicago guide to communicating science

    CERN Document Server

    Montgomery, Scott L

    2017-01-01

    For more than a decade, The Chicago Guide to Communicating Science has been the go-to reference for anyone who needs to write or speak about their research. Whether a student writing a thesis, a faculty member composing a grant proposal, or a public information officer crafting a press release, Scott Montgomery’s advice is perfectly adaptable to any scientific writer’s needs. This new edition has been thoroughly revised to address crucial issues in the changing landscape of scientific communication, with an increased focus on those writers working in corporate settings, government, and nonprofit organizations as well as academia. Half a dozen new chapters tackle the evolving needs and paths of scientific writers. These sections address plagiarism and fraud, writing graduate theses, translating scientific material, communicating science to the public, and the increasing globalization of research. The Chicago Guide to Communicating Science recognizes that writers come to the table with different needs and...

  16. Science Communication Training: What Are We Trying to Teach?

    Science.gov (United States)

    Baram-Tsabari, Ayelet; Lewenstein, Bruce V.

    2017-01-01

    Rapid growth in public communication of science and technology has led to many diverse training programs. We ask: What are learning goals of science communication training? A comprehensive set of learning goals for future trainings will draw fully from the range of fields that contribute to science communication. Learning goals help decide what to…

  17. Using narratives and storytelling to communicate science with nonexpert audiences

    Science.gov (United States)

    Dahlstrom, Michael F.

    2014-01-01

    Although storytelling often has negative connotations within science, narrative formats of communication should not be disregarded when communicating science to nonexpert audiences. Narratives offer increased comprehension, interest, and engagement. Nonexperts get most of their science information from mass media content, which is itself already biased toward narrative formats. Narratives are also intrinsically persuasive, which offers science communicators tactics for persuading otherwise resistant audiences, although such use also raises ethical considerations. Future intersections of narrative research with ongoing discussions in science communication are introduced. PMID:25225368

  18. Investigating University Students' Preferences to Science Communication Skills: A Case of Prospective Science Teacher in Indonesia

    Science.gov (United States)

    Suprapto, Nadi; Ku, Chih-Hsiung

    2016-01-01

    The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…

  19. Practical science communication strategies for graduate students.

    Science.gov (United States)

    Kuehne, Lauren M; Twardochleb, Laura A; Fritschie, Keith J; Mims, Meryl C; Lawrence, David J; Gibson, Polly P; Stewart-Koster, Ben; Olden, Julian D

    2014-10-01

    Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will

  20. Communication of Science Advice to Government.

    Science.gov (United States)

    Hutchings, Jeffrey A; Stenseth, Nils Chr

    2016-01-01

    There are various ways to construct good processes for soliciting and understanding science. Our critique of advisory models finds that a well-supported chief science advisor (CSA) best ensures the provision of deliberative, informal, and emergency advice to government. Alternatively, bias, increasingly manifest as science-based advocacy, can hinder communication, diminish credibility, and distort scientific evidence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Building a Science Communication Culture: One Agency's Approach

    Science.gov (United States)

    DeWitt, S.; Tenenbaum, L. F.; Betz, L.

    2014-12-01

    Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.

  2. Between understanding and appreciation. Current science communication in Denmark (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  3. Constructivist Learning Theory and Climate Science Communication

    Science.gov (United States)

    Somerville, R. C.

    2012-12-01

    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate

  4. Climate Communication from a Science Perspective

    Science.gov (United States)

    Somerville, R. C.

    2012-12-01

    Today, the world faces crucial choices in deciding what to do about climate change. Wise policy can be usefully informed by sound science. Scientists who are both climate experts and skilled communicators can provide valuable input into this policy process. They can help the public, media and policymakers learn what science has discovered about climate change. Scientists as a group are widely admired throughout the world. They can often use their prestige as well as their technical knowledge to advantage in publicizing and illuminating the findings of climate science. However, most scientists are unaware of the main obstacles to effective communication, such as the distrust that arises when the scientist and the audience do not have a shared worldview and shared cultural values. Many climate scientists also fail to realize that the jargon they use in their work is a significant barrier to communication, and that their messages requires skilled translation into the everyday language that people understand. Scientists need to recognize that lecturing is almost always poor communication. Speaking in a television interview or a Congressional hearing is completely unlike teaching a class of graduate students. The people whom one is trying to reach are rarely hungry for pure scientific information. Instead, they want to know how climate change will affect them and what can be done about it. Communicating climate science resembles skiing or speaking a foreign language: it is a skill that can be learned, but beginners are well advised to take lessons from expert instructors. Becoming adept at climate communication requires study and practice. Effective professional training in climate communication is available for those scientists who have the time and the willingness to improve as communicators.

  5. Ethical issues in communicating science.

    Science.gov (United States)

    Garrett, J M; Bird, S J

    2000-10-01

    Most of the publicized work on scientific ethics concentrates on establishing professional norms and avoiding misconduct. The successful communication of science is the responsibility of all involved in the process. In one study, the increased incidence of autism and other social developmental disorders in males was investigated by examining individuals with Turner's syndrome (XO females). In the national newspaper this became "Genetic X-factor explains why boys will always be boys". The steps by which a study on developmental disorders, published in a highly prestigious journal, was transformed into an article in the science section which 'explained' the socially expected gender-based behavior of genetically normal children are fascinating and, unfortunately far too typical. The scientists wrote an excellent article that has just one sentence at the end that hesitantly suggests that the findings might, with further study, have some relevance to understanding normal behavior. The general interest article in the front of the journal gave a good account of the research, but suggested more strongly that there could be an in-built biological dimorphism in social cognition. This was misrepresented in the press as proof of gender differences that "undermines the trend towards sexual equality", and both illustrates cultural bias and provides fodder for feminist critiques of science. The study has been made to appear to be biased in favor of justifying the social structure of society, and yet it was the translation from the scientific study to national news that produced this transformation to biased genetic determinism. It is poor communication of the actual science, coupled with a lack of skepticism on the part of the public, that contributes to such a misapplication of science. Scientists should resist the urge to generalize their results to make them more compelling. The science community should not allow misconstructions of scientific facts to go unchallenged

  6. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  7. Constructing Relationships between Science and Practice in the Written Science Communication of the Washington State Wine Industry

    Science.gov (United States)

    Szymanski, Erika Amethyst

    2016-01-01

    Even as deficit model science communication falls out of favor, few studies question how written science communication constructs relationships between science and industry. Here, I investigate how textual microprocesses relate scientific research to industry practice in the Washington State wine industry, helping (or hindering) winemakers and…

  8. AAAS Communicating Science Program: Reflections on Evaluation

    Science.gov (United States)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  9. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    Science.gov (United States)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  10. Science Communication for the Public Understanding of Nuclear Issues

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkyung [Myungji Univ., Yongin (Korea, Republic of)

    2006-04-15

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society.

  11. Science Communication for the Public Understanding of Nuclear Issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung

    2006-01-01

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society

  12. Breakthrough Science Enabled by Smallsat Optical Communication

    Science.gov (United States)

    Gorjian, V.

    2017-12-01

    The recent NRC panel on "Achieving Science with Cubesats" found that "CubeSats have already proven themselves to be an important scientific tool. CubeSats can produce high-value science, as demonstrated by peer-reviewed publications that address decadal survey science goals." While some science is purely related to the size of the collecting aperture, there are plentiful examples of new and exciting experiments that can be achieved using the relatively inexpensive Cubesat platforms. We will present various potential science applications that can benefit from higher bandwidth communication. For example, on or near Earth orbit, Cubesats could provide hyperspectral imaging, gravity field mapping, atmospheric probing, and terrain mapping. These can be achieved either as large constellations of Cubesats or a few Cubesats that provide multi-point observations. Away from the Earth (up to 1AU) astrophysical variability studies, detections of solar particles between the Earth and Venus, mapping near earth objects, and high-speed videos of the Sun will also be enabled by high bandwidth communications.

  13. Communicating Science to Society

    Science.gov (United States)

    Illingworth, Samuel; Muller, Jennifer; Leather, Kimberley; Morgan, William; O'Meara, Simon; Topping, David; Booth, Alastair; Llyod, Gary; Young, Dominique; Bannan, Thomas; Simpson, Emma; Percival, Carl; Allen, Grant; Clark, Elaine; Muller, Catherine; Graves, Rosemarie

    2014-05-01

    "Nothing in science has any value to society if it is not communicated." So goes the 1952 quote from Anne Roe, the noted twentieth century American psychologist and writer. She went on to say that "scientists are beginning to learn their social obligations", and now over 60 years later there is certainly evidence to support her assertions. As scientists, by communicating our research to the general public we not only better inform the tax payer where their money is being spent, but are also able to help put into context the topical environmental challenges and issues that society faces, as well as inspiring a whole new generation of future scientists. This process of communication is very much a two-way street; by presenting our work to people outside of our usual spheres of contemporaries, we expose ourselves to alternative thoughts and insights that can inspire us, as scientists, to take another look at our research from angles that we had never before considered. This work presents the results and experiences from a number of public engagement and outreach activities across the UK, in which geoscientists engaged and interacted with members of the general public. These include the design and implementation of Raspberry Pi based outreach activities for several hundred high school students; the process of running a successful podcast (http://thebarometer.podbean.com); hosting and participating in science events for thousands of members of the general public (e.g. http://www.manchestersciencefestival.com and http://sse.royalsociety.org/2013); and creating a citizen science activity that involved primary school children from across the UK. In communicating their research it is imperative that scientists interact with their audience in an effective and engaging manner, whether in an international conference, a classroom, or indeed down the pub. This work also presents a discussion of how these skills can be developed at an early stage in the careers of a research

  14. Science, news, and the public tackling the 'red shift' in science communication

    CERN Document Server

    Nguyen, An; Thompson, Shelley

    2019-01-01

    As the rate of scientific discoveries and developments accelerates, it becomes increasingly difficult to understand and relate these events to our everyday lives. The day-to-day activities of science now lie obscured behind an ever-thickening screen of corporate, civil and military secrecy, whilst the news media the only major space left for public engagement in science development represent it in a way that tends to drive people away from science rather than attract them to its issues and debates. This book explores this shift in science news communication. It demonstrates that journalism needs to change the way it deals with science altering its traditional mindsets and abandoning its much discredited techniques if it is to maintain or regain its role as a principal force that encourages discussion and understanding of science in the public sphere."

  15. How is safe information about science and technology communicated tangibly?

    International Nuclear Information System (INIS)

    Kawai, Jun; Funabiki, Jun

    2008-01-01

    Nuclear power plants hit by the Chuetsu-oki earthquake in 2007 made clear difficulties for engineers to communicate the safe information to the public. Such communication difficulties are common to advanced science in nuclear energy as well as environmental issues, biotechnologies and others. This article introduced 'science editorial guides' established in order to realize tangible expression of science and technology information' on business. Guides consist of (1) 'prepare materials for science communication', (2) arouse concerns', (3) 'encourage understanding' and (4) memorize'. (T. Tanaka)

  16. All about science philosophy, history, sociology & communication

    CERN Document Server

    Lam, Liu

    2014-01-01

    There is a lot of confusion and misconception concerning science. The nature and contents of science is an unsettled problem. For example, Thales of 2,600 years ago is recognized as the father of science but the word science was introduced only in the 14th century; the definition of science is often avoided in books about philosophy of science. This book aims to clear up all these confusions and present new developments in the philosophy, history, sociology and communication of science. It also aims to showcase the achievement of China's top scholars in these areas. The 18 chapters, divided into five parts, are written by prominent scholars including the Nobel laureate Robin Warren, sociologist Harry Collins, and physicist-turned-historian Dietrich Stauffer.

  17. Communicate: Journal of Library and Information Science: Site Map

    African Journals Online (AJOL)

    Communicate: Journal of Library and Information Science: Site Map. Journal Home > About the Journal > Communicate: Journal of Library and Information Science: Site Map. Log in or Register to get access to full text downloads.

  18. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.

  19. Facial appearance affects science communication.

    Science.gov (United States)

    Gheorghiu, Ana I; Callan, Mitchell J; Skylark, William J

    2017-06-06

    First impressions based on facial appearance predict many important social outcomes. We investigated whether such impressions also influence the communication of scientific findings to lay audiences, a process that shapes public beliefs, opinion, and policy. First, we investigated the traits that engender interest in a scientist's work, and those that create the impression of a "good scientist" who does high-quality research. Apparent competence and morality were positively related to both interest and quality judgments, whereas attractiveness boosted interest but decreased perceived quality. Next, we had members of the public choose real science news stories to read or watch and found that people were more likely to choose items that were paired with "interesting-looking" scientists, especially when selecting video-based communications. Finally, we had people read real science news items and found that the research was judged to be of higher quality when paired with researchers who look like "good scientists." Our findings offer insights into the social psychology of science, and indicate a source of bias in the dissemination of scientific findings to broader society.

  20. The cultural side of science communication.

    Science.gov (United States)

    Medin, Douglas L; Bang, Megan

    2014-09-16

    The main proposition of this paper is that science communication necessarily involves and includes cultural orientations. There is a substantial body of work showing that cultural differences in values and epistemological frameworks are paralleled with cultural differences reflected in artifacts and public representations. One dimension of cultural difference is the psychological distance between humans and the rest of nature. Another is perspective taking and attention to context and relationships. As an example of distance, most (Western) images of ecosystems do not include human beings, and European American discourse tends to position human beings as being apart from nature. Native American discourse, in contrast, tends to describe humans beings as a part of nature. We trace the correspondences between cultural properties of media, focusing on children's books, and cultural differences in biological cognition. Finally, implications for both science communication and science education are outlined.

  1. Reflections on science and the communication sector

    Science.gov (United States)

    Raes, Frank

    2015-04-01

    Reflections on science and the communication sector. In this contribution I will reflect about successes and failures in communicating climate change and air pollution sciences to the general public. These communication efforts included writing popular articles, giving public presentations, working with people from the social scientists and artists. Giving the fact that communication is a very important (economic) sector on its own, the question is to what extent scientists should enter that sector, whether scientists are at all accepted in that sector, whether they should use the expertise in that sector, or whether they should merely provide the knowledge to be used by that sector.

  2. [Elucidating! But how? Insights into the impositions of modern science communication].

    Science.gov (United States)

    Lehmkuh, Markus

    2015-01-01

    The talk promotes the view that science communication should abandon the claim that scientific information can convince others. This is identified as one of the impositions modern science communication is exposed to. Instead of convin cing others, science communication should focus on identifying societally relevant scientific knowledge and on communicating it accurately and coherently.

  3. NASA/MSFC/NSSTC Science Communication Roundtable

    Science.gov (United States)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  4. [Have you eaten any DNA today? Science communication during Science and Technology Week in Brazil].

    Science.gov (United States)

    Possik, Patricia Abrão; Shumiski, Lívia Cantisani; Corrêa, Elisete Marcia; Maia, Roberta de Assis; Medaglia, Adriana; Mourão, Lucivana Prata de Souza; Pereira, Jairo Marques Campos; Persuhn, Darlene Camati; Rufier, Myrthes; Santos, Marcelo; Sobreira, Marise; Elblink, Marcia Triunfol

    2013-11-30

    During the first National Science and Technology Week held in 2004, science centers and museums, universities and schools engaged in activities with the idea of divulging science to the people. Demonstrations of the extraction of DNA from fruits were conducted in supermarkets in 11 Brazilian cities by two institutions, DNA Vai à Escola and Conselho de Informação e Biotecnologia. This article describes the formation of a national network of people interested in communicating information about genetics to the lay public and the implementation of a low-cost science communication activity in different parts of the country simultaneously. It also analyzes the impact caused by this initiative and the perceptions of those involved in its organization.

  5. Neurodharma Self-Help: Personalized Science Communication as Brain Management.

    Science.gov (United States)

    Eklöf, Jenny

    2017-09-01

    Over the past ten to fifteen years, medical interventions, therapeutic approaches and scientific studies involving mindfulness meditation have gained traction in areas such as clinical psychology, psychotherapy, and neuroscience. Simultaneously, mindfulness has had a very strong public appeal. This article examines some of the ways in which the medical and scientific meaning of mindfulness is communicated in public and to the public. In particular, it shows how experts in the field of mindfulness neuroscience seek to communicate to the public at large the imperative of brain fitness for the promotion of health, wellbeing and happiness. The study identifies claims being made in popular outlets that, by and large, bypass traditional mass media, such as self-help books, websites and online videos. By treating this material as a form of personalized science communication, this article contributes to the body of literature that understands science communication as a continuum and the boundary between science and popularized science as the outcome of human negotiations. The study finds that processes of personalization help to build bridges between scientific findings and their supposed application, that they infuse science with subjective meaning, and turn expert communication with the public into a moral vocation.

  6. Press releases — the new trend in science communication

    DEFF Research Database (Denmark)

    Autzen, Charlotte

    2014-01-01

    Scientific institutions have for a long time known the importance of framing and owning stories about science They also know the effective way of communicating science in a press release This is part of the institution’s public relations. Enhanced competition among research institutions has led...... to a buildup of communicative competences and professionalization of public relations inside the institutions and the press release has become an integrated part of science communication from these institutions. Changing working conditions in the media, where fewer people have to publish more, have made press...... releases from trustworthy scientific institutions into free and easily copied content for the editors. In this commentary I investigate and discuss the communicative ecosystem of the university press release. I especially take a close look at the role of the critical and independent science journalist...

  7. Outrageous Outreach — Unconventional Ways of Communicating Science

    Science.gov (United States)

    Sandu, O.; Christensen, L. L.

    2011-07-01

    The golden rule of communication, advertising, public relations and marketing is "follow your target group". In this article, we look at how this mantra is applied in science communication and public outreach. Do we really follow our target groups? Do we regularly research the behaviour, interests and preferences of the individuals behind the demographic categories? Or do we just believe that we are following them when in fact we are "preaching to the converted" — the demographic group that is already intrinsically interested in science and actively scours the science sections of the national newspapers?

  8. Communicating Ocean Science at the Lower-Division Level

    Science.gov (United States)

    Coopersmith, A.

    2011-12-01

    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  9. Conference proceedings on science communication addressing women's issues

    International Nuclear Information System (INIS)

    Deshpande, A.P.

    2013-03-01

    One of the most dynamic campaigns of National Centre for Science Communicators (NCSC) is its intensive interaction with teaching community to inculcate excitement regarding science education and scientific method of knowledge transfer. The conference focused on the theme engaging women in science and science communication, challenges -education, gender differences etc., myths and misconceptions: women related issues, and health awareness in women. Papers relevant to INIS are indexed separately

  10. Cancer communication science funding trends, 2000-2012.

    Science.gov (United States)

    Ramírez, A Susana; Galica, Kasia; Blake, Kelly D; Chou, Wen-Ying Sylvia; Hesse, Bradford W

    2013-12-01

    Since 2000, the field of health communication has grown tremendously, owing largely to research funding by the National Cancer Institute (NCI). This study provides an overview of cancer communication science funding trends in the past decade. We conducted an analysis of communication-related grant applications submitted to the NCI in fiscal years 2000-2012. Using 103 keywords related to health communication, data were extracted from the Portfolio Management Application, a grants management application used at NCI. Automated coding described key grant characteristics such as mechanism and review study section. Manual coding determined funding across the cancer control continuum, by cancer site, and by cancer risk factors. A total of 3307 unique grant applications met initial inclusion criteria; 1013 of these were funded over the 12-year period. The top funded grant mechanisms were the R01, R21, and R03. Applications were largely investigator-initiated proposals as opposed to responses to particular funding opportunity announcements. Among funded communication research, the top risk factor being studied was tobacco, and across the cancer control continuum, cancer prevention was the most common stage investigated. NCI support of cancer communication research has been an important source of growth for health communication science over the last 12 years. The analysis' findings describe NCI's priorities in cancer communication science and suggest areas for future investments.

  11. Why did the proton cross the road? Humour and science communication.

    Science.gov (United States)

    Riesch, Hauke

    2015-10-01

    The use of humour in public discourse about science has grown remarkably over the past few years, and when used in science communication activities is being seen as a great way to bring science to the public through laughter. However, barely any research has been published either on the often-assumed beneficial learning effects of humour in informal science education, or on the wider social functions and effects of humour about science and how humorous public discourse about science can influence the public understanding of science and the science-society relationship. This research note reviews some of the literature on the psychology and sociology of humour and comedy and tries to apply some of its insights to the effects humour might have when used in science communication. Although not intended to be anti-humour, this note attempts at least to start a more critical conversation on the value of humour in the communication of science. © The Author(s) 2014.

  12. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    Science.gov (United States)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  13. Communicating science better through personal divestment from ideological strongholds

    Science.gov (United States)

    Myhre, S. E.

    2017-12-01

    There is an urgent need for the geoscience community to participate as trusted brokers of information in the partisan landscape of science communication. In the current moment of political engagement, academic-industry partnerships, and social justice organizing, the most immediate, inexpensive, and effective change to facilitate public trust-building is through changing the paradigm of professional science communication. Scientists must own the public trust of their intellectual station - and to do so effectively requires a concerted effort to professionally divest from personal ideological positions. Transparency and ideological divestment are hallmarks of public leadership, and yet these values often do not percolate into the existing cannon of communication best practices. However, it is likely that even seasoned communicators rely on a handful of values-based reframing messages to scaffold their science communication in public. Without clear examination of such values, these reframing messages often can function as communicative "tells" or ideological signals, and such signal will actively backfire by disenfranchising audiences with alternate or oppositional ideology. Therefore, it behooves science communicators to actively examine their personal and political ideology, and to build communicative strategies that do not include ideological tells. This practice, while potentially uncomfortable, will strengthen scientists' capacities to communicate evidence and scientific consensus across partisan and rhetorical chasms.

  14. What does the UK public want from academic science communication?

    Science.gov (United States)

    Redfern, James; Illingworth, Sam; Verran, Joanna

    2016-01-01

    The overall aim of public academic science communication is to engage a non-scientist with a particular field of science and/or research topic, often driven by the expertise of the academic. An e-survey was designed to provide insight into respondent's current and future engagement with science communication activities. Respondents provided a wide range of ideas and concerns as to the 'common practice' of academic science communication, and whilst they support some of these popular approaches (such as open-door events and science festivals), there are alternatives that may enable wider engagement. Suggestions of internet-based approaches and digital media were strongly encouraged, and although respondents found merits in methods such as science festivals, limitations such as geography, time and topic of interest were a barrier to engagement for some. Academics and scientists need to think carefully about how they plan their science communication activities and carry out evaluations, including considering the point of view of the public, as although defaulting to hands-on open door events at their university may seem like the expected standard, it may not be the best way to reach the intended audience.

  15. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-01-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered…

  16. Terahertz Science, Technology, and Communication

    Science.gov (United States)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  17. Examining the Nexus of Science Communication and Science Education: A Content Analysis of Genetics News Articles

    Science.gov (United States)

    Shea, Nicole A.

    2015-01-01

    Access to science information via communications in the media is rapidly becoming a central means for the public to gain knowledge about scientific advancements. However, little is known about what content knowledge is essential for understanding issues presented in news media. Very few empirical studies attempt to bridge science communication and…

  18. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  19. Two-Way Communication between Scientists and the Public: A View from Science Communication Trainers in North America

    Science.gov (United States)

    Yuan, Shupei; Oshita, Tsuyoshi; AbiGhannam, Niveen; Dudo, Anthony; Besley, John C.; Koh, Hyeseung E.

    2017-01-01

    The current study explores the degree to which two-way communication is applied in science communication contexts in North America, based on the experiences of science communication trainers. Interviews with 24 science communication trainers suggest that scientists rarely focus on applying two-way communication tactics, such as listening to their…

  20. Communicating Science; a collaborative approach through Art, Dance, Music and Science

    Science.gov (United States)

    Smart, Sarah-Jane; Mortimer, Hugh

    2016-04-01

    A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be

  1. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  2. Effect of science communication with the public on inference of risk perception of science and technology

    International Nuclear Information System (INIS)

    Kosugi, Motoko

    2006-01-01

    Our previous study showed a big difference between expert's own risk perception and experts' inference of the public risk perception about technologies. So, this study tried to clarify the effect of the perceived distance in risk perception between the public and experts themselves on forwardness in science communication to the public. The questionnaire survey results reaffirmed that experts were inclined to feel larger difference in risk perception between the public and themselves on the subject of their own specialty than of non-specialty. The result also suggested the tendency that the bigger experts recognized difference in risk perception from the public, the less they actually had experiences of science communication including communication with the public. Moreover, the result showed that experiences of science communication had positive effects on belief of the public's scientific literacy. (author)

  3. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-04-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums ("directive sources") predictably led students to other sources such as teachers, families, internet, and science books ("directed sources"). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.

  4. Science communication on YouTube: Factors that affect channel and video popularity.

    Science.gov (United States)

    Welbourne, Dustin J; Grant, Will J

    2016-08-01

    YouTube has become one of the largest websites on the Internet. Among its many genres, both professional and amateur science communicators compete for audience attention. This article provides the first overview of science communication on YouTube and examines content factors that affect the popularity of science communication videos on the site. A content analysis of 390 videos from 39 YouTube channels was conducted. Although professionally generated content is superior in number, user-generated content was significantly more popular. Furthermore, videos that had consistent science communicators were more popular than those without a regular communicator. This study represents an important first step to understand content factors, which increases the channel and video popularity of science communication on YouTube. © The Author(s) 2015.

  5. Master in science communication: an overview

    Directory of Open Access Journals (Sweden)

    Donato Ramani

    2009-03-01

    Full Text Available Science, politics, industry, media, state-run and private organisations, private citizens: everyone has their own demands, their own heritage of knowledge, thoughts, opinions, aspirations, needs. Different worlds that interact, question one another, discuss; in one word: they communicate. It is a complicated process that requires professionals «who clearly understand the key aspects of the transmission of scientific knowledge to society through the different essential communication channels for multiple organizations». The purpose of this commentary is to cast some light upon the goals, the philosophy and the organisation behind some European and extra-European Master’s degrees in science communication. We have asked the directors of each of them to describe their founding elements, their origins, their specific features, their structure, their goals, the reasons why they were established and the evolution they have seen over their history.

  6. Innovations to enrich science communication through radio

    Directory of Open Access Journals (Sweden)

    Thakar Bhaumik

    2004-12-01

    Full Text Available The Radio is an instrument of communication that has percolated to all the strata of the diverse Indian society. Its position has been consolidated through history as a regular companion and a source of information and entertainment. Its affordability, accessibility and non-reliance on costly resources have ensured its presence in almost all the households. It has become indispensable from kitchens, family rooms and even workspaces. It is one of the few or rather the only medium of communication after the print media wherein information dissemination still is primary and entertainment a secondary requirement, especially the rural areas. The role of radio in rural India is one that demands prominence and hence has been used as a primary resource for various projects on science communication. A majority of the science radio serial listeners are from the rural areas. The radio therefore is an ideal medium for reaching out to the masses. The radio even with its popularity and huge following is lacking in certain aspects that make science communication complete. Manthan Educational Programme Society developed concepts to make these efforts more effective by ensuring higher involvement and interest in these programs.

  7. Catherine Doss joins College of Science as communications manager

    OpenAIRE

    Doss, Catherine

    2005-01-01

    Catherine Doss, of Blacksburg, Va., has been named college communications manager for the College of Science at Virginia Tech. In her new position, Doss will be responsible for planning and communicating the achievements and aspirations of the College of Science to its many audiences, including students, faculty, staff, alumni, and peer research institutions.

  8. Science and society: a dialogue without communicators? (Italian original version

    Directory of Open Access Journals (Sweden)

    Nico Pitrelli

    2008-03-01

    Full Text Available To give a good public speech is art; but definitely more difficult is to organize a productive exchange of points of views between scientists, experts, non-experts and policy-makers on controversial issues such as a scenario workshop or a consensus conference. Many skills and a deep knowledge both of the topic and of the methodology are required. But this is the future of science communication, a field where the dialogical model will impose new and complex formats of communication and a new sensibility, using also the most traditional media. But are science communicators prepared for that? What is the state of the art of science communicator training?

  9. Public Communication of Science in Blogs: Recontextualizing Scientific Discourse for a Diversified Audience

    Science.gov (United States)

    Luzón, María José

    2013-01-01

    New media are having a significant impact on science communication, both on the way scientists communicate with peers and on the dissemination of science to the lay public. Science blogs, in particular, provide an open space for science communication, where a diverse audience (with different degrees of expertise) may have access to science…

  10. Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report

    Science.gov (United States)

    St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam

    2009-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…

  11. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report

    Science.gov (United States)

    Phillips, Michelle; St. John, Mark

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  12. Improving together: collaborative learning in science communication, ClimateSnack case study

    Science.gov (United States)

    Heuzé, C.; Reeve, M. A.

    2016-02-01

    Most scientists today recognize that science communication is an important part of the scientific process, yet science writing and communication are often taught outside the normal academic schedule. If universities offer such courses, they are generally intensive but short-term: the participants rarely complete a science communication course with an immediate and pressing need to apply these skills. So the skills fade, stalling real progress in science communication. Continuity is key to success! Whilst waiting for the academic system to truly integrate science communication, other methods can be tested. ClimateSnack / SciSnack is a new approach that aims to motivate scientists to develop their communication skills. It adopts a collaborative learning framework where scientists voluntarily form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online, where they are further discussed and improved by the global ClimateSnack community. This way, the participants learn and cement basic science communication skills. These skills are transferrable, and can be applied both to scientific articles and broader science media. Some writing groups are highly productive, while others exist no more. The reasons for success are here investigated with respect to issues both internal and external to the different groups, in particular leadership strategies. Possible further development, in particular using the online community, is suggested. ClimateSnack is one solution to fill the critical gap left by a lack of adequate teaching in early-career scientists' curriculum.

  13. The Science of Strategic Communication | Science Inventory ...

    Science.gov (United States)

    The field of Strategic Communication involves a focused effort to identify, develop, and present multiple types of communication media on a given subject. A Strategic Communication program recognizes the limitations of the most common communication models (primarily “one size fits all” and “presenting everything and letting the audience decide what is important”) and specifically focuses on building a communication framework that is composed of three interlinked pillars: (1) Message – Identifying the right content for a given audience and a vehicle, (2) Audience – Identify the right target group for a given message and vehicle, (3) Vehicle – Identifying the right types of media for a given message and audience. In addition to serving as an organizational framework, the physical structure of a Strategic Communication plan also can serve as a way to show an audience where they, the message, and vehicle fit into the larger picture (i.e., “you are here”). This presentation explores the tenets of Strategic Communication and its use in natural resources management as it relates to advancing restoration activities in the Greater Everglades. This presentation is aimed at restoration practitioners and decision makers. This presentation provides an introduction to the field of strategic communication and presents a generalizable framework for use in the natural sciences. The presentation also gives an example of a communication implementation matrix,

  14. The Whiteboard Revolution: Illuminating Science Communication in the Digital Age.

    Science.gov (United States)

    Mar, Florie Anne; Ordovas-Montanes, Jose; Oksenberg, Nir; Olson, Alexander M

    2016-04-01

    Journal-based science communication is not accessible or comprehensible to a general public curious about science and eager for the next wave of scientific innovation. We propose an alternative medium for scientists to communicate their work to the general public in an engaging and digestible way through the use of whiteboard videos. We describe the process of producing science whiteboard videos and the benefits and challenges therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Taking our own medicine: on an experiment in science communication.

    Science.gov (United States)

    Horst, Maja

    2011-12-01

    In 2007 a social scientist and a designer created a spatial installation to communicate social science research about the regulation of emerging science and technology. The rationale behind the experiment was to improve scientific knowledge production by making the researcher sensitive to new forms of reactions and objections. Based on an account of the conceptual background to the installation and the way it was designed, the paper discusses the nature of the engagement enacted through the experiment. It is argued that experimentation is a crucial way of making social science about science communication and engagement more robust.

  16. Creating Communication Training Programs for Graduate Students in Science and Engineering

    Science.gov (United States)

    Rice, M.; Lewenstein, B.; Weiss, M.

    2012-12-01

    Scientists and engineers in all disciplines are required to communicate with colleagues, the media, policy-makers, and/or the general public. However, most STEM graduate programs do not equip students with the skills needed to communicate effectively to these diverse audiences. In this presentation, we describe a science communication course developed by and for graduate students at Cornell University. This training, which has been implemented as a semester-long seminar and a weekend-long workshop, covers popular science writing, science policy, print and web media, radio and television. Here we present a comparison of learning outcomes for the semester and weekend formats, a summary of lessons learned, and tools for developing similar science communication programs for graduate students at other institutions.

  17. How-to establish PCST. Two handbooks on science communication

    Directory of Open Access Journals (Sweden)

    Alessandro Delfanti

    2008-12-01

    Full Text Available In 2008 two collections were published: the Handbook of Public Communication of Science and Technology, edited by Massimiano Bucchi and Brian Trench, and Communicating Science in Social Contexts: New models, new practices, edited by Donghong Cheng and five other scholars from China, Canada, Belgium and Australia. These books try to define and draw the boundaries of science communication’s field from both a theoretical and empirical point of view. But do we need to establish it as a distinct research field? For a number of decades, a growing community of scholars and communicators is trying to reply positively to this question, but the need to look outside the disciplinary boundaries, to other academic fields, is still vital.

  18. Communicating marine reserve science to diverse audiences

    Science.gov (United States)

    Grorud-Colvert, Kirsten; Lester, Sarah E.; Airamé, Satie; Neeley, Elizabeth; Gaines, Steven D.

    2010-01-01

    As human impacts cause ecosystem-wide changes in the oceans, the need to protect and restore marine resources has led to increasing calls for and establishment of marine reserves. Scientific information about marine reserves has multiplied over the last decade, providing useful knowledge about this tool for resource users, managers, policy makers, and the general public. This information must be conveyed to nonscientists in a nontechnical, credible, and neutral format, but most scientists are not trained to communicate in this style or to develop effective strategies for sharing their scientific knowledge. Here, we present a case study from California, in which communicating scientific information during the process to establish marine reserves in the Channel Islands and along the California mainland coast expanded into an international communication effort. We discuss how to develop a strategy for communicating marine reserve science to diverse audiences and highlight the influence that effective science communication can have in discussions about marine management. PMID:20427745

  19. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  20. Science Communication in the Post-Expert Digital Age

    Science.gov (United States)

    Luers, A.

    2014-12-01

    The digital age has given rise to a post-expert world, which is poses challenges for science communication. Mass communication is shifting from a "broadcast" to "conversation" model, while audiences increasingly are finding information with search tools that create personalized filters showing only news they want to see. Such changes dilute expert voices and strengthen insular "tribal" discourse. We argue that these changes in communication pose particular challenges for science communication around politically charged issues such as climate change, because they create mini-echo chambers that can feed cultural wars. To overcome these challenges the scientific community must rethink how we engage the public. In the post-expert world, we need to shift our mindset from reporting the facts to joining diverse conversations.

  1. Teaching Scientists to Communicate: Evidence-based assessment for undergraduate science education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2015-07-01

    Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace-a problem faced in the UK and USA also. Curriculum development in this area, however, hinges on first evaluating how communication skills are taught currently as a base from which to make effective changes. This study aimed to quantify the current standard of communication education within BSc degrees at Australian research-intensive universities. A detailed evidential baseline for not only what but also how communication skills are being taught was established. We quantified which communication skills were taught and assessed explicitly, implicitly, or were absent in a range of undergraduate science assessment tasks (n = 35) from four research-intensive Australian universities. Results indicate that 10 of the 12 core science communication skills used for evaluation were absent from more than 50% of assessment tasks and 77.14% of all assessment tasks taught less than 5 core communication skills explicitly. The design of assessment tasks significantly affected whether communication skills were taught explicitly. Prominent trends were that communication skills in tasks aimed at non-scientific audiences were taught more explicitly than in tasks aimed at scientific audiences, and the majority of group and multimedia tasks taught communication elements more explicitly than individual, or written and oral tasks. Implications for science communication in the BSc and further research are discussed.

  2. The "art" of science communication in undergraduate research training

    Science.gov (United States)

    Fatemi, F. R.; Stockwell, J.; Pinheiro, V.; White, B.

    2016-12-01

    Student creation of well-designed and engaging visuals in science communication can enhance their deep learning while streamlining the transmission of information to their audience. However, undergraduate research training does not frequently emphasize the design aspect of science communication. We devised and implemented a new curricular component to the Lake Champlain NSF Research Experiences for Undergraduates (REU) program in Vermont. We took a holistic approach to communication training, with a targeted module in "art and science". Components to the module included: 1) an introduction to environmental themes in fine art, 2) a photography assignment in research documentation, 3) an overview of elements of design (e.g., color, typography, hierarchy), 4) a graphic design workshop using tools in Powerpoint, and 5) an introduction to scientific illustration. As part of the REU program, students were asked to document their work through photographs, and develop an infographic or scientific illustration complementary to their research. The "art and science" training culminated with a display and critique of their visual work. We report on student responses to the "art and science" training from exit interviews and survey questions. Based on our program, we identify a set of tools that mentors can use to enhance their student's ability to engage with a broad audience.

  3. iBiology: communicating the process of science.

    Science.gov (United States)

    Goodwin, Sarah S

    2014-08-01

    The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. © 2014 Goodwin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. New and innovative exhibition concepts at science centres using communication technologies

    DEFF Research Database (Denmark)

    Quistgaard, Nana; Kahr-Højland, Anne

    2010-01-01

    Will new communication technologies mean the death of science centres, as Bradburne predicted 12 years ago-or are they alive and kicking? And if science centres do survive, what role could they possibly play in today's society? What mechanisms underlie the development of science centres...... direction, e.g., regarding the emphasised importance of facilitating scientific literacy and critical reflection. We argue that new communication technologies hold potential to accommodate new trends and that science centres have shown to be enterprising in their use of such technologies, e.g., mobile...

  5. The 'credibility paradox' in China's science communication: Views from scientific practitioners.

    Science.gov (United States)

    Zhang, Joy Yueyue

    2015-11-01

    In contrast to increasing debates on China's rising status as a global scientific power, issues of China's science communication remain under-explored. Based on 21 in-depth interviews in three cities, this article examines Chinese scientists' accounts of the entangled web of influence which conditions the process of how scientific knowledge achieves (or fails to achieve) its civic authority. A main finding of this study is a 'credibility paradox' as a result of the over-politicisation of science and science communication in China. Respondents report that an absence of visible institutional endorsements renders them more public credibility and better communication outcomes. Thus, instead of exploiting formal channels of science communication, scientists interviewed were more keen to act as 'informal risk communicators' in grassroots and private events. Chinese scientists' perspectives on how to earn public support of their research sheds light on the nature and impact of a 'civic epistemology' in an authoritarian state. © The Author(s) 2015.

  6. Bridging the Gap: Embedding Communication Courses in the Science Undergraduate Curriculum

    Science.gov (United States)

    Jandciu, Eric; Stewart, Jaclyn J.; Stoodley, Robin; Birol, Gülnur; Han, Andrea; Fox, Joanne A.

    2015-01-01

    The authors describe a model for embedding science communication into the science curriculum without displacing science content. They describe the rationale, development, design, and implementation of two courses taught by science faculty addressing these criteria. They also outline the evaluation plan for these courses, which emphasize broad…

  7. The role by scientific publications in science communication

    Directory of Open Access Journals (Sweden)

    Martha Fabbri

    2007-03-01

    Full Text Available In their contributions to this special issue, the British science writer Jon Turney and the American scholar Bruce Lewenstein discuss the validity of the book as a means for science communication in the era of the Internet, whereas the article by Vittorio Bo deals with scientific publishing in a broader sense.

  8. Hiding in plain sight: communication theory in implementation science.

    Science.gov (United States)

    Manojlovich, Milisa; Squires, Janet E; Davies, Barbara; Graham, Ian D

    2015-04-23

    Poor communication among healthcare professionals is a pressing problem, contributing to widespread barriers to patient safety. The word "communication" means to share or make common. In the literature, two communication paradigms dominate: (1) communication as a transactional process responsible for information exchange, and (2) communication as a transformational process responsible for causing change. Implementation science has focused on information exchange attributes while largely ignoring transformational attributes of communication. In this paper, we debate the merits of encompassing both paradigms. We conducted a two-staged literature review searching for the concept of communication in implementation science to understand how communication is conceptualized. Twenty-seven theories, models, or frameworks were identified; only Rogers' Diffusion of Innovations theory provides a definition of communication and includes both communication paradigms. Most models (notable exceptions include Diffusion of Innovations, The Ottawa Model of Research Use, and Normalization Process Theory) describe communication as a transactional process. But thinking of communication solely as information transfer or exchange misrepresents reality. We recommend that implementation science theories (1) propose and test the concept of shared understanding when describing communication, (2) acknowledge that communication is multi-layered, identify at least a few layers, and posit how identified layers might affect the development of shared understanding, (3) acknowledge that communication occurs in a social context, providing a frame of reference for both individuals and groups, (4) acknowledge the unpredictability of communication (and healthcare processes in general), and (5) engage with and draw on work done by communication theorists. Implementation science literature has conceptualized communication as a transactional process (when communication has been mentioned at all), thereby

  9. The lure of rationality: Why does the deficit model persist in science communication?

    Science.gov (United States)

    Simis, Molly J; Madden, Haley; Cacciatore, Michael A; Yeo, Sara K

    2016-05-01

    Science communication has been historically predicated on the knowledge deficit model. Yet, empirical research has shown that public communication of science is more complex than what the knowledge deficit model suggests. In this essay, we pose four lines of reasoning and present empirical data for why we believe the deficit model still persists in public communication of science. First, we posit that scientists' training results in the belief that public audiences can and do process information in a rational manner. Second, the persistence of this model may be a product of current institutional structures. Many graduate education programs in science, technology, engineering, and math (STEM) fields generally lack formal training in public communication. We offer empirical evidence that demonstrates that scientists who have less positive attitudes toward the social sciences are more likely to adhere to the knowledge deficit model of science communication. Third, we present empirical evidence of how scientists conceptualize "the public" and link this to attitudes toward the deficit model. We find that perceiving a knowledge deficit in the public is closely tied to scientists' perceptions of the individuals who comprise the public. Finally, we argue that the knowledge deficit model is perpetuated because it can easily influence public policy for science issues. We propose some ways to uproot the deficit model and move toward more effective science communication efforts, which include training scientists in communication methods grounded in social science research and using approaches that engage community members around scientific issues. © The Author(s) 2016.

  10. Attitudes and perceptions of Conacyt researchers towards public communication of science and technology.

    Science.gov (United States)

    Sanz Merino, Noemí; Tarhuni Navarro, Daniela H

    2018-06-01

    This study aims to explore the perceptions and attitudes toward Public Communication of Science and Technology of the researchers of the National Council of Science and Technology (Conacyt), in order to provide a diagnosis about the ways the Mexican scientists are involved in public communication and to contribute to the visibility of researchers' needs in being able to popularize science. The results show significant differences among the researchers' opinions with respect to their perceptions about science communication, the ways they participate in PUS activities and their identified needs. In general, the researchers of Conacyt perceived public communication as very important. However, lack of time and of academic recognition stood out as determining factors in their low contribution to science popularization. We conclude that, to achieve a culture of Public Engagement in public communication of science and technology among R&D institutions, the Mexican Administration should address the above-mentioned unfavorable professional circumstances.

  11. Communicating Climate Science: A Historic Look to the Future

    Science.gov (United States)

    Byrne, James; Andronova, Natasha; Rasch, Philip

    2014-06-01

    The June 2013 Chapman Conference brought together a diverse group of researchers, educators, and media for 5 days in Colorado to explore how to better communicate climate science. Multidisciplinary thinking was a key theme of the meeting. Participant expertise included urban planning, science, psychology, philosophy, history, film and documentary production, communications, journalism, public relations, and business. All helped to create a stimulating and inspirational atmosphere. The meeting program accommodated almost 100 submitted abstracts.

  12. Science Communication Through Art: Objectives, Challenges, and Outcomes.

    Science.gov (United States)

    Lesen, Amy E; Rogan, Ama; Blum, Michael J

    2016-09-01

    The arts are becoming a favored medium for conveying science to the public. Tracking trending approaches, such as community-engaged learning, alongside challenges and goals can help establish metrics to achieve more impactful outcomes, and to determine the effectiveness of arts-based science communication for raising awareness or shaping public policy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Science communication in Brazil: A historical review and considerations about the current situation.

    Science.gov (United States)

    Massarani, Luisa; Moreira, Ildeu DE Castro

    2016-09-01

    In this paper, we present a historical overview of the science communication activities in Brazil since the nineteenth century and we analyze the current situation and its main concerns. The principal scopes and tools for science communication discussed here are the following: science centers and museums, mass media and large public events for communicating science and technology (S&T). In recent years, such activities have had a significant breakthrough in Brazil. Yet, there is still a long way to go in order to deliver a quality and extensive science and technology communication to the Brazilians as well as to achieve a suitable level of social appropriation of knowledge on S&T by the Brazilian society. Some of the main challenges that we are facing are discussed herein.

  14. System of Interactions of Social Actors in Public Communication of Science and Technology

    Directory of Open Access Journals (Sweden)

    Miriam Graciela Miquilena

    2010-11-01

    Full Text Available This paper presents the results of a research aimed at explaining the system of interactions of social actors in Public Communication of Science and Technology (PCST, in the context of a social web defined by the novel systems of communication sustained on informational and communication technologies. The study’s theoretical framework highlights the strategic importance of a Public Communication  which focuses on promoting public appropriation of Science and Technology, going beyond the role of Journalism and Science Communication that informs a qualified public, to one that stablishes a bond with policies and decision making in the area, made with participation of international agencies, governments, producers of science and technology, journalists’ associations, educational institutions, and citizens. The research relies on Explicative Methodology. A revision of pertinent bibliography leads to the conclusion that the system of social interactions mediated by personal, interpersonal and grupal global communications, define the relationships in the communicational exchange of the social actor with regard to public communication of science and technology and policies aimed at its appropriation.

  15. Science in public communication, culture, and credibility

    CERN Document Server

    Gregory, Jane

    1998-01-01

    Does the general public need to understand science? And if so, is it scientists' responsibility to communicate? Critics have argued that, despite the huge strides made in technology, we live in a "scientifically illiterate" society--one that thinks about the world and makes important decisions without taking scientific knowledge into account. But is the solution to this "illiteracy" to deluge the layman with scientific information? Or does science news need to be focused around specific issues and organized into stories that are meaningful and relevant to people's lives? In this unprecedented, comprehensive look at a new field, Jane Gregory and Steve Miller point the way to a more effective public understanding of science in the years ahead.

  16. Science communication: a career where PhDs can make a difference

    OpenAIRE

    Irion, Robert

    2015-01-01

    Among careers for biologists with PhDs, science communication is one of the most diverse and rewarding pathways. Myriad options exist, from traditional journalism to new media, from writing for specialists to working in public outreach. Textbooks, mass-market books, and freelance writing that combines many of these pursuits are all viable choices. Communicating about science allows researchers to step away from the minutiae of a subdiscipline and to once again explore the breadth of science m...

  17. Investigating science communication in the information age implications for public engagement and popular media

    CERN Document Server

    Whitelegg, Elizabeth; Scanlon, Eileen; Smidt, Sam; Thomas, Jeff

    2008-01-01

    How are recent policy changes affecting how scientists engage with the public? How are new technologies influencing how scientists disseminate their work and knowledge? How are new media platforms changing the way the public interact with scientific information? Investigating Science Communication in the Information Age is a collection of newly-commissioned chapters by leading science communication scholars. It addresses current theoretical, practical and policy developments in science communication, including recent calls for greater openness and transparency; and engagement and dialogue on the part of professional scientists with members of the public. It provides a timely and wide-ranging review of contemporary issues in science communication, focusing on two broad themes. The first theme critically reviews the recent dialogic turn and ascendant branding of 'public engagement with science' It addresses contemporary theoretical and conceptual issues facing science communication researchers, and draws on a r...

  18. Broadening the voice of science: Promoting scientific communication in the undergraduate classroom.

    Science.gov (United States)

    Cirino, Lauren A; Emberts, Zachary; Joseph, Paul N; Allen, Pablo E; Lopatto, David; Miller, Christine W

    2017-12-01

    Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.

  19. Experiencing biodiversity as a bridge over the science-society communication gap.

    Science.gov (United States)

    Meinard, Yves; Quétier, Fabien

    2014-06-01

    Drawing on the idea that biodiversity is simply the diversity of living things, and that everyone knows what diversity and living things mean, most conservation professionals eschew the need to explain the many complex ways in which biodiversity is understood in science. On many biodiversity-related issues, this lack of clarity leads to a communication gap between science and the general public, including decision makers who must design and implement biodiversity policies. Closing this communication gap is pivotal to the ability of science to inform sound environmental decision making. To address this communication gap, we propose a surrogate of biodiversity for communication purposes that captures the scientific definition of biodiversity yet can be understood by nonscientists; that is, biodiversity as a learning experience. The prerequisites of this or any other biodiversity communication surrogate are that it should have transdisciplinary relevance; not be measurable; be accessible to a wide audience; be usable to translate biodiversity issues; and understandably encompass biodiversity concepts. Biodiversity as a learning experience satisfies these prerequisites and is philosophically robust. More importantly, it can effectively contribute to closing the communication gap between biodiversity science and society at large. © 2013 Society for Conservation Biology.

  20. Science and the media alternative routes in scientific communication

    CERN Document Server

    Bucchi, Massimiano

    1998-01-01

    In the days of global warming and BSE, science is increasingly a public issue. This book provides a theoretical framework which allows us to understand why and how scientists address the general public. The author develops the argument that turning to the public is not simply a response to inaccurate reporting by journalists or to public curiosity, nor a wish to gain recognition and additional funding. Rather, it is a tactic to which the scientific community are pushed by certain "internal" crisis situations. Bucchi examines three cases of scientists turning to the public: the cold fusion case, the COBE/Big Bang issue and Louis Pasteur's public demonstration of the anthrax vaccine, a historical case of "public science." Finally, Bucchi presents his unique model of communications between science and the public, carried out through the media. This is a thoughtful and wide-ranging treatment of complex contemporary issues, touching upon the history and sociology of science, communication and media studies. Bucchi...

  1. Teaching Scientists to Communicate: Evidence-Based Assessment for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2015-01-01

    Communication skills are one of five nationally recognised learning outcomes for an Australian Bachelor of Science (BSc) degree. Previous evidence indicates that communication skills taught in Australian undergraduate science degrees are not developed sufficiently to meet the requirements of the modern-day workplace--a problem faced in the UK and…

  2. Using Storytelling to Communicate Science to the Public

    Science.gov (United States)

    Calderazzo, J.

    2014-12-01

    "Science is the greatest of all adventure stories," says physicist Brian Greene, author of The Elegant Universe. "It's been unfolding for thousands of years as we have sought to understand ourselves and our surroundings . . . and needs to be communicated in a manner that captures this drama." Carl Sagan and Neil deGrasse Tyson, the old and new storytelling hosts of Cosmos, would agree. So would Rachel Carson, who used one of the oldest and simplest of all story forms, the fable, to coax her readers into a complicated tale of pesticides, chemistry, and ecological succession. Silent Spring may well be the most influential science book of the last fifty years. More than ever, scientists need to communicate clearly and passionately to the public, the media, and decision-makers. Not everyone can be as articulate as a Jane Goodall or an Alan Rabinowitz. But humans are storytelling animals, and recent communications research suggests that information conveyed in story form activates more parts of the brain than when it is conveyed by bullet point or other non-narrative ways. Even a shy and retiring researcher can easily learn to use, at minimum, small and subtle techniques to find common ground with an audience who will not forget the message. Additionally, much recent communications research suggests strongly that the most memorable and effective way to coomunicate with the public is by conveying shared values or common ground. Stories--common to virtually every human society over time--inherently do that. As a literary and nonfiction writer for 40 years, and a university teacher of nonfiction and science/nature wiritng for the last 30, I know this first hand as well as through core scholarship about literature and narrative theory. Among other things, my talk will explore how some of the above science communication stars have used these sometimes-buried communication strategies--and how others can, too. Not crucial, but a brief interactive excerise I could conduct would

  3. Teaching, Practice, Feedback: 15 years of COMPASS science communication training

    Science.gov (United States)

    Neeley, L.; Smith, B.; McLeod, K.; English, C. A.; Baron, N.

    2014-12-01

    COMPASS is focused on helping scientists build the skills and relationships they need to effectively participate in public discourse. Founded in 2001 with an emphasis on ocean science, and since expanding to a broader set of environmental sciences, we have advised, coached, and/or trained thousands of researchers of all career stages. Over the years, our primary work has notably shifted from needing to persuade scientists why communication matters to supporting them as they pursue the question of what their communication goals are and how best to achieve them. Since our earliest forays into media promotion, we have evolved with the state of the science communication field. In recent years, we have adapted our approach to one that facilitates dialogue and encourages engagement, helps scientists identify the most relevant people and times to engage, tests our own assumptions, and incorporates relevant social science as possible. In this case study, we will discuss more than a decade of experience in helping scientists find or initiate and engage in meaningful conversations with journalists and policymakers.

  4. The Credibility of Science Communication

    Directory of Open Access Journals (Sweden)

    Nielsen, L. H.

    2007-10-01

    Full Text Available Current developments in the media marketplace and an increased need for visibility to secure funding are leading inevitably to faster, simpler and more aggressive science communication. This article presents the results of an exploratory study of potential credibility problems in astronomy press releases, their causes, consequences and possible remedies. The study consisted of eleven open-ended interviews with journalists, scientists and public information officers. Results suggest that credibility issues are central to communication, deeply integrated into the workflow and can have severe consequences for the actors (especially the scientist, but are an unavoidable part of thecommunication process.

  5. Gap between science and media revisited: scientists as public communicators.

    Science.gov (United States)

    Peters, Hans Peter

    2013-08-20

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty--an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science-media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists.

  6. From Scientific Innovation to Popularization of Science: a Theoretical Model TOC \\o "1-5" \\h \\z of Science Communication

    Directory of Open Access Journals (Sweden)

    Svetlana M. Medvedeva

    2014-01-01

    Full Text Available Science communication is process of promotion of scientific ideas from a scientist through scientific community to muss public. Now this research area attracts a lot of attention from scientists. At the same time science communication suffers from the lack of theoretical framework, which can integrate it. In this article we try to contribute to the further theoretical integration of this area. Here we discuss a model of motion and transformation of ideas from the moment of their generation to the time of their appearance in public movies and literature. The model consists of 5 elements: phase of a scientist (generation of ideas; phase of scientific community (promotion of the ideas among scientists; phase of interested groups (communication with business and government, education of future scientists; phase of popular science (promotion of ideas into mass culture; phase of fiction (subject of communication becomes not scientific knowledge, but myth about science. Each phase is conceived as equal in value stage of existence of scientific ideas. There is a consistent interaction between all phases. The ideas can flow sequentially through all five phases. But independent communication among separate stages is also possible. Furthermore, the ideas can flow in both directions from scientific community to public and visa verse. As a result, scientific communication becomes a real dialogue with equal partners.

  7. Science and Engineering of the Environment of Los Angeles: A GK-12 Experiment at Developing Science Communications Skills in UCLA's Graduate Program

    Science.gov (United States)

    Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.

    2008-12-01

    Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.

  8. In science communication, why does the idea of the public deficit always return? Exploring key influences.

    Science.gov (United States)

    Suldovsky, Brianne

    2016-05-01

    Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed. © The Author(s) 2016.

  9. Geoscience on television: a review of science communication literature in the context of geosciences

    Science.gov (United States)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-06-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.

  10. The germs of terror – Bioterrorism and science communication after September 11

    Directory of Open Access Journals (Sweden)

    Maria Chiara Montani

    2006-09-01

    Full Text Available The attacks of September 11 2001 and in particular, the sending of letters containing anthrax spores the following October had a profound effect on society, and at the same time on science and its communicative mechanisms. Through a quanto-qualitative analysis of articles taken from four publications: two daily newspapers, the Corriere della Sera from Italy and the New York Times from the United States and two science magazines, Science and Nature, we have shown how the aforementioned events provoked the emergence of media attention regarding bioterrorism. A closer reading of the articles shows that today, science – including that found in science magazines – is closely related to politics, economics and the debate over the freedom to practice communicate. The very mechanisms of communication between scientists were changed as a result of this debate, as can be seen from the signing of the Denver Declaration in February 2003, which brought about the preventative self-censorship of publication of biomedical research findings.

  11. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  12. Stepping Up: Empowering Science Communicators at UW's College of the Environment

    Science.gov (United States)

    Meyer, J. J.; Graumlich, L. J.; McCarthy, M. M.

    2017-12-01

    At the University of Washington's College of the Environment, we strive to expand the reach of our science through better communication. While sharing science broadly is often handled through a press office, there are other avenues for disseminating research results that impact society. By empowering scientists to speak authentically about their work and why it matters, we can daylight new outlets and connections where their work can create change in our world. Scientists are experts at sharing their findings with peers, yet available pathways to reaching broader audiences can often be a black box. On the advice of a Science Communication Task Force and guided by college leadership, we launched a science communication program in 2014 as a vehicle to assist our researchers. Whether the goal is to increase public appreciation for science or help shape natural resource policy, we provide support to amplify the impact of our scientist's work. This includes events and networking opportunities, trainings and workshops, one-on-one coaching and consulting, and making connections to outlets where their work can have impact. We continue to refine and expand our program, striking a balance between creating a solid foundation of best communication practices while offering resources to address current needs of the day. We will share the successes and challenges of our program and demonstrate how our model can be implemented at other institutions.

  13. Using design science and artificial intelligence to improve health communication: ChronologyMD case example.

    Science.gov (United States)

    Neuhauser, Linda; Kreps, Gary L; Morrison, Kathleen; Athanasoulis, Marcos; Kirienko, Nikolai; Van Brunt, Deryk

    2013-08-01

    This paper describes how design science theory and methods and use of artificial intelligence (AI) components can improve the effectiveness of health communication. We identified key weaknesses of traditional health communication and features of more successful eHealth/AI communication. We examined characteristics of the design science paradigm and the value of its user-centered methods to develop eHealth/AI communication. We analyzed a case example of the participatory design of AI components in the ChronologyMD project intended to improve management of Crohn's disease. eHealth/AI communication created with user-centered design shows improved relevance to users' needs for personalized, timely and interactive communication and is associated with better health outcomes than traditional approaches. Participatory design was essential to develop ChronologyMD system architecture and software applications that benefitted patients. AI components can greatly improve eHealth/AI communication, if designed with the intended audiences. Design science theory and its iterative, participatory methods linked with traditional health communication theory and methods can create effective AI health communication. eHealth/AI communication researchers, developers and practitioners can benefit from a holistic approach that draws from theory and methods in both design sciences and also human and social sciences to create successful AI health communication. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Communicating science a practical guide for engineers and physical scientists

    CERN Document Server

    Boxman, Raymond

    2017-01-01

    Read this book before you write your thesis or journal paper! Communicating Science is a textbook and reference on scientific writing oriented primarily at researchers in the physical sciences and engineering. It is written from the perspective of an experienced researcher. It draws on the authors' experience of teaching and working with both native English speakers and English as a Second Language (ESL) writers. For the range of topics covered, this book is relatively short and tersely written, in order to appeal to busy researchers.Communicating Science offers comprehensive guidance on: Graduate students and early career researchers will be guided through the researcher's basic communication tasks: writing theses, journal papers, and internal reports, presenting lectures and posters, and preparing research proposals. Extensive best practice examples and analyses of common problems are presented. Advanced researchers who aim to commercialize their research results will be introduced to business plans and pat...

  15. Using Twitter to communicate conservation science from a professional conference.

    Science.gov (United States)

    Bombaci, Sara P; Farr, Cooper M; Gallo, H Travis; Mangan, Anna M; Stinson, Lani T; Kaushik, Monica; Pejchar, Liba

    2016-02-01

    Scientists are increasingly using Twitter as a tool for communicating science. Twitter can promote scholarly discussion, disseminate research rapidly, and extend and diversify the scope of audiences reached. However, scientists also caution that if Twitter does not accurately convey science due to the inherent brevity of this media, misinformation could cascade quickly through social media. Data on whether Twitter effectively communicates conservation science and the types of user groups receiving these tweets are lacking. To address these knowledge gaps, we examined live tweeting as a means of communicating conservation science at the 2013 International Congress for Conservation Biology (ICCB). We quantified and compared the user groups sending and reading live tweets. We also surveyed presenters to determine their intended audiences, which we compared with the actual audiences reached through live tweeting. We also asked presenters how effectively tweets conveyed their research findings. Twitter reached 14 more professional audience categories relative to those attending and live tweeting at ICCB. However, the groups often reached through live tweeting were not the presenters' intended audiences. Policy makers and government and non-governmental organizations were rarely reached (0%, 4%, and 6% of audience, respectively), despite the intent of the presenters. Plenary talks were tweeted about 6.9 times more than all other oral or poster presentations combined. Over half the presenters believed the tweets about their talks were effective. Ineffective tweets were perceived as vague or missing the presenters' main message. We recommend that presenters who want their science to be communicated accurately and broadly through Twitter should provide Twitter-friendly summaries that incorporate relevant hashtags and usernames. Our results suggest that Twitter can be used to effectively communicate speakers' findings to diverse audiences beyond conference walls. © 2015

  16. Research and Teaching: Encouraging Science Communication in an Undergraduate Curriculum Improves Students' Perceptions and Confidence

    Science.gov (United States)

    Train, Tonya Laakko; Miyamoto, Yuko J.

    2017-01-01

    The ability to effectively communicate science is a skill sought after by graduate and professional schools as well as by employers in science-related fields. Are content-heavy undergraduate science curricula able to incorporate opportunities to develop science communication skills, and is promoting these skills worth the time and effort? The…

  17. Scientists' motivation to communicate science and technology to the public: surveying participants at the Madrid Science Fair

    OpenAIRE

    Martín-Sempere , María José; Garzón-García , Belén; Rey-Rocha , Jesús

    2008-01-01

    Abstract This paper investigates what motivates scientists to communicate science and technology in a science event involving a direct relationship and interaction with the public. A structured questionnaire survey was administered through face-to-face interviews to 167 research practitioners (researchers, technicians, support staff and fellows) at the Spanish Council for Scientific Research (CSIC) who part...

  18. Science communication at scientific societies.

    Science.gov (United States)

    Braha, Jeanne

    2017-10-01

    Scientific societies can play a key role in bridging the research and practice of scientists' engagement of public audiences. Societies are beginning to support translation of science communication research, connections between scientists and audiences, and the creation of opportunities for scientists to engage publics without extensive customization. This article suggests roles, strategies, and mechanisms for scientific societies to promote and enhance their member's engagement of public audiences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. When the Dog Must Talk to the Cat: Communicating Science to Politicians - or - Science and Politics: Thoughts about a Complex Relationship

    Science.gov (United States)

    Madsen, Claus

    From a communication view, political lobbying for Science means targeted communication about a long established, well-tested, fact-based and logically robust system of inquiry to a highly dynamic environment in which decision-taking is influenced by many non-scientific factors and with norms that differ widely from the tenets of science. The paper discusses some of the communication issues that arise when these very different worlds meet.

  20. The Manchester Fly Facility: Implementing an objective-driven long-term science communication initiative.

    Science.gov (United States)

    Patel, Sanjai; Prokop, Andreas

    2017-10-01

    Science communication is increasingly important for scientists, although research, teaching and administration activities tend to eat up our time already, and budgets for science communication are usually low. It appears impossible to combine all these tasks and, in addition, to develop engagement activities to a quality and impact that would make the efforts worth their while. Here we argue that these challenges are easier addressed when centering science communication initiatives on a long-term vision with a view to eventually forming outreach networks where the load can be shared whilst being driven to higher momentum. As one example, we explain the science communication initiative of the Manchester Fly Facility. It aims to promote public awareness of research using the model organism Drosophila, which is a timely, economic and most efficient experimental strategy to drive discovery processes in the biomedical sciences and must have a firm place in the portfolios of funding organisations. Although this initiative by the Manchester Fly Facility is sustained on a low budget, its long-term vision has allowed gradual development into a multifaceted initiative: (1) targeting university students via resources and strategies for the advanced training in fly genetics; (2) targeting the general public via science fairs, educational YouTube videos, school visits, teacher seminars and the droso4schools project; (3) disseminating and marketing strategies and resources to the public as well as fellow scientists via dedicated websites, blogs, journal articles, conference presentations and workshops - with a view to gradually forming networks of drosophilists that will have a greater potential to drive the science communication objective to momentum and impact. Here we explain the rationales and implementation strategies for our various science communication activities - which are similarly applicable to other model animals and other areas of academic science - and share our

  1. Science communication methods and strategies for paleoscientists

    OpenAIRE

    Plumpton, Heather; Brahim, Y. Ait; Gowan, Evan; Dassié, E.P.

    2017-01-01

    Why communicate our science? Aside from our duty to let taxpayers, who largely fund our research, know what their money has been spent on, our motivation to communicate stems mainly from a desire to make a contribution towards a more sustainable world. Given the scale of the environmental challenges facing the planet and human societies today, doing only research is not enough. There is a clear need for us, as scientists, and even more as early-career scientists, to communicate to a wider aud...

  2. Hiding in plain sight: communication theory in implementation science

    OpenAIRE

    Manojlovich, Milisa; Squires, Janet E; Davies, Barbara; Graham, Ian D

    2015-01-01

    Background Poor communication among healthcare professionals is a pressing problem, contributing to widespread barriers to patient safety. The word ?communication? means to share or make common. In the literature, two communication paradigms dominate: (1) communication as a transactional process responsible for information exchange, and (2) communication as a transformational process responsible for causing change. Implementation science has focused on information exchange attributes while la...

  3. Science as Performance: Communicating and Educating through Theater, Music, and Dance

    Science.gov (United States)

    Schwartz, Brian B.

    2010-01-01

    Theater, music, dance, the literary and the visual arts can convey the joys and controversies of science. We describe a program at the Graduate Center entitled Science & the Arts which is designed to communicate to the public the excitement and wonder of science, technology, engineering and mathematics. Over the past few years there have been major successes in communicating science to the public through the arts. This is especially evident in theater, film and opera with such recent plays as Copenhagen, the Oscar winning film A Beautiful Mind and the opera Doctor Atomic at the Met. The performance series Science & the Arts has been developed and tested at the Graduate Center of the City University of New York (CUNY) in mid-Manhattan for more than nine years, see http://web.gc.cuny.edu/sciart/ . We have established working relationships with actors, playwrights, dancers, choreographers, musicians, composers, artists and scientists who work at the intersection of science and the arts. In this presentation we will illustrate many of our collaborations in theater, dance, music and art. Faculty members, professionals and students from the university, other educational institutions, museums, theaters and government laboratories as well as the public with an interest science and arts programs should find this presentation of particular interest. Supported in part by the National Science Foundation, NSF PHY-0431660.

  4. In Science Communication, why does the Idea of a Public Deficit Always Return?

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2016-01-01

    For centuries, science communication has been widely perceived, irrespective of context, as a didactic enterprise. That understanding does not accommodate a political category of science communication, featuring citizens on an equal footing – some of them scientists – who share responsibility...

  5. The Future of the New Media in the Communication of Science

    Science.gov (United States)

    Hanson, Joseph

    2014-03-01

    New media, that which is based around social networks, ubiquitous consumer technology, and today's near-universal access to information, has transformed the way that science is communicated to the scientist and non-scientist alike. We may be in the midst of mankind's greatest shift in information consumption and distribution since the invention of the printing press. Or maybe not. The problem with predicting the future is that it's very hard, and unless you're Isaac Asimov, it's very easy to be wrong. When one predicts the future regarding the internet, that risk becomes almost a certainty. Still, we can apply lessons learned from the near and distant history of science communication to put today's new media evolution into perspective, and to give us clues as to where social media, digital journalism, open access, and online education will lead science communication in years to come. Most importantly, it remains to be seen whether this new media evolution will translate into a shift in how science is viewed by citizens and their policymakers.

  6. The challenges of science journalism: The perspectives of scientists, science communication advisors and journalists from New Zealand.

    Science.gov (United States)

    Ashwell, Douglas James

    2016-04-01

    The news media play an important role in informing the public about scientific and technological developments. Some argue that restructuring and downsizing result in journalists coming under increased pressure to produce copy, leading them to use more public relations material to meet their deadlines. This article explores science journalism in the highly commercialised media market of New Zealand. Using semi-structured interviews with scientists, science communication advisors and journalists, the study finds communication advisors and scientists believe most media outlets, excluding public service media, report science poorly. Furthermore, restructuring and staff cuts have placed the journalists interviewed under increasing pressure. While smaller newspapers appear to be printing press releases verbatim, metropolitan newspaper journalists still exercise control over their use of such material. The results suggest these journalists will continue to resist increasing their use of public relations material for some time to come. © The Author(s) 2014.

  7. The nuts and bolts of evaluating science communication activities.

    Science.gov (United States)

    Spicer, Suzanne

    2017-10-01

    Since 2008 there has been a focus on fostering a culture of public engagement in higher education plus an impact agenda that demands scientists provide evidence of how their work, including their science communication, is making a difference. Good science communication takes a significant amount of time to plan and deliver so how can you improve what you are doing and demonstrate if you are having an impact? The answer is to evaluate. Effective evaluation needs to be planned so this paper takes you step by step through the evaluation process, illustrated using specific examples. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Engaging in Effective Science Communication: A Response to Blancke et al. on Deproblematizing GMOs.

    Science.gov (United States)

    Landrum, Asheley R; Hallman, William K

    2017-05-01

    As science communication scholars, we encourage interdisciplinary efforts such as those by Blancke, Grunewald, and De Jaeger to engage with the public on GMOs and genetic engineering broadly. We extend the advice given by these scholars with tips based on what we know from the science of science communication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Early career researchers and PhD students from the social sciences use of Social Networking Sites (SNS) for science communication: an affordances approach

    OpenAIRE

    Manco Vega, Alejandra

    2017-01-01

    This research aims to understand the different practices and strategies early career researchers and PhD students from the social sciences have in Social Networking Sites (SNSs) for science communication in one particular country: Brazil. Following this purpose, the central research question is which are the motives and rationale of the researchers for using social networking sites for science communication. Two sub-questions arise from this general research question: How do practices and str...

  10. Comment on ``Communicating Government Science''

    Science.gov (United States)

    Lins, Harry F.

    2006-05-01

    Soroosh Sorooshian's editorial in the 18 April issue of Eos (87(16) 2005) is a timely reminder of the need for unambiguous guidelines governing the interactions between government scientists and the media. His comments implicitly recognize the central role that science plays in a modern democratic society, which includes informing policy at the highest levels of government and educating the general public about the world we inhabit. Federal research scientists, who constitute approximately 15 percent of the AGU's U.S. membership, have a unique public responsibility. They would welcome a consistent policy for the review and approval of publications, oral presentations, and media communications. An example of the value and success that such a policy can have to both science and the nation is evident in the operations of the U.S. Geological Survey (USGS). For more than a century, the USGS has had clear policies and procedures for ensuring the communication of accurate, high-quality, and impartial scientific information. These policies and procedures are set forth in the USGS Manual under sections entitled ``Approval by the director for outside publication and oral presentation,'' ``Review of USGS publications and abstracts of oral presentations for policy-sensitive issues,'' and ``News release and media relations policy.'' These policies are available online at http:// www.usgs.gov/usgs-manual/500/500-9.html (.../500-8.html and .../500 5.html).

  11. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  12. Promoting open access to science through effective communication

    Science.gov (United States)

    Egger, A. E.

    2006-12-01

    Geology is a difficult subject to communicate effectively. Many people associate geology with memorizing rock and mineral names and not with dynamic earth processes. Even more challenging for the non-geologist is the concept of deep time, and why processes that happened millions of years ago are important to us today. Additionally, many people view science itself as inaccessible and difficult. And yet, geology is a naturally accessible subject, as it is all around us. In order to communicate effectively, geologists must convince others that their work is both accessible and relevant, even though it may not directly generate economic benefits or lend insight into solutions for our modern problems like climate change. As scientists, we know the connections are there, but convincing others requires creating face-to-face, positive interactions through the use of active techniques to help bring the audience to an understanding of the process of science in addition to the subject matter itself. My overarching motive for creating and participating in communication activities with a broad audience is thus to demonstrate that science is accessible to everyone, that a scientific way of thinking can be both fun and useful, and that a little knowledge about geology can give you a new perspective on the world. Using this motivation as a guiding principle regardless of the specific audience, two techniques are important to make the communication effective. First, whenever possible, I conduct activities in the field (broadly speaking), or at least bring the field into the talk, and model the scientific process by asking for participation. This allows the audience to fully understand how geologic work is done, including the mundane and the mistakes. Second, I take my audience seriously, including all questions and observations, in order to build confidence in everyone that they are able to contribute to and understand both geology and the scientific process in general. Despite the

  13. With Great Power Comes Great Responsibility-A Personal Philosophy for Communicating Science in Society.

    Science.gov (United States)

    Zehr, E Paul

    2016-01-01

    Many think that communicating science is a necessary and rewarding activity. Yet finding compelling, relevant, and timely points of linkage between challenging scientific concepts and the experiences and interests of the general public can be difficult. Since science continues to influence more and more aspects of daily life and knowledge, there is a parallel need for communication about science in our society. Here I discuss the "middle-ground hypothesis" using popular culture for science communication and applying the "FUNnel model," where popular culture is used as a lead-in and wrap-up when discussing science. The scientific knowledge we find in our hands does not belong to us-we just had it first. We can honor that knowledge best by sharing it as widely as possible using the most creative means at our disposal.

  14. Mapping science communication scholarship in China: Content analysis on breadth, depth and agenda of published research.

    Science.gov (United States)

    Xu, Linjia; Huang, Biaowen; Wu, Guosheng

    2015-11-01

    This study attempted to illuminate the cause and relation between government, scholars, disciplines, and societal aspects, presenting data from a content analysis of published research with the key word "science communication" (Symbol: see text) in the title or in the key words, including academic papers published in journals and dissertations from the China National Knowledge Infrastructure database. Of these, 572 articles were coded using categories that identified science topics, theory, authorship, and methods used in each study to examine the breadth and depth that Science Communication has achieved since its inception in China. This study explored the dominance of History and Philosophy of Science scholars rather than Communication scholars. We also explored how science communication research began from theories and concepts instead of science report analysis and the difficulties of the shift from public understanding of science to public engagement in China. © The Author(s) 2015.

  15. Local Authorities and Communicators Engaged in Science: PLACES Impact Assessment Case Study of Prague

    Czech Academy of Sciences Publication Activity Database

    Filáček, Adolf; Pechlát, J.

    2013-01-01

    Roč. 35, č. 1 (2013), s. 29-54 ISSN 1210-0250 Institutional support: RVO:67985955 Keywords : science communication policy * regional dimension of science communication * city of scientific culture Subject RIV: AA - Philosophy ; Religion

  16. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    Science.gov (United States)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  17. The Hands-On Guide For Science Communicators A Step-By-Step Approach to Public Outreach

    CERN Document Server

    Christensen, Lars Lindberg

    2007-01-01

    Lars Lindberg Christensen is a science communication specialist and works in Munich, Germany, as head of communication for the NASA/ESA Hubble Space Telescope in Europe. Many people know something about communication – it is after all an innate human ability – but a full comprehension of how to do science communication effectively is not acquired easily. This Guide touches upon all aspects of science communication, revealing a tightly interwoven fabric of issues: product types, target groups, written communication, visual communication, validation processes, practices of efficient workflow, distribution, promotion, advertising and much more. New science communicators will find this Guide both helpful and inspirational. "I am overwhelmed at how thorough and how well thought-through this book is. Even with my regular relationships with popular communication and with public relations officers, I hadn’t realized how well documented the field could be until I saw it done here." -Jay M. Pasachoff, Williams Co...

  18. The ‘credibility paradox’ in China’s science communication: Views from scientific practitioners

    Science.gov (United States)

    Zhang, Joy Yueyue

    2015-01-01

    In contrast to increasing debates on China’s rising status as a global scientific power, issues of China’s science communication remain under-explored. Based on 21 in-depth interviews in three cities, this article examines Chinese scientists’ accounts of the entangled web of influence which conditions the process of how scientific knowledge achieves (or fails to achieve) its civic authority. A main finding of this study is a ‘credibility paradox’ as a result of the over-politicisation of science and science communication in China. Respondents report that an absence of visible institutional endorsements renders them more public credibility and better communication outcomes. Thus, instead of exploiting formal channels of science communication, scientists interviewed were more keen to act as ‘informal risk communicators’ in grassroots and private events. Chinese scientists’ perspectives on how to earn public support of their research sheds light on the nature and impact of a ‘civic epistemology’ in an authoritarian state. PMID:26307594

  19. A comparative study on communication structures of Chinese journals in the social sciences

    NARCIS (Netherlands)

    Zhou, P.; Su, X.; Leydesdorff, L.

    2010-01-01

    We argue that the communication structures in the Chinese social sciences have not yet been sufficiently reformed. Citation patterns among Chinese domestic journals in three subject areas—political science and Marxism, library and information science, and economics—are compared with their

  20. Using Sentiment Analysis to Observe How Science is Communicated

    Science.gov (United States)

    Topping, David; Illingworth, Sam

    2016-04-01

    'Citizen Science' and 'Big data' are terms that are currently ubiquitous in the field of science communication. Whilst opinions differ as to what exactly constitutes a 'citizen', and how much information is needed in order for a data set to be considered truly 'big', what is apparent is that both of these fields have the potential to help revolutionise not just the way that science is communicated, but also the way that it is conducted. However, both the generation of sufficient data, and the efficiency of then analysing the data once it has been analysed need to be taken into account. Sentiment Analysis is the process of determining whether a piece of writing is positive, negative or neutral. The process of sentiment analysis can be automated, providing that an adequate training set has been used, and that the nuances that are associated with a particular topic have been accounted for. Given the large amounts of data that are generated by social media posts, and the often-opinionated nature of these posts, they present an ideal source of data to both train with and then scrutinize using sentiment analysis. In this work we will demonstrate how sentiment analysis can be used to examine a large number of Twitter posts, and how a training set can be established to ensure consistency and accuracy in the automation. Following an explanation of the process, we will demonstrate how automated sentiment analysis can be used to categorise opinions in relation to a large-scale science festival, and will discuss if sentiment analysis can be used to tell us if there is a bias in these communications. We will also investigate if sentiment analysis can be used to replace more traditional, and invasive evaluation strategies, and how this approach can then be adopted to investigate other topics, both within scientific communication and in the wider scientific context.

  1. Master in science communication: an overview (Italian original version

    Directory of Open Access Journals (Sweden)

    Donato Ramani

    2009-03-01

    Full Text Available Science, politics, industry, media, state-run and private organisations, private citizens: everyone has their own demands, their own heritage of knowledge, thoughts, opinions, aspirations, needs. Different worlds that interact, question one another, discuss; in one word: they communicate. It is a complicated process that requires professionals «who clearly understand the key aspects of the transmission of scientific knowledge to society through the different essential communication channels for multiple organizations». The purpose of this commentary is to cast some light upon the goals, the philosophy and the organisation behind some European and extra-European Master’s degrees in science communication. We have asked the directors of each of them to describe their founding elements, their origins, their specific features, their structure, their goals, the reasons why they were established and the evolution they have seen over their history.

  2. Communicate: Journal of Library and Information Science ...

    African Journals Online (AJOL)

    Communicate: Journal of Library and Information Science: Submissions. Journal Home > About the Journal ... Papers should not have been previously published in the same form in any other Journal. 4. The length of manuscript ... Rural Communities. http://www.webology.ir/2006/v3n3/a29.html. Retrieved 15/05/2009.

  3. With Great Power Comes Great Responsibility—A Personal Philosophy for Communicating Science in Society

    Science.gov (United States)

    2016-01-01

    Abstract Many think that communicating science is a necessary and rewarding activity. Yet finding compelling, relevant, and timely points of linkage between challenging scientific concepts and the experiences and interests of the general public can be difficult. Since science continues to influence more and more aspects of daily life and knowledge, there is a parallel need for communication about science in our society. Here I discuss the “middle-ground hypothesis” using popular culture for science communication and applying the “FUNnel model,” where popular culture is used as a lead-in and wrap-up when discussing science. The scientific knowledge we find in our hands does not belong to us—we just had it first. We can honor that knowledge best by sharing it as widely as possible using the most creative means at our disposal. PMID:27642632

  4. Doing science in order to communicate about science from 1st course of ESO: learning to think, to read, to make, to communicate and to write science

    Directory of Open Access Journals (Sweden)

    María del Pilar Menoyo Díaz

    2017-01-01

    Full Text Available This  article  presents  the  project  \\Doing  science  in  order  to  communicate  about  science  from  1st  course of ESO : learning to think, to read, to make to communicate and to write science", awarded with “Ethics and Science for schools" second price in 2015 by the Foundation Victor Grífols i Lucas. The project's aim is twofold: the first one is that students gradually achieve during the whole ESO's itinerary a high-quality scientific alphabetization from all the areas and thus acquiring scientific and linguistic competencies that qualify  them  to  ask  themselves  questions  that  can  be  answered  through  by  research.  Its  second  goal  is  to encourage  students  to  ethically  process  sources  of  information  and  data  gathering  as  well  as  to  make  a sustainable use of the available resources. Communication and external dissemination of the process and results of the research is encouraged in two main ways. The first one, is achieved by using Juan Manuel Zafra  high-school's  website  as  teaching-learning  tool:  both  in  the  private  area  (Moodle  and  the  public area (with an on-line magazine, news, tweets and blogs. Moreover, students are encouraged to participate in  young  researchers  meetings,  as  Exporecerca  Jove,  Jóvenes  Investigadores,  Galiciencia  among  others research seminars. This article propounds a progression of the scientific and linguistic competences along the  four  courses  of  ESO  as  well  as  proposing  frames  in  which  the  student  body  can  be  initiated  in  the research process.

  5. A Social Science Guide for Communication on Climate Change

    Science.gov (United States)

    St John, C.; Marx, S.; Markowitz, E.

    2014-12-01

    Researchers from the Center for Research on Environmental Decisions (CRED) published "The Psychology of Climate Change Communication: A Guide for Scientists, Journalists, Educators, Political Aides, and the Interested Public" in 2009. This landmark guide provided climate change communicators a synthesis of the social science research that was pertinent to understanding how people think about climate change and how the practice could be improved. In the fall of 2014 this guide will be rereleased, with a new title, and in a partnership between CRED and ecoAmerica. The updated guide addresses how and why Americans respond in certain ways to climate change and explains how communicators can apply best practices to their own work. The guide, which includes research from a range of social science fields including psychology, anthropology, communications, and behavioral economics, is designed to be useful for experienced and novice communicators alike. Included in the guide are strategies to boost engagement, common mistakes to avoid, and best practices that organizations around the world have used to meaningfully engage individuals and groups on climate change. The proposed presentation will provide an overview of the main findings and tips from the 2014 climate change communication guide. It will provide a deeper look at a few of the key points that are crucial for increasing audience engagement with climate change including understanding how identity shapes climate change, how to lead with solutions, and how to bring the impacts of climate change close to home. It will highlight tips for motivating positive behavior change that will lead people down the path toward solutions. Finally, it will address the benefits and challenges associated with producing a communication guide and insight into synthesizing social science research findings into a usable format for a variety of audiences.

  6. Using immersive media and digital technology to communicate Earth Science

    Science.gov (United States)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  7. Unquestioned answers or unanswered questions: beliefs about science guide responses to uncertainty in climate change risk communication.

    Science.gov (United States)

    Rabinovich, Anna; Morton, Thomas A

    2012-06-01

    In two experimental studies we investigated the effect of beliefs about the nature and purpose of science (classical vs. Kuhnian models of science) on responses to uncertainty in scientific messages about climate change risk. The results revealed a significant interaction between both measured (Study 1) and manipulated (Study 2) beliefs about science and the level of communicated uncertainty on willingness to act in line with the message. Specifically, messages that communicated high uncertainty were more persuasive for participants who shared an understanding of science as debate than for those who believed that science is a search for absolute truth. In addition, participants who had a concept of science as debate were more motivated by higher (rather than lower) uncertainty in climate change messages. The results suggest that achieving alignment between the general public's beliefs about science and the style of the scientific messages is crucial for successful risk communication in science. Accordingly, rather than uncertainty always undermining the effectiveness of science communication, uncertainty can enhance message effects when it fits the audience's understanding of what science is. © 2012 Society for Risk Analysis.

  8. What does the UK public want from academic science communication? [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    James Redfern

    2016-06-01

    Full Text Available The overall aim of public academic science communication is to engage a non-scientist with a particular field of science and/or research topic, often driven by the expertise of the academic. An e-survey was designed to provide insight into respondent’s current and future engagement with science communication activities. Respondents provided a wide range of ideas and concerns as to the ‘common practice’ of academic science communication, and whilst they support some of these popular approaches (such as open-door events and science festivals, there are alternatives that may enable wider engagement. Suggestions of internet-based approaches and digital media were strongly encouraged, and although respondents found merits in methods such as science festivals, limitations such as geography, time and topic of interest were a barrier to engagement for some. Academics and scientists need to think carefully about how they plan their science communication activities and carry out evaluations, including considering the point of view of the public, as although defaulting to hands-on open door events at their university may seem like the expected standard, it may not be the best way to reach the intended audience.

  9. Gap between science and media revisited: Scientists as public communicators

    Science.gov (United States)

    Peters, Hans Peter

    2013-01-01

    The present article presents an up-to-date account of the current media relations of scientists, based on a comprehensive analysis of relevant surveys. The evidence suggests that most scientists consider visibility in the media important and responding to journalists a professional duty—an attitude that is reinforced by universities and other science organizations. Scientific communities continue to regulate media contacts with their members by certain norms that compete with the motivating and regulating influences of public information departments. Most scientists assume a two-arena model with a gap between the arenas of internal scientific and public communication. They want to meet the public in the public arena, not in the arena of internal scientific communication. Despite obvious changes in science and in the media system, the orientations of scientists toward the media, as well as the patterns of interaction with journalists, have their roots in the early 1980s. Although there is more influence on public communication from the science organizations and more emphasis on strategic considerations today, the available data do not indicate abrupt changes in communication practices or in the relevant beliefs and attitudes of scientists in the past 30 y. Changes in the science–media interface may be expected from the ongoing structural transformation of the public communication system. However, as yet, there is little evidence of an erosion of the dominant orientation toward the public and public communication within the younger generation of scientists. PMID:23940312

  10. Public Knowledge, Private Minds: Meaning Making on the Pathways of Science Communication

    Science.gov (United States)

    Davis, Pryce R.

    Every day people are inundated with news reports about the latest scientific research. The ways in which these texts enlighten or misinform the general public is a central question in both the research literature and discussions in popular culture. However, both research and popular discussion often take on deficit views of these texts, and the capabilities of readers to critically engage with them, and treat them as static, one-way conduits that transfer information to a passive audience. In contrast, I advocate treating popular science texts as the result of a chain of consumption and production that are actively shaped by the varied perspectives of scientists, communicators, and members of the general public. My work envisions all of these actors as science learners who simultaneously act as both producers and consumers of science, and who interact with one another through in-the-moment meaning making. This dissertation examines how the meaning of scientific research is filtered and transformed in moments of interaction and knowledge construction as it moves along this pathway of science communication from scientists to the general public. I present the results of a study that attempts to follow pieces of recent scientific research as they work their way from scientists to publication as popular science news stories, and ultimately to the public. To that end, I collected data from three types of actors involved in the paths of science communication, as well as the texts they read and generate. These actors include (1) the scientists who performed the research, (2) the reporters tasked with writing about it for popular dissemination, and (3) members of the public who must read and interpret the research. The texts I analyze include: peer-reviewed scientific journal articles, university-produced news briefs, popular press science stories, and various text-based conversations between scientists and reporters. Through an analysis of texts, individual interviews, and

  11. Identifying the Essential Elements of Effective Science Communication: What Do the Experts Say?

    Science.gov (United States)

    Bray, Belinda; France, Bev; Gilbert, John K.

    2012-01-01

    Experts in science communication were asked to identify the essential elements of a science communication course for post-graduate students. A Delphi methodology provided a framework for a research design that accessed their opinions and allowed them to contribute to, reflect on and identify 10 essential elements. There was a high level of…

  12. Using and choosing digital health technologies: a communications science perspective.

    Science.gov (United States)

    Ovretveit, John; Wu, Albert; Street, Richard; Thimbleby, Harold; Thilo, Friederike; Hannawa, Annegret

    2017-03-20

    Purpose The purpose of this paper is to explore a non-technical overview for leaders and researchers about how to use a communications perspective to better assess, design and use digital health technologies (DHTs) to improve healthcare performance and to encourage more research into implementation and use of these technologies. Design/methodology/approach Narrative overview, showing through examples the issues and benefits of introducing DHTs for healthcare performance and the insights that communications science brings to their design and use. Findings Communications research has revealed the many ways in which people communicate in non-verbal ways, and how this can be lost or degraded in digitally mediated forms. These losses are often not recognized, can increase risks to patients and reduce staff satisfaction. Yet digital technologies also contribute to improving healthcare performance and staff morale if skillfully designed and implemented. Research limitations/implications Researchers are provided with an introduction to the limitations of the research and to how communications science can contribute to a multidisciplinary research approach to evaluating and assisting the implementation of these technologies to improve healthcare performance. Practical implications Using this overview, managers are more able to ask questions about how the new DHTs will affect healthcare and take a stronger role in implementing these technologies to improve performance. Originality/value New insights into the use and understanding of DHTs from applying the new multidiscipline of communications science. A situated communications perspective helps to assess how a new technology can complement rather than degrade professional relationships and how safer implementation and use of these technologies can be devised.

  13. Uncertainty As a Trigger for a Paradigm Change in Science Communication

    Science.gov (United States)

    Schneider, S.

    2014-12-01

    Over the last decade, the need to communicate uncertainty increased. Climate sciences and environmental sciences have faced massive propaganda campaigns by global industry and astroturf organizations. These organizations use the deep societal mistrust in uncertainty to point out alleged unethical and intentional delusion of decision makers and the public by scientists and their consultatory function. Scientists, who openly communicate uncertainty of climate model calculations, earthquake occurrence frequencies, or possible side effects of genetic manipulated semen have to face massive campaigns against their research, and sometimes against their person and live as well. Hence, new strategies to communicate uncertainty have to face the societal roots of the misunderstanding of the concept of uncertainty itself. Evolutionary biology has shown, that human mind is well suited for practical decision making by its sensory structures. Therefore, many of the irrational concepts about uncertainty are mitigated if data is presented in formats the brain is adapted to understand. At the end, the impact of uncertainty to the decision-making process is finally dominantly driven by preconceptions about terms such as uncertainty, vagueness or probabilities. Parallel to the increasing role of scientific uncertainty in strategic communication, science communicators for example at the Research and Development Program GEOTECHNOLOGIEN developed a number of techniques to master the challenge of putting uncertainty in the focus. By raising the awareness of scientific uncertainty as a driving force for scientific development and evolution, the public perspective on uncertainty is changing. While first steps to implement this process are under way, the value of uncertainty still is underestimated in the public and in politics. Therefore, science communicators are in need for new and innovative ways to talk about scientific uncertainty.

  14. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  15. Informing, involving or engaging? Science communication, in the ages of atom-, bio- and nanotechnology.

    Science.gov (United States)

    Kurath, Monika; Gisler, Priska

    2009-09-01

    Science communication has shifted considerably in Europe over the last decades. Three technology controversies on atoms, genes, and nanoscale sciences and nanotechnologies (NST) turned the style of communication from one-way information, participation and dialogues to the idea of an early and more democratic engagement of the public. Analyzing science communication developing over the three controversies, this article shows that what happened in one technology field fed forward to and contributed to shaping the subsequent field and that communication was initiated at a progressively earlier stage of technology development. The article concludes with an empirical analysis of six public engagement projects in NST, saying that the shift towards more democratic engagement of the public hasn't been as profound and complete as has been thought. This is particularly due to the continuing adoption of a simplistic contrast structure that opposes science and the public as two self-contained, antagonistic social entities.

  16. State of the Art of Information and Communication Science in France

    Directory of Open Access Journals (Sweden)

    Jean-Luc Michel

    2011-05-01

    Full Text Available The great Theories from Robert Escarpit and Abraham Moles in the 70' have not successors. Between Global and local approaches Information and Communication science are very fragmented in France. They try to built models in their own environment but not in a global perspective. Systemic theory is not well known but some researches are oriented in this vision. The speech will explain the structuring of Information and Communication science and show their paradigms and some of their leaders into an epistemological approach.

  17. International Conference on Computer, Communication and Computational Sciences

    CERN Document Server

    Mishra, Krishn; Tiwari, Shailesh; Singh, Vivek

    2017-01-01

    Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and ...

  18. Not in front of the children! The controversies of science and science communication for children and youth

    Directory of Open Access Journals (Sweden)

    Luisa Massarani

    2008-03-01

    Full Text Available Dialogue in science communication is a necessity - everybody agrees on it - because science and technology issues are involved in so many aspects of the citizens life, and in so many cases can raise suspects, fears, worries or, on the contrary, expectations and hopes. But who are the possible interlocutors for scientists and policy-makers? Everybody, says Luisa Massarani, beginning with children and teenagers. Also in such controversial and sensitive issues like AIDS or GMO.

  19. Communicating the Science from NASA's Astrophysics Missions

    Science.gov (United States)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  20. The molecules we eat: Food as a medium to communicate science

    Directory of Open Access Journals (Sweden)

    Rowat Amy C

    2013-01-01

    Full Text Available Abstract Creative, inquiry-driven approaches in science education help to address the growing need to effectively engage students and promote the public understanding of science. Here we describe an interactive format using food that can be applied both in a course for undergraduate students, as well as in a lecture for the general public. Communicating science through food may also dispel fear of naturally occurring chemicals as well as scientific misconceptions that are propagated by the media.

  1. Measuring University Students' Perceived Self-Efficacy in Science Communication in Middle and High Schools

    Science.gov (United States)

    Chi, Shaohui; Liu, Xiufeng; Gardella, Joseph A.

    2016-01-01

    Service learning typically involves university students in teaching and learning activities for middle and high school students, however, measurement of university students' self-efficacy in science communication is still lacking. In this study, an instrument to measure university students' perceived self-efficacy in communicating science to…

  2. The output for the Master’s degree in Science Communication at SISSA of Trieste

    Directory of Open Access Journals (Sweden)

    Donato Ramani

    2007-03-01

    Full Text Available What professional future awaits those who have attended a school in science communication? This has become an ever more urgent question, when you consider the proliferation of Masters and post-graduate courses that provide on different levels a training for science communicators in Europe and all over the world. In Italy, the International School for Advanced Studies of Trieste has been for fourteen years now the seat for a Master’s degree in Science Communication that has graduated over 170 students. This letter illustrates the results of a survey carried out in order to identify the job opportunities they have been offered and the role played in their career by their Master’s degree. Over 70% of the interviewees are now working in the field of science communication and they told us that the Master has played an important role in finding a job, thus highlighting the importance of this school as a training, cultural and professional centre.

  3. The public communication of science in public health graduate programs in Brazil: From the coordinators' perspective

    Science.gov (United States)

    Teixeira, C. A.; Gallo, P. R.

    2014-12-01

    Introduction - The elaboration process of public policies for science and technology in knowledge societies should include not only experts, but all society members. There are studies on lay people's perception of science and technology. However, what is the scientists' perspective on public communication of science? Objectives - To describe and characterize the concepts that coordinators of Brazilian public health graduate programs have about public communication of science. Methods - This is an analytical and descriptive report of an exploratory research (doctoral study). The answers of fifty-one coordinators to two questionnaires were submitted for content analysis. The categories were transformed into variables that allowed the data processing by the Hiérarchique Classificatoire et Cohésitive (CHIC®) software. Results - Similarity analysis strongly suggested (0,99) that coordinators understand public communication as a communication directed to academic peers and students, also as a form of participation in scientific events and communication by scientific papers. Likewise, the implication analysis suggested a strong implication (0,98) between scientific communication understood as public communication. Conclusion - The notion of public communication of science as a social right and as a commitment and responsibility of researchers and research centers is not explicitly present in the narrative of the coordinators, although in general the coordinators conceive it as a relevant activity. This study thus contributes to a reflection on the role of scientists, researchers and research centers in public communication of science and technology.

  4. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  5. The role by scientific publications in science communication (Italian original version

    Directory of Open Access Journals (Sweden)

    Martha Fabbri

    2007-03-01

    Full Text Available In their contributions to this special issue, the British science writer Jon Turney and the American scholar Bruce Lewenstein discuss the validity of the book as a means for science communication in the era of the Internet, whereas the article by Vittorio Bo deals with scientific publishing in a broader sense.

  6. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  7. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  8. Student Perceptions of Communication Skills in Undergraduate Science at an Australian Research-Intensive University

    Science.gov (United States)

    Mercer-Mapstone, Lucy D.; Matthews, Kelly E.

    2017-01-01

    Higher education institutions globally are acknowledging the need to teach communication skills. This study used the Science Student Skills Inventory to gain insight into how science students perceive the development of communication skills across the degree programme. Responses were obtained from 635 undergraduate students enrolled in a Bachelor…

  9. Confessions of a Communications Junkie: Cliff Notes From the Science-Practice Interface

    Science.gov (United States)

    Moser, S. C.

    2006-12-01

    Graduate education in the sciences is - among other things - about learning a foreign language. Proficiency in disciplinary jargon and a strange sort of eloquence in speaking English without being understood by anyone outside one's small 'country of expertise' are among the requirements for entry into academe. Until very recently, the ability to translate one's quirky knowledge back into common language was not part of entraining scientists. Yet, increasingly, the interested public, policy-makers and resource managers, not to speak of science funders, demand that scientists illustrate that their science has societal relevance. Moreover, the urgency of several complex societal and environmental problems puts the onus on scientists to work with experts in other disciplines. This means that the ability to communicate effectively with those outside one's own disciplinary home is rapidly becoming an essential qualification of a 'good' scientist. My own journey from a disciplinary boundary crosser, to hobby communicator, to professional translator of science into English, to alumnae of various media trainings and Aldo Leopold Leadership Fellow, to researcher of the science-practice interface and expert in communication for social change will form the basis of this talk. It weaves together personal experience with scientific insights on why scientists should, why many don't, and how they could interact more effectively with members of a 'different tribe.'

  10. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  11. Automatic jargon identifier for scientists engaging with the public and science communication educators

    Science.gov (United States)

    Chapnik, Noam; Yosef, Roy; Baram-Tsabari, Ayelet

    2017-01-01

    Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012–2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1) comparison and correlation with existing frequency word lists in the literature; (2) a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3) a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and be implemented

  12. Automatic jargon identifier for scientists engaging with the public and science communication educators.

    Directory of Open Access Journals (Sweden)

    Tzipora Rakedzon

    Full Text Available Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012-2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1 comparison and correlation with existing frequency word lists in the literature; (2 a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3 a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and

  13. Automatic jargon identifier for scientists engaging with the public and science communication educators.

    Science.gov (United States)

    Rakedzon, Tzipora; Segev, Elad; Chapnik, Noam; Yosef, Roy; Baram-Tsabari, Ayelet

    2017-01-01

    Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012-2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1) comparison and correlation with existing frequency word lists in the literature; (2) a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3) a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and be implemented by

  14. International production on science oriented towards data: analysis of the terms data science and e-science in scopus and the web of science

    OpenAIRE

    Leilah Santiago Bufrem; Fábio Mascarenhas e Silva; Natanael Vitor Sobral; Anna Elizabeth Galvão Coutinho Correia

    2016-01-01

    Introduction: current configuration in the dynamics of production and scientific communication reveals the role of Science Oriented Towards Data, a comprehensive conception represented, mainly, by terms such as "e-Science" and "Data Science". Objective: To present the global scientific production on Science Oriented Towards Data by using the terms "e-Science" and "Data Science" in Scopus and the Web of Science during 2006-2016. Methodology: The study is divided into five phases: a) sear...

  15. Religiosity, Culture, and Science Communication

    Science.gov (United States)

    O'Malley, R. C.; Kahan, D.

    2017-12-01

    It is well established that cultural commitments influence receptivity to scientific information on risks and related policy-relevant facts. Religiosity is one proxy for such commitments. My presentation will present data from numerous studies (observational and experimental, lab and field) that address how religiosity as a form of cultural affinity shapes engagement with the best available evidence on human-caused climate change. The central conclusion of this research is that a skeptical position on climate change, much like a skeptical position on human evolution, operates as a tacit badge of membership in and loyalty to groups bound together by religious affiliations. Overcoming the distorting impact that this dynamic has on climate-science communication requires engaging members of religious groups not as members of those groups per se but as citizens with a practical stake in addressing the risks that climate change poses to them and their neighbors. Once enlisted into discussion and practical action on these grounds, however, religious individuals can be expected to share their positive experiences and outlooks with other members of their religious communities, thereby demonstrating to them that engaging with this form of science does not conflict with their cultural identities.

  16. Student science publishing: an exploratory study of undergraduate science research journals and popular science magazines in the US and Europe

    Directory of Open Access Journals (Sweden)

    Mico Tatalovic

    2008-09-01

    Full Text Available Science magazines have an important role in disseminating scientific knowledge into the public sphere and in discussing the broader scope affected by scientific research such as technology, ethics and politics. Student-run science magazines afford opportunities for future scientists, communicators, politicians and others to practice communicating science. The ability to translate ‘scientese’ into a jargon-free discussion is rarely easy: it requires practice, and student magazines may provide good practice ground for undergraduate and graduate science students wishing to improve their communication skills.

  17. High-Rate Laser Communications for Human Exploration and Science

    Science.gov (United States)

    Robinson, B. S.; Shih, T.; Khatri, F. I.; King, T.; Seas, A.

    2018-02-01

    Laser communication links has been successfully demonstrated on recent near-Earth and lunar missions. We present a status of this development work and its relevance to a future Deep Space Gateway supporting human exploration and science activities.

  18. Persistent Identifiers, Discoverability and Open Science (Communication)

    Science.gov (United States)

    Murphy, Fiona; Lehnert, Kerstin; Hanson, Brooks

    2016-04-01

    Early in 2016, the American Geophysical Union announced it was incorporating ORCIDs into its submission workflows. This was accompanied by a strong statement supporting the use of other persistent identifiers - such as IGSNs, and the CrossRef open registry 'funding data'. This was partly in response to funders' desire to track and manage their outputs. However the more compelling argument, and the reason why the AGU has also signed up to the Center for Open Science's Transparency and Openness Promotion (TOP) Guidelines (http://cos.io/top), is that ultimately science and scientists will be the richer for these initiatives due to increased opportunities for interoperability, reproduceability and accreditation. The AGU has appealed to the wider community to engage with these initiatives, recognising that - unlike the introduction of Digital Object Identifiers (DOIs) for articles by CrossRef - full, enriched use of persistent identifiers throughout the scientific process requires buy-in from a range of scholarly communications stakeholders. At the same time, across the general research landscape, initiatives such as Project CRediT (contributor roles taxonomy), Publons (reviewer acknowledgements) and the forthcoming CrossRef DOI Event Tracker are contributing to our understanding and accreditation of contributions and impact. More specifically for earth science and scientists, the cross-functional Coalition for Publishing Data in the Earth and Space Sciences (COPDESS) was formed in October 2014 and is working to 'provide an organizational framework for Earth and space science publishers and data facilities to jointly implement and promote common policies and procedures for the publication and citation of data across Earth Science journals'. Clearly, the judicious integration of standards, registries and persistent identifiers such as ORCIDs and International Geo Sample Numbers (IGSNs) to the research and research output processes is key to the success of this venture

  19. The communication of forensic science in the criminal justice system: A review of theory and proposed directions for research.

    Science.gov (United States)

    Howes, Loene M

    2015-03-01

    Clear communication about forensic science is essential to the effectiveness and perceived trustworthiness of the criminal justice system. Communication can be seen as a meaning-making process that involves different components such as the sender of a message, the message itself, the channel in which a message is sent, and the receiver of the message. Research conducted to date on the communication between forensic scientists and non-scientists in the criminal justice system has focused on different components of the communication process as objects of study. The purpose of this paper is to bring together communication theory and past research on the communication of forensic science to contribute to a deeper understanding of it, and to provide a coherent view of it overall. The paper first outlines the broader context of communication theory and science communication as a backdrop to forensic science communication. Then it presents a conceptual framework as a way to organise past research and, using the framework, reviews recent examples of empirical research and commentary on the communication of forensic science. Finally the paper identifies aspects of the communication of forensic science that may be addressed by future research to enhance the effectiveness of communication between scientists and non-scientists in this multidisciplinary arena. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Investigating the need for scholarly communications positions in Association of Academic Health Sciences Libraries member institutions.

    Science.gov (United States)

    Mears, Kim; Bandy, Sandra L

    2017-04-01

    The role of health sciences librarians has expanded in the scholarly communications landscape as a result of the increase in federal public access mandates and the continued expansion of publishing avenues. This has created the need to investigate whether academic health sciences libraries should have scholarly communications positions to provide education and services exclusively related to scholarly communication topics. A nine-question online survey was distributed through the Association of Academic Health Sciences Libraries (AAHSL) email discussion list to gather preliminary findings from and opinions of directors of health sciences libraries on the need for scholarly communications positions. The survey received a 38% response rate. The authors found that AAHSL members are currently providing scholarly communications services, and 46% of respondents expressed the need to devote a full-time position to this role. Our survey reveals a juxtaposition occurring in AAHSL member libraries. While administrators acknowledge the need to provide scholarly communications services, they often experience budget challenges in providing a full-time position for these services.

  1. Communicating through humour: A project of stand-up comedy about science.

    Science.gov (United States)

    Pinto, Bruno; Marçal, David; Vaz, Sofia G

    2015-10-01

    A study of a project on science stand-up comedy developed in Portugal between 2009 and 2013 is presented, in which thirteen scientists, coordinated by a science communicator and a professional actor, created and presented comedy acts. Eleven of these scientists were asked about their motivations to participate, the process of performance development and the perceived value of the project. Personal motivations were highly important, but professional reasons were also mentioned. Working in a group with the guidance of coordinators, testing and re-writing the texts and gradually gaining confidence on stage were considered fundamental in the development of the shows. Additionally, a questionnaire revealed that the audience, most of whom were young adults, and held a higher education degree, were satisfied with the show. Overall, both participating scientists and audience members considered that stand-up comedy has potential for science communication. © The Author(s) 2013.

  2. The germs of terror – Bioterrorism and science communication after September 11 (Italian original version

    Directory of Open Access Journals (Sweden)

    Maria Chiara Montani

    2006-09-01

    Full Text Available The attacks of September 11 2001 and in particular, the sending of letters containing anthrax spores the following October had a profound effect on society, and at the same time on science and its communicative mechanisms. Through a quanto-qualitative analysis of articles taken from four publications: two daily newspapers, the Corriere della Sera from Italy and the New York Times from the United States and two science magazines, Science and Nature, we have shown how the aforementioned events provoked the emergence of media attention regarding bioterrorism. A closer reading of the articles shows that today, science – including that found in science magazines – is closely related to politics, economics and the debate over the freedom to practice communicate. The very mechanisms of communication between scientists were changed as a result of this debate, as can be seen from the signing of the Denver Declaration in February 2003, which brought about the preventative self-censorship of publication of biomedical research findings.

  3. The simulation method in learning interpersonal communication competence--experiences of masters' degree students of health sciences.

    Science.gov (United States)

    Saaranen, Terhi; Vaajoki, Anne; Kellomäki, Marjaana; Hyvärinen, Marja-Leena

    2015-02-01

    This article describes the experiences of master students of nursing science in learning interpersonal communication competence through the simulation method. The exercises reflected challenging interactive situations in the field of health care. Few studies have been published on using the simulation method in the communication education of teachers, managers, and experts in this field. The aim of this study is to produce information which can be utilised in developing the simulation method to promote the interpersonal communication competence of master-level students of health sciences. This study used the qualitative, descriptive research method. At the Department of Nursing Science, the University of Eastern Finland, students major in nursing science specialise in nursing leadership and management, preventive nursing science, or nurse teacher education. Students from all three specialties taking the Challenging Situations in Speech Communication course participated (n=47). Essays on meaningful learning experiences collected using the critical incident technique, underwent content analysis. Planning of teaching, carrying out different stages of the simulation exercise, participant roles, and students' personal factors were central to learning interpersonal communication competence. Simulation is a valuable method in developing the interpersonal communication competence of students of health sciences at the masters' level. The methods used in the simulation teaching of emergency care are not necessarily applicable as such to communication education. The role of teacher is essential to supervising students' learning in simulation exercises. In the future, it is important to construct questions that help students to reflect specifically on communication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. CURRENT DIRECTIONS OF RESEARCH IN INFORMATION- COMMUNICATION TECHNOLOGIES IN THE FIELD OF PEDAGOGICAL SCIENCE.

    Directory of Open Access Journals (Sweden)

    O.N. Spirin

    2010-11-01

    Full Text Available In the publication modern research areas of information-communication technologies in pedagogical science are identified. The basic requirements of the new passport for the specialty 13.00.10 - Information and Communication Technologies in Education are described. On this specialty the defence of the degree of doctor and candidate of pedagogical science may be carried out.

  5. Application of expert-notice dialogue (END) method to assess students’ science communication ability on biology

    Science.gov (United States)

    Sriyati, S.; Amelia, D. N.; Soniyana, G. T.

    2018-05-01

    Student’s science communication ability can be assessed by the Expert-Notice Dialogue (END) method which focusing on verbal explanations using graphs or images as a tool. This study aims to apply the END method to assess students’ science communication ability. The study was conducted in two high schools with each sample of one class at each school (A and B). The number of experts in class A is 8 students and 7 in class B, the number of notice in class A 24 students and 30 in class B. The material chosen for explanation by expert is Ecosystem in class A and plant classification in class B. Research instruments are rubric of science communication ability, observation rubric, notice concept test and notice questionnaire. The implementation recorded with a video camera and then transcribed based on rubric science communication ability. The results showed that the average of science communication ability in class A and B was 60% and 61.8%, respectively, in enough categories. Mastery of the notice concept is in good category with 79.10 averages in class A and 94.64 in class B. Through the questionnaire notice it is known that the END method generally helps notice in understanding the concept.

  6. Videos for Science Communication and Nature Interpretation: The TIB|AV-Portal as Resource.

    Science.gov (United States)

    Marín Arraiza, Paloma; Plank, Margret; Löwe, Peter

    2016-04-01

    Scientific audiovisual media such as videos of research, interactive displays or computer animations has become an important part of scientific communication and education. Dynamic phenomena can be described better by audiovisual media than by words and pictures. For this reason, scientific videos help us to understand and discuss environmental phenomena more efficiently. Moreover, the creation of scientific videos is easier than ever, thanks to mobile devices and open source editing software. Video-clips, webinars or even the interactive part of a PICO are formats of scientific audiovisual media used in the Geosciences. This type of media translates the location-referenced Science Communication such as environmental interpretation into computed-based Science Communication. A new way of Science Communication is video abstracting. A video abstract is a three- to five-minute video statement that provides background information about a research paper. It also gives authors the opportunity to present their research activities to a wider audience. Since this kind of media have become an important part of scientific communication there is a need for reliable infrastructures which are capable of managing the digital assets researchers generate. Using the reference of the usecase of video abstracts this paper gives an overview over the activities by the German National Library of Science and Technology (TIB) regarding publishing and linking audiovisual media in a scientifically sound way. The German National Library of Science and Technology (TIB) in cooperation with the Hasso Plattner Institute (HPI) developed a web-based portal (av.tib.eu) that optimises access to scientific videos in the fields of science and technology. Videos from the realms of science and technology can easily be uploaded onto the TIB|AV Portal. Within a short period of time the videos are assigned a digital object identifier (DOI). This enables them to be referenced, cited, and linked (e.g. to the

  7. The National Climate Assessment as a Resource for Science Communication

    Science.gov (United States)

    Somerville, R. C. J.

    2014-12-01

    The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.

  8. The Presentation of Science in Everyday Life: The Science Show

    Science.gov (United States)

    Watermeyer, Richard

    2013-01-01

    This paper constitutes a case-study of the "science show" model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest…

  9. Science communication: a career where PhDs can make a difference.

    Science.gov (United States)

    Irion, Robert

    2015-02-15

    Among careers for biologists with PhDs, science communication is one of the most diverse and rewarding pathways. Myriad options exist, from traditional journalism to new media, from writing for specialists to working in public outreach. Textbooks, mass-market books, and freelance writing that combines many of these pursuits are all viable choices. Communicating about science allows researchers to step away from the minutiae of a subdiscipline and to once again explore the breadth of science more fully through an ever-evolving array of stories. A doctoral degree can confer distinct advantages in the eyes of prospective editors and employers. Here I describe those advantages, possible career directions, and steps toward making such a transition. © 2015 Irion. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Political Science and Speech Communication--A Team Approach to Teaching Political Communication.

    Science.gov (United States)

    Blatt, Stephen J.; Fogel, Norman

    This paper proposes making speech communication more interdisciplinary and, in particular, combining political science and speech in a team-taught course in election campaigning. The goals, materials, activities, and plan of such a course are discussed. The goals include: (1) gaining new insights into the process of contemporary campaigns and…

  11. Institutional repository in communication: the REPOSCOM project implemented in the digital libraries federation of communication science

    Directory of Open Access Journals (Sweden)

    Sueli Mara Soares Pinto Ferreira

    2007-01-01

    Full Text Available Considering the conceptualization, characterization and context of the institutional repositories (IR this paper discuss the procedures, policies and strategies delineated to the implementation of IR in a research environment. The object of discussion is the project called Reposcom - Institutional Repository of Intercom (Brazilian Society of Interdisciplinary Studies of Communication – which is part of a broader project managed by the Portcom – Information Network in Communication Sciences of Countries of Portuguese Language – and called Digital Libraries Federation in the Communication Sciences. Aiming to share the knowledge and experience acquired with the implementation of the Reposcom, this paper describes its work activities, the decisions made, the customization of the software DSpace (the technological solution and the initial results achieved with the project.

  12. ComSciCon: The Communicating Science Workshop for Graduate Students

    Science.gov (United States)

    Sanders, Nathan; Drout, Maria; Kohler, Susanna; Cook, Ben; ComSciCon Leadership Team

    2018-01-01

    ComSciCon (comscicon.com) is a national workshop series organized by graduate students, for graduate students, focused on leadership and training in science communication. Our goal is to empower young scientists to become leaders in their field, propagating appreciation and understanding of research results to broad and diverse audiences. ComSciCon attendees meet and interact with professional communicators, build lasting networks with graduate students in all fields of science and engineering from around the country, and write and publish original works. ComSciCon consists of both a flagship national conference series run annually for future leaders in science communication, and a series of regional and specialized workshops organized by ComSciCon alumni nationwide. We routinely receive over 1000 applications for 50 spots in our national workshop. Since its founding in 2012, over 300 STEM graduate students have participated in the national workshop, and 23 local spin-off workshops have been organized in 10 different locations throughout the country. This year, ComSciCon is working to grow as a self-sustaining organization by launching as an independent 501(c)(3) non-profit. In this poster we will discuss the ComSciCon program and methods, our results to date, potential future collaborations between ComSciCon and AAS, and how you can become involved.

  13. Communication, The Essence of Science Facilitating Information Exchange Among Librarians, Scientists, Engineers and Students

    CERN Document Server

    Garvey, W D

    1979-01-01

    Communication: The Essence of Science provides information pertinent to the fundamental aspects of scientific communication. This book focuses on those information-exchange activities that take place mainly among scientists actively involved on the research front. Organized into five chapters, this book begins with an overview of the psychologists' description of the communication structure of science. This text then examines the relationship among spanning, connecting, and integrating the various streams of activities involved in the production of information. Other chapters consider some of

  14. Towards Building Science Teachers’ Understandings of Contemporary Science Practices

    Directory of Open Access Journals (Sweden)

    Greg Lancaster

    2017-03-01

    Full Text Available Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of Science (NoS and to contrast their views with those known to be widely held by society (Cobern & Loving, 1998. Teachers are challenged to provide insights into their thinking relating to the NoS. In order to build understandings of contemporary science practice each teacher shadows a research scientist and engages them in conversations intended to explore the scientists’ views of NoS and practice. Findings suggest that teachers were initially uncomfortable with the challenge to express ideas relating to their NoS and were also surprised how diverse the views of NoS can be among teachers, scientists and their peers, and that these views can directly impact ways of communicating contemporary science practice.

  15. Science and Community Engagement: Connecting Science Students with the Community

    Science.gov (United States)

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  16. Shifting our focus: Communicating science to a new, nontechnical culture

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, A.; Hollen, G.; Longshore, A.; Mauzy, A.; Reeves, A.

    1994-07-01

    Congress` decision to close down the $11 billion Superconducting Supercollider is spreading anxiety throughout the scientific community. As funding for the nation`s research laboratories becomes increasingly scarce, technical communicators in these organizations must focus much of their communications efforts on a new culture: Congress and the public. We discuss how to characterize this new audience and the importance of evaluating communication products, and we highlight some strategies for interpreting science to nonscientists more effectively.

  17. Is there a need for a code of ethics in science communication and Communicating Uncertainties on Climate Change?

    Science.gov (United States)

    Cegnar, T.; Benestad, R.; Billard, C.

    2010-09-01

    The EMS Media team recognises that: Scientific knowledge is valuable for society, but it also becomes fragile in a media-dominated society where the distortion of facts clouds the validity of the information. The use of scientific titles in communication normally brings expectations of high standards regarding the information content. Freedom of speech is fragile in the sense that it can be diluted by a high proportion of false information. The value of scientific and scholastic titles is degraded when they are used to give the impression of false validity. Science communication is powerful, and implies a certain responsibility and ethical standard. The scientific community operates with a more or less tacit ethics code in all areas touching the scientists' activities. Even though many scientific questions cannot be completely resolved, there is a set of established and unequivocal scientific practices, methods, and tests, on which our scientific knowledge rests. Scientists are assumed to master the scientific practices, methods, and tests. High standard in science-related communication and media exposure, openness, and honesty will increase the relevance of science, academies, and scientists in the society, in addition to benefiting the society itself. Science communication is important to maintain and enhance the general appreciation of science. The value of the role of science is likely to increase with a reduced distance between scientists and the society and a lower knowledge barrier. An awareness about the ethical aspects of science and science communication may aid scientists in making decisions about how and what to say. Scientists are often not trained in communication or ethics. A set of guide lines may lower the barrier for scientists concerned about tacit codes to come forward and talk to the media. Recommendations: The mass media should seek more insight into scientific knowledge, history, principles, and societies. Journalists and artists should be

  18. Promoting science communication skills in the form of oral presentation through pictorial analogy

    Science.gov (United States)

    Purnomo, A. R.; Fauziah, A. N. M.

    2018-04-01

    Prospective biology teachers are demanded to have skills in communicating science in the form of oral presentation when someday they teach. However, over-expectation towards biological concept comprehension has led them to lower their participation in class. In such a case, rote learning is standing still to support biological content knowledge delivery in university level and thus impoverish the potential of them due to its excessive practice. This study then comes to explore the significant improvement over the use of pictorial analogy to promote university students’ skills in science oral communication towards the nervous system topic. Case study has been a design for the study. It involved two group of different students who participate in natural setting of human anatomy and physiology course. The data was gathered by observation and analyzed in descriptive manner. Quantitative and qualitative data are mixed up altogether to describe the reality behind learning process. The result showed that although both high and low achieving students are successful to communicate science concepts through pictorial analogy they are different in the way they accomodate what they want to explain. High achieving students outperform low achieving students in all aspects of oral presentation. They also employ more complex sources to draw the target concepts. To sum up, pictorial analogy can be used as a tool for students to do science communication skill in the form of oral presentation.

  19. In-Service Science Teachers' Attitude towards Information Communication Technology

    Science.gov (United States)

    Kibirige, I.

    2011-01-01

    The purpose of this study is to determine the attitude of in-service science teachers towards information communication technology (ICT) in education. The study explores the relationship between in-service teachers and four independent variables: their attitudes toward computers; their cultural perception of computers; their perceived computer…

  20. Building a Data Science capability for USGS water research and communication

    Science.gov (United States)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  1. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  2. Reimagining publics and (non)participation: Exploring exclusion from science communication through the experiences of low-income, minority ethnic groups.

    Science.gov (United States)

    Dawson, Emily

    2018-01-01

    This article explores science communication from the perspective of those most at risk of exclusion, drawing on ethnographic fieldwork. I conducted five focus groups and 32 interviews with participants from low-income, minority ethnic backgrounds. Using theories of social reproduction and social justice, I argue that participation in science communication is marked by structural inequalities (particularly ethnicity and class) in two ways. First, participants' involvement in science communication practices was narrow (limited to science media consumption). Second, their experiences of exclusion centred on cultural imperialism (misrepresentation and 'Othering') and powerlessness (being unable to participate or change the terms of their participation). I argue that social reproduction in science communication constructs a narrow public that reflects the shape, values and practices of dominant groups, at the expense of the marginalised. The article contributes to how we might reimagine science communication's publics by taking inclusion/exclusion and the effects of structural inequalities into account.

  3. Selling science to the public

    CERN Document Server

    Catapano, Paola

    1997-01-01

    Science popularization is ÒtheÓ tool to bridge the gap between society at large and the world of science. Compared to formal science communication Ð science taught in schools Ð informal science communication, made by the TV, the press, Òscience centresÓ and visits to scientific laboratories, has an important advantage: it makes the public meet science in a direct, informal way and on its own terms. The public is given an opportunity to develop a personal relationship with science, according to the needs, interests and abilities of the individual. But selling science is a tough job. The object of the sale is not a consumer good, but rather ideas and concepts that are sometimes so complex and distant from common sense that translating them into a comprehensible language and creating interest in the public without betraying the scientific truth is almost impossible. In the research work conducted for the thesis the importance of adopting a marketing approach in science communication is presented. Any scien...

  4. Investigate the relation between the media literacy and information literacy of students of communication science and information science and knowledge

    Directory of Open Access Journals (Sweden)

    Elham Esmaeil Pounaki

    2017-03-01

    Full Text Available The new millennium is called Information Age, in which information and communication technologies have been developed. The transfer from industrial society to information society has changed the form and level of education and information from those of the past times. In the past, literacy meant the ability of reading and writing, but today the meaning of literacy has been changed through the time and such a type of literacy is not enough to meet people’s needs in the industrial society of the 21st century. Today’s life requires media and information literacy especially for the students, whose duty is to research and who have a significant role in the development of their country from any perspective. This research aims to study the relation between the media literacy and information literacy of the students of the fields of communication science and information science and knowledge. This is an applied research in terms of its objective and uses a survey-correlation method. The statistical population of this research consists of the postgraduate students studying in the fields of study of information science and knowledge and communication science at Tehran University and Allameh Tabatabai University. The data required for this research were collected by a researcher-made questionnaire. The reliability of the questionnaire has been evaluated by Cronbach’s Alpha, which was equal to 0.936. The data were analyzed using descriptive and inferential statistic methods. The results showed that the level of media literacy and information literacy of students is desirable. There is a significant relationship between the economic status of students and their media literacy. However, the social status of students was directly related to their "ability to communicate" variable of media literacy. Also the Pearson correlation test showed a significant relationship between the variables of media literacy and information literacy.

  5. Glacier Research Digital Science Communication Evolution 1996-2014

    Science.gov (United States)

    Pelto, M. S.

    2014-12-01

    This talk will focus on the changes in communicating science in the last 20 years from the perspective of the same research project. Essentially the rapid innovation in online communication requires the scientist learning and utilizing a new platform of communication each year. To maintain relevant visibility and ongoing research activities requires finding synergy between the two. I will discuss how digital communication has inspired my research efforts. This talk will also examine overall visitation and media impact metrics over this period. From developing a highly visible glacier research web page in 1996, to writing more than 400 blog posts since 2008, and in 2014 utilizing a videographer and illustration artist in the field, this is the story of one scientist's digital communication-media evolution. The three main observations are that: 1) Overall visitation has not expanded as rapidly in the last decade. 2) Contact and cooperation with colleagues has expanded quite rapidly since 2008. 3) Media impact peaked in 2005, but is nearing that peak again. The key factors in visibility and media impact for a "small market" research institution/project has been providing timely and detailed content to collaborative sites, such as RealClimate, BAMS State of the Climate, Climate Denial Crock of the Week, and Skeptical Science that can then be repurposed by the media. A review of the visitor metrics to the digital glacier sites I have maintained from 1996-2014 indicate visibility of each platform has a similar growth curve, transitioning to a plateau, but overall visitation does not increase in kind with the increase in number of platforms. Media metrics is more event driven and does not follow the visitor metric pattern.

  6. The gap in scientific knowledge and role of science communication in South Korea.

    Science.gov (United States)

    Chang, Jeong-Heon; Kim, Sei-Hill; Kang, Myung-Hyun; Shim, Jae Chul; Ma, Dong Hoon

    2017-01-01

    Using data from a national survey of South Koreans, this study explores the role of science communication in enhancing three different forms of scientific knowledge ( factual, procedural, and subjective). We first assess learning effects, looking at the extent to which citizens learn science from different channels of communication (interpersonal discussions, traditional newspapers, television, online newspapers, and social media). We then look into the knowledge gap hypothesis, investigating how different communication channels can either widen or narrow the gap in knowledge between social classes. Television was found to function as a "knowledge leveler," narrowing the gap between highly and less educated South Koreans. The role of online newspapers in science learning is pronounced in our research. Reading newspapers online indicated a positive relationship to all three measures of knowledge. Contrary to the knowledge-leveling effect of television viewing, reading online newspapers was found to increase, rather than decrease, the gap in knowledge. Implications of our findings are discussed in detail.

  7. New Waves in Marine Science Symposium: Marine Animal Communication.

    Science.gov (United States)

    Allen, Betty, Comp.

    1989-01-01

    Presented are the abstracts from three research projects on marine social systems which were a part of a marine science symposium. Five sets of activities on marine animal communication are included, one each for grades K-2, 3-5, 6-8 and 9-12, and informal education. (CW)

  8. Pulp science: education and communication in the paperback book revolution.

    Science.gov (United States)

    Gormley, Melinda

    2016-03-01

    Paperback books on scientific topics were a hot commodity in the United States from the 1940s to 1960s providing a vehicle for science communication that transformed science education. Well-known scientists authored them, including Rachel Carson, Theodosius Dobzhansky, George Gamow, Fred Hoyle, Julian Huxley, and Margaret Mead. A short history of 'the paperback revolution' that began in the 1930s is provided before concentrating on one publishing company based in New York City, the New American Library of World Literature (NAL), which produced Signet and Mentor Books. The infrastructure that led to the production and consumption of paperback books is described and an underexplored and not-previously identified genre of educational books on scientific topics, what the author refers to as pulp science, is characterized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Persuading Girls to Take Elective Physical Science Courses in High School: Who Are the Credible Communicators?

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1988-01-01

    Identifies communicators whom eighth-grade girls perceive as credible regarding reasons for taking elective physical science courses in high school. Finds that father, woman science teacher, mother, and boy high school student are ranked highly. Attributes associated with the communicators were classified as prestige, trustworthiness, similarity,…

  10. Partnering Against Cancer Today: A Blueprint for Coordinating Efforts Through Communication Science

    Science.gov (United States)

    2013-01-01

    One of the hallmarks of the communication revolution over the past decade has been its support for participation, whether that be in the active engagement of patients searching the Web for answers to vital health questions, or in the collective energies of self-organizing communities through social media. At the same time, some of the major obstacles to achieving a full and equitable reach of evidence-based cancer control knowledge have been traced back to discontinuities in communication either within clinical care or the broader public awareness system. Communication scientists from the National Cancer Institute, the Centers for Disease Control and Prevention, and the American Cancer Society joined forces in 2010 to investigate ways in which communication science can be used to improve coordination and enhance participation in cancer control for the nation. From 2010 to 2013, the three organizations worked together in 1) convening two meetings designed to assess the status of funded research in communication science, 2) completing a systematic review of literature published over the previous 10 years, and 3) authoring a blueprint for coordinated efforts using the implications of communication science. The blueprint consists of three major goals: first, to identify high-yield targets of opportunity using the health impact pyramid articulated by Centers for Disease Control and Prevention Director, Thomas Frieden; second, to leverage opportunities within the new communication environment, including the opportunities catalyzed by national efforts to create an infrastructure for evidence implementation through health information technology; and third, to assist in coordinating efforts across collaborative entities through participative media. PMID:24395998

  11. A need for a code of ethics in science communication?

    Science.gov (United States)

    Benestad, R. E.

    2009-09-01

    The modern western civilization and high standard of living are to a large extent the 'fruits' of scientific endeavor over generations. Some examples include the longer life expectancy due to progress in medical sciences, and changes in infrastructure associated with the utilization of electromagnetism. Modern meteorology is not possible without the state-of-the-art digital computers, satellites, remote sensing, and communications. Science also is of relevance for policy making, e.g. the present hot topic of climate change. Climate scientists have recently become much exposed to media focus and mass communications, a task for which many are not trained. Furthermore, science, communication, and politics have different objectives, and do not necessarily mix. Scientists have an obligation to provide unbiased information, and a code of ethics is needed to give a guidance for acceptable and unacceptable conduct. Some examples of questionable conduct in Norway include using the title 'Ph.D' to imply scientific authority when the person never had obtained such an academic degree, or writing biased and one-sided articles in Norwegian encyclopedia that do not reflect the scientific consensus. It is proposed here that a set of guide lines (for the scientists and journalists) and a code of conduct could provide recommendation for regarding how to act in media - similar to a code of conduct with respect to carrying out research - to which everyone could agree, even when disagreeing on specific scientific questions.

  12. Are Science Comics a Good Medium for Science Communication? The Case for Public Learning of Nanotechnology

    Science.gov (United States)

    Lin, Shu-Fen; Lin, Huann-shyang; Lee, Ling; Yore, Larry D.

    2015-01-01

    Comic books possessing the features of humour, narrative, and visual representation are deemed as a potential medium for science communication; however, empirical studies exploring the effects of comics are scarce. The purposes of this study were to examine and compare the impacts of a comic book and a text booklet on conveying the concepts of…

  13. A Website System for Communicating Psychological Science.

    Science.gov (United States)

    Diener, Ed

    2017-07-01

    The peer review and journal system have shortcomings, and both computers and the Internet have made complementary or alternative systems attractive. In this article, I recommend that we implement a new platform for open communication of psychological science on a dedicated website to complement the current review and journal system, with reader reviews of the articles and with all behavioral scientists being eligible to publish and review articles. The judged merit of articles would be based on the citations and the ratings of the work by the whole scientific community. This online journal will be quicker, more democratic, and more informative than the current system. Although the details of the system should be debated and formulated by a committee of scientists, adding this online journal to the existing publications of a society such as the Association for Psychological Science has few risks and many possible gains. An online journal deserves to be tried and assessed.

  14. Public communication of science in Mexico: past, present and future of a profession.

    Science.gov (United States)

    Sánchez-Mora, Carmen; Reynoso-Haynes, Elaine; Sánchez Mora, Ana María; Tagüeña Parga, Julia

    2015-01-01

    In this article, we offer an analysis of the evolution of the professional field of public communication of science in Mexico, particularly at the National Autonomous University of Mexico, the influences it has received from other countries, the impact it has on Mexican society and some of its relationships with other Latin American countries. We present examples of successful programmes in different mass media and an analysis of the evolution and diversification of science communicators over the last four decades. © The Author(s) 2014.

  15. Citizen voices performing public participation in science and environment communication

    CERN Document Server

    Carvalho, Anabela; Doyle, Julie

    2012-01-01

    How is "participation" ascribed meaning and practised in science and environment communication? And how are citizen voices articulated, invoked, heard, marginalised or silenced in those processes? Citizen Voices takes its starting point in the so-called dialogic or participatory turn in scientific and environmental governance in which practices claiming to be based on principles of participation, dialogue and citizen involvement have proliferated. The book goes beyond the buzzword of "participation" in order to give empirically rich, theoretically informed and critical accounts of how citizen participation is understood and enacted in mass mediation and public engagement practices. A diverse series of studies across Europe and the US are presented, providing readers with empirical insights into the articulation of citizen voices in different national, cultural and institutional contexts. Building bridges across media and communication studies, science and technology studies, environmental studies and urban pl...

  16. Crafting interactivity for stakeholder engagement: transforming assumptions about communication in science and policy.

    Science.gov (United States)

    Aakhus, Mark

    2011-11-01

    The International Radiation Protection Association's guiding principles for stakeholder engagement focus on fostering, facilitating, and enabling interaction among stakeholders that is inclusive and fosters competent decision making. Implicit in these standards is a call to cultivate knowledge and competence in designing communication for stakeholder engagement among radiation protection professionals. Communication as design is an approach to risk communication in science and policy that differs from, yet complements, the more well-known communication practices of informing and persuading. Design focuses on the recurring practical problem faced by professionals in making communication possible among stakeholders where it has otherwise been difficult, impossible, or even unimagined. The knowledge and competence associated with design involves principles for crafting interactivity across a variety of mediated and non-mediated encounters among stakeholders. Risk communication can be improved by cultivating expertise in scalable communication design that embraces the demands of involvement without abandoning the need for competence in science and policy communication.

  17. Grassroots Engagement and the University of Washington: Evaluating Science Communication Training Created by Graduate Students for Graduate Students

    Science.gov (United States)

    Rohde, J. A.; Clarkson, M.; Houghton, J.; Chen, W.

    2016-12-01

    Science graduate students increasingly seek science communication training, yet many do not have easy access to training programs. Students often rely on a "do it yourself" approach to gaining communication skills, and student created science communication programs are increasingly found at universities and institutions across the U.S. In 2010, graduate students at the University of Washington led a grassroots effort to improve their own communication and outreach by creating "The Engage Program." With a focus on storytelling and public speaking, this graduate level course not only trains students in science communication but also gives them real world experience practicing that training at a public speaker series at Town Hall Seattle. The Engage Program was fortunate in that it was able to find institutional champions at University of Washington and secure funding to sustain the program over the long-term. However, many grassroots communication programs find it difficult to gain institutional support if there is a perceived lack of alignment with university priorities or lack of return on investment. In order to justify and incentivize institutional support for instruction in science communication, student leaders within the program initiated, designed and carried out an evaluation of their own program focused on assessing the impact of student communication, evaluating the effectiveness of the program in teaching communication skills, and quantifying the benefits of communication training to both the students and their institution. Project leaders created the opportunity for this evaluation by initiating a crowdfunding campaign, which has helped to further engage public support of science communication and incentivized student participation in the program, and may also inspire future program leaders to pursue similar program optimizations.

  18. Not in front of the children! The controversies of science and science communication for children and youth (Portuguese original version

    Directory of Open Access Journals (Sweden)

    Luisa Massarani

    2008-03-01

    Full Text Available Dialogue in science communication is a necessity - everybody agrees on it - because science and technology issues are involved in so many aspects of the citizens life, and in so many cases can raise suspects, fears, worries or, on the contrary, expectations and hopes. But who are the possible interlocutors for scientists and policy-makers? Everybody, says Luisa Massarani, beginning with children and teenagers. Also in such controversial and sensitive issues like AIDS or GMO.

  19. Impact of Secondary Students' Content Knowledge on Their Communication Skills in Science

    Science.gov (United States)

    Kulgemeyer, Christoph

    2018-01-01

    The "expert blind spot" (EBS) hypothesis implies that even some experts with a high content knowledge might have problems in science communication because they are using the structure of the content rather than their addressee's prerequisites as an orientation. But is that also true for students? Explaining science to peers is a crucial…

  20. Author Impact Metrics in Communication Sciences and Disorder Research

    Science.gov (United States)

    Stuart, Andrew; Faucette, Sarah P.; Thomas, William Joseph

    2017-01-01

    Purpose: The purpose was to examine author-level impact metrics for faculty in the communication sciences and disorder research field across a variety of databases. Method: Author-level impact metrics were collected for faculty from 257 accredited universities in the United States and Canada. Three databases (i.e., Google Scholar, ResearchGate,…

  1. The Swiss biotech referendum: A case study of science communication

    International Nuclear Information System (INIS)

    Cueni, Thomas B.

    1999-01-01

    On June 7 , 1998, the Swiss citizens voted on a constitutional amendment, which could have jeopardised the future of biotechnological research in Switzerland. Scientists and opinion leaders around the world expected the referendum with great anxiety. 'Nature', in an editorial, had firmly stated that the Swiss way showed 'how not to run a country', the 'Economist', a week prior to the referendum, had written that the Swiss might be the only people in the world who decided on their own to forego a world class position in scientific research. In fact, the Swiss did none of that. They rejected the constitutional amendment with an overwhelming majority of 67 per cent of the votes, and what started out as a dramatic threat to scientific research in Switzerland became a platform in favour of modern biotechnology. The presentation addresses some of the key features of the Swiss biotech campaign, analyses the success factors of the campaign, provides an insight in the most in-depth collection of data on public perception of biotechnology in the world, and draws conclusions as to what extent the Swiss experience can be of use in the way to communicate on modem science. The result of the Swiss referendum has convincingly shown that successful communication of modem science is possible if - scientists, authorities, and the industry accept the challenge to cope with the demands of communicating with the public at large, - there is a clear understanding that the public's needs may often be based on psychological rather than on logic scientific reasons, - all participants in the dialogue are willing to forego scientific jargon for clear understandable language, i.e. understand that it is hardly the public's fault if messages do not get across, - everybody accepts that dialogue, information, and education on modem science is a long-haul task. The Swiss biotech referendum was seen as a major threat to Switzerland as a leading country of scientific research. However, something which

  2. In science communication, why does the idea of a public deficit always return?

    Science.gov (United States)

    Meyer, Gitte

    2016-05-01

    For centuries, science communication has been widely perceived, irrespective of context, as a didactic enterprise. That understanding does not accommodate a political category of science communication, featuring citizens on an equal footing - some of them scientists - who share responsibility for public affairs and represent different points of view and ways of reasoning. That may harm, at the same time and for the same reasons, democratic knowledge societies as political entities and science as a body of knowledge and rational methodology. Scientists are discursively excluded from the public. The public is perceived in terms of knowledge deficiency. The latter perception has survived decades of critique, accompanied by attempts, along an everyman-as-scientist logic, to include all citizens in the scientific endeavour. But why should all be scientists? With respect to practical-political issues - as distinct from technical-scientific ones - the acknowledgement of the citizenship of scientists seems more relevant. Only, this would challenge the widespread understanding of science as an all-purpose problem solver and the consequent ideas of politics. © The Author(s) 2016.

  3. A View of Oral Communication Activities in Food Science from the Perspective of a Communication Researcher

    Science.gov (United States)

    Vrchota, Denise Ann

    2015-01-01

    Food science researchers have pronounced the Institute of Food Technologists Success Skills to be the most important competency mastered by graduates entering the work force. Much of the content and outcomes of the Success Skills pertains to oral communication skills of public speaking and interpersonal and group communication. This qualitative…

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. KRISHNA S INDALKAR. Articles written in Journal of Chemical Sciences. Volume 129 Issue 2 February 2017 pp 141-148 Rapid Communication. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated ...

  5. Science, Society and Policy

    Science.gov (United States)

    White, K. S.; Teich, A. H.

    2010-12-01

    Apart from the journals they produce, scientific societies play an important role in communicating scientific findings and norms to the broader society. The American Association for the Advancement of Science (AAAS) includes among its goals to promote and defend the integrity of science and its use; provide a voice for science on societal issues; promote the responsible use of science in public policy; and increase public engagement with science and technology. AAAS websites and programs, including Communicating Science (www.aaas.org/communicatingscience), Working with Congress (http://www.aaas.org/spp/cstc/wwc/book.htm) and ScienceCareers.org (http://sciencecareers.sciencemag.org), provide tools for scientists to become more directly engaged in effectively communicating their findings and involved in the policy process. Education programs work to build the next generation of scientists and a science-literate public. To bridge the current communication gap between scientists, the public and policymakers, AAAS, like other scientific societies, maintains policy and outreach programs with limited budgets and staff. AAAS works to engage policymakers and provide scientific underpinning to key issues through congressional briefings, meetings, policy briefs, and media outreach. AAAS responds to challenges to accepted scientific findings and processes through op-eds, letters to government officials, resolutions, and Board statements. Some of these initiatives occur on a local level in partnership with local civic leaders, whose endorsement makes them more powerful. On a national scale, they assure that the voice of science is included in the debate. The changing media landscape presents opportunities and challenges for future AAAS endeavors.

  6. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Science.gov (United States)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  7. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  8. Nine meta-functions for science museums and science centres

    DEFF Research Database (Denmark)

    Achiam, Marianne; Sølberg, Jan

    2017-01-01

    Science centres and science museums face challenges such as increased accountability, increased demands for accessibility, and growing competition from leisure experiences. On their own, the traditional museum practices of preservation, communication, and research are insufficient to address...... Ecsite conference, to map out how these institutions address modern-day challenges. This analysis generates a new framework of nine meta-functions for science centres and science museums that can guide and help qualify discussions about their present and future activities. We discuss the new meta...

  9. From Mars to Media: The Phoenix Mars Mission and the Challenges of Real-Time, Multimedia Science Communication and Public Education

    Science.gov (United States)

    Buxner, S.; Bitter, C.

    2008-12-01

    Although the Mars Exploration Rovers, Mars Reconnaissance Orbiter, and Mars Odyssey Missions set the standard for science communication and public education about Mars, the Phoenix Mission was presented with robust new communication challenges and opportunities. The new frontier includes Web 2.0, international forums, internal and external blogs, social networking sites, as well as the traditional media and education outlets for communicating science and information. We will explore the highlights and difficulties of managing the 'message from Mars' in our current multimedia saturated world while balancing authentic science discoveries, public expectations, and communication demands. Our goal is to create a more science savvy public and a more communication oriented science community for the future. The key issues are helping the public and our scientists distinguish between information and knowledge and managing the content that connects the two.

  10. Science and Art

    Science.gov (United States)

    Moore, John W.

    2001-10-01

    Science and art diverge in that art usually represents a single individual's conception and viewpoint, even when many others are involved in bringing a work to fruition, whereas science progresses by extending consensus among those knowledgeable in a field. Art usually communicates at an emotional level. It values individual expression and impact on the emotions at the expense of objectivity. Science, especially in its archival record, values objectivity and reproducibility and does not express the imagination and joy of discovery inherent in its practice. This is too bad, because it does not give a realistic picture of how science is really done and because individuality and emotion are inherently more interesting than consensus. Leaving out the personal, emotional side can make science seem boring and pedestrian, when exactly the opposite is true. In teaching science we need to remember that communication always benefits from imagination and esthetic sense. If we present science artistically and imaginatively, as well as objectively and precisely, students will develop a more complete understanding of what science and scientists are about--one that is likely to capture their imaginations, emotions, and best efforts.

  11. Brave New Media World: Science Communication Voyages through the Global Seas

    Science.gov (United States)

    Clark, C. L.; Reisewitz, A.

    2010-12-01

    By leveraging online tools, such as blogs, Twitter, Facebook, Google Earth, flickr, web-based discussion boards, and a bi-monthly electronic magazine for the non-scientist, Scripps Institution of Oceanography is taking science communications out of the static webpage to create interactive journeys that spark social dialogue and helped raise awareness of science-based research on global marine environmental issues. Several new initiatives are being chronicled through popular blogs and expedition web sites as researchers share interesting scientific facts and unusual findings in near real-time.

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Science Education Programmes · Women in Science · Committee on Scientific ... Critical Reviews of important fields and Perspective articles in emerging areas will ... work, mandatory for Rapid Communication, and suggest 2 to 3 names of Referees. ... The Jurisdiction for all disputes concerning submitted articles, published ...

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Wenzhong Cheng. Articles written in Journal of Chemical Sciences. Volume 126 Issue 6 November 2014 pp 1623-1627 Rapid Communications. Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization · Tao Wan Min Xu Liyi Chen ...

  14. The biography of scientists as a means of communicating science: analogies concerning a hermeneutic or empirical problem

    Directory of Open Access Journals (Sweden)

    Maria Francisca Carneiro

    2007-10-01

    Full Text Available Sometimes scientists live real dramas or undergo social and psychological conflicts which have a positive or negative influence on the development and recognition of their research, discoveries and inventions in society, including the way they are recorded in history. This being so, the question is: to what extent can science be communicated to the public at large by the use of scientists' biographies as a motivational strategy? The controversy arises from the fact that usual (classical science has traditionally argued for the separation (or de-linking of the research (the object from the researcher (the subject.Thus, if the above-mentioned motivational strategy is used in scientific communication, it could break a dominant methodological trend and consequently lead to a questioning of the myth of axiological neutrality in science. The communication of science by means of scientists' biographies could be useful for reaching a specific public, more directed towards emotional aspects, thereby awakening its interest in science, even amid cultural differences and in environments where interest in science and its utility is lacking. It could also reveal human aspects of the everyday life of scientists, bringing them closer to the public at large, which would contribute to the dissemination of science and knowledge.

  15. Fighting A Strong Headwind: Challenges in Communicating The Science of Climate Change

    Science.gov (United States)

    Mann, M. E.

    2008-12-01

    Communicating science to the public is an intrinsic challenge to begin with. An effective communicator must find ways to translate often technical and complex scientific findings for consumption by an audience unfamiliar with the basic tools and lexicon that scientists themselves take for granted. The challenge is made all the more difficult still when the science has implications for public policy, and the scientists face attack by institutions who judge themselves to be at threat by the implications of scientific findings. Such areas of science include (but certainly are not limited to) evolution, stem cell research, environmental health, and the subject of this talk--climate change. In each of these areas, a highly organized, well funded effort has been mounted to attack the science and the scientists themselves. These attacks are rarely fought in legitimate scientific circles such as the peer-reviewed scientific literature or other scholarly venues, but rather through rhetorically-aimed efforts delivered by media outlets aligned with the views of the attackers, and by politicians and groups closely aligned with special interests. I will discuss various approaches to combating such attacks, drawing upon my own experiences in the public arena with regard to the scientific discourse on climate change.

  16. Communicating Science: A Necessary Journey that is Neither Straightforward or Unobstructed

    Science.gov (United States)

    Socci, A.

    2008-12-01

    language to conjure up a desired mental 'frame' or perception (i.e., death tax vs. estate tax; enhanced interrogation techniques vs. torture). We have also come to learn that people do not necessarily make decisions borne out of economic self-interest. Consequently, communication would appear to be a more involved and less-than-straightforward process than perhaps many had assumed, particularly those vested in the culture of science. The circumstances described above suggest the following ways of effectively protecting and communicating science in the media and the general public: 1. Broader understanding and adoption of journalistic objectivity as a process for testing and validating information/facts. 2. Journalism's survival requires a new model based on service, not on achieving ever-higher profits secured by emptying newsrooms and with it, the capacity to gather and test information. 3. Encourage specialized training in addition to journalism. 4. Consider alternative career pathways in communication. 5. Unlike news, informing demands knowledge and scholarship which are inconsistent with tight news deadlines and 24/7 news cycles. 6. Institutions of science have a critical but largely unfulfilled role to play in fostering communication as a necessary element of an advanced degree in science. 7. Communication has long and deep research roots especially in the fields of psychology, linguistics, sociology and journalism; any training in communication should include cross-offerings among these disciplines. 8. It is often said that one gets the kind of [governance, media, communication, politics etc..] that one deserve. If so, then perhaps it is time to deserve better.

  17. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  18. Simulating Earthquakes for Science and Society: Earthquake Visualizations Ideal for use in Science Communication and Education

    Science.gov (United States)

    de Groot, R.

    2008-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently gained visibility via television news coverage in Southern California. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin & Brick, 2002). For example, The Great Southern California ShakeOut was based on a potential magnitude 7.8 earthquake on the southern San Andreas fault. The visualization created for the ShakeOut was a key scientific and communication tool for the earthquake drill. This presentation will also feature SCEC Virtual Display of Objects visualization software developed by SCEC Undergraduate Studies in Earthquake Information Technology interns. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  19. Style and Ethics of Communication in Science and Engineering

    CERN Document Server

    Humphrey, Jay D

    2008-01-01

    Scientists and engineers seek to discover and disseminate knowledge so that it can be used to improve the human condition. Style and Ethics of Communication in Science and Engineering serves as a valuable aid in this pursuit-it can be used as a textbook for undergraduate or graduate courses on technical communication and ethics, a reference book for senior design courses, or a handbook for young investigators and beginning faculty members. In addition to presenting methods for writing clearly and concisely and improving oral presentations, this compact book provides practical guidelines for pr

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Min Xu. Articles written in Journal of Chemical Sciences. Volume 126 Issue 6 November 2014 pp 1623-1627 Rapid Communications. Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization · Tao Wan Min Xu Liyi Chen Daqing Wu ...

  1. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  2. Science Writing and Rhetorical Training: A New Model for Developing Graduate Science Writers

    Science.gov (United States)

    Karraker, N. E.; Lofgren, I.; Druschke, C. G.; McWilliams, S. R.; Morton-Aiken, J.; Reynolds, N.

    2016-12-01

    Graduate programs in the sciences generally offer minimal support for writing and communication, yet there is an increasing need for scientists to engage with the public and policymakers on technological, environmental, and health issues. The traditional focus on gaining particular discipline-related technical skills, coupled with the relegation of writing largely to the end of a student's academic tenure, falls short in equipping them to tackle these challenges. To address this problem, we launched a cross-disciplinary, National Science Foundation-funded training program in rhetoric and writing for science graduate students and faculty at the University of Rhode Island. This innovative program bases curricular and pedagogical support on three central practices, habitual writing, multiple genres, and frequent review, to offer a flexible model of writing training for science graduate students and pedagogical training for faculty that could be adopted in other institutional contexts. Key to the program, called SciWrite@URI, is a unique emphasis on rhetoric, which, we argue, is an essential—but currently lacking—component of science communication education. This new model has the potential to transform graduate education in the sciences by producing graduates who are as adept at the fundamentals of their science as they are at communicating that science to diverse audiences.

  3. Handbook of public communication of science and technology

    CERN Document Server

    Trench, Brian

    2008-01-01

    Comprehensive yet accessible, this key handbook provides an up-to-date overview of the fast growing and increasingly important area of 'public communication of science and technology', from both research and practical perspectives. As well as introducing the main issues, arenas and professional perspectives involved, it presents the findings of earlier research and the conclusions previously drawn. Unlike most existing books on this topic, this unique volume couples an overview of the practical problems faced by practitioners with a thorough review of relevant literature and research. The practical handbook format ensures it is a student-friendly resource, but its breadth of scope and impressive contributors means that it is also ideal for practitioners and professionals working in the field. Combining the contributions of different disciplines (media and journalism studies, sociology and history of science), the perspectives of different geographical and cultural contexts, and by selecting key contributions ...

  4. Report of the Defense Science Board Task Force on Strategic Communication

    National Research Council Canada - National Science Library

    2008-01-01

    The 2007 Defense Science Board (DSB) Task Force on Strategic Communication has written this report within the context of a larger study, the DSB 2007 Summer Study on Challenges to Military Operations in Support of National Interests...

  5. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  6. On the Desirability of an Interpretive Science of Organizational Communication.

    Science.gov (United States)

    Tompkins, Phillip K.

    Concerned with imprecision in researchers' use of the word, "interpretive," this report draws from the work of Max Weber to describe the characteristics of an interpretive science of organizational communication and then briefly lists some advantages of following the interpretive approach. First examining the role of subjective meaning…

  7. Facilitating awareness of philosophy of science, ethics and communication through manual skills training in undergraduate education.

    Science.gov (United States)

    Kordahl, Hilde Lund; Fougner, Marit

    2017-03-01

    Professional health science education includes a common theoretical basis concerning the theory of science, ethics and communication. Former evaluations by first-year students of the bachelor physiotherapy program at Oslo and Akershus University College of Applied Sciences (HiOA) show that they find it hard to understand the relation between these particular topics and future professional practice. This challenge is the starting point for a pedagogical development project that aims to develop learning contexts that highlight the relevance of these theoretical concepts. The aim of the study is to explore and present findings on the value of using Sykegrep manual skills classes as an arena in which students can be encouraged to think about, reflect on and appreciate the role and value of the philosophical perspectives that inform their practice and contributes to practise knowledge. A qualitative study with data collection through focus groups was performed and analyzed using thematic content analysis. Eighteen first-year undergraduate students, who had completed the manual skills course, participated in the study. Analysis of the data yielded three categories of findings that can be associated with aspects of philosophy of science, ethics and communication. These are as follows: 1) preconceived understanding of physiotherapy; 2) body knowledge perspectives; and 3) relational aspects of interactions. Undergraduate students' understanding and experience of philosophy of science, ethics and communication may be facilitated by peer collaboration, reflection on intimacy and touch and the ethical aspects of interaction during manual skills training. Practical classes in Sykegrep provide a basis for students' discussions about the body as well as their experiences with the body in the collaborative learning context. The students' reflections on their expectations of manual skills in physiotherapy and experiences of touch and being touched can facilitate an awareness of

  8. Integrating design science theory and methods to improve the development and evaluation of health communication programs.

    Science.gov (United States)

    Neuhauser, Linda; Kreps, Gary L

    2014-12-01

    Traditional communication theory and research methods provide valuable guidance about designing and evaluating health communication programs. However, efforts to use health communication programs to educate, motivate, and support people to adopt healthy behaviors often fail to meet the desired goals. One reason for this failure is that health promotion issues are complex, changeable, and highly related to the specific needs and contexts of the intended audiences. It is a daunting challenge to effectively influence health behaviors, particularly culturally learned and reinforced behaviors concerning lifestyle factors related to diet, exercise, and substance (such as alcohol and tobacco) use. Too often, program development and evaluation are not adequately linked to provide rapid feedback to health communication program developers so that important revisions can be made to design the most relevant and personally motivating health communication programs for specific audiences. Design science theory and methods commonly used in engineering, computer science, and other fields can address such program and evaluation weaknesses. Design science researchers study human-created programs using tightly connected build-and-evaluate loops in which they use intensive participatory methods to understand problems and develop solutions concurrently and throughout the duration of the program. Such thinking and strategies are especially relevant to address complex health communication issues. In this article, the authors explore the history, scientific foundation, methods, and applications of design science and its potential to enhance health communication programs and their evaluation.

  9. Engaging science communication that are time-saving for scientists using new online technology

    Science.gov (United States)

    Lilja Bye, Bente

    2016-04-01

    Science communication is a time consuming and challenging task. Communicating scientific results comes on top of doing science itself and the administrative work the modern day scientists have to cope with. The competition on peoples time and attention is also fierce. In order to get peoples attention and interest, it is today often required that there is a two-way communication. The audience needs and wants to be engaged, even in real-time. The skills and times required to do that is normally not included in the university curricula. In this presentation we will look at new technologies that can help scientists overcome some of those skills and time challenges. The new online technologies that has been tested and developed in other societal areas, can be of great use for research and the important science communication. We will illustrate this through an example from biodiversity, wetlands and these fields use of Earth observations. Both the scientists themselves representing different fields of research and the general public are being engaged effectively and efficiently through specifically designed online events/seminars/workshops. The scientists are able to learn from each other while also engaging in live dialogues with the audience. A cooperation between the Group of Earth Observations and the Ramsar Convention of Wetlands will be used to illustrate the method. Within the global Earth observation community, where this example comes from, there is a great potential for efficient capacity building, targeting both experts, decision-makers and the general public. The method presented is demonstrating one way of tapping into that potential using new online technologies and it can easily be transferred to other fields of geoscience and science in general.

  10. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    Science.gov (United States)

    Adams, M.; Gallagher, D. L.; Whitt, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    For the past four years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of science communication through the web resources on the Internet. The program includes extended stories about NAS.4 science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. We give here, examples of events, problems, and lessons learned from these activities.

  11. Sociological and communication-theoretical perspectives on the commercialization of the sciences

    NARCIS (Netherlands)

    Leydesdorff, L.

    2013-01-01

    Both self-organization and organization are important for the further development of the sciences: the two dynamics condition and enable each other. Commercial and public considerations can interact and "interpenetrate" in historical organization; different codes of communication are then

  12. Ethical Implications of Seismic Risk Communication in Istanbul - Insights from a Transdisciplinary, Film-based Science Communication Workshop

    Science.gov (United States)

    Ickert, Johanna; Stewart, Iain S.

    2016-04-01

    For more than a decade, social science studies indicate that there is little or no correlation between the provision of scientific information about geohazards and risks and the adaptive changes in individual or community behaviour that would reduce risk. Bridging that gap to effectively convey hazard science 'the last mile' to those communities at risk raises a number of ethical issues about the role and responsibilities of geoscientists as communicators. Those issues emerge from a methodological shift away from the dominant interpretation of seismic risk communication as a transfer of scientific facts to "the public", towards more inclusive transdisciplinary communication strategies that incorporate peer-role models, adopt social network-based strategies and directly engage with communities in motivating preparedness actions. With this methodological shift comes ethical dilemmas. What are the target-groups that should be prioritised? What are the professional expectations and levels of personal engagement required of geo-communicators? How able and willing are geoscientists to include other forms of knowledge (e.g. from local communities or other disciplines)? What media formats can reconcile argumentative, informational "matters of fact" with sociocultural and psychological "matters of concern"? How should scientists react to political controversies related to risk mitigation and its communication? In the context of these ethical concerns, many geoscientist struggle to switch from conventional communication modes in which they are the technical 'experts' to more community-centered, participatory modes of public engagement. We examine this research question through a case study on seismic risk communication challenges in Istanbul, a megacity with one of the highest seismic vulnerabilities in the world. Currently, there are few formal mechanisms to facilitate interchange between academic geoscientists and the general public in Istanbul. In order to reduce the city

  13. Communicating Climate Science to Kids and Adults Through Citizen Science, Hands-On Demonstrations, and a Personal Approach

    Science.gov (United States)

    Cherry, L.; Braasch, G.

    2008-12-01

    There is a demonstrated need to increase the amount of formal and non-formal science education and to raise the level of climate literacy for children and adults. Scientists and technical leaders are more and more being called on to speak in non-academic settings ranging from grade schools to assemblies and seminars for the general public. This abstract describes some effective ways to teach and talk about climate change science in a way that engenders hope and empowerment while explaining scientific facts and research methods to non-scientists. Citizen participation in Science People's interest and learning increases when offered chances to do what scientists do. Relating science to their daily lives and showing the adventure of science can greatly increase communication. Citizen participation in science works because data collection stimulates experiential and cognitive ways of learning. Learn what programs for citizen science are available in your area. For instance, GLOBE and Budburst tie into the research of Smithsonian scientists who determined that the cherry blossoms and 40 other species of plants were blooming earlier due to climate warming. Hands-on Outdoor Activities Information enters the human brain through many different neural pathways and the more avenues that information comes in on, the more likely people are to retain that knowledge for their lifetimes. For instance, kids knowledge of how ice cores tell us about the earth's ancient history will be reinforced through making ice cores in the classroom. Gary Braasch's photographs from the children's book How We Know What We Know About Our Changing Climate: Scientists and Kids Explore Global Warming and from his adult book Earth Under Fire: How Global Warming is Changing the World will illustrate the presentation. . Making the Message Personal to the Audience. Reaching people through things they care about, their family lives, work or school and telling personal stories helps reach people. The videos

  14. Science communication for uncertian science and innovation

    NARCIS (Netherlands)

    van der Sanden, M.C.A.; Flipse, S.M.

    2016-01-01

    Differences in viewpoints between science and society, like in for example the HPV-vaccination debate, should be considered from a socio-technical system perspective, and not solely from a boundary perspective between the lay public, medical doctors and scientists. Recent developments in the

  15. Science@NASA: Direct to People!

    Science.gov (United States)

    Koczor, Ronald J.; Adams, Mitzi; Gallagher, Dennis; Whitaker, Ann (Technical Monitor)

    2002-01-01

    Science@NASA is a science communication effort sponsored by NASA's Marshall Space Flight Center. It is the result of a four year research project between Marshall, the University of Florida College of Journalism and Communications and the internet communications company, Bishop Web Works. The goals of Science@NASA are to inform, inspire, and involve people in the excitement of NASA science by bringing that science directly to them. We stress not only the reporting of the facts of a particular topic, but also the context and importance of the research. Science@NASA involves several levels of activity from academic communications research to production of content for 6 websites, in an integrated process involving all phases of production. A Science Communications Roundtable Process is in place that includes scientists, managers, writers, editors, and Web technical experts. The close connection between the scientists and the writers/editors assures a high level of scientific accuracy in the finished products. The websites each have unique characters and are aimed at different audience segments: 1. http://science.nasa.gov. (SNG) Carries stories featuring various aspects of NASA science activity. The site carries 2 or 3 new stories each week in written and audio formats for science-attentive adults. 2. http://liftoff.msfc.nasa.gov. Features stories from SNG that are recast for a high school level audience. J-Track and J-Pass applets for tracking satellites are our most popular product. 3. http://kids. msfc.nasa.gov. This is the Nursemaids site and is aimed at a middle school audience. The NASAKids Club is a new feature at the site. 4. http://www.thursdaysclassroom.com . This site features lesson plans and classroom activities for educators centered around one of the science stories carried on SNG. 5. http://www.spaceweather.com. This site gives the status of solar activity and its interactions with the Earth's ionosphere and magnetosphere.

  16. Adoption of ICT in Science Education: A Case Study of Communication Channels in a Teachers' Professional Development Project

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo

    2009-01-01

    This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…

  17. Computer Support for Knowledge Communication in Science Exhibitions: Novel Perspectives from Research on Collaborative Learning

    Science.gov (United States)

    Knipfer, Kristin; Mayr, Eva; Zahn, Carmen; Schwan, Stephan; Hesse, Friedrich W.

    2009-01-01

    In this article, the potentials of advanced technologies for learning in science exhibitions are outlined. For this purpose, we conceptualize science exhibitions as "dynamic information space for knowledge building" which includes three pathways of knowledge communication. This article centers on the second pathway, that is, knowledge…

  18. Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences

    Science.gov (United States)

    Leydesdorff, Loet

    2013-01-01

    Both self-organization and organization are important for the further development of the sciences: the two dynamics condition and enable each other. Commercial and public considerations can interact and "interpenetrate" in historical organization; different codes of communication are then "recombined". However,…

  19. Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences

    Science.gov (United States)

    Leydesdorff, Loet

    2013-10-01

    Both self-organization and organization are important for the further development of the sciences: the two dynamics condition and enable each other. Commercial and public considerations can interact and "interpenetrate" in historical organization; different codes of communication are then "recombined". However, self-organization in the symbolically generalized codes of communication can be expected to operate at the global level. The Triple Helix model allows for both a neo-institutional appreciation in terms of historical networks of university-industry-government relations and a neo-evolutionary interpretation in terms of three functions: (1) novelty production, (2) wealth generation, and (3) political control. Using this model, one can appreciate both subdynamics. The mutual information in three dimensions enables us to measure the trade-off between organization and self-organization as a possible synergy. The question of optimization between commercial and public interests in the different sciences can thus be made empirical.

  20. The Interpretation Of Speech Code In A Communication Ethnographic Context For Outsider Students Of Graduate Communication Science Universitas Sumatera Utara In Medan

    Directory of Open Access Journals (Sweden)

    Fauzi Eka Putra

    2017-06-01

    Full Text Available Interpreting the typical Medan speech code is something unique and distinctive which could create confusion for the outsider students because of the speech code similarities and differences in Medan. Therefore the graduate students of communication science Universitas Sumatera Utara whose originated from outside of North Sumatera needs to learn comprehend and aware in order to perform effective communication. The purpose of this research is to discover how the interpretation of speech code for the graduate students of communication science Universitas Sumatera Utara whose originated from outside of North Sumatera in adapting themselves in Medan. This research uses qualitative method with the study of ethnography and acculturation communication. The subject of this research is the graduate students of communication science Universitas Sumatera Utara whose originated from outside of North Sumatera in adapting themselves in Medan. Data were collected through interviews observation and documentation. The conclusion of this research shows that speech code interpretation by students from outside of North Sumatera in adapting themselves in Medan leads to an acculturation process of assimilation and integration.

  1. Science and nuclear technology communication in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2012-01-01

    This paper describes the communication activities conducted nuclear science and technology in 2012 in the scientific, educational and tourist areas of Cordoba. The first is the Promotion of the realization of scientific research school works to present in science and technology fairs. The public exhibitions fairs consist of projects conducted by students from all levels of the education system. To do this, students have the guidance of Advisory Teachers, researchers and technologists of the local scientific community, which involves training them for a period of approximately six months. During this year the courses were conducted in 37 cities in the interior province, which are the sites of Regional Headquarters, which included the promotion of the realization of school scientific research on the peaceful applications of nuclear technology and / or national nuclear activities. During the meetings, made presentations basing pedagogical and didactic aspects to coordination between teaching of conceptual content and activities practical introduction to nuclear scientific methodology. As a result of this initiative, between the months of June and September was reached more than 3,000 teachers, using the infrastructure of the Ministry of Science and Technology and Internet. As a result, a dozen schools have begun to seek assistance to develop projects related to nuclear power. Other activities under the name of Scientific School Research Incursion through Experiences with Natural Radiation, consisted of the design and realization of simple laboratory experiences in laboratory's schools. The objective was to strengthen the curriculum and promote critical thinking about the risks and benefits of nuclear technologies in relation to exposure to ionizing radiation involving them. As a result it has been observed that these activities contribute to a progressive scientific and technological literacy of students, who build original knowledge for themselves and develop

  2. Getting Beyond First Base: Science-Society Communication for Climate Adaptation

    Science.gov (United States)

    Garfin, G. M.

    2010-12-01

    At a 2009 international workshop on transboundary climate and water issues, a former World Bank official and current academic mentioned that “crisis, risk and uncertainty” are the three words that motivate decision-makers to act. However, decade-scale climate variability and trend-driven climate changes are phenomena characterized by creeping onset, diffuse and non-synchronous impacts, and complexity. Thus, there is a balancing act to addressing the complexity of uncertainties, while adequately assessing risk, and keeping the potential for crisis in focus without creating a “Chicken Little” situation. This presentation examines translational science approaches to three stages in the continuum from initial communication to societal action: raising awareness, building capacity, and making progress toward action. We examine the roles of scientists, knowledge brokers, decision makers, and the general public in the context of climate services. Although there is no “one size fits all” science communication method, we argue that best practices require that scientists pay particular attention to cultural and political sensitivities associated with decision contexts. We give examples from seasonal forecast communication, drought planning, climate literacy and education needs assessments, and the nexus of climate adaptation planning and uncertainty. In general, we find that constructive approaches make use of alliances with early adopters and opinion leaders, and make strong links between (a) predictions, impacts and solutions and (b) global to regional to local spatial scales. Often building partnerships for moving science information from observations to knowledge to decisions requires discussion support, a concept borrowed from Australian colleagues, which describes a multi-faceted and undervalued aspect of moving forward in adaptation planning: clarifying plausible cascades of interactions leading to potential impacts. Discussion support also fosters

  3. The Dissemination of Science and Science Journalism in Brazilian Universities: Analyzing Strategies that Facilitate Access to Science & Technology

    Directory of Open Access Journals (Sweden)

    Giuliana Batista Rodrigues de Queiroz

    2016-12-01

    Full Text Available This article is a mapping of Brazilian universities that maintain a structured work for Science Journalism and / or the dissemination of science. It analyses the strategies used by the top 50 Brazilian universities for including dissemination of science in their communication activities. In order to do this each institution’s website was examined for the purpose of collecting a large sample size of universities that organize and prioritize the dissemination of science and science journalism, and make their studies and projects available to the public. The dissemination of science is a priority for only 15 universities; ones that have structured science journalism programs. 11 of these universities are among the top 25 in the country which indicates that there is a direct relationship between academic quality and dissemination of science. Thus, this study lends to a deeper understanding of the field of science journalism.

  4. An International Short Course for Training Professionals as Effective Science Communicators

    Science.gov (United States)

    Sarathchandra, Dilshani; Maredia, Karim M.

    2014-01-01

    Scholars have recognized a need for educational programs that prepare scientists, Extension practitioners, and other stakeholders to communicate science effectively. Such programs have the potential to increase public awareness and aid policy development. Having recognized this need, faculty at Michigan State University (MSU) developed an…

  5. The State of Science Communication Programs at Universities Around the World

    NARCIS (Netherlands)

    Mulder, Henk A. J.; Longnecker, Nancy; Davis, Lloyd S.

    2008-01-01

    Building on discussions at two workshops held at the recent 10th International Conference on the Public Communication of Science and Technology during June 2008 in Malmo, Sweden, this article proposes specific steps toward achieving a common understanding of the essential elements for academic

  6. Measuring mumbo jumbo: A preliminary quantification of the use of jargon in science communication.

    Science.gov (United States)

    Sharon, Aviv J; Baram-Tsabari, Ayelet

    2014-07-01

    Leaders of the scientific community encourage scientists to learn effective science communication, including honing the skill to discuss science with little professional jargon. However, avoiding jargon is not trivial for scientists for several reasons, and this demands special attention in teaching and evaluation. Despite this, no standard measurement for the use of scientific jargon in speech has been developed to date. Here a standard yardstick for the use of scientific jargon in spoken texts, using a computational linguistics approach, is proposed. Analyzed transcripts included academic speech, scientific TEDTalks, and communication about the discovery of a Higgs-like boson at CERN. Findings suggest that scientists use less jargon in communication with a general audience than in communication with peers, but not always less obscure jargon. These findings may lay the groundwork for evaluating the use of jargon.

  7. Informal science participation positively affects the communication and pedagogical skills of university physics students

    Science.gov (United States)

    Hinko, Kathleen; Finkelstein, Noah

    2013-04-01

    Many undergraduate and graduate physics students choose to participate in an informal science program at the University of Colorado Boulder (Partnerships for Informal Science Education in the Community (PISEC)). They coach elementary and middle school students in inquiry-based physics activities during weekly, afterschool sessions. Observations from the afterschool sessions, field notes from the students, and pre/post surveys are collected. University students are also pre/post- videotaped explaining a textbook passage on a physics concept to an imagined audience for the Communications in Everyday Language assessment (CELA). We present findings from these data that indicate informal experiences improve the communication and pedagogical skills of the university student as well as positively influence their self-efficacy as scientific communicators and teachers.

  8. FameLab provides competition and coaching on science communication

    Science.gov (United States)

    Scalice, Daniella; Weiss, Peter

    2012-10-01

    In today's media-intensive environment, the ability to convey science can reshape the face of scientific exploration and discovery. Many early-career scientists could benefit from training on how to communicate their work effectively to all stakeholders along their career paths, from deans and political representatives to neighbors and students, and perhaps even to public audiences through the lens of a camera or the voice of a blog.

  9. Communicating polar science to the general public: sharing the social media experience of @OceanSeaIceNPI

    Science.gov (United States)

    Rösel, Anja; Pavlov, Alexey K.; Granskog, Mats A.; Gerland, Sebastian; Meyer, Amelie; Hudson, Stephen R.; King, Jennifer; Itkin, Polona; Cohen, Lana; Dodd, Paul; de Steur, Laura

    2016-04-01

    The findings of climate science need to be communicated to the general public. Researchers are encouraged to do so by journalists, policy-makers and funding agencies and many of us want to become better science communicators. But how can we do this at the lab or small research group level without specifically allocated resources in terms of funds and communication officers? And how do we sustain communication on a regular basis and not just during the limited lifetime of a specific project? One of the solutions is to use the emerging platform of social media, which has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. The group of oceanographers, sea ice and atmospheric scientists at the Norwegian Polar Institute (@OceanSeaIceNPI( will share our experiences developing and maintaining researcher-driven outreach for over a year through Instagram, Twitter and Facebook. We will present our solutions to some of the practical considerations such as identifying key target groups, defining the framework for sharing responsibilities and interactions within the research group, and choosing an up-to-date and appropriate social medium. By sharing this information, we aim to inspire and assist other research groups and labs in conducting their own effective science communication.

  10. Persuading girls to take elective physical science courses in high school: Who are the credible communicators?

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    Eighth-grade girls (N=257) randomly selected from nine different public junior high schools in central Texas were questioned in order to identify the communicators whom they perceive as highly credible regarding reasons for taking elective physical science courses in high school and the attributes associated with these communicators. Four persons were each identified by better than 10 percent of the sample as the best person to try to convince junior high school girls to take elective physical science courses in high school. In order of perceived credibility, these persons are father, woman science teacher, mother, and boy high school student. Slight variations in the order of perceived credibility were found when the responses from girls of the different ethnic groups represented in the sample (Caucasian, Hispanic, Black, and Asian) were examined separately. Attributes listed by the respondents for father, woman science teacher, mother, and boy high school student were examined and classified into the categories of prestige, trustworthiness, similarity, attractiveness, and power. Prestige and trustworthiness are the attributes associates most frequently with communicators identified as highly credible. Implications of the present study and suggestions for further research are discussed.

  11. Adoption of Information and Communication Technologies (ICTs) by Agricultural Science and Extension Teachers in Abuja, Nigeria

    Science.gov (United States)

    Alabi, Olugbenga Omotayo

    2016-01-01

    This study examined adoption of Information and Communication Technologies (ICTs) by agricultural science and extension teachers in Abuja, Nigeria. Specifically, the objectives are to: identify the background and demographic characteristics of agricultural science and extension teachers in the study area; examine the factors influencing adoption…

  12. From Scientists to the Public: Communicating Science through Blogs on oceanbites.org and envirobites.org

    Science.gov (United States)

    Lemon, M. G.; McDonough, C. A.; Schifman, L. A.

    2017-12-01

    Science communication is increasingly important. Our world is facing difficult environmental challenges that can only be addressed if an understanding of the basic scientific principles exists. With this in mind, we founded oceanbites.org in 2013, and recently (August 2017) also started envirobites.org. For both blogs, graduate students, postdoctoral researchers, and science professionals come together to write and edit easy-to-read, compelling summaries of recent, cutting-edge research papers in environmental science or oceanography and make them accessible to non-experts. We want to share our passion for research with all non-scientists who are interested to learn more about the environment and our oceans: This ranges in scale from identifying science problems and solutions in cities to explaining the complex environmental challenges facing our planet as a whole. Because science is also about identifying and applying technologies to address these challenges, we also cover some success stories! For envirobites.org, topics of posts include science in and for cities, global transport of pollutants, toxic effects of pollution, climate change, and environmental remediation. Oceanbites.org covers topics ranging from chemical, to biological, and physical oceanography. Currently, oceanbites.org has 24 writers and publishes posts daily, whereas envirobites.org has 26 writers and we publish posts on our blog three times per week. We hope to recruit more members and editors, but most of all, increase our readership to make a big splash in the communication of science to the public, whether we reach K-12 classrooms or living rooms.

  13. International production on science oriented towards data: analysis of the terms data science and e-science in scopus and the web of science

    Directory of Open Access Journals (Sweden)

    Leilah Santiago Bufrem

    2016-08-01

    Full Text Available Introduction: current configuration in the dynamics of production and scientific communication reveals the role of Science Oriented Towards Data, a comprehensive conception represented, mainly, by terms such as "e-Science" and "Data Science". Objective: To present the global scientific production on Science Oriented Towards Data by using the terms "e-Science" and "Data Science" in Scopus and the Web of Science during 2006-2016. Methodology: The study is divided into five phases: a search for information in Scopus and the Web of Science data bases; b obtaining bibliometric records; c complementing keywords; d data correction and crossing; e analytical data representation. Results: The most important terms within the analyzed scientific production were Distributed computer systems (2006, Grid computing (2007-2013 and Big data (2014- 2016. In the area of Library and Information Science, the emphasis was on Digital Library and Open Access issues, highlighting the importance of the field for the discussions on the devices providing access to scientific information in digital media. Conclusions: Under a diachronic look, it was found a visible shift of focus, from issues approaching data exchange operations to an analytical perspective for finding patterns in large data volumes

  14. Supporting Communication and Argumentation in Urban Science Education: Hip-Hop, the Battle, and the Cypher

    Science.gov (United States)

    Emdin, Christopher

    2011-01-01

    This paper is based on an exploration of communication and argumentation in urban science classrooms, and provides a description of the role that Hip-hop based education plays in supporting these major components of science education. The paper is intended to both support, and critique conventional uses of hip-hop based education, and provide…

  15. Science on air: a journey through early science programmes in US radio

    Directory of Open Access Journals (Sweden)

    Matteo Merzagora

    2009-03-01

    Full Text Available “Science on the air” is an enjoyable and extremely well researched account of the origins of science programming in north American radio. From 1923 to the mid-50s, LaFollette takes us in a journey through the life and programs of many scientists, journalists and storytellers who chosed radio as a medium for science communication. A journey who allow the reader to visit many success, but also many incomprehension and missed opportunities, mainly by scientific institutions, who often failed to understand the potential of radio as a tool for science communication. It is a fully enjoyable journey, that leave the reader with an appetite to know how the US situation relates to other wonderful experiences around the world in the same years, and how those pioneer experiences influenced today's landscape.

  16. Kick-Starting the Nature of Science

    Science.gov (United States)

    Bull, Ally; Joyce, Chris; Spiller, Lorraine; Hipkins, Rosemary

    2010-01-01

    Nature of Science is the core strand of science in "The New Zealand Curriculum". This resource aims to support teachers to understand the different aspects of the Nature of Science and what this might mean in practice. All aspects of this strand are covered: Understanding about science; Investigating in science; Communicating in science;…

  17. When 'paradigms' differ: scientific communication between skepticism and hope in recent philosophy of science

    Directory of Open Access Journals (Sweden)

    R. Coletto

    2008-07-01

    Full Text Available The first half of this article illustrates how contemporary humanist philosophy of science got caught up in a gradual loss of confidence concerning the possibility of sound communication among scholars holding on to different paradigms or presuppositions. The second half is dedicated to the responses provided by a Christian school of philosophy to the bleak possibility of a communication crisis. The resources deployed by the reformational school of philosophy are argued to constitute valuable instruments to create a more hopeful attitude towards scientific dialogue. A final note is dedicated to the possible causes of the difficulties experienced in this area of reflection by contemporary humanist philosophy of science.

  18. From Soup to Nuts: How Terra has enabled the growth of NASA Earth science communication

    Science.gov (United States)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.

    2014-12-01

    The birth of NASA's Earth Observatory website in 1999 closely mirrored the launch of Terra and over the years its growth has paralleled that of the Earth Observing System (EOS) program. With the launch of Terra, NASA gained an extraordinary platform that not only promised new science capabilities but gave us the data and imagery for telling the stories behind the science. The Earth Observatory Group was founded to communicate these stories to the public. We will present how we have used the capabilities of all the Terra instruments over the past 15 years to expand the public's knowledge of NASA Earth science. The ever-increasing quantity and quality of Terra data, combined with technological improvements to data availability and services has allowed the Earth Observatory and, as a result, the greater science-aware media, to greatly expand the visibility of NASA data and imagery. We will offer thoughts on best practices in using these multi-faceted instruments for public communication and we will share how we have worked with Terra science teams and affiliated systems to see the potential stories in their data and the value of providing the data in a timely fashion. Terra has allowed us to tell the stories of our Earth today like never before.

  19. Microblogging as an extension of science reporting.

    Science.gov (United States)

    Büchi, Moritz

    2017-11-01

    Mass media have long provided general publics with science news. New media such as Twitter have entered this system and provide an additional platform for the dissemination of science information. Based on automated collection and analysis of >900 news articles and 70,000 tweets, this study explores the online communication of current science news. Topic modeling (latent Dirichlet allocation) was used to extract five broad themes of science reporting: space missions, the US government shutdown, cancer research, Nobel Prizes, and climate change. Using content and network analysis, Twitter was found to extend public science communication by providing additional voices and contextualizations of science issues. It serves a recommender role by linking to web resources, connecting users, and directing users' attention. This article suggests that microblogging adds a new and relevant layer to the public communication of science.

  20. Communicating climate science to a suspicious public: How best to explain what we know?

    Science.gov (United States)

    Conway, E. M.; Jackson, R.

    2014-12-01

    In 2007, the Jet Propulsion Laboratory decided to establish a climate science website aimed at explaining what scientists know about climate science, and what they don't, to the English-speaking public. Because of my prior work in the history of atmospheric and climate sciences, I was asked to help choose the data that would be displayed on the site and to write the basic text. Our site went "live" in 2008, and quickly attracted both widespread media attention and sponsorship from NASA, which funded us to expand it into the NASA Climate Change website, climate.nasa.gov. It's now generally the 3rd or 4th ranked climate change website in Google rankings. A perusal of the NASA Climate Change website will reveal that the word "uncertainty" does not appear in its explanatory essays. "Uncertainty," in science, is a calculated quantity. To calculate it, one must know quite a bit about the phenomenon in question. In vernacular use, "uncertainty" means something like "stuff we don't know." These are radically different meanings, and yet scientists and their institutions routinely use both meanings without clarification. Even without the deliberate disinformation campaigns that Oreskes and Conway have documented in Merchants of Doubt, scientists' own misuse of this one word would produce public confusion. We chose to use other words to overcome this one communications problem. But other aspects of the climate communications problem cannot be so easily overcome in a context of Federal agency communications. In this paper, we'll review recent research on ways to improve public understanding of science, and set it against the restrictions that exist on Federal agency communications—avoidance of political statements and interpretation, focusing on fact over storytelling, narrowness of context—to help illuminate the difficulty of improving public understanding of complex, policy-relevant phenomenon like climate change.

  1. Opportunities for Inquiry Science in Montessori Classrooms: Learning from a Culture of Interest, Communication, and Explanation

    Science.gov (United States)

    Rinke, Carol R.; Gimbel, Steven J.; Haskell, Sophie

    2013-08-01

    Although classroom inquiry is the primary pedagogy of science education, it has often been difficult to implement within conventional classroom cultures. This study turned to the alternatively structured Montessori learning environment to better understand the ways in which it fosters the essential elements of classroom inquiry, as defined by prominent policy documents. Specifically, we examined the opportunities present in Montessori classrooms for students to develop an interest in the natural world, generate explanations in science, and communicate about science. Using ethnographic research methods in four Montessori classrooms at the primary and elementary levels, this research captured a range of scientific learning opportunities. The study found that the Montessori learning environment provided opportunities for students to develop enduring interests in scientific topics and communicate about science in various ways. The data also indicated that explanation was largely teacher-driven in the Montessori classroom culture. This study offers lessons for both conventional and Montessori classrooms and suggests further research that bridges educational contexts.

  2. Developing Science Communication in Africa: Undergraduate and Graduate Students should be Trained and Actively Involved in Outreach Activity Development and Implementation.

    Science.gov (United States)

    Karikari, Thomas K; Yawson, Nat Ato; Quansah, Emmanuel

    2016-01-01

    Despite recent improvements in scientific research output from Africa, public understanding of science in many parts of the continent remains low. Science communication there is faced with challenges such as (i) lack of interest among some scientists, (ii) low availability of training programs for scientists, (iii) low literacy rates among the public, and (iv) multiplicity of languages. To address these challenges, new ways of training and motivating scientists to dialogue with non-scientists are essential. Developing communication skills early in researchers' scientific career would be a good way to enhance their public engagement abilities. Therefore, a potentially effective means to develop science communication in Africa would be to actively involve trainee scientists (i.e., undergraduate and graduate students) in outreach activity development and delivery. These students are often enthusiastic about science, eager to develop their teaching and communication skills, and can be good mentors to younger students. Involving them in all aspects of outreach activity is, therefore, likely to be a productive implementation strategy. However, science communication training specifically for students and the involvement of these students in outreach activity design and delivery are lacking in Africa. Here, we argue that improving the training and involvement of budding scientists in science communication activities would be a good way to bridge the wide gap between scientists and the African public.

  3. Criteria for evaluating internet tutorials in speech communication sciences

    OpenAIRE

    Bowerman, Chris; Eriksson, Anders; Huckvale, Mark; Rosner, Mike; Tatham, Mark; Wolters, Maria

    1999-01-01

    The Computer Aided Learning (CAL) working group of the SOCRATES thematic network in Speech Communication Science have studied how the Internet is being used and could be used for the provision of self-study materials for education. In this paper we follow up previous recommendations for the design of Internet tutorials with recommendations for their evaluation. The paper proposes that evaluation should be seen as a necessary quality assurance mechanism operating within the life-cycle of CAL m...

  4. Communicating the Future: Best Practices for Communication of Science and Technology to the Public

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Gail

    2002-09-30

    To advance the state of the art in science and technology communication to the public a conference was held March 6-8, 2002 at the National Institute of Standards and Technology in Gaithersburg, MD. This report of the conference proceedings includes a summary statement by the conference steering committee, transcripts or other text summarizing the remarks of conference speakers, and abstracts for 48 "best practice" communications programs selected by the steering committee through an open competition and a formal peer review process. Additional information about the 48 best practice programs is available on the archival conference Web site at www.nist.gov/bestpractices.

  5. Innovation in Citizen Science – Perspectives on Science-Policy Advances

    Directory of Open Access Journals (Sweden)

    Susanne Hecker

    2018-04-01

    Full Text Available Citizen science is growing as a field of research with contributions from diverse disciplines, promoting innovation in science, society, and policy. Inter- and transdisciplinary discussions and critical analyses are needed to use the current momentum to evaluate, demonstrate, and build on the advances that have been made in the past few years. This paper synthesizes results of discussions at the first international citizen science conference of the European Citizen Science Association (ECSA in 2016 in Berlin, Germany, and distills major points of the discourse into key recommendations. To enhance innovation in science, citizen science needs to clearly demonstrate its scientific benefit, branch out across disciplines, and foster active networking and new formats of collaboration, including true co-design with participants. For fostering policy advances, it is important to embrace opportunities for policy-relevant monitoring and policy development and to work with science funders to find adequate avenues and evaluation tools to support citizen science. From a society angle it is crucial to engage with societal actors in various formats that suit participants and to evaluate two-way learning outcomes as well as to develop the transformative role of science communication. We hope that these key perspectives will promote citizen science progress at the science-society-policy interface.

  6. Best practice in communications training for public engagement with science, technology, engineering and mathematics

    Directory of Open Access Journals (Sweden)

    Karen Bultitude

    2009-05-01

    Full Text Available Effective training in key communications skills is critical for successful public engagement. However, what are the secrets to designing and delivering an effectual training course? This paper outlines key findings from a research study into communication training programmes for public engagement with STEM (science, technology, engineering and mathematics. The research focused on training in direct communication methods, (as separate from media training and encompassed both trainers and trainees, the latter group spanning across both scientists and explainers. The findings indicated that training courses are effective at increasing involvement in science communication events and trainees feel more confident and able to engage due to training. An interactive style was found to be a key element of training courses. Demonstrations of good practice followed by own performance with feedback were also important, preferably involving a ‘real’ audience. A list of guidelines on best practice has been developed which offers practical advice.

  7. Radio Science from an Optical Communications Signal

    Science.gov (United States)

    Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal

    2013-01-01

    NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.

  8. Communications among data and science centers

    Science.gov (United States)

    Green, James L.

    1990-01-01

    The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.

  9. Science As A Second Language: Acquiring Fluency through Science Enterprises

    Science.gov (United States)

    Shope, R.; EcoVoices Expedition Team

    2013-05-01

    Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. EcoVoices takes students on field research expeditions within an urban natural area, the San Gabriel River Discovery Center. This project engages students in science enterprises focused on understanding ecosystems, ecosystem services, and the dynamics of climate change. A sister program, EcoVoces, has been launched in Mexico, in collaboration with the Universidad Loyola del Pacífico. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change: Explore { Diagnose, Design, Discuss } Use. 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Mimedia de la Ciencia, participatory enactment of science concepts using techniques of mime and improvisational theater. BACKGROUND: Science has become a vehicle for teaching reading, writing, and other communication skills, across the curriculum. This new emphasis creates renewed motivation for Scientists and Science Educators to work collaboratively to explore the common ground between acquiring science understanding and language acquisition theory. Language Acquisition is an informal process that occurs in the midst of

  10. A social network approach to understanding science communication among fire professionals

    Science.gov (United States)

    Vita Wright

    2012-01-01

    Studies of science communication and use in the fire management community suggest manager's access research via informal information networks and that these networks vary by both agency and position. We used a phone survey followed by traditional statistical analyses to understand the informal social networks of fire professionals in two western regions of the...

  11. Does the public communication of science influence scientific vocation? Results of a national survey.

    Science.gov (United States)

    Stekolschik, Gabriel; Draghi, Cecilia; Adaszko, Dan; Gallardo, Susana

    2010-09-01

    The purpose of this work was to determine if public communication of science and technology (PCST) has any influence on people's decision to become dedicated to scientific research. For this reason, a national survey involving 852 researchers from all disciplines was conducted in Argentina. The results showed that the factors affecting scientific vocation are many, and that, regardless of differences in gender, age or discipline, the greatest influence on the decision to go into scientific research is exerted by teachers. The analysis also demonstrated that different manifestations of PCST (science books, press articles, audiovisual material, and activities such as visits to science museums) play a significant role in awakening the vocation for science. From these results it may be stated that PCST--in addition to its function of informing and forming citizens--exerts a significant influence in fostering scientific vocation.

  12. Weaving a Webb story: Communicating Science for JWST

    Science.gov (United States)

    Lockwood, Alexandra

    2018-01-01

    NASA’s next great observatory is an impressive and complex mission with many tales to tell. Science is a collection of stories and Webb will be a storytelling machine. How are we preparing to share the scientific news to come from this amazing telescope? From news releases to multimedia content to a vast online presence, the stories of the James Webb Space Telescope will require crafting in order to impact the widest audience. We discuss the art of storytelling based on messaging, goals, mediums, and audience, and how you can apply the same principles to communicating your own research.

  13. Overview of the First Forum about Informal Science Education

    Science.gov (United States)

    Lebron Santos, Mayra; Pantoja, Carmen

    2018-01-01

    The First Forum on Informal Science Education was held at the University of Puerto Rico in 2015. This Forum had the following goals:1. Gather for the first time professionals dedicated to public communication and science outreach in Puerto Rico. 2. Exchange experiences and dissemination strategies with international professional science communicators.3. Encourage a fruitful dialogue between communicators with experience in museums, the media, and the integration of sciences with the arts.4. Encourage dialogue between communicators to facilitate future collaborations.The invited speakers came from Ibero-America and addressed aspects of science communication in museums and the media, the dissemination of science through the arts, the participation of universities in informal science education and the formal education of science communicators. The participants included museum specialists, journalists, artists, outreach specialists, formal educators interested in science outreach, and college students. During the Forum special events for the public were coordinated to celebrate the International Year of Light (2015). The exhibit “Light: Beyond the Bulb” was displayed. Dr. Julieta Fierro, recipient of the prestigious Kalinga Prize for the Popularization of Science awarded by UNESCO, presented the public talk “Light in the Universe”. Dr. Inés Rodríguez Hidalgo, director of the Science Museum of Valladolid, presented the talk "O Sole Mío: An Invitation to Solar Physics". We present an overview of the forum and some critical reflections on the topics discussed.

  14. eScience and archiving for space science

    Directory of Open Access Journals (Sweden)

    Timothy E Eastman

    2006-01-01

    Full Text Available A confluence of technologies is leading towards revolutionary new interactions between robust data sets, state-of-the-art models and simulations, high-data-rate sensors, and high-performance computing. Data and data systems are central to these new developments in various forms of eScience or grid systems. Space science missions are developing multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission architectures that will further add to the data avalanche. Fortunately, Knowledge Discovery in Database (KDD tools are rapidly expanding to meet the need for more efficient information extraction and knowledge generation in this data-intensive environment. Concurrently, scientific data management is being augmented by content-based metadata and semantic services. Archiving, eScience and KDD all require a solid foundation in interoperability and systems architecture. These concepts are illustrated through examples of space science data preservation, archiving, and access, including application of the ISO-standard Open Archive Information System (OAIS architecture.

  15. A call for more science in forensic science.

    Science.gov (United States)

    Bell, Suzanne; Sah, Sunita; Albright, Thomas D; Gates, S James; Denton, M Bonner; Casadevall, Arturo

    2018-05-01

    Forensic science is critical to the administration of justice. The discipline of forensic science is remarkably complex and includes methodologies ranging from DNA analysis to chemical composition to pattern recognition. Many forensic practices developed under the auspices of law enforcement and were vetted primarily by the legal system rather than being subjected to scientific scrutiny and empirical testing. Beginning in the 1990s, exonerations based on DNA-related methods revealed problems with some forensic disciplines, leading to calls for major reforms. This process generated a National Academy of Science report in 2009 that was highly critical of many forensic practices and eventually led to the establishment of the National Commission for Forensic Science (NCFS) in 2013. The NCFS was a deliberative body that catalyzed communication between nonforensic scientists, forensic scientists, and other stakeholders in the legal community. In 2017, despite continuing problems with forensic science, the Department of Justice terminated the NCFS. Just when forensic science needs the most support, it is getting the least. We urge the larger scientific community to come to the aid of our forensic colleagues by advocating for urgently needed research, testing, and financial support.

  16. Short-Form Science

    Science.gov (United States)

    Murphy, Beth; Hedwall, Melissa; Dirks, Andrew; Stretch, Elizabeth

    2017-01-01

    Reading provides a unique window into the history and nature of science and the norms of scientific communication and supports students in developing critical-reading skills in engaging ways. Effective use of reading promotes a spirit of inquiry and an understanding of science concepts while also addressing expectations of the Common Core State…

  17. Sports-science roundtable: does sports-science research influence practice?

    Science.gov (United States)

    Bishop, David; Burnett, Angus; Farrow, Damian; Gabbett, Tim; Newton, Robert

    2006-06-01

    As sports scientists, we claim to make a significant contribution to the body of knowledge that influences athletic practice and performance. Is this the reality? At the inaugural congress of the Australian Association for Exercise and Sports Science, a panel of well-credentialed academic experts with experience in the applied environment debated the question, Does sports-science research influence practice? The first task was to define "sports-science research," and it was generally agreed that it is concerned with providing evidence that improves sports performance. When practices are equally effective, sports scientists also have a role in identifying practices that are safer, more time efficient, and more enjoyable. There were varying views on the need for sports-science research to be immediately relevant to coaches or athletes. Most agreed on the importance of communicating the results of sports-science research, not only to the academic community but also to coaches and athletes, and the need to encourage both short- and long-term research. The panelists then listed examples of sports-science research that they believe have influenced practice, as well as strategies to ensure that sports-science research better influences practice.

  18. Effective Pedagogical Strategies for Millennial University Students in Communication Sciences and Disorders

    Science.gov (United States)

    Roseberry-McKibbin, Celeste; Pieretti, Robert; Haberstock, Keith; Estrada, Jovany

    2016-01-01

    University instructors nationwide have been recognizing the increased importance of updating classroom teaching strategies to accommodate the needs of the millennial student generation. This article shares results of surveys of 323 university students in communication sciences and disorders and what they view as effective pedagogical strategies…

  19. Use and Acceptance of Information and Communication Technology Among Laboratory Science Students

    Science.gov (United States)

    Barnes, Brenda C.

    Online and blended learning platforms are being promoted within laboratory science education under the assumption that students have the necessary skills to navigate online and blended learning environments. Yet little research has examined the use of information and communication technology (ICT) among the laboratory science student population. The purpose of this correlational, survey research study was to explore factors that affect use and acceptance of ICT among laboratory science students through the theoretical lens of the unified theory of acceptance and use of technology (UTAUT) model. An electronically delivered survey drew upon current students and recent graduates (within 2 years) of accredited laboratory science training programs. During the 4 week data collection period, 168 responses were received. Results showed that the UTAUT model did not perform well within this study, explaining 25.2% of the variance in use behavior. A new model incorporating attitudes toward technology and computer anxiety as two of the top variables, a model significantly different from the original UTAUT model, was developed that explained 37.0% of the variance in use behavior. The significance of this study may affect curriculum design of laboratory science training programs wanting to incorporate more teaching techniques that use ICT-based educational delivery, and provide more options for potential students who may not currently have access to this type of training.

  20. What science are you singing? A study of the science image in the mainstream music of Taiwan.

    Science.gov (United States)

    Huang, Chun-Ju; Allgaier, Joachim

    2015-01-01

    Previous research showed that pop music bands in the Western world have sometimes included science imagery in their lyrics. Their songs could potentially be helpful facilitators for science communication and public engagement purposes. However, so far no systematic research has been conducted for investigating science in popular music in Eastern cultures. This study explores whether science has been regarded as an element in the creation of popular mainstream music, and examines the content and quantity of distribution through an analysis of mainstream music lyrics, to reflect on the conditions of the absorption of science into popular culture. The results indicate that expressions related to astronomy and space science feature very prominently. Most of the lyrics are connected to emotional states and mood expressions and they are only very rarely related to actual issues of science. The implications for science communication and further research are discussed in the final section. © The Author(s) 2014.

  1. Putting science on the public agenda

    Directory of Open Access Journals (Sweden)

    Jadranka Jezeršek Turnes

    2014-09-01

    Full Text Available The link between science and society is inevitable and becoming ever more important. Science is a relevant media content, but it needs to provide an interesting story in an attractive field. The question arises of how to get to the story and how to capture the momentum so that the audience or non-experts will understand the advantages, change their behaviour, and create a positive attitude to science. Being a communication expert, I explored the relationships between society, the media (journalists and science (scientists. I examined different contexts that are typical of each group and what is the potential to make these relationships work better in order to create acceptable and more broadly engaging science communication.

  2. Science's social responsibility

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2014-01-01

    like Science in the City in which the science institutions communicate and discuss science with interested citizens. It can be done in relation to strategic plans: solving medical, environmental, socio-political problems for which the state or commercial actors provide funding. But it can also be what...... this is kind of funny, it has some kind of serious core to it in that part of science responsibility to society is to figure out the meaning of the questions that we want to pose – and furthermore: which questions can be asked. Doing this may not be limited to short-term processes, to strategic considerations...

  3. Communicating soil carbon science to farmers: Incorporating credibility, salience and legitimacy

    DEFF Research Database (Denmark)

    Ingram, Julie; Mills, Jane; Dibari, Camilla

    2016-01-01

    A key narrative within climate change science is that conserving and improving soil carbon through agricultural practices can contribute to agricultural productivity and is a promising option for mitigating carbon loss through sequestration. This paper examines the potential disconnect between...... science and practice in the context of communicating information about soil carbon management. It focuses on the information producing process and on stakeholder (adviser, farmer representative, policy maker etc) assessment of the attributes credibility, salience and legitimacy. In doing this it draws...... on results from consultations with stakeholders in the SmartSOIL project which aimed to provide decision support guidelines about practices that optimise carbon mitigation and crop productivity. An iterative methodology, used to engage stakeholders in developing, testing and validating a range of decision...

  4. Open Media Science

    DEFF Research Database (Denmark)

    Møller Moltke Martiny, Kristian; Pedersen, David Budtz; Hansted, Allan Alfred Birkegaard

    2016-01-01

    In this article, we present three challenges to the emerging Open Science (OS) movement: the challenge of communication, collaboration and cultivation of scientific research. We argue that to address these challenges OS needs to include other forms of data than what can be captured in a text...... and extend into a fully-fledged Open Media movement engaging with new media and non-traditional formats of science communication. We discuss two cases where experiments with open media have driven new collaborations between scientists and documentarists. We use the cases to illustrate different advantages...

  5. Science communication in transition: genomics hype, public engagement, education and commercialization pressures.

    Science.gov (United States)

    Bubela, T

    2006-11-01

    This essay reports on the final session of a 2-day workshop entitled 'Genetic Diversity and Science Communication', hosted by the CIHR Institute of Genetics in Toronto, April 2006. The first speaker, Timothy Caulfield, introduced the intersecting communities that promulgate a 'cycle of hype' of the timelines and expected outcomes of the Human Genome Project (HGP): scientists, the media and the public. Other actors also contribute to the overall hype, the social science and humanities communities, industry and politicians. There currently appears to be an abatement of the overblown rhetoric of the HGP. As pointed out by the second speaker, Sharon Kardia, there is broad recognition that most phenotypic traits, including disease susceptibility are multi-factorial. That said, George Davey-Smith reminded us that some direct genotype-phenotype associations may be useful for public health issues. The Mendelian randomization approach hopes to revitalize the discipline of epidemiology by strengthening causal influences about environmentally modifiable risk factors. A more realistic informational environment paves the way for greater public engagement in science policy. Two such initiatives were presented by Kardia and Jason Robert, and Peter Finegold emphasized that science education and professional development for science teachers are important components of later public engagement in science issues. However, pressures on public research institutions to commercialize and seek industry funding may have negative impacts in both encouraging scientists to inappropriately hype research and on diminishing public trust in the scientific enterprise. The latter may have a significant effect on public engagement processes, such as those proposed by Robert and Kardia.

  6. Subject Specialization and Science Teachers' Perception of Information and Communication Technology for Instruction in Kwara State

    Science.gov (United States)

    Fakomogbon, Michael Ayodele; Adebayo, Rachael Funmi; Adegbija, Mosiforeba Victoria; Shittu, Ahmed Tajudeen; Oyelekan, Oloyede Solomon

    2014-01-01

    This study examined Kwara State secondary school science teachers' perception of [information and communications technology] ICT for instruction based on their area of specialization. Participants were 630 science teachers of Biology, Chemistry, Physics and Mathematics from both public and private senior secondary schools in 12 Local Government…

  7. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    Science.gov (United States)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  8. New Technologies of Information and Communications from a Science, Technology and Society.

    Directory of Open Access Journals (Sweden)

    Manuel Martín Rodríguez

    2012-03-01

    Full Text Available With this work we want to make a short analysis of the New Technologies of Information and Communications in basic aspects of interest to technology education, refered to it from a Science Technology and Society (CTS. Based on different conceptions of technology and technological literacy, considers issues such as beliefs about the nature of technological knowledge, relationships and differences between scientific knowledge and the interactions between technology and society, the interests and attitudes of teachers and students to technology and learning from the perspective of education and, finally, various approaches to technology education programs following the approaches Science, Technology and Society.

  9. Mundane science use in a practice theoretical perspective: Different understandings of the relations between citizen-consumers and public communication initiatives build on scientific claims.

    Science.gov (United States)

    Halkier, Bente

    2015-08-13

    Public communication initiatives play a part in placing complicated scientific claims in citizen-consumers' everyday contexts. Lay reactions to scientific claims framed in public communication, and attempts to engage citizens, have been important subjects of discussion in the literatures of public understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement. © The Author(s) 2015.

  10. Preserving the Integrity of Citations and References by All Stakeholders of Science Communication.

    Science.gov (United States)

    Gasparyan, Armen Yuri; Yessirkepov, Marlen; Voronov, Alexander A; Gerasimov, Alexey N; Kostyukova, Elena I; Kitas, George D

    2015-11-01

    Citations to scholarly items are building bricks for multidisciplinary science communication. Citation analyses are currently influencing individual career advancement and ranking of academic and research institutions worldwide. This article overviews the involvement of scientific authors, reviewers, editors, publishers, indexers, and learned associations in the citing and referencing to preserve the integrity of science communication. Authors are responsible for thorough bibliographic searches to select relevant references for their articles, comprehend main points, and cite them in an ethical way. Reviewers and editors may perform additional searches and recommend missing essential references. Publishers, in turn, are in a position to instruct their authors over the citations and references, provide tools for validation of references, and open access to bibliographies. Publicly available reference lists bear important information about the novelty and relatedness of the scholarly items with the published literature. Few editorial associations have dealt with the issue of citations and properly managed references. As a prime example, the International Committee of Medical Journal Editors (ICMJE) issued in December 2014 an updated set of recommendations on the need for citing primary literature and avoiding unethical references, which are applicable to the global scientific community. With the exponential growth of literature and related references, it is critically important to define functions of all stakeholders of science communication in curbing the issue of irrational and unethical citations and thereby improve the quality and indexability of scholarly journals.

  11. Preserving the Integrity of Citations and References by All Stakeholders of Science Communication

    Science.gov (United States)

    Yessirkepov, Marlen; Voronov, Alexander A.; Gerasimov, Alexey N.; Kostyukova, Elena I.; Kitas, George D.

    2015-01-01

    Citations to scholarly items are building bricks for multidisciplinary science communication. Citation analyses are currently influencing individual career advancement and ranking of academic and research institutions worldwide. This article overviews the involvement of scientific authors, reviewers, editors, publishers, indexers, and learned associations in the citing and referencing to preserve the integrity of science communication. Authors are responsible for thorough bibliographic searches to select relevant references for their articles, comprehend main points, and cite them in an ethical way. Reviewers and editors may perform additional searches and recommend missing essential references. Publishers, in turn, are in a position to instruct their authors over the citations and references, provide tools for validation of references, and open access to bibliographies. Publicly available reference lists bear important information about the novelty and relatedness of the scholarly items with the published literature. Few editorial associations have dealt with the issue of citations and properly managed references. As a prime example, the International Committee of Medical Journal Editors (ICMJE) issued in December 2014 an updated set of recommendations on the need for citing primary literature and avoiding unethical references, which are applicable to the global scientific community. With the exponential growth of literature and related references, it is critically important to define functions of all stakeholders of science communication in curbing the issue of irrational and unethical citations and thereby improve the quality and indexability of scholarly journals. PMID:26538996

  12. Science Communications: Providing a Return on Investment to the Taxpayer

    Science.gov (United States)

    Horack, John M.; Borchelt, Rick E.

    1999-01-01

    Nowhere is the disconnect between needing to better communicate science and technology and the skills and techniques used for that communication more evident than in the Federal research enterprise. As Federal research budgets stagnate or decline, and despite public clamor for more and better scientific information, communication of basic research results continues to rank among the lowest agency priorities, mortgaged against traditional public-relations activities to polish an agency's image or control negative information flow to the press and public. Alone among the Federal agencies, NASA articulates in its strategic plan the need "...to advance and communicate scientific knowledge and understanding..." These words emphasize the reality that if new knowledge is generated but not communicated, only half the job has been done. This is a reflection of the transition of NASA from primarily an engineering organization used to help win the Cold War to a producer of new knowledge and technology in the National interest for the 21st century.

  13. Reflections on Communicating Science during the Canterbury Earthquake Sequence of 2010-2011, New Zealand

    Science.gov (United States)

    Wein, A. M.; Berryman, K. R.; Jolly, G. E.; Brackley, H. L.; Gledhill, K. R.

    2015-12-01

    The 2010-2011 Canterbury Earthquake Sequence began with the 4th September 2010 Darfield earthquake (Mw 7.1). Perhaps because there were no deaths, the mood of the city and the government was that high standards of earthquake engineering in New Zealand protected us, and there was a confident attitude to response and recovery. The demand for science and engineering information was of interest but not seen as crucial to policy, business or the public. The 22nd February 2011 Christchurch earthquake (Mw 6.2) changed all that; there was a significant death toll and many injuries. There was widespread collapse of older unreinforced and two relatively modern multi-storey buildings, and major disruption to infrastructure. The contrast in the interest and relevance of the science could not have been greater compared to 5 months previously. Magnitude 5+ aftershocks over a 20 month period resulted in confusion, stress, an inability to define a recovery trajectory, major concerns about whether insurers and reinsurers would continue to provide cover, very high levels of media interest from New Zealand and around the world, and high levels of political risk. As the aftershocks continued there was widespread speculation as to what the future held. During the sequence, the science and engineering sector sought to coordinate and offer timely and integrated advice. However, other than GeoNet, the national geophysical monitoring network, there were few resources devoted to communication, with the result that it was almost always reactive. With hindsight we have identified the need to resource information gathering and synthesis, execute strategic assessments of stakeholder needs, undertake proactive communication, and develop specific information packages for the diversity of users. Overall this means substantially increased resources. Planning is now underway for the science sector to adopt the New Zealand standardised CIMS (Coordinated Incident Management System) structure for

  14. Using the Communication in Science Inquiry Project Professional Development Model to Facilitate Learning Middle School Genetics Concepts

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry

    2011-01-01

    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…

  15. The science writing tool

    Science.gov (United States)

    Schuhart, Arthur L.

    This is a two-part dissertation. The primary part is the text of a science-based composition rhetoric and reader called The Science Writing Tool. This textbook has seven chapters dealing with topics in Science Rhetoric. Each chapter includes a variety of examples of science writing, discussion questions, writing assignments, and instructional resources. The purpose of this text is to introduce lower-division college science majors to the role that rhetoric and communication plays in the conduct of Science, and how these skills contribute to a successful career in Science. The text is designed as a "tool kit," for use by an instructor constructing a science-based composition course or a writing-intensive Science course. The second part of this part of this dissertation reports on student reactions to draft portions of The Science Writing Tool text. In this report, students of English Composition II at Northern Virginia Community College-Annandale were surveyed about their attitudes toward course materials and topics included. The findings were used to revise and expand The Science Writing Tool.

  16. A Study of Interpersonal Communication Skills and its Associated Factors among Students of Kurdistan University of Medical Sciences, 2015

    Directory of Open Access Journals (Sweden)

    Boshra vahabi

    2017-06-01

    Full Text Available Background and Objective: Communication skills are behaviors that help the individual to properly express emotions and their needs and achieve the goals of interpersonal relations. The study was carried out to determine interpersonal communication skills and its associated factors among students of Kurdistan University of Medical Sciences. Materials and Methods: The study was a cross-sectional. The study population were students of Kurdistan University of Medical Sciences that 720 of them were selected and studied. A two-part questionnaire including demographic characteristics and 34questions about interpersonal communication skills was used. The data were analyzed using SPSS 20. Results: The mean score of the students' communication skills was 102.49±9.74. There was no statistically significant difference between the mean communication skills of the students and academic semester (p=0.62.The lowest (99.33±9.5 and the highest (104.25±10.18 mean score of communication skills were related to operating room and radiotherapy students. Conclusion: Capabilities of the Kurdistan University of Medical Sciences in the field of interpersonal communication skills is not good. Intervention studies to enhance communication skills are recommended.

  17. Communication: Science or Art?” – What’s new?

    CERN Multimedia

    2015-01-01

    The story so far… In January this year the Learning and Development Group launched a series of workshops under the umbrella “Communication”. The first of these workshops entitled “Communication: Science or Art?”, covers the fundamentals of communication and starts by raising awareness of different communication styles and the impact these styles can have on you and those around you!   Four workshops (in both English and French) have already taken place and more are scheduled this autumn. The workshops are highly participative and engaging with an emphasis on providing practical tools and tips for everyday life here at CERN. Hear is what participants are saying: “Trainer very experienced, great atmosphere, very well structured training”; “Very useful to remind me that not all people communicate in the same way, and to keep high my awareness level”; “Excellent Course!” Want ...

  18. Can the science of communication inform the art of the medical humanities?

    Science.gov (United States)

    Bleakley, Alan; Marshall, Robert

    2013-02-01

    There is increasing interest in establishing the medical humanities as core integrated provision in undergraduate medicine curricula, but sceptics point to the lack of evidence for their impact upon patient care. Further, the medical humanities culture has often failed to provide a convincing theoretical rationale for the inclusion of the arts and humanities in medical education. Poor communication with colleagues and patients is the main factor in creating the conditions for medical error; this is grounded in a historically determined refusal of democracy within medical work. The medical humanities may play a critical role in educating for democracy in medical culture generally, and in improving communication in medical students specifically, as both demand high levels of empathy. Studies in the science of communication can provide a valuable evidence base justifying the inclusion of the medical humanities in the core curriculum. A case is made for the potential of the medical humanities--as a form of 'adult play'--to educate for collaboration and tolerance of ambiguity or uncertainty, providing a key element of the longer-term democratising force necessary to change medical culture and promote safer practice. The arts and humanities can provide important contextual media through which the lessons learned from the science of communication in medicine can be translated and promoted as forms of medical education. © Blackwell Publishing Ltd 2013.

  19. Effective Use of Social Media in Communicating Climate Science

    Science.gov (United States)

    Sinclair, P. W.

    2012-12-01

    The internet and social media have been a critical vector for misinformation on climate change. Scientists have not always been proactive or effective in utilizing the medium to bring attention to the best science, to correct misinformation and overcome urban myths. Similarly, mainstream journalists have been handicapped in dealing with the wide open nature of the medium, and often muted by editorial concerns or budget restrictions. Independent communicators who are highly motivated can make inroads in this area by using the internet's immediacy and connectivity to consistently connect viewers and readers to reliable information. Over the last 4 years, I have developed a series of you tube videos, made deliberately provocative to engage the internet's confrontational culture, but carefully crafted to bring the best science into the freewheeling community. In doing so, I have won the confidence of leading climate scientists, and in some cases assisted them in clarifying their message. This presentation will share simple tips, useful practices, and effective strategies for making complex material more clear and user friendly, and help scientists better convey the stories hidden in their data.

  20. Social networks as a tool for science communication and public engagement: focus on Twitter.

    Science.gov (United States)

    López-Goñi, Ignacio; Sánchez-Angulo, Manuel

    2018-02-01

    Social networks have been used to teach and engage people about the importance of science. The integration of social networks in the daily routines of faculties and scientists is strongly recommended to increase their personal brand, improve their skills, enhance their visibility, share and communicate science to society, promote scientific culture, and even as a tool for teaching and learning. Here we review the use of Twitter in science and comment on our previous experience of using this social network as a platform for a Massive Online Open Course (MOOC) in Spain and Latin America. We propose to extend this strategy to a pan-European Microbiology MOOC in the near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. In science communication, why does the idea of a public deficit always return? How do the shifting information flows in healthcare affect the deficit model of science communication?

    Science.gov (United States)

    Ko, Henry

    2016-05-01

    The healthcare field contains a multitude of opportunities for science communication. Given the many stakeholders dancing together in a multidirectional tango of communication, we need to ask how much does the deficit model apply to the health field? History dictates that healthcare professionals are the holders of all knowledge, and the patients and other stakeholders are the ones that need the scientific information communicated to them. This essay argues otherwise, in part due to the rise of shared decision-making and patients and other stakeholders acting as partners in healthcare. The traditional deficit model in health held that: (1) doctors were experts and patients were consumers, (2) it is impossible for the public to grasp the many disciplines of knowledge in medicine, (3) if experts have trouble keeping up with medical research then the public surely can't keep up, and (4) it is safer for healthcare professionals to communicate to the public using a deficit model. However, with the rise of partnerships with patients in healthcare decision-making, the deficit model might be weakening. Examples of public participation in healthcare decision-making include: (1) crowd-sourcing public participation in systematic reviews, (2) public participation in health policy, (3) public collaboration in health research, and (4) health consumer groups acting as producers of health information. With the challenges to the deficit model in science communication in health, caution is needed with the increasing role of technology and social media, and how these may affect the legitimacy of healthcare information flows away from the healthcare professional. © The Author(s) 2016.

  2. Open Media Science

    DEFF Research Database (Denmark)

    Møller Moltke Martiny, Kristian; Pedersen, David Budtz; Hansted, Allan Alfred Birkegaard

    2016-01-01

    In this article, we present three challenges to the emerging Open Science (OS) movement: the challenge of communication, collaboration and cultivation of scientific research. We argue that to address these challenges OS needs to include other forms of data than what can be captured in a text...... and extend into a fully-fledged Open Media movement engaging with new media and non-traditional formats of science communication. We discuss two cases where experiments with open media have driven new collaborations between scientists and documentarists. We use the cases to illustrate different advantages...... of using open media to face the challenges of OS....

  3. "The first step is admitting you have a problem…": the process of advancing science communication in Landscape Conservation Cooperatives in Alaska

    Science.gov (United States)

    Buxbaum, T. M.; Trainor, S.; Warner, N.; Timm, K.

    2015-12-01

    Climate change is impacting ecological systems, coastal processes, and environmental disturbance regimes in Alaska, leading to a pressing need to communicate reliable scientific information about climate change, its impacts, and future projections for land and resource management and decision-making. However, little research has been done to dissect and analyze the process of making the results of scientific inquiry directly relevant and usable in resource management. Based within the Science Application division of the US Fish and Wildlife Service, Landscape Conservation Cooperatives (LCCs) are regional conservation science partnerships that provide scientific and technical expertise needed to support conservation planning at landscape scales and promote collaboration in defining shared conservation goals. The five LCCs with jurisdiction in Alaska recently held a training workshop with the goals of advancing staff understanding and skills related to science communication and translation. We report here preliminary results from analysis of workshop discussions and pre- and post- workshop interviews and surveys revealing expectations, assumptions, and mental models regarding science communication and the process of conducting use-inspired science. Generalizable conclusions can assist scientists and boundary organizations bridge knowledge gaps between science and resource management.

  4. Communicating English for Science and Technology

    DEFF Research Database (Denmark)

    Mousten, Birthe

    The book introduces and discusses some of the ideas, stylistics, methods, aids and conventions used in English for Science and Technology. The book centres on a mix of theoretical considerations, examples, drills and texts.......The book introduces and discusses some of the ideas, stylistics, methods, aids and conventions used in English for Science and Technology. The book centres on a mix of theoretical considerations, examples, drills and texts....

  5. Science and Improv: Saying "YES" to Creative Collaboration and Scintillating Communication

    Science.gov (United States)

    Wong, G. J.

    2015-12-01

    Communicating research results to a non-specialist audience can be challenging. Strategies that work well in lab group meetings, such as using acronyms and jargon, may fall flat with 7th graders or Congressional staffers. Empowering real-world audiences with our stories helps raise awareness and inform decision-making, whether it's related to family food purchases or national policy. Ideally, we scientists, engineers and researchers directly connect with our audiences, responding spontaneously and actively, distilling our messages into conversational morsels that resonate with them. One tool that I have found useful is deeply rooted in the "tao" of improvisational theater. Why improv? Improv is dancing as if no one is watching, baking from scratch, and playing jazz flute. Improv is Iron Chef, MacGyver with a license to thrill, or the game-winning play. Research is inspired improvisation. And improv can teach us a lot about how to play, how to feel comfortable and present even while flailing, and how to truly listen. Effective science communicators listen. In fact, therein lies the power of "yes …", a building block of improvisational theater. "Yes …" is both collaborative ("yes, and …") and innovative ("yes, because …"), and investment in an attitude of saying "yes …" demonstrates an intent to listen. Improv is not any one specific thing so much as a process by which we do things. Skills that strengthen communication, such as spontaneity, authenticity and connectivity, are honed through philosophies inherent in improv. This presentation highlights improv-based activities that enhance science communication with purpose, vividness, and emotion.

  6. Communicating Chemistry: A Framework for Sharing Science: A Practical Evidence-Based Guide

    Science.gov (United States)

    National Academies Press, 2016

    2016-01-01

    A growing body of evidence indicates that, increasingly, the public is engaging with science in a wide range of informal environments, which can be any setting outside of school such as community-based programs, festivals, libraries, or home. Yet undergraduate and graduate schools often don't prepare scientists for public communication. This…

  7. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  8. Communicative competences in Experimental Sciences degrees within the framework of the new European Space for Higher Education

    Directory of Open Access Journals (Sweden)

    Joseba Ezeiza Ramos

    2009-10-01

    Full Text Available The scenario for developing communicative competences in the Experimental Sciences degrees and within the new European Space for Higher Education is highly complex. This is confirmed by research reported in the White Papers on the new degrees in this subject area. Therefore, to smoothly integrate communicative and linguistic competences into future syllabi, I should first make a careful analysis of the main factors at work in the new situation. This paper seeks to provide a preliminary approach to the problem. First, I describe the academic and professional tasks that constitute the objectives of future European science degrees. This is followed by an analysis of the communicative and linguistic parameters considered essential for satisfactory attainment of these objectives. Finally, the specific skills that students must master in order to meet the demands imposed by the new framework are outlined. The results of this analysis will enable us to see how much the new situation differs from traditional university teaching. Under this new model, the development of communicative and linguistic competences will no longer be a mere adjunct to a science curriculum, but instead will become of prime importance to the academic and professional training of future scientists.

  9. Students Explaining Science—Assessment of Science Communication Competence

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2013-12-01

    Science communication competence (SCC) is an important educational goal in the school science curricula of several countries. However, there is a lack of research about the structure and the assessment of SCC. This paper specifies the theoretical framework of SCC by a competence model. We developed a qualitative assessment method for SCC that is based on an expert-novice dialog: an older student (explainer, expert) explains a physics phenomenon to a younger peer (addressee, novice) in a controlled test setting. The explanations are video-recorded and analysed by qualitative content analysis. The method was applied in a study with 46 secondary school students as explainers. Our aims were (a) to evaluate whether our model covers the relevant features of SCC, (b) to validate the assessment method and (c) to find characteristics of addressee-adequate explanations. A performance index was calculated to quantify the explainers' levels of competence on an ordinal scale. We present qualitative and quantitative evidence that the index is adequate for assessment purposes. It correlates with results from a written SCC test and a perspective taking test (convergent validity). Addressee-adequate explanations can be characterized by use of graphical representations and deliberate switches between scientific and everyday language.

  10. Introduction: From "The Popularization of Science through Film" to "The Public Understanding of Science".

    Science.gov (United States)

    Vidal, Fernando

    2018-03-01

    Science in film, and usual equivalents such as science on film or science on screen, refer to the cinematographic representation, staging, and enactment of actors, information, and processes involved in any aspect or dimension of science and its history. Of course, boundaries are blurry, and films shot as research tools or documentation also display science on screen. Nonetheless, they generally count as scientific film, and science in and on film or screen tend to designate productions whose purpose is entertainment and education. Moreover, these two purposes are often combined, and inherently concern empirical, methodological, and conceptual challenges associated with popularization, science communication, and the public understanding of science. It is in these areas that the notion of the deficit model emerged to designate a point of view and a mode of understanding, as well as a set of practical and theoretical problems about the relationship between science and the public.

  11. Promoting Societal-Oriented Communication and Decision Making Skills by Learning about Advertising in Science Education

    Directory of Open Access Journals (Sweden)

    Nadja Belova

    2014-03-01

    Full Text Available In our everyday lives we are surrounded by advertising in its various forms. Thus in the school context it is not surprising that the issue of advertising is addressed by different subjects, with the main foci being advertising-specific language, images and illustrations, use of stereotypes, strategies of persuasion etc. But advertising also contains factual information, being explicit or implicit, to make a campaign more credible and underline the effectiveness of a certain product. Dealing with the use of factual information in advertising critically is important for the consumer. For many products this information is derived from science and technology. Understanding the science in and behind advertising is necessary to become a critical consumer. Learning about the use of science in advertising also allows promoting societal-oriented communication and decision making skills in the science classroom. Unfortunately, only a few examples on the use of advertising in the science classroom exist. This paper provides a justification for the use of advertising in science education. Examples from the classroom developed in the framework of the PROFILES-project are provided by way of illustration.

  12. Science Based Policies: How Can Scientist Communicate their Points Across?

    International Nuclear Information System (INIS)

    Elnakat, A. C.

    2002-01-01

    With the complexity of environmental problems faced today, both scientists and policymakers are striving to combine policy and administration with the physical and natural sciences in order to mitigate and prevent environmental degradation. Nevertheless, communicating science to policymakers has been difficult due to many barriers. Even though scientists and policymakers share the blame in the miscommunication. This paper will provide recommendations targeted to the scientific arena. Establishing guidelines for the cooperation of scientists and policymakers can be an unattainable goal due to the complexity and diversity of political policymaking and environmental issues. However, the recommendations provided in this paper are simple enough to be followed by a wide variety of audiences and institutions in the scientific fields. This will aid when trying to fill the gap that has prevented the enhancement of scientific policymaking strategies, which decide on the critical issue s such as the disposal, transportation and production of hazardous waste

  13. A social network approach to understanding science communication among fire professionals (Abstract)

    Science.gov (United States)

    Vita Wright; Andrea Thode; Anne Mottek-Lucas; Jacklynn Fallon; Megan Matonis

    2012-01-01

    Studies of science communication and use in the fire management community suggest manager's access research via informal information networks and that these networks vary by both agency and position. We used a phone survey followed by traditional statistical analyses to understand the informal social networks of fire professionals in two western regions of the...

  14. New media landscapes and the science information consumer.

    Science.gov (United States)

    Brossard, Dominique

    2013-08-20

    Individuals are increasingly turning to online environments to find information about science and to follow scientific developments. It is therefore crucial for scientists and scientific institutions to consider empirical findings from research in online science communication when thinking about science in the public sphere. After providing a snapshot of the current media landscape, this paper reviews recent major research findings related to science communication in the online environment and their implications for science in the 21st century. Particular emphasis is given to the bias introduced by search engines, the nature of scientific content encountered online, and the potential impact of the Internet on audiences' knowledge and attitudes toward science.

  15. Mundane science use in a practice theoretical perspective

    DEFF Research Database (Denmark)

    Halkier, Bente

    2017-01-01

    understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different...... understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public...... understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement....

  16. The use of information and communications technology to support the teaching of science in primary schools

    Science.gov (United States)

    Skinner, Nigel C.; Preece, Peter F. W.

    2003-02-01

    The AstraZeneca-Exeter Science through Telematics (AZEST) project provided evidence that the Internet has much potential as a communication channel for the provision and discussion of INSET materials for primary science in the UK. Participating teachers were able to access and use the project website effectively, were more likely to provide feedback when they had personal access to the Internet either at home or at school, and provided valuable feedback concerning the AZEST tasks, but they tended not to respond directly to messages from other participants. Discussion, via e-mail or a web-based discussion forum, was enhanced if participants knew each other personally. There was evidence that the AZEST science INSET materials enhanced teachers' understanding of science concepts and raised their confidence, increased teachers' effectiveness in the role of Science Subject Leader, and improved teachers' pedagogic practice through encouraging innovative investigative approaches to the teaching and learning of science. Participating teachers indicated that a website dedicated to primary science at the local level was valued. Concept mapping was found to be a valuable tool for stimulating discussion and for assessing pupils' and teachers' understanding and was mostly enjoyed by pupils and staff.

  17. The Grand Challenges Discourse: Transforming Identity Work in Science and Science Policy.

    Science.gov (United States)

    Kaldewey, David

    2018-01-01

    This article analyzes the concept of "grand challenges" as part of a shift in how scientists and policymakers frame and communicate their respective agendas. The history of the grand challenges discourse helps to understand how identity work in science and science policy has been transformed in recent decades. Furthermore, the question is raised whether this discourse is only an indicator, or also a factor in this transformation. Building on conceptual history and historical semantics, the two parts of the article reconstruct two discursive shifts. First, the observation that in scientific communication references to "problems" are increasingly substituted by references to "challenges" indicates a broader cultural trend of how attitudes towards what is problematic have shifted in the last decades. Second, as the grand challenges discourse is rooted in the sphere of sports and competition, it introduces a specific new set of societal values and practices into the spheres of science and technology. The article concludes that this process can be characterized as the sportification of science, which contributes to self-mobilization and, ultimately, to self-optimization of the participating scientists, engineers, and policymakers.

  18. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  19. Ambiguous science and the visual representation of the real

    Science.gov (United States)

    Newbold, Curtis Robert

    The emergence of visual media as prominent and even expected forms of communication in nearly all disciplines, including those scientific, has raised new questions about how the art and science of communication epistemologically affect the interpretation of scientific phenomena. In this dissertation I explore how the influence of aesthetics in visual representations of science inevitably creates ambiguous meanings. As a means to improve visual literacy in the sciences, I call awareness to the ubiquity of visual ambiguity and its importance and relevance in scientific discourse. To do this, I conduct a literature review that spans interdisciplinary research in communication, science, art, and rhetoric. Furthermore, I create a paradoxically ambiguous taxonomy, which functions to exploit the nuances of visual ambiguities and their role in scientific communication. I then extrapolate the taxonomy of visual ambiguity and from it develop an ambiguous, rhetorical heuristic, the Tetradic Model of Visual Ambiguity. The Tetradic Model is applied to a case example of a scientific image as a demonstration of how scientific communicators may increase their awareness of the epistemological effects of ambiguity in the visual representations of science. I conclude by demonstrating how scientific communicators may make productive use of visual ambiguity, even in communications of objective science, and I argue how doing so strengthens scientific communicators' visual literacy skills and their ability to communicate more ethically and effectively.

  20. Science, Society, and Social Networking

    Science.gov (United States)

    White, K. S.; Lohwater, T.

    2009-12-01

    The increased use of social networking is changing the way that scientific societies interact with their members and others. The American Association for the Advancement of Science (AAAS) uses a variety of online networks to engage its members and the broader scientific community. AAAS members and non-members can interact with AAAS staff and each other on AAAS sites on Facebook, YouTube, and Twitter, as well as blogs and forums on the AAAS website (www.aaas.org). These tools allow scientists to more readily become engaged in policy by providing information on current science policy topics as well as methods of involvement. For example, members and the public can comment on policy-relevant stories from Science magazine’s ScienceInsider blog, download a weekly policy podcast, receive a weekly email update of policy issues affecting the scientific community, or watch a congressional hearing from their computer. AAAS resource websites and outreach programs, including Communicating Science (www.aaas.org/communicatingscience), Working with Congress (www.aaas.org/spp/cstc/) and Science Careers (http://sciencecareers.sciencemag.org) also provide tools for scientists to become more personally engaged in communicating their findings and involved in the policy process.

  1. The integration of open access journals in the scholarly communication system: Three science fields

    DEFF Research Database (Denmark)

    Faber Frandsen, Tove

    2009-01-01

    across disciplines. This study is an analysis of the citing behaviour in journals within three science fields: biology, mathematics, and pharmacy and pharmacology. It is a statistical analysis of OAJs as well as non-OAJs including both the citing and cited side of the journal to journal citations......The greatest number of open access journals (OAJs) is found in the sciences and their influence is growing. However, there are only a few studies on the acceptance and thereby integration of these OAJs in the scholarly communication system. Even fewer studies provide insight into the differences....... The multivariate linear regression reveals many similarities in citing behaviour across fields and media. But it also points to great differences in the integration of OAJs. The integration of OAJs in the scholarly communication system varies considerably across fields. The implications for bibliometric research...

  2. Science popularization and the Indian constitution - Correspondence

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    mation System for Science and Techno logy (NISSAT), Central Health Education Bureau, Centre for Enviro n - ment Education, National Institute of Science Communication (NISCOM) and Science magazines like Science Reporter, Down to Earth, Resonance... the learning of science to their immediate social and physical environment. Schools, colleges and NGOs also co n - tribute considerably to popularization of science. CSIR laboratories are e x - pected to orga nize open days for the general public during...

  3. Communicating Climate Change: Sometimes It's Not about the Science

    Science.gov (United States)

    Mandia, S. A.

    2014-12-01

    Although there is an overwhelming scientific consensus that humans are driving modern day climate change, a significant portion of Americans are not convinced. This gap in understanding challenges both instructors and students who wish to effectively communicate climate change science. Individuals subconsciously resist factual information that threatens their worldview. Their misperceptions are reinforced by journalistic false balance, coordinated misinformation campaigns, and incorrect or misleading information that is easily accessible via social media. Here the author presents effective refutation strategies that avoid the most common backfire effects while also offering strategies to properly frame the discussion to audiences holding diverse worldviews.

  4. New media landscapes and the science information consumer

    Science.gov (United States)

    Brossard, Dominique

    2013-01-01

    Individuals are increasingly turning to online environments to find information about science and to follow scientific developments. It is therefore crucial for scientists and scientific institutions to consider empirical findings from research in online science communication when thinking about science in the public sphere. After providing a snapshot of the current media landscape, this paper reviews recent major research findings related to science communication in the online environment and their implications for science in the 21st century. Particular emphasis is given to the bias introduced by search engines, the nature of scientific content encountered online, and the potential impact of the Internet on audiences’ knowledge and attitudes toward science. PMID:23940316

  5. Risk communication, geoethics and decision science issues in Japan's disaster management system

    Science.gov (United States)

    Sugimoto, M.

    2014-12-01

    Issues in Japan's disaster management system were revealed by the 2011 Tohoku earthquake and tsunami, and by the Fukushima Dai-ichi nuclear power station accident. Many important decisions were based on scientific data, but appear not to have sufficiently considered the uncertainties of the data and the societal aspects of the problems. The issues that arose show the need for scientists to appropriately deal with risk communication and geoethics and issues. This paper discusses necessity of education for risk communication, geoethics and decisions science in school before students become sicentific decision makers in future.

  6. Mapping Climate Science Information Needs and Networks in the Northwest, USA through Evaluating the Northwest Climate Science Center Climate Science Digest

    Science.gov (United States)

    Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.

    2017-12-01

    Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe

  7. Sahel Journal of Veterinary Sciences

    African Journals Online (AJOL)

    The Sahel Journal of Veterinary Sciences is the official journal of the Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria. The journal welcomes original research articles, short communications and reviews on all aspects of veterinary sciences and related disciplines.

  8. Reel Science: An Ethnographic Study of Girls' Science Identity Development In and Through Film

    Science.gov (United States)

    Chaffee, Rachel L.

    This dissertation study contributes to the research on filmmaking and identity development by exploring the ways that film production provided unique opportunities for a team of four girls to engage in science, to develop identities in science, and to see and understand science differently. Using social practice, identity, and feminist theory and New Literacies Studies as a theoretical lens and grounded theory and multimodality as analytic frameworks, I present findings that suggest that girls in this study authored identities and communicated and represented science in and through film in ways that drew on their social, cultural, and embodied resources and the material resources of the after-school science club. Findings from this study highlight the affordances of filmmaking as a venue for engaging in the disciplinary practices of science and for accessing and authoring identities in science.

  9. Science Theatre as dissemination of environmental awareness

    DEFF Research Database (Denmark)

    Chemi, Tatiana; Kastberg, Peter

    2015-01-01

    hides behind this label? Is this concept at all new? The purpose of this article is threefold: 1) to describe Science Theatre in terms of typology with specific focus on environmental subjects, 2) to address Science Theatre as a borderline meeting place (agora or arena) between science and theatre 3......A community project with the intention of developing specific communication on environmental issues for children age 3-7 allies with a theatre artist and storyteller. The result is a meeting between science and theatre. Theatre, with its borderline praxis between entertainment and reflection...... offered a precious opportunity to deliver difficult scientific or social issues within the environmental mindset to such youngsters, an opportunity well exploited and well received. But what makes Science Theatre an obvious choice in order to communicate natural sciences or environmental issues? What...

  10. MOBI: a marine and earth science interpretation and qualification program for out-of-school environment and natural heritage interpreters and other science communicators in Germany

    Science.gov (United States)

    Schneider, S.; Ellger, C.

    2017-12-01

    As a contribution to Germany's "Science Year 2016*17 - Seas and Oceans", a large science outreach program organized and financed by the National Ministry for Education and Research, GeoUnion, the umbrella organization of Earth science associations and institutions in Germany, has conducted a series of advance level workshops for out-of-school educators and interpreters in Germany. The workshops were organized in co-operation with geoparks, biosphere reserve areas and other environmental management institutions all over Germany. The goal was to convey various perspectives of modern marine sciences to inland venues, linking important present-day marine themes with the presentation of marine phases in the geological history of the host region. The workshops were designed for park rangers, museum educationalists and other science communicators, initiating a broader impact on target groups such as school classes, (geo-)tourists and stakeholder groups. Our approach has been to combine lectures by top-level scientists (on both ocean literacy aspects and regional geology) with discussions and an on-the-spot learning-and-presenting module based on prepared text and visual material. Beyond earth science issues we have integrated economy, ecology, social sciences as well as arts and humanities aspects. One central topic was the role of the world ocean in climate change; other themes highlighted sea level rise, the thermohaline circulation, sea-floor spreading, coral reefs, over-fishing, various marine species and the problem of plastic waste in the ocean. We had anticipated that marine issues are actually very rarely discussed in inland Germany. A structured presentation of ocean literacy elements has proved to be a new range of topical issues from earth and environmental sciences highly appreciated by the participants.

  11. Public Communication of Science and Technology in Museums and Interactive Centers in MedellÍn (Colombia

    Directory of Open Access Journals (Sweden)

    Silvia Inés Jiménez-G.

    2010-01-01

    Full Text Available Following the simple and complex deficit and democratic model approaches, this paper analyses the communication strategies applied in several museums and interactive centers —Parque Explora, Museo Interactivo Empresas Públicas de Medellín, Planetario Jesús Emilio Ramírez and Museo Universitario from the University of Antioquia in the city of Medellín—. We argue that communicating scientific and technological developments at a conjunctural moment —because of the pressure exerted by the demand side to bring knowledge within the reach of the man in the street— involves recognizing science and technology issues should not be conveyed in a language increasingly distanced from layman’s understanding and should allow for citizens’ critical thinking formation face to techno-scientific developments. By analysing the communication approaches mentioned above, we found significant obstacles to be overcome in the communication strategies applied by museum staff in order to come to an understanding of science and technology.

  12. Perils and positives of science journalism in Australia.

    Science.gov (United States)

    McKinnon, Merryn; Howes, Johanna; Leach, Andrew; Prokop, Natasha

    2017-03-01

    Scientists, science communicators and science journalists interact to deliver science news to the public. Yet the value of interactions between the groups in delivering high-quality science stories is poorly understood within Australia. A recent study in New Zealand on the perspectives of the three groups on the challenges facing science journalism is replicated here in the context of New South Wales and the Australian Capital Territory. While all three groups perceived the quality of science journalism as generally high, the limitations of non-specialists and public relation materials were causes for concern. The results indicate that science communicators are considered to play a valuable role as facilitators of information flow to journalists and support for scientists. Future studies on the influence and implications of interactions between these three groups are required.

  13. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  14. Building the team for team science

    Science.gov (United States)

    Read, Emily K.; O'Rourke, M.; Hong, G. S.; Hanson, P. C.; Winslow, Luke A.; Crowley, S.; Brewer, C. A.; Weathers, K. C.

    2016-01-01

    The ability to effectively exchange information and develop trusting, collaborative relationships across disciplinary boundaries is essential for 21st century scientists charged with solving complex and large-scale societal and environmental challenges, yet these communication skills are rarely taught. Here, we describe an adaptable training program designed to increase the capacity of scientists to engage in information exchange and relationship development in team science settings. A pilot of the program, developed by a leader in ecological network science, the Global Lake Ecological Observatory Network (GLEON), indicates that the training program resulted in improvement in early career scientists’ confidence in team-based network science collaborations within and outside of the program. Fellows in the program navigated human-network challenges, expanded communication skills, and improved their ability to build professional relationships, all in the context of producing collaborative scientific outcomes. Here, we describe the rationale for key communication training elements and provide evidence that such training is effective in building essential team science skills.

  15. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  16. Spelling out the fear. Thoughts on science communication from a dangerous country

    Science.gov (United States)

    Todesco, Micol

    2015-04-01

    The rapid growth of population and the increasing costs of natural disaster demand for an effective hazard mitigation. A key element for mitigation is a good and widespread understanding of the adverse natural phenomena. But science communication is a complex matter especially when dealing with natural hazards, where the heaviness of responsibility is further loaded with the uncertainty of phenomena. The society needs the scientific advise and science explores the natural processes, depict scenarios and provide probabilistic frameworks for the assessment of the associated hazard. Yet, the message can be easily misunderstood, the same words can have different meaning for different stakeholders. Denial is another problem: when our lives are at stake we rarely listen: the scientific advise can be disregarded, or received with disappointment. In the worst case, scientists can be charged with offence, as occurred in Italy where seismologist were accused of manslaughter in the aftermath of the 2009 L'Aquila earthquake. Scientists need to provide all the necessary information to let the people take informed decisions. This means we need to find effective ways to discuss unpleasant scenarios, and to address scary topics that often lack definite solutions, facing the risk that our very communication strategies may be used against ourselves. The outreach video on volcanic hazard presented here will offer the opportunity to draw some general considerations on where and why the scientific knowledge gets lost. Without easy solutions at hand, this talk will highlight some of the elements into play, in an attempt to understand the rule of a game and the role of science in the society.

  17. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  18. Female and male communication in co-operative problem solving in high school science

    NARCIS (Netherlands)

    Harskamp, Egbert; Dhig, Ning; Tremante, A; Welsch, F; Malpica, F

    2007-01-01

    Empirical evidence is presented that males working in mixed-gender dyads on science problems do better than their female partners. This is not the case when males and females work in same gender dyads. There is a difference in communication style in mixed gender dyads in comparison with same gender

  19. A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students

    Science.gov (United States)

    Divan, Aysha; Mason, Sam

    2016-01-01

    In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…

  20. Risk communications in nuclear energy as science and technology. Arrangement and analysis of academic findings and practical cases

    International Nuclear Information System (INIS)

    Toyoda, Satoshi

    2006-01-01

    Problems in communication among the government, enterprise, experts and so on and the society and people, now confront us in several areas of science and technology. In order to be accepted by the society, each area of science and technology has experienced common processes such as beginnings, business, society introduction, problem renovation and maturity. Each area can be positioned based on the degree of maturity, which helps to find solutions of the problems. Arrangement and analysis of academic findings and practical cases on risk communications in nuclear energy are described. (T. Tanaka)

  1. For a reasoned development of experimental methods in information and communication sciences Some epistemological findings of methodological pluralism

    Directory of Open Access Journals (Sweden)

    Didier COURBET

    2013-07-01

    Full Text Available If multidisciplinarity is necessary, first, for studying the widest possible set of communication phenomena (organizational, in groups, interpersonal, media, computer-mediated communication... and, secondly, for grasping the complexity of the different moments of the same phenomenon of communication (production, content, reception, circulation ..., methodological pluralism is also important. However, French research in communication sciences leaves in the shade a number of phenomena and moments of communication that could be better understood thanks to the experimental method. We will underline that the epistemological issues related to rational use of the experimental method in communication sciences are not negligible: it allows the study of objects that cannot be investigated with other methods and offers the opportunity to build knowledge by the refutation of hypotheses and theoretical propositions. We will clarify some epistemological misunderstandings concerning this method. First, it is actually a method of studying complex systems and communication processes. Secondly, its use is not incompatible with constructivism.

  2. Science in the (CERN) Pub!

    CERN Multimedia

    2001-01-01

    The 6th Public Communication of Science and Technology network conference will end on Saturday 3 February with special performances. At 14:30 in the coffee area of restaurant no. 1 (Main Building) all participants and interested CERN members are invited to two events that will address science in an unorthodox and amusing way. Australian scientists will start with Science in the Pub, a fun discussion of topical science in an Australian pub ambiance (free Foster's beer served). Cabaret Pasteur, a French sample of entertainment with a scientific touch will follow.

  3. On the pedagogy of pharmacological communication: a study of final semester health science students.

    Science.gov (United States)

    Zetterqvist, Ann; Aronsson, Patrik; Hägg, Staffan; Kjellgren, Karin; Reis, Margareta; Tobin, Gunnar; Booth, Shirley

    2015-10-26

    There is a need to improve design in educational programmes for the health sciences in general and in pharmacology specifically. The objective of this study was to investigate and problematize pharmacological communication in educational programmes for the health sciences. An interview study was carried out where final semester students from programmes for the medical, nursing and specialist nursing in primary health care professions were asked to discuss the pharmacological aspects of two written case descriptions of the kind they would meet in their everyday work. The study focused on the communication they envisaged taking place on the concerns the patients were voicing, in terms of two features: how communication would take place and what would be the content of the communication. A phenomenographic research approach was used. The results are presented as outcome spaces, sets of categories that describe the variation of ways in which the students voiced their understanding of communication in the two case descriptions and showed the qualitatively distinct ways in which the features of communication were experienced. The results offer a base of understanding the students' perspectives on communication that they will take with them into their professional lives. We indicate that there is room for strengthening communication skills in the field of pharmacology, integrating them into programmes of education, by more widely implementing a problem-based, a case-oriented or role-playing pedagogy where final year students work across specialisations and there is a deliberate effort to evoke and assess advanced conceptions and skills.

  4. Rwanda Journal of Health Sciences

    African Journals Online (AJOL)

    The Rwanda Journal of Health Sciences, a publication of Kigali Health Institute, publishes original research, short communications, and review articles on current topics of special interest and relevance in various health related fields including public health, allied health sciences, nursing, environmental health, nutrition, ...

  5. What is Science?

    International Nuclear Information System (INIS)

    Quinn, H.

    2009-01-01

    Helen Quinn is a theoretical particle physicist at SLAC. Throughout her career, she has been passionately involved in science education and public understanding of science. In talking about science, whether to the public or to students, we scientists often assume that they share with us a common idea of science. In my experience that is often not the case. To oversimplify, scientists think of science both as a process for discovering properties of nature, and as the resulting body of knowledge, whereas most people seem to think of science, or perhaps scientists, as an authority that provides some information--just one more story among the many that they use to help make sense of their world. Can we close that gap in understanding? Middle school teachers typically spend a day or so teaching something called the scientific method, but the process by which scientific ideas are developed and tested is messier and much more interesting than that typical capsule description. Some remarkable features of the process are seldom stressed in teaching science, nor are they addressed in explaining any one piece of science to the public. My goal in this column is to provide some ideas for closing that gap in understanding, and to encourage scientists and teachers to communicate about the process as they discuss scientific work

  6. Democratization of Science and Biotechnological Development ...

    African Journals Online (AJOL)

    sulaiman.adebowale

    Council for the Development of Social Science Research in Africa, 2008 ... tendant ideas of Science Communication and Public Understanding of Biotech- .... human development in the new South Africa – no matter how development.

  7. Establishing a Pedagogical Framework for the Multicultural Course in Communication Sciences and Disorders

    Science.gov (United States)

    Horton-Ikard, RaMonda; Munoz, Maria L.; Thomas-Tate, Shurita; Keller-Bell, Yolanda

    2009-01-01

    Purpose: To provide an overview of a model for teaching a foundational course in multicultural (MC) issues and to demonstrate how it can be modified for use in communication sciences and disorders (CSD) by integrating 3 primary dimensions of cultural competence: awareness, knowledge, and skills. Method: This tutorial begins by establishing the…

  8. Responsible Conduct of Research in Communication Sciences and Disorders: Faculty and Student Perceptions

    Science.gov (United States)

    Minifie, Fred D.; Robey, Randall R.; Horner, Jennifer; Ingham, Janis C.; Lansing, Charissa; McCartney, James H.; Alldredge, Elham-Eid; Slater, Sarah C.; Moss, Sharon E.

    2011-01-01

    Purpose: Two Web-based surveys (Surveys I and II) were used to assess perceptions of faculty and students in Communication Sciences and Disorders (CSD) regarding the responsible conduct of research (RCR). Method: Survey questions addressed 9 RCR domains thought important to the responsible conduct of research: (a) human subjects protections; (b)…

  9. The Art of Talking about Science: Beginning to Teach Physiology Students How to Communicate with Nonscientists

    Science.gov (United States)

    Petzold, Andrew M.; Dunbar, Robert L.

    2018-01-01

    The ability to clearly disseminate scientific knowledge is a skill that is necessary for any undergraduate student within the sciences. Traditionally, this is accomplished through the instruction of scientific presentation or writing with a focus on peer-to-peer communication at the expense of teaching communication aimed at a nonscientific…

  10. Stand up and Speak Out: Professional Training Can Help Bridge the Science Communication Gap

    Science.gov (United States)

    Neeley, E.; Simler Smith, B.; Baron, N.

    2011-12-01

    Science and technology have become firmly entrenched in our daily lives, and as a society we depend on this advanced knowledge in order to maintain - and improve - our standard of living. At the same time, social media and other advanced tools have made it easier than ever to communicate scientific findings to a wide and diverse audience. Yet herein lies a paradox: evidence shows that scientific literacy among the general public remains frustratingly low. Why does this gap remain, given such a seemingly fertile climate for scientific literacy? The answer to this question is complex, but a historical lack of communications training and support for scientists is unquestionably a part of it. Effectively explaining research findings - and why they are important - to journalists, policymakers, and other non-scientists requires specific skills that aren't accounted for in most graduate programs. For decades, in fact, scientific institutions have made communications a very low priority. Some have even discouraged outreach for fear of backlash or out of reluctance to sacrifice research time. There are indications that the culture is shifting, however. The integration of formal, for-credit communications training into graduate curricula is one promising sign. Also, professional, extracurricular communications training is now readily available from a number of sources. COMPASS (the Communication Partnership for Science and the Sea) has pioneered this latter model for more than a decade, both independently and as the lead communication trainers for the prestigious Aldo Leopold Leadership Program. Working with some of the most accomplished marine and environmental scientists in North America and beyond, COMPASS has helped equip the community with the tools to make their science clear, compelling and relevant for non-scientist audiences. We have led communication workshops for scientists at all career levels - from beginning graduate students to tenured senior faculty. A key to

  11. [Internationalism and science. Social and scientific bases of the European information science movement].

    Science.gov (United States)

    Olague de Ros, G; Menendez Navarro, A; Medina Domenech, R M; Astrain Gallart, M

    1997-01-01

    As part of a continuing line of research on scientific documentation we propose in this article a novel approach to the study of the European information science movement at the end of the nineteenth and beginning of the twentieth centuries. We suggest that this movement took place within the context of increasing internationalism of scientific endeavours, a process which was paralleled by the standardization of units, weight and measures for the different sciences. We investigate problems arising from scientific communication in connection with other aspects apparently unrelated to Information Science. Specifically, we refer to conflicts between nationalism and colonialism; concordance and discord between science policy and the corporate interests of nonscientific associations; higher educational policy; the professionalization of sciences; and the economic interests at stake as a consequence of the use of different information models.

  12. COMUNICA Project: a commitment for strategic communication on Earth Sciences

    Science.gov (United States)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis

    2016-04-01

    The Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) has just celebrated its 50-year anniversary last year. It is a reference research center on Earth Sciences both national and international level. The Institute includes 4 research groups which focus their scientific activity on the structure and dynamics of the Earth, the environmental changes in the geological record, geophysical and geochemical modelling and crystallography and optical properties. Only when large geological disasters happens, mainly earthquakes and volcanic eruptions, some interaction between ICTJA-CSIC researchers and traditional media occurs, which is limited by the fact that the aim of the Institute is the scientific research and it has no responsibilities in the area of civil protection. This relationship reduces the knowledge of our activity to the general public. To overcome this situation, the ICTJA-CSIC has decided to take an active role in the social dissemination of geological and geophysical knowledge. Thus, the ICTJA-CSIC has launched the COMUNICA Project. The project is aimed to increase the social visibility of the ICTJA-CSIC and to promote the outreach of researchers. Therefore ICTJA-CSIC has created the Communication Unit, which is in charge of designing communication strategies to give to different audiences (media, students of secondary and higher education, general public) an overview of the scientific and institutional activity of the ICTJA-CSIC. A global communication plan is being designed to define the strategic actions, both internal and external. An important role has been reserved for digital channels, to promote ICTJA-CSIC activity on social networks such as Twitter, Facebook or Youtube, besides making a major effort in the renovation and maintenance of the corporate website. A strong effort will be done to collect and spread through press releases the major scientific milestones achieved by the researchers, to promote the interest of mass media. Communication

  13. Collaborative Web between open and closed science

    Directory of Open Access Journals (Sweden)

    Alessandro Delfanti

    2008-06-01

    Full Text Available “Web 2.0” is the mantra enthusiastically repeated in the past few years on anything concerning the production of culture, dialogue and online communication. Even science is changing, along with the processes involving the communication, collaboration and cooperation created through the web, yet rooted in some of its historical features of openness. For this issue, JCOM has asked some experts on the most recent changes in science to analyse the potential and the contradictions lying in online collaborative science. The new open science feeds on the opportunity to freely contribute to knowledge production, sharing not only data, but also software and hardware. But it is open also to the outside, where citizens use Web 2.0 instruments to discuss about science in a horizontal way.

  14. The DEVELOP National Program's Strategy for Communicating Applied Science Outcomes

    Science.gov (United States)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Favors, J.; Kelley, C.; Miller, T. N.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.

    2016-12-01

    NASA's DEVELOP National Program conducts rapid feasibility projects that enable the future workforce and current decision makers to collaborate and build capacity to use Earth science data to enhance environmental management and policy. The program communicates its results and applications to a broad spectrum of audiences through a variety of methods: "virtual poster sessions" that engage the general public through short project videos and interactive dialogue periods, a "Campus Ambassador Corps" that communicates about the program and its projects to academia, scientific and policy conference presentations, community engagement activities and end-of-project presentations, project "hand-offs" providing results and tools to project partners, traditional publications (both gray literature and peer-reviewed), an interactive website project gallery, targeted brochures, and through multiple social media venues and campaigns. This presentation will describe the various methods employed by DEVELOP to communicate the program's scientific outputs, target audiences, general statistics, community response and best practices.

  15. Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing.

    Science.gov (United States)

    Goske, Marilyn J; Applegate, Kimberly E; Boylan, Jennifer; Butler, Priscilla F; Callahan, Michael J; Coley, Brian D; Farley, Shawn; Frush, Donald P; Hernanz-Schulman, Marta; Jaramillo, Diego; Johnson, Neil D; Kaste, Sue C; Morrison, Gregory; Strauss, Keith J

    2008-12-01

    Communication campaigns are an accepted method for altering societal attitudes, increasing knowledge, and achieving social and behavioral change particularly within public health and the social sciences. The Image Gently(SM) campaign is a national education and awareness campaign in radiology designed to promote the need for and opportunities to decrease radiation to children when CT scans are indicated. In this article, the relatively new science of social marketing is reviewed and the theoretical basis for an effective communication campaign in radiology is discussed. Communication strategies are considered and the type of outcomes that should be measured are reviewed. This methodology has demonstrated that simple, straightforward safety messages on radiation protection targeted to medical professionals throughout the radiology community, utilizing multiple media, can affect awareness potentially leading to change in practice.

  16. Expectations and beliefs in science communication: Learning from three European gene therapy discussions of the early 1990s.

    Science.gov (United States)

    Meyer, Gitte

    2016-04-01

    There is widespread agreement that the potential of gene therapy was oversold in the early 1990s. This study, however, comparing written material from the British, Danish and German gene therapy discourses of the period finds significant differences: Over-optimism was not equally strong everywhere; gene therapy was not universally hyped. Against that background, attention is directed towards another area of variation in the material: different basic assumptions about science and scientists. Exploring such culturally rooted assumptions and beliefs and their possible significance to science communication practices, it is argued that deep beliefs may constitute drivers of hype that are particularly difficult to deal with. To participants in science communication, the discouragement of hype, viewed as a practical-ethical challenge, can be seen as a learning exercise that includes critical attention to internalised beliefs. © The Author(s) 2014.

  17. Using communication technology to support professional development in teaching science

    Science.gov (United States)

    Sundberg, Cheryl White

    The impact of collaboration via communication technology on follow-up to on-site professional development was the central focus of this hypothesis-generating study. The study used a combination of quantitative methodology and qualitative methodology. A convenient sample of 18 teachers was drawn from 208 teachers in an existing professional development program in science in a southeastern state. The statewide professional development program focused on energy education with a strong emphasis on using technology to enhance learning. Data sources included E-mail messages, lesson plans, photographs, workshop evaluations, surveys, and the report of an external reviewer. The study focused on two on-site workshops, February and June 2000 that were designed to model constructivist pedagogy and instruct teachers in effective utilization of computer-based laboratories in science classrooms. Follow-up to the on-site workshops was facilitated with several communication technologies (Internet, E-mail, telephone, and mail). The research found E-mail was the preferred mode for follow-up to on-site workshops because of the convenience of the medium. Barriers to effective distance professional development were time constraints, equipment failure, and lack of consistent Internet access to teachers in rural and under-served areas. Teacher characteristics of the sample, teacher efficacy, technical skill, experience, and constructivist pedagogy did not appear to impact the use of communication technologies as a means of follow-up to on-site professional development workshops. However, teacher efficacy might have negatively impacted effective implementation of calculator-based laboratory technology in the classroom. The study found E-mail was the most convenient and efficient way to facilitate follow-up to on-site professional development. Teacher characteristics (efficacy, technical skill, experience, and constructivist pedagogy) did not appear to impact the use of E-mail to facilitate

  18. SINET: Ethiopian Journal of Science

    African Journals Online (AJOL)

    ... bi-annual journal of science published by the Faculty of Science, Addis Ababa University, Ethiopia. The Journal is designed for an international readership both within Africa and overseas. Since its inception in 1978, SINET has been publishing original research articles, review articles, short communications and feature ...

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 2. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst. KRISHNA S INDALKAR CHETAN K KHATRI GANESH U CHATURBHUJ. Rapid Communication ...

  20. Glacial hazards: communicating the science and managing the risk

    Science.gov (United States)

    Reynolds, J. M.

    2009-04-01

    these scientific applications. Communicating the science to students and trying to excite them to the fun of applying these scientific disciplines in the field are important as part of science outreach. It is also important to communicate the science to those in government (local and national) within those countries affected by such hazards and to international funding agencies. There are two issues here: (a) using the media to a positive effect without alarming vulnerable and sensitive communities, and (b) providing the appropriate authorities with the necessary technical information about the hazards, their potential effects if catastrophe strikes, and how to manage the risk in an effective and timely fashion. For (a) where this is not handled correctly, the media are still ever too keen to headline potential catastrophes and unwittingly cause alarm among local communities. The so-called Palcacocha fiasco in the Cordillera Blanca, Peru, in April 2003 and the Imja Tsho media flurry of May 2008 in Nepal are but two recent examples. For (b) there needs to be a programme of interaction through workshops between the scientific community and key stakeholders in affected countries. Where these have been undertaken, such as in Bhutan, Nepal and Peru, the outcomes have been extremely productive and beneficial. However, much remains to be done in ensuring that authorities and funding agencies, for example, are aware of existing international guidelines on the assessment of glacial hazards that use objective methodologies, such as those funded by the British Government and published in 2003 (see www.geologyuk.com/mountain_ hazards_group/dfid.htm from which the guidelines can be downloaded in PDF format). Similar workshops, for example, are also being developed separately in Austria by the Glacier and Permafrost Hazard (GAPHAZ) Working Group and in Bhutan by the UNDP.

  1. International Conference on Systems Science 2016

    CERN Document Server

    Tomczak, Jakub

    2017-01-01

    This book gathers the carefully reviewed proceedings of the 19th International Conference on Systems Science, presenting recent research findings in the areas of Artificial Intelligence, Machine Learning, Communication/Networking and Information Technology, Control Theory, Decision Support, Image Processing and Computer Vision, Optimization Techniques, Pattern Recognition, Robotics, Service Science, Web-based Services, Uncertain Systems and Transportation Systems. The International Conference on Systems Science was held in Wroclaw, Poland from September 7 to 9, 2016, and addressed a range of topics, including systems theory, control theory, machine learning, artificial intelligence, signal processing, communication and information technologies, transportation systems, multi-robotic systems and uncertain systems, as well as their applications. The aim of the conference is to provide a platform for communication between young and established researchers and practitioners, fostering future joint research in syst...

  2. Models of science dynamics encounters between complexity theory and information sciences

    CERN Document Server

    Börner, Katy; Besselaar, Peter

    2012-01-01

    Models of science dynamics aim to capture the structure and evolution of science. They are developed in an emerging research area in which scholars, scientific institutions and scientific communications become themselves basic objects of research. In order to understand phenomena as diverse as the structure of evolving co-authorship networks or citation diffusion patterns, different models have been developed. They include conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, and computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive research agenda. This book aims to fill this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented here cover stochastic and statistical models, game-theoretic approaches, agent-based simulations, population-dy...

  3. Science versus News: On the Cutting Edge

    Science.gov (United States)

    Kinney, A. L.; French, V.; Villard, R.; Maran, S. P.

    1998-12-01

    This session is to aid communication between scientists and journalists, to motivate astronomers to be active in communicating their science to the public via the press, and to help both astronomers and journalists to understand the constraints under which the other group is operating. The session consists of two talks of about 20 minutes, followed by a panel discussion. The first talk is "What Makes a Topic News?" This segment, by Miles O'Brien of CNN News, takes the AAS audiences behind the scenes in the world of producing science news stories. --- What drives selection of assignments? How does the science reporter convince their editor to cover a story? What factors about television producing help and also hurt getting science subjects across to the public? The second talk is "Public Knowledge on Science: The Growing Gap Between Scientists and the Taxpayer." This presentation by Jon Miller, a public opinion expert will emphasize the problems scientists and society, face in communicating to the public. --- What does the public know about science and scientific method? How much translation is required to communicate with the public to engage their interest without unacceptable compromise of scientific accuracy? The final segment is a panel of both science journalists and astronomers moderated by Steve Maran. Together they will tackle a question that gets to the heart of the Science-Vs-News controversies, "When Should Results Go Public?" Published too soon, science is called "hype"; Published too late, it is no longer "news." Should all results be peer reviewed first, and is that a satisfactory prerequisite? Do scientists take self-serving advantage of the public interest by making announcements before results appear in journals? How do we address the public desire to experience science unfolding and to see real-time data such as planetary science missions? The panelists are Dr. David Helfand, from Columbia University, Dr. Bruce Margon, from the University of

  4. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  5. Science in the everyday world: Why perspectives from the history of science matter.

    Science.gov (United States)

    Pandora, Katherine; Rader, Karen A

    2008-06-01

    The history of science is more than the history of scientists. This essay argues that various modem "publics" should be counted as belonging within an enlarged vision of who constitutes the "scientific community"--and describes how the history of science could be important for understanding their experiences. It gives three examples of how natural knowledge-making happens in vernacular contexts: Victorian Britain's publishing experiments in "popular science" as effective literary strategies for communicating to lay and specialist readers; twentieth-century American science museums as important and contested sites for conveying both scientific ideas and ideas about scientific practice; and contemporary mass-mediated images of the "ideal" scientist as providing counternarratives to received professional scientific norms. Finally, it suggests how humanistic knowledge might help both scientists and historians grapple more effectively with contemporary challenges presented by science in public spheres. By studying the making and elaboration of scientific knowledge within popular culture, historians of science can provide substantively grounded insights into the relations between the public and professionals.

  6. Cognitive knowledge, attitude toward science, and skill development in virtual science laboratories

    Science.gov (United States)

    Babaie, Mahya

    The purpose of this quantitative, descriptive, single group, pretest posttest design study was to explore the influence of a Virtual Science Laboratory (VSL) on middle school students' cognitive knowledge, skill development, and attitudes toward science. This study involved 2 eighth grade Physical Science classrooms at a large urban charter middle school located in Southern California. The Buoyancy and Density Test (BDT), a computer generated test, assessed students' scientific knowledge in areas of Buoyancy and Density. The Attitude Toward Science Inventory (ATSI), a multidimensional survey assessment, measured students' attitudes toward science in the areas of value of science in society, motivation in science, enjoyment of science, self-concept regarding science, and anxiety toward science. A Virtual Laboratory Packet (VLP), generated by the researcher, captured students' mathematical and scientific skills. Data collection was conducted over a period of five days. BDT and ATSI assessments were administered twice: once before the Buoyancy and Density VSL to serve as baseline data (pre) and also after the VSL (post). The findings of this study revealed that students' cognitive knowledge and attitudes toward science were positively changed as expected, however, the results from paired sample t-tests found no statistical significance. Analyses indicated that VSLs were effective in supporting students' scientific knowledge and attitude toward science. The attitudes most changed were value of science in society and enjoyment of science with mean differences of 1.71 and 0.88, respectively. Researchers and educational practitioners are urged to further examine VSLs, covering a variety of topics, with more middle school students to assess their learning outcomes. Additionally, it is recommended that publishers in charge of designing the VSLs communicate with science instructors and research practitioners to further improve the design and analytic components of these

  7. Promoting children's agency and communication skills in an informal science program

    Science.gov (United States)

    Wulf, Rosemary; Hinko, Kathleen; Finkelstein, Noah

    2013-01-01

    The Partnerships for Informal Science Education in the Community (PISEC) program at the University of Colorado Boulder brings together university and community institutions to create an environment where K-12 students join with university educators to engage in inquiry-based scientific practices after school. In our original framing, these afterschool activities were developed to reinforce the traditional learning goals of the classroom, including mastering scientific content, skills and processes. Recently, the primary focus of the PISEC curriculum has been shifted towards the development of students' scientific identity, an explicit objective of informal learning environments. The new curriculum offers students more activity choices, affords opportunities for scientific drawings and descriptions, and provides incentive for students to design their own experiments. We have analyzed student science notebooks from both old and new curricula and find that with the redesigned curriculum, students exhibit increased agency and more instances of scientific communication while still demonstrating substantial content learning gains.

  8. Communicating the Science of Global Warming — the Role of Astronomers

    Science.gov (United States)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  9. The Science of Sex Differences in Science and Mathematics

    Science.gov (United States)

    Halpern, Diane F.; Benbow, Camilla P.; Geary, David C.; Gur, Ruben C.; Hyde, Janet Shibley; Gernsbacher, Morton Ann

    2014-01-01

    Summary Amid ongoing public speculation about the reasons for sex differences in careers in science and mathematics, we present a consensus statement that is based on the best available scientific evidence. Sex differences in science and math achievement and ability are smaller for the mid-range of the abilities distribution than they are for those with the highest levels of achievement and ability. Males are more variable on most measures of quantitative and visuospatial ability, which necessarily results in more males at both high- and low-ability extremes; the reasons why males are often more variable remain elusive. Successful careers in math and science require many types of cognitive abilities. Females tend to excel in verbal abilities, with large differences between females and males found when assessments include writing samples. High-level achievement in science and math requires the ability to communicate effectively and comprehend abstract ideas, so the female advantage in writing should be helpful in all academic domains. Males outperform females on most measures of visuospatial abilities, which have been implicated as contributing to sex differences on standardized exams in mathematics and science. An evolutionary account of sex differences in mathematics and science supports the conclusion that, although sex differences in math and science performance have not directly evolved, they could be indirectly related to differences in interests and specific brain and cognitive systems. We review the brain basis for sex differences in science and mathematics, describe consistent effects, and identify numerous possible correlates. Experience alters brain structures and functioning, so causal statements about brain differences and success in math and science are circular. A wide range of sociocultural forces contribute to sex differences in mathematics and science achievement and ability—including the effects of family, neighborhood, peer, and school

  10. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  11. French Science Festival Comes To Geneva

    CERN Multimedia

    2001-01-01

    From October 15 to 21, two local science communication groups, the Euroscience-Léman and the Passerelle Science-Cité of Geneva University within the framework of the French Fête de la Science will collaborate to offer a huge range of events.  With the theme of food and drink, all sorts of activities will be open to the public. There is something for every taste:  fun activities for young and old alike, science cafes and debates, theatre performances, and a visit to CERN.  For more information go to: Fête de la Science 2001

  12. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  13. Marine Science

    African Journals Online (AJOL)

    ination of high quality research generated in the Western Indian Ocean (WIO) region, ... fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships ... Science features state-of-the-art review articles and short communications. ... Non-metric multidimensional scaling (nMDS).

  14. Science Language Accommodation in Elementary School Read-Alouds

    Science.gov (United States)

    Glass, Rory; Oliveira, Alandeom W.

    2014-03-01

    This study examines the pedagogical functions of accommodation (i.e. provision of simplified science speech) in science read-aloud sessions facilitated by five elementary teachers. We conceive of read-alouds as communicative events wherein teachers, faced with the task of orally delivering a science text of relatively high linguistic complexity, open up an alternate channel of communication, namely oral discussion. By doing so, teachers grant students access to a simplified linguistic input, a strategy designed to promote student comprehension of the textual contents of children's science books. It was found that nearly half (46%) of the read-aloud time was allotted to discussions with an increased percentage of less sophisticated words and reduced use of more sophisticated vocabulary than found in the books through communicative strategies such as simplified rewording, simplified definition, and simplified questioning. Further, aloud reading of more linguistically complex books required longer periods of discussion and an increased degree of teacher oral input and accommodation. We also found evidence of reversed simplification (i.e. sophistication), leading to student uptake of scientific language. The main significance of this study is that it reveals that teacher talk serves two often competing pedagogical functions (accessible communication of scientific information to students and promotion of student acquisition of the specialized language of science). It also underscores the importance of giving analytical consideration to the simplification-sophistication dimension of science classroom discourse as well as the potential of computer-based analysis of classroom discourse to inform science teaching.

  15. Drilling Students’ Communication Skill through Science, Environment, Technology, and Society (SETS)-Based Learning

    Science.gov (United States)

    Al-Farisi, B. L.; Tjandrakirana; Agustini, R.

    2018-01-01

    Student’s communication skill paid less attention in learning activity at school, even though communication skill is needed by students in the 21st century based on the demands of new curriculum in Indonesia (K13). This study focuses on drilling students’ communication skill through science, environment, technology, and society (SETS)-based learning. The research is a pre-experimental design with a one-shot case study model involving 10 students of ninth-grader of SMPN 2 Manyar, Gresik. The research data were collected through observation method using communication observation sheet. The data were analyzed using the descriptive qualitative method. The result showed that students’ communication skill reached the completeness of skills decided both individually and classically in the curriculum. The fundamental result of this research that SETS-based learning can be used to drill students’ communication skill in K13 context.

  16. Using Role-Play for Expert Science Communication with Professional Stakeholders in Flood Risk Management

    Science.gov (United States)

    McEwen, Lindsey; Stokes, Alison; Crowley, Kate; Roberts, Carolyn

    2014-01-01

    This paper explores role-play pedagogies in learning and communicating about cutting-edge flood science by flood risk management professionals in local government. It outlines role-play process/structure and evaluates participant perceptions of their learning experiences. Issues were impacts of prior role-play experience on attitudes brought to…

  17. Setting up crowd science projects.

    Science.gov (United States)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  18. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments.

    Science.gov (United States)

    Jönsson, Anna Maria; Anderbrant, Olle; Holmér, Jennie; Johansson, Jacob; Schurgers, Guy; Svensson, Glenn P; Smith, Henrik G

    2015-04-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science-stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science-stakeholder communication. By this, we hope to stimulate a discussion among the science-stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models.

  19. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  20. Social Science Boot Camp: Development and Assessment of a Foundational Course on Academic Literacy in the Social Sciences

    Science.gov (United States)

    Eaton, Judy; Long, Jennifer; Morris, David

    2018-01-01

    We developed a course, as part of our institution's core program, which provides students with a foundation in academic literacy in the social sciences: how to find, read, critically assess, and communicate about social science research. It is not a research methods course; rather, it is intended to introduce students to the social sciences and be…

  1. Promoting Creative Thinking and Expression of Science Concepts among Elementary Teacher Candidates through Science Content Movie Creation and Showcasing

    Science.gov (United States)

    Hechter, Richard P.; Guy, Mark

    2010-01-01

    This article reports the phases of design and use of video editing technology as a medium for creatively expressing science content knowledge in an elementary science methods course. Teacher candidates communicated their understanding of standards-based core science concepts through the creation of original digital movies. The movies were assigned…

  2. How Do People Think about the Science They Encounter in Fiction? Undergraduates Investigate Responses to Science in "The Simpsons"

    Science.gov (United States)

    Orthia, Lindy A.; Dobos, Amy R.; Guy, Tristan; Kan, Shanan Z.; Keys, Siân E.; Nekvapil, Stefan; Ngu, Dalton H. Y.

    2012-01-01

    In this study, students and staff involved in an undergraduate science communication course investigated people's responses to a science-rich episode of the animated sitcom "The Simpsons". Using focus groups, we sought to find out if and how the episode influenced our 34 participants' perceptions of science, but our results problematised…

  3. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  4. A Library Research Course for Graduate and Professional Students in Communication Sciences and Disorders

    Science.gov (United States)

    Tag, Sylvia G.

    2007-01-01

    This article describes the formation and content of a required library and information research course for graduate and professional students enrolled in the Communication Sciences and Disorders Master of Arts degree program at Western Washington University. The course was created as a result of library assessment, student feedback, and faculty…

  5. The Influence of Materials Science and Engineering Undergraduate Research Experiences on Public Communication Skills

    Science.gov (United States)

    Ing, Marsha; Fung, Wenson W.; Kisailus, David

    2013-01-01

    Communicating research findings with others is a skill essential to the success of future STEM professionals. However, little is known about how this skill can be nurtured through participating in undergraduate research. The purpose of this study is to quantify undergraduate participation in research in a materials science and engineering…

  6. School of Political Science

    Directory of Open Access Journals (Sweden)

    A. D. Voskresensky

    2014-01-01

    Full Text Available Out of all the departments of political sciences in Russia - the Department at MGIMO-University is probably the oldest one. In fact it is very young. While MGIMO-University is celebrating its 70th anniversary the Department of Political Sciences turns 15. Despite the fact that political analyst is a relatively new profession in Russia, it acquired a legal standing only in the 1990s, the political science school at MGIMO-University is almost as old as the university itself. Unlike many other universities, focused on the training teachers of political science or campaign managers MGIMO-University has developed its own unique political science school of "full cycle", where students grow into political sciences from a zero level up to the highest qualifications as teachers and researchers, and campaign managers, consultants and practitioners. The uniqueness of the school of political science at MGIMO-University allows its institutional incarnation -the Department of Political Science - to offer prospective studentsa training in a wide range of popular specialties and specializations, while ensuring a deep theoretical and practical basis of the training. Studying at MGIMO-University traditionally includes enhanced linguistic component (at least two foreign languages. For students of international relations and political science learning foreign languages is particularly important.It allows not only to communicate, but also to produce expertise and knowledge in foreign languages.

  7. Labour market expectation of Nigerian computer science ...

    African Journals Online (AJOL)

    ... of Nigerian computer science / Information Communication Technology (ICT) graduates. ... It also x-rays the women performance in Computer Science. ... key players were analyzed using variables such as competence, creativity, innovation, ...

  8. U-Science (Invited)

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to

  9. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  10. Ice Flows: A Game-based Learning approach to Science Communication

    Science.gov (United States)

    Le Brocq, Anne

    2017-04-01

    Game-based learning allows people to become immersed in an environment, and learn how the system functions and responds to change through playing a game. Science and gaming share a similar characteristic: they both involve learning and understanding the rules of the environment you are in, in order to achieve your objective. I will share experiences of developing and using the educational game "Ice Flows" for science communication. The game tasks the player with getting a penguin to its destination, through controlling the size of the ice sheet via ocean temperature and snowfall. Therefore, the game aims to educate the user about the environmental controls on the behaviour of the ice sheet, whilst they are enjoying playing a game with penguins. The game was funded by a NERC Large Grant entitled "Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica", so uses data from the Weddell Sea sector of the West Antarctic Ice Sheet to generate unique levels. The game will be easily expandable to other regions of Antarctica and beyond, with the ultimate aim of giving a full understanding to the user of different ice flow regimes across the planet.

  11. What Makes You Tick? An Empirical Study of Space Science Related Social Media Communications Using Machine Learning

    Science.gov (United States)

    Hwong, Y. L.; Oliver, C.; Van Kranendonk, M. J.

    2016-12-01

    The rise of social media has transformed the way the public engages with scientists and science organisations. `Retweet', `Like', `Share' and `Comment' are a few ways users engage with messages on Twitter and Facebook, two of the most popular social media platforms. Despite the availability of big data from these digital footprints, research into social media science communication is scant. This paper presents the results of an empirical study into the processes and outcomes of space science related social media communications using machine learning. The study is divided into two main parts. The first part is dedicated to the use of supervised learning methods to investigate the features of highly engaging messages., e.g. highly retweeted tweets and shared Facebook posts. It is hypothesised that these messages contain certain psycholinguistic features that are unique to the field of space science. We built a predictive model to forecast the engagement levels of social media posts. By using four feature sets (n-grams, psycholinguistics, grammar and social media), we were able to achieve prediction accuracies in the vicinity of 90% using three supervised learning algorithms (Naive Bayes, linear classifier and decision tree). We conducted the same experiments on social media messages from three other fields (politics, business and non-profit) and discovered several features that are exclusive to space science communications: anger, authenticity, hashtags, visual descriptions and a tentative tone. The second part of the study focuses on the extraction of topics from a corpus of texts using topic modelling. This part of the study is exploratory in nature and uses an unsupervised method called Latent Dirichlet Allocation (LDA) to uncover previously unknown topics within a large body of documents. Preliminary results indicate a strong potential of topic model algorithms to automatically uncover themes hidden within social media chatters on space related issues, with

  12. Atomic energy and science disclosure in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2011-01-01

    In September 2009, considering the existing interest in public communication of scientific activities that are developed locally, a group of researchers and communicators from Córdoba, decided to form the Network of Outreach of Córdoba. Its stated objectives of the Constitutive Act are presented in this paper along with the main activities undertaken to date and plans for the future. Since that time, the Management of Institutional Relations of the CNEA in Córdoba became involved in public circulation of scientific knowledge, in what has proven to be a framework that ensures an adequate level of debate to present nuclear national activities. This will involve collaborative efforts with professional institutions involved in research, teaching and communicating science. The main objective was to encourage the transfer of knowledge to optimize available resources, improving the methodological approaches and generating creative products tailored to regional needs, in order to promote the democratization of science and nuclear technology. This paper consists of two parts. On the one hand describes the activities of the Network during the year 2011 shows results with particular emphasis on topics related to atomic energy, and secondly, shows the desirability of promoting such activities in the CNEA. Among the main actions considered, highlighting the institutional participation in the official Ministry of Science and Technology Fair participation in Science and Technology Provincial Cordoba 2011, issue of the radio program 'Green Light: Science and technology everyday life' by National Technological University Radio and a network of forty provincial stations, and active participation in the Course of Specialization in Public Communication of Science and Scientific Journalism, organized by the School of Information Sciences and the Faculty of Mathematics, Physics and Astronomy, National University of Cordoba, among others. (author) [es

  13. Science Express: Out-of-Home-Media to Communicate Climate Change (Invited)

    Science.gov (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R.

    2013-12-01

    Science Express is an initiative to explore, develop, and test various approaches to using Out-of-Home-Media (OHM) to engage adults riding mass transit. To date, three projects represent this work: 1) Carbon Smarts Conference, 2) Cool Science, and 3) ScienceToGo.org. While the aim of each project is different, together they serve an immediate need to understand how OHM can be leveraged as an informal science learning medium. Using Climate Change as the content focus, each project is a variation on the theme of understanding mass transit as a form of mobile classroom for riders. The basic idea behind these initiatives is to engage individuals who do not necessarily read the science magazines, listen to science radio shows, or watch science programming on television. Science Express is about bringing the science learning opportunity to the audience during their daily routines. Mass Transit provides an ideal opportunity for engaging the disengaged in science learning since they represent a ';captive' audience while waiting at the bus stop, standing on the platform, riding inside the bus or train. These ';downtimes' present informal science educators with the opportunity to foster some science learning. With the advent of smartphone technology and its explosion in popularity among consumers, OHM is poised to offer riders a new kind of real time learning experience. The Science Express projects aim to understand the strengths and weaknesses of this new model for informal science learning so as to refine and improve its effectiveness at achieving desired goals. While the Science Express model for informal science learning could be used to foster understanding about any relevant scientific content, the research team chose to use Climate Change as the focus. Climate Change seemed like an obvious because of its timeliness, complexity, robust scientific foundation, and presence in popular media. Nearly all our riders have heard of 'Climate Change' or 'Global Warming', but a

  14. Improving Science Communication with Responsive Web Design

    Science.gov (United States)

    Hilverda, M.

    2013-12-01

    Effective science communication requires clarity in both content and presentation. Content is increasingly being viewed via the Web across a broad range of devices, which can vary in screen size, resolution, and pixel density. Readers access the same content from desktop computers, tablets, smartphones, and wearable computing devices. Creating separate presentation formats optimized for each device is inefficient and unrealistic as new devices continually enter the marketplace. Responsive web design is an approach that puts content first within a presentation design that responds automatically to its environment. This allows for one platform to be maintained that can be used effectively for every screen. The layout adapts to screens of all sizes ensuring easy viewing of content for readers regardless of their device. Responsive design is accomplished primarily by the use of media queries within style sheets, which allows for changes to layout properties to be defined based on media types (i.e. screen, print) and resolution. Images and other types of multimedia can also be defined to scale automatically to fit different screen dimensions, although some media types require additional effort for proper implementation. Hardware changes, such as high pixel density screens, also present new challenges for effective presentation of content. High pixel density screens contain a greater number of pixels within a screen area increasing the pixels per inch (PPI) compared to standard screens. The result is increased clarity for text and vector media types, but often decreased clarity for standard resolution raster images. Media queries and other custom solutions can assist by specifying higher resolution images for high pixel density screens. Unfortunately, increasing image resolution results in significantly more data being transferred to the device. Web traffic on mobile devices such as smartphones and tablets is on a steady growth trajectory and many mobile devices around

  15. 2017 International Conference on Space Science and Communication

    Science.gov (United States)

    2017-05-01

    Table of Content Preface 2017 International Conference on Space Science and Communication “Space Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration & Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  16. 2017 International Conference on Space Science and Communication

    International Nuclear Information System (INIS)

    2017-01-01

    Table of Content Preface 2017 International Conference on Space Science and Communication “Space Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration and Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  17. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    lesson structure, (d) meaning of model/modeling, and (e) Which comes first?--science content learning or science exhibit exploration. These challenges were considered and discussed as opportunities for personal growth. The third space allowed for participant reflection and transformation in formal-informal collaboration and communication. In article two, teacher-students' classroom discourse transcripts corresponding to the workbook lessons from the IQWST Physics Unit were analyzed. Four instructional events were selected for discourse analysis: focusing on the inquiry process; understanding about kinetic energy; formulating scientific explanations; and translating energy transformation. The discourse-excerpts representing the aforementioned instructional events revealed four teacher behaviors: teacher-posed questions, teacher-explanations, teacher responses, and teacher reference to past learning. Of these teacher behaviors, teacher-posed questions dominated and these consist of fill-in-the-blank, affirmation, second-order, descriptive, and explanatory. Article three represented the results of the IQWST Unit Achievement Test (IUAT) and students' understanding of the concepts of energy and energy transformation. The IUAT indicated that students (N=37) in the experimental group taught with the science center exhibits augmented IQWST curriculum unit achieved scores (puse standards-driven science curriculum whether or not augmented with science exhibits. The three qualitative analyses of data in article three indicated that students had reasonable understandings of the forms and transformation of energy. They were also able to explain the working of science exhibits using their understandings of the energy concepts developed in class. The first study (article 1) implies that a third space allows for participant reflection and transformation in formal-informal collaboration and communication. The second study (article 1) implies the following: (a) the teacher's struggle with

  18. Constructivist learning at the science-policy interface: tsunami science informing disaster policy in West Sumatra

    Science.gov (United States)

    McCaughey, J.; Dewi, P. R.; Natawidjaja, D. H.; Sieh, K. E.

    2012-12-01

    Science communication often falls short when it is based on the blank-slate assumption that if we can just get the message right, then the information will be received and understood as intended. In contrast, constructivist learning theory and practice suggest that we all actively construct our knowledge from a variety of information sources and through particular, novel associations with our prior knowledge. This constructed knowledge can be quite different from any of its original sources, such as a particular science communication. Successful communication requires carefully examining how people construct their knowledge of the topic of interest. Examples from our outreach work to connect hazard-science research with disaster-risk reduction practice in West Sumatra illustrate the mismatch between expert and stakeholder/public mental models of the characteristics of tsunamigenic earthquakes. There are incorrect conceptions that seawater always withdraws before a tsunami, and that a tsunami can be produced by an earthquake only if the epicenter is located at the ocean trench. These incorrect conceptions arise from generalizations based on recent, local earthquake experiences, as well as from unintended consequences of science outreach, science education, and, in one case, the way that tsunami modelling is graphically presented in scientific journals. We directly address these incorrect conceptions in our discussions with government officials and others; as a result, the local disaster-management agency has changed its policies to reflect an increased understanding of the hazard. This outreach success would not have been possible without eliciting the prior knowledge of our audiences through dialogue.

  19. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  20. Science communication from women in nuclear fuel development

    International Nuclear Information System (INIS)

    Roy, S.B.

    2013-01-01

    In India, nuclear fuel is required for operating both nuclear research reactors and power reactors. Indian women are extensively involved in nuclear fuel research and production activities. However, the nature and extent of their involvement differs based only on the job required and not on any gender basis. Excluding a few specific safety and security issues, therefore, science and technology communication really does not change according to the gender of the scientist or technologist. Presently in India, nuclear grade uranium metal is required for fuelling research reactors and nuclear grade uranium oxide is being utilized as fuel for power reactors. Hydrometallurgical operations using specific solvents are being used for achieving 'nuclear grade' in both sectors. For production of uranium oxide, purified uranium compounds need to get calcined and reduced for obtaining uranium dioxide of various qualities

  1. Fostering science communication and outreach through video production in Dartmouth's IGERT Polar Environmental Change graduate program

    Science.gov (United States)

    Hammond Wagner, C. R.; McDavid, L. A.; Virginia, R. A.

    2013-12-01

    Dartmouth's NSF-supported IGERT Polar Environmental Change graduate program has focused on using video media to foster interdisciplinary thinking and to improve student skills in science communication and public outreach. Researchers, educators, and funding organizations alike recognize the value of video media for making research results more accessible and relevant to diverse audiences and across cultures. We present an affordable equipment set and the basic video training needed as well as available Dartmouth institutional support systems for students to produce outreach videos on climate change and its associated impacts on people. We highlight and discuss the successes and challenges of producing three types of video products created by graduate and undergraduate students affiliated with the Dartmouth IGERT. The video projects created include 1) graduate student profile videos, 2) a series of short student-created educational videos for Greenlandic high school students, and 3) an outreach video about women in science based on the experiences of women students conducting research during the IGERT field seminar at Summit Station and Kangerlussuaq, Greenland. The 'Science in Greenland--It's a Girl Thing' video was featured on The New York Times Dot Earth blog and the Huffington Post Green blog among others and received international recognition. While producing these videos, students 1) identified an audience and created story lines, 2) worked in front of and behind the camera, 3) utilized low-cost digital editing applications, and 4) shared the videos on multiple platforms from social media to live presentations. The three video projects were designed to reach different audiences, and presented unique challenges for content presentation and dissemination. Based on student and faculty assessment, we conclude that the video projects improved student science communication skills and increased public knowledge of polar science and the effects of climate change.

  2. UNISWA Research Journal of Agriculture, Science and Technology ...

    African Journals Online (AJOL)

    The UNISWA Research Journal of Agriculture, Science and Technology is a publication of the Faculties of Agriculture, Health Sciences and Science of the University of Swaziland. It publishes results of original research or continuations of previous studies that are reproducible. Review articles, short communications and ...

  3. UNISWA Research Journal of Agriculture, Science and Technology

    African Journals Online (AJOL)

    The UNISWA Research Journal of Agriculture, Science and Technology is a publication of the Faculties of Agriculture, Health Sciences and Science of the University of Swaziland. It publishes results of original research or continuations of previous studies that are reproducible. Review articles, short communications and ...

  4. Exhibitions as learning environments: a review of empirical research on students’ science learning at Natural History Museums, Science Museums and Science Centres

    Directory of Open Access Journals (Sweden)

    Nils Petter Hauan

    2014-04-01

    Full Text Available One aim for many natural history museums, science museums and science centres is to contribute to school-related learning in science. In this article we review published empirical studies of this challenging area. The review indicates that the effectiveness of educational activities at different types of science-communication venues (SCV in supporting students’ science learning varies. There is also evidence of interesting differences between activities, depending on how these activities are designed. Firstly, these activities can stimulate interest and conceptual focus through a well-designed combination of structure and openness. Secondly, they can stimulate talks and explorations related to the presented topics. We have identified two possible areas which might prove fruitful in guiding further research: an exploration of the effects of different designs for guided exploratory learning, and an evaluation of the effectiveness of educational activities by studying the presence and quality of the learning processes visitors are engaged in. 

  5. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  6. Communication of research to practice in library and information science: Closing the gap

    OpenAIRE

    G. Haddow; J. E. Klobas

    2004-01-01

    Reviews the literature in which claims about the gap between research and practice in library and information science, and suggestions for remediation, are made. Provides a classification of the gaps and a model of the process of research-practice communication. Analysis of research results shows only one strategy - researchers publish accounts of their research in practitioner journals - has been demonstrated to effectively close the gap.

  7. The latest science and human

    International Nuclear Information System (INIS)

    Kim, Sang Il; Lee, Hae Du; Lee, Geun Hui

    1985-04-01

    The book is collective reports on the science and human. The contents of this book are life ethics and technology ethics, conception of human and human science, biotechnology. The tower of Babel in computer age, human brain and robot, new media and communication innovation, status of computer engineering, current condition of development of new media, mass media and violence, crime and scientification of terror, condition of the life and peace, period of machine and literature, religious prophecy and scientific prophecy and hi-tech age and education of science.

  8. The latest science and human

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Il; Lee, Hae Du; Lee, Geun Hui

    1985-04-15

    The book is collective reports on the science and human. The contents of this book are life ethics and technology ethics, conception of human and human science, biotechnology. The tower of Babel in computer age, human brain and robot, new media and communication innovation, status of computer engineering, current condition of development of new media, mass media and violence, crime and scientification of terror, condition of the life and peace, period of machine and literature, religious prophecy and scientific prophecy and hi-tech age and education of science.

  9. A "CASE" Study on Developing Science Communication and Outreach Skills of University Graduate Student Researchers in Alaska

    Science.gov (United States)

    Tedesche, M. E.; Conner, L.

    2015-12-01

    Well rounded scientific researchers are not only experts in their field, but can also communicate their work to a multitude of various audiences, including the general public and undergraduate university students. Training in these areas should ideally start during graduate school, but many programs are not preparing students to effectively communicate their work. Here, we present results from the NSF-funded CASE (Changing Alaska Science Education) program, which was funded by NSF under the auspices of the GK-12 program. CASE placed science graduate students (fellows) in K-12 classrooms to teach alongside of K-12 teachers with the goal of enhancing communication and teaching skills among graduate students. CASE trained fellows in inquiry-based and experiential techniques and emphasized the integration of art, writing, and traditional Alaska Native knowledge in the classroom. Such techniques are especially effective in engaging students from underrepresented groups. As a result of participation, many CASE fellows have reported increased skills in communication and teaching, as well as in time management. These skills may prove directly applicable to higher education when teaching undergraduate students.

  10. Science fair: Is it worth the work? A qualitative study on deaf students' perceptions and experiences regarding science fair in primary and secondary school

    Science.gov (United States)

    Smith, Vivian Lee

    Science fairs have a long history in American education. They play an important role for establishing inquiry-based experiences in a science classroom. Students may be more motivated to learn science content when they are allowed to choose their own science fair topics. The purpose of this study was to examine Deaf college students' perceptions and experiences regarding science fair participation during primary and/or secondary school and determine the influence of science fair involvement on the development of language skills, writing skills, and higher order thinking skills as well as its impact on choice of a STEM major. This study examined responses from Deaf students attending Gallaudet University and National Technical Institute for the Deaf (NTID) majoring in a Science, Technology, Engineering, or Math (STEM) field. An electronic questionnaire and a semi-structured interview were used to collect data. The electronic questionnaire was divided into two strands: demographics and science fair experience. Twenty-one respondents participated in the questionnaire and ten participants were interviewed. A cross-case analysis revealed communication was the key to a successful science fair experience. Findings showed the educational background of participants influenced their perspective regarding the experience of a science fair. When communicating through American Sign Language, the science fair experience was more positive. When communicating through an interpreter or having no interpreter at all, the science fair experience was viewed in a negative light. The use of science fairs to enhance language development, writing skills, and higher order thinking skills was supported. Teachers and parents were strong influences for Deaf students participating in a science fair. Participation in a science fair did influence students to choose a STEM major but there were other considerations as well.

  11. The L'Aquila process and the perils of bad communication of science

    Science.gov (United States)

    Alberti, Antonio

    2013-04-01

    Responsibilities and observance of ethical behaviour by scientists have increased more than ever with the advancement of science and of the social and economic development of a country. Nowadays, geoscientists are often charged by local and/or national and international authorities with the task of providing ways to foster economic development while protecting human life and safeguarding the environment. But besides technical and scientific expertise, in a democratic country all this requires efficient ways and various channels of scientific divulgation. Geoscientists themselves should be involved in these procedures, or at least they should be called to verify that correct communication is actually released. Unfortunately, it seems that awareness of such new and ever-increasing responsibilities is not yet being always realized at a needed level. The question is especially sensible in Italy, a country in which the hydro-geological, seismological, volcanological and coastal set-up requires careful technical and scientific treatment. Given the fragility of the natural system, the role of geoscientists should not be restricted to the delivery of scientific expertise: in fact, and perhaps more than elsewhere, problems are compounded by the need of communication based on sound science not only to governing authorities, but also to the public at large, possibly including also an array of mass media. Many international organizations have been wrongly interpreting the accusation and especially the sentence at the first stage of the L'Aquila process as a problem of impossibility to predict earthquakes. But the recently published motivation of the sentence seems to have brought to light the lack of a scrupulous overview of the situation prior to the disastrous seismic event, practically leaving the task of public information to the judgment or perception of the national agency in charge of natural hazards. It turned out that a major outcome of the process, apart from the

  12. Technology and Communications Coursework: Facilitating the Progression of Students with Learning Disabilities through High School Science and Math Coursework.

    Science.gov (United States)

    Shifrer, Dara; Callahan, Rebecca

    2010-09-01

    Students identified with learning disabilities experience markedly lower levels of science and mathematics achievement than students who are not identified with a learning disability. Seemingly compounding their disadvantage, students with learning disabilities also complete more credits in non-core coursework-traditionally considered non-academic coursework-than students who are not identified with a learning disability. The Education Longitudinal Study of 2002, a large national dataset with both regular and special education high school students, is utilized to determine whether credit accumulation in certain types of non-core coursework, such as Technology and Communications courses, is associated with improved science and math course-taking outcomes for students with learning disabilities. Results show that credit accumulation in Technology and Communications coursework uniquely benefits the science course-taking, and comparably benefits the math course-taking, of students identified with learning disabilities in contrast to students who are not identified with a learning disability.

  13. The APECS Virtual Poster Session: a virtual platform for science communication and discussion

    Science.gov (United States)

    Renner, A.; Jochum, K.; Jullion, L.; Pavlov, A.; Liggett, D.; Fugmann, G.; Baeseman, J. L.; Apecs Virtual Poster Session Working Group, T.

    2011-12-01

    The Virtual Poster Session (VPS) of the Association of Polar Early Career Scientists (APECS) was developed by early career scientists as an online tool for communicating and discussing science and research beyond the four walls of a conference venue. Poster sessions often are the backbone of a conference where especially early career scientists get a chance to communicate their research, discuss ideas, data, and scientific problems with their peers and senior scientists. There, they can hone their 'elevator pitch', discussion skills and presentation skills. APECS has taken the poster session one step further and created the VPS - the same idea but independent from conferences, travel, and location. All that is needed is a computer with internet access. Instead of letting their posters collect dust on the computer's hard drive, scientists can now upload them to the APECS website. There, others have the continuous opportunity to comment, give feedback and discuss the work. Currently, about 200 posters are accessible contributed by authors and co-authors from 34 countries. Since January 2010, researchers can discuss their poster with a broad international audience including fellow researchers, community members, potential colleagues and collaborators, policy makers and educators during monthly conference calls via an internet platform. Recordings of the calls are available online afterwards. Calls so far have included topical sessions on e.g. marine biology, glaciology, or social sciences, and interdisciplinary calls on Arctic sciences or polar research activities in a specific country, e.g. India or Romania. They attracted audiences of scientists at all career stages and from all continents, with on average about 15 persons participating per call. Online tools like the VPS open up new ways for creating collaborations and new research ideas and sharing different methodologies for future projects, pushing aside the boundaries of countries and nations, conferences

  14. The Accidental Spokesperson - Science Communication during the 2010-2011 Christchurch, NZ Earthquake Sequence

    Science.gov (United States)

    Furlong, K. P.

    2015-12-01

    Beginning September 4, 2010, with a Mw 7.1 earthquake, a multi-year earthquake sequence changed life in Canterbury NZ. Information communicated by a core group of university-based earthquake scientists provided accessible information to the general public, the press, and policy makers. Although at the start of this prolonged sequence, no one anticipated its longevity nor its impact, this initial (and largest) event did catalyze a demand from the public and policy makers for information and led to some important lessons in how to communicate science to a broad audience as an event unfolds and when it is personally important to the general public. Earthquakes are neither new nor rare to New Zealand, but the Christchurch area was seen as likely suffering only from the far-field effects of a major earthquake on the Alpine Fault or Marlborough fault system. Policy makers had planned and expected that another city such as Wellington would be where they would need to respond. As a visiting faculty at the University of Canterbury, with expertise in earthquake science, I was entrained and engaged in the response - both the scientific and communication aspects. It soon became clear that formal press releases and statements from government ministries and agencies did little to address the questions and uncertainties that the public, the press, and even the policy makers had. Rather, a series of public lectures, broad ranging discussions with the media (both print and radio/television), and OpEd pieces provided by this small group of earthquake focused faculty at the University of Canterbury provided the background information, best estimates of what could occur in the future, and why Earth was acting as it was. This filled a critical gap in science information going to the public, and helped build a level of trust in the public that became critically needed after the situation escalated with subsequent damaging events through early-mid 2011, and onward.

  15. The language of science and communication with Congress

    Science.gov (United States)

    Napolitano, Grace F.

    2011-11-01

    "There are in fact two things, science and opinion; the former begets knowledge, the latter, ignorance." So stated Hippocrates back in 400 C.E. Today we find ourselves in a tug of war between science and opinion as we try to fashion a path forward on many important societal issues, including the use of science in addressing the water, energy, and climate change issues that are growing in importance. Our job in Congress is making sure we use the knowledge gained from asking questions and apply the responses properly in the decision-and policy-making processes. While that all sounds good in theory, the application is at best cumbersome, often leaving us with more questions than answers.

  16. Locating Science in Society across Europe

    DEFF Research Database (Denmark)

    Mejlgaard, Niels; Bloch, Carter Walter; Degn, Lise

    2012-01-01

    -level and individual-level data, we further show a connection between national differences and the public’s satisfaction with their own role as participants in science and technology. In countries where science communication culture is weak, where science plays a minor role in policy-making, and where institutions......In search of differences and similarities in relation to the role and location of science in European societies, we use empirical information from 37 countries as a platform for developing typologies concerning dimensions of science in society. These capture clusters of countries and reveal...... significant heterogeneity across Europe, providing a point of departure for international learning, while also demonstrating the challenges that the European institutions face in their promotion of a European Research Area, shared priorities and a common model of science in society. Combining national...

  17. The Changing Landscape of Science News

    Science.gov (United States)

    Riordon, James

    2011-03-01

    Social media are revolutionizing the ways that people communicate and the ways they get their news. Traditional news outlets are in decline, and no subject area is declining faster than science news. Every day there are fewer professional science journalists working in traditional media. On the other hand, ever greater numbers of scientists, science enthusiasts, and online journalists are turning to blogs, podcasts, eBooks, twitter feeds, and social media sites like Facebook and Tumbler to spread news about science. I will present an overview of the state of science journalism and speculate on the likely directions it seems to be heading. I will also offer some general guidelines to help scientists understand what makes a good science news story, as well as suggesting ways that they can get their work in the news.

  18. Infoethics – a New Trend in the Science

    Directory of Open Access Journals (Sweden)

    Michał Wyrostkiewicz

    2016-12-01

    Full Text Available Infoethics is a concept that arises at the interface between normative science, cognition and communication sciences and media sciences. It is a complete novelty. The conducted research recognizes it among many scientific concepts and finds its proper place and creates foundations of its research methodology.

  19. THE USE OF NARRATIVES IN SCIENCE COMMUNICATION: An example of the use of comic strips (narratives) in communicating scientific information about sustainable development.

    Science.gov (United States)

    Negrete, Aquiles

    2015-04-01

    It is quite reasonable to claim that narratives can include, explain and recreate science and that this means of science communication is generally popular. This idea seems to be supported by the fact that many contemporary authors who include science as a theme in their work receive a good reception among the public (at least in Britain). Novels like Fermat's Last Theorem by Simon Singh, Longitude by Dava Sobel and Neuromancer by William Gibson stayed on the best seller lists for weeks. Plays like Copenhagen by Michael Frayn, Arcadia by Tom Stoppard, Oxigen by Carl Djerassi and Ronald Hoffmann, Diary of a steak by Deborah Levy as well as Blue heart by Caryl Churchill enjoyed complete sell-outs in London and other cities in Britain. The explanation for this popularity seems to be that narratives are amusing, attractive, and interesting. Therefore, we can maintain that they are popular. But are they also a long-lasting way of transmitting knowledge? Do people remember scientific information conveyed by this means better than they remember the traditional formats like paradigmatic textbooks? These are questions that need to be addressed. To understand how narratives organize, represent and convey information, it is an important task to evaluate the advantages that this media offers for the communication of science. Narratives include several characteristics that make them memorable, understandable, enjoyable and a good way to present and communicate knowledge. Some of these attributes are achieved through narrative structures, including literary devices. In this research I discuss how the general public is familiar with the narrative structure of a story, how schemas for these narrative structures allow identification, induce emotions and promote understanding - important elements for the learning and memory process. I also look at how individually the narrative resources (or literary devices), in addition to their aesthetic value, can also work as mnemonic

  20. Ethiopian Journal of Science and Technology: Editorial Policies

    African Journals Online (AJOL)

    Ethiopian Journal of Science and Technology: Editorial Policies ... Science and Technology (EJST) publishes high quality original research articles, reviews, short communications, ... Professor Afework Bekele, Addis Ababa University, Ethiopia.