WorldWideScience

Sample records for schroedinger functional equation

  1. Wigner function and Schroedinger equation in phase-space representation

    International Nuclear Information System (INIS)

    Chruscinski, Dariusz; Mlodawski, Krzysztof

    2005-01-01

    We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation

  2. Quantum gravitational corrections to the functional Schroedinger equation

    International Nuclear Information System (INIS)

    Kiefer, C.; Singh, T.P.

    1990-10-01

    We derive corrections to the Schroedinger equation which arise from the quantization of the gravitational field. This is achieved through an expansion of the full functional Wheeler-DeWitt equation with respect to powers of the Planck mass. We demonstrate that the corrections terms are independent of the factor ordering which is chosen for the gravitational kinetic term. Although the corrections are numerically extremely tiny, we show how they lead, at least in principle, to shift in the spectral lines of hydrogen type atoms. We discuss the significance of these corrections for quantum field theory near the Planck scale. (author). 35 refs

  3. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  4. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  5. The frictional Schroedinger-Newton equation in models of wave function collapse

    Energy Technology Data Exchange (ETDEWEB)

    Diosi, Lajos [Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, PO Box 49 (Hungary)

    2007-05-15

    Replacing the Newtonian coupling G by -iG, the Schroedinger--Newton equation becomes {sup f}rictional{sup .} Instead of the reversible Schroedinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.

  6. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  7. A reliable treatment for nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.

    2007-01-01

    Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation

  8. Some physical applications of fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Guo Xiaoyi; Xu Mingyu

    2006-01-01

    The fractional Schroedinger equation is solved for a free particle and for an infinite square potential well. The fundamental solution of the Cauchy problem for a free particle, the energy levels and the normalized wave functions of a particle in a potential well are obtained. In the barrier penetration problem, the reflection coefficient and transmission coefficient of a particle from a rectangular potential wall is determined. In the quantum scattering problem, according to the fractional Schroedinger equation, the Green's function of the Lippmann-Schwinger integral equation is given

  9. Computation of Green function of the Schroedinger-like partial differential equations by the numerical functional integration

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Shahbagian, R.R.; Zhidkov, E.P.

    1991-01-01

    A new method for numerical solution of the boundary problem for Schroedinger-like partial differential equations in R n is elaborated. The method is based on representation of multidimensional Green function in the form of multiple functional integral and on the use of approximation formulas which are constructed for such integrals. The convergence of approximations to the exact value is proved, the remainder of the formulas is estimated. Method reduces the initial differential problem to quadratures. 16 refs.; 7 tabs

  10. On the reduction of the multidimensional stationary Schroedinger equation to a first-order equation and its relation to the pseudoanalytic function theory

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, Vladislav V [Departmento de Telecomunicaciones, SEPI, Escuela Superior de IngenierIa Mecanica y Electrica, Instituto Politecnico Nacional, CP 07738 Mexico DF (Mexico)

    2005-01-28

    Given a particular solution of a one-dimensional stationary Schroedinger equation this equation of second order can be reduced to a first-order linear ordinary differential equation. This is done with the aid of an auxiliary Riccati differential equation. In the present work we show that the same fact is true in a multidimensional situation also. For simplicity we consider the case of two or three independent variables. One particular solution of the stationary Schroedinger equation allows us to reduce this second-order equation to a linear first-order quaternionic differential equation. As in the one-dimensional case this is done with the aid of an auxiliary quaternionic Riccati equation. The resulting first-order quaternionic equation is equivalent to the static Maxwell system and is closely related to the Dirac equation. In the case of two independent variables it is the well-known Vekua equation from theory of pseudoanalytic (or generalized analytic) functions. Nevertheless, we show that even in this case it is very useful to consider not only complex valued functions, solutions of the Vekua equation, but complete quaternionic functions. In this way the first-order quaternionic equation represents two separate Vekua equations, one of which gives us solutions of the Schroedinger equation and the other one can be considered as an auxiliary equation of a simpler structure. Moreover for the auxiliary equation we always have the corresponding Bers generating pair (F, G), the base of the Bers theory of pseudoanalytic functions, and what is very important, the Bers derivatives of solutions of the auxiliary equation give us solutions of the main Vekua equation and as a consequence of the Schroedinger equation. Based on this fact we obtain an analogue of the Cauchy integral theorem for solutions of the stationary Schroedinger equation. Other results from theory of pseudoanalytic functions can be written for solutions of the Schroedinger equation. Moreover, for an ample

  11. Quantum derivatives and the Schroedinger equation

    International Nuclear Information System (INIS)

    Ben Adda, Faycal; Cresson, Jacky

    2004-01-01

    We define a scale derivative for non-differentiable functions. It is constructed via quantum derivatives which take into account non-differentiability and the existence of a minimal resolution for mean representation. This justify heuristic computations made by Nottale in scale-relativity. In particular, the Schroedinger equation is derived via the scale-relativity principle and Newton's fundamental equation of dynamics

  12. Generalized hyperbolic functions to find soliton-like solutions for a system of coupled nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, we demonstrate that the known method which is based on the new generalized hyperbolic functions and the new kinds of generalized hyperbolic function transformations, generates classes of exact solutions to a system of coupled nonlinear Schroedinger equations. This system includes the modified Hubbard model and the system of coupled nonlinear Schroedinger derived by Lazarides and Tsironis. Four types of solutions for this system are given explicitly, namely: new bright-bright, new dark-dark, new bright-dark and new dark-bright solitons

  13. A particular inverse problem for Schroedinger discrete equation in two and higher dimensions under apriori information of wave functions

    International Nuclear Information System (INIS)

    Pavlus, M.

    1997-01-01

    The entire potential and the rest of wave functions are determined in parallelepiped domain if the entire discrete spectrum and the apriori information about the wave functions on one side of parallelepiped are given. Formulation for solving the Schroedinger discrete equation in two and higher dimensions is proposed and new formulas are derived for their solution. Two examples for a 2D case and one example for a 3D case are demonstrated

  14. Effective Schroedinger equations on submanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Jakob

    2010-02-11

    In this thesis the time dependent Schroedinger equation is considered on a Riemannian manifold A with a potential that localizes a certain class of states close to a fixed submanifold C, the constraint manifold. When the potential is scaled in the directions normal to C by a small parameter epsilon, the solutions concentrate in an epsilon-neighborhood of the submanifold. An effective Schroedinger equation on the submanifold C is derived and it is shown that its solutions, suitably lifted to A, approximate the solutions of the original equation on A up to errors of order {epsilon}{sup 3} vertical stroke t vertical stroke at time t. Furthermore, it is proved that, under reasonable conditions, the eigenvalues of the corresponding Hamiltonians below a certain energy coincide upto errors of order {epsilon}{sup 3}. These results holds in the situation where tangential and normal energies are of the same order, and where exchange between normal and tangential energies occurs. In earlier results tangential energies were assumed to be small compared to normal energies, and rather restrictive assumptions were needed, to ensure that the separation of energies is maintained during the time evolution. The most important consequence of this thesis is that now constraining potentials that change their shape along the submanifold can be treated, which is the typical situation in applications like molecular dynamics and quantum waveguides.

  15. P-adic Schroedinger type equation

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1988-12-01

    In p-adic quantum mechanics a Schroedinger type equation is considered. We discuss the appropriate notion of differential operators. A solution of the Schroedinger type equation is given. A new set of vacuum states for the p-adic quantum harmonic oscillator is presented. The correspondence principle with the standard quantum mechanics is discussed. (orig.)

  16. Reparametrization invariance and the Schroedinger equation

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    1999-01-01

    A time-dependent Schroedinger equation for systems invariant under the reparametrization of time is considered. We develop the two-stage procedure of construction such systems from a given initial ones, which are not invariant under the time reparametrization. One of the first-class constraints of the systems in such description becomes the time-dependent Schroedinger equation. The procedure is applicable in the supersymmetric theories as well. The n = 2 supersymmetric quantum mechanics is coupled to world-line supergravity, and the local supersymmetric action is constructed leading to the square root representation of the time-dependent Schroedinger equation

  17. Solving the Schroedinger equation using Smolyak interpolants

    International Nuclear Information System (INIS)

    Avila, Gustavo; Carrington, Tucker Jr.

    2013-01-01

    In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased

  18. The Schroedinger equation and canonical perturbation theory

    International Nuclear Information System (INIS)

    Graffi, S.; Paul, T.

    1987-01-01

    Let T 0 (ℎ,ω)+εV be the Schroedinger operator corresponding to the classical Hamiltonian H 0 (ω)+εV, where H 0 (ω) is the d-dimensional harmonic oscillator with non-resonant frequencies ω=(ω 1 ..., ω d ) and the potential V(q 1 , ..., q d ) is an entire function of order (d+l) -1 . We prove that the algorithm of classical, canonical perturbation theory can be applied to the Schroedinger equation in the Bargmann representation. As a consequence, each term of the Rayleigh-Schroedinger series near any eigenvalue of T 0 (ℎ,ω) admits a convergent expansion in powers of ℎ of initial point the corresponding term of the classical Birkhoff expansion. Moreover if V is an even polynomial, the above result and the KAM theorem show that all eigenvalues λ n (ℎ,ε) of T 0 +εV such that nℎ coincides with a KAM torus are given, up to order ε ∞ , by a quantization formula which reduces to the Bohr-Sommerfeld one up to first order terms in ℎ. (orig.)

  19. Scale calculus and the Schroedinger equation

    International Nuclear Information System (INIS)

    Cresson, Jacky

    2003-01-01

    This paper is twofold. In a first part, we extend the classical differential calculus to continuous nondifferentiable functions by developing the notion of scale calculus. The scale calculus is based on a new approach of continuous nondifferentiable functions by constructing a one parameter family of differentiable functions f(t,ε) such that f(t,ε)→f(t) when ε goes to zero. This led to several new notions as representations: fractal functions and ε-differentiability. The basic objects of the scale calculus are left and right quantum operators and the scale operator which generalizes the classical derivative. We then discuss some algebraic properties of these operators. We define a natural bialgebra, called quantum bialgebra, associated with them. Finally, we discuss a convenient geometric object associated with our study. In a second part, we define a first quantization procedure of classical mechanics following the scale relativity theory developed by Nottale. We obtain a nonlinear Schroedinger equation via the classical Newton's equation of dynamics using the scale operator. Under special assumptions we recover the classical Schroedinger equation and we discuss the relevance of these assumptions

  20. Stochastic effects on the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Flessas, G P; Leach, P G L; Yannacopoulos, A N

    2004-01-01

    The aim of this article is to provide a brief review of recent advances in the field of stochastic effects on the nonlinear Schroedinger equation. The article reviews rigorous and perturbative results. (review article)

  1. The Analytic Solution of Schroedinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    International Nuclear Information System (INIS)

    Hu Xianquan; Luo Guang; Cui Lipeng; Niu Lianbin; Li Fangyu

    2009-01-01

    The analytic solution of the radial Schroedinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schroedinger equation is V(r) = α 1 r 8 + α 2 r 3 + α 3 r 2 + β 3 r -1 + β 2 r -3 + β 1 r -4 . Generally speaking, there is only an approximate solution, but not analytic solution for Schroedinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schroedinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schroedinger equation; and lastly, they discuss the solutions and make conclusions. (general)

  2. Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Ren Ji; Ruan Hangyu

    2008-01-01

    We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained

  3. Simulation of the Schroedinger equation on SHAC

    International Nuclear Information System (INIS)

    Stewart, A.

    1976-01-01

    A simulation of the Schroedinger wave equation for the hydrogen atom, on SHAC, a simple homogeneous analogue computer primarily intended for use in schools, is described. Due to the incorporation of FET switches very high speed switching from initial conditions to compute modes is possible. The techniques employed in the multiplier and divider are discussed and the flow diagram for the Schroedinger program shown. Results and photographs are discussed. (U.K.)

  4. Generalized fractional Schroedinger equation with space-time fractional derivatives

    International Nuclear Information System (INIS)

    Wang Shaowei; Xu Mingyu

    2007-01-01

    In this paper the generalized fractional Schroedinger equation with space and time fractional derivatives is constructed. The equation is solved for free particle and for a square potential well by the method of integral transforms, Fourier transform and Laplace transform, and the solution can be expressed in terms of Mittag-Leffler function. The Green function for free particle is also presented in this paper. Finally, we discuss the relationship between the cases of the generalized fractional Schroedinger equation and the ones in standard quantum

  5. Reduction of the Breit Coulomb equation to an equivalent Schroedinger equation, and investigation of the behavior of the wave function near the origin

    International Nuclear Information System (INIS)

    Malenfant, J.

    1988-01-01

    The Breit equation for two equal-mass spin-1/2 particles interacting through an attractive Coulomb potential is separated into its angular and radial parts, obtaining coupled sets of first-order differential equations for the radial wave functions. The radial equations for the 1 J/sub J/, 3 J/sub J/, and 3 P 0 states are further reduced to a single, one-dimensional Schroedinger equation with a relatively simple effective potential. No approximations, other than the initial one of an instantaneous Coulomb interaction, are made in deriving this equation; it accounts for all relativistic effects, as well as for mixing between different components of the wave function. Approximate solutions are derived for this Schroedinger equation, which gives the correct O(α 4 ) term for the 1 1 S 0 energy and for the n 1 J/sub J/ energies, for J>0. The radial equations for the 3 (J +- 1)/sub J/ states are reduced to two second-order coupled equations. At small r, the Breit Coulomb wave functions behave as r/sup ν//sup -1/, where ν is either √J(J+1)+1-α 2 /4 or √J(J+1)-α 2 /4 . The 1 S 0 and 3 P 0 wave functions therefore diverge at the origin as r/sup //sup √//sup 1-//sup α//sup <2//4 -1$. This divergence of the J = 0 states, however, does not occur when the spin-spin interaction, -(α/r)αxα, is added to the Coulomb potential

  6. Spectral problem for the radial Schroedinger equation

    International Nuclear Information System (INIS)

    Vshivtsev, A.S.; Tatarintsev, A.V.; Prokopov, A.V.; Sorokin, V. N.

    1998-01-01

    For the first time, a procedure for determining spectra on the basis of generalized integral transformations is implemented for a wide class of radial Schroedinger equations. It is shown that this procedure works well for known types of potentials. Concurrently, this method makes it possible to obtain new analytic results for the Cornell potential. This may prove important for hadron physics

  7. Physical interpretation of Monte Carlo wave-function and stochastic Schroedinger equation methods for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Kist, Tarso B.L.; Orszag, M.; Davidovich, L.

    1997-01-01

    The dynamics of open system is frequently modeled in terms of a small system S coupled to a reservoir R, the last having an infinitely larger number of degree of freedom than S. Usually the dynamics of the S variables may be of interest, which can be studied using either Langevin equations, or master equations, or yet the path integral formulation. Useful alternatives for the master equation method are the Monte Carlo Wave-function method (MCWF), and Stochastic Schroedinger Equations (SSE's). The methods MCWF and SSE's recently experienced a fast development both in their theoretical background and applications to the study of the dissipative quantum systems dynamics in quantum optics. Even though these alternatives can be shown to be formally equivalent to the master equation approach, they are often regarded as mathematical tricks, with no relation to a concrete physical evolution of the system. The advantage of using them is that one has to deal with state vectors, instead of density matrices, thus reducing the total amount of matrix elements to be calculated. In this work, we consider the possibility of giving a physical interpretation to these methods, in terms of continuous measurements made on the evolving system. We show that physical realizations of the two methods are indeed possible, for a mode of the electromagnetic field in a cavity interacting with a continuum of modes corresponding to the field outside the cavity. Two schemes are proposed, consisting of a mode of the electromagnetic field interacting with a beam of Rydberg two-level atoms. In these schemes, the field mode plays the role of a small system and the atomic beam plays the role of a reservoir (infinitely larger number of degrees of freedom at finite temperature, the interaction between them being given by the Jaynes-Cummings model

  8. Measurement theory and the Schroedinger equation

    International Nuclear Information System (INIS)

    Schwarz, A.S.; Tyupkin, Yu.S.

    1987-01-01

    The paper is an analysis of the measuring process in quantum mechanics based on the Schroedinger equation. The arguments employed use an assumption reflecting, to some extent, the statistical properties of the vacuum. A description is given of the cases in which different incoherent superpositions of pure states in quantum mechanics are physically equivalent. The fundamental difference between quantum and classical mechanics as explained by the existence of unobservable variables is discussed. (U.K.)

  9. Hidden Statistics of Schroedinger Equation

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.

  10. Inversion transformation in the Schroedinger equation

    International Nuclear Information System (INIS)

    Demkov, Yu.N.; Semenova, N.V.

    1984-01-01

    Using the inversion with respect to a sphere in the coordinate space, the equivalence between the Schroedinger equations with different potentials is established. It is shown that the zero-energy equation for a spherically symmetric potential is equivalent to the equation with an axially symmetric potential of a special form. The particular exact solutions of the zero-energy problem for the motion of a particle in the field of two Maxwell ''fish-eye'' potentials and potentials with the two Coulomb singularities are found

  11. Dual Schroedinger Equation as Global Optimization Algorithm

    International Nuclear Information System (INIS)

    Huang Xiaofei; eGain Communications, Mountain View, CA 94043

    2011-01-01

    The dual Schroedinger equation is defined as replacing the imaginary number i by -1 in the original one. This paper shows that the dual equation shares the same stationary states as the original one. Different from the original one, it explicitly defines a dynamic process for a system to evolve from any state to lower energy states and eventually to the lowest one. Its power as a global optimization algorithm might be used by nature for constructing atoms and molecules. It shall be interesting to verify its existence in nature.

  12. Asymptotic Value Distribution for Solutions of the Schroedinger Equation

    International Nuclear Information System (INIS)

    Breimesser, S. V.; Pearson, D. B.

    2000-01-01

    We consider the Dirichlet Schroedinger operator T=-(d 2 /d x 2 )+V, acting in L 2 (0,∞), where Vis an arbitrary locally integrable potential which gives rise to absolutely continuous spectrum. Without any other restrictive assumptions on the potential V, the description of asymptotics for solutions of the Schroedinger equation is carried out within the context of the theory of value distribution for boundary values of analytic functions. The large x asymptotic behaviour of the solution v(x,λ) of the equation Tf(x,λ)=λf(x,λ), for λ in the support of the absolutely continuous part μ a.c. of the spectral measure μ, is linked to the spectral properties of this measure which are determined by the boundary value of the Weyl-Titchmarsh m-function. Our main result (Theorem 1) shows that the value distribution for v'(N,λ)/v(N,λ) approaches the associated value distribution of the Herglotz function m N (z) in the limit N → ∞, where m N (z) is the Weyl-Titchmarsh m-function for the Schroedinger operator -(d 2 /d x 2 )+Vacting in L 2 (N,∞), with Dirichlet boundary condition at x=N. We will relate the analysis of spectral asymptotics for the absolutely continuous component of Schroedinger operators to geometrical properties of the upper half-plane, viewed as a hyperbolic space

  13. An implicit spectral formula for generalized linear Schroedinger equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  14. Solution of the Schroedinger equation by a spectral method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.; Steiger, A.

    1982-01-01

    A new computational method for determining the eigenvalues and eigenfunctions of the Schroedinger equation is described. Conventional methods for solving this problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent wave equation. The new method, in contrast, is based on the spectral properties of solutions to the time-dependent Schroedinger equation. The method requires the computation of a correlation function from a numerical solution psi(r, t). Fourier analysis of this correlation function reveals a set of resonant peaks that correspond to the stationary states of the system. Analysis of the location of these peaks reveals the eigenvalues with high accuracy. Additional Fourier transforms of psi(r, t) with respect to time generate the eigenfunctions. The effectiveness of the method is demonstrated for a one-dimensional asymmetric double well potential and for the two-dimensional Henon--Heiles potential

  15. Algorithm for research of mathematical physics equations symmetries. Symmetries of the free Schroedinger equation

    International Nuclear Information System (INIS)

    Kotel'nikov, G.A.

    1994-01-01

    An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry

  16. Feynman path integral related to stochastic schroedinger equation

    International Nuclear Information System (INIS)

    Belavkin, V.P.; Smolyanov, O.G.

    1998-01-01

    The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru

  17. A global numerical solution of the radial Schroedinger equation by second-order perturbation theory

    International Nuclear Information System (INIS)

    Adam, G.

    1979-01-01

    A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)

  18. On quantization, the generalised Schroedinger equation and classical mechanics

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1991-01-01

    A ψ-dependent linear functional operator, was defined, which solves the problem of quantization in non-relativistic quantum mechanics. Weyl ordering is implemented automatically and permits derivation of many of the quantum to classical correspondences. The parameter λ presents a natural C ∞ deformation of the dynamical structure of quantum mechanics via a non-linear integro-differential 'Generalised Schroedinger Equation', admitting an infinite family of soliton solutions. All these solutions are presented and it is shown that this equation gives an exact dynamic and energetic reproduction of classical mechanics with the correct measurement theoretic limit. 23 refs

  19. Numerical solution of the Schroedinger equation with a polynomial potential

    International Nuclear Information System (INIS)

    Campoy, G.; Palma, A.

    1986-01-01

    A numerical method for solving the Schroedinger equation for a potential expressed as a polynomial is proposed. The basic assumption relies on the asymptotic properties of the solution of this equation. It is possible to obtain the energies and the stationary state functions simultaneously. They analyze, in particular, the cases of the quartic anharmonic oscillator and a hydrogen atom perturbed by a quadratic term, obtaining its energy eigenvalues for some values of the perturbation parameter. Together with the Hellmann-Feynman theorem, they use their algorithm to calculate expectation values of x'' for arbitrary positive values of n. 4 tables

  20. Equivalence of two alternative approaches to Schroedinger equations

    International Nuclear Information System (INIS)

    Goenuel, B; Koeksal, K

    2006-01-01

    A recently developed simple approach for the exact/approximate solution of Schroedinger equations with constant/position-dependent mass, in which the potential is considered as in the perturbation theory, is shown to be equivalent to the one leading to the construction of exactly solvable potentials via the solution of second-order differential equations in terms of known special functions. The formalism in the former solves difficulties encountered in the latter in revealing the corrections explicitly to the unperturbed piece of the solutions whereas the other obviates cumbersome procedures used in the calculations of the former

  1. A step function perturbative numerical method for the solution of coupled differential equations arising from the Schroedinger equation. Pt. 2

    International Nuclear Information System (INIS)

    Ixaru, G.L.

    1978-03-01

    The method developed in the previous paper (preprint, C.I.Ph. (Bucharest), MC-2-78, 1978) is here investigated from computational point of view. Special emphasis is paid to the two basic descriptors of the efficiency: the volume of memory required and the computational effort (timing). Next, two experimental cases are reported. They (i) confirm the theoretical estimates for the rate cf convergence of each version of the present method and (ii) show that the present method is substantially faster than the others. Specifically, it is found that for typical physical problems it is faster by a factor of ten up to twenty than the methods commonly used, viz. Numerov and de Vogelaere. The data reported also allow an inUirect comparison with the method of Gordon. I l/ allow an indirect comparison with the method of Gordon. It is shown that, while this exhibits the same rate as our basic, lowest order version, the computational effort for the latter is, in case of systems with nine equations, only half than for the method of Gordon. At the end of the paper some types of physical problems are suggested which should be the most benefitting if solved numerically with the present method. (author)

  2. Spectrum of the ballooning Schroedinger equation

    International Nuclear Information System (INIS)

    Dewar, R.L.

    1997-01-01

    The ballooning Schroedinger equation (BSE) is a model equation for investigating global modes that can, when approximated by a Wentzel-Kramers-Brillouin (WKB) ansatz, be described by a ballooning formalism locally to a field line. This second order differential equation with coefficients periodic in the independent variable θ k is assumed to apply even in cases where simple WKB quantization conditions break down, thus providing an alternative to semiclassical quantization. Also, it provides a test bed for developing more advanced WKB methods: e.g. the apparent discontinuity between quantization formulae for open-quotes trappedclose quotes and open-quotes passingclose quotes modes, whose ray paths have different topologies, is removed by extending the WKB method to include the phenomena of tunnelling and reflection. The BSE is applied to instabilities with shear in the real part of the local frequency, so that the dispersion relation is inherently complex. As the frequency shear is increased, it is found that trapped modes go over to passing modes, reducing the maximum growth rate by averaging over θ k

  3. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    International Nuclear Information System (INIS)

    Keanini, R.G.

    2011-01-01

    Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the

  4. On the Schroedinger equation for the minisuperspace models

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    2000-01-01

    We obtain a time-dependent Schroedinger equation for the Friedmann-Robertson-Walker (FRW) model interacting with a homogeneous scalar matter field. We show that for this purpose it is necessary to include an additional action invariant under the reparametrization of time. The last one does not change the equations of motion of the system, but changes only the constraint which at the quantum level becomes time-dependent Schroedinger equation. The same procedure is applied to the supersymmetric case and the supersymmetric quantum constraints are obtained, one of them is a square root of the Schroedinger operator

  5. Perturbative approach to non-Markovian stochastic Schroedinger equations

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)

  6. Structural invariance of the Schroedinger equation and chronoprojective geometry

    International Nuclear Information System (INIS)

    Burdet, G.; Perrin, M.

    1983-07-01

    We describe an extension of the chronoprojective geometry and show how its automorphisms are related to the invariance properties of the Schroedinger equation describing a quantum test particle in any Newton-Cartan structure

  7. Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng

    2004-01-01

    Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair

  8. Discrete transparent boundary conditions for Schroedinger-type equations

    International Nuclear Information System (INIS)

    Schmidt, F.; Yevick, D.

    1997-01-01

    We present a general technique for constructing nonlocal transparent boundary conditions for one-dimensional Schroedinger-type equations. Our method supplies boundary conditions for the θ-family of implicit one-step discretizations of Schroedinger's equation in time. The use of Mikusinski's operator approach in time avoids direct and inverse transforms between time and frequency domains and thus implements the boundary conditions in a direct manner. 14 refs., 9 figs

  9. Linearised collective Schroedinger equation for nuclear quadrupole surface vibrations

    International Nuclear Information System (INIS)

    Greiner, M.; Heumann, D.; Scheid, W.

    1990-11-01

    The linearisation of the Schroedinger equation for nuclear quadrupole surface vibrations yields a new spin degree of freedom, which is called collective spin and has a value of 3/2. With the introduction of collective spin dependent potentials, this linearised Schroedinger equation is then used for the description of low energy spectra and electromagnetic transition probabilities of some even-odd Xe, Ir and Au nuclei which have a spin 3/2 in their groundstate. (orig.)

  10. Nonrelativistic Schroedinger equation in quasi-classical theory

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1987-01-01

    The author has recently proposed a quasi-classical theory of particles and interactions in which particles are pictured as extended periodic disturbances in a universal field chi(x,t), interacting with each other via nonlinearity in the equation of motion for chi. The present paper explores the relationship of this theory to nonrelativistic quantum mechanics; as a first step, it is shown how it is possible to construct from chi a configuration-space wave function Psi(x 1 , X 2 , t), and that the theory requires that Psi satisfy the two-particle Schroedinger equation in the case where the two particles are well separated from each other. This suggests that the multiparticle Schroedinger equation can be obtained as a direct consequence of the quasi-classical theory without any use of the usual formalism (Hilbert space, quantization rules, etc.) of conventional quantum theory and in particular without using the classical canonical treatment of a system as a crutch theory which has subsequently to be quantized. The quasi-classical theory also suggests the existence of a preferred absolute gauge for the electromagnetic potentials

  11. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  12. Dispersive estimates for the Schroedinger and Klein-Gordon equations

    Energy Technology Data Exchange (ETDEWEB)

    Kopylova, Elena A [Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-01-01

    This is a survey of results on the long-time asymptotic behaviour of solutions of the Schroedinger and Klein-Gordon equations in weighted energy norms. Results obtained from 1975 to 2001 in the spectral scattering theory of Agmon, Jensen-Kato, Jensen-Nenciu, and Murata are described for the Schroedinger equation, along with the author's recent results obtained jointly with A.I. Komech for the Klein-Gordon equation. The methods used develop the spectral approach as applied to relativistic equations. Bibliography: 40 titles.

  13. Linear and nonlinear analogues of the Schroedinger equation in the contextual approach in quantum mechanics

    International Nuclear Information System (INIS)

    Khrennikov, A.Yu.

    2005-01-01

    One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru

  14. Monodromy of the matrix Schroedinger equations and Darboux transformations

    CERN Document Server

    Goncharenko, V M

    1998-01-01

    A Schroedinger operator L=-d sup 2 /dz sup 2 +U(z) with a matrix-valued rational potential U(z) is said to have trivial monodromy if all the solutions of the corresponding Schroedinger equations L psi=lambda psi are single-valued in the complex plane z is an element of C for any lambda. A local criterion of this property in terms of the Laurent coefficients of the potential U near its singularities, which are assumed to be regular, is found. It is proved that any such operator with a potential vanishing at infinity can be obtained by a matrix analogue of the Darboux transformation from the Schroedinger operator L sub o =-d sup 2 /dz sup 2. This generalizes the well known Duistermaat-Gruenbaum result to the matrix case and gives the explicit description of the Schroedinger operators with trivial monodromy in this case. (author)

  15. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    Science.gov (United States)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  16. The phase space of the focused cubic Schroedinger equation: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Burlakov, Yuri O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    distinctly different components. They point out the interesting fact that the phase space into distinctly different components. They point out the interesting fact that the phase transition type behavior of the discretized cubic Schroedinger equation can be observed in a discretization with as few as 2 points. The refinement of the discretization does not change the global picture qualitatively. The authors vary two parameters in the canonical ensemble of the cubic Schroedinger equation: the first parameter is the temperature, the second one is a certain constraint on the function space. They demonstrate that at a fixed low temperature, as the constraint varies, the canonical ensemble of the cubic Schroedinger equation undergoes a bifurcation which is manifested both in the change in the shape of the typical function and in a corresponding change of the structure of the phase space.

  17. On the invariant measure for the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhidkov, P.R.

    1991-01-01

    The invariant measure for the nonlinear Schroedinger equation is constructed. In fact, it is assumed that the nonlinearity in the equation is semilinear. The main aim of the paper is the explanation of the Fermi - Past - Ulam phenomenon. Poincare theorem gives the answer to this question. 17 refs

  18. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhu Jiamin; Ma Zhengyi

    2007-01-01

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions

  19. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  20. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  1. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1990-01-01

    The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

  2. Consequences of the Schroedinger equation for atomic and molecular physics

    International Nuclear Information System (INIS)

    Thirring, W.E.

    1986-01-01

    The non-relativistic Schroedinger equation for a system of nuclei and electrons is considered and general properties of Hamiltonian H are treated and commented: self-adjontness of H, the spectrum of H, the discrete spectrum, the continuous spectrum, the limit of infinite nuclear mass, the limit of infinite nuclear charge. (G.Q.)

  3. Quantum osp-invariant non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  4. Travelling solitons in the parametrically driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.; Baer, M.

    2000-01-01

    We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast

  5. Exponential and Bessel fitting methods for the numerical solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Raptis, A.D.; Cash, J.R.

    1987-01-01

    A new method is developed for the numerical integration of the one dimensional radial Schroedinger equation. This method involves using different integration formulae in different parts of the range of integration rather than using the same integration formula throughout. Two new integration formulae are derived, one which integrates Bessel and Neumann functions exactly and another which exactly integrates certain exponential functions. It is shown that, for large r, these new formulae are much more accurate than standard integration methods for the Schroedinger equation. The benefit of using this new approach is demonstrated by considering some numerical examples based on the Lennard-Jones potential. (orig.)

  6. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1992-01-01

    A new method is developed for solving the multidimensional Schroedinger equation without the variable separation. To solve the Schroedinger equation in a multidimensional coordinate space X, a difference grid Ω i (i=1,2,...,N) for some of variables, Ω, from X={R,Ω} is introduced and the initial partial-differential equation is reduced to a system of N differential-difference equations in terms of one of the variables R. The arising multi-channel scattering (or eigenvalue) problem is solved by the algorithm based on a continuous analog of the Newton method. The approach has been successfully tested for several two-dimensional problems (scattering on a nonspherical potential well and 'dipole' scatterer, a hydrogen atom in a homogenous magnetic field) and for a three-dimensional problem of the helium-atom bound states. (author)

  7. Iteration of some discretizations of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Ross, K.A.; Thompson, C.J.

    1986-01-01

    We consider several discretizations of the nonlinear Schroedinger equation which lead naturally to the study of some symmetric difference equations of the form PHIsub(n+1) + PHIsub(n-1) = f(PHIsub(n)). We find a variety of interesting and exotic behaviour from simple closed orbits to intricate patterns of orbits and loops in the (PHIsub(n+1),PHIsub(n)) phase-plane. Some analytical results for a special case are also presented. (orig.)

  8. Schroedinger equations with indefinite effective mass

    International Nuclear Information System (INIS)

    Levai, G.; Znojil, M.

    2012-01-01

    Complete text of publication follows. The interaction of a particle with the medium around it is usually described by some potential function V (x). It is also often necessary to take into consideration the effects of this medium using a position-dependent effective mass. A wide variety of effective masses m(x) have been used in methodological studies and applications mainly restricted to one dimensional problems, including mass functions that vanish at certain locations or those reaching infinity in some limit. The common feature of these m(x) functions was that they were all non-negative. In our recent study on the PT -symmetric version of the Coulomb potential we found that an asymptotically negative effective mass is necessary for the stability of the energy spectrum. This result inspired us to investigate under which conditions can one apply mass functions that are negative at least in some domains of the coordinate space. For the sake of simplicity we considered the infinitely deep squarewell potential in one dimension V(x) = (+∞, /x/ > L > 1, 0, /x/ 0 , /x/ 0 the energy spectrum becomes unbounded from below. This is not surprising considering that with a negative mass the kinetic energy also becomes negative. In order to stabilize the spectrum we considered energy-dependent effective mass functions that kept the mass finite even for increasing values of the energy. Our first choice was m(x,E) = (1, /x/ ∈ (1,L), -tanh (E), /x/ 2 tanh λ(k) tan k(L - 1) = -1, where λ(k) = k √tanh k 2 . With this choice the energy spectrum was found to be bounded from below. Qualitatively similar results were found for our second example, where we considered a threshold energy E thr by m(x,E) = 1, /x/ ∈ (1,L) , -1, E ≥ E thr , +1, E thr ), /x/ 2 , /x/ 0 and b = b(E) > 0. This lead to the rescaled secular equation tan κa/b x tanh κ(L - a) = b. (3) This setting allowed the investigation of the special limit in which the m(x) turns into the Dirac delta function. We

  9. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Yang Qin; Dai Chaoqing; Zhang Jiefang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.

  10. Remark on the solution of the Schroedinger equation for anharmonic oscillators via the Feynman path integral

    International Nuclear Information System (INIS)

    Rezende, J.

    1983-01-01

    We give a simple proof of Feynman's formula for the Green's function of the n-dimensional harmonic oscillator valid for every time t with Im t<=0. As a consequence the Schroedinger equation for the anharmonic oscillator is integrated and expressed by the Feynman path integral on Hilbert space. (orig.)

  11. Study of nonlinear waves described by the cubic Schroedinger equation

    International Nuclear Information System (INIS)

    Walstead, A.E.

    1980-01-01

    The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables

  12. Study of nonlinear waves described by the cubic Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Walstead, A.E.

    1980-03-12

    The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.

  13. Center manifold for nonintegrable nonlinear Schroedinger equations on the line

    International Nuclear Information System (INIS)

    Weder, R.

    2000-01-01

    In this paper we study the following nonlinear Schroedinger equation on the line, where f is real-valued, and it satisfies suitable conditions on regularity, on growth as a function of u and on decay as x → ± ∞. The generic potential, V, is real-valued and it is chosen so that the spectrum of H:= -d 2 /dx 2 +V consists of one simple negative eigenvalue and absolutely-continuous spectrum filling (0,∞). The solutions to this equation have, in general, a localized and a dispersive component. The nonlinear bound states, that bifurcate from the zero solution at the energy of the eigenvalue of H, define an invariant center manifold that consists of the orbits of time-periodic localized solutions. We prove that all small solutions approach a particular periodic orbit in the center manifold as t→ ± ∞. In general, the periodic orbits are different for t→ ± ∞. Our result implies also that the nonlinear bound states are asymptotically stable, in the sense that each solution with initial data near a nonlinear bound state is asymptotic as t→ ± ∞ to the periodic orbits of nearby nonlinear bound states that are, in general, different for t→ ± ∞. (orig.)

  14. Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions

    International Nuclear Information System (INIS)

    Geng Xianguo; Su Ting

    2007-01-01

    A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived

  15. The Schroedinger equation as a singular perturbation problem

    International Nuclear Information System (INIS)

    Jager, E.M. de; Kuepper, T.

    1978-01-01

    Comparisons are made of the eigenvalues and the corresponding eigenfunctions of the eigenvalue problem connected with the one dimensional Schroedinger equation in Hilbert space. The difference of the eigenvalues is estimated by applying Weyl's monotonicity principle and the minimum maximum principle. The difference of the eigenfunctions is estimated in L 2 norm and in maximum norm obtained by using simple tools from operator theory in Hilbert spaces. An application concerning perturbations of the Planck ideal linear oscillator is given. (author)

  16. Strong phase correlations of solitons of nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Litvak, A.G.; Mironov, V.A.; Protogenov, A.P.

    1994-06-01

    We discuss the possibility to suppress the collapse in the nonlinear 2+1 D Schroedinger equation by using the gauge theory of strong phase correlations. It is shown that invariance relative to q-deformed Hopf algebra with deformation parameter q being the fourth root of unity makes the values of the Chern-Simons term coefficient, k=2, and of the coupling constant, g=1/2, fixed; no collapsing solutions are present at those values. (author). 21 refs

  17. Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential

    International Nuclear Information System (INIS)

    Cao Daomin; Han Pigong

    2010-01-01

    In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schroedinger equation with a harmonic potential: i∂ t u=-div(f(x)∇u)+|x| 2 u-k(x)|u| 4/N u, x is an element of R N , N≥1, which models the remarkable Bose-Einstein condensation. We discuss the existence and nonexistence results and investigate the limiting profile of blow-up solutions with critical mass.

  18. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  19. Properties of some nonlinear Schroedinger equations motivated through information theory

    International Nuclear Information System (INIS)

    Yuan, Liew Ding; Parwani, Rajesh R

    2009-01-01

    We update our understanding of nonlinear Schroedinger equations motivated through information theory. In particular we show that a q-deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouring the simplest q = 1 case. Furthermore the energy minimisation criterion is shown to be equivalent, at leading order, to an uncertainty maximisation argument. The special value η = 1/4 for the interpolation parameter, where leading order energy shifts vanish, implies the preservation of existing supersymmetry in nonlinearised supersymmetric quantum mechanics. Physically, η might be encoding relativistic effects.

  20. Exact solutions of fractional Schroedinger-like equation with a nonlocal term

    International Nuclear Information System (INIS)

    Jiang Xiaoyun; Xu Mingyu; Qi Haitao

    2011-01-01

    We study the time-space fractional Schroedinger equation with a nonlocal potential. By the method of Fourier transform and Laplace transform, the Green function, and hence the wave function, is expressed in terms of H-functions. Graphical analysis demonstrates that the influence of both the space-fractal parameter α and the nonlocal parameter ν on the fractional quantum system is strong. Indeed, the nonlocal potential may act similar to a fractional spatial derivative as well as fractional time derivative.

  1. Inverse scattering transform for the time dependent Schroedinger equation with applications to the KPI equation

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Zhou [Wisconsin Univ., Madison (USA). Dept. of Mathematics

    1990-03-01

    For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.).

  2. Inverse scattering transform for the time dependent Schroedinger equation with applications to the KPI equation

    International Nuclear Information System (INIS)

    Zhou Xin

    1990-01-01

    For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.)

  3. Approximated solutions to the Schroedinger equation

    International Nuclear Information System (INIS)

    Rico, J.F.; Fernandez-Alonso, J.I.

    1977-01-01

    The authors are currently working on a couple of the well-known deficiencies of the variation method and present here some of the results that have been obtained so far. The variation method does not give information a priori on the trial functions best suited for a particular problem nor does it give information a posteriori on the degree of precision attained. In order to clarify the origin of both difficulties, a geometric interpretation of the variation method is presented. This geometric interpretation is the starting point for the exact formal solution to the fundamental state and for the step-by-step approximations to the exact solution which are also given. Some comments on these results are included. (Auth.)

  4. The Schroedinger and Dirac free particle equations without quantum mechanics

    International Nuclear Information System (INIS)

    Ord, G.N.

    1996-01-01

    Einstein close-quote s theory of Brownian Movement has provided a well accepted microscopic model of diffusion for many years. Until recently the relationship between this model and Quantum Mechanics has been completely formal. Brownian motion provides a microscopic model for diffusion, but quantum mechanics and diffusion are related by a formal analytic continuation, so the relationship between Brownian motion and Quantum Mechanics has been correspondingly vague. Some recent work has changed this picture somewhat and here we show that a random walk model of Brownian motion produces the diffusion equation or the telegraph equations as a descriptions of particle densities, while at the same time the correlations in the space-time geometry of these same Brownian particles obey the Schroedinger and Dirac equations respectively. This is of interest because the equations of Quantum Mechanics appear here naturally in a classical context without the problems of interpretation they have in the usual context. copyright 1996 Academic Press, Inc

  5. On the solution of the Schroedinger equation through continued fractions

    International Nuclear Information System (INIS)

    Mignaco, J.A.

    1979-05-01

    The domain of interest for the applications of a method to solve the Schroedinger equation through continued fractions is studied. It is argued that the method applies almost equally well to quantum mechanical regimes (lower energy levels, low energy scattering) as well as to semiclassical ones simultaneously; this is illustrated by the example of the central power law potentials r sup(ν)(ν>o). The explanation of this behaviour is given in terms of the mathematical approximations involved and its relationship to physically interesting quantities. (Author) [pt

  6. A new method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Amore, Paolo; Aranda, Alfredo; De Pace, Arturo

    2004-01-01

    We present a new method for the solution of the Schroedinger equation applicable to problems of a non-perturbative nature. The method works by identifying three different scales in the problem, which then are treated independently: an asymptotic scale, which depends uniquely on the form of the potential at large distances; an intermediate scale, still characterized by an exponential decay of the wavefunction; and, finally, a short distance scale, in which the wavefunction is sizable. The notion of optimized perturbation is then used in the last two regimes. We apply the method to the quantum anharmonic oscillator and find it suitable to treat both energy eigenvalues and wavefunctions, even for strong couplings

  7. Integrability of a system of two nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhukhunashvili, V.Z.

    1989-01-01

    In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants

  8. Quantum Gelfand-Levitan equations for nonlinear Schroedinger model of spin-1/2 particles

    International Nuclear Information System (INIS)

    Pu, F.; Zhao, B.

    1984-01-01

    The quantum Gelfand-Levitan equations for the nonlinear Schroedinger model of spin-(1/2) particles are obtained. Two Izergin-Korepin relations are used in the derivation. A new type commutation relation of L operators is introduced to get the commutation relations which are needed for the study of S matrices and Green's functions. As examples, the four-point Green's functions and the two-body S matrices are given

  9. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  10. Symbolic computation and solitons of the nonlinear Schroedinger equation in inhomogeneous optical fiber media

    International Nuclear Information System (INIS)

    Li Biao; Chen Yong

    2007-01-01

    In this paper, the inhomogeneous nonlinear Schroedinger equation with the loss/gain and the frequency chirping is investigated. With the help of symbolic computation, three families of exact analytical solutions are presented by employing the extended projective Riccati equation method. From our results, many previous known results of nonlinear Schroedinger equation obtained by some authors can be recovered by means of some suitable selections of the arbitrary functions and arbitrary constants. Of optical and physical interests, soliton propagation and soliton interaction are discussed and simulated by computer, which include snake-soliton propagation and snake-solitons interaction, boomerang-like soliton propagation and boomerang-like solitons interaction, dispersion managed (DM) bright (dark) soliton propagation and DM solitons interaction

  11. A new hierarchy of generalized derivative nonlinear Schroedinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system

    International Nuclear Information System (INIS)

    Yan, Z.; Zhang, H.

    2001-01-01

    In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed

  12. Soliton-like solutions to the ordinary Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni-Rached, Michel [Universidade Estadual de Campinas (DMO/FEEC/UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Eletrica e de Computacao. Dept. de Microondas e Optica; Recami, Erasmo, E-mail: recami@mi.infn.i [Universita Statale di Bergamo, Bergamo (Italy). Facolta di Ingegneria

    2011-07-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  13. Soliton-like solutions to the ordinary Schroedinger equation

    International Nuclear Information System (INIS)

    Zamboni-Rached, Michel; Recami, Erasmo

    2011-01-01

    In recent times it has been paid attention to the fact that (linear) wave equations admit of soliton-like solutions, known as Localized Waves or Non-diffracting Waves, which propagate without distortion in one direction. Such Localized Solutions (existing also for K-G or Dirac equations) are a priori suitable, more than Gaussian's, for describing elementary particle motion. In this paper we show that, mutatis mutandis, Localized Solutions exist even for the ordinary Schroedinger equation within standard Quantum Mechanics; and we obtain both approximate and exact solutions, also setting forth for them particular examples. In the ideal case such solutions bear infinite energy, as well as plane or spherical waves: we show therefore how to obtain nite-energy solutions. At last, we briefly consider solutions for a particle moving in the presence of a potential. (author)

  14. A Greenian approach to the solution of the Schroedinger equation for periodic lattice potentials

    International Nuclear Information System (INIS)

    Minelli, T.A.

    1976-01-01

    A modified structural Green's function (MSGF), exploiting all the information contained in the previously solved Schroedinger equation for the electron interacting with a single lattice site, has been introduced and used in order to obtain, from a Dyson-type equation, a kernel whose poles and residues give the E-vs.-k relation and, respectively, the Bloch functions. Such a formulation suggests an alternative technique for the approximate solution of the KKR equations. The MSGF formalism has been also used in order to determine the structure constants of a one-dimensional lattice in a general representation

  15. SOq(N) covariant differential calculus on quantum space and quantum deformation of Schroedinger equation

    International Nuclear Information System (INIS)

    Carow-Watamura, U.; Schlieker, M.; Watamura, S.

    1991-01-01

    We construct a differential calculus on the N-dimensional non-commutative Euclidean space, i.e., the space on which the quantum group SO q (N) is acting. The differential calculus is required to be manifestly covariant under SO q (N) transformations. Using this calculus, we consider the Schroedinger equation corresponding to the harmonic oscillator in the limit of q→1. The solution of it is given by q-deformed functions. (orig.)

  16. Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schroedinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Sana Hadj, E-mail: sana_hadjamor@yahoo.fr [Ecole Nationale d' Ingenieurs de Monastir (Tunisia)

    2012-12-15

    Starting from results already obtained for quasi-periodic co-cycles in SL(2, R), we show that the rotation number of the one-dimensional time-continuous Schroedinger equation with Diophantine frequencies and a small analytic potential has the behavior of a 1/2-Hoelder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.

  17. Quasiseparation of variables in the Schroedinger equation with a magnetic field

    International Nuclear Information System (INIS)

    Charest, F.; Hudon, C.; Winternitz, P.

    2007-01-01

    We consider a two-dimensional integrable Hamiltonian system with a vector and scalar potential in quantum mechanics. Contrary to the case of a pure scalar potential, the existence of a second order integral of motion does not guarantee the separation of variables in the Schroedinger equation. We introduce the concept of 'quasiseparation of variables' and show that in many cases it allows us to reduce the calculation of the energy spectrum and wave functions to linear algebra

  18. Lower bounds for solutions of the Schroedinger equation

    International Nuclear Information System (INIS)

    Froese, R.G.

    1983-01-01

    For a large class of generalized N-body Hamiltonians H = -Δ + V the large absolute value x behavior of solutions to the Schroedinger equation H psi = H psi is studied. If E lies below the essential spectrum of H, then it is proved that lim R -1 log (absolute value psi/sub R/) = -α 0 R → infinity where absolute value psi/sub R/ 2 is the integral of absolute value psi 2 over a sphere of radius R and α 0 2 + E is a threshold or α 0 0. For E not necessarily below the essential spectrum of H, the same equation holds with absolute value psi/sub R/ 2 replaced by an integral of absolute value psi 2 over a spherical shell

  19. Limited-diffraction solutions to Maxwell and Schroedinger equations

    International Nuclear Information System (INIS)

    Lu, Jian-yu; Greenleaf, J.F.

    1996-10-01

    The authors have developed a new family of limited diffraction electromagnetic X-shaped waves based on the scalar X-shaped waves discovered previously. These waves are diffraction-free in theory and particle-like (wave packets), in that they maintain their shape as they propagate to an infinite distance. The 'X waves' possess (theoretically) infinitely extended 'arms' and - at least, the ones studied in this paper - have an infinite total energy: therefore, they are not physically realizable. However, they can be truncated in both space and time and 'approximated' by means of a finite aperture radiator so to get a large enough depth of interest (depth of field). In addition to the Maxwell equations, X wave solutions to the free Schroedinger equation are also obtained. Possible applications of these new waves are discussed. Finally, the authors discuss the appearance of the X-shaped solutions from the purely geometric point of view of the special relativity theory

  20. Nonlinear Schroedinger equation with U(p,q) isotopical group

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The properties of the nonlinear Schroedinger equation (NLS) with U(1,1) isogroup are considered in detail. This example illustrates the essential difference between the system and the well-known ''vector'' NLS, i.e. the large set of allowed boundary conditions on the fields that leads to a rich set of solutions of the system. Four types of boundary conditions and related soliton solutions are considered. The Bohr-Sommerfeld quantization allows to interpret them in terms of ''drops'' and ''bubbles'' as bound states of a large number of constituent bosons subject to the thermodynamical relations for gas mixtures. The U(1,1) system under the vanishing boundary conditions may be considered as continuous analog of the Hubbard model and therefore the paper is concluded by studying the inverse scattering equations for this case [ru

  1. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  2. Solution of Schroedinger equation for particle moving in two-well potential

    International Nuclear Information System (INIS)

    Ivanova, O.I.; Sabirov, R.Kh.

    2000-01-01

    The solution of the Schroedinger equation for the particle, moving in the two-well potential is given on the basis of a single variational method. This potential constitutes the sum of the harmonic potential and the Gaussian addition. The analytical expression for the wave function of the particle basic state is obtained. The dependence of the obtained solutions on the potential barrier height and width is studied. It is shown that the better separation of the potential barrier provides for higher accuracy of the calculations. The values of the two-well potential, whereby good agreement between the calculations and exact numerical solution of the Schroedinger equation may be expected, are presented [ru

  3. Continuous analog of Newton's method for determination of quasistationary solutions of the Schroedinger equation

    International Nuclear Information System (INIS)

    Ponomarev, L.I.; Puzynin, I.V.; Puzynina, T.P.

    1975-01-01

    The paper is a part of further development of investigations in which a numerical solution method of the Schroedinger equation for the case of a discrete spectrum has been developed and applied. The suggested algorithm (CAMEN scheme) is generalized and applied to quasistationary solutions of the Schroedinger equation system. Some specific features of the CAMEN scheme realization (such as establishing boundary conditions are observed while calculating quasistationary levels of hydrogen mesic molecules. The calculations have been carried out for energies and wave functions of quasistationary states of hydrogen mesic molecules. The choice of the initial approximation, the accuracy of calculations and characteristics of the convergence of the method have been investigated. The CAMEN algorithm has been realized in the form of the FORTRAN program packet. The CAMEN scheme can be also used for solving scatering problems

  4. A limit of the confluent Heun equation and the Schroedinger equation for an inverted potential and for an electric dipole

    International Nuclear Information System (INIS)

    El-Jaick, Lea Jaccoud; Figueiredo, Bartolomeu D.B.

    2009-01-01

    We reexamine and extend a group of solutions in series of Bessel functions for a limiting case of the confluent Heun equation and, then, apply such solutions to the one-dimensional Schroedinger equation with an inverted quasi-exactly solvable potential as well as to the angular equation for an electron in the field of a point electric dipole. For the first problem we find finite and infinite-series solutions which are convergent and bounded for any value of the independent variable. For the angular equation, we also find expansions in series of Jacobi polynomials. (author)

  5. Derivation of the Schroedinger equation from stochastic mechanics

    International Nuclear Information System (INIS)

    Wallstrom, T.C.

    1988-01-01

    The thesis is divided into four largely independent chapters. The first three chapters treat mathematical problems in the theory of stochastic mechanics. The fourth chapter deals with stochastic mechanisms as a physical theory and shows that the Schroedinger equation cannot be derived from existing formulations of stochastic mechanics, as had previously been believed. Since the drift coefficients of stochastic mechanical diffusions are undefined on the nodes, or zeros of the density, an important problem has been to show that the sample paths stay away from the nodes. In Chapter 1, it is shown that for a smooth wavefunction, the closest approach to the nodes can be bounded solely in terms of the time-integrated energy. The ergodic properties of stochastic mechanical diffusions are greatly complicated by the tendency of the particles to avoid the nodes. In Chapter 2, it is shown that a sufficient condition for a stationary process to be ergodic is that there exist positive t and c such that for all x and y, p t (x,y) > cp(y), and this result is applied to show that the set of spin-1/2 diffusions is uniformly ergodic. Nelson has conjectured that in the limit as the particle's moment of inertia I goes to zero, the projections of the Bopp-Haag-Dankel diffusions onto IR 3 converge to a Markovian limit process. This conjecture is proved for the spin-1/2 case in Chapter 3, and the limit process identified as the diffusion naturally associated with the solution to the regular Pauli equation. In Chapter 4 it is shown that the general solution of the stochastic Newton equation does not correspond to a solution of the Schroedinger equation

  6. Soliton interaction in the coupled mixed derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Tian Bo; Lue Xing; Li He; Meng Xianghua

    2009-01-01

    The bright one- and two-soliton solutions of the coupled mixed derivative nonlinear Schroedinger equations in birefringent optical fibers are obtained by using the Hirota's bilinear method. The investigation on the collision dynamics of the bright vector solitons shows that there exists complete or partial energy switching in this coupled model. Such parametric energy exchanges can be effectively controlled and quantificationally measured by analyzing the collision dynamics of the bright vector solitons. The influence of two types of nonlinear coefficient parameters on the energy of each vector soliton, is also discussed. Based on the significant energy transfer between the two components of each vector soliton, it is feasible to exploit the future applications in the design of logical gates, fiber directional couplers and quantum information processors.

  7. Extensions of the auxiliary field method to solve Schroedinger equations

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

  8. Extensions of the auxiliary field method to solve Schroedinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-10-24

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed.

  9. The Schroedinger-Newton equation as model of self-gravitating quantum systems

    International Nuclear Information System (INIS)

    Grossardt, Andre

    2013-01-01

    The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem

  10. Chirped self-similar solutions of a generalized nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Fei Jin-Xi [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Zheng Chun-Long [Shaoguan Univ., Guangdong (China). School of Physics and Electromechanical Engineering; Shanghai Univ. (China). Shanghai Inst. of Applied Mathematics and Mechanics

    2011-01-15

    An improved homogeneous balance principle and an F-expansion technique are used to construct exact chirped self-similar solutions to the generalized nonlinear Schroedinger equation with distributed dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and impose constraints on the functions describing dispersion, nonlinearity, and distributed gain function. The results show that the chirp function is related only to the dispersion coefficient, however, it affects all of the system parameters, which influence the form of the wave amplitude. As few characteristic examples and some simple chirped self-similar waves are presented. (orig.)

  11. Self-Similar Solutions of Variable-Coefficient Cubic-Quintic Nonlinear Schroedinger Equation with an External Potential

    International Nuclear Information System (INIS)

    Wu Hongyu; Fei Jinxi; Zheng Chunlong

    2010-01-01

    An improved homogeneous balance principle and an F-expansion technique are used to construct exact self-similar solutions to the cubic-quintic nonlinear Schroedinger equation. Such solutions exist under certain conditions, and impose constraints on the functions describing dispersion, nonlinearity, and the external potential. Some simple self-similar waves are presented. (general)

  12. A relation connecting scale transformation, Galilean transformation and Baecklund transformation for the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Steudel, H.

    1980-01-01

    It is shown that the two-parameter manifold of Baecklund transformations known for the nonlinear Schroedinger equation can be generated from one Baecklund transformation with specified parameters by use of scale transformation and Galilean transformation. (orig.)

  13. On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Barannik, L.L.

    1996-01-01

    Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained

  14. Wave-packet revival for the Schroedinger equation with position-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G.M.

    2006-01-01

    We study the temporal evolution of solutions of 1D Schroedinger equation with position-dependent mass inside an infinite well. Revival of wave-packet is shown to exist and partial revivals are different from the usual ones

  15. Some applications of perturbation theory to numerical integration methods for the Schroedinger equation

    International Nuclear Information System (INIS)

    Killingbeck, J.

    1979-01-01

    By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)

  16. Quantum scattering via the discretisation of Schroedinger's equation

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulos, A. [Electronic Warfare and Radar Division, Defence Science and Technology Organisation (DSTO), PO Box 1500, Edinburgh 5111 (Australia)]. E-mail: aris.alexopoulos@dsto.defence.gov.au

    2007-03-19

    We obtain the scattering matrix for particles that encounter a quantum potential by discretising Schroedinger's time independent differential equation without the need to resort to the manipulation of the eigenfunctions directly. The singularities that arise in some solutions by other methods are handled with ease including the effects of resonances while convergence is excellent in all limits with only a small number of orders required to give accurate results. Our method compares the tunnelling probability with that of the WKB theory, exact numerical solutions and the modified Airy function method.

  17. Arbitrary l-wave solutions of the Schroedinger equation for the screen Coulomb potential

    International Nuclear Information System (INIS)

    Dong, Shishan; Sun, Guohua; Dong, Shihai

    2013-01-01

    Using improved approximate schemes for centrifugal term and the singular factor 1/r appearing in potential itself, we solve the Schroedinger equation with the screen Coulomb potential for arbitrary angular momentum state l. The bound state energy levels are obtained. A closed form of normalization constant of the wave functions is also found. The numerical results show that our results are in good agreement with those obtained by other methods. The key issue is how to treat two singular points in this quantum system. (author)

  18. Supersymmetric Solution of the Schroedinger Equation for Woods-Saxon Potential by Using the Pekeris Approximation

    International Nuclear Information System (INIS)

    Feizi, H.; Rajabi, A.A.; Shojaei, M.R.

    2011-01-01

    In this work, the three dimensional Woods-Saxon potential is studied within the context of Supersymmetry Quantum Mechanics. We have applied the SUSY method by using the Pekeris approximation to the centrifugal potential l ≠ 0 states. By application of this method, it is possible to solve the Schroedinger equation for this potential. We obtain exactly bound state spectrum and wave function of Woods-Saxon potential for nonzero angular momentum. Hamiltonian hierarchy method and the shape invariance property are used in the calculations. (authors)

  19. Conservation laws derived by the Neutral-Action Method. A simple application to the Schroedinger equation

    International Nuclear Information System (INIS)

    Nordbrock, U.; Kienzler, R.

    2007-01-01

    Conservation laws are a recognized tool in physical and engineering sciences. The classical procedure to construct conservation laws is to apply Noether's Theorem. It requires the existence of a Lagrange-function for the system under consideration. Two unknown sets of functions have to be found. A broader class of such laws is obtainable, if Noether's Theorem is used together with the Bessel-Hagen extension, raising the number of sets of unknown functions to three. By using the recently developed Neutral-Action Method, the same conservation laws can be obtained by calculating only one unknown set of functions. Moreover the Neutral Action Method can also be applied in the absence of a Lagrangian, since only the governing differential equations are required for this procedure. In the paper, an application of this method to the Schroedinger equation is presented. (authors)

  20. Piecewise linear emulator of the nonlinear Schroedinger equation and the resulting analytic solutions for Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Theodorakis, Stavros

    2003-01-01

    We emulate the cubic term Ψ 3 in the nonlinear Schroedinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a δ function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Ψ 3 one. In particular, it can be used for the nonlinear Schroedinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions

  1. On the equivalence between particular types of Navier-Stokes and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Dietrich, K.; Vautherin, D.

    1985-01-01

    We derive a Schroedinger equation equivalent to the Navier-Stokes equation in the special case of constant kinematic viscosities. This equation contains a non-linear term similar to that proposed by Kostin for a quantum description of friction [fr

  2. The exact solutions of the Schroedinger equation with the Morse potential via Laplace transforms

    International Nuclear Information System (INIS)

    Chen Gang

    2004-01-01

    In this Letter, we reduce the second-order differential equation about the one-dimensional Schroedinger equation with the Morse potential reduced to the first-order differential equation in terms of Laplace transforms and then obtain the exact bound state solutions

  3. On reduction and exact solutions of nonlinear many-dimensional Schroedinger equations

    International Nuclear Information System (INIS)

    Barannik, A.F.; Marchenko, V.A.; Fushchich, V.I.

    1991-01-01

    With the help of the canonical decomposition of an arbitrary subalgebra of the orthogonal algebra AO(n) the rank n and n-1 maximal subalgebras of the extended isochronous Galileo algebra, the rank n maximal subalgebras of the generalized extended classical Galileo algebra AG(a,n) the extended special Galileo algebra AG(2,n) and the extended whole Galileo algebra AG(3,n) are described. By using the rank n subalgebras, ansatze reducing the many dimensional Schroedinger equations to ordinary differential equations is found. With the help of the reduced equation solutions exact solutions of the Schroedinger equation are considered

  4. Solving the Schroedinger equation using the finite difference time domain method

    International Nuclear Information System (INIS)

    Sudiarta, I Wayan; Geldart, D J Wallace

    2007-01-01

    In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems

  5. Numerical Clifford Analysis for the Non-stationary Schroedinger Equation

    International Nuclear Information System (INIS)

    Faustino, N.; Vieira, N.

    2007-01-01

    We construct a discrete fundamental solution for the parabolic Dirac operator which factorizes the non-stationary Schroedinger operator. With such fundamental solution we construct a discrete counterpart for the Teodorescu and Cauchy-Bitsadze operators and the Bergman projectors. We finalize this paper with convergence results regarding the operators and a concrete numerical example

  6. Embedded solitons in the third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B

    2008-01-01

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion

  7. Studying the gradient flow coupling in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ramos, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-08-15

    We discuss the setup and features of a new definition of the running coupling in the Schroedinger functional scheme based on the gradient flow. Its suitability for a precise continuum limit in QCD is demonstrated on a set of N{sub f}=2 gauge field ensembles in a physical volume of L{proportional_to}0.4 fm.

  8. Equivalence transformations and differential invariants of a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Senthilvelan, M; Torrisi, M; Valenti, A

    2006-01-01

    By using Lie's invariance infinitesimal criterion, we obtain the continuous equivalence transformations of a class of nonlinear Schroedinger equations with variable coefficients. We construct the differential invariants of order 1 starting from a special equivalence subalgebra E χ o . We apply these latter ones to find the most general subclass of variable coefficient nonlinear Schr?dinger equations which can be mapped, by means of an equivalence transformation of E χ o , to the well-known cubic Schroedinger equation. We also provide the explicit form of the transformation

  9. Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Sun Chengfeng; Gao Hongjun

    2009-01-01

    The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.

  10. Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)

    1982-01-01

    The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru

  11. Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schroedinger's equation with Kerr law nonlinearity

    International Nuclear Information System (INIS)

    Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong

    2011-01-01

    In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.

  12. Schroedinger equation from 0 (h/2π) to o(h/2πinfinity)

    International Nuclear Information System (INIS)

    Voros, A.

    1985-08-01

    The Balian and Bloch idea, that the semiclassical treatment of the Schroedinger equation can be carried out exactly to all orders, o(h/2πinfinity), has been explicitly confirmed upon the time-independent equation with a polynomial potential V(q) in one degree of freedom. The global analytic structure of certain functions, which encode the full eigenvalue distribution, has indeed been computed in great detail with the complex WKB method, yielding a structure called a resurgence algebra. In the special case V(q) = q 2 sub(M), this leads to sum rules for the eigenvalues, which have been verified numerically. Inasmuch as the leading order 0(h/2π) of the WKB expansion amounts to the stationary phase evaluation of the Feynman path integral, it is a yet unsolved challenge to reproduce our results by an exact analysis of this path integral using a generalized saddle-point treatment

  13. Variational method for the derivative nonlinear Schroedinger equation with computational applications

    Energy Technology Data Exchange (ETDEWEB)

    Helal, M A [Mathematics Department, Faculty of Science, Cairo University (Egypt); Seadawy, A R [Mathematics Department, Faculty of Science, Beni-Suef University (Egypt)], E-mail: mahelal@yahoo.com, E-mail: aly742001@yahoo.com

    2009-09-15

    The derivative nonlinear Schroedinger equation (DNLSE) arises as a physical model for ultra-short pulse propagation. In this paper, the existence of a Lagrangian and the invariant variational principle (i.e. in the sense of the inverse problem of calculus of variations through deriving the functional integral corresponding to a given coupled nonlinear partial differential equations) for two-coupled equations describing the nonlinear evolution of the Alfven wave with magnetosonic waves at a much larger scale are given and the functional integral corresponding to those equations is derived. We found the solutions of DNLSE by choice of a trial function in a region of a rectangular box in two cases, and using this trial function, we find the functional integral and the Lagrangian of the system without loss. Solution of the general case for the two-box potential can be obtained on the basis of a different ansatz where we approximate the Jost function using polynomials of order n instead of the piecewise linear function. An example for the third order is given for illustrating the general case.

  14. On the Painleve integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Guiqiong; Li Zhibin

    2005-01-01

    It is proven that generalized coupled higher-order nonlinear Schroedinger equations possess the Painleve property for two particular choices of parameters, using the Weiss-Tabor-Carnevale method and Kruskal's simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests

  15. Erwin Schroedinger

    International Nuclear Information System (INIS)

    Hoffmann, D.

    1984-01-01

    Erwin Schroedinger (1887-1961) belongs without doubt to the most outstanding physicists of our century. His name is inseparably connected with the development of quantum theory with the formulation of his famous wave equation being his greatest achievement. This relation became generally known as the Schroedinger equation and its understanding was fundamental to the progress of modern quantum theory. In 1933 Schroedinger's work was honoured by the award of the Nobel Prize in physics. In the booklet Schroedinger's life, work and philosophical views are outlined against the social and physico-historical background of his time

  16. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  17. Mathematical analysis of the dimensional scaling technique for the Schroedinger equation with power-law potentials

    International Nuclear Information System (INIS)

    Ding Zhonghai; Chen, Goong; Lin, Chang-Shou

    2010-01-01

    The dimensional scaling (D-scaling) technique is an innovative asymptotic expansion approach to study the multiparticle systems in molecular quantum mechanics. It enables the calculation of ground and excited state energies of quantum systems without having to solve the Schroedinger equation. In this paper, we present a mathematical analysis of the D-scaling technique for the Schroedinger equation with power-law potentials. By casting the D-scaling technique in an appropriate variational setting and studying the corresponding minimization problem, the D-scaling technique is justified rigorously. A new asymptotic dimensional expansion scheme is introduced to compute asymptotic expansions for ground state energies.

  18. Three-Step Predictor-Corrector of Exponential Fitting Method for Nonlinear Schroedinger Equations

    International Nuclear Information System (INIS)

    Tang Chen; Zhang Fang; Yan Haiqing; Luo Tao; Chen Zhanqing

    2005-01-01

    We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three-step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.

  19. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2009-06-19

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.

  20. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2009-01-01

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential

  1. On the construction of coherent states of position dependent mass Schroedinger equation endowed with effective potential

    International Nuclear Information System (INIS)

    Chithiika Ruby, V.; Senthilvelan, M.

    2010-01-01

    In this paper, we propose an algorithm to construct coherent states for an exactly solvable position dependent mass Schroedinger equation. We use point canonical transformation method and obtain ground state eigenfunction of the position dependent mass Schroedinger equation. We fix the ladder operators in the deformed form and obtain explicit expression of the deformed superpotential in terms of mass distribution and its derivative. We also prove that these deformed operators lead to minimum uncertainty relations. Further, we illustrate our algorithm with two examples, in which the coherent states given for the second example are new.

  2. Investigation of solutions of boundary-value singular perturbated problem for Schroedinger equation of 4th order

    International Nuclear Information System (INIS)

    Amirkhanov, I.V.; Zhidkov, E.P.; Konnova, S.V.

    2000-01-01

    For the case of spherical-symmetrical potential we have considered the convergence of the solution of singular-perturbated Schroedinger equation of the 4th order to the solution of the corresponding standard nonrelativistic Schroedinger equation by numerical and analytical methods. The questions of existence of the solutions are explored. Numerical results are given. (author)

  3. A comparative analysis of Painleve, Lax pair, and similarity transformation methods in obtaining the integrability conditions of nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Al Khawaja, U.

    2010-01-01

    We derive the integrability conditions of nonautonomous nonlinear Schroedinger equations using the Lax pair and similarity transformation methods. We present a comparative analysis of these integrability conditions with those of the Painleve method. We show that while the Painleve integrability conditions restrict the dispersion, nonlinearity, and dissipation/gain coefficients to be space independent and the external potential to be only a quadratic function of position, the Lax Pair and the similarity transformation methods allow for space-dependent coefficients and an external potential that is not restricted to the quadratic form. The integrability conditions of the Painleve method are retrieved as a special case of our general integrability conditions. We also derive the integrability conditions of nonautonomous nonlinear Schroedinger equations for two- and three-spacial dimensions.

  4. New lumps of Veselov-Novikov integrable nonlinear equation and new exact rational potentials of two-dimensional stationary Schroedinger equation via ∂-macron-dressing method

    International Nuclear Information System (INIS)

    Dubrovsky, V.G.; Formusatik, I.B.

    2003-01-01

    The scheme for calculating via Zakharov-Manakov ∂-macron-dressing method of new rational solutions with constant asymptotic values at infinity of the famous two-dimensional Veselov-Novikov (VN) integrable nonlinear evolution equation and new exact rational potentials of two-dimensional stationary Schroedinger (2DSchr) equation with multiple pole wave functions is developed. As examples new lumps of VN nonlinear equation and new exact rational potentials of 2DSchr equation with multiple pole of order two wave functions are calculated. Among the constructed rational solutions are as nonsingular and also singular

  5. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  6. Travelling solitons in the damped driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.

    2003-01-01

    The well known effect of the linear damping on the moving nonlinear Schroedinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable

  7. The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form

    International Nuclear Information System (INIS)

    Mourad, J.; Sazdjian, H.

    1994-01-01

    The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs

  8. Intertwining relations and Darboux transformations for Schroedinger equations in (n+1) dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2010-01-01

    We evaluate the intertwining relation for Schroedinger equations in (n+1) dimensions. The conditions for the existence of a Darboux transformation are analyzed and compared to their (1+1) dimensional counterparts. A complete solution of the conditions is given for (2+1) dimensions, and a Darboux transformation is constructed.

  9. Exact solutions for the quintic nonlinear Schroedinger equation with time and space modulated nonlinearities and potentials

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Calvo, Gabriel F.

    2009-01-01

    In this Letter, by means of similarity transformations, we construct explicit solutions to the quintic nonlinear Schroedinger equation with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general approach and use it to study some examples and find nontrivial explicit solutions such as periodic (breathers), quasiperiodic and bright and dark soliton solutions

  10. Two simple ansaetze for obtaining exact solutions of high dispersive nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Palacios, Sergio L.

    2004-01-01

    We propose two simple ansaetze that allow us to obtain different analytical solutions of the high dispersive cubic and cubic-quintic nonlinear Schroedinger equations. Among these solutions we can find solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media

  11. Interrelation of alternative sets of Lax-pairs for a generalized nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Iino, Kazuhiro; Ichikawa, Yoshihiko; Wadati, Miki.

    1982-05-01

    Examination of the inverse scattering transformation schemes for a generalized nonlinear Schroedinger equation reveals the fact that the algorithm of Chen-Lee-Liu gives rise to the Lax-pairs for the squared eigenfunctions of the Wadati-Konno-Ichikawa scheme, which has been formulated as superposition of the Ablowitz-Kaup-Newell-Segur scheme and the Kaup-Newell scheme. (author)

  12. Filamentary structures of the cosmic web and the nonlinear Schroedinger type equation

    International Nuclear Information System (INIS)

    Tigrak, E; Weygaert, R van de; Jones, B J T

    2011-01-01

    We show that the filamentary type structures of the cosmic web can be modeled as solitonic waves by solving the reaction diffusion system which is the hydrodynamical analogous of the nonlinear Schroedinger type equation. We find the analytical solution of this system by applying the Hirota direct method which produces the dissipative soliton solutions to formulate the dynamical evolution of the nonlinear structure formation.

  13. Continuous-time random walk as a guide to fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Lenzi, E. K.; Ribeiro, H. V.; Mukai, H.; Mendes, R. S.

    2010-01-01

    We argue that the continuous-time random walk approach may be a useful guide to extend the Schroedinger equation in order to incorporate nonlocal effects, avoiding the inconsistencies raised by Jeng et al. [J. Math. Phys. 51, 062102 (2010)]. As an application, we work out a free particle in a half space, obtaining the time dependent solution by considering an arbitrary initial condition.

  14. KAM for the non-linear Schroedinger equation

    CERN Document Server

    Eliasson, L H

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep|u|^2u;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it If $|\\ep|$ is sufficiently small, then there is a large subset $U'$ of $U$ such that for all $...

  15. Fractional integration, Morrey spaces and a Schroedinger equation

    International Nuclear Information System (INIS)

    Olsen, P.A.

    1995-01-01

    Let V : R 3 → R be the potential for the 3-dimensional Schroedinger operator -Δ + V. It was shown by Cwikel, Lieb and Rosenblum, [8], that the number of bound states, N(V), of -Δ + V is bounded by N(V) ≤ C ∫ R3 |V(x)| 3/2 dx. Later Fefferman and phong, [4], improved on this inequality. Make a dyadic decomposition of R 3 into cubes. Define a dyadic cube Q to be minimal with respect to ε > 0 if ∫ q |V(x)| p dx ≥ ε p |Q| 1-2p/3 and ∫ Q ' |V(x)| p dx p |Q'| 1-2p/3 for all dyadic cubes Q' contained-in Q. 10 refs., 4 figs., 1 tab

  16. From nonlinear Schroedinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    International Nuclear Information System (INIS)

    Yang Xiao; Du Dianlou

    2010-01-01

    The Poisson structure on C N xR N is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  17. On the quantum inverse problem for a new type of nonlinear Schroedinger equation for Alfven waves in plasma

    International Nuclear Information System (INIS)

    Sen, S.; Roy Chowdhury, A.

    1989-06-01

    The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs

  18. Singular vectors and invariant equations for the Schroedinger algebra in n ≥ 3 space dimensions. The general case

    International Nuclear Information System (INIS)

    Dobrev, V. K.; Stoimenov, S.

    2010-01-01

    The singular vectors in Verma modules over the Schroedinger algebra s(n) in (n + 1)-dimensional space-time are found for the case of general representations. Using the singular vectors, hierarchies of equations invariant under Schroedinger algebras are constructed.

  19. On exact solitary wave solutions of the nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Raju, T Solomon; Kumar, C Nagaraja; Panigrahi, Prasanta K

    2005-01-01

    We use a fractional transformation to connect the travelling wave solutions of the nonlinear Schroedinger equation (NLSE), phase locked with a source, to the elliptic equations satisfying, f-Prime ± af ± λf 3 = 0. The solutions are necessarily of rational form, containing both trigonometric and hyperbolic types as special cases. Bright and dark solitons, as well as singular solitons, are obtained in a suitable range of parameter values. (letter to the editor)

  20. Nonstationary quantum mechanics. 4. Nonadiabatic properties of the Schroedinger equation in adiabatic processes

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, N S [Low Temperature Department of the Institute of Solid State Physics of the Bulgarian Academy of Sciences, Sofia

    1981-04-01

    It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article rests essentially on the ideology of the preceding articles, in particular article I.

  1. Nonstationary quantum mechanics. IV. Nonadiabatic properties of the Schroedinger equation in adiabatic processes

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, N S

    1981-04-01

    It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article IV rests essentially on the ideology of the preceding articles, in particular article I.

  2. Schroedinger--Dirac spaces of entire functions

    International Nuclear Information System (INIS)

    De Branges, L.

    1977-01-01

    A study is made of some Hilbert spaces of entire function which appear in the quantum mechanical theory of the hydrogen atoms. These spaces are examples in the theory of Hilbert spaces whose elements are entire functions and which have certain given properties. 1 reference

  3. On the spectral theory and dispersive estimates for a discrete Schroedinger equation in one dimension

    International Nuclear Information System (INIS)

    Pelinovsky, D. E.; Stefanov, A.

    2008-01-01

    Based on the recent work [Komech et al., 'Dispersive estimates for 1D discrete Schroedinger and Klein-Gordon equations', Appl. Anal. 85, 1487 (2006)] for compact potentials, we develop the spectral theory for the one-dimensional discrete Schroedinger operator, Hφ=(-Δ+V)φ=-(φ n+1 +φ n-1 -2φ n )+V n φ n . We show that under appropriate decay conditions on the general potential (and a nonresonance condition at the spectral edges), the spectrum of H consists of finitely many eigenvalues of finite multiplicities and the essential (absolutely continuous) spectrum, while the resolvent satisfies the limiting absorption principle and the Puiseux expansions near the edges. These properties imply the dispersive estimates parallel e itH P a.c. (H) parallel l σ 2 →l -σ 2 -3/2 for any fixed σ>(5/2) and any t>0, where P a.c. (H) denotes the spectral projection to the absolutely continuous spectrum of H. In addition, based on the scattering theory for the discrete Jost solutions and the previous results by Stefanov and Kevrekidis [''Asymptotic behaviour of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon equations,'' Nonlinearity 18, 1841 (2005)], we find new dispersive estimates parallel e itH P a.c. (H) parallel l 1 →l ∞ -1/3 , which are sharp for the discrete Schroedinger operators even for V=0

  4. Spectral fitting method for the solution of time-dependent Schroedinger equations: Applications to atoms in intense laser fields

    International Nuclear Information System (INIS)

    Qiao Haoxue; Cai Qingyu; Rao Jianguo; Li Baiwen

    2002-01-01

    A spectral fitting method for solving the time-dependent Schroedinger equation has been developed and applied to the atom in intense laser fields. This method allows us to obtain a highly accurate time-dependent wave function with a contribution from the high-order term of Δt. Moreover, the time-dependent wave function is determined on a small number of discrete mesh points, thus making calculations simple and accurate. This method is illustrated by computing wave functions and harmonic generation spectra of a model atom in laser fields

  5. Resolvent approach for two-dimensional scattering problems. Application to the nonstationary Schroedinger problem and the KPI equation

    International Nuclear Information System (INIS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A.K.; Polivanov, M.C.

    1993-01-01

    The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. The authors demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schroedinger equation as an example, it is shown that all types of solutions of the linear problem, as well as spectral data known in the literature, are given as specific values of this unique function - the resolvent function. A new form of the inverse problem is formulated. 7 refs

  6. The puzzling entanglement of Schroedinger's wave function

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Rimini, A.; Weber, T.

    1987-05-01

    A brief review of the conceptual difficulties met by the quantum formalism is presented. The main attempts to overcome these difficulties are considered and their limitations are pointed out. A recent proposal based on the assumption of the occurrence of a specific type of wave function collapse is discussed and its consequences for the above-mentioned problems are analyzed. (author). 28 refs

  7. Global existence of small solutions to semilinear Schroedinger equations

    International Nuclear Information System (INIS)

    Chihara, Hiroyuki

    1996-01-01

    We present global existence theorem for semilinear Schrodinger equations. In general, Schrodinger-type equations do not admit the classical energy estimates. To avoid this difficulty, we use S. Doi's method for linear Schrodinger-type equations. Combining his method and L p -L q estimates, we prove the global existence of solutions with small initial data

  8. The harmonic oscillator and the position dependent mass Schroedinger equation: isospectral partners and factorization operators

    International Nuclear Information System (INIS)

    Morales, J.; Ovando, G.; Pena, J. J.

    2010-01-01

    One of the most important scientific contributions of Professor Marcos Moshinsky has been his study on the harmonic oscillator in quantum theory vis a vis the standard Schroedinger equation with constant mass [1]. However, a simple description of the motion of a particle interacting with an external environment such as happen in compositionally graded alloys consist of replacing the mass by the so-called effective mass that is in general variable and dependent on position. Therefore, honoring in memoriam Marcos Moshinsky, in this work we consider the position-dependent mass Schrodinger equations (PDMSE) for the harmonic oscillator potential model as former potential as well as with equi-spaced spectrum solutions, i.e. harmonic oscillator isospectral partners. To that purpose, the point canonical transformation method to convert a general second order differential equation (DE), of Sturm-Liouville type, into a Schroedinger-like standard equation is applied to the PDMSE. In that case, the former potential associated to the PDMSE and the potential involved in the Schroedinger-like standard equation are related through a Riccati-type relationship that includes the equivalent of the Witten superpotential to determine the exactly solvable positions-dependent mass distribution (PDMD)m(x). Even though the proposed approach is exemplified with the harmonic oscillator potential, the procedure is general and can be straightforwardly applied to other DEs.

  9. The effective Schroedinger equation of the optical model of composite nuclei elastic collisions

    International Nuclear Information System (INIS)

    Mondragon, A.; Hernandez, E.

    1980-01-01

    An effective hamiltonian for elastic collisions between composite nuclei is obtained from the Schroedinger equation of the complete many-body system and its fully antisymmetric wave functions by means of a projection operator technique. This effective hamiltonian, defined in such a way that it has to reproduce the scattering amplitude in full detail, including exchange effects, is explicitly Galilean invariant. The effective interaction operator is a function of the relative distance between the centers of mass of the colliding nuclei and the constants of the motion of the whole system. The interaction operator of the optical model is obtained next, requiring as usual, that it reproduces the average over the energy of the scattering amplitude and keeping the Galilean invariance. The resulting optical potential operator has some terms identical to those obtained in the Resonating Group Method, and others coming from the elimination of all non elastic channels and the delayed elastic scattering. This result makes the relation existing among the projection operator method to the Feshbach and the cluster model equations of motion for positive energies (RGM) explicit. The additional interaction terms due to the flux loss in the elastic channel are non-local, and non-hermitean operators expressed in terms of the transition amplitudes and the density of states of the compound nucleus in such a way that an approximate evaluation, in a systematic fashion, seems possible. Theangular momentum dependence of the optical potential operator is discussed in some detail. (author)

  10. The gradient flow coupling in the Schroedinger functional

    International Nuclear Information System (INIS)

    Fritzsch, Patrick; Ramos, Alberto

    2013-01-01

    We study the perturbative behavior of the Yang-Mills gradient flow in the Schroedinger Functional, both in the continuum and on the lattice. The energy density of the flow field is used to define a running coupling at a scale given by the size of the finite volume box. From our perturbative computation we estimate the size of cutoff effects of this coupling to leading order in perturbation theory. On a set of N f =2 gauge field ensembles in a physical volume of L∝0.4 fm we finally demonstrate the suitability of the coupling for a precise continuum limit due to modest cutoff effects and high statistical precision.

  11. Numerical stochastic perturbation theory in the Schroedinger functional

    International Nuclear Information System (INIS)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk; Dalla Brida, Mattia; Sint, Stefan; Deutsches Elektronen-Synchrotron

    2013-11-01

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  12. Numerical stochastic perturbation theory in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-11-15

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  13. The discretized Schroedinger equation and simple models for semiconductor quantum wells

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Klimeck, Gerhard

    2004-01-01

    The discretized Schroedinger equation is one of the most commonly employed methods for solving one-dimensional quantum mechanics problems on the computer, yet many of its characteristics remain poorly understood. The differences with the continuous Schroedinger equation are generally viewed as shortcomings of the discrete model and are typically described in purely mathematical terms. This is unfortunate since the discretized equation is more productively viewed from the perspective of solid-state physics, which naturally links the discrete model to realistic semiconductor quantum wells and nanoelectronic devices. While the relationship between the discrete model and a one-dimensional tight-binding model has been known for some time, the fact that the discrete Schroedinger equation admits analytic solutions for quantum wells has gone unnoted. Here we present a solution to this new analytically solvable problem. We show that the differences between the discrete and continuous models are due to their fundamentally different bandstructures, and present evidence for our belief that the discrete model is the more physically reasonable one

  14. A q-Schroedinger algebra, its lowest weight representations and generalized q-deformed heat equations

    International Nuclear Information System (INIS)

    Dobrev, V.K.; Doebner, H.D.; Mrugalla, C.

    1995-12-01

    We give a q-deformation S-perpendicular q of the centrally extended Schroedinger algebra. We construct the lowest weight representations of S-perpendicular q , starting from the Verma modules over S-perpendicular q , finding their singular vectors and factoring the Verma submodules built on the singular vectors. We also give a vector-field realization of S-perpendicular q which provides polynomial realization of the lowest weight representations and an infinite hierarchy of q-difference equations which may be called generalized q-deformed heat equations. We also apply our methods to the on-shell q-Schroedinger algebra proposed by Floreanini and Vinet. (author). 12 refs

  15. Form-preserving Transformations for the Time-dependent Schroedinger Equation in (n + 1) Dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2006-01-01

    We define a form-preserving transformation (also called point canonical transformation) for the time-dependent Schroedinger equation (TDSE) in (n+1) dimensions. The form-preserving transformation is shown to be invertible and to preserve L 2 -normalizability. We give a class of time-dependent TDSEs that can be mapped onto stationary Schroedinger equations by our form-preserving transformation. As an example, we generate a solvable, time-dependent potential of Coulombic ring-shaped type together with the corresponding exact solution of the TDSE in (3+1) dimensions. We further consider TDSEs with position-dependent (effective) masses and show that there is no form-preserving transformation between them and the conventional TDSEs, if the spatial dimension of the system is higher than one

  16. Quantum field theory in flat Robertson-Walker space-time functional Schroedinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1989-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schroedinger picture provides a useful description. We discuss free and self-interacting bosonic quantum field theories: Schroedinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schroedinger picture. The techniques introduced can be used to study various dynamical questions in early universe processes. (author)

  17. Breather type solutions of the vector nonlinear Schroedinger equation with quasi-constant boundary conditions

    International Nuclear Information System (INIS)

    Makhan'kov, V.G.; Slavov, S.I.

    1989-01-01

    Vector nonlinear Schroedinger equations (VS3) is investigated under quasi-constant boundary conditions. New two-soliton solutions are obtained with such non-trivial dynamics that they may be called the breather solutions. A version of the basic Novikov-Dubrovin-Krichever algebro-geometrical approach is applied to obtain breather like solutions existing for all types of internal symmetry is specified are formulated in terms of the soliton velocity expressed via the parameters of the problem. 4 refs

  18. On the discrete spectrum of non-self-adjoint Schroedinger differential equation with an operator coefficient

    International Nuclear Information System (INIS)

    Bayramoglu, Mehmet; Tasci, Fatih; Zeynalov, Djafar

    2004-01-01

    We study the discrete part of spectrum of a singular non-self-adjoint second-order differential equation on a semiaxis with an operator coefficient. Its boundedness is proved. The result is applied to the Schroedinger boundary value problem -Δu+q(x)u=λ 2 u, u vertical bar ∂D =0, with a complex potential q(x) in an angular domain

  19. Asymptotic iteration method solutions to the d-dimensional Schroedinger equation with position-dependent mass

    International Nuclear Information System (INIS)

    Yasuk, F.; Tekin, S.; Boztosun, I.

    2010-01-01

    In this study, the exact solutions of the d-dimensional Schroedinger equation with a position-dependent mass m(r)=1/(1+ζ 2 r 2 ) is presented for a free particle, V(r)=0, by using the method of point canonical transformations. The energy eigenvalues and corresponding wavefunctions for the effective potential which is to be a generalized Poeschl-Teller potential are obtained within the framework of the asymptotic iteration method.

  20. A method of solving simple harmonic oscillator Schroedinger equation

    Science.gov (United States)

    Maury, Juan Carlos F.

    1995-01-01

    A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.

  1. Chaotic properties between the nonintegrable discrete nonlinear Schroedinger equation and a nonintegrable discrete Heisenberg model

    International Nuclear Information System (INIS)

    Ding Qing

    2007-01-01

    We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model

  2. Two routes to the one-dimensional discrete nonpolynomial Schroedinger equation

    International Nuclear Information System (INIS)

    Gligoric, G.; Hadzievski, Lj.; Maluckov, A.; Salasnich, L.; Malomed, B. A.

    2009-01-01

    The Bose-Einstein condensate (BEC), confined in a combination of the cigar-shaped trap and axial optical lattice, is studied in the framework of two models described by two versions of the one-dimensional (1D) discrete nonpolynomial Schroedinger equation (NPSE). Both models are derived from the three-dimensional Gross-Pitaevskii equation (3D GPE). To produce 'model 1' (which was derived in recent works), the 3D GPE is first reduced to the 1D continual NPSE, which is subsequently discretized. 'Model 2,' which was not considered before, is derived by first discretizing the 3D GPE, which is followed by the reduction in the dimension. The two models seem very different; in particular, model 1 is represented by a single discrete equation for the 1D wave function, while model 2 includes an additional equation for the transverse width. Nevertheless, numerical analyses show similar behaviors of fundamental unstaggered solitons in both systems, as concerns their existence region and stability limits. Both models admit the collapse of the localized modes, reproducing the fundamental property of the self-attractive BEC confined in tight traps. Thus, we conclude that the fundamental properties of discrete solitons predicted for the strongly trapped self-attracting BEC are reliable, as the two distinct models produce them in a nearly identical form. However, a difference between the models is found too, as strongly pinned (very narrow) discrete solitons, which were previously found in model 1, are not generated by model 2--in fact, in agreement with the continual 1D NPSE, which does not have such solutions either. In that respect, the newly derived model provides for a more accurate approximation for the trapped BEC.

  3. Global spacetime symmetries in the functional Schroedinger picture

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1991-01-01

    In the conventional functional Schroedinger quantization of field theory, the background spacetime manifold is foliated into a set of three-surfaces and the quantum state of the field is represented by a wave functional of the field configurations on each three-surface. Although this procedure may be covariantly described, the wave functionals generally fail to carry a representation of the complete spacetime symmetry group of the background, such as the Poincare group in Minkowski spacetime, because spacetime symmetries generally involve distortions or motions of the three-surfaces themselves within that spacetime. In this paper, we show that global spacetime symmetries in the functional Schroedinger picture may be represented by parametrizing the field theory---raising to the status of dynamical variables the embedding variables describing the spacetime location of each three-surface. In particular, we show that the embedding variables provide a connection between the purely geometrical operation of an isometry group on the spacetime and the operation of the usual global symmetry generators (constructed from the energy-momentum tensor) on the wave functionals of the theory. We study the path-integral representation of the wave functionals of the parametrized field theory. We show how to construct, from the path integral, wave functionals that are annihilated by the global symmetry generators, i.e., that are invariant under global spacetime symmetry groups. The invariance of the class of histories summed over in the path integral is identified as the source of the invariance of the wave functionals. We apply this understanding to a study of vacuum states in the de Sitter spacetime. We make mathematically precise a previously given heuristic argument for the de Sitter invariance of the matter wave functionals defined by the no-boundary proposal of Hartle and Hawking

  4. Structure and properties of Hughston's stochastic extension of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.

    2000-01-01

    Hughston has recently proposed a stochastic extension of the Schroedinger equation, expressed as a stochastic differential equation on projective Hilbert space. We derive new projective Hilbert space identities, which we use to give a general proof that Hughston's equation leads to state vector collapse to energy eigenstates, with collapse probabilities given by the quantum mechanical probabilities computed from the initial state. We discuss the relation of Hughston's equation to earlier work on norm-preserving stochastic equations, and show that Hughston's equation can be written as a manifestly unitary stochastic evolution equation for the pure state density matrix. We discuss the behavior of systems constructed as direct products of independent subsystems, and briefly address the question of whether an energy-based approach, such as Hughston's, suffices to give an objective interpretation of the measurement process in quantum mechanics. (c) 2000 American Institute of Physics

  5. Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2003-01-01

    Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit

  6. The chirally rotated Schroedinger functional. Theoretical expectations and perturbative tests

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia

    2016-03-01

    The chirally rotated Schroedinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schroedinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  7. The Schroedinger functional for Gross-Neveu models

    International Nuclear Information System (INIS)

    Leder, B.

    2007-01-01

    Gross-Neveu type models with a finite number of fermion flavours are studied on a two-dimensional Euclidean space-time lattice. The models are asymptotically free and are invariant under a chiral symmetry. These similarities to QCD make them perfect benchmark systems for fermion actions used in large scale lattice QCD computations. The Schroedinger functional for the Gross-Neveu models is defined for both, Wilson and Ginsparg-Wilson fermions, and shown to be renormalisable in 1-loop lattice perturbation theory. In two dimensions four fermion interactions of the Gross-Neveu models have dimensionless coupling constants. The symmetry properties of the four fermion interaction terms and the relations among them are discussed. For Wilson fermions chiral symmetry is explicitly broken and additional terms must be included in the action. Chiral symmetry is restored up to cut-off effects by tuning the bare mass and one of the couplings. The critical mass and the symmetry restoring coupling are computed to second order in lattice perturbation theory. This result is used in the 1-loop computation of the renormalised couplings and the associated beta-functions. The renormalised couplings are defined in terms of suitable boundary-to-boundary correlation functions. In the computation the known first order coefficients of the beta-functions are reproduced. One of the couplings is found to have a vanishing betafunction. The calculation is repeated for the recently proposed Schroedinger functional with exact chiral symmetry, i.e. Ginsparg-Wilson fermions. The renormalisation pattern is found to be the same as in the Wilson case. Using the regularisation dependent finite part of the renormalised couplings, the ratio of the Lambda-parameters is computed. (orig.)

  8. Quasi-classical derivation of the Dirac and one-particle Schroedinger equations

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1990-08-01

    The quasi-classical approach, in which particles are regarded as extended periodic excitations of a classical nonlinear field, is for the first time applied quantitatively in the quantum domain. It is shown that the twofold intrinsic 'spin' degree of freedom possessed by an electron can be interpreted in a purely classical way, and that the Lorentz covariant incorporation of this degree of freedom requires that the spacetime evolution of an electron excitation in a prescribed external field be given by the Dirac equation and hence, in the nonrelativistic limit, by the Pauli or Schroedinger one-particle equations. 17 refs

  9. Dynamical theory of neutron diffraction. [One-body Schroedinger equation, review

    Energy Technology Data Exchange (ETDEWEB)

    Sears, V F [Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.

    1978-10-01

    We present a review of the dynamical theory of neutron diffraction by macroscopic bodies which provides the theoretical basis for the study of neutron optics. We consider both the theory of dispersion, in which it is shown that the coherent wave in the medium satisfies a macroscopic one-body Schroedinger equation, and the theory of reflection, refraction, and diffraction in which the above equation is solved for a number of special cases of interest. The theory is illustrated with the help of experimental results obtained over the past 10 years by a number of new techniques such as neutron gravity refractometry. Pendelloesung interference, and neutron interferometry.

  10. Path space measures for Dirac and Schroedinger equations: Nonstandard analytical approach

    International Nuclear Information System (INIS)

    Nakamura, T.

    1997-01-01

    A nonstandard path space *-measure is constructed to justify the path integral formula for the Dirac equation in two-dimensional space endash time. A standard measure as well as a standard path integral is obtained from it. We also show that, even for the Schroedinger equation, for which there is no standard measure appropriate for a path integral, there exists a nonstandard measure to define a *-path integral whose standard part agrees with the ordinary path integral as defined by a limit from time-slice approximant. copyright 1997 American Institute of Physics

  11. The gradient flow coupling in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ramos, Alberto [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-01-15

    We study the perturbative behavior of the Yang-Mills gradient flow in the Schroedinger Functional, both in the continuum and on the lattice. The energy density of the flow field is used to define a running coupling at a scale given by the size of the finite volume box. From our perturbative computation we estimate the size of cutoff effects of this coupling to leading order in perturbation theory. On a set of N{sub f}=2 gauge field ensembles in a physical volume of L{proportional_to}0.4 fm we finally demonstrate the suitability of the coupling for a precise continuum limit due to modest cutoff effects and high statistical precision.

  12. Frozen and broken color: a matrix Schroedinger equation in the semiclassical limit

    International Nuclear Information System (INIS)

    Orbach, H.S.

    1981-01-01

    We consider the case of frozen color, i.e, where global color symmetry remains exact, but where colored states have a mass large compared to color-singlet mesons. Using semiclassical WKB formalism, we construct the spectrum of bound states. In order to determine the charge of the constituents, we then consider deep-inelastic scattering of an external probe (e.g., lepton) from our one-dimensional meson. We calculate explicitly the structure function, W, in the WKB limit and show how Lipkin's mechanism is manifested, as well as how scaling behavior comes. We derive the WKB formalism as a special case of a method of obtaining WKB type solutions for generalized Schroedinger equations for which the Hamiltonian is an arbitrary matrix function of any number of pairs of canonical operators. We generalize these considerations to the case of broken color symmetry - but where the breaking is not so strong as to allow low-lying states to have a large amount of mixing with the colored states. In this case, the degeneracy of excited colored states can be broken. We find that local excitation of color guarantees global excitation of color; i.e., if at a given energy colored semiclassical states can be constructed with size comparable to that of the ground state wave function, colored states of that energy will also exist in the spectrum of the full theory and will be observed. However, global existence of color does not guarantee the excitation of colored states via deep-inelastic processes

  13. Genus two finite gap solutions to the vector nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Woodcock, Thomas; Warren, Oliver H; Elgin, John N

    2007-01-01

    A recently published article presents a technique used to derive explicit formulae for odd genus solutions to the vector nonlinear Schroedinger equation. In another article solutions of genus two are derived using a different approach which assumes a separable ansatz. In this communication, the extension of the first technique to the even genus case is discussed, and this extension is carried out explicitly for genus two. Furthermore, a birational mapping is found between the spectral curves that arise in the two approaches. (fast track communication)

  14. Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation

    International Nuclear Information System (INIS)

    Duval, C.; Kuenzle, H.P.

    1983-02-01

    The role of the Bargmann group (11-dimensional extended Galilei group) in non relativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as General Relativity and couples minimally to a complex scalar field leading to a fourdimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory

  15. Solution of Schroedinger Equation for Two-Dimensional Complex Quartic Potentials

    International Nuclear Information System (INIS)

    Singh, Ram Mehar; Chand, Fakir; Mishra, S. C.

    2009-01-01

    We investigate the quasi-exact solutions of the Schroedinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x 1 + ip 3 , y = x 2 + ip 4 , p x = p 1 + ix 3 , p y = p 2 + ix 4 . Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetric one, are also worked out. (general)

  16. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature

  17. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-07-11

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature.

  18. Exact solution of the Schroedinger equation with the spin-boson Hamiltonian

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej

    2011-01-01

    We address the problem of obtaining the exact reduced dynamics of the spin-half (qubit) immersed within the bosonic bath (environment). An exact solution of the Schroedinger equation with the paradigmatic spin-boson Hamiltonian is obtained. We believe that this result is a major step ahead and may ultimately contribute to the complete resolution of the problem in question. We also construct the constant of motion for the spin-boson system. In contrast to the standard techniques available within the framework of the open quantum systems theory, our analysis is based on the theory of block operator matrices.

  19. Two-dimensional differential transform method for solving linear and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Ravi Kanth, A.S.V.; Aruna, K.

    2009-01-01

    In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  20. Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation

    International Nuclear Information System (INIS)

    Duval, C.; Kuenzle, H.P.

    1984-01-01

    The role of the Bargmann group (11-dimensional extended Galilei group) in nonrelativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as general relativity and couples minimally to a complex scalar field leading to a four-dimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory. (author)

  1. Solitary wave solutions as a signature of the instability in the discrete nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Edward, E-mail: arevalo@temf.tu-darmstadt.d [Technische Universitaet Darmstadt, Institut fuer Theorie elektromagnetischer Felder, TEMF, Schlossgartenstr. 8, D-64289 Darmstadt (Germany)

    2009-09-21

    The effect of instability on the propagation of solitary waves along one-dimensional discrete nonlinear Schroedinger equation with cubic nonlinearity is revisited. A self-contained quasicontinuum approximation is developed to derive closed-form expressions for small-amplitude solitary waves. The notion that the existence of nonlinear solitary waves in discrete systems is a signature of the modulation instability is used. With the help of this notion we conjecture that instability effects on moving solitons can be qualitative estimated from the analytical solutions. Results from numerical simulations are presented to support this conjecture.

  2. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang

    2011-01-01

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.

  3. A perturbation expansion for the nonlinear Schroedinger equation with application to the influence of nonlinear Landau damping

    International Nuclear Information System (INIS)

    Weiland, J.; Ichikawa, Y.H.; Wilhelmsson, H.

    1977-12-01

    The Bogoliubov-Mitropolsky perturbation method has been applied to the study of a perturbation on soliton solutions to the nonlinear Schroedinger equation. The results are compared to those of Karpman and Maslov using the inverse scattering method and to those by Ott and Sudan on the KdV equation. (auth.)

  4. Semi-classical propagation of wavepackets for the phase space Schroedinger equation: interpretation in terms of the Feichtinger algebra

    International Nuclear Information System (INIS)

    Gosson, Maurice A de

    2008-01-01

    The nearby orbit method is a powerful tool for constructing semi-classical solutions of Schroedinger's equation when the initial datum is a coherent state. In this paper, we first extend this method to arbitrary squeezed states and thereafter apply our results to the Schroedinger equation in phase space. This adaptation requires the phase-space Weyl calculus developed in previous work of ours. We also study the regularity of the semi-classical solutions from the point of view of the Feichtinger algebra familiar from the theory of modulation spaces

  5. Contribution to the establishment and resolution of the Schroedinger equation in a Riemannian manifold with constant curvature

    International Nuclear Information System (INIS)

    Rasolofoson, N.G.

    2014-01-01

    The properties of a physical system may vary significantly due to the presence of matter or energy. This change can be defined by the deformation of the space which is described as the variation of its curvature. In order to describe this law of physics, we have used differential geometry and studied especially a Schroedinger equation which describes a system evolving with time on a Riemannian manifold of constant curvature. Therefore, we have established and solved the Schroedinger equation using appropriate mathematics tools. As perspective, the study of string theory may be considered. [fr

  6. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  7. Series solutions to partial differential equations. A study of the singularities, expansions, and solutions of Schroedinger's equation for the helium atom

    International Nuclear Information System (INIS)

    Mahlab, M.S.

    1975-01-01

    All the presently available techniques for solving Schroedinger's differential equation for helium-like atoms display poor convergence of the wave function in the neighborhood of the singularities of the Hamiltonian operator. In general most of the methods of solving this equation will converge in the appropriate limit to the exact wave function; however, convergence is slow, especially near the singularities of this differential equation. These difficulties become readily apparent from local energy studies. A technique is presented that avoids these difficulties. The wave function it produces is specifically most accurate at the singularities of the Hamiltonian. The novel aspect of this treatment is the subdivision of the space spanned by the wave function. Different expansions are picked such that they converge rapidly in each of the different subdivisions. These expansions may be constructed in such a way that they obey the boundary conditions in their respective subdivision. Most importantly, all the information available from the recursion relations associated with the differential equation may be incorporated into these expansions. A systematic procedure is presented such that these expansions may be brought together to form a wave function that satisfies all the continuity requirements. An S-state helium wave function was constructed to demonstrate that this method of treatment is feasible, and capable of indefinite systematic improvement. A discussion of several new asymptotic expansions that were constructed for the helium wave function, as well as an improved functional form for the small electron-nucleus wave function, is included in this presentation

  8. On the chirally rotated Schroedinger functional with Wilson fermions

    International Nuclear Information System (INIS)

    Gonzalez Lopez, Jenifer

    2011-01-01

    There are many phenomena in nature, which are closely linked to the low energy regime of QCD. From a theoretical point of view, these low energy phenomena can be dealt with only by means of non-perturbative methods. It is the central goal of this thesis to provide a framework for such a nonperturbative renormalization. For that purpose, we employ a 4-dimensional lattice as a regulator of QCD. As a renormalization scheme, we propose a finite volume Schroedinger functional scheme and here in particular, the chirally rotated Schroedinger functional (χSF). We first perform analytical studies of the χSF at tree-level of perturbation theory, in the continuum and on the lattice. We study the eigenvalue spectrum of the continuum Dirac operator, equipped with chirally rotated SF boundary conditions, and derive the corresponding quark propagator. We then determine the tree-level quark propagator on the lattice, employing massless Wilson fermions as a regulator of the theory. Beyond tree-level, all studies are performed in the quenched approximation of QCD, as a first, computationally much simpler step to understand the properties of the newly proposed χSF scheme. One of the main targets of the present work, has been to perform the non-perturbative tuning of the two required coefficients of the χSF scheme, such that a well defined continuum limit can be reached. We demonstrate, as the first main result of this thesis, that the tuning is feasible and that, moreover, physical quantities are insensitive to the particular tuning condition. As in any lattice regularization with SF-like boundary conditions, there are also in the χSF a couple of counterterms at the boundaries, whose coefficients need to be tuned in order to remove the O(a) discretization effects originated at the boundaries. However, besides these boundary O(a) effects, the χSF is expected to be compatible with bulk automatic O(a)-improvement. We show here that, indeed, the scaling behavior of physical

  9. On the chirally rotated Schroedinger functional with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, Jenifer

    2011-05-25

    There are many phenomena in nature, which are closely linked to the low energy regime of QCD. From a theoretical point of view, these low energy phenomena can be dealt with only by means of non-perturbative methods. It is the central goal of this thesis to provide a framework for such a nonperturbative renormalization. For that purpose, we employ a 4-dimensional lattice as a regulator of QCD. As a renormalization scheme, we propose a finite volume Schroedinger functional scheme and here in particular, the chirally rotated Schroedinger functional ({chi}SF). We first perform analytical studies of the {chi}SF at tree-level of perturbation theory, in the continuum and on the lattice. We study the eigenvalue spectrum of the continuum Dirac operator, equipped with chirally rotated SF boundary conditions, and derive the corresponding quark propagator. We then determine the tree-level quark propagator on the lattice, employing massless Wilson fermions as a regulator of the theory. Beyond tree-level, all studies are performed in the quenched approximation of QCD, as a first, computationally much simpler step to understand the properties of the newly proposed {chi}SF scheme. One of the main targets of the present work, has been to perform the non-perturbative tuning of the two required coefficients of the {chi}SF scheme, such that a well defined continuum limit can be reached. We demonstrate, as the first main result of this thesis, that the tuning is feasible and that, moreover, physical quantities are insensitive to the particular tuning condition. As in any lattice regularization with SF-like boundary conditions, there are also in the {chi}SF a couple of counterterms at the boundaries, whose coefficients need to be tuned in order to remove the O(a) discretization effects originated at the boundaries. However, besides these boundary O(a) effects, the {chi}SF is expected to be compatible with bulk automatic O(a)-improvement. We show here that, indeed, the scaling behavior

  10. Time-dependent Schroedinger equations with effective mass in (2 + 1) dimensions: intertwining relations and Darboux operators

    International Nuclear Information System (INIS)

    Cobian, Hector; Schulze-Halberg, Axel

    2011-01-01

    We construct Darboux transformations for time-dependent Schroedinger equations with position-dependent mass in (2 + 1) dimensions. Several examples illustrate our results, which complement and generalize former findings for the constant mass case in two spatial variables (Schulze-Halberg 2010 J. Math. Phys. 51 033521).

  11. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    International Nuclear Information System (INIS)

    Leung Shingyu; Qian Jianliang

    2010-01-01

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  12. Stability of plane wave solutions of the two-space-dimensional nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Martin, D.U.; Yuen, H.C.; Saffman, P.G.

    1980-01-01

    The stability of plane, periodic solutions of the two-dimensional nonlinear Schroedinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik, Saffman and Yuen and Ablowitz and Segur on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations. (orig.)

  13. Universal Critical Power for Nonlinear Schroedinger Equations with a Symmetric Double Well Potential

    International Nuclear Information System (INIS)

    Sacchetti, Andrea

    2009-01-01

    Here we consider stationary states for nonlinear Schroedinger equations in any spatial dimension n with symmetric double well potentials. These states may bifurcate as the strength of the nonlinear term increases and we observe two different pictures depending on the value of the nonlinearity power: a supercritical pitchfork bifurcation, and a subcritical pitchfork bifurcation with two asymmetric branches occurring as the result of saddle-node bifurcations. We show that in the semiclassical limit, or for a large barrier between the two wells, the first kind of bifurcation always occurs when the nonlinearity power is less than a critical value; in contrast, when the nonlinearity power is larger than such a critical value then we always observe the second scenario. The remarkable fact is that such a critical value is a universal constant in the sense that it does not depend on the shape of the double well potential and on the dimension n.

  14. Stability analysis of embedded solitons in the generalized third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pelinovsky, Dmitry E.; Yang Jianke

    2005-01-01

    We study the generalized third-order nonlinear Schroedinger (NLS) equation which admits a one-parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of embedded solitons. Using exponentially weighted spaces, we approximate the resonance pole both analytically and numerically. We confirm in a near-integrable asymptotic limit that the resonance pole gives precisely the linear decay rate of parameters of the embedded soliton. Using conserved quantities, we qualitatively characterize the stable dynamics of embedded solitons

  15. Collapse instability of solitons in the nonpolynomial Schroedinger equation with dipole-dipole interactions

    International Nuclear Information System (INIS)

    Gligoric, G; Hadzievski, Lj; Maluckov, A; Malomed, B A

    2009-01-01

    A model of the Bose-Einstein condensate (BEC) of dipolar atoms, confined in a combination of a cigar-shaped trap and optical lattice acting in the axial direction, is studied in the framework of the one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) with additional terms describing long-range dipole-dipole (DD) interactions. The NPSE makes it possible to describe the collapse of localized modes, which was experimentally observed in the self-attractive BEC confined in tight traps, in the framework of the 1D description. We study the influence of the DD interactions on the dynamics of bright solitons, especially concerning their collapse-induced instability. Both attractive and repulsive contact and DD interactions are considered. The results are summarized in the form of stability/collapse diagrams in a respective parametric space. In particular, it is shown that the attractive DD interactions may prevent the collapse instability in the condensate with attractive contact interactions.

  16. Soliton on a cnoidal wave background in the coupled nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Shin, H J

    2004-01-01

    An application of the Darboux transformation on a cnoidal wave background in the coupled nonlinear Schroedinger equation gives a new solution which describes a soliton moving on a cnoidal wave. This is a generalized version of the previously known soliton solutions of dark-bright pair. Here a dark soliton resides on a cnoidal wave instead of on a constant background. It also exhibits a new type of soliton solution in a self-focusing medium, which describes a breakup of a generalized dark-bright pair into another generalized dark-bright pair and an 'oscillating' soliton. We calculate the shift of the crest of the cnoidal wave along a soliton and the moving direction of the soliton on a cnoidal wave

  17. On the classical theory of ordinary linear differential equations of the second order and the Schroedinger equation for power law potentials

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1983-01-01

    The power law potentials in the Schroedinger equation solved recently are shown to come from the classical treatment of the singularities of a linear, second order differential equation. This allows to enlarge the class of solvable power law potentials. (Author) [pt

  18. The inverse problem for the one-dimensional Schroedinger equation with an energy-dependent potential. II

    International Nuclear Information System (INIS)

    Jaulent, M.; Jean, C.

    1976-01-01

    The one-dimensional Schroedinger equation y + ''+ ) 7k 2 -V + (k,x){y + =0, x belonging to R, was previously considered when the potential V + (k,x) depends on the energy k 2 in the following way: V + (k,x)=U(x)+2kQ(x), (U(x), Q(x)) belonging to a large class of pairs of real potentials admitting no bound state). The two systems of differential and integral equations then introduced are solved. Then, investigating the inverse scattering problem it is found that a necessary and sufficient condition for one of the functions S + (k) and Ssub(-1)sup(+)(k) to be the scattering matrix associated with a pair (U(x), Q(x)) is that S + (k) (or equivalently Ssub(-1)sup(+)(k) belongs to the class S introduced. This pair is the only one admitting this function as its scattering matrix. Investigating the inverse reflection problem, it is found that a necessary and sufficient condition for a function S 21 + (k) to be the reflection coefficient to the right associated with a pair (U(x), Q(x)) is that S 21 + (k) belongs to the class R introduced. This pair is the only one admitting this function as

  19. Non-Markovian stochastic Schroedinger equations: Generalization to real-valued noise using quantum-measurement theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    Do stochastic Schroedinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schroedinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schroedinger equation introduced by Strunz, Diosi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction

  20. Phase integral approximation for coupled ordinary differential equations of the Schroedinger type

    International Nuclear Information System (INIS)

    Skorupski, Andrzej A.

    2008-01-01

    Four generalizations of the phase integral approximation (PIA) to sets of ordinary differential equations of Schroedinger type [u j '' (x)+Σ k=1 N R jk (x)u k (x)=0, j=1,2,...,N] are described. The recurrence relations for higher order corrections are given in a form valid to arbitrary order and for the matrix R(x)[≡(R jk (x))] either Hermitian or non-Hermitian. For Hermitian and negative definite R(x) matrices, a Wronskian conserving PIA theory is formulated, which generalizes Fulling's current conserving theory pertinent to positive definite R(x) matrices. The idea of a modification of the PIA, which is well known for one equation [u '' (x)+R(x)u(x)=0], is generalized to sets. A simplification of Wronskian or current conserving theories is proposed which in each order eliminates one integration from the formulas for higher order corrections. If the PIA is generated by a nondegenerate eigenvalue of the R(x) matrix, the eliminated integration is the only one present. In that case, the simplified theory becomes fully algorithmic and is generalized to non-Hermitian R(x) matrices. The general theory is illustrated by a few examples automatically generated by using the author's program in MATHEMATICA published in e-print arXiv:0710.5406 [math-ph

  1. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  2. Impulsive moving mirror model and the stability of Schroedinger equation with impulse effect in a Banach space

    International Nuclear Information System (INIS)

    Kostadinov, S.I.; Petrov, G.

    1992-01-01

    From a special class of systems has been used a Schroedinger equation with impulse effect in Minkowski space field theory with time dependent boundary conditions, i.e. those of moving mirrors. The field theoretical approach for studying the properties of the vacuum starts from an analysis of the behaviour of local field quantities in Minkowski space with uniformly moving mirrors. For the impulsive moving mirror model is the real process of interaction between the quantum field and the external mirror a subject to disturbances in its evolution acting in time very short compared with the entire duration of the process. So the stability of the solution of the Schroedinger evolution equation for the process in the stability of the vacuum of Casimir. 8 refs

  3. Numerically exact dynamics of the interacting many-body Schroedinger equation for Bose-Einstein condensates. Comparison to Bose-Hubbard and Gross-Pitaevskii theory

    Energy Technology Data Exchange (ETDEWEB)

    Sakmann, Kaspar

    2010-07-21

    In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)

  4. A Fortran program for the numerical integration of the one-dimensional Schroedinger equation using exponential and Bessel fitting methods

    International Nuclear Information System (INIS)

    Cash, J.R.; Raptis, A.D.; Simos, T.E.

    1990-01-01

    An efficient algorithm is described for the accurate numerical integration of the one-dimensional Schroedinger equation. This algorithm uses a high-order, variable step Runge-Kutta like method in the region where the potential term dominates, and an exponential or Bessel fitted method in the asymptotic region. This approach can be used to compute scattering phase shifts in an efficient and reliable manner. A Fortran program which implements this algorithm is provided and some test results are given. (orig.)

  5. Localized and periodic exact solutions to the nonlinear Schroedinger equation with spatially modulated parameters: Linear and nonlinear lattices

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2009-01-01

    Using similarity transformations we construct explicit solutions of the nonlinear Schroedinger equation with linear and nonlinear periodic potentials. We present explicit forms of spatially localized and periodic solutions, and study their properties. We put our results in the framework of the exploited perturbation techniques and discuss their implications on the properties of associated linear periodic potentials and on the possibilities of stabilization of gap solitons using polychromatic lattices.

  6. A Family of Symmetric Linear Multistep Methods for the Numerical Solution of the Schroedinger Equation and Related Problems

    International Nuclear Information System (INIS)

    Anastassi, Z. A.; Simos, T. E.

    2010-01-01

    We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.

  7. Inverse scattering transform for the vector nonlinear Schroedinger equation with nonvanishing boundary conditions

    International Nuclear Information System (INIS)

    Prinari, Barbara; Ablowitz, Mark J.; Biondini, Gino

    2006-01-01

    The inverse scattering transform for the vector defocusing nonlinear Schroedinger (NLS) equation with nonvanishing boundary values at infinity is constructed. The direct scattering problem is formulated on a two-sheeted covering of the complex plane. Two out of the six Jost eigenfunctions, however, do not admit an analytic extension on either sheet of the Riemann surface. Therefore, a suitable modification of both the direct and the inverse problem formulations is necessary. On the direct side, this is accomplished by constructing two additional analytic eigenfunctions which are expressed in terms of the adjoint eigenfunctions. The discrete spectrum, bound states and symmetries of the direct problem are then discussed. In the most general situation, a discrete eigenvalue corresponds to a quartet of zeros (poles) of certain scattering data. The inverse scattering problem is formulated in terms of a generalized Riemann-Hilbert (RH) problem in the upper/lower half planes of a suitable uniformization variable. Special soliton solutions are constructed from the poles in the RH problem, and include dark-dark soliton solutions, which have dark solitonic behavior in both components, as well as dark-bright soliton solutions, which have one dark and one bright component. The linear limit is obtained from the RH problem and is shown to correspond to the Fourier transform solution obtained from the linearized vector NLS system

  8. Concept of a collective subspace associated with the invariance principle of the Schroedinger equation

    International Nuclear Information System (INIS)

    Marumori, Toshio; Hayashi, Akihisa; Tomoda, Toshiaki; Kuriyama, Atsushi; Maskawa, Toshihide

    1980-01-01

    The aim of this series of papers is to propose a microscopic theory to go beyond the situations where collective motions are described by the random phase approximation, i.e., by small amplitude harmonic oscillations about equilibrium. The theory is thus appropriate for the microscopic description of the large amplitude collective motion of soft nuclei. The essential idea is to develop a method to determine the collective subspace (or submanifold) in the many-particle Hilbert space in an optimal way, on the basis of a fundamental principle called the invariance principle of the Schroedinger equation. By using the principle within the framework of the Hartree-Fock theory, it is shown that the theory can clarify the structure of the so-called ''phonon-bands'' by self-consistently deriving the collective Hamiltonian where the number of the ''physical phonon'' is conserved. The purpose of this paper is not to go into detailed quantitative discussion, but rather to develop the basic idea. (author)

  9. Excitation of multiphase waves of the nonlinear Schroedinger equation by capture into resonances

    International Nuclear Information System (INIS)

    Friedland, L.; Shagalov, A.G.

    2005-01-01

    A method for adiabatic excitation and control of multiphase (N-band) waves of the periodic nonlinear Schroedinger (NLS) equation is developed. The approach is based on capturing the system into successive resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation proceeds from zero and develops in stages, as an (N+1)-band (N=0,1,2,...), growing amplitude wave is formed in the (N+1)th stage from an N-band solution excited in the preceding stage. The method is illustrated in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into resonances is developed on the basis of a weakly nonlinear version of Whitham's averaged variational principle. The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the stability of driven, phase-locked solutions in these cases are discussed

  10. Stationary localized modes of the quintic nonlinear Schroedinger equation with a periodic potential

    International Nuclear Information System (INIS)

    Alfimov, G. L.; Konotop, V. V.; Pacciani, P.

    2007-01-01

    We consider localized modes (bright solitons) of the one-dimensional quintic nonlinear Schroedinger equation with a periodic potential, describing several mean-field models of low-dimensional condensed gases. In the case of attractive nonlinearity we deduce sufficient conditions for collapse. We show that there exist spatially localized modes with arbitrarily large numbers of particles. We study such solutions in the semi-infinite gap (attractive case) and in the first gap (attractive and repulsive cases), and show that a nonzero minimum value of the number of particles is necessary for a localized mode to be created. In the limit of large negative frequencies (attractive case) we observe quantization of the number of particles of the stationary modes. Such solutions can be interpreted as coupled Townes solitons and appear to be stable. The modes in the first gap have numbers of particles infinitely growing with frequencies approaching one of the gap edges, which is explained by the power decay of the modes. Stability of the localized modes is discussed

  11. Exact perturbation theory of multiphoton processes at high intensities. [Schroedinger equation, perturbation theory, matrix

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-06-11

    In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.

  12. Time evolution of some quantum-mechanical systems. Wavefunction cloning in evolving rotating systems. Finite range boundary conditions for time dependent Schroedinger Equation

    International Nuclear Information System (INIS)

    Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M.; Rozmej, P.

    1997-01-01

    The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors)

  13. A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Nash, Patrick L.

    2008-01-01

    Fourier split-step techniques are often used to compute soliton-like numerical solutions of the nonlinear Schroedinger equation. Here, a new fourth-order implementation of the Fourier split-step algorithm is described for problems possessing azimuthal symmetry in 3 + 1-dimensions. This implementation is based, in part, on a finite difference approximation Δ perpendicular FDA of 1/r (∂)/(∂r) r(∂)/(∂r) that possesses an associated exact unitary representation of e i/2λΔ perpendicular FDA . The matrix elements of this unitary matrix are given by special functions known as the associated Bessel functions. Hence the attribute Fourier-Bessel for the method. The Fourier-Bessel algorithm is shown to be unitary and unconditionally stable. The Fourier-Bessel algorithm is employed to simulate the propagation of a periodic series of short laser pulses through a nonlinear medium. This numerical simulation calculates waveform intensity profiles in a sequence of planes that are transverse to the general propagation direction, and labeled by the cylindrical coordinate z. These profiles exhibit a series of isolated pulses that are offset from the time origin by characteristic times, and provide evidence for a physical effect that may be loosely termed normal mode condensation. Normal mode condensation is consistent with experimentally observed pulse filamentation into a packet of short bursts, which may occur as a result of short, intense irradiation of a medium

  14. Variational principles for collective motion: Relation between invariance principle of the Schroedinger equation and the trace variational principle

    International Nuclear Information System (INIS)

    Klein, A.; Tanabe, K.

    1984-01-01

    The invariance principle of the Schroedinger equation provides a basis for theories of collective motion with the help of the time-dependent variational principle. It is formulated here with maximum generality, requiring only the motion of intrinsic state in the collective space. Special cases arise when the trial vector is a generalized coherent state and when it is a uniform superposition of collective eigenstates. The latter example yields variational principles uncovered previously only within the framework of the equations of motion method. (orig.)

  15. The paradox of Schroedinger's waves

    International Nuclear Information System (INIS)

    Gribben, John.

    1987-01-01

    The paper examines the contribution of the work of Erwin Schroedinger in quantum physics. The Schroedinger equation was developed to explain the behavior of electrons within an atom in terms of waves, and it has proved one of the most useful tools in quantum physics. The Schroedinger 'Cat' experiment is also described and discussed. Finally Schroedinger's ideas on chromosomes in molecular biology are briefly outlined. (U.K.)

  16. The Schroedinger operator as a generalized Laplacian

    International Nuclear Information System (INIS)

    Grabowska, Katarzyna; Urbanski, Pawel; Grabowski, Janusz

    2008-01-01

    The Schroedinger operators on the Newtonian spacetime are defined in a way which make them independent of the class of inertial observers. In this picture the Schroedinger operators act not on functions on the spacetime but on sections of a certain one-dimensional complex vector bundle-the Schroedinger line bundle. This line bundle has trivializations indexed by inertial observers and is associated with an U(1)-principal bundle with an analogous list of trivializations-the Schroedinger principal bundle. If an inertial frame is fixed, the Schroedinger bundle can be identified with the trivial bundle over spacetime, but as there is no canonical trivialization (inertial frame), these sections interpreted as 'wavefunctions' cannot be viewed as actual functions on the spacetime. In this approach, the change of an observer results not only in the change of actual coordinates in the spacetime but also in a change of the phase of wavefunctions. For the Schroedinger principal bundle, a natural differential calculus for 'wave forms' is developed that leads to a natural generalization of the concept of the Laplace-Beltrami operator associated with a pseudo-Riemannian metric. The free Schroedinger operator turns out to be the Laplace-Beltrami operator associated with a naturally distinguished invariant pseudo-Riemannian metric on the Schroedinger principal bundle. The presented framework does not involve any ad hoc or axiomatically introduced geometrical structures. It is based on the traditional understanding of the Schroedinger operator in a given reference frame-which is supported by producing right physics predictions-and it is proven to be strictly related to the frame-independent formulation of analytical Newtonian mechanics and Hamilton-Jacobi equations that makes a bridge between the classical and quantum theory

  17. Determination of the isotopic coefficient for x2N using a dimensional analysis of the Schroedinger equation

    International Nuclear Information System (INIS)

    Pali, R.; Coss, R. de; Mustre de Leon, J.

    1999-01-01

    The adimensionalization of equations which govern the dynamics of a physical system can be very useful when studying the qualitative behavior of any variable involved in those equations. In a dynamic system like a particle moving in an effective potential, the isotopic coefficient measure the degree of anharmonicity of the potential. In general each eigenstate has a different coefficient. In this work, we determined the isotopic coefficients for potentials of the form V(x) ∝ x 2N (N=1,2,3,...) through the adimensionalization process of the Schroedinger equation. We found an analytic expression for the isotopic coefficient which depends only of N but not on the eigenstate. The isotopic coefficient value starts at 1/2 for N=1 (harmonic potential) and gradually converges to 1.0 when N increments. This reflects the fact that the potential is more anharmonic for increasing N. (Author)

  18. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  19. Irreducible Brillouin conditions and contracted Schroedinger equations for n-electron systems. IV. Perturbative analysis

    International Nuclear Information System (INIS)

    Kutzelnigg, Werner; Mukherjee, Debashis

    2004-01-01

    The k-particle irreducible Brillouin conditions IBC k and the k-particle irreducible contracted Schroedinger equations ICSE k for a closed-shell state are analyzed in terms of a Moeller-Plesset-type perturbation expansion. The zeroth order is Hartree-Fock. From the IBC 2 (1) , i.e., from the two-particle IBC to first order in the perturbation parameter μ, one gets the leading correction λ 2 (1) to the two-particle cumulant λ 2 correctly. However, in order to construct the second-order energy E 2 , one also needs the second-order diagonal correction γ D (2) to the one-particle density matrix γ. This can be obtained: (i) from the idempotency of the n-particle density matrix, i.e., essentially from the requirement of n-representability; (ii) from the ICSE 1 (2) ; or (iii) by means of perturbation theory via a unitary transformation in Fock space. Method (ii) is very unsatisfactory, because one must first solve the ICSE 3 (2) to get λ 3 (2) , which is needed in the ICSE 2 (2) to get λ 2 (2) , which, in turn, is needed in the ICSE 1 (2) to get γ (2) . Generally the (k+1)-particle approximation is needed to obtain E k correctly. One gains something, if one replaces the standard hierarchy, in which one solves the ICSE k , ignoring λ k+1 and λ k+2 , by a renormalized hierarchy, in which only λ k+2 is ignored, and λ k+1 is expressed in terms of the λ p of lower particle rank via the partial trace relation for λ k+2 . Then the k-particle approximation is needed to obtain E k correctly. This is still poorer than coupled-cluster theory, where the k-particle approximation yields E k+1 . We also study the possibility to use some simple necessary n-representability conditions, based on the non-negativity of γ (2) and two related matrices, in order to get estimates for γ D (2) in terms of λ 2 (1) . In general these estimates are rather weak, but they can become close to the best possible bounds in special situations characterized by a very sparse structure of λ 2

  20. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-08-24

    In a previous paper (J. G. Lopez et al.,2012) we have discussed the non-perturbative tuning of the chirally rotated Schroedinger functional ({chi}SF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results obtained in this paper we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the {chi}SF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist. (orig.)

  1. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Applications

    International Nuclear Information System (INIS)

    Lopez, J. Gonzalez; Jansen, K.; Renner, D.B.; Shindler, A.

    2012-01-01

    In a previous paper (J. G. Lopez et al.,2012) we have discussed the non-perturbative tuning of the chirally rotated Schroedinger functional (χSF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results obtained in this paper we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the χSF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist. (orig.)

  2. The discretized Schroedinger equation for the finite square well and its relationship to solid-state physics

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Klimeck, Gerhard

    2005-01-01

    The discretized Schroedinger equation is most often used to solve one-dimensional quantum mechanics problems numerically. While it has been recognized for some time that this equation is equivalent to a simple tight-binding model and that the discretization imposes an underlying bandstructure unlike free-space quantum mechanics on the problem, the physical implications of this equivalence largely have been unappreciated and the pedagogical advantages accruing from presenting the problem as one of solid-state physics (and not numerics) remain generally unexplored. This is especially true for the analytically solvable discretized finite square well presented here. There are profound differences in the physics of this model and its continuous-space counterpart which are direct consequences of the imposed bandstructure. For example, in the discrete model the number of bound states plus transmission resonances equals the number of atoms in the quantum well

  3. A collective variable approach and stabilization for dispersion-managed optical solitons in the quintic complex Ginzburg-Landau equation as perturbations of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Fewo, S I; Kenfack-Jiotsa, A; Kofane, T C

    2006-01-01

    With the help of the one-dimensional quintic complex Ginzburg-Landau equation (CGLE) as perturbations of the nonlinear Schroedinger equation (NLSE), we derive the equations of motion of pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre optic links. The equations obtained are investigated numerically in order to view the evolution of pulse parameters along the propagation distance, and also to analyse effects of initial amplitude and width on the propagating pulse. Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully numerical simulation of the one-dimensional quintic CGLE as perturbations of NLSE finally tests the results of the CV theory. A good agreement is observed between both methods

  4. Nonlinear Schroedinger Approximations for Partial Differential Equations with Quadratic and Quasilinear Terms

    Science.gov (United States)

    Cummings, Patrick

    We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.

  5. Schroedinger operators and evolutionary strategies

    International Nuclear Information System (INIS)

    Asselmeyer, T.

    1997-01-01

    First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution

  6. KAM for the non-linear Schroedinger equation a short presentation

    CERN Document Server

    Eliasson, H L

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep \\frac{\\p F}{\\p \\bar u}(x,u,\\bar u) ;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real and $F$ is a real analytic function in $\\Re u$, $\\Im u$ and $x$. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it ...

  7. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-08-23

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  8. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    International Nuclear Information System (INIS)

    Lopez, J. Gonzalez; Jansen, K.; Renner, D.B.; Shindler, A.

    2012-01-01

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  9. Comment on: Path integral solution of the Schroedinger equation in curvilinear coordinates: A straightforward procedure [J. Math. Phys. 37, 4310 endash 4319 (1996)

    International Nuclear Information System (INIS)

    Wurm, A.; LaChapelle, J.

    1997-01-01

    The authors comment on the paper by J. LaChapelle, J. Math. Phys. 37, 4310 (1996), and give explicit expressions for the parametrization, its solution, and the Lie derivatives of the Schroedinger equation for the case of n-dimensional spherical coordinates

  10. Use of time-dependent Schroedinger equation to analyze effect of collectivization of valence neutrons on near-barrier nuclear fusion enhancement

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.; ); Samarin, V.V.

    2006-01-01

    Fusion of heavy nuclei was analyzed on the basis of the numerical solution of the Schroedinger three-body and three-dimensional nonstationary equations. One revealed the increase of fuss ion probability in 66 He + 2O Pb reaction caused by transfer and collectivization of valent neutrons [ru

  11. Discreteness of the spectrum of some operator sheaves associated with a periodic Schroedinger equation

    International Nuclear Information System (INIS)

    Dyakin, V.V.; Petrukhnovskii, S.I.

    1988-01-01

    Three-dimensional periodic Schroedinger operators with potentials that are square integrable on the unit cell (single-electron model of a crystal) are considered. A description is given of the class of rational curves that do not have more than a finite number of common points with any isoenergy surface (in particular, the Fermi surface) of an arbitrary operator of the considered form. A consequence of a theorem proved in the paper is the absence on the isoenergy surfaces of elements of planes, cones, and cylinders with straight generators, and all possible paraboloids and hyperboloids. Another interesting consequence is the following assertion: The topological dimension of an isoenergy manifold does not exceed two, which justifies the use of the word surface. The results generalize the assertion of Thomas's theorem on the absence on isoenergy surfaces of straight edges

  12. Born approximation to a perturbative numerical method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-01-01

    A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)

  13. Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1974-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.

  14. Automated lattice perturbation theory in the Schroedinger functional. Implementation and applications in HQET

    International Nuclear Information System (INIS)

    Hesse, Dirk

    2012-01-01

    The author developed the pastor software package for automated lattice perturbation theory calculations in the Schroedinger functional scheme. The pastor code consists of two building blocks, dealing with the generation of Feynman rules and Feynman diagrams respectively. Accepting a rather generic class of lattice gauge and fermion actions, passed to the code in a symbolic form as input, a low level part of pastor will generate Feynman rules to an arbitrary order in the bare coupling with a trivial or an Abelian background field. The second, high level part of pastor is a code generator whose output relies on the vertex generator. It writes programs that evaluate Feynman diagrams for a class of Schroedinger functional observables up to one loop order automatically, the relevant O(a) improvement terms are taken into account. We will describe the algorithms used for implementation of both parts of the code in detail, and provide cross checks with perturbative and non-perturbative data to demonstrate the correctness of our code. We demonstrate the usefulness of the pastor package through various applications taken from the matching process of heavy quark effective theory with quantum chromodynamics. We have e.g. completed a one loop analysis for new candidates for matching observables timely and with rather small effort, highlighting two advantages of an automated software setup. The results that were obtained so far will be useful as a guideline for further non-perturbative studies.

  15. Automated lattice perturbation theory in the Schroedinger functional. Implementation and applications in HQET

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Dirk

    2012-07-13

    The author developed the pastor software package for automated lattice perturbation theory calculations in the Schroedinger functional scheme. The pastor code consists of two building blocks, dealing with the generation of Feynman rules and Feynman diagrams respectively. Accepting a rather generic class of lattice gauge and fermion actions, passed to the code in a symbolic form as input, a low level part of pastor will generate Feynman rules to an arbitrary order in the bare coupling with a trivial or an Abelian background field. The second, high level part of pastor is a code generator whose output relies on the vertex generator. It writes programs that evaluate Feynman diagrams for a class of Schroedinger functional observables up to one loop order automatically, the relevant O(a) improvement terms are taken into account. We will describe the algorithms used for implementation of both parts of the code in detail, and provide cross checks with perturbative and non-perturbative data to demonstrate the correctness of our code. We demonstrate the usefulness of the pastor package through various applications taken from the matching process of heavy quark effective theory with quantum chromodynamics. We have e.g. completed a one loop analysis for new candidates for matching observables timely and with rather small effort, highlighting two advantages of an automated software setup. The results that were obtained so far will be useful as a guideline for further non-perturbative studies.

  16. Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schroedinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications

    International Nuclear Information System (INIS)

    Lue Xing; Zhu Hongwu; Yao Zhenzhi; Meng Xianghua; Zhang Cheng; Zhang Chunyi; Tian Bo

    2008-01-01

    In this paper, the multisoliton solutions in terms of double Wronskian determinant are presented for a generalized variable-coefficient nonlinear Schroedinger equation, which appears in space and laboratory plasmas, arterial mechanics, fluid dynamics, optical communications and so on. By means of the particularly nice properties of Wronskian determinant, the solutions are testified through direct substitution into the bilinear equations. Furthermore, it can be proved that the bilinear Baecklund transformation transforms between (N - 1)- and N-soliton solutions

  17. Simple functional-differential equations for the bound-state wave-function components

    International Nuclear Information System (INIS)

    Kamuntavicius, G.P.

    1986-01-01

    The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)

  18. Orbiting the moons of Pluto complex solutions to the Einstein, Maxwell, Schroedinger and Dirac equations

    CERN Document Server

    Rauscher, Elizabeth A

    2011-01-01

    The Maxwell, Einstein, Schrödinger and Dirac equations are considered the most important equations in all of physics. This volume aims to provide new eight- and twelve-dimensional complex solutions to these equations for the first time in order to reveal

  19. Many particle systems with inverse square potential, Riccatti equation and completely integrable systems connected with Schroedinger operator

    International Nuclear Information System (INIS)

    Chudnovsky, David; Chudnovsky, G.V.

    1978-01-01

    The relations between many particle problem with inverse square potential on the line and meromorphic eigenfunctions of Schroedinger operator are presented. This gives new type of Backlund transformations for many particle problem [fr

  20. Chaotic synchronization of symbolic information in the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.

    2003-08-01

    We have studied the discrete nonlinear Schrodinger equation (DNLSE) with on-site defects and periodic boundary conditions. When the array dynamics becomes chaotic, the otherwise quasiperiodic amplitude correlations between the oscillators are destroyed. However, we show that synchronization of symbolic information of suitable amplitude signals is possible in this hamiltonian system. (author)

  1. Time evolution of some quantum-mechanical systems. Wavefunction cloning in evolving rotating systems. Finite range boundary conditions for time dependent Schroedinger Equation; Evolution temporelle de quelques systemes quantiques. Le clonage de la fonction d`onde dans l`evolution au cours du temps de systemes tournants. Formulation de conditions aux limites a distance finie pour l`equation de Schroedinger dependante du temps

    Energy Technology Data Exchange (ETDEWEB)

    Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M. [Inst. des Sciences Nucleaires, Grenoble-1 Univ., 38 (France); Rozmej, P. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland)

    1997-12-31

    The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors) 3 refs.

  2. Crystallized Schroedinger cat states

    International Nuclear Information System (INIS)

    Castanos, O.; Lopez-Pena, R.; Man'ko, V.I.

    1995-01-01

    Crystallized Schroedinger cat states (male and female) are introduced on the base of extension of group construction for the even and odd coherent states of the electromagnetic field oscillator. The Wigner and Q functions are calculated and some are plotted for C 2 , C 3 , C 4 , C 5 , C 3v Schroedinger cat states. Quadrature means and dispersions for these states are calculated and squeezing and correlation phenomena are studied. Photon distribution functions for these states are given explicitly and are plotted for several examples. A strong oscillatory behavior of the photon distribution function for some field amplitudes is found in the new type of states

  3. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  4. De Broglie wavelets versus Schroedinger wave functions: A ribbon model approach to quantum theory and the mechanisms of quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jau

    1996-02-01

    As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.

  5. A new fundamental model of moving particle for reinterpreting Schroedinger equation

    International Nuclear Information System (INIS)

    Umar, Muhamad Darwis

    2012-01-01

    The study of Schrödinger equation based on a hypothesis that every particle must move randomly in a quantum-sized volume has been done. In addition to random motion, every particle can do relative motion through the movement of its quantum-sized volume. On the other way these motions can coincide. In this proposed model, the random motion is one kind of intrinsic properties of the particle. The every change of both speed of randomly intrinsic motion and or the velocity of translational motion of a quantum-sized volume will represent a transition between two states, and the change of speed of randomly intrinsic motion will generate diffusion process or Brownian motion perspectives. Diffusion process can take place in backward and forward processes and will represent a dissipative system. To derive Schrödinger equation from our hypothesis we use time operator introduced by Nelson. From a fundamental analysis, we find out that, naturally, we should view the means of Newton’s Law F(vector sign) = ma(vector sign) as no an external force, but it is just to describe both the presence of intrinsic random motion and the change of the particle energy.

  6. The fast algorithm solving the one-dimensional time-dependent Schroedinger equation for teaching purposes

    International Nuclear Information System (INIS)

    Skoczen, A.; Machowski, W.; Kaprzyk, S.

    1990-07-01

    Computer program aiming at application in quantum mechanics didactics has been proposed. This program can generate the moving pictures of one-dimensional quantum mechanics scattering phenomena. Constructions of this program provide two options. In the first option the wave packet is generated in infinite one-dimensional well which has walls on the borders of graphic window. In the second option the square potential barrier is located in this well and transmission and reflection of wave packet are shown. We have selected a Gaussian wave packet to represent the initial state of the particle. The wave equation is solved numerically by a method discussed in detail. Solutions for the succesive time moments are graphically presented on the monitor screen. In this way observer can watch whole time-development of physical system. Graphically presented results are physically realistic when program parameters satisfy conditions discussed in this paper. (author)

  7. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  8. Numerical solver of the time-dependent Schroedinger equation with Coulomb singularities

    International Nuclear Information System (INIS)

    Gordon, Ariel; Jirauschek, Christian; Kaertner, Franz X.

    2006-01-01

    This paper addresses a very fundamental and important problem in the numerical analysis of atomic and molecular systems: How to discretize Hamiltonians with divergent potential terms, such as Coulomb singularities. At the point of a Coulomb singularity, the wave function cannot be described by a Taylor series expansion, which results in problems when standard discretization schemes are used. We propose using the known asymptotic form of the wave function near the singularity instead of the (nonexistent) Taylor series. This principle, namely discretization by asymptotic behavior correspondence (ABC), is employed in this paper for obtaining grid-discretizations for the Coulomb potential in Cartesian, cylindrical and spherical coordinate systems. We show that computations with the ABC discretization are faster and more precise than with a naive discretization by orders of magnitude. The ABC discretization is well suited for the standard numerical time propagators, such as the Crank-Nicholson, Peaceman-Rachford, and leapfrog schemes. We use the latter, since it is faster and has the same order of accuracy. The leapfrog scheme is generalized to allow absorbing potentials at the grid boundaries

  9. A novel method to solve functional differential equations

    International Nuclear Information System (INIS)

    Tapia, V.

    1990-01-01

    A method to solve differential equations containing the variational operator as the derivation operation is presented. They are called variational differential equations (VDE). The solution to a VDE should be a function containing the derivatives, with respect to the base space coordinates, of the fields up to a generic order s: a s-th-order function. The variational operator doubles the order of the function on which it acts. Therefore, in order to make compatible the orders of the different terms appearing in a VDE, the solution should be a function containing the derivatives of the fields at all orders. But this takes us again back to the functional methods. In order to avoid this, one must restrict the considerations, in the case of second-order VDEs, to the space of s-th-order functions on which the variational operator acts transitively. These functions have been characterized for a one-dimensional base space for the first- and second-order cases. These functions turn out to be polynomial in the highest-order derivatives of the fields with functions of the lower-order derivatives as coefficients. Then VDEs reduce to a system of coupled partial differential equations for the coefficients above mentioned. The importance of the method lies on the fact that the solutions to VDEs are in a one-to-one correspondence with the solutions of functional differential equations. The previous method finds direct applications in quantum field theory, where the Schroedinger equation plays a central role. Since the Schroedinger equation is reduced to a system of coupled partial differential equations, this provides a nonperturbative scheme for quantum field theory. As an example, the massless scalar field is considered

  10. Properties of squeezed Schroedinger cats

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Omar, Z.M.

    1995-09-01

    In this article we investigate some statistical properties of the even and odd squeezed (squeezed Schroedinger cat) states. The quasi-probability distribution functions especially W(α) and Q(α) are calculated and discussed for these states. The phase distribution function is discussed. A generation scheme is proposed for either the squeezed generalized Schroedinger cat, or the squeezed number state. (author). 35 refs, 5 figs

  11. Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schroedinger equation from inhomogeneous optical fibers with symbolic computation

    International Nuclear Information System (INIS)

    Li Juan; Zhang Haiqiang; Xu Tao; Zhang, Ya-Xing; Tian Bo

    2007-01-01

    For the long-distance communication and manufacturing problems in optical fibers, the propagation of subpicosecond or femtosecond optical pulses can be governed by the variable-coefficient nonlinear Schroedinger equation with higher order effects, such as the third-order dispersion, self-steepening and self-frequency shift. In this paper, we firstly determine the general conditions for this equation to be integrable by employing the Painleve analysis. Based on the obtained 3 x 3 Lax pair, we construct the Darboux transformation for such a model under the corresponding constraints, and then derive the nth-iterated potential transformation formula by the iterative process of Darboux transformation. Through the one- and two-soliton-like solutions, we graphically discuss the features of femtosecond solitons in inhomogeneous optical fibers

  12. Correspondence passed between Einstein and Schroedinger

    International Nuclear Information System (INIS)

    Balibar, F.

    1992-01-01

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories

  13. Schroedinger operators and evolutionary strategies; Schroedinger-Operatoren und Evolutionaere Strategien

    Energy Technology Data Exchange (ETDEWEB)

    Asselmeyer, T.

    1997-12-22

    First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution.

  14. The Schroedinger-Poisson equations as the large-N limit of the Newtonian N-body system. Applications to the large scale dark matter dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Briscese, Fabio [Northumbria University, Department of Mathematics, Physics and Electrical Engineering, Newcastle upon Tyne (United Kingdom); Citta Universitaria, Istituto Nazionale di Alta Matematica Francesco Severi, Gruppo Nazionale di Fisica Matematica, Rome (Italy)

    2017-09-15

    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schroedinger-Poisson equations in the large N limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as ℎ ∝ M{sup 5/3}G{sup 1/2}(N/ left angle ρ right angle){sup 1/6}, where is G the gravitational constant, N and M are the number and the mass of the bodies, and left angle ρ right angle is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schroedinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales. (orig.)

  15. Schroedinger's cat

    Energy Technology Data Exchange (ETDEWEB)

    Lubkin, E [Wisconsin Univ., Madison (USA). Dept. of Physics

    1979-08-01

    The issue is to seek quantum interference effects in an arbitrary field, in particular in psychology. For this a digest of quantum mechanics over finite-n-dimensional Hilbert space is invented. In order to match crude data not only von Neumann's mixed states are used but also a parallel notion of unsharp tests. The mathematically styled text (and earlier work on multibin tests, designated MB) deals largely with these new tests. Quantum psychology itself is only given a foundation. It readily engenders objections; its plausibility is developed gradually, in interlocking essays. There is also the empirically definite proposal that (state, test, outcome)-indexed counts be gathered to record data, then fed to a matrix format (MF) search for quantum models. A previously proposed experiment in visual perception which has since failed to find significant quantum correlations, is discussed. The suspicion that quantum mechanics is all around goes beyond MF, and Schroedinger's cat symbolizes this broader perspective.

  16. Schroedinger's cat

    International Nuclear Information System (INIS)

    Lubkin, E.

    1979-01-01

    The issue is to seek quantum interference effects in an arbitrary field, in particular in psychology. For this a digest of quantum mechanics over finite-n-dimensional Hilbert space is invented. In order to match crude data not only von Neumann's mixed states are used but also a parallel notion of unsharp tests. The mathematically styled text (and earlier work on multibin tests, designated MB) deals largely with these new tests. Quantum psychology itself is only given a foundation. It readily engenders objections; its plausibility is developed gradually, in interlocking essays. There is also the empirically definite proposal that (state, test, outcome)-indexed counts be gathered to record data, then fed to a 'matrix format' (MF) search for quantum models. A previously proposed experiment in visual perception which has since failed to find significant quantum correlations, is discussed. The suspicion that quantum mechanics is all around goes beyond MF, and 'Schroedinger's cat' symbolizes this broader perspective. (author)

  17. The splitting in potential Crank-Nicolson scheme with discrete transparent boundary conditions for the Schroedinger equation on a semi-infinite strip

    International Nuclear Information System (INIS)

    Ducomet, Bernard; Zlotnik, Alexander; Zlotnik, Ilya

    2014-01-01

    We consider an initial-boundary value problem for a generalized 2D time-dependent Schroedinger equation (with variable coefficients) on a semi-infinite strip. For the Crank-Nicolson-type finite-difference scheme with approximate or discrete transparent boundary conditions (TBCs), the Strang-type splitting with respect to the potential is applied. For the resulting method, the unconditional uniform in time L2-stability is proved. Due to the splitting, an effective direct algorithm using FFT is developed now to implement the method with the discrete TBC for general potential. Numerical results on the tunnel effect for rectangular barriers are included together with the detailed practical error analysis confirming nice properties of the method. (authors)

  18. Simulating the Euclidean time Schroedinger equations using an Intel iPSC/860 hypercube: Application to the t-J model of high-Tc superconductivity

    International Nuclear Information System (INIS)

    Kovarik, M.D.; Barnes, T.; Tennessee Univ., Knoxville, TN

    1993-01-01

    We describe a Monte Carlo simulation of a dynamical fermion problem in two spatial dimensions on an Intel iPSC/860 hypercube. The problem studied is the determination of the dispersion relation of a dynamical hole in the t-J model of the high temperature superconductors. Since this problem involves the motion of many fermions in more than one spatial dimensions, it is representative of the class of systems that suffer from the ''minus sign problem'' of dynamical fermions which has made Monte Carlo simulation very difficult. We demonstrate that for small values of the hole hopping parameter one can extract the entire hole dispersion relation using the GRW Monte Carlo algorithm, which is a simulation of the Euclidean time Schroedinger equation, and present results on 4 x 4 and 6 x 6 lattices. Generalization to physical hopping parameter values wig only require use of an improved trial wavefunction for importance sampling

  19. Correspondence passed between Einstein and Schroedinger; La correspondance entre Einstein et Schroedinger

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, F. [Paris-7 Univ., 75 (France)

    1992-12-31

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories.

  20. Renormalization Group Functional Equations

    CERN Document Server

    Curtright, Thomas L

    2011-01-01

    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories. With minimal assumptions, the methods produce continuous flows from step-scaling {\\sigma} functions, and lead to exact functional relations for the local flow {\\beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {\\sigma} are sometimes not true fixed points under continuous changes in scale, and zeroes of {\\beta} do not necessarily signal fixed points of the flow, but instead may only indicate turning points of the trajectories.

  1. Integrability in the theory of Schroedinger operator and harmonic analysis

    International Nuclear Information System (INIS)

    Chalykh, O.A.; Veselov, A.P.

    1993-01-01

    The algebraic integrability for the Schroedinger equation in R n and the role of the quantum Calogero-Sutherland problem and root systems in this context are discussed. For the special values of the parameters in the potential the explicit formula for the eigenfunction of the corresponding Sutherland operator is found. As an application the explicit formula for the zonal spherical functions on the symmetric spaces SU 2 * n /Sp n (type A II in Cartan notations) is presented. (orig.)

  2. Single-site Green function of the Dirac equation for full-potential electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kordt, Pascal

    2012-05-30

    I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)

  3. Single-site Green function of the Dirac equation for full-potential electron scattering

    International Nuclear Information System (INIS)

    Kordt, Pascal

    2012-01-01

    I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)

  4. Some threshold spectral problems of Schroedinger operators

    International Nuclear Information System (INIS)

    Jia, X.

    2009-01-01

    This Ph.D. thesis deals with some spectral problems of the Schroedinger operators. We first consider the semi-classical limit of the number of bound states of unique two-cluster N-body Schroedinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit of Riesz means of the discrete eigenvalues of N-body Schroedinger operator. The effective potential of N-body Schroedinger operator with Coulomb potential is also considered and we find that the effective potential has critical decay at infinity. Thus, the Schroedinger operator with critical potential is studied in this thesis. We study the coupling constant threshold of Schroedinger operator with critical potential and the asymptotic expansion of resolvent of Schroedinger operator with critical potential. We use that expansion to study low-energy asymptotics of derivative of spectral shift function for perturbation with critical decay. After that, we use this result and the known result for high-energy asymptotic expansion of spectral shift function to obtain the Levinson theorem. (author)

  5. Schroedinger representation in quantum field theory

    International Nuclear Information System (INIS)

    Luescher, M.

    1985-01-01

    Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

  6. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schrodinger equations admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The resulting potentials come into families evolved from equations having a fixed number of elementary regular singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  7. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schoedinger equation admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The admissible potentials come into families evolved from equations having a fixed number of elementary singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  8. Stability of Functional Differential Equations

    CERN Document Server

    Lemm, Jeffrey M

    1986-01-01

    This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.

  9. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  10. Time-dependent Wigner distribution function employed in coherent Schroedinger cat states: |Ψ(t))=N-1/2(|α)+eiφ|-α))

    International Nuclear Information System (INIS)

    Choi, Jeong Ryeol; Yeon, Kyu Hwang

    2008-01-01

    The Wigner distribution function for the time-dependent quadratic Hamiltonian system in the coherent Schroedinger cat state is investigated. The type of state we consider is a superposition of two coherent states, which are by an angle of π out of phase with each other. The exact Wigner distribution function of the system is evaluated under a particular choice of phase, δ c,q . Our development is employed for two special cases, namely, the Caldirola-Kanai oscillator and the frequency stable damped harmonic oscillator. On the basis of the diverse values of the Wigner distribution function that were plotted, we analyze the nonclassical behavior of the systems.

  11. Unifying quanta and relativity. Schroedinger`s attitude to relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, H. [Roskilde Universitetscenter (Denmark)

    1992-12-31

    A considerable part of Schroedinger`s scientific work focused on the relationship between quantum theory and the theory of relativity. This paper provides a historical analysis of his occupation on this subject in the period 1925-1934. The first section surveys the role played by relativity in Schroedinger`s formation of wave mechanics in 1925-1926; the second section analyzes his attempt to make sense of Dirac`s theory of the electron by proposing a relativistic wave equation with positive energies only. In this work, which took place in 1930-1931, Schroedinger discovered the Zitterbewegung that Dirac electrons will exhibit even in a field-free case. Schroedinger`s failed attempt to introduce an alternative to the Dirac theory was part of his general dissatisfaction with the current state of quantum mechanics. It is argued that, to a large extent, his work on the Dirac theory was philosophically motivated and that it contributed to his alienation from mainstream quantum physics in the 1930s. (author). 54 refs.

  12. Some surprises and paradoxes revealed by inverse problem approach and notion about qualitative solutions of Schroedinger equations 'in mind'

    International Nuclear Information System (INIS)

    Zakhariev, B.N.; Chabanov, V.M.

    2008-01-01

    It was an important examination to give a review talk at the previous Conference on Inverse Quantum Scattering (1996, Lake Balaton) about computer visualization of this science in front of its fathers - creators, B.M. Levitan and V.A. Marchenko. We have achieved a new understanding that the discovered main rules of transformations of a single wave function bump, e.g., for the ground bound states of one dimensional quantum systems are applicable to any state of any potential with arbitrary number of bumps from finite to unlimited ones as scattering states and bound states embedded into continuum. It appeared that we need only to repeat the rule mentally the necessary number of times. That uttermost simplification and unification of physical notion of spectral, scattering and decay control for any potential have got an obligatory praise from B.M. Levitan at the conference and was a mighty stimulus for our further research. After that we have written both Russian (2002) and improved English editions of 'Submissive Quantum Mechanics. New Status of the Theory in Inverse Problem Approach' (appeared at the very end of 2007). This book was written for correction of the present defect in quantum education throughout the world. Recently the quantum IP intuition helped us to discover a new concept of permanent wave resonance with potential spatial oscillations. This means the constant wave swinging frequency on the whole energy intervals of spectral forbidden zones destroying physical solutions and deepening the theory of waves in periodic potentials. It also shows the other side of strengthening the fundamentally important magic structures. A 'new language' of wave bending will be presented to enrich our quantum intuition, e.g., the paradoxical effective attraction of barriers and repulsion of wells in multichannel systems, etc. (author)

  13. Recurrent formulas and some exact relations for radial integrals with Dirac and Schroedinger wave functions

    International Nuclear Information System (INIS)

    Shabaev, V.M.

    1984-01-01

    Some exact relations are derived for radial integrals with Dirac wave functions. These relations are used for calculating radial integrals in the case of the Coulomb field. The threedimensional harmonic oscillator is also considered and exact formulae for the dipole transition probabilities are obtained using general relations between matrix elements

  14. Bose-Einstein condensation and long-range phase coherence in the many-particle Schroedinger wave function

    International Nuclear Information System (INIS)

    Mayers, J.

    2001-01-01

    The properties of the many-particle Schroedinger wave function Ψ are examined in the presence of Bose-Einstein condensation (BEC). It is shown that it is possible to define, in terms of Ψ, a function ψ(r-vector vertical bar s-vector), which can be regarded as the single-particle wave function of an arbitrary particle for a fixed configuration s-vector of all other particles. It is shown that ψ(r-vector|s-vector) plays an analogous role to the field operator of standard field-theoretical treatments of superfluidity. It is shown that in the presence of a Bose-Einstein condensate fraction f, ψ(r-vector|s-vector) must be nonzero and phase coherent within at least a fraction f of the total volume of the N-particle system for essentially all s-vector. Examination of the form of variational many-particle wave functions shows that in liquid 4 He, ψ(r-vector|s-vector) extends throughout the spaces left between the hard cores of the other atoms at s-vector. By contrast, in the absence of BEC, ψ(r-vector|s-vector) in the ground state must be nonzero only over a localized region of space. It is shown that in order for long-range phase coherence in ψ(r-vector|s-vector) to be maintained in the presence of velocity fields, any circulation must be quantized over macroscopic length scales. Some numerical calculations of the properties and fluctuations of liquid helium are presented. These suggest that the approach outlined in this paper may have significant advantages for the numerical calculations of the properties of Bose-Einstein condensed systems. The properties of ψ(r-vector|s-vector) are used to show that there is no general connection between the static structure factor and the size of the Bose-Einstein condensate fraction in a Bose fluid. It is suggested that the observed connection in liquid 4 He is due to the creation of vacancies in the liquid structure, which are required so that ψ(r-vector vertical bar s-vector) can delocalize, in the presence of hard

  15. The resonance expansion for the Green's function of the Schroedinger and wave equations

    International Nuclear Information System (INIS)

    Albeverio, S.; Aix-Marseille-2 Univ., 13 - Marseille; Hoeegh-Krohn, R.; Oslo Univ.

    1984-01-01

    We give a survey of some recent mathematical work on resonances, in particular on perturbation series, low energy expansions and on resonances for point interactions. Expansions of the kernels of esup(-it)√sup(H+) and esup(-itH) in terms of resonances are also given (where Hsub(+) is the positive part of the Hamiltonian). (orig.)

  16. Some spectral equivalences between Schroedinger operators

    International Nuclear Information System (INIS)

    Dunning, C; Hibberd, K E; Links, J

    2008-01-01

    Spectral equivalences of the quasi-exactly solvable sectors of two classes of Schroedinger operators are established, using Gaudin-type Bethe ansatz equations. In some instances the results can be extended leading to full isospectrality. In this manner we obtain equivalences between PT-symmetric problems and Hermitian problems. We also find equivalences between some classes of Hermitian operators

  17. Asymptotic expansions of Mathieu functions in wave mechanics

    International Nuclear Information System (INIS)

    Hunter, G.; Kuriyan, M.

    1976-01-01

    Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states

  18. The Universe according to Schroedinger and Milo

    Science.gov (United States)

    Wolff, Milo

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Schroedinger, (1937) eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). Thus he rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff using a Scalar Wave Equation in 3D quantum space to find wave solutions. The resulting Wave Structure of Matter (WSM) contains all the electron's properties including the Schroedinger Equation. Further, Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. These the origin of all the Natural Laws. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips and to correct errors of Maxwell's Equations. Applications of the WSM describe matter at molecular dimensions: Industrial alloys, catalysts, biology and medicine, molecular computers and memories. See book ``Schroedinger's Universe'' - at Amazon.com. Pioneers of the WSM are growing rapidly. Some are: SpaceAndMotion.com, QuantumMatter.com, treeincarnation.com/audio/milowolff.htm, daugerresearch.com/orbitals/index.shtml, glafreniere.com/matter.html =A new Universe.

  19. Schroedinger's Wave Structure of Matter (WSM)

    Science.gov (United States)

    Wolff, Milo; Haselhurst, Geoff

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure was impossible since Nature does not allow the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM, the origin of all the Natural Laws, contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM also describe matter at molecular dimensions: alloys, catalysts, biology and medicine, molecular computers and memories. See ``Schroedinger's Universe'' - at Amazon.com

  20. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  1. On the Schroedinger representation of the Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Semmler, U.

    1987-04-01

    The theme of the present thesis is the Schroedinger representation of the Euclidean quantum field theory: We define the time development of the quantum field states as functional integral in a novel, mathematically precise way. In the following we discuss the consequences which result from this approach to the Euclidean quantum field theory. Chapter 1 introduces the theory of abstract Wiener spaces which is here proved as suitable mathematical tool for the treatment of the physical problems. In chapter 2 the diffusion theory is formulated in the framework of abstract Wiener spaces. In chapter 3 we define the field functional ψ 5 u, t 7 as functional integral, determine the functional differential equation which ψ satisfies (Schroedinger equation), and summarize the consequences resulting from this. Chapter 4 is dedicated to the attempt to determine the kernel of the time-development operator, by the knowledge of which the time development of each initial state is fixed. In chapter 5 the consequences of the theory presented in chapter 3 and 4 are discussed by means of simple examples. In chapter 6 the renormalization which results for the φ 4 potential from the definition of the functional integral in chapter 3 is calculated up to the first-order perturbation theory, and it is shown that the problems in the Symanzik renormalization procedure can be removed. (orig./HSI) [de

  2. Reduced kinetic equations: An influence functional approach

    International Nuclear Information System (INIS)

    Wio, H.S.

    1985-01-01

    The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed

  3. Developments in functional equations and related topics

    CERN Document Server

    Ciepliński, Krzysztof; Rassias, Themistocles

    2017-01-01

    This book presents current research on Ulam stability for functional equations and inequalities. Contributions from renowned scientists emphasize fundamental and new results, methods and techniques. Detailed examples are given to theories to further understanding at the graduate level for students in mathematics, physics, and engineering. Key topics covered in this book include: Quasi means Approximate isometries Functional equations in hypergroups Stability of functional equations Fischer-Muszély equation Haar meager sets and Haar null sets Dynamical systems Functional equations in probability theory Stochastic convex ordering Dhombres functional equation Nonstandard analysis and Ulam stability This book is dedicated in memory of Staniłsaw Marcin Ulam, who posed the fundamental problem concerning approximate homomorphisms of groups in 1940; which has provided the stimulus for studies in the stability of functional equations and inequalities.

  4. Functional Fourier transforms and the loop equation

    International Nuclear Information System (INIS)

    Bershadskii, M.A.; Vaisburd, I.D.; Migdal, A.A.

    1986-01-01

    The Migdal-Makeenko momentum-space loop equation is investigated. This equation is derived from the ordinary loop equation by taking the Fourier transform of the Wilson functional. A perturbation theory is constructed for the new equation and it is proved that the action of the loop operator is determined by vertex functions which coincide with those of the previous equation. It is shown how the ghost loop arises in direct iterations of the momentum-space equation with respect to the coupling constant. A simple example is used to illustrate the mechanism of appearance of an integration in the interior loops in transition to observables

  5. Almost periodic Schroedinger operators

    International Nuclear Information System (INIS)

    Bellissard, J.; Lima, R.

    1984-01-01

    These lectures are devoted to recent developments in the theory of almost-periodic Schroedinger Operators. We specially describe the algebraic point of view, with applications to gap-labelling theorems. Particular models are also presented which exhibit various spectral properties. (orig.)

  6. Some Functional Equations Originating from Number Theory

    Indian Academy of Sciences (India)

    We will introduce new functional equations (3) and (4) which are strongly related to well-known formulae (1) and (2) of number theory, and investigate the solutions of the equations. Moreover, we will also study some stability problems of those equations.

  7. Control functions in nonseparable simultaneous equations models

    OpenAIRE

    Blundell, R.; Matzkin, R. L.

    2014-01-01

    The control function approach (Heckman and Robb (1985)) in a system of linear simultaneous equations provides a convenient procedure to estimate one of the functions in the system using reduced form residuals from the other functions as additional regressors. The conditions on the structural system under which this procedure can be used in nonlinear and nonparametric simultaneous equations has thus far been unknown. In this paper, we define a new property of functions called control function ...

  8. Functional equations and Green's functions for augmented scalar fields

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1977-01-01

    Certain noncanonical self-coupled scalar quantum field theories, previously formulated by means of functional integration, are herein recast into the form of functional differential equations for the Green's functional. From these expressions the set of coupled equations relating the Green's functions is obtained. The new equations are compared with those of the conventional formulation, and are proposed as alternatives, especially for nonrenormalizable models when the conventional equations fail

  9. Special solutions of neutral functional differential equations

    Directory of Open Access Journals (Sweden)

    Győri István

    2001-01-01

    Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.

  10. Lyapunov functionals and stability of stochastic functional differential equations

    CERN Document Server

    Shaikhet, Leonid

    2013-01-01

    Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...

  11. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  12. Modified Darboux transformations with foreign auxiliary equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2011-01-01

    We construct a new type of first-order Darboux transformations for the stationary Schroedinger equation. In contrast to the conventional case, our Darboux transformations support arbitrary (foreign) auxiliary equations. We show that among other applications, our formalism can be used to systematically construct Darboux transformations for Schroedinger equations with energy-dependent potentials, including a recent result (Lin et al., 2007) as a special case. -- Highlights: → We generalize the Darboux transformation for the Schroedinger equation. → By admitting arbitrary auxiliary functions, we provide a new tool for generating solutions. → As a special case we recover a recent result on energy-dependent potentials. → We extend the latter result to very general energy-dependence.

  13. Advanced functional evolution equations and inclusions

    CERN Document Server

    Benchohra, Mouffak

    2015-01-01

    This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.

  14. On the recovering of a coupled nonlinear Schroedinger potential

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana, Atzcapotzalco, DF (Mexico)]. E-mail: ccg@hp9000a1.uam.mx

    2000-04-28

    We establish a priori conditions for a Gel'fand-Levitan (GL) integral using some results of the Fredholm theory. As consequence, we obtain a recovering formula for the potential of the coupled nonlinear Schroedinger equations. The remarkable fact is that the recovering formula is given in terms of the solutions of a classical GL-integral equation. (author)

  15. Functional equations in matrix normed spaces

    Indian Academy of Sciences (India)

    The abstract characterization given for linear spaces of bounded Hilbert space operators in terms of ... effect on operator algebra theory (see [12]). .... of functional equations for the proof of new fixed point theorems with applications. By.

  16. Stability analysis of impulsive functional differential equations

    CERN Document Server

    Stamova, Ivanka

    2009-01-01

    This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equationsis under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied research

  17. An introduction to the self-adjointness and spectral analysis of Schroedinger operators

    International Nuclear Information System (INIS)

    Simon, B.

    1977-01-01

    The author first explains the basic results about self adjointness, from a point of view which emphasizes the connection with solvability of the Schroedinger equation. He then describes four methods that define self ajoint Hamiltonians, for most Schroedinger operators and discusses types of spectra, closing by considering the essential spectrum in the two body case. (P.D.)

  18. Schroedinger operators - geometric estimates in terms of the occupation time

    International Nuclear Information System (INIS)

    Demuth, M.; Kirsch, W.; McGillivray, I.

    1995-01-01

    The difference of Schroedinger and Dirichlet semigroups is expressed in terms of the Laplace transform of the Brownian motion occupation time. This implies quantitative upper and lower bounds for the operator norms of the corresponding resolvent differences. One spectral theoretical consequence is an estimate for the eigenfunction for a Schroedinger operator in a ball where the potential is given as a cone indicator function. 12 refs

  19. On a complex differential Riccati equation

    International Nuclear Information System (INIS)

    Khmelnytskaya, Kira V; Kravchenko, Vladislav V

    2008-01-01

    We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schroedinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation such as the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical 'one-dimensional' results, we discuss new features of the considered equation including an analogue of the Cauchy integral theorem

  20. Evolution equations for extended dihadron fragmentation functions

    International Nuclear Information System (INIS)

    Ceccopieri, F.A.; Bacchetta, A.

    2007-03-01

    We consider dihadron fragmentation functions, describing the fragmentation of a parton in two unpolarized hadrons, and in particular extended dihadron fragmentation functions, explicitly dependent on the invariant mass, M h , of the hadron pair. We first rederive the known results on M h -integrated functions using Jet Calculus techniques, and then we present the evolution equations for extended dihadron fragmentation functions. Our results are relevant for the analysis of experimental measurements of two-particle-inclusive processes at different energies. (orig.)

  1. Conformable Fractional Bessel Equation and Bessel Functions

    OpenAIRE

    Gökdoğan, Ahmet; Ünal, Emrah; Çelik, Ercan

    2015-01-01

    In this work, we study the fractional power series solutions around regular singular point x=0 of conformable fractional Bessel differential equation and fractional Bessel functions. Then, we compare fractional solutions with ordinary solutions. In addition, we present certain property of fractional Bessel functions.

  2. Philosophy of Erwin Schroedinger: a diachronic view of Schroedinger's thoughts

    International Nuclear Information System (INIS)

    Melgar, M.F.

    1988-01-01

    There is no agreement within the scientific community about the philosophy of Schroedinger. Some people think that he was a realist, while others defend him as an idealist. In this paper we study a number of Schroedinger's works and we show that the epithets of realist and idealist do not do him justice. Toward the end we conclude that it would be more adequate to place him in the trend known as the philosophy of immanence

  3. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  4. Asymptotic analysis for functional stochastic differential equations

    CERN Document Server

    Bao, Jianhai; Yuan, Chenggui

    2016-01-01

    This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.

  5. Handbook of functional equations functional inequalities

    CERN Document Server

    2014-01-01

    As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the  Riemann–Stieltjes integral, means and related functional inequalities, Weighted G...

  6. Mobile localization in nonlinear Schroedinger lattices

    International Nuclear Information System (INIS)

    Gomez-Gardenes, J.; Falo, F.; Floria, L.M.

    2004-01-01

    Using continuation methods from the integrable Ablowitz-Ladik lattice, we have studied the structure of numerically exact mobile discrete breathers in the standard discrete nonlinear Schroedinger equation. We show that, away from that integrable limit, the mobile pulse is dressed by a background of resonant plane waves with wavevectors given by a certain selection rule. This background is seen to be essential for supporting mobile localization in the absence of integrability. We show how the variations of the localized pulse energy during its motion are balanced by the interaction with this background, allowing the localization mobility along the lattice

  7. Functional Equations in Fuzzy Banach Spaces

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2012-01-01

    generalized Hyers-Ulam stability of the following additive-quadratic functional equation f(x+ky+f(x−ky=f(x+y+f(x−y+(2(k+1/kf(ky−2(k+1f(y for fixed integers k with k≠0,±1 in fuzzy Banach spaces.

  8. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...

  9. Differential functional von Foerster equations with renewal

    Directory of Open Access Journals (Sweden)

    H.Leszczyński

    2008-06-01

    Full Text Available Natural iterative methods converge to the exact solution of a differential-functional von Foerster-type equation which describes a single population dependent on its past time and state densities as well as on its total size. On the lateral boundary we impose a renewal condition.

  10. Qualitative properties of functional differential equation

    Directory of Open Access Journals (Sweden)

    Diana Otrocol

    2014-10-01

    Full Text Available The aim of this paper is to discuss some basic problems (existence and uniqueness, data dependence of the fixed point theory for a functional differential equation with an abstract Volterra operator. In the end an application is given.

  11. A Green function of neutron transport equation

    International Nuclear Information System (INIS)

    Simovic, R.

    1993-01-01

    In this paper the angularly dependent Green function of the neutron transport equation is derived analytically and approximately. By applying the analytical FDPN approximation up to eighth order, numerical values of the Green functions are obtained with the accuracy of six significant figures in the whole range of parameter c, angle cosine μ and distances x up to the ten optical lengths from the neutron source. (author)

  12. Analytic Solutions of Special Functional Equations

    Directory of Open Access Journals (Sweden)

    Octav Olteanu

    2013-07-01

    Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.

  13. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  14. Localization for off-diagonal disorder and for continuous Schroedinger operators

    International Nuclear Information System (INIS)

    Delyon, F.; Souillard, B.; Simon, B.

    1987-01-01

    We extend the proof of localization by Delyon, Levy, and Souillard to accommodate the Anderson model with off-diagonal disorder and the continuous Schroedinger equation with a random potential. (orig.)

  15. Generalized non-linear Schroedinger hierarchy

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

  16. The Schroedinger problem

    International Nuclear Information System (INIS)

    Da Costa, N.C.A.; Krause, D.; French, S.

    1992-01-01

    Schroedinger introduced discussions about the inconsistency between the classical conception of particles as individual entities and the way in which modern physics treats such particles. In particular, it is noted that quantal particles apparently appear to lack individuality, and that certain suppositions of quantum theory imply that permutations of 'identical' particles are not regarded as observable, hence implying that they must be taken as 'non-individuals' of some kind. An overview is presented in this paper of some results obtained by the authors in the field of non-reflexive logics, which have some bearings on these problems and which can perhaps provide an adequate mathematical tool for dealing with some of the fundamental features of elementary particles, such as for instance the fact that identity apparently lacks sense with respect to them, that particle permutations are not regarded as observable and that a collection of these entities cannot be considered as a set in the sense of the usual theories of sets. The main objective of the paper is to show that the nature of elementary particles can be described in terms of certain non-classical logics, despite the problems regarding their individuality. (authors). 28 refs

  17. Handbook of functional equations stability theory

    CERN Document Server

    2014-01-01

    This  handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications.                           The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with...

  18. A life of Erwin Schroedinger; Erwin Schroedinger. Eine Biographie

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Walter J.

    2012-07-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientists of the 20th century at all and - a charming Austrian. He was a man with a passionate interest in people and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he got the Nobel prize for physics and naturally by the famous thought experiment ''Schroedinger's cat''. Walter Moore's biography is very close to the person of Schroedinger and presents his scientific work in the context of his private friendships, his interest in mysticism, and in front of the moving background of the political events in Germany and Austria.

  19. Defect induced intermittency in the transit time dynamics generates 1/f noise in a trimer described by the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.; Doedel, E.J.

    2006-08-01

    We investigate the nonlinear dynamics in a trimer, described by the one-dimensional discrete nonlinear Schrodinger equation (DNLSE), with periodic boundary conditions in the presence of a single on-site defect. We make use of numerical continuation to study different families of stationary and periodic solutions, which allows us to consider suitable perturbations. Taking into account a Poincare section, we are able to study the dynamics in both a thin stochastic layer solution and a global stochasticity solution. We find that the time series of the transit times, the time intervals to traverse some suitable sets in phase space, generate 1/f noise for both stochastic solutions. In the case of the thin stochastic layer solution, we find that transport between two almost invariant sets along with intermittency in small and large time scales are relevant features of the dynamics. These results are reflected in the behaviour of the standard map with suitable parameters. In both chaotic solutions, the distribution of transit times has a maximum and a tail with exponential decay in spite of the presence of long-range correlations in the time series. We motivate our study by considering a ring of weakly-coupled Bose-Einstein condensates (BEC) with attractive interactions, where inversion of populations between two spatially symmetric sites and phase locking take place in both chaotic solutions. (author)

  20. d'Alembert's other functional equation

    DEFF Research Database (Denmark)

    Ebanks, Bruce; Stetkaer, Henrik

    2015-01-01

    Let G be a topological group. We find formulas for the solutions f; g; h is an element of C(G) of the functional equation f(xy) - f (y(-1)x) = g(x)h(y); x; y is an element of G; when G is generated by its squares and its center, as for instance when G is a connected Lie group, and when G is compact...

  1. Some studies of Schroedinger operators

    International Nuclear Information System (INIS)

    Liu Yang.

    1993-09-01

    This thesis consists of three papers. Paper 1 deals with the semiclassical approximation for a Schroedinger operator in one dimension with an arbitrary continuous potential. The basic result is that function in the range of a spectral projection associated with an interval are exponentially small (with respect to Plancks parameter h) in places where the potential exceeds the interval. As an application of this result, it is shown that the eigenvalues of the operator localized to the wells appear as resonances of the global operator. This is true also when the potential is not bounded from below. Such results were proved before for analytic potentials by analytic dilatation. In Paper 2, the potential is assumed to have the form of χ + V(χ) (the Stark Hamiltonian) with a well-behaved V(χ), an explicit spectral and scattering theory for such an operator was presented using the time-independent approach. In particular, we derive an eigenfunction expansion theorem which, combined with a construction of an intertwining operator, gives a solution of the inverse scattering problem according to L. Daddeev and A. Melin. The direct part of the second paper has a generalization to higher dimensions, and this was done in the third paper. Also in that paper, the condition on the potentials for doing the inverse scattering theory was relaxed, and an explicit formula for the potentials involving the first approximation of the scattering data was given

  2. Synchronization with propagation - The functional differential equations

    Science.gov (United States)

    Rǎsvan, Vladimir

    2016-06-01

    The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.

  3. Schroedinger's variational method of quantization revisited

    International Nuclear Information System (INIS)

    Yasue, K.

    1980-01-01

    Schroedinger's original quantization procedure is revisited in the light of Nelson's stochastic framework of quantum mechanics. It is clarified why Schroedinger's proposal of a variational problem led us to a true description of quantum mechanics. (orig.)

  4. Generating functionals and Lagrangian partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin [Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Dept. 0112, La Jolla, California 92093-0112 (United States)

    2013-08-15

    The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an example of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.

  5. A life of Erwin Schroedinger

    International Nuclear Information System (INIS)

    Moore, Walter J.

    2012-01-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientists of the 20th century at all and - a charming Austrian. He was a man with a passionate interest in people and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he got the Nobel prize for physics and naturally by the famous thought experiment ''Schroedinger's cat''. Walter Moore's biography is very close to the person of Schroedinger and presents his scientific work in the context of his private friendships, his interest in mysticism, and in front of the moving background of the political events in Germany and Austria.

  6. Solving Kepler's equation using implicit functions

    Science.gov (United States)

    Mortari, Daniele; Elipe, Antonio

    2014-01-01

    A new approach to solve Kepler's equation based on the use of implicit functions is proposed here. First, new upper and lower bounds are derived for two ranges of mean anomaly. These upper and lower bounds initialize a two-step procedure involving the solution of two implicit functions. These two implicit functions, which are non-rational (polynomial) Bézier functions, can be linear or quadratic, depending on the derivatives of the initial bound values. These are new initial bounds that have been compared and proven more accurate than Serafin's bounds. The procedure reaches machine error accuracy with no more that one quadratic and one linear iterations, experienced in the "tough range", where the eccentricity is close to one and the mean anomaly to zero. The proposed method is particularly suitable for space-based applications with limited computational capability.

  7. Schroedinger and the wave mechanics

    International Nuclear Information System (INIS)

    Bassalo, J.M.F.

    1987-01-01

    In commemoration of the centennial of Schroedinger's birth, in 1987, we show in this paper some aspects of his academic life, and his philosophical and scientific work. Among Schroedinger's innumerable contributions to almost all areas of philosophy and science, we choose here the creation of quantum mechanics (1926), considered one of the pillars of Modern quantum theory, and the importance of his philosophical essay What is life (1944). This publication was responsible for a great in the studies of biology, culminating in the discovery of the DNA molecular structure, in 1953, by Crick and Watson, thanks to the X-rays diffraction technique of the DNA developed by Wilkens. (author) [pt

  8. Canonical quantization of non-abelian gauge theory in the Schroedinger picture: applications to monopoles and instantons

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1979-01-01

    A detailed formulation of the quantum theory of non-abelian gauge fields is presented in the Schroedinger picture. It is applied to the semiclassical quantization of the t'Hoft-Polyakov monopole, with special attention paid to the treatment of boundary conditions and local and global gauge symmetry. The perturbation expansion is then discussed with the aid of standard collective co-ordinates. In the Prasad-Sommerfield limit, all the eigenfunctions of the fluctuation equation are presented, the ground-state wave function is constructed in terms of gauge and translation invariant co-ordinates, and its total angular momentum is computed to be zero. Aspects of instanton phenomena are then examined in the Schroedinger picture; the role of euclidean time is elucidated. The precise relation between boundary conditions, choice of gauge, and the corresponding picture of the semiclassical vacuum is demonstrated

  9. The Dirac equation for accountants

    International Nuclear Information System (INIS)

    Ord, G.N.

    2006-01-01

    In the context of relativistic quantum mechanics, derivations of the Dirac equation usually take the form of plausibility arguments based on experience with the Schroedinger equation. The primary reason for this is that we do not know what wavefunctions physically represent, so derivations have to rely on formal arguments. There is however a context in which the Dirac equation in one dimension is directly related to a classical generating function. In that context, the derivation of the Dirac equation is an exercise in counting. We provide this derivation here and discuss its relationship to quantum mechanics

  10. Linear measure functional differential equations with infinite delay

    OpenAIRE

    Monteiro, G. (Giselle Antunes); Slavík, A.

    2014-01-01

    We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.

  11. Existence families, functional calculi and evolution equations

    CERN Document Server

    deLaubenfels, Ralph

    1994-01-01

    This book presents an operator-theoretic approach to ill-posed evolution equations. It presents the basic theory, and the more surprising examples, of generalizations of strongly continuous semigroups known as 'existent families' and 'regularized semigroups'. These families of operators may be used either to produce all initial data for which a solution in the original space exists, or to construct a maximal subspace on which the problem is well-posed. Regularized semigroups are also used to construct functional, or operational, calculi for unbounded operators. The book takes an intuitive and constructive approach by emphasizing the interaction between functional calculus constructions and evolution equations. One thinks of a semigroup generated by A as etA and thinks of a regularized semigroup generated by A as etA g(A), producing solutions of the abstract Cauchy problem for initial data in the image of g(A). Material that is scattered throughout numerous papers is brought together and presented in a fresh, ...

  12. Derivation of an applied nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Laine, Mark Richard [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schwarz, Jens [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rambo, Patrick K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  13. The recursive solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Haydock, R.

    The transformation of an arbitrary quantum model and its subsequent analysis is proposed. The chain expresses mathematically the physical concept of local environment. The recursive transformation yields analytic chains for some systems, but it is also convenient and efficient for constructing numerical chain models enabling the solution of problems which are too big for numerical matrix methods. The chain model sugests new approach to quantum mechanical models. Because of the simple solution of chain models, the qualitative behaviour of different physical properties can be determined. Unlike many methods for solving quantum models, one has rigorous results about the convergence of approximation. Because they are defined recursively, the approsimations are suited to computation. (Ha)

  14. On the existence of solutions for functional differential equations

    International Nuclear Information System (INIS)

    Walo Omana, R.

    1994-12-01

    The aim of the paper is to extend the Granas Topological Transversality Method used in boundary value problems for functional differential equations for first and second order, to the case of n-th order functional differential equations. 15 refs

  15. Integral equations of hadronic correlation functions a functional- bootstrap approach

    CERN Document Server

    Manesis, E K

    1974-01-01

    A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).

  16. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...... a fixed time interval. Rate optimal and effcient estimators areobtained for a one-dimensional diffusion parameter. Stable convergence in distribution isused to achieve a practically applicable Gaussian limit distribution for suitably normalisedestimators. In a simulation example, the limit distributions...... multidimensional parameter. Conditions for rate optimality and effciency of estimatorsof drift-jump and diffusion parameters are given in some special cases. Theseconditions are found to extend the pre-existing conditions applicable to continuous diffusions,and impose much stronger requirements on the estimating...

  17. On two functional equations originating from number theory

    Indian Academy of Sciences (India)

    Reducing the functional equations introduced in Proc. Indian Acad. Sci. (Math. Sci.) 113(2) (2003) 91–98 and in Appl. Math. Lett. 21 (2008) 974–977 to equations in complex variables and quaternions, we find general solutions of the equations. We also obtain the stability of the equations.

  18. Solving polynomial differential equations by transforming them to linear functional-differential equations

    OpenAIRE

    Nahay, John Michael

    2008-01-01

    We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

  19. Relationship between the Wigner function and the probability density function in quantum phase space representation

    International Nuclear Information System (INIS)

    Li Qianshu; Lue Liqiang; Wei Gongmin

    2004-01-01

    This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed

  20. Schroedinger propagation of initial discontinuities leads to divergence of moments

    International Nuclear Information System (INIS)

    Marchewka, A.; Schuss, Z.

    2009-01-01

    We show that the large phase expansion of the Schroedinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.

  1. Schroedinger propagation of initial discontinuities leads to divergence of moments

    Energy Technology Data Exchange (ETDEWEB)

    Marchewka, A., E-mail: avi.marchewka@gmail.co [Ruppin Academic Center, Emek-Hefer 40250 (Israel); Schuss, Z., E-mail: schuss@post.tau.ac.i [Department of Mathematics, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv (Israel)

    2009-09-21

    We show that the large phase expansion of the Schroedinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.

  2. On a functional equation related to the intermediate long wave equation

    International Nuclear Information System (INIS)

    Hone, A N W; Novikov, V S

    2004-01-01

    We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)

  3. Distributed Approximating Functional Approach to Burgers' Equation ...

    African Journals Online (AJOL)

    This equation is similar to, but simpler than, the Navier-Stokes equation in fluid dynamics. To verify this advantage through some comparison studies, an exact series solution are also obtained. In addition, the presented scheme has numerically stable behavior. After demonstrating the convergence and accuracy of the ...

  4. Functional equation for the Mordell-Tornheim multiple zeta-function

    OpenAIRE

    Okamoto, Takuya; Onozuka, Tomokazu

    2016-01-01

    We show a relation between the Mordell-Tornheim multiple zeta-function and the confluent hypergeometric function, and using it, we give the functional equation for the Mordell-Tornheim multiple zeta-function. In the double case, the functional equation includes the known functional equation for the Euler-Zagier double zeta-function.

  5. Some functional equations originating from number theory

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Moreover, we will also study some stability problems of those equations. ... Wisconsin in which he discussed a number of important unsolved problems [18]. ... According to a well-known theorem in number theory, a positive integer of the form.

  6. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    1978-01-01

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)

  7. Nonlinear von Neumann equations for quantum dissipative systems

    International Nuclear Information System (INIS)

    Messer, J.; Baumgartner, B.

    For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)

  8. Special function solutions of the free particle Dirac equation

    International Nuclear Information System (INIS)

    Strange, P

    2012-01-01

    The Dirac equation is one of the fundamental equations in physics. Here we present and discuss two novel solutions of the free particle Dirac equation. These solutions have an exact analytical form in terms of Airy or Mathieu functions and exhibit unexpected properties including an enhanced Doppler effect, accelerating wavefronts and solutions with a degree of localization. (paper)

  9. In search of Schroedinger's cat

    International Nuclear Information System (INIS)

    Gribbin, John.

    1984-01-01

    The book explains how the paradox of Schroedinger's cat led to an understanding of reality in quantum physics. The contents of the book is divided into three parts. Part one concerns light, atoms and Bohr's atom. Quantum mechanics is discussed in Part Two, including photons and electrons, matrices and waves, and applications of quanta. The last part deals with chance and uncertainty, paradoxes and possibilities, the experimental proof of the paradoxical reality of the quantum world, and the many-worlds interpretation of quantum mechanics. (U.K.)

  10. Introduction to Schroedinger inverse scattering

    International Nuclear Information System (INIS)

    Roberts, T.M.

    1991-01-01

    Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)

  11. Discrete expansions of continuum functions. General concepts

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1979-01-01

    Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced

  12. Green's function method for perturbed Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Cai Hao; Huang Nianning

    2003-01-01

    The x-derivatives of squared Jost solution are the eigenfunctions with the zero eigenvalue of the linearized equation derived from the perturbed Korteweg-de Vries equation. A method similar to Green's function formalism is introduced to show the completeness of the squared Jost solutions in multi-soliton cases. It is not related to Lax equations directly, and thus it is beneficial to deal with the nonlinear equations with complicated Lax pair

  13. Connection between Dirac and matrix Schroedinger inverse-scattering transforms

    International Nuclear Information System (INIS)

    Jaulent, M.; Leon, J.J.P.

    1978-01-01

    The connection between two applications of the inverse scattering method for solving nonlinear equations is established. The inverse method associated with the massive Dirac system (D) : (iσ 3 d/dx - i q 3 σ 1 - q 1 σ 2 + mσ 2 )Y = epsilonY is rediscovered from the inverse method associated with the 2 x 2 matrix Schroedinger equation (S) : Ysub(xx) + (k 2 -Q)Y = 0. Here Q obeys a nonlinear constraint equivalent to a linear constraint on the reflection coefficient for (S). (author)

  14. Erwin Schroedinger: Collected papers V. 1. Contributions to statistical mechanics

    International Nuclear Information System (INIS)

    Schroedinger, E.

    1984-01-01

    38 publications reprinted in this volume show that the interest for statistical problems accompanied Schroedinger during his entire scientific career. Already in his second paper he worked on the magnetism of solid states. The classical considerations come close to the heart of diamagnetism and also to the origin of paramagnetism. In classical investigations of the specific heat Schroedinger helped through abstract theory but also by analysing a gigantic amount of experimental material. In 1926 he and F. Kohlrausch actually played the 'Urngame of Ehrenfest' as a model of the H-curve and published the results. Inclination towards experimenting, sequences of measurements and statistical evaluation of experimental data led to papers on the foundation of the theory of probability, where he tries to put the subjective probability concept on into a systematic framework. Two earlier papers on dynamics of the elastic chain remained particularly valuable. By solving the initial value problem with Bessel-functions this many-body-problem is led to an explicit discussion. These studies are likely to be the roots of another keynote in Schroedinger's thinking, namely, the irreversibility. 1945 a statistical theory of chain-reactions was published under the inconspicuous title of 'Probability Problems in Nuclear Chemistry'. In his last work Schroedinger turns off in a wrong direction: it is that energy should only be a statistical concept and should not be conserved in elementary processes, but somehow only in the mean. These short remarks only illuminate the diversity of the material in this volume, but testify Schroedinger's deep understanding in this field. (W.K.)

  15. Continuity relations and quantum wave equations

    International Nuclear Information System (INIS)

    Goedecke, G.H.; Davis, B.T.

    2010-01-01

    We investigate the mathematical synthesis of the Schroedinger, Klein-Gordon, Pauli-Schroedinger, and Dirac equations starting from probability continuity relations. We utilize methods similar to those employed by R. E. Collins (Lett. Nuovo Cimento, 18 (1977) 581) in his construction of the Schroedinger equation from the position probability continuity relation for a single particle. Our new results include the mathematical construction of the Pauli-Schroedinger and Dirac equations from the position probability continuity relations for a particle that can transition between two states or among four states, respectively.

  16. Neutral Backward Stochastic Functional Differential Equations and Their Application

    OpenAIRE

    Wei, Wenning

    2013-01-01

    In this paper we are concerned with a new type of backward equations with anticipation which we call neutral backward stochastic functional differential equations. We obtain the existence and uniqueness and prove a comparison theorem. As an application, we discuss the optimal control of neutral stochastic functional differential equations, establish a Pontryagin maximum principle, and give an explicit optimal value for the linear optimal control.

  17. Modular differential equations for torus one-point functions

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Lang, Samuel

    2009-01-01

    It is shown that in a rational conformal field theory every torus one-point function of a given highest weight state satisfies a modular differential equation. We derive and solve these differential equations explicitly for some Virasoro minimal models. In general, however, the resulting amplitudes do not seem to be expressible in terms of standard transcendental functions

  18. On some functional equations related to Steffensen's inequality

    Directory of Open Access Journals (Sweden)

    Bogdan Choczewski

    2004-05-01

    Full Text Available We consider the problem, proposed by the second author (cf. [1] of solving functional equations stemming from the Steffensen integral inequality (S, which is applicable in actuarial problems, cf. [4]. Imposing some regularity conditions we find solutions of two equations in two variables, one with two and another with three unknown functions.

  19. Polynomial chaos functions and stochastic differential equations

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2006-01-01

    The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory

  20. On Approximate Solutions of Functional Equations in Vector Lattices

    Directory of Open Access Journals (Sweden)

    Bogdan Batko

    2014-01-01

    Full Text Available We provide a method of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz space (algebra. The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will be applied to prove the stability of an alternative Cauchy functional equation F(x+y+F(x+F(y≠0⇒F(x+y=F(x+F(y in Riesz spaces, the Cauchy equation with squares F(x+y2=(F(x+F(y2 in f-algebras, and the quadratic functional equation F(x+y+F(x-y=2F(x+2F(y in Riesz spaces.

  1. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  2. Legendre-tau approximations for functional differential equations

    Science.gov (United States)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  3. Erwin Schroedinger, Francis Crick and epigenetic stability

    Directory of Open Access Journals (Sweden)

    Ogryzko Vasily V

    2008-04-01

    Full Text Available Abstract Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  4. Erwin Schroedinger, Francis Crick and epigenetic stability.

    Science.gov (United States)

    Ogryzko, Vasily V

    2008-04-17

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  5. Wave Functions for Time-Dependent Dirac Equation under GUP

    Science.gov (United States)

    Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen

    2018-04-01

    In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009

  6. Exp-function method for solving fractional partial differential equations.

    Science.gov (United States)

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  7. Quaternionic factorization of the Schroedinger operator and its applications to some first-order systems of mathematical physics

    International Nuclear Information System (INIS)

    Kravchenko, Viktor G; Kravchenko, Vladislav V

    2003-01-01

    We show that an ample class of physically meaningful partial differential systems of first order such as the Dirac equation with different one-component potentials, static Maxwell's system and the system describing the force-free magnetic fields are equivalent to a single quaternionic equation which in its turn reduces in general to a Schroedinger equation with quaternionic potential, and in some situations this last can be diagonalized. The rich variety of methods developed for different problems corresponding to the Schroedinger equation can be applied to the systems considered in the present work

  8. Quaternionic factorization of the Schroedinger operator and its applications to some first-order systems of mathematical physics

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, Viktor G [Faculdade de Ciencias y Tecnologia, Universidade do Algarve, Campus de Gambelas, 8000 Faro (Portugal); Kravchenko, Vladislav V [Depto de Telecomunicaciones, SEPI ESIME Zacatenco, Instituto Politecnico Nacional, Av. IPN S/N, Edif. 1 CP 07738, DF (Mexico)

    2003-11-07

    We show that an ample class of physically meaningful partial differential systems of first order such as the Dirac equation with different one-component potentials, static Maxwell's system and the system describing the force-free magnetic fields are equivalent to a single quaternionic equation which in its turn reduces in general to a Schroedinger equation with quaternionic potential, and in some situations this last can be diagonalized. The rich variety of methods developed for different problems corresponding to the Schroedinger equation can be applied to the systems considered in the present work.

  9. Complex nonlinear Lagrangian for the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.

    2005-01-01

    The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)

  10. Numerical approximations of difference functional equations and applications

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamont

    2005-01-01

    Full Text Available We give a theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type. We apply this general result in the investigation of the stability of difference schemes generated by nonlinear first order partial differential functional equations and by parabolic problems. We show that all known results on difference methods for initial or initial boundary value problems can be obtained as particular cases of this general and simple result. We assume that the right hand sides of equations satisfy nonlinear estimates of the Perron type with respect to functional variables.

  11. Gravity induced corrections to quantum mechanical wave functions

    International Nuclear Information System (INIS)

    Singh, T.P.

    1990-03-01

    We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs

  12. AN ENERGY FUNCTION APPROACH FOR FINDING ROOTS OF CHARACTERISTIC EQUATION

    OpenAIRE

    Deepak Mishra; Prem K. Kalra

    2011-01-01

    In this paper, an energy function approach for finding roots of a characteristic equation has been proposed. Finding the roots of a characteristics equation is considered as an optimization problem. We demonstrated that this problem can be solved with the application of feedback type neural network. The proposed approach is fast and robust against variation of parameter.

  13. Linear measure functional differential equations with infinite delay

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract

  14. Evaluation of time correlation functions from a generalized Enskog equation

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S.; Alley, W.E.; Alder, B.J.

    1982-01-01

    Numerical results for the density and current correlation functions in dense hard-shape fluids are obtained from a kinetic equation which is the extension of the linearized Enskog equation to finite wavelengths in order to demonstrate the convergence of the method of solution. Comparison is made to a previously proposed approximate solution.

  15. Evaluation of time correlation functions from a generalized Enskog equation

    International Nuclear Information System (INIS)

    Yip, S.; Alley, W.E.; Alder, B.J.

    1982-01-01

    Numerical results for the density and current correlation functions in dense hard-shape fluids are obtained from a kinetic equation which is the extension of the linearized Enskog equation to finite wavelengths in order to demonstrate the convergence of the method of solution. Comparison is made to a previously proposed approximate solution

  16. Effect of Differential Item Functioning on Test Equating

    Science.gov (United States)

    Kabasakal, Kübra Atalay; Kelecioglu, Hülya

    2015-01-01

    This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…

  17. A functional equation for the specular reflection of rays.

    Science.gov (United States)

    Le Bot, A

    2002-10-01

    This paper aims to generalize the "radiosity method" when applied to specular reflection. Within the field of thermics, the radiosity method is also called the "standard procedure." The integral equation for incident energy, which is usually derived for diffuse reflection, is replaced by a more appropriate functional equation. The latter is used to solve some specific problems and it is shown that all the classical features of specular reflection, for example, the existence of image sources, are embodied within this equation. This equation can be solved with the ray-tracing technique, despite the implemented mathematics being quite different. Several interesting features of the energy field are presented.

  18. Counting master integrals. Integration by parts vs. functional equations

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Tarasov, Oleg V.

    2016-01-01

    We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.

  19. Lyapunov functionals and stability of stochastic difference equations

    CERN Document Server

    Shaikhet, Leonid

    2011-01-01

    This book offers a general method of Lyapunov functional construction which lets researchers analyze the degree to which the stability properties of differential equations are preserved in their difference analogues. Includes examples from physical systems.

  20. Jacobian elliptic function expansion solutions of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Wei Caimin; Xia Zunquan; Tian Naishuo

    2005-01-01

    Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation

  1. A Hamiltonian functional for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  2. The stability of quadratic-reciprocal functional equation

    Science.gov (United States)

    Song, Aimin; Song, Minwei

    2018-04-01

    A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.

  3. Accurate high-lying eigenvalues of Schroedinger and Sturm-Liouville problems

    International Nuclear Information System (INIS)

    Vanden Berghe, G.; Van Daele, M.; De Meyer, H.

    1994-01-01

    A modified difference and a Numerov-like scheme have been introduced in a shooting algorithm for the determination of the (higher-lying) eigenvalues of Schroedinger equations and Sturm-Liouville problems. Some numerical experiments are introduced. Time measurements have been performed. The proposed algorithms are compared with other previously introduced shooting schemes. The structure of the eigenvalue error is discussed. ((orig.))

  4. Quantum theory of single events: Localized de Broglie-wavelets, Schroedinger waves and classical trajectories

    International Nuclear Information System (INIS)

    Barut, A.O.

    1990-06-01

    For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs

  5. On a Functional Equation for the Generating Function of the Logarithmic Series Distribution

    OpenAIRE

    Panaretos, John

    1987-01-01

    This note deals with finding the solution of a functional equation, where the function involved has the additional property of being a probability generating function. It turns out that the unique solution of this particular functional equation is the probability generating function of the logarithmic series distribution

  6. Quantization conditions and functional equations in ABJ(M) theories

    International Nuclear Information System (INIS)

    Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki

    2014-12-01

    The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.

  7. Group-theoretical interpretation of the Korteweg-de Vries type equations

    International Nuclear Information System (INIS)

    Berezin, F.A.; Perelomov, A.M.

    1978-01-01

    The Korteweg-de Vries equation is studied within the group-theoretical framework. Analogous equations are obtained for which the many-dimensional Schroedinger equation (with nonlocal potential) plays the same role as the one-dimensional Schroedinger equation does in the theory of the Korteweg-de Vries equation

  8. Remarks on the stability of some quadratic functional equations

    Directory of Open Access Journals (Sweden)

    Zygfryd Kominek

    2008-01-01

    Full Text Available Stability problems concerning the functional equations of the form \\[f(2x+y=4f(x+f(y+f(x+y-f(x-y,\\tag{1}\\] and \\[f(2x+y+f(2x-y=8f(x+2f(y\\tag{2}\\] are investigated. We prove that if the norm of the difference between the LHS and the RHS of one of equations \\((1\\ or \\((2\\, calculated for a function \\(g\\ is say, dominated by a function \\(\\varphi\\ in two variables having some standard properties then there exists a unique solution \\(f\\ of this equation and the norm of the difference between \\(g\\ and \\(f\\ is controlled by a function depending on \\(\\varphi\\.

  9. Functional differential equations with unbounded delay in extrapolation spaces

    Directory of Open Access Journals (Sweden)

    Mostafa Adimy

    2014-08-01

    Full Text Available We study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded delay and a Hille-Yosida operator on a Banach space X. We consider two nonlinear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regularity of solutions and we establish a linearization principle for the stability of the equilibria of our equation.

  10. Stability of the Exponential Functional Equation in Riesz Algebras

    Directory of Open Access Journals (Sweden)

    Bogdan Batko

    2014-01-01

    Full Text Available We deal with the stability of the exponential Cauchy functional equation F(x+y=F(xF(y in the class of functions F:G→L mapping a group (G, + into a Riesz algebra L. The main aim of this paper is to prove that the exponential Cauchy functional equation is stable in the sense of Hyers-Ulam and is not superstable in the sense of Baker. To prove the stability we use the Yosida Spectral Representation Theorem.

  11. A variational Integro-Differential Equation for three identical particles in an S-state

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.; Braun, M.; Sofianos, S.A.

    1997-01-01

    Starting from the Schroedinger equation, a new Variational Integro-Differential Equation (VIDE) for three bosons in S-state is derived. The wave function has the simple structure of a sum of two-body amplitudes. It is shown that the new equation gives results which are three orders of magnitude better than the corresponding results obtained from a single Faddeev equation, where the pairs are in an S-state. The latter equation generates an exact solution only for S-state projected potentials. Moreover, the ghost contributions occurring in the Faddeev amplitudes for three bosons in an S-state do not exist in the new equation. (author)

  12. A functional RG equation for the c-function

    DEFF Research Database (Denmark)

    Codello, A.; D'Odorico, G.; Pagani, C.

    2014-01-01

    , local potential approximation and loop expansion. In each case we construct the relative approximate c-function and find it to be consistent with Zamolodchikov's c-theorem. Finally, we present a relation between the c-function and the (matter induced) beta function of Newton's constant, allowing us...... to use heat kernel techniques to compute the RG running of the c-function....

  13. On the connection between Schroedinger- and Dirichlet forms

    International Nuclear Information System (INIS)

    Albeverio, S.; Bochum Univ.; Gesztesy, F.; Karwowski, W.; Streit, L.; Bielefeld Univ.

    Relations between Schroedinger forms associated with Schroedinger operators in L 2 (Ω;dsup(n)x), Ω is contained in Rsup(n) open, n >= 1 and the corresponding Dirichlet forms are investigated. Various concrete examples are presented. (orig.)

  14. Dynamic equations for gauge-invariant wave functions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.

    1984-01-01

    The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents

  15. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  16. A life of Erwin Schroedinger. 2. ed.

    International Nuclear Information System (INIS)

    Moore, Walter J.

    2015-01-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientist of the 20th century at all and a charming Austrian. He was a man with a passionate interest for men and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he obtained the Nobel prize for physics and naturally by the famous thought experiment ''Schroedingers cat''. Walter Moore's biography is quite near to the person of Schroedinger and presents his scientific work in the context of his friendships, his interset for mysticism, and in front of the moving background of the political events in Germany and Austria.

  17. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  18. Construction of Green's functions for the Black-Scholes equation

    Directory of Open Access Journals (Sweden)

    Yuri A. Melnikov

    2007-11-01

    Full Text Available A technique is proposed for the construction of Green's functions for terminal-boundary value problems of the Black-Scholes equation. The technique permits an application to a variety of problems that vary by boundary conditions imposed. This is possible by extension of an approach that was earlier developed for partial differential equations in applied mechanics. The technique is based on the method of integral Laplace transform and the method of variation of parameters. It provides closed form analytic representations for the constructed Green's functions.

  19. Functional integral in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Ktitarev, D.V.

    1990-01-01

    The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs

  20. Hartman-Wintner growth results for sublinear functional differential equations

    Directory of Open Access Journals (Sweden)

    John A. D. Appleby

    2017-01-01

    Full Text Available This article determines the rate of growth to infinity of scalar autonomous nonlinear functional and Volterra differential equations. In these equations, the right-hand side is a positive continuous linear functional of f(x. We assume f grows sublinearly, leading to subexponential growth in the solutions. The main results show that the solution of the functional differential equations are asymptotic to that of an auxiliary autonomous ordinary differential equation with right-hand side proportional to f. This happens provided f grows more slowly than l(x=x/log(x. The linear-logarithmic growth rate is also shown to be critical: if f grows more rapidly than l, the ODE dominates the FDE; if f is asymptotic to a constant multiple of l, the FDE and ODE grow at the same rate, modulo a constant non-unit factor; if f grows more slowly than l, the ODE and FDE grow at exactly the same rate. A partial converse of the last result is also proven. In the case when the growth rate is slower than that of the ODE, sharp bounds on the growth rate are determined. The Volterra and finite memory equations can have differing asymptotic behaviour and we explore the source of these differences.

  1. Exponential stability in a scalar functional differential equation

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2006-01-01

    Full Text Available We establish a criterion for the global exponential stability of the zero solution of the scalar retarded functional differential equation whose linear part generates a monotone semiflow on the phase space with respect to the exponential ordering, and the nonlinearity has at most linear growth.

  2. Stability of Jensen functional equation in intuitionistic fuzzy normed space

    International Nuclear Information System (INIS)

    Mohiuddine, S.A.

    2009-01-01

    In this paper, we determine some stability results concerning the Jensen functional equation 2f((x+y)/2)=f(x)+f(y) in intuitionistic fuzzy normed spaces (IFNS). We define the intuitionistic fuzzy continuity of the Jensen mappings and prove that the existence of a solution for any approximately Jensen mapping implies the completeness of IFNS.

  3. Mild Solutions of Neutral Stochastic Partial Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    T. E. Govindan

    2011-01-01

    Full Text Available This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.

  4. On two functional equations originating from number theory

    Indian Academy of Sciences (India)

    On two functional equations originating from number theory. JAEYOUNG CHUNG1 and JEONGWOOK CHANG2,∗. 1Department of Mathematics, Kunsan National University, Kunsan, 573-701, Korea. 2Department of Mathematics Education, Dankook University, Yongin 448-701, Korea. *Corresponding author. E-mail: ...

  5. On nonnegative solutions of second order linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Lomtatidze, Alexander; Vodstrčil, Petr

    2004-01-01

    Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics

  6. Approximate Treatment of the Dirac Equation with Hyperbolic Potential Function

    Science.gov (United States)

    Durmus, Aysen

    2018-03-01

    The time independent Dirac equation is solved analytically for equal scalar and vector hyperbolic potential function in the presence of Greene and Aldrich approximation scheme. The bound state energy equation and spinor wave functions expressed by the hypergeometric function have been obtained in detail with asymptotic iteration approach. In order to indicate the accuracy of this different approach proposed to solve second order linear differential equations, we present that in the non-relativistic limit, analytical solutions of the Dirac equation converge to those of the Schrödinger one. We introduce numerical results of the theoretical analysis for hyperbolic potential function. Bound states corresponding to arbitrary values of n and l are reported for potential parameters covering a wide range of interaction. Also, we investigate relativistic vibrational energy spectra of alkali metal diatomic molecules in the different electronic states. It is observed that theoretical vibrational energy values are consistent with experimental Rydberg-Klein-Rees (RKR) results and vibrational energies of NaK, K_2 and KRb diatomic molecules interacting with hyperbolic potential smoothly converge to the experimental dissociation limit D_e=2508cm^{-1}, 254cm^{-1} and 4221cm^{-1}, respectively.

  7. STABILITY OF A FUNCTIONAL EQUATION IN COMPLEX BANACH SPACES

    Directory of Open Access Journals (Sweden)

    PRATAP MONDAL

    2016-12-01

    Full Text Available Using fixed point technique, in the present paper , we wish to examine gen- eralization of the Hyers-Ulam-Rassias stability theorem for the functional equations f ( 2 x + i y + f ( x + 2 i y = 4 f ( x + i y + f ( x + f ( y (0.1 and f ( 2 x + i y .

  8. Some functional solutions of the Yang-Baxter equation

    International Nuclear Information System (INIS)

    Stoyanov, D.Ts.

    1994-09-01

    A general functional definition of the infinite dimensional quantum R-matrix satisfying the Yang-Baxter equation is given. A procedure for extracting a finite dimensional R-matrix from the general definition is demonstrated in a particular case when the group SU(2) takes place. (author). 6 refs

  9. Schroedinger operators with singular perturbation potentials

    International Nuclear Information System (INIS)

    Harrell, E.M. II.

    1976-01-01

    This is a perturbative analysis of the eigenvalues and eigenfunctions of Schroedinger operators of the form -Δ + A + lambda V, defined on the Hilbert space L 2 (R/sup n/). A is a potential function (a smooth, real multiplication operator), and V is a ''spikelike'' perturbation, i.e., a perturbative potential function which diverges at some finite point. Lambda is a small real or complex parameter. The emphasis is on one-dimensional problems, and in particular the typical example is the ''spiked harmonic oscillator'' Hamiltonian, -d 2 /dx 2 + x 2 + lambda x/sup -α/, where α is a positive constant. An earlier study by L. Detwiler and J. R. Klauder [Phys. Rev. D 11 (1975) 1436] indicated that the lowest-order corrections to the ground-state eigenvalue of the spiked harmonic oscillator with lambda greater than 0 were proportional to lambda ln lambda when α = 3, and to lambda/sup 1/(α-2) when α is greater than 3. These and analogous results for a large class of operators and arbitrary eigenvalues are proved. Explicit constants in a modified perturbation series with a complicated dependence on lambda are determined and exhibited. Higher-order corrections for real lambda and lowest-order corrections for complex lambda are also discussed. While the substance of the dissertation is mathematical, its main applications are to quantum physics. The immediate cause of interest in such problems was the use of their peculiar convergence properties by J. R. Klauder as models for the behavior of nonrenormalizable quantum field theories. However, the results of this study are likely to be of greater importance in chemical or nuclear physics, as positive spikelike perturbations represent repulsive core interactions for quantum mechanical particles. The modified perturbation series are a new calculation technique for this situation

  10. Localization for random Schroedinger operators with correlated potentials

    Energy Technology Data Exchange (ETDEWEB)

    Von Dreifus, H [Princeton Univ., NJ (USA). Dept. of Physics; Klein, A [California Univ., Irvine (USA). Dept. of Mathematics

    1991-08-01

    We prove localization at high disorder or low energy for lattice Schroedinger operators with random potentials whose values at different lattice sites are correlated over large distances. The class of admissible random potentials for our multiscale analysis includes potentials with a stationary Gaussian distribution whose covariance function C(x,y) decays as vertical strokex-yvertical stroke{sup -{theta}}, where {theta}>0 can be arbitrarily small, and potentials whose probability distribution is a completely analytical Gibbs measure. The result for Gaussian potentials depends on a multivariable form of Nelson's best possible hypercontractive estimate. (orig.).

  11. Darboux transformation for the NLS equation

    International Nuclear Information System (INIS)

    Aktosun, Tuncay; Mee, Cornelis van der

    2010-01-01

    We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schroedinger equation.

  12. Abelian Higgs mechanism in the Schroedinger picture

    International Nuclear Information System (INIS)

    Kim, S.K.; Namgung, W.; Soh, K.S.; Yee, J.H.

    1990-01-01

    We have studied symmetry-breaking phenomena in scalar electrodynamics by evaluating the effective potential at one-loop order in the Schroedinger picture. Contributions to the effective potential by the Higgs particle and the transverse and longitudinal components of a photon are compared with other previous works, and they are found to be consistent

  13. Ulam-Hyers Stability of Trigonometric Functional Equation with Involution

    Directory of Open Access Journals (Sweden)

    Jaeyoung Chung

    2015-01-01

    Full Text Available Let S and G be a commutative semigroup and a commutative group, respectively, C and R+ the sets of complex numbers and nonnegative real numbers, respectively, and σ:S→S or σ:G→G an involution. In this paper, we first investigate general solutions of the functional equation f(x+σy=f(xg(y-g(xf(y for all x,y∈S, where f,g:S→C. We then prove the Hyers-Ulam stability of the functional equation; that is, we study the functional inequality |f(x+σy-f(xg(y+g(xf(y|≤ψ(y for all x,y∈G, where f,g:G→C and ψ:G→R+.

  14. Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order

    Directory of Open Access Journals (Sweden)

    Taher S. Hassan

    2016-01-01

    Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t,  i=1,…,n-1,   with  x0=x,  ϕβ(u≔uβsgn⁡u, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.

  15. A remark on fractional differential equation involving I-function

    Science.gov (United States)

    Mishra, Jyoti

    2018-02-01

    The present paper deals with the solution of the fractional differential equation using the Laplace transform operator and its corresponding properties in the fractional calculus; we derive an exact solution of a complex fractional differential equation involving a special function known as I-function. The analysis of the some fractional integral with two parameters is presented using the suggested Theorem 1. In addition, some very useful corollaries are established and their proofs presented in detail. Some obtained exact solutions are depicted to see the effect of each fractional order. Owing to the wider applicability of the I-function, we can conclude that, the obtained results in our work generalize numerous well-known results obtained by specializing the parameters.

  16. Functional analysis in the study of differential and integral equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)

  17. Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation

    International Nuclear Information System (INIS)

    Zhang Liang; Zhang Lifeng; Li Chongyin

    2008-01-01

    By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions

  18. Zeta functional equation on Jordan algebras of type II

    International Nuclear Information System (INIS)

    Kayoya, J.B.

    2003-10-01

    Using the Jordan algebras method, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of Type II. As particular cases of our result, we can cite the case of V M (n, R) studied by Gelbart and Godement-Jacquet, and the case of V Herm(3, O s ) studied by Muro. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one to one correspondence with simple Jordan algebras. The method used in this paper is a direct application of specific properties of Jordan algebras of Type H. (author)

  19. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  20. Correlation functions and Schwinger-Dyson equations for Penner's model

    International Nuclear Information System (INIS)

    Chair, N.; Panda, S.

    1991-05-01

    The free energy of Penner's model exhibits logarithmic singularity in the continuum limit. We show, however, that the one and two point correlators of the usual loop-operators do not exhibit logarithmic singularity. The continuum Schwinger-Dyson equations involving these correlation functions are derived and it is found that within the space of the corresponding couplings, the resulting constraints obey a Virasoro algebra. The puncture operator having the correct (logarithmic) scaling behaviour is identified. (author). 13 refs

  1. Collective states of externally driven, damped nonlinear Schroedinger solitons

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Smirnov, Yu.S.

    1997-01-01

    We study bifurcations of localized stationary solitons of the externally driven, damped nonlinear Schroedinger equation iΨ t + Ψ xx + 2|Ψ| 2 Ψ=-iγΨ-h e iΩt , in the region of large γ (γ>1/2). For each pair of h and γ, there are two coexisting solitons, Ψ + and Ψ - . As the driver's strength h increases for the fixed γ, the Ψ + soliton merges with the flat background while the Ψ - forms a stationary collective state with two 'psi-pluses': Ψ - → Ψ (+ - +) . We obtain other stationary solutions and identify them as multisoliton complexes Ψ (++) , Ψ (--) , Ψ (-+) , Ψ (---) , Ψ (-+- ) etc. The corresponding intersoliton separations are compared to predictions of a variational approximation

  2. Chern--Simons theory in the Schroedinger representation

    International Nuclear Information System (INIS)

    Dunne, G.V.; Jackiw, R.; Trugenberger, C.A.

    1989-01-01

    We quantize the (2+1)-dimensional Chern--Simons theory in the functional Schroedinger representation. The realization of gauge transformations on states involves a 1-cocycle. We determine this cocycle; we show how solving the Gauss law constraint in the non-Abelian theory requires quantizing the parameter that normalizes the action; we trivialize the 1-cocycle with a spatially non-local cochain related to a 2-dimensional fermion determinant and we find the physical states that satisfy the Gauss law constraint. The quantum holonomy of physical states involves a contribution that is missed when the constraint is solved before quantization. We compute this quantity for the Abelian theory in Minkowski space, where it exhibits an interesting group theoretic structure. (In a note added in proof the corresponding non-Abelian computation is presented.) Also we consider coupling to external sources and offer yet another derivation of the anomalous statistics and spin of the charge and flux carrying particles---a calculation which is especially simple in the functional Schroedinger representation. copyright 1989 Academic Press, Inc

  3. Green's functions and trace formulas for generalized Sturm-Liouville problems related by Darboux transformations

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2010-01-01

    We study Green's functions of the generalized Sturm-Liouville problems that are related to each other by Darboux -equivalently, supersymmetrical - transformations. We establish an explicit relation between the corresponding Green's functions and derive a simple formula for their trace. The class of equations considered here includes the conventional Schroedinger equation and generalizations, such as for position-dependent mass and with linearly energy-dependent potential, as well as the stationary Fokker-Planck equation.

  4. Measure functional differential equations in the space of functions of bounded variation

    Czech Academy of Sciences Publication Activity Database

    Afonso, S.; Rontó, András

    2013-01-01

    Roč. 2013, č. 582161 (2013), s. 582161 ISSN 1085-3375 Institutional support: RVO:67985840 Keywords : measure differential equations * functional differential equations Subject RIV: BA - General Mathematics Impact factor: 1.274, year: 2013 http://www.hindawi.com/journals/ aaa /2013/582161/

  5. An evaluation of diverse methods of obtaining effective Schroedinger interaction potentials for elastic scattering

    International Nuclear Information System (INIS)

    Amos, K.; Allen, L.J.; Steward, C.; Hodgson, P.E.; Sofianos, S.A.

    1995-01-01

    Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs

  6. An evaluation of diverse methods of obtaining effective Schroedinger interaction potentials for elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K.; Allen, L.J.; Steward, C. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hodgson, P.E. [Oxford Univ. (United Kingdom). Dept. of Physics; Sofianos, S.A. [University of South Africa (UNISA), Pretoria (South Africa). Dept. of Physics

    1995-10-01

    Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs.

  7. Considerations on Bohr's, Heisenberg's and Schroedinger's philosophy

    International Nuclear Information System (INIS)

    Shimony, A.

    1981-01-01

    In denying that the words 'physical reality' are meaningful without reference to an experimental arrangement, Bohr renounces any knowledge of the 'thing-in-itself'. However, the relation of his epistemology to both idealism and positivism remains obscure. Heisenberg departs from Bohr in enunciating a metaphysical implication of quantum mechanics. Heisenberg asserts that there is an intermediate modality -potentiality- between logical possibility and existence. His attempts to explain the transition from potentiality to existence are not convincing. Schroedinger rejects Bohr's interpretation of quantum mechanics as a positivist exercise and seeks instead a realist interpretation. Nevertheless, the metaphysics of Schroedinger is fundamentally idealistic, maintaining that the material aspect of the world is composed of the same elements as mind, but in a different order [fr

  8. Schroedinger and the interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Rohrlich, F.

    1987-01-01

    On the occasion of the centennial of his birth, Schroedinger's life and views are sketched and his critique of the interpretation of quantum mechanics accepted at his time is examined. His own interpretation, which he had to abandon after a short time, provides a prime example of the way in which the tentative meaning of central theoretical terms in a new and revolutionary theory often fails. Schroedinger's strong philosophical convictions have played a key role in his refusal to break with many of the notions of classical physics. At the same time, they made him into a keen and incisive critic of the Copenhagen interpretation. His criticism is compared with present views on quantum mechanics

  9. System of delay difference equations with continuous time with lag function between two known functions

    Directory of Open Access Journals (Sweden)

    Hajnalka Péics

    2016-08-01

    Full Text Available The asymptotic behavior of solutions of the system of difference equations with continuous time and lag function between two known real functions is studied. The cases when the lag function is between two linear delay functions, between two power delay functions and between two constant delay functions are observed and illustrated by examples. The asymptotic estimates of solutions of the considered system are obtained.

  10. Eigenvalues of the simplified ideal MHD ballooning equation

    International Nuclear Information System (INIS)

    Paris, R.B.; Auby, N.; Dagazian, R.Y.

    1986-01-01

    The investigation of the spectrum of the simplified differential equation describing the variation of the amplitude of the ideal MHD ballooning instability along magnetic field lines constitutes a multiparameter Schroedinger eigenvalue problem. An exact eigenvalue relation for the discrete part of the spectrum is obtained in terms of the oblate spheroidal functions. The dependence of the eigenvalues lambda on the two free parameters γ 2 and μ 2 of the equation is discussed, together with certain analytical approximations in the limits of small and large γ 2 . A brief review of the principal properties of the spheroidal functions is given in an appendix

  11. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  12. A Solution of Time Dependent Schrodinger Equation by Quantum Walk

    International Nuclear Information System (INIS)

    Sekino, Hideo; Kawahata, Masayuki; Hamada, Shinji

    2012-01-01

    Time Dependent Schroedinger Equation (TDSE) with an initial Gaussian distribution, is solved by a discrete time/space Quantum Walk (QW) representing consecutive operations corresponding to a dot product of Pauli matrix and momentum operators. We call it as Schroedinger Walk (SW). Though an Hadamard Walk (HW) provides same dynamics of the probability distribution for delta-function-like initial distributions as that of the SW with a delta-function-like initial distribution, the former with a Gaussian initial distribution leads to a solution for advection of the probability distribution; the initial distribution splits into two distinctive distributions moving in opposite directions. Both mechanisms are analysed by investigating the evolution of the both amplitude components. Decoherence of the oscillating amplitudes in central region is found to be responsible for the splitting of the probability distribution in the HW.

  13. A life of Erwin Schroedinger. 2. ed.; Erwin Schroedinger. Eine Biographie

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Walter J.

    2015-07-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientist of the 20th century at all and a charming Austrian. He was a man with a passionate interest for men and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he obtained the Nobel prize for physics and naturally by the famous thought experiment ''Schroedingers cat''. Walter Moore's biography is quite near to the person of Schroedinger and presents his scientific work in the context of his friendships, his interset for mysticism, and in front of the moving background of the political events in Germany and Austria.

  14. Distributional Methods for a Class of Functional Equations and Their Stabilities

    Institute of Scientific and Technical Information of China (English)

    Jae Young CHUNG

    2007-01-01

    We consider a class of n-dimensional Pompeiu equations and that of Pexider equations and their Hyers-Ulam stability problems in the spaces of Schwartz distributions. First, reducing the given distribution version of functional equations to differential equations we find their solutions. Secondly,using approximate identities we prove the Hyers-Ulam stability of the equations.

  15. Exact solutions to the Lienard equation and its applications

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2004-01-01

    In this paper, a kind of explicit exact solutions to the Lienard equation is obtained, and the applications of the result in seeking traveling solitary wave solution of the nonlinear Schroedinger equation are presented

  16. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation

    International Nuclear Information System (INIS)

    Znojil, Miloslav

    2004-01-01

    Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations

  17. Stability by fixed point theory for functional differential equations

    CERN Document Server

    Burton, T A

    2006-01-01

    This book is the first general introduction to stability of ordinary and functional differential equations by means of fixed point techniques. It contains an extensive collection of new and classical examples worked in detail and presented in an elementary manner. Most of this text relies on three principles: a complete metric space, the contraction mapping principle, and an elementary variation of parameters formula. The material is highly accessible to upper-level undergraduate students in the mathematical sciences, as well as working biologists, chemists, economists, engineers, mathematicia

  18. Stability of Nonlinear Neutral Stochastic Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Minggao Xue

    2010-01-01

    Full Text Available Neutral stochastic functional differential equations (NSFDEs have recently been studied intensively. The well-known conditions imposed for the existence and uniqueness and exponential stability of the global solution are the local Lipschitz condition and the linear growth condition. Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but they can also be verified much more easily than the classical criteria. Finally, several examples are given to illustrate main results.

  19. A rational function based scheme for solving advection equation

    International Nuclear Information System (INIS)

    Xiao, Feng; Yabe, Takashi.

    1995-07-01

    A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. We find that the scheme is attractive in surpressinging overshoots and undershoots even in the vicinities of discontinuity. The scheme can also be easily swicthed as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of the scheme. (author)

  20. Non-negative Feynman endash Kac kernels in Schroedinger close-quote s interpolation problem

    International Nuclear Information System (INIS)

    Blanchard, P.; Garbaczewski, P.; Olkiewicz, R.

    1997-01-01

    The local formulations of the Markovian interpolating dynamics, which is constrained by the prescribed input-output statistics data, usually utilize strictly positive Feynman endash Kac kernels. This implies that the related Markov diffusion processes admit vanishing probability densities only at the boundaries of the spatial volume confining the process. We discuss an extension of the framework to encompass singular potentials and associated non-negative Feynman endash Kac-type kernels. It allows us to deal with a class of continuous interpolations admitted by general non-negative solutions of the Schroedinger boundary data problem. The resulting nonstationary stochastic processes are capable of both developing and destroying nodes (zeros) of probability densities in the course of their evolution, also away from the spatial boundaries. This observation conforms with the general mathematical theory (due to M. Nagasawa and R. Aebi) that is based on the notion of multiplicative functionals, extending in turn the well known Doob close-quote s h-transformation technique. In view of emphasizing the role of the theory of non-negative solutions of parabolic partial differential equations and the link with open-quotes Wiener exclusionclose quotes techniques used to evaluate certain Wiener functionals, we give an alternative insight into the issue, that opens a transparent route towards applications.copyright 1997 American Institute of Physics

  1. Electron confinement in quantum nanostructures: Self-consistent Poisson-Schroedinger theory

    International Nuclear Information System (INIS)

    Luscombe, J.H.; Bouchard, A.M.; Luban, M.

    1992-01-01

    We compute the self-consistent electron states and confining potential, V(r,T), for laterally confined cylindrical quantum wires at a temperature T from a numerical solution of the coupled Poisson and Schroedinger (PS) equations. Finite-temperature effects are included in the electron density function, n(r,T), via the single-particle density matrix in the grand-canonical ensemble using the self-consistent bound states. We compare our results for a GaAs quantum wire with those obtained previously [J. H. Luscombe and M. Luban, Appl. Phys. Lett. 57, 61 (1990)] from a finite-temperature Thomas-Fermi (TF) approximation. We find that the TF results agree well with those of the more realistic, but also more computationally intensive PS theory, except for low temperatures or for cases where the quantum wire is almost, but not totally, depleted due to a combination of either small geometry, surface boundary conditions, or low doping concentrations. In the latter situations, the number of subbands that are populated is relatively small, and both n(r,T) and V(r,T) exhibit Friedel-type oscillations. Otherwise the TF theory, which is based on free-particle states, is remarkably accurate. We also present results for the partial electron density functions associated with the angular momentum quantum numbers, and discuss their role in populating the quantum wire

  2. Parametric potential determination by the canonical function method

    International Nuclear Information System (INIS)

    Tannous, C.; Fakhreddine, K.; Langlois, J.

    1999-01-01

    The canonical function method (CFM) is a powerful means for solving the radial Schroedinger equation (RSE). The mathematical difficulty of the RSE lies in the fact it is a singular boundary value problem. The CFM turns it into a regular initial value problem and allows the full determination of the spectrum of the Schroedinger operator without calculating the eigenfunctions. Following the parametrisation suggested by Klapisch and Green-Sellin-Zachor we develop a CFM to optimise the potential parameters in order to reproduce the experimental quantum defect results for various Rydberg series of He, Ne and Ar as evaluated from Moore's data. (orig.)

  3. AMDLIBAE, IBM 360 Subroutine Library, Special Function, Polynomials, Differential Equation

    International Nuclear Information System (INIS)

    Wang, Jesse Y.

    1980-01-01

    Description of problem or function: AMDLIBAE is a subset of the IBM 360 Subroutine Library at the Applied Mathematics Division at Argonne National Laboratory. This subset includes library categories A-E: Identification/Description: A152S A MPA: Mult. prec. floating point arith. package; B156S A ARSIN: Arcsine, arccosine; B158S A DSIN/DCOS: DP sine, cosine; B159S A DTAN/DCOT: DP tangent, cotangent; B252S A SINH/COSH: Hyperbolic sine, cosine; B353S A ALOG: SP logarithm; B354S A DEXP: DP exponential; B355S A DLOG: DP logarithm; B456S A DCUBRT: DP cube root; B457S A ARGPOWER: X Y ; B458S A ARGFDXPD: DP X Y ; C150S F DQD: Q. D. algorithm applied to a power series; C151S F DCONF1: Eval. cont. fract. Q. D. of power series; C250S F CUBIC: Roots of cubic polynomial equation; C251S F QUARTIC: Roots of quartic polynomial equation; C252S F RSSR: All roots of poly eqs. with real coef.; C253S F POLDRV: Driver for C254S; C254S F CPOLY: Roots arb. poly. Jenkins-Traub algorithm; C353S F1 CLEBSH: Ang. mom. coef. - Clebsch, Racah, Wigner; C365S A ALGAMA: Logarithm of the gamma function; C366S A DGAMMA/DLGAMA: DP gamma and log(gamma) functions; C368S F EONE: Exponential integral E1; C370S F BESJY: Bessel functions J and Y; C371S F BESIK: Bessel functions I and K; C372S F CHIPRB: Chi-square integral; C380S F DRZETA: Long precision zeta, zeta-1 functions; C382S F DCGAM: Long precision complex gamma; C383S A DERF/DERFC: DP error function; C384S F BFJ1: Bessel function J1; C385S F COULMB: Regular Coulomb wave functions; C386S F1 DSGMAL: Coulomb phase shift; C387S F BFJYR: Bessel functions J0,J1,Y0,Y1; C388S F IRCOUL: LP irregular Coulomb wave functions; C389S F GAMIN: Incomplete gamma function; C390S F LQ: Assoc. Legendre functions of 2. kind; C392S A DAERF: Inverse error function; C393S F CDEONE: Modified complex exponential integral; D153S F DROMB: Two-dimensional Romberg quadrature; D153S P DROMBP: Two-dimensional Romberg quadrature; D158S F ANC4: Adap. quad. using 4. order Newton

  4. Reduction of structured population models to threshold-type delay equations and functional differential equations: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.L. (Arizona State Univ., Tempe (United States))

    1993-01-01

    It is shown by way of a simple example that certain structured population models lead naturally to differential delay equations of the threshold type and that these equations can be transformed in a natural way to functional differential equations. The model examined can be viewed as a model of competition between adults and juveniles of a single population. The results indicate the possibility that this competition leads to instability. 28 refs., 2 figs.

  5. Studies of particles statistics in one and two dimensions, based on the quantization methods of Heisenberg, Schroedinger and Feynman

    International Nuclear Information System (INIS)

    Myrheim, J.

    1993-06-01

    The thesis deals with the application of different methods to the quantization problem for system of identical particles in one and two dimensions. The standard method is the analytic quantization method due to Schroedinger, which leads to the concept of fractional statistics in one and two dimensions. Two-dimensional particles with fractional statistics are well known by the name of anyons. Two alternative quantization methods are shown by the author, the algebraic method of Heisenberg and the Feynman path integral method. The Feynman method is closely related to the Schroedinger method, whereas the Heisenberg and Schroedinger methods may give different results. The relation between the Heisenberg and Schroedinger methods is discussed. The Heisenberg method is applied to the equations of motion of vortices in superfluid helium, which have the form of Hamiltonian equations for a one-dimensional system. The same method is also discussed more generally for systems of identical particles in one and two dimensions. An application of the Feynman method to the problem of computing the equation of state for a gas of anyons is presented. 104 refs., 4 figs

  6. Role of statistical linearization in the solution of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Budgor, A.B.

    1977-01-01

    The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables

  7. Periodic differential equations an introduction to Mathieu, Lamé, and allied functions

    CERN Document Server

    Arscott, Felix M; Stark, M; Ulam, S

    1964-01-01

    Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions covers the fundamental problems and techniques of solution of periodic differential equations. This book is composed of 10 chapters that present important equations and the special functions they generate, ranging from Mathieu's equation to the intractable ellipsoidal wave equation.This book starts with a survey of the main problems related to the formation of periodic differential equations. The subsequent chapters deal with the general theory of Mathieu's equation, Mathieu functions of integral order, and

  8. Green function of the double-fractional Fokker-Planck equation: Path integral and stochastic differential equations

    Science.gov (United States)

    Kleinert, H.; Zatloukal, V.

    2013-11-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.

  9. A discovery of quite exceptional importance. Schroedinger's correspondence on wave mechanics and on the cat paradoxon

    International Nuclear Information System (INIS)

    Meyenn, Karl von

    2011-01-01

    After Schroedinger has in the beginning of 1926 published his wave mechanics, he has by this opened many new physical views and perspectives, which have decidingly influenced the further development of quantum theory. Also today the Schroedinger equations forms the foundation of the whole microphysics and their far reaching applications. Therefore it is both for the scientist and for the interested layman very attractive to be informed by first hand about the more direct conditions and the problems of their origin. Letters of famous scientists and researchers have also in the past attracted the interest of the public, and many a scientist has been excited to the study by the lecture of such primary sources. The selection of about 300 letters presented here illuminates especially the origin of wave mechanics and their still controverse interpretation. An extensive introduction, comments, remarks, illustrations, and lists establish the physical and historical relations.

  10. Controllability for Semilinear Functional and Neutral Functional Evolution Equations with Infinite Delay in Frechet Spaces

    International Nuclear Information System (INIS)

    Agarwal, Ravi P.; Baghli, Selma; Benchohra, Mouffak

    2009-01-01

    The controllability of mild solutions defined on the semi-infinite positive real interval for two classes of first order semilinear functional and neutral functional differential evolution equations with infinite delay is studied in this paper. Our results are obtained using a recent nonlinear alternative due to Avramescu for sum of compact and contraction operators in Frechet spaces, combined with the semigroup theory

  11. Inverting the Rayleigh-Schroedinger perturbation series: Application to atomic stabilization by intense light

    International Nuclear Information System (INIS)

    Baik, M.; Pont, M.; Shakeshaft, R.

    1995-01-01

    We develop a method for calculating the (quasi)energy eigenvalue E(F) of a hydrogen atom in a nonperturbative ac field of strength F starting from a knowledge of the coefficients E (2m) of the Rayleigh-Schroedinger perturbation series E(F)=tsum m=0 M E (2m) F 2m . We first use the coefficients E (2m) (the unperturbed energy is E (0) ) to construct the inverse series F 2 (E)=tsum m=1 M F (m) (E-E (0) ) m . We resum the latter series using the Pade method, and solve the implicit equation F 2 (E)=bar F 2 for E(bar F). The reconstructed function E(F) has the singularity structure appropriate to the true E(F). We are able to obtain good results for the lifetime of a hydrogen atom in a high-frequency field up to very high intensities, well into the (highly nonperturbative) stabilization regime

  12. Roots of two transcendental equations involving spherical bessel functions

    International Nuclear Information System (INIS)

    Pexton, R.L.; Steiger, A.D.

    1977-01-01

    Roots of the transcendental equations j/sub l/(αlambda) y/sub l/(lambda) =j/sub l/(lambda) y/sub l/(αlambda) and [xj/sub l/(x)]'/sub x alphaeta yl-italic/(x)]'/sub x eta/=xj/sub l/(x)]'/sub x eta yl-italic/(x)]'/sub x alphaeta/for the spherical Bessel functions of the first and second kind, j/sub l/(z) and y/sub l/(z), have been computed. The ranges for the parameter α, the order l and the root index n are: α=0.1(0.1)0.7,l=1(1)15,n=1(1)30

  13. Numerical solution of Euler's equation by perturbed functionals

    Science.gov (United States)

    Dey, S. K.

    1985-01-01

    A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.

  14. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self-contained approach to the mathematical theory of a viscous, incompressible fluid in a domain of the Euclidean space, described by the equations of Navier-Stokes. Moreover, the theory is presented for completely general domains, in particular, for arbitrary unbounded, nonsmooth domains. Therefore, restriction was necessary to space dimensions two and three, which are also the most significant from a physical point of view. For mathematical generality, however, the linearized theory is expounded for general dimensions higher than one. Although the functional analytic approach developed here is, in principle, known to specialists, the present book fills a gap in the literature providing a systematic treatment of a subject that has been documented until now only in fragments. The book is mainly directed to students familiar with basic tools in Hilbert and Banach spaces. However, for the readers’ convenience, some fundamental properties...

  15. Soliton solution for nonlinear partial differential equations by cosine-function method

    International Nuclear Information System (INIS)

    Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.

    2007-01-01

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations

  16. Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Yu Jianping; Sun Yongli

    2008-01-01

    This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations

  17. Numerical solution of the potential problem by integral equations without Green's functions

    International Nuclear Information System (INIS)

    De Mey, G.

    1977-01-01

    An integral equation technique will be presented to solve Laplace's equation in a two-dimensional area S. The Green's function has been replaced by a particular solution of Laplace equation in order to establish the integral equation. It is shown that accurate results can be obtained provided the pivotal elimination method is used to solve the linear algebraic set

  18. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  19. One-dimensional Schroedinger equation as a classical dinamical problem

    International Nuclear Information System (INIS)

    Sanjines C, D.

    1990-01-01

    The analogy between the determination of the energy spectrum for periodic and localized 1 dimensional potentials and the stability for a particle under the influence of elastic forces is presented. For the particle to be confined in a bounded region of the phase space, it is necessary that the trace of the evolution matrix over a period of the periodic potential belongs to the interval (-2,2) [3]. Curiously, the same stability criterion might be applied to localized potentials and then determine the discrete spectrum for such potentials. We have found that for either periodic and localized potentials, the classical dynamical picture is more clarifying and the results are more compact. (Author)

  20. Travelling Solitons in the Damped Driven Nonlinear Schroedinger Equation

    CERN Document Server

    Barashenkov, I V

    2003-01-01

    The well-known effect of the linear damping on the moving nonlinear Schrodinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable.

  1. Functional renormalisation group equations for supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Synatschke-Czerwonka, Franziska

    2011-01-11

    This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)

  2. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self­ contained approach to the mathematical theory of a viscous incompressible fluid in a domain 0 of the Euclidean space ]Rn, described by the equations of Navier­ Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers' convenience, in the first two chapters we collect without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain O. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n = 2,3 that are also most significant from the physical point of view. For mathematical generality, we will develop the lin­ earized theory for all n 2 2. Although the functional-analytic approach developed here is, in principle, known ...

  3. Numerical methods for differential equations and applications

    International Nuclear Information System (INIS)

    Ixaru, L.G.

    1984-01-01

    This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)

  4. Path integral solution of linear second order partial differential equations I: the general construction

    International Nuclear Information System (INIS)

    LaChapelle, J.

    2004-01-01

    A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette

  5. On solvability of some quadratic functional-integral equation in Banach algebra

    International Nuclear Information System (INIS)

    Darwish, M.A.

    2007-08-01

    Using the technique of a suitable measure of non-compactness in Banach algebra, we prove an existence theorem for some functional-integral equations which contain, as particular cases, a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis and its applications. Also, the famous Chandrasekhar's integral equation is considered as a special case. (author)

  6. Contractivity and Exponential Stability of Solutions to Nonlinear Neutral Functional Differential Equations in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Wan-sheng WANG; Shou-fu LI; Run-sheng YANG

    2012-01-01

    A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.

  7. Three-level models solvable in terms of the Clausen function

    Energy Technology Data Exchange (ETDEWEB)

    Ishkhanyan, Artur [Engineering Center of Armenian National Academy of Sciences, Ashtarak-2, 378410 (Armenia); Suominen, Kalle-Antti [Helsinki Institute of Physics, PL 64, FIN-00014 Helsingin yliopisto (Finland)

    2003-07-04

    The problem of analytical integrability of the three-level problem by reduction of the time-dependent Schroedinger equations to the third-order linear differential equation satisfied by the generalized hypergeometric functions {sub 3}F{sub 2} is considered. A total of 12 infinite classes of models solvable in terms of these functions is found, most of which are new and others are generalizations of the previously known families.

  8. The quantum dual string wave functional in Yang-Mills theories

    International Nuclear Information System (INIS)

    Gervais, J.-L.; Neveu, A.

    1979-01-01

    From any solution of the classical Yang-Mills equations, a string wave functional based on the Wilson loop integral is defined. Its precise definition is given by replacing the string by a finite set of N points, and taking the limit N → infinity. It is shown that this functional satisfies the Schroedinger equation of the relativistic dual string to leading order in N. The relevance of this object to the quantum problem is speculated. (Auth.)

  9. Three-level models solvable in terms of the Clausen function

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Suominen, Kalle-Antti

    2003-01-01

    The problem of analytical integrability of the three-level problem by reduction of the time-dependent Schroedinger equations to the third-order linear differential equation satisfied by the generalized hypergeometric functions 3 F 2 is considered. A total of 12 infinite classes of models solvable in terms of these functions is found, most of which are new and others are generalizations of the previously known families

  10. A linear functional differential equation with distributions in the input

    Directory of Open Access Journals (Sweden)

    Vadim Z. Tsalyuk

    2003-10-01

    Full Text Available This paper studies the functional differential equation $$ dot x(t = int_a^t {d_s R(t,s, x(s} + F'(t, quad t in [a,b], $$ where $F'$ is a generalized derivative, and $R(t,cdot$ and $F$ are functions of bounded variation. A solution is defined by the difference $x - F$ being absolutely continuous and satisfying the inclusion $$ frac{d}{dt} (x(t - F(t in int_a^t {d_s R(t,s,x(s}. $$ Here, the integral in the right is the multivalued Stieltjes integral presented in cite{VTs1} (in this article we review and extend the results in cite{VTs1}. We show that the solution set for the initial-value problem is nonempty, compact, and convex. A solution $x$ is said to have memory if there exists the function $x$ such that $x(a = x(a$, $x(b = x(b$, $ x(t in [x(t-0,x(t+0]$ for $t in (a,b$, and $frac{d}{dt} (x(t - F(t = int_a^t {d_s R(t,s,{x}(s}$, where Lebesgue-Stieltjes integral is used. We show that such solutions form a nonempty, compact, and convex set. It is shown that solutions with memory obey the Cauchy-type formula $$ x(t in C(t,ax(a + int_a^t C(t,s, dF(s. $$

  11. Parametrically Excited Oscillations of Second-Order Functional Differential Equations and Application to Duffing Equations with Time Delay Feedback

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2014-01-01

    Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.

  12. Mathematical and physical aspects of controlling the exact solutions of the 3D Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Fedele, Renato; Jovanovic, Dusan; De Nicola, Sergio; Eliasson, Bengt; Shukla, Padma K.

    2010-01-01

    The possibility of the decomposition of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) into a pair of coupled Schroedinger-type equations, is investigated. It is shown that, under suitable mathematical conditions, it is possible to construct the exact controlled solutions of the 3D GPE from the solutions of a linear 2D Schroedinger equation coupled with a 1D nonlinear Schroedinger equation (the transverse and longitudinal components of the GPE, respectively). The coupling between these two equations is the functional of the transverse and the longitudinal profiles. The applied method of nonlinear decomposition, called the controlling potential method (CPM), yields the full 3D solution in the form of the product of the solutions of the transverse and longitudinal components of the GPE. It is shown that the CPM constitutes a variational principle and sets up a condition on the controlling potential well. Its physical interpretation is given in terms of the minimization of the (energy) effects introduced by the control. The method is applied to the case of a parabolic external potential to construct analytically an exact BEC state in the form of a bright soliton, for which the quantitative comparison between the external and controlling potentials is presented.

  13. Modulating functions method for parameters estimation in the fifth order KdV equation

    KAUST Repository

    Asiri, Sharefa M.; Liu, Da-Yan; Laleg-Kirati, Taous-Meriem

    2017-01-01

    In this work, the modulating functions method is proposed for estimating coefficients in higher-order nonlinear partial differential equation which is the fifth order Kortewegde Vries (KdV) equation. The proposed method transforms the problem into a

  14. OSCILLATION BEHAVIOR OF SOLUTIONS FOR EVEN ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    T.Candan

    2006-01-01

    Even order neutral functional differential equations are considered. Sufficient conditions for the oscillation behavior of solutions for this differential equation are presented. The new results are presented and some examples are also given.

  15. General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations

    OpenAIRE

    Ren, Jiagang; Wu, Jing; Zhang, Hua

    2015-01-01

    In this paper, we prove a large deviation principle of Freidlin-Wentzell's type for the multivalued stochastic differential equations. As an application, we derive a functional iterated logarithm law for the solutions of multivalued stochastic differential equations.

  16. Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2013-01-01

    Full Text Available The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. We apply the exp-function method to both the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully established.

  17. Quasi-Newton methods for parameter estimation in functional differential equations

    Science.gov (United States)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  18. Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2009-01-01

    In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.

  19. Exact Travelling Solutions of Discrete sine-Gordon Equation via Extended Tanh-Function Approach

    International Nuclear Information System (INIS)

    Dai Chaoqing; Zhang Jiefang

    2006-01-01

    In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.

  20. A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the Collocation Method

    Directory of Open Access Journals (Sweden)

    Changqing Yang

    2012-01-01

    Full Text Available A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area of differential equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.