WorldWideScience

Sample records for schroederi baylisascaris ailuri

  1. Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear.

    Science.gov (United States)

    Xie, Yue; Zhang, Zhihe; Wang, Chengdong; Lan, Jingchao; Li, Yan; Chen, Zhigang; Fu, Yan; Nie, Huaming; Yan, Ning; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2011-08-15

    Roundworms of the genus Baylisascaris are the most common parasitic nematodes of the intestinal tracts of wild mammals, and most of them have significant impacts in veterinary and public health. Mitochondrial (mt) genomes provide a foundation for studying epidemiology and ecology of these parasites and therefore may be used to assist in the control of Baylisascariasis. Here, we determined the complete sequences of mtDNAs for Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga, with 14,778 bp, 14,657 bp and 14,898 bp in size, respectively. Each mtDNA encodes 12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs, typical for other chromadorean nematodes. The gene arrangements for the three Baylisascaris species are the same as those of the Ascaridata species, but radically different from those of the Spirurida species. Phylogenetic analysis based on concatenated amino acid sequences of 12 protein-coding genes from nine nematode species indicated that the three Baylisascaris species are more closely related to Ascaris suum than to the three Toxocara species (Toxocara canis, Toxocara cati and Toxocara malaysiensis) and Anisakis simplex, and that B. ailuri is more closely related to B. transfuga than to B. schroeder. The determination of the complete mt genome sequences for these three Baylisascaris species (the first members of the genus Baylisascaris ever sequenced) is of importance in refining the phylogenetic relationships within the order Ascaridida, and provides new molecular data for population genetic, systematic, epidemiological and ecological studies of parasitic nematodes of socio-economic importance in wildlife. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Prokaryotic Expression and Serodiagnostic Potential of Glyceraldehyde-3-Phosphate Dehydrogenase and Thioredoxin Peroxidase from Baylisascaris schroederi

    Directory of Open Access Journals (Sweden)

    Yu Li

    2017-10-01

    Full Text Available Baylisascaris schroederi, a roundworm parasite of giant pandas, badly affects the health of its hosts. Diagnosis of this disease currently depends mainly on sedimentation floatation and Polymerase Chain Reaction (PCR methods to detect the eggs. However, neither of these methods is suitable for diagnosis of early-stage panda baylisascariasis and no information on early diagnosis of this disease is available so far. Therefore, to develop an effective serologic diagnostic method, this study produced recombinant glyceraldehyde-3-phosphate dehydrogenase (GAPDH and thioredoxin peroxidase (Tpx proteins from B. schroederi using a prokaryotic expression system. We determined the immunological characteristics of these proteins and their location in the parasite. Indirect enzyme-linked immunosorbent assays (ELISAs were established to detect B. schroederi infection in giant pandas based on GAPDH and Tpx respectively. The open reading frame of the GAPDH gene (1083 bp encoded a 39 kDa protein, while the predicted molecular weight of Tpx (588 bp was 21.6 kDa. Western-blotting analysis revealed that both recombinant proteins could be recognized with positive serum of pandas infected with B. schroederi. Immunohistochemical staining showed that the endogenous GAPDH of B. schroederi was widely distributed in the worm while Tpx was mainly localized in the muscle, eggs, gut wall, uterus wall and hypodermis. Serological tests showed that the GAPDH-based indirect ELISA had a sensitivity of 95.83% and specificity of 100%, while the test using Tpx as the antigen had sensitivity of 75% and specificity of 91.7%. Thus, B. schroederi Tpx is unsuitable as a diagnostic antigen for baylisascariasis, but B. schroederi GAPDH is a good candidate diagnostic antigen for B. schroederi in pandas.

  3. Determination of Baylisascaris schroederi infection in wild giant pandas by an accurate and sensitive PCR/CE-SSCP method.

    Directory of Open Access Journals (Sweden)

    Wenping Zhang

    Full Text Available It has been recognized that other than habitat loss, degradation and fragmentation, the infection of the roundworm Baylisascaris schroederi (B. schroederi is one of the major causes of death in wild giant pandas. However, the prevalence and intensity of the parasite infection has been inconsistently reported through a method that uses sedimentation-floatation followed by a microscope examination. This method fails to accurately determine infection because there are many bamboo residues and/or few B. schroederi eggs in the examined fecal samples. In the present study, we adopted a method that uses PCR and capillary electrophoresis combined with a single-strand conformation polymorphism analysis (PCR/CE-SSCP to detect B. schroederi infection in wild giant pandas at a nature reserve, and compared it to the traditional microscope approach. The PCR specifically amplified a single band of 279-bp from both fecal samples and positive controls, which was confirmed by sequence analysis to correspond to the mitochondrial COII gene of B. schroederi. Moreover, it was demonstrated that the amount of genomic DNA was linearly correlated with the peak area of the CE-SSCP analysis. Thus, our adopted method can reliably detect the infectious prevalence and intensity of B. schroederi in wild giant pandas. The prevalence of B. schroederi was found to be 54% in the 91 fecal samples examined, and 48% in the fecal samples of 31 identified individual giant pandas. Infectious intensities of the 91 fecal samples were detected to range from 2.8 to 959.2 units/gram, and from 4.8 to 959.2 units/gram in the fecal samples of the 31 identified giant pandas. For comparison, by using the traditional microscope method, the prevalence of B. schroederi was found to be only 33% in the 91 fecal samples, 32% in the fecal samples of the 31 identified giant pandas, and no reliable infectious intensity was observed.

  4. Fatty-binding protein and galectin of Baylisascaris schroederi: Prokaryotic expression and preliminary evaluation of serodiagnostic potential.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Baylisascaris schroederi is a common parasite of captive giant pandas. The diagnosis of this ascariasis is normally carried out by a sedimentation-floatation method or PCR to detect eggs in feces, but neither method is suitable for early diagnosis. Fatty acid-binding protein (FABP and galectin (GAL exist in various animals and participate in important biology of parasites. Because of their good immunogenicity, they are seen as potential antigens for the diagnosis of parasitic diseases. In this study, we cloned and expressed recombinant FABP and GAL from B. schroederi (rBs-FABP and rBs-GAL and developed indirect enzyme-linked immunosorbent assays (ELISAs to evaluate their potential for diagnosing ascariasis in giant pandas. Immunolocalization showed that Bs-FABP and Bs-GAL were widely distributed in adult worms. The ELISA based on rBs-FABP showed sensitivity of 95.8% (23/24 and specificity of 100% (12/12, and that based on rBs-GAL had sensitivity of 91.7% (22/24 and specificity of 100% (12/12.

  5. Baylisascaris Infection

    Centers for Disease Control (CDC) Podcasts

    2012-08-27

    This podcast will educate health care providers on diagnosing baylisascariasis and on providing patients at risk of Baylisascaris infection with prevention messages.  Created: 8/27/2012 by Center for Global Health, Division of Parasitic Diseases and Malaria.   Date Released: 8/28/2012.

  6. Baylisascaris Larva Migrans

    Science.gov (United States)

    Kazacos, Kevin R.; Abbott, Rachel C.; van Riper, Charles

    2016-05-26

    SummaryBaylisascaris procyonis, the common raccoon roundworm, is the most commonly recognized cause of clinical larva migrans (LM) in animals, a condition in which an immature parasitic worm or larva migrates in a host animal’s tissues, causing obvious disease. Infection with B. procyonis is best known as a cause of fatal or severe neurologic disease that results when the larvae invade the brain, the spinal cord, or both; this condition is known as neural larva migrans (NLM). Baylisascariasis is a zoonotic disease, that is, one that is transmissible from animals to humans. In humans, B. procyonis can cause damaging visceral (VLM), ocular (OLM), and neural larva migrans. Due to the ubiquity of infected raccoons around humans, there is considerable human exposure and risk of infection with this parasite. The remarkable disease-producing capability of B. procyonis in animals and humans is one of the most significant aspects of the biology of ascarids (large roundworms) to come to light in recent years. Infection with B. procyonis has important health implications for a wide variety of free-ranging and captive wildlife, zoo animals, domestic animals, as well as human beings, on both an individual and population level. This report, eighth in the series of U.S. Geological Survey Circulars on zoonotic diseases, will help us to better understand the routes of Baylisascaris procyonis infections and how best to adequately monitor this zoonotic disease.

  7. Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis.

    Science.gov (United States)

    Cazapal-Monteiro, Cristiana F; Hernández, José A; Arroyo, Fabián L; Miguélez, Silvia; Romasanta, Ángel; Paz-Silva, Adolfo; Sánchez-Andrade, Rita; Arias, María S

    2015-07-01

    Baylisascaris procyonis is a soil-transmitted helminth mainly found in raccoons (Procyon lotor) which can also affect other domestic and sylvatic animals, as well as humans, when the eggs released in the feces of parasitized raccoons are accidentally ingested. Three assays have been conducted to assess the effect of three saprophytic fungi, Mucor circinelloides, Paecilomyces lilacinus, and Verticillium sp., on the eggs of B. procyonis. Firstly, their ovicidal effect was in vitro ascertained by placing 1 mL with 2 × 10(6) spores of each fungus in Petri plates with water-agar (2 %) and simultaneously adding 200 eggs of Baylisascaris/plate. Two in vivo probes were carried out, by spraying the fungal spores (3 mL containing about 2 × 10(6) spores/mL) on the feces of raccoons and coatis (Nasua narica) passing eggs of B. procyonis in a zoological park; the other assay consisted of evaluating the activity of the fungi after adding sand to fecal samples from raccoons. An ovicidal type 3 activity characterized by morphological damage of the eggshell with hyphal penetration, internal egg colonization, and embryo alteration was observed for all the tested fungi. In the plate assays, viability of Baylisascaris eggs reduced significantly by 53-69 % with Mucor, 45-62 % with Paecilomyces, and 52-67 % with Verticillium. A similar ovicidal effect was detected in the feces with sand. These results demonstrate the usefulness of spraying spores of M. circinelloides, Pa. lilacinus, or Verticillium sp. on the feces of animals infected by Baylisascaris to decrease the numbers of viable eggs and, thus, the risk of infection.

  8. A presumptive case of Baylisascaris procyonis in a feral green-cheeked Amazon parrot (Amazona viridigenalis).

    Science.gov (United States)

    Done, Lisa B; Tamura, Yoko

    2014-03-01

    A feral green-cheeked Amazon parrot (Amazona viridigenalis), also known as the red-crowned Amazon, with generalized neurologic symptoms was found in Pasadena in Southern California and brought in for treatment. The bird was refractory to a wide variety of medications and supportive treatment. Tests for polyoma virus, psittacine beak and feather disease virus, and West Nile virus as well as Chlamydophila psittaci were negative. Hospitalized and home care continued for a total of 69 days. The bird was rehospitalized on day 66 for increasing severity of clinical signs and found 3 days later hanging with its head down, in respiratory arrest. Resuscitation was unsuccessful. There were no gross pathologic lesions. Histopathology showed a focal subcutaneous fungal caseous granuloma under the skin of the dorsum. Many sarcocysts morphologically consistent with Sarcocystis falcatula were found in the cytoplasm of the skeletal myofibers from skeletal muscles of different locations of this bird, a finding that was considered an incidental, clinically nonsignificant finding in this case. Necrosis with microscopic lesions typical of Baylisascaris spp. neural larva migrans was in the brain. Although multiple histologic serial sections of the brain were examined and a brain squash performed and analyzed, no Baylisascaris larvae were found. This is the first presumptive case of Baylisascaris in a feral psittacine.

  9. Assessing Potential Environmental Contamination by Baylisascaris procyonis Eggs from Infected Raccoons in Southern Texas.

    Science.gov (United States)

    Ogdee, Jacob L; Henke, Scott E; Wester, David B; Fedynich, Alan M

    2017-03-01

    Baylisascaris procyonis is a large ascarid of raccoons (Procyon lotor) and is a zoonotic threat. We documented the potential rate a raccoon population can contaminate their environment with B. procyonis eggs. We estimated the population size of raccoons using a 9 × 7 trapping grid of Havahart traps, identified locations of raccoon scats through systematic searches, and enumerated the distance B. procyonis eggs passively travel from site of origin upon scat decay. During an 8-week capture period, the raccoon population was estimated to be 19.6 ± 1.3 raccoons within the 63-ha study area (1 raccoon/3.2 ha). There were 781 defecation sites, of which 744 (95.3%) were isolated sites and 37 (4.7%) were latrine sites. Fifty-three (6.8%) defecation sites occurred in areas associated with human structures (commensal zone). Of the noncommensal sites, 9 (1.2%) and 719 (98.8%) sites were identified as latrine sites and isolated scats, respectively. More latrine sites were located within the commensal zone (p contaminate 0.03 ± 0.01 ha/year with B. procyonis eggs. Our findings indicate that B. procyonis represents a substantial risk to humans in areas where infected raccoons and humans co-occur.

  10. Baylisascaris procyonis in raccoons (Procyon lotor) from eastern Colorado, an area of undefined prevalence.

    Science.gov (United States)

    Chavez, Deanna J; LeVan, Ivy K; Miller, Michael W; Ballweber, Lora R

    2012-04-30

    Baylisascaris procyonis is a zoonotic parasite that has been documented in raccoons throughout much of the United States; however, no published information on its occurrence is available for the transition zone from the Great Plains to the Rocky Mountains. Because this parasite can cause neural larva migrans and diffuse unilateral subacute neuroretinitis in humans (as well as other hosts), a more complete understanding of the distribution of this parasite seems warranted for public health reasons. The purpose of this study was to begin to fill in the gaps in our knowledge of the distribution of B. procyonis in an area of the US where there is, currently, no published information available. Fifty-three raccoons were collected throughout eastern Colorado during 2007-2010. Forty-six were examined by necropsy and seven by fecal flotation. Age (11 juveniles, 25 adults) and sex (16 males, 19 females) of the raccoons were recorded when intact carcasses were available. When available, feces were further processed for the detection of Giardia and Cryptosporidium using a direct fluorescent antibody detection method. B. procyonis was found in 31 of 53 raccoons (58.5%, 95% CI=44.1%, 71.9%). Mean intensity was 11.7 with a range of 1-49 worms per infected individual. There was no significant difference between age or sex, and the presence of ascarids or the number of ascarids. Cryptosporidium spp. oocysts and Giardia spp. cysts were detected in 11/44 (25%; 95% CI: 13.2, 40.3) and 3/44 (6.9%; 95% CI: 1.4, 18.7) raccoons, respectively. The genotype of the Giardia present could not be determined. The genotype of five of six cryptosporidial isolates was 100% homologous to the skunk genotype while the sixth was 100% homologous to Cryptosporidium parvum. Based on these results, both B. procyonis and Cryptosporidium spp. appear to be prevalent in raccoons of eastern Colorado. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Baylisascaris procyonis un nemátodo del mapache urbano, agente zoonótico emergente por considerar como diagnóstico diferencial de larva migrans en Costa Rica. Revisión

    Directory of Open Access Journals (Sweden)

    Mario Baldi

    2017-06-01

    Full Text Available El ascaridio Baylisascaris procyonis es un agente parasitario de importancia para la salud pública, siendo su huésped definitivo el mapache común (Procyon lotor. Un nuevo informe alerta sobre la presencia de estas lombrices en poblaciones de mapaches en la zona urbana de Costa Rica, y hace énfasis en la necesidad de conocer más sobre este parásito, su ciclo de vida y cómo prevenir su transmisión en humanos y animales domésticos. Esta comunicación es una breve revisión sobre los aspectos más importantes de este nematodo y sus efectos negativos en la salud animal y pública.  Además, se hace hincapié en los mejores métodos de diagnóstico etiológico y los más apropiados para animales domésticos, así como el tratamiento y la prevención en perros. El presente artículo pretende formar conciencia en los trabajadores de la salud pública y animal sobre la necesidad de tomar el Bayliascaris procyonis dentro de su diagnóstico diferencial de larvas migrantes en Costa Rica.

  12. Parasites of the Giant Panda: A Risk Factor in the Conservation of a Species.

    Science.gov (United States)

    Wang, Tao; Xie, Yue; Zheng, Youle; Wang, Chengdong; Li, Desheng; Koehler, Anson V; Gasser, Robin B

    2018-01-01

    The giant panda, with an estimated population size of 2239 in the world (in 2015), is a global symbol of wildlife conservation that is threatened by habitat loss, poor reproduction and limited resistance to some infectious diseases. Of these factors, some diseases caused by parasites are considered as the foremost threat to its conservation. However, there is surprisingly little published information on the parasites of the giant panda, most of which has been disseminated in the Chinese literature. Herein, we review all peer-reviewed publications (in English or Chinese language) and governmental documents for information on parasites of the giant pandas, with an emphasis on the intestinal nematode Baylisascaris schroederi (McIntosh, 1939) as it dominates published literature. The purpose of this chapter is to: (i) review the parasites recorded in the giant panda and describe what is known about their biology; (ii) discuss key aspects of the pathogenesis, diagnosis, treatment and control of key parasites that are reported to cause clinical problems and (iii) conclude by making some suggestions for future research. This chapter shows that we are only just 'scratching the surface' when it comes to parasites and parasitological research of the giant panda. Clearly, there needs to be a concerted research effort to support the conservation of this iconic species. © 2018 Elsevier Ltd All rights reserved.

  13. Raccoon Roundworm Infection PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-08-27

    This 60 second PSA describes the signs and symptoms of and ways to prevent Baylisascaris infection, a parasitic roundworm infection that is spread through raccoon feces.  Created: 8/27/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/28/2012.

  14. Raccoon roundworm in raccoons in central West Virginia

    Science.gov (United States)

    Sheldon F. Owen; John W. Edwards; W. Mark Ford; James M. Crum; Petra Bohall Wood

    2004-01-01

    We investigated the occurrence of raccoon roundworm (Baylisascaris procyonis) in common raccoons (Procyon lotor) in the Allegheny Mountains of West Virginia during spring (n = 9, April-June) and fall (n = 5, August-October) 2001 and spring (n = 1) and fall (n = 4) 2002. We found no evidence of B. procyonis...

  15. Interlaboratory Optimization and Evaluation of a Serological Assay for Diagnosis of Human Baylisascariasis

    OpenAIRE

    Rascoe, Lisa N.; Santamaria, Cynthia; Handali, Sukwan; Dangoudoubiyam, Sriveny; Kazacos, Kevin R.; Wilkins, Patricia P.; Ndao, Momar

    2013-01-01

    A Western blot assay using a recombinant protein, recombinant Baylisascaris procyonis RAG1 protein (rBpRAG1), was developed for the diagnosis of human baylisascariasis concurrently by the Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia, and the National Reference Centre for Parasitology (NRCP) in Montreal, Canada. Assay performance was assessed by testing 275 specimens at the CDC and 405 specimens at the NRCP. Twenty specimens from 16 cases of baylisascariasis were evalua...

  16. From the twig tips to the deeper branches

    DEFF Research Database (Denmark)

    Betson, Martha; Nejsum, Peter; Stothard, J. Russell

    2013-01-01

    upon disease control. While useful in determining dynamics at the tips of the evolutionary tree, these molecular tools also provide insights into deeper evolutionary branches. Although Ascaris is found throughout the globe, molecular analysis of worms retrieved from sub-Saharan Africa point towards...... a significant center of genetic diversity, possibly denoting a likely center of evolutionary origin with subsequent parasite diaspora. Resolving these issues precisely, however, requires greater scrutiny of genetic variation within Parascaris and Baylisascaris. © 2013...

  17. Studies on endoparasites of the black bear (Ursus americanus) in the southeastern United States.

    Science.gov (United States)

    Crum, J M; Nettles, V F; Davidson, W R

    1978-04-01

    Examination of 53 black bears (Ursus americanus) from six states in the southeastern United States revealed at least 17 species of endoparasites, including Sarcocystis sp., Spirometra mansonoides (spargana), Macracanthorhynchus ingens, Ancylostoma caninum, Arthrocephalus lotoris, Baylisascaris transfuga, Capillaria aerophila, Capillaria putorii, Crenosoma sp., Cyathospirura sp., Dirofilaria immitis, Gnathostoma sp., Gongylonema pulchrum, microfilariae, Molineus barbatus, Physaloptera sp. and Strongyloides sp. Twelve of these represent new host records for black bear, and two are considered to be new species. Data are presented on prevalence, intensity and geographic distribution of each species. Pathologic effects were associated with infections of spargana of S. mansonoides and adults of C. aerophilia.

  18. Helminths of the raccoon (Procyon lotor) in western Kentucky.

    Science.gov (United States)

    Cole, R A; Shoop, W L

    1987-08-01

    Seventy raccoons (Procyon lotor) from western Kentucky were examined for helminths from December 1985 through May 1986. Twenty-three species of helminths were collected including 10 species of Trematoda (Brachylaima virginiana, Euryhelmis squamula, Eurytrema procyonis, Fibricola cratera, Gyrosoma singulare, Maritreminoides nettae, Mesostephanus appendiculatoides, Metagonimoides oregonensis, Paragonimus kellicotti, Pharyngostomoides procyonis), 2 species of Cestoda (Atriotaenia procyonis, Mesocestoides variabilis), 10 species of Nematoda (Arthrocephalus lotoris, Baylisascaris procyonis, Capillaria putorii, C. plica, Crenosoma goblei, Dracunculus insignis, Gnathostoma procyonis, Molineus barbatus, Physaloptera rara, Trichinella spiralis), and 1 species of Acanthocephala (Macracanthorhynchus ingens). A mean of 6.4 (3-11) helminth species per host was recorded. Fibricola cratera, Atriotaenia procyonis, Mesocestoides variabilis, Arthrocephalus lotoris, Capillaria plica, Dracunculus insignis, Molineus barbatus, and Physaloptera rara were ubiquitous parasites of the raccoon, whereas specific nidi were observed for Eurytrema procyonis, Gyrosoma singulare, Paragonimus kellicotti, Baylisascaris procyonis, Trichinella spiralis, and Macracanthorhyncus ingens. With an overall prevalence of 10% or higher, 15 of the 23 helminth species were considered common parasites of the raccoon in western Kentucky. When the 10% prevalence rate was applied within geographical quadrants to correct for the presence of nidi it was found that 18 of the 23 helminth species were common and 5 were regarded as rare parasites of the raccoon. Two species of nematodes, T. spiralis and B. procyonis, displayed a markedly higher prevalence in male raccoons.

  19. Helminths of brown bears (Ursus arctos) in the Kola Peninsula.

    Science.gov (United States)

    Bugmyrin, S V; Tirronen, K F; Panchenko, D V; Kopatz, A; Hagen, S B; Eiken, H G; Kuznetsova, A S

    2017-06-01

    We present data on the species composition of helminths in brown bears (Ursus arctos) from the Murmansk Region, Russia. The absence of any information about helminths of brown bear in the region necessitated the conduct of these studies. Samples were collected in 2014 and 2015 in the southern part of the Kola Peninsula from the White Sea coastal habitats. Annually, in the study area, 1-3 bears are legally hunted and biological samples for examination are very difficult to obtain. Therefore, we used fecal samples. We studied 93 feces and identified parasite eggs identified in 43 of them by morphometric criteria. The surveys revealed eggs of the following helminths: Dicrocoelium sp., Diphyllobothrium sp., Anoplocephalidae, Capillariidae, Baylisascaris sp., Strongylida 1, and Strongylida 2. These results represent the first reconnaissance stage, which allowed characterizing the taxonomic diversity and prevalence of parasites of brown bears of the Kola Peninsula.

  20. Parasites and fungi as risk factors for human and animal health.

    Science.gov (United States)

    Góralska, Katarzyna; Błaszkowska, Joanna

    2015-01-01

    Recent literature data suggests that parasitic and fungal diseases, which pose a threat to both human and animal health, remain a clinical, diagnostic and therapeutic problem. Attention is increasingly paid to the role played by natural microbiota in maintaining homeostasis in humans. A particular emphasis is placed on the possibility of manipulating the human microbiota (permanent, transient, pathogenic) and macrobiota (e.g., Trichuris suis) to support the treatment of selected diseases such as Crohn's disease, obesity, diabetes and cancer. Emphasis is placed on important medical species whose infections not only impair health but can also be life threatening, such as Plasmodium falciparum, Echinococcus multilocularis and Baylisascaris procyonis, which expand into areas which have so far been uninhabited. This article also presents the epidemiology, diagnosis and treatment of opportunistic parasitoses imported from the tropics, which spread across large groups of people through human-to-human transmission (Enterobius vermicularis, Sarcoptes scabiei). It also discusses the problem of environmentally-conditioned parasitoses, particularly their etiological factors associated with food contaminated with invasive forms (Trichinella sp., Toxoplasma gondii). The analysis also concerns the presence of developmental forms of geohelminths (Toxocara sp.) and ectoparasites (ticks), which are vectors of serious human diseases (Lyme borreliosis, anaplasmosis, babesiosis), in the environment. Mycological topics contains rare cases of mycoses environmentally conditioned (CNS aspergillosis) and transmissions of these pathogens in a population of hospitalized individuals, as well as seeking new methods used to treat mycoses.

  1. Differential diagnosis of CNS angiostrongyliasis: a short review.

    Science.gov (United States)

    Senthong, Vichai; Chindaprasirt, Jarin; Sawanyawisuth, Kittisak

    2013-06-01

    The diagnostic criterion for eosinophilic meningitis (EOM) is the identification of an absolute count of 10 eosinophils per ml or more than 10% of the total white blood cells in the cerebrospinal fluid (CSF) in the proper clinical context. The most common cause of EOM is Angiostrongylus cantonensis infection, termed meningitic angiostrongyliasis (MA). Neurognathostomiasis (NG) is the main parasitic disease in the differential diagnosis of meningitic angiostrongyliasis. This short review is based on articles published on Medline between 2000 and 2012 related to EOM. There are three main approaches that can be used to differentiate between MA and NG, involving clinical factors, history of larval exposure, and serological tests. MA patients presented with acute severe headache but without neurological deficit, combined with a history of eating uncooked snails or slugs. NG patients always presented with motor weakness, migratory swelling, radicular pain and had history of eating uncooked poultry or fish. Specific antigenic bands in immunoblot tests are helpful tools to differentiate the two diseases. Other causes of eosinophilic meningitis are neurocysticercosis, cerebral paragonimiasis, Toxoplasma canis, Baylisascaris, tuberculous meningitis, and cryptococcal meningitis.

  2. Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes.

    Science.gov (United States)

    Zhu, X Q; Gasser, R B

    1998-06-01

    In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.

  3. HEALTH SURVEY OF FREE-RANGING RACCOONS (PROCYON LOTOR) IN CENTRAL PARK, NEW YORK, NEW YORK, USA: IMPLICATIONS FOR HUMAN AND DOMESTIC ANIMAL HEALTH.

    Science.gov (United States)

    Rainwater, Kimberly L; Marchese, Krysten; Slavinski, Sally; Humberg, Lee A; Dubovi, Edward J; Jarvis, Jodie A; McAloose, Denise; Calle, Paul P

    2017-04-01

    We conducted health assessments on 113 free-ranging raccoons ( Procyon lotor ) in Central Park, New York City, US, in February 2010, September 2010, and November 2011 in conjunction with a trap-vaccinate-release program to control a raccoon rabies epizootic. Five individuals were sampled at two time points for 118 raccoon examinations in total. We tested 13 of 13 and 8 of 13 euthanized raccoons for rabies and canine distemper virus (CDV), respectively, by antigen testing on brain tissue; all were negative for both viruses. Endoparasitism was the most common necropsy finding, with definitive identification of Baylisascaris procyonis in six of eight (75%) necropsied raccoons. Multiple intestinal parasites were detected in feces of living raccoons, including ascarid-type ova in 25 of 80 (31%) raccoons, with B. procyonis confirmed in one sample. Median blood lead level was 7.3 μg/dL (n=104). Rabies virus neutralizing antibody titer was ≥0.5 IU/mL in 9 of 88 (10%) raccoons naive to rabies vaccination and in 13 of 20 (65%) previously vaccinated raccoons. The majority of raccoons we tested were seropositive for canine parvovirus-2 (54/59, 92%) and Toxoplasma gondii (39/60, 65%). Fewer were seropositive for Rickettsia rickettsii (3/30, 10%). None were seropositive for CDV (n=108), canine adenovirus-1 (n=60), or Borrelia burgdorferi (n=30). Ectoparasites found during 16 of 118 (13.6%) physical examinations included Ixodes texanus ticks (15/118, 12.7%) and Trichodectes octomaculatus lice (1/118, 0.8%). We detected Campylobacter jejuni in 5 of 79 (6%) fecal samples. We detected 11 Salmonella enterica serotypes in 70 of 111 (63.1%) enteric cultures, the most common of which were Salmonella Newport (20/70, 29%) and Salmonella Oranienburg (20/70, 29%). These results indicate that raccoons in Central Park likely are involved in the environmental occurrence and potential disease transmission of a variety of infectious and noninfectious diseases of concern for human, wildlife

  4. Использование некоторых праймеров, разработанных для близкородственных видов паразитов семейства ascarididae в отношении к Toxocara tanuki (Yamaguti, 1941)

    OpenAIRE

    Уманец, Александр

    2014-01-01

    В статье отражён опыт молекулярной идентификации Toxocara tanuki методом ПЦР с применением праймеров, разработанных для близкородственных видов (Toxocara cati, Toxocara canis, Baylisascaris procionis, B. columnaris, B. transfuga). Показано, что праймеры, предложенные S. Dangoudoubiyam et al. для видовой идентификации B. Procionis, могут быть использованы и для дифференциации T. Tanuki от схожих в морфологическом плане паразитических червей. Также выявлена возможность использования остальных с...